WO2023231054A1 - 半导体基板加工装置与膜厚改善方法 - Google Patents
半导体基板加工装置与膜厚改善方法 Download PDFInfo
- Publication number
- WO2023231054A1 WO2023231054A1 PCT/CN2022/097276 CN2022097276W WO2023231054A1 WO 2023231054 A1 WO2023231054 A1 WO 2023231054A1 CN 2022097276 W CN2022097276 W CN 2022097276W WO 2023231054 A1 WO2023231054 A1 WO 2023231054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust
- semiconductor substrate
- inner ring
- exhaust port
- substrate processing
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 132
- 239000000758 substrate Substances 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 81
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 230000007423 decrease Effects 0.000 claims description 21
- 239000007921 spray Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001788 irregular Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2015—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
Definitions
- the present application relates to the field of semiconductor manufacturing technology, and in particular to a semiconductor substrate processing device and a film thickness improvement method.
- productivity eg, the number of semiconductor substrates that can be processed per unit time
- Devices capable of mass production usually include batch reactors and monolithic machines.
- the batch reactor is a system in which dozens of semiconductor substrates are stacked vertically, loaded into the reactor, and then processed. It can be seen that the batch reactor can process dozens of semiconductor substrates at a time and has high productivity.
- the disadvantage of the batch reactor is that multiple semiconductor substrates are processed simultaneously through the same reaction chamber, so it is difficult to accurately control a single semiconductor substrate. production and processing.
- the single-chip machine is equipped with multiple cavities, each cavity is equipped with at least two reaction chambers, and the exhaust port is located in the middle of the two reaction chambers for removing the semiconductor substrate. Collecting the waste gas generated by processing the film can ensure production efficiency and improve the processing quality of the film to a certain extent, but there is still the defect of uneven film thickness.
- this application discloses a semiconductor substrate processing device and a film thickness improvement method, which can improve the uniformity of the film thickness.
- the technical solution is as follows: a semiconductor substrate processing device.
- the semiconductor substrate processing device includes: a reactor. There are at least two reactors.
- the reactor includes a carrying platform for carrying the semiconductor substrate and the carrying platform.
- the nozzles are arranged relatively spaced apart from each other, an air flow control ring is arranged circumferentially around the bearing platform, and an exhaust duct is arranged circumferentially around the bearing platform.
- the exhaust duct, the bearing platform, and the air flow control ring And the nozzle is enclosed to form a reaction chamber, the bottom end of the exhaust pipe is in contact with or connected to the upper surface of the air flow control ring, the bottom end of the exhaust pipe is provided with an inner ring, and the inner ring is A plurality of spaced exhaust holes are provided, and the exhaust holes are connected with the reaction chamber; and a common exhaust mechanism is provided with an exhaust port, and the reaction chamber passes through the exhaust hole.
- the hole is connected with the exhaust port, and the opening ratio of the exhaust hole in each area on the inner ring shows an increasing trend in the direction away from the exhaust port.
- the diameter of the exhaust hole on the inner ring tends to increase in a direction away from the exhaust port.
- the diameter of the exhaust hole on the inner ring gradually increases in a direction away from the exhaust port according to an arithmetic sequence.
- the tolerance of the exhaust hole diameter is defined as t1, and t1 is 0.01nm-0.1nm.
- the spacing between the exhaust holes on the inner ring tends to decrease in a direction away from the exhaust port.
- the spacing between the exhaust holes on the inner ring gradually decreases in a direction away from the exhaust port according to an arithmetic sequence.
- the tolerance of the spacing of the exhaust holes is defined as t2, and t2 is -5mm to -0.5mm.
- the aperture of the exhaust hole on the inner ring closest to the exhaust port is defined as d
- d 30%h ⁇ 40%h.
- a plane passing through the central axis of the reaction chamber and the central axis of the exhaust port is defined as a reference surface, and the exhaust hole on the inner ring is symmetrical with respect to the reference surface. layout.
- the number of the exhaust holes is 60 to 200.
- At least three reactors are spaced around the exhaust port.
- a plane passing through the central axis of the reaction chamber and the central axis of the exhaust port is defined as a reference plane, and the line connecting the two reference planes forms an intersection. corner settings.
- the angle between the two reference planes is defined as a, and a ranges from 45° to 135°.
- the shape of the exhaust hole is a circle, an ellipse, a square, a triangle, a pentagon, a hexagon, or an octagon; the shape of the exhaust hole is a circle or an ellipse. , square, triangle, pentagon, hexagon, octagon.
- the semiconductor substrate processing device includes a reactor and a common exhaust mechanism; there are at least two reactors, and the reactor includes a device for carrying a semiconductor.
- the common exhaust mechanism is provided with an exhaust port connected to the reaction chamber;
- the method for improving the film thickness of the semiconductor substrate includes the following steps: adjusting the air flow at different positions of the semiconductor substrate to reduce the deviation of the air flow at different positions of the semiconductor substrate.
- the method of adjusting the air flow at different positions of the semiconductor substrate to reduce the deviation of the air flow at different positions of the semiconductor substrate includes:
- the exhaust pipe is modified so that the size deviation of the exhaust gas to the outside through the exhaust pipe at various positions in the circumferential direction of the reaction chamber is reduced.
- modifying the exhaust pipe includes the following steps:
- the bottom end of the exhaust pipe is provided with an inner ring, and a plurality of exhaust holes are provided at intervals on the inner ring.
- the exhaust holes are connected with the reaction chamber, and the reaction chamber passes through the exhaust gas.
- the air holes are connected with the exhaust port, so that the opening ratio of the exhaust holes in each area on the inner ring tends to increase in the direction away from the exhaust port.
- the thickness of the part on the inner ring corresponding to the certain region is The opening ratio increases; when the film thickness of a certain area on the semiconductor substrate is lower than the average film thickness on the semiconductor substrate, the opening of the part on the inner ring corresponding to the certain area is increased. Porosity decreases.
- causing the exhaust hole opening ratio of each area on the inner ring to increase in a direction away from the exhaust port includes:
- the aperture of the exhaust hole on the inner ring tends to increase in the direction away from the exhaust port;
- the spacing between the exhaust holes on the inner ring tends to decrease in the direction away from the exhaust port.
- the bottom end of the exhaust duct is in contact with or connected to the upper surface of the air flow control ring, it is equivalent to extending the inner ring of the traditional exhaust duct to the upper surface of the air flow control ring. surface, and multiple exhaust holes are arranged at intervals on the inner ring, and are connected to the reaction chamber through the exhaust holes.
- the opening ratio of the exhaust holes in each area on the inner ring shows an increasing trend in the direction away from the exhaust port, that is, improving the outward exhaust speed of the exhaust holes in each area on the inner ring can
- the outward exhaust speed of the exhaust holes in each area on the inner ring is kept consistent or basically consistent. This can compensate for the impact of different airflows at different locations on the semiconductor substrate caused by the position of the exhaust port deviating from the center of the reaction chamber.
- the final film thickness on the semiconductor substrate produced is more uniform, and the product quality is improved.
- Figure 1 is a schematic structural diagram of a single-chip machine according to an embodiment of the traditional technology
- Figure 2 is a simplified top view structural diagram of the reaction chamber and exhaust port of the single-chip machine shown in Figure 1;
- Figure 3 is a simplified schematic diagram of the single-chip machine shown in Figure 1 at position A;
- Figure 4 is a thermal image of a semiconductor substrate produced by the single-chip machine shown in Figure 1;
- Figure 5 is a schematic structural diagram of a semiconductor substrate processing device in an embodiment of the present application.
- Figure 6 is a simplified schematic diagram of the semiconductor substrate processing device shown in Figure 1 at position B;
- Figure 7 is a schematic top structural view of a simplified embodiment of the reaction chamber and exhaust port of the semiconductor substrate processing device shown in Figure 5;
- Figure 8 is a cross-sectional view of the inner ring shown in Figure 7 through the reference plane L and toward the f direction;
- Figure 9 is a schematic top structural view of another simplified embodiment of the reaction chamber and exhaust port of the semiconductor substrate processing device shown in Figure 5;
- Figure 10 is a schematic top structural view of another simplified embodiment of the reaction chamber and exhaust port of the semiconductor substrate processing device shown in Figure 5;
- Figure 11 is a schematic top structural view of yet another simplified embodiment of the reaction chamber and exhaust port of the semiconductor substrate processing device shown in Figure 5;
- FIG. 12 is a thermal image of a semiconductor substrate produced by the semiconductor substrate processing device shown in FIG. 5 .
- Figure 1 shows a schematic structural diagram of a single-chip machine according to an embodiment of the traditional technology.
- Figure 2 shows the reaction chamber 110 and exhaust of the single-chip machine shown in Figure 1.
- Figure 3 shows a simplified top view structural diagram of the air port 120.
- Figure 3 shows a simplified schematic diagram of the single-chip machine shown in Figure 1 at position A.
- the process gas is transported downward from the top of the cavity to the inside of the reaction chamber 110 .
- the process gas is required to be uniformly transported, that is, multiple air inlet holes are evenly opened on the nozzle 130 of the reaction chamber 110 to ensure that the process gas is uniformly transported to the upper surface of the semiconductor substrate 140 .
- the process gas enters the interior of the reaction chamber 110 through the nozzle 130 and undergoes a chemical reaction.
- the gas generated during the reaction and excess process gas will be discharged to the exhaust port through the gap 170 between the exhaust pipe 150 and the air flow control ring 160 . 120, and was finally pumped to the factory through a suction device.
- FIG. 4 shows a thermal image of the semiconductor substrate 140 produced by the single-chip machine shown in FIG. 1 .
- the simplified top view is shown in Figure 2.
- the gas port 120 is located in the middle of the two reaction chambers 110 .
- the inventor found through research that there is a large difference in the exhaust speed of the exhaust pipe 150 at points b and c in Figure 2, that is, the exhaust speed of the exhaust pipe 150 increases as the distance from the exhaust port 120 increases.
- each semiconductor substrate 140 is greater than the standard value (the standard value is generally set to 0.1). From Figure 4, it can be obtained that the film uniformity of the semiconductor substrate 140 is 0.31, and the upper left corner of the semiconductor substrate 140 The film in the square position is thicker.
- the semiconductor substrate in this embodiment includes but is not limited to a wafer, and can also be other semiconductor structures, which can be flexibly set and selected according to actual needs.
- FIG. 5 shows a schematic structural diagram of a semiconductor substrate processing device in an embodiment of the present application.
- FIG. 6 shows a simplified schematic diagram of the semiconductor substrate processing device shown in FIG. 1 at position B.
- Figure 7 shows a simplified top structural diagram of the reaction chamber 250 and the exhaust port 310 of the semiconductor substrate processing device shown in Figure 5.
- Figure 8 shows the inner ring 241 shown in Figure 7 with reference to A cross-sectional view of the plane L facing the f direction shows a semiconductor substrate processing device provided by an embodiment of the present application.
- the semiconductor substrate processing device includes a reactor 200 and a common exhaust mechanism 300 . There are at least two reactors 200 .
- the reactor 200 includes a bearing platform 210 for bearing the semiconductor substrate 400 , a nozzle 220 arranged at a distance from the bearing platform 210 , an airflow control ring 230 circumferentially arranged around the bearing platform 210 , and a surrounding bearing platform.
- the exhaust duct 240 is arranged circumferentially on the platform 210 .
- the exhaust pipe 240 , the bearing platform 210 , the air flow control ring 230 and the nozzle 220 form a reaction chamber 250 .
- the bottom end of the exhaust pipe 240 is in contact with or connected to the upper surface of the air flow control ring 230 .
- an inner ring 241 is provided at the bottom end of the exhaust pipe 240 , and the inner ring 241 is in contact with or connected to the upper surface of the air flow control ring 230 .
- the inner ring 241 is provided with a plurality of spaced exhaust holes 2411, and the exhaust holes 2411 are connected with the reaction chamber 250.
- the common exhaust mechanism 300 is provided with an exhaust port 310.
- the reaction chamber 250 is connected to the exhaust port 310 through the exhaust hole 2411.
- the opening ratio of the exhaust holes 2411 in each area on the inner ring 241 is at a distance from the exhaust port 310. There is an increasing trend in the direction.
- the opening ratio of the exhaust holes 2411 in a certain area on the inner ring 241 refers to the ratio of the total opening area of the exhaust holes 2411 in a certain area on the inner ring 241 to the area of a certain area.
- the inner ring 241 refers to the pipe section of the exhaust pipe 240 that is closest to the central axis of the reaction chamber 250 (the dotted line O shown in Figure 5), that is, the distance from the central axis of the reaction chamber 250. It is located at the bottom end of the exhaust duct 240 and is smaller than the distance between other parts of the exhaust duct 240 and the central axis.
- the purpose of abutting or connecting the inner ring 241 with the upper surface of the air flow control ring 230 is to avoid the formation of a gap between the inner ring 241 and the upper surface of the air flow control ring 230, thereby preventing the air flow inside the reaction chamber 250 from passing through the gap.
- the air flow inside the reaction chamber 250 is mainly discharged from the reaction chamber 250 through the exhaust holes 2411 on the inner ring 241. Therefore, by adjusting the size and number of the exhaust holes 2411, the reaction chamber can be better controlled.
- the outward discharge effect of the air flow in 250 can make the outward exhaust speed of the exhaust holes 2411 in each area of the inner ring 241 consistent or basically the same.
- the inner ring 241 can be in contact with the end surface of the air flow control ring 230, and/or a vent hole can be opened at the part where the upper surface of the air flow control ring 230 contacts the inner ring 241 to increase the exhaust gas.
- the air flow rate, the specific location of opening, and the number and size of vents can be flexibly adjusted and set according to actual needs, and are not limited here.
- the "inner ring 241" can be a "part of the exhaust pipe 240", that is, the “inner ring 241" and “other parts of the exhaust pipe 240" are integrally formed; it can also be formed with the “exhaust pipe 240"
- An independent component that can be separated from “other parts”, that is, the “inner ring 241” can be manufactured independently, and then combined with the “other parts of the exhaust pipe 240" to form a whole.
- the "inner ring 241" when the inner ring 241 is connected to the upper surface of the air flow control ring 230, the “inner ring 241" can be "a part of the air flow control ring 230", that is, the “inner ring 241" and the “air flow control ring 230" "Other parts of the air flow control ring 230" can be made in one piece; it can also be an independent component that is separable from the "other parts of the air flow control ring 230", that is, the “inner ring 241" can be made independently, and then combined with the "other parts of the air flow control ring 230" into a whole.
- the reactor 200 may be a space in which the semiconductor substrate 400 is processed. Although only one reactor 200 is shown in Figure 5, multiple reactors 200 may be implemented (as shown in Figure 7). Reactor 200 may provide a space for heating, deposition, etching, polishing, ion implantation, and/or other processing of semiconductor substrate 400.
- reactor 200 may be configured to perform moving functions, vacuum sealing functions, heating functions, exhaust functions, and/or other functions on semiconductor substrate 400 to thereby process objects in reactor 200 .
- the reactor 200 may include a reaction chamber 250 for processing the semiconductor substrate 400 and an exhaust pipe 240 for exhausting gas inside the reaction chamber 250 .
- the bottom end of the exhaust duct 240 since the bottom end of the exhaust duct 240 is in contact with or connected to the upper surface of the air flow control ring 230, it is equivalent to extending the inner ring 241 of the traditional exhaust duct 240 to the upper surface of the air flow control ring 230.
- a plurality of exhaust holes 2411 are arranged at intervals on the inner ring 241, and are connected with the reaction chamber 250 through the exhaust holes 2411.
- the opening ratio of the exhaust holes 2411 in each area on the inner ring 241 shows an increasing trend in the direction away from the exhaust port 310, that is, the exhaust holes 2411 in each area on the inner ring 241 exhaust air outward.
- the outward exhaust speeds of the exhaust holes 2411 in various areas on the inner ring 241 can be kept consistent or substantially consistent. This can compensate for the influence of different airflows at different locations on the semiconductor substrate 400 caused by the position of the exhaust port 310 deviating from the center of the reaction chamber 250. The thickness of the film on the semiconductor substrate 400 finally produced is more uniform, and the product quality is improved.
- FIGS. 7 and 8 Please refer to FIGS. 7 and 8 .
- the left end of the view shown in FIG. 8 is relatively far away from the exhaust port 310
- the right end of the view is relatively close to the exhaust port 310 .
- the diameter of the exhaust hole 2411 on the inner ring 241 tends to increase in the direction away from the exhaust port 310 .
- the opening ratio of the exhaust holes 2411 in different areas on the inner ring 241 can be adjusted, and the opening ratio of the exhaust holes 2411 in various areas on the inner ring 241 can be realized.
- the rate tends to increase in the direction away from the exhaust port 310 .
- the diameter of the exhaust hole 2411 on the inner ring 241 gradually increases according to an arithmetic sequence in a direction away from the exhaust port 310 .
- the outward exhaust speed of the exhaust holes 2411 in each area on the inner ring 241 can be better controlled, so that the exhaust speed in each area on the inner ring 241 remains consistent or substantially consistent, which is beneficial to the uniformity of the film thickness.
- the tolerance of the aperture of the exhaust hole 2411 is defined as t1, and t1 is 0.01nm-0.1nm.
- t1 includes but is not limited to 0.01nm, 0.02nm, 0.03nm, 0.04nm, 0.05nm, 0.06nm, 0.08nm, 0.09nm, 0.1nm.
- t1 can also be set to be greater than 0.1nm according to actual needs. Numerical values, such as 0.12nm, 0.14nm, 0.16nm, 0.18nm, 0.2nm, 0.22nm, 0.24nm, 0.26nm, 0.28nm, 0.3nm, 0.32nm, 0.34nm, 0.36nm, 0.38nm, etc.
- t1 is 0.04 nm. Therefore, it is found from the thermal image that the thickness uniformity of the film on the semiconductor substrate 400 is good, and the uniformity meets the standard.
- the aperture of the exhaust hole 2411 in the direction away from the exhaust port 310 is not limited to gradually increasing according to the arithmetic sequence in the above embodiment, and may also increase in other ways.
- There are many ways to set it up which can be flexibly adjusted and set according to actual needs, and are not limited here.
- the aperture of the exhaust hole 2411 on the inner ring 241 can remain unchanged in the direction away from the exhaust port 310, or show a decreasing trend, or first decrease and then increase. Or arrange it in other ways, correspondingly by adjusting the hole spacing and/or the number of the exhaust holes 2411 to achieve an increase in the opening rate of the exhaust holes 2411 in each area of the inner ring 241 in the direction away from the exhaust port 310 Trend.
- the spacing between the exhaust holes 2411 on the inner ring 241 tends to decrease in the direction away from the exhaust port 310 .
- the opening ratio of the exhaust holes 2411 in different areas on the inner ring 241 can be adjusted. It shows an increasing trend in the direction of the exhaust port 310 . That is, the exhaust holes 2411 on the inner ring 241 closer to the exhaust port 310 are more dispersed, and the exhaust holes 2411 on the inner ring 241 farther away from the exhaust port 310 are denser.
- the spacing between the exhaust holes 2411 on the inner ring 241 gradually decreases in a direction away from the exhaust port 310 according to an arithmetic sequence. In this way, the outward exhaust speed of the exhaust holes 2411 in each area on the inner ring 241 can be better controlled, so that the exhaust speed in each area on the inner ring 241 remains consistent or substantially consistent, which is beneficial to the uniformity of the film thickness.
- the spacing between the exhaust holes 2411 in the direction away from the exhaust port 310 is not limited to gradually decreasing according to the arithmetic sequence in the above embodiment, and can also be reduced in other ways, such as first using the differential sequence.
- the value decreases gradually, then decreases with the difference becoming a constant value, then decreases with the difference gradually increasing, and then decreases with the difference becoming a constant value; for another example, first The difference decreases as a constant value, and then decreases as the difference gradually increases; for another example, first decreases as the difference gradually increases, and then decreases as the difference becomes a constant value.
- There are many ways to set it up which can be flexibly adjusted and set according to actual needs, and are not limited here.
- the spacing of the exhaust holes 2411 on the inner ring 241 should be kept consistent, or the hole spacing should be increased in the direction away from the exhaust port 310 , or increase first and then decrease, or arrange it in other ways.
- the tolerance of the hole spacing of the exhaust holes 2411 is defined as t2, and t2 is -5mm to -0.5mm.
- t2 includes but is not limited to -5mm, -4mm, -3mm, -2.5mm, -2mm, -1.9mm, -1.8mm, -1.7mm, -1.6mm, -1.5mm, -1.4mm, -1.3mm, -1.2mm, -1.1mm, -1mm, -0.9mm, -0.8mm, -0.7mm, -0.5mm, t2 can also be set to a value less than -5mm according to actual needs, such as -10mm, -9mm, -8mm, -7mm, -6mm, etc.
- t1 is -1 mm. Therefore, it is found from the thermal image that the thickness uniformity of the film on the semiconductor substrate 400 is good, and the uniformity meets the standard.
- the diameter of the exhaust hole 2411 on the inner ring 241 that is closest to the exhaust port 310 is defined as d
- the aperture size d of the exhaust hole 2411 is set more reasonably, which can improve the outward exhaust speed of the exhaust holes 2411 in each area on the inner ring 241 and make the exhaust holes 2411 in each area on the inner ring 241
- the outward exhaust velocity remains the same or basically the same. It is found through the thermal image that the thickness uniformity of the film on the semiconductor substrate 400 is good, and the uniformity meets the standard.
- d 30%h ⁇ 40%h.
- the applicant found through research that when d is set in this range, the setting of d is more reasonable and can improve the outward exhaust speed of the exhaust holes 2411 in various areas on the inner ring 241, and the improvement effect is obvious, and can The outward exhaust speeds of the exhaust holes 2411 in various areas on the inner ring 241 are kept consistent or substantially consistent. It is found through the thermal image that the thickness uniformity of the film on the semiconductor substrate 400 is good, and the uniformity meets the standard.
- a plane passing through the central axis of the reaction chamber 250 and the central axis of the exhaust port 310 is defined as a reference plane (as shown in Figure 7, passing through the dotted line L and perpendicular to the paper surface plane), the exhaust holes 2411 on the inner ring 241 are arranged symmetrically with respect to the reference plane.
- the outward exhaust speeds of the exhaust holes 2411 in various areas on the inner ring 241 can be kept consistent or substantially consistent, thereby making up for the airflow at different locations on the semiconductor substrate 400 caused by the position of the exhaust port 310 deviating from the center of the reaction chamber 250 Different influences, the thickness uniformity of the film on the finally produced semiconductor substrate 400 is better, and the product quality is improved.
- the number of exhaust holes 2411 is 60 to 200.
- the number of exhaust holes 2411 includes, but is not limited to, 60, 65, 70, 72, 74, 76, 78, 80, 82, 85, 90, 100, 110, 130, 150, and 200. It should be noted that the number of exhaust holes 2411 can be less than 60 or more than 200, and can be flexibly adjusted and set according to actual needs, and is not limited here.
- the axial cross-section of the inner ring 241 is, for example, a circle, an ellipse, a square, a triangle, a hexagon, an octagon, etc., or it can be a regular shape. It can also be an irregular shape, which can be flexibly set and adjusted according to actual needs, and is not limited here.
- the axial section of the inner ring 241 is circular, and the diameter of the circle is defined as D, and the diameter D is 450mm-650mm.
- the diameter D is 450mm, 500mm, 510mm, 520mm, 530mm, 540mm, 545mm, 548mm, 549mm, 549.5mm, 550mm, 550.5mm, 551mm, 553mm, 570mm, 590mm, 630mm, 650mm, etc. It should be noted that the diameter D can also be a value smaller than 450mm and larger than 650mm. The specific setting can be flexibly adjusted according to actual needs and is not specifically limited here.
- FIG. 9 shows a schematic top structural view of another simplified embodiment of the reaction chamber 250 and exhaust port 310 of the semiconductor substrate processing device shown in FIG. 5 .
- FIG. 10 shows a schematic structural diagram of FIG. 5
- the reaction chamber 250 and the exhaust port 310 of the semiconductor substrate processing device shown are another simplified top structural diagram of another embodiment.
- Figure 11 shows the reaction chamber 250 and the exhaust port of the semiconductor substrate processing device shown in Fig. 5 310 is a simplified top view structural diagram of yet another embodiment.
- at least three reactors 200 are spaced around the exhaust port 310 .
- At least three reactors 200 are arranged at equal intervals around the exhaust port 310 .
- the exhaust effect of the reaction chambers 250 of each reactor 200 can be achieved better, and the mutual influence of the exhaust between adjacent reaction chambers 250 can be reduced, so that the semiconductor substrate 400 produced inside each reaction chamber 250 can be The film thickness uniformity is better and the product quality is improved.
- the number of reactors 200 is, for example, three (as shown in FIG. 9 ), four (as shown in FIG. 10 ), five (as shown in FIG. 11 ), six, seven, or eight. etc. It can also be other quantities. There is no limit here. It can be flexibly adjusted and set according to actual needs.
- FIG. 7 Please refer to Figures 7 and 8.
- the plane passing through the central axis of the reaction chamber 250 and the central axis of the exhaust port 310 is defined as a reference plane, and the two reference planes are connected by a line. Set at an angle.
- the exhaust effect of the reaction chambers 250 of each reactor 200 can be achieved better, and the mutual influence of the exhaust between adjacent reaction chambers 250 can be reduced, so that the semiconductor substrate 400 produced inside each reaction chamber 250 can be
- the film thickness uniformity is better and the product quality is improved.
- reasonable layout can reduce product size to a certain extent and avoid occupying large space.
- the angle between the two reference planes is defined as a, and a ranges from 45° to 135°.
- a is 45°, 60°, 75°, 80°, 90°, 95°, 100°, 105°, 108°, 110°, 112°, 115°, 118°, 120°, 125°, 130 ° and 135°.
- a can also be less than 45° and greater than 135°. There is no limit here, and it can be flexibly adjusted and set according to actual needs.
- the shape of the exhaust hole 2411 includes but is not limited to a circle, an ellipse, a square, a triangle, a pentagon, a hexagon, an octagon, and can also be flexibly adjusted to a regular shape according to actual needs.
- irregular shape which is not limited here
- the shape of the exhaust port 310 includes but is not limited to circular, oval, square, triangle, pentagon, hexagon, octagon, and can also be flexible according to actual needs.
- the ground is adjusted into a regular shape or an irregular shape, which is not limited here.
- the exhaust hole 2411 is a circular hole.
- the exhaust port 310 is also a circular port.
- the length h of the inner ring 241 is, for example, 5 mm
- the aperture of the exhaust hole 2411 closest to the exhaust port 310 is, for example, 2 mm.
- the length h of the inner ring 241 is not limited to 5 mm, and can also be flexibly set to other values according to actual needs.
- the aperture of the exhaust hole 2411 is not limited to 2 mm, and can also be flexibly set to other values according to actual needs.
- a plurality of air inlet holes are evenly formed on the nozzle 220 of the reaction chamber 250 to ensure that the process gas is evenly transported to the upper surface of the semiconductor substrate 400 and to ensure good uniformity of the film thickness.
- the process gas enters the interior of the reaction chamber 250 through the nozzle 220 and undergoes a chemical reaction.
- the gas generated during the reaction and the excess process gas will be discharged outward to the exhaust port through the exhaust hole 2411 on the inner ring 241 of the exhaust pipe 240 120, and was finally pumped to the factory through a suction device.
- a method for improving the film thickness of a semiconductor substrate uses a semiconductor substrate processing device.
- the semiconductor substrate processing device includes a reactor 200 and a common exhaust mechanism 300; the reactor 200 is At least two reactors 200 include a bearing platform 210 for bearing the semiconductor substrate 400 , a nozzle 220 arranged at a distance from the bearing platform 210 , an airflow control ring 230 circumferentially arranged around the bearing platform 210 , and a gas flow control ring 230 circumferentially surrounding the bearing platform 210 .
- the arranged exhaust pipe 240, the exhaust pipe 240, the bearing platform 210, the air flow control ring 230 and the nozzle 220 form a reaction chamber 250;
- the common exhaust mechanism 300 is provided with an exhaust port 310 connected with the reaction chamber 250;
- the method for improving the film thickness of the semiconductor substrate 400 includes the following steps: adjusting the air flow at different positions of the semiconductor substrate 400 to reduce the air flow deviation at different positions of the semiconductor substrate 400 .
- the above-mentioned method for improving the film thickness of the semiconductor substrate 400 can compensate for the influence of different airflows at different locations on the semiconductor substrate 400 caused by the position of the exhaust port 310 deviating from the center of the reaction chamber 250, and finally achieve uniformity of the film thickness on the semiconductor substrate 400. Better, product quality can be improved.
- the above-mentioned method for improving the film thickness of a semiconductor substrate may use the semiconductor substrate processing device of any of the above-mentioned embodiments.
- a method of adjusting the air flow at different positions of the semiconductor substrate 400 to reduce the deviation of the air flow at different positions of the semiconductor substrate 400 includes: modifying the exhaust duct 240 , so that the size deviation of the exhaust gas to the outside through the exhaust pipe 240 at each position in the circumferential direction of the reaction chamber 250 is reduced.
- modifying exhaust duct 240 includes the following steps:
- the bottom end of the exhaust duct 240 is extended to abut or connect with the upper surface of the air flow control ring 230 , so that the bottom end of the exhaust duct 240 and the upper surface of the air flow control ring 230 can be avoided.
- a gap is formed around the reaction chamber 250 for the gas flow to pass.
- modifying the exhaust pipe 240 further includes the following steps:
- the bottom end of the exhaust pipe 240 is provided with an inner ring 241, and a plurality of exhaust holes 2411 are provided at intervals on the inner ring 241.
- the exhaust holes 2411 are connected with the reaction chamber 250, and the reaction chamber 250 is connected to the exhaust hole 2411 through the exhaust holes 2411.
- the air ports 310 are connected, so that the opening ratio of the exhaust holes 2411 in each area of the inner ring 241 tends to increase in the direction away from the exhaust port 310 .
- the exhaust hole 2411 communicates with the reaction chamber 250.
- the opening ratio of the exhaust holes 2411 in each area on the inner ring 241 shows an increasing trend in the direction away from the exhaust port 310, that is, the exhaust holes 2411 in each area on the inner ring 241 exhaust air outward.
- the outward exhaust speeds of the exhaust holes 2411 in various areas on the inner ring 241 can be kept consistent or substantially consistent. This can compensate for the influence of different airflows at different locations on the semiconductor substrate 400 caused by the position of the exhaust port 310 deviating from the center of the reaction chamber 250.
- the thickness of the film on the semiconductor substrate 400 finally produced is more uniform, and the product quality is improved.
- the opening ratio of the part on the inner ring 241 corresponding to the certain region is increased;
- the opening ratio of the portion on the inner ring 241 corresponding to the certain region is reduced.
- making the opening ratio of the exhaust holes 2411 in various areas on the inner ring 241 increase in a direction away from the exhaust port 310 includes: increasing the aperture of the exhaust holes 2411 on the inner ring 241 in a direction away from the exhaust port 310 It shows an increasing trend in the direction of the exhaust port 310 .
- the opening ratio of the exhaust holes 2411 in different areas on the inner ring 241 can be adjusted, and the opening ratio of the exhaust holes 2411 in various areas on the inner ring 241 can be realized.
- the rate tends to increase in the direction away from the exhaust port 310 .
- the diameter of the exhaust hole 2411 on the inner ring 241 is gradually increased according to an arithmetic sequence in the direction away from the exhaust port 310 .
- the outward exhaust speed of the exhaust holes 2411 in each area on the inner ring 241 can be better controlled, so that the exhaust speed in each area on the inner ring 241 remains consistent or substantially consistent, which is beneficial to the uniformity of the film thickness.
- making the opening ratio of the exhaust holes 2411 in each area of the inner ring 241 increase in a direction away from the exhaust port 310 includes: making the spacing of the exhaust holes 2411 on the inner ring 241 There is a decreasing trend in the direction away from the exhaust port 310 . In this way, by changing the spacing of the exhaust holes 2411 on the inner ring 241, the opening ratio of the exhaust holes 2411 in different areas on the inner ring 241 can be adjusted. It shows an increasing trend in the direction of the exhaust port 310 . That is, the exhaust holes 2411 on the inner ring 241 closer to the exhaust port 310 are more dispersed, and the exhaust holes 2411 on the inner ring 241 farther away from the exhaust port 310 are denser.
- the hole pitch of the exhaust holes 2411 on the inner ring 241 is gradually reduced according to an arithmetic sequence in the direction away from the exhaust port 310 .
- the outward exhaust speed of the exhaust holes 2411 in each area on the inner ring 241 can be better controlled, so that the exhaust speed in each area on the inner ring 241 remains consistent or substantially consistent, which is beneficial to the uniformity of the film thickness.
- making the opening ratio of the exhaust holes 2411 in various areas on the inner ring 241 increase in a direction away from the exhaust port 310 includes: increasing the aperture of the exhaust holes 2411 on the inner ring 241 in a direction away from the exhaust port 310 The distance between the exhaust holes 2411 on the inner ring 241 tends to decrease in the direction away from the exhaust port 310 . In this way, the outward exhaust speed of the exhaust holes 2411 in each area on the inner ring 241 can be better controlled, so that the exhaust speed in each area on the inner ring 241 remains consistent or substantially consistent, which is beneficial to the uniformity of the film thickness.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
- connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
- a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
- the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
- "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本申请涉及一种半导体基板加工装置与膜厚改善方法,包括反应器(200)以及共用排气机构(300)。反应器(200)为至少两个。排气管道(240)、承载台(210)、气流控制环(230)以及喷头(220)围合形成反应室(250),排气管道(240)的底端与气流控制环(230)的上表面相抵接或相连。内环(241)上设有间隔的多个排气孔(2411),排气孔(2411)与反应室(250)相连通。共用排气机构(300)设有排气口(310),反应室(250)通过排气孔(2411)与排气口(310)相连通,内环(241)上各个区域的排气孔(2411)开孔率在远离于排气口(310)的方向上呈增大趋势。
Description
相关申请的交叉引用
本公开要求于2022年5月30日提交中国专利局、申请号为2022105974067的中国专利的优先权,所述专利申请的全部内容通过引用结合在本公开中。
本申请涉及半导体制造技术领域,特别是涉及一种半导体基板加工装置与膜厚改善方法。
传统技术中,对于半导体或显示处理设备而言,生产率(例如每单位时间可以处理的半导体基板的数量)是批量生产过程中非常重要的因素。能够批量生产的装置通常包括批处理式反应器与单片式机台。其中,批处理式反应器是一种将数十个半导体基板竖直堆叠、装入反应器中且然后进行处理的系统。可见,批处理式反应器一次可处理数十个半导体基板,具有高生产率,但批处理式反应器的缺点在于,通过同一个反应室同时处理多个半导体基板,因此难以精确地控制单个半导体基板的生产加工。对于单片式机台而言,单片式机台设有多个腔体,每个腔体设有至少两个反应室,排气口位于两个反应室的中间位置,用于将半导体基板加工得到薄膜所产生的废气进行收集,虽然能保证生产效率,以及一定程度地提高了薄膜的处理质量,但是仍然存在薄膜厚度不均的缺陷。
发明内容
基于此,本申请公开一种半导体基板加工装置与膜厚改善方法,它能够提高薄膜厚度的均匀性。
其技术方案如下:一种半导体基板加工装置,所述半导体基板加工装置包括:反应器,所述反应器为至少两个,所述反应器包括用于承载半导体基板的承载台、与所述承载台相对间隔设置的喷头、环绕所述承载台周向布置的气流控制环、以及环绕所述承载台周向布置的排气管道,所述排气管道、所述承载台、所述气流控制环以及所述喷头围合形成反应室,所述排气管道的底端与所述气流控制环的上表面相抵接或相连,所述排气管道的底端设有内环,所述内环上设有间隔的多个排气孔,所述排气孔与所述反应室相连通;以及共用排气机构,所述共用排气机构设有排气口,所述反应室通过所述排气孔与所述排气口相连通,所述内环上各个区域的所述排气孔开孔率在远离于所述排气口的方向上呈增大趋势。
在其中一个实施例中,所述内环上的所述排气孔孔径在远离于所述排气口的方向上呈增大趋势。
在其中一个实施例中,所述内环上的所述排气孔孔径在远离于所述排气口的方向上按照等差数列逐渐增大。
在其中一个实施例中,所述排气孔孔径的公差定义为t1,t1为0.01nm-0.1nm。
在其中一个实施例中,所述内环上的所述排气孔孔间距在远离于所述排气口的方向上呈减小趋势。
在其中一个实施例中,所述内环上的所述排气孔孔间距在远离于所述排气口的方向上按照等差数列逐渐减小。
在其中一个实施例中,所述排气孔孔间距的公差定义为t2,t2为-5mm至-0.5mm。
在其中一个实施例中,将所述内环上最为靠近于所述排气口的排气孔的孔径定义为d,将所述内环沿着其轴向方向上的长度定义为h,d与h满足于如下关系:d=20%h~50%h。
在其中一个实施例中,d=30%h~40%h。
在其中一个实施例中,将经过所述反应室的中心轴线与所述排气口的中心轴线的平面定义为参考面,所述内环上的所述排气孔关于所述参考面对称布置。
在其中一个实施例中,所述排气孔的数量为60个至200个。
在其中一个实施例中,当所述反应器为至少三个时,至少三个所述反应器环绕所述排气口间隔设置。
在其中一个实施例中,所述反应器为两个,将经过所述反应室的中心轴线与所述排气口的中心轴线的平面定义为参考面,两个所述参考面连线呈夹角设置。
在其中一个实施例中,将两个所述参考面的夹角定义为a,a为45°至135°。
在其中一个实施例中,所述排气孔的形状为圆形、椭圆形、方形、三角形、五边形、六边形、八边形;所述排气口的形状为圆形、椭圆形、方形、三角形、五边形、六边形、八边形。
一种半导体基板的膜厚改善方法,采用了半导体基板加工装置,所述半导体基板加工装置包括反应器以及共用排气机构;所述反应器为至少两个,所述反应器包括用于承载半导体基板的承载台、与所述承载台相对间隔设置的喷头、环绕所述承载台周向布置的气流控制环、以及环绕所述承载台周向布置的排气管道,所述排气管道、所述承载台、所述气流控制环以及所述喷头围合形成反应室;所述共用排气机构设有与所述反应室连通的排气口;
所述半导体基板的膜厚改善方法包括如下步骤:调整所述半导体基板不同位置处的气流量大小,以减小所述半导体基板不同位置处的气流量偏差。
在其中一个实施例中,所述调整所述半导体基板不同位置处的气流量大小,以减小所述半导体基板不同位置处的气流量偏差的方法包括:
对所述排气管道进行改造,使得所述反应室周向方向上的各个位置通过所述排气管道向外排气的大小偏差减小。
在其中一个实施例中,对所述排气管道进行改造包括如下步骤:
使得所述排气管道的底端与所述气流控制环的上表面相抵接或相连;
所述排气管道的底端设有内环,在所述内环上设有间隔的多个排气孔,所述排气孔与所述反应室相连通,所述反应室通过所述排气孔与所述排气口相连通,使所述内环上各个区域的所述排气孔开孔率在远离于所述排气口的方向上呈增大趋势。
在其中一个实施例中,当所述半导体基板上某区域位置的膜厚大小高于所述半导体基板上膜厚平均值时,使所述内环上与所述某区域位置相对应的部位的开孔率增大;当所述半导体基板上某区域位置的膜厚大小低于所述半导体基板上膜厚平均值时,使所述内环上与所述某区域位置相对应的部位的开孔率减小。
在其中一个实施例中,所述使所述内环上各个区域的所述排气孔开孔率在远离于所述排气口的方向上呈增大趋势包括:
使所述内环上的所述排气孔孔径在远离于所述排气口的方向上呈增大趋势;
使所述内环上的所述排气孔孔间距在远离于所述排气口的方向上呈减小趋势。
上述的半导体基板加工装置及膜厚改善方法,由于排气管道的底端与气流控制环的上表面相抵接或相连,即相当于将传统的排气管道的内环延伸到气流控制环的上表面,并在内环上布置间隔的多个排气孔,通过排气孔与反应室相连通。此外,内环上各个区域的排气孔开孔率在远离于排气口的方向上呈增大趋势,也即对内环上各个区域的排气孔向外的排气速度进行改善,能使得内环上各个区域的排气孔向外的排气速度保持一致或基本一致。这样能弥补排气口位置偏离反应室中心位置造成的半导体基板上不同位置气流不同的影响,最终生产得到的半导体基板上的薄膜厚度均匀性较好,产品质量得以提高。
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统技术中一实施例的单片式机台的结构示意图;
图2为图1所示的单片式机台的反应室与排气口经过简化后的俯视结构示意图;
图3为图1所示的单片式机台在A处的简化示意图;
图4为图1所示的单片式机台生产得到半导体基板的热象图;
图5为本申请一实施例中的半导体基板加工装置的结构示意图;
图6为图1所示的半导体基板加工装置在B处的简化示意图;
图7为图5所示的半导体基板加工装置的反应室与排气口经过简化后的一实施例俯视结构示意图;
图8为图7所示的内环经过参考面L朝向f方向的剖视图;
图9为图5所示的半导体基板加工装置的反应室与排气口经过简化后的另一实施例俯视结构示意图;
图10为图5所示的半导体基板加工装置的反应室与排气口经过简化后的又一实施例俯视结构示意图;
图11为图5所示的半导体基板加工装置的反应室与排气口经过简化后的再一实施例俯视结构示意图;
图12为图5所示的半导体基板加工装置生产得到半导体基板的热象图。
110、反应室;120、排气口;130、喷头;140、半导体基板;150、排气管道;160、气流控制环;170、间隙;
200、反应器;210、承载台;220、喷头;230、气流控制环;240、排气管道;241、内环;2411、排气孔;250、反应室;300、共用排气机构;310、排气口;400、半导体基板。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
正如背景技术,传统技术中的单片式机台生产出来的半导体基板仍然存在薄膜厚度不均匀的问题,经发明人研究发现,出现这种问题的原因在于,排气结构上的各个部位与排气口的距离不同,导致排气结构上远离于排气口的部位向外的排气速度明显小于排气结构上靠近于排气口的部位。下面将结合传统的一实施例的单片式机台进行详细分析。
请参阅图1至图3,图1示出了传统技术中一实施例的单片式机台的结构示意图,图2示出了图1所示的单片式机台的反应室110与排气口120经过简化后的俯视结构示意图,图3示出了图1所示的单片式机台在A处的简化示意图。一般地,单片式机台的制程过程中,制程气体从腔体顶部向下输送到反应室110的内部。为了保证薄膜厚度的均匀性良好,要求制程气体均匀输送,也即在反应室110的喷头130上均匀开设形成多个进气孔,从而保证制程气体均匀地输送到半导体基板140的上表面。制程气体经过喷头130进入到反应室110内部后发生化学反应,反应过程中产生的气体和过量的制程气体将通过排气管道150与气流控 制环160之间的间隙170向外排出到排气口120,最终通过抽吸装置抽到厂务。
请参阅图2与图4,图4示出了图1所示的单片式机台生产得到半导体基板140的热象图。其中,由于单片式机台的每个腔体同时制程的半导体基板140大于等于2,具体以每个腔体同时制程的半导体基板140等于2为例,其俯视图的简化图如图2,排气口120位置位于两个反应室110的中部。发明人研究发现,图2中的排气管道150在b点和c点的排气速度存在较大的差异,即排气管道150的排气速度随着与排气口120的距离增加而呈逐渐减小的趋势,从而导致每片半导体基板140的均匀度大于标准值(标准值一般设定为0.1),通过图4可以得到半导体基板140的薄膜均匀度是0.31,以及半导体基板140的左上方位置的薄膜偏厚。
需要说明的是,本实施例中的半导体基板包括但不限于为晶圆,还可以是其它半导体结构,可以根据实际需求进行灵活设置与选取。
基于此,参阅图5至图8,图5示出了本申请一实施例中的半导体基板加工装置的结构示意图,图6示出了图1所示的半导体基板加工装置在B处的简化示意图,图7示出了图5所示的半导体基板加工装置的反应室250与排气口310经过简化后的一实施例俯视结构示意图,图8示出了图7所示的内环241经过参考面L朝向f方向的剖视图,本申请一实施例提供的一种半导体基板加工装置,半导体基板加工装置包括:反应器200以及共用排气机构300。反应器200为至少两个,反应器200包括用于承载半导体基板400的承载台210、与承载台210相对间隔设置的喷头220、环绕承载台210周向布置的气流控制环230、以及环绕承载台210周向布置的排气管道240。排气管道240、承载台210、气流控制环230以及喷头220围合形成反应室250,排气管道240的底端与气流控制环230的上表面相抵接或相连。具体而言,排气管道240的底端设有内环241,内环241与气流控制环230的上表面相抵接或相连。内环241上设有间隔的多个排气孔2411,排气孔2411与反应室250相连通。共用排气机构300设有排气口310,反应室250通过排气孔2411与排气口310相连通,内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。
需要说明的是,对于内环241上某区域的排气孔2411开孔率而言,其指的是内环241上的某区域排气孔2411的开孔总面积与某区域面积的比值。
还需要说明的是,内环241指的是排气管道240上最为靠近于反应室250的中心轴线(如图5所示的虚线O)的管段,也即与反应室250的中心轴线的间距小于排气管道240上其它部位与中心轴线的间距,它位于排气管道240的底端。此外,内环241与气流控制环230的上表面相抵接或相连目的是为了避免内环241与气流控制环230的上表面之间形成间隙,从而便能避免反应室250内部的气流通过间隙向外流出,使得反应室250内部的气流主要是通过内环241上的排气孔2411向外排出反应室250,从而通过调整排气孔2411的设置尺寸、数量,便能更好地控制反应室250内的气流向外排出效果,能使得内环241上各个区域的排 气孔2411向外的排气速度保持一致或基本一致。当然,作为一些可选的方案,可以在内环241抵接于气流控制环230的端面上,和/或,在气流控制环230上表面接触内环241的部位上开设通气孔,以增加排气流量,具体在什么位置开设,以及通气孔的开设数量与尺寸均根据实际需求进行灵活调整与设置,在此不进行限定。
需要说明的是,该“内环241”可以为“排气管道240的一部分”,即“内环241”与“排气管道240的其他部分”一体成型制造;也可以与“排气管道240的其他部分”可分离的一个独立的构件,即“内环241”可以独立制造,再与“排气管道240的其他部分”组合成一个整体。
在一个实施例中,当内环241与气流控制环230的上表面相连时,该“内环241”可以为“气流控制环230的一部分”,即“内环241”与“气流控制环230的其他部分”一体成型制造;也可以与“气流控制环230的其他部分”可分离的一个独立的构件,即“内环241”可以独立制造,再与“气流控制环230的其他部分”组合成一个整体。
需要说明的是,反应器200可以是在其中对半导体基板400进行处理的空间。尽管在图5中仅示出了一个反应器200,但可以实施多个反应器200(如图7所示)。反应器200可提供用于对半导体基板400进行加热、沉积、蚀刻、抛光、离子注入和/或其他处理的空间。
例如,反应器200可以构造为对半导体基板400执行移动功能、真空密封功能、加热功能、排气功能和/或其他功能,从而在反应器200中对物体进行处理。例如,反应器200可以包括用于处理半导体基板400的反应室250和用于排出反应室250内部的气体的排气管道240。
上述的半导体基板加工装置,由于排气管道240的底端与气流控制环230的上表面相抵接或相连,即相当于将传统的排气管道240的内环241延伸到气流控制环230的上表面,并在内环241上布置间隔的多个排气孔2411,通过排气孔2411与反应室250相连通。此外,内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势,也即对内环241上各个区域的排气孔2411向外的排气速度进行改善,能使得内环241上各个区域的排气孔2411向外的排气速度保持一致或基本一致。这样能弥补排气口310位置偏离反应室250中心位置造成的半导体基板400上不同位置气流不同的影响,最终生产得到的半导体基板400上的薄膜厚度均匀性较好,产品质量得以提高。
请参阅图7与图8,图8中所示的视图左端为相对远离于排气口310,视图右端相对靠近于排气口310。在一个实施例中,内环241上的排气孔2411孔径在远离于排气口310的方向上呈增大趋势。如此,通过改变内环241上不同位置的排气孔2411的孔径来实现调整内环241上不同区域的排气孔2411开孔率,能实现内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。
请参阅图7与图8,在一个实施例中,内环241上的排气孔2411孔径在远离于排气口310 的方向上按照等差数列逐渐增大。如此,能较好地控制内环241上各个区域的排气孔2411向外的排气速度,使得内环241上各个区域的排气速度保持一致或基本一致,有利于薄膜厚度均一性。
在一个实施例中,排气孔2411孔径的公差定义为t1,t1为0.01nm-0.1nm。具体而言,t1包括但不限于为0.01nm、0.02nm、0.03nm、0.04nm、0.05nm、0.06nm、0.08nm、0.09nm、0.1nm,t1还可以是根据实际需求设置成大于0.1nm的数值,例如0.12nm、0.14nm、0.16nm、0.18nm、0.2nm、0.22nm、0.24nm、0.26nm、0.28nm、0.3nm、0.32nm、0.34nm、0.36nm、0.38nm等等。作为一个具体示例,t1为0.04nm,如此通过热象图发现半导体基板400上的薄膜的厚度均匀性较好,均匀度满足于标准。
需要说明的是,作为一些可选的方案,排气孔2411孔径在远离于排气口310的方向上不限于上述实施例中的按照等差数列逐渐增大,也可以是按照其它方式增大,例如先以差值逐渐减小的方式增大,然后以差值为恒定值的方式增大,再以差值逐渐增大的方式增大,接着以差值为恒定值的方式增大;又例如,先以差值为恒定值的方式增大,然后以差值逐渐增大的方式增大;再例如,先以差值逐渐增大的方式增大,然后以差值逐渐增大的方式增大。具体如何设置还有很多种方式,可以根据实际需求灵活调整与设置,在此不进行限定。
当然,作为一个可选的方案,内环241上的排气孔2411孔径在远离于排气口310的方向上还可以是保持不变,或者呈减小趋势,或者先减小后增大,或者按照其它方式进行布置,相应通过调整排气孔2411的孔间距和/或设置数量来实现内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。
请参阅图7与图8,在一个实施例中,内环241上的排气孔2411孔间距在远离于排气口310的方向上呈减小趋势。如此,通过改变内环241上排气孔2411孔间距来实现调整内环241上不同区域的排气孔2411开孔率,能实现内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。也即,越靠近于排气口310的内环241上的排气孔2411越分散,越远离于排气口310的内环241上的排气孔2411将越密集。
在一个实施例中,内环241上的排气孔2411孔间距在远离于排气口310的方向上按照等差数列逐渐减小。如此,能较好地控制内环241上各个区域的排气孔2411向外的排气速度,使得内环241上各个区域的排气速度保持一致或基本一致,有利于薄膜厚度均一性。
作为一些可选的方案,排气孔2411孔间距在远离于排气口310的方向上不限于上述实施例中的按照等差数列逐渐减小,也可以按照其它方式减小,例如先以差值逐渐减小的方式减小,然后以差值为恒定值的方式减小,再以差值逐渐增大的方式减小,接着以差值为恒定值的方式减小;又例如,先以差值为恒定值的方式减小,然后以差值逐渐增大的方式减小;再例如,先以差值逐渐增大的方式减小,然后以差值为恒定值的方式减小。具体如何设置还有很多种方式,可以根据实际需求灵活调整与设置,在此不进行限定。
当然,作为一个可选的方案,当通过改变不同位置的排气孔2411孔径大小足以使得内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势,以及使得半导体基板400生产加工后薄膜的均匀度符合于要求时,例如使内环241上的排气孔2411孔间距保持一致,或者在远离于排气口310的方向上呈增大趋势,或者先增大后减小,或者按照其它方式进行布置。
在一个实施例中,排气孔2411孔间距的公差定义为t2,t2为-5mm至-0.5mm。具体而言,t2包括但不限于为-5mm、-4mm、-3mm、-2.5mm、-2mm、-1.9mm、-1.8mm、-1.7mm、-1.6mm、-1.5mm、-1.4mm、-1.3mm、-1.2mm、-1.1mm、-1mm、-0.9mm、-0.8mm、-0.7mm、-0.5mm,t2还可以是根据实际需求设置成小于-5mm的数值,例如-10mm、-9mm、-8mm、-7mm、-6mm等等。作为一个具体示例,t1为-1mm,如此通过热象图发现半导体基板400上的薄膜的厚度均匀性较好,均匀度满足于标准。
请参阅图7与图8,在一个实施例中,将内环241上最为靠近于排气口310的排气孔2411的孔径定义为d,将内环241沿着其轴向方向上的长度定义为h,d与h满足于如下关系:d=20%h~50%h。如此,排气孔2411的孔径大小d的设置较为合理,能对内环241上各个区域的排气孔2411向外的排气速度进行改善,能使得内环241上各个区域的排气孔2411向外的排气速度保持一致或基本一致。通过热象图发现半导体基板400上的薄膜的厚度均匀性较好,均匀度满足于标准。
在一个实施例中,d=30%h~40%h。如此,经过申请人研究发现,将d设置于该范围时,d的设置较为合理,能对内环241上各个区域的排气孔2411向外的排气速度进行改善,且改善效果明显,能使得内环241上各个区域的排气孔2411向外的排气速度保持一致或基本一致。通过热象图发现半导体基板400上的薄膜的厚度均匀性较好,均匀度满足于标准。
请参阅图7与图8,在一个实施例中,将经过反应室250的中心轴线与排气口310的中心轴线的平面定义为参考面(如图7所示经过虚线L并垂直于纸面的平面),内环241上的排气孔2411关于参考面对称布置。如此,能使得内环241上各个区域的排气孔2411向外的排气速度保持一致或基本一致,进而能弥补排气口310位置偏离反应室250中心位置造成的半导体基板400上不同位置气流不同的影响,最终生产得到的半导体基板400上的薄膜厚度均匀性较好,产品质量得以提高。
请参阅图7与图8,在一个实施例中,排气孔2411的数量为60个至200个。具体而言,排气孔2411的数量包括但不限于为60、65、70、72、74、76、78、80、82、85、90、100、110、130、150、200。需要说明的是,排气孔2411的数量还可以是小于60以及大于200,具体可以根据实际需求灵活调整与设置,在此不进行限定。
请参阅图7与图8,在一个实施例中,内环241的轴向截面例如为圆形、椭圆形、方形、三角形、六边形、八边形等等,既可以是规则的形状,又可以是不规则形状,具体可以根据 实际需求进行灵活设置与调整,在此不进行限定。作为一个示例,内环241的轴向截面为圆形,且圆形的直径定义为D,直径D为450mm-650mm。更具体而言,直径D为450mm、500mm、510mm、520mm、530mm、540mm、545mm、548mm、549mm、549.5mm、550mm、550.5mm、551mm、553mm、570mm、590mm、630mm、650mm等等。需要说明的是,直径D还可以是小于450mm以及大于650mm的数值,具体如何设置,可以根据实际需求灵活调整,在此不做具体限定。
请参阅图9至图11,图9示出了图5所示的半导体基板加工装置的反应室250与排气口310经过简化后的另一实施例俯视结构示意图,图10示出了图5所示的半导体基板加工装置的反应室250与排气口310经过简化后的又一实施例俯视结构示意图,图11示出了图5所示的半导体基板加工装置的反应室250与排气口310经过简化后的再一实施例俯视结构示意图。在一个实施例中,当反应器200为至少三个时,至少三个反应器200环绕排气口310间隔设置。
具体而言,至少三个反应器200环绕排气口310等间隔设置。如此,能实现各个反应器200的反应室250的排气效果均较好,减小相邻反应室250间排气时的相互影响,使得各个反应室250内部所生产得到的半导体基板400上的薄膜厚度均匀性较好,产品质量得以提高。
在一个实施例中,反应器200的数量例如为三个(如图9所示)、四个(如图10所示)、五个(如图11所示)、六个、七个、八个等等,还可以是其它数量,在此不进行限定,根据实际需求灵活调整与设置即可。
请参阅图7与图8,在一个实施例中,反应器200为两个,将经过反应室250的中心轴线与排气口310的中心轴线的平面定义为参考面,两个参考面连线呈夹角设置。如此,能实现各个反应器200的反应室250的排气效果均较好,减小相邻反应室250间排气时的相互影响,使得各个反应室250内部所生产得到的半导体基板400上的薄膜厚度均匀性较好,产品质量得以提高。此外,布置合理,能一定程度地减小产品尺寸,避免占用较大的空间。
请参阅图7与图8,在一个实施例中,将两个参考面的夹角定义为a,a为45°至135°。a具体例如为45°、60°、75°、80°、90°、95°、100°、105°、108°、110°、112°、115°、118°、120°、125°、130°与135°,当然a还可以是小于45°,以及大于135°,在此不进行限定,可以根据实际需求灵活调整与设置。
在一个实施例中,排气孔2411的形状包括但不限于为圆形、椭圆形、方形、三角形、五边形、六边形、八边形,还可以根据实际需求灵活地调整为规则形状或不规则形状,在此不进行限定;排气口310的形状包括但不限于为圆形、椭圆形、方形、三角形、五边形、六边形、八边形,还可以根据实际需求灵活地调整为规则形状或不规则形状,在此不进行限定。
在一个具体的实施例中,请参阅图7与图8,排气孔2411为圆形孔。排气口310同样为圆形口。
请参阅图7与图8,此外,在一个实施例中,内环241的长度h例如为5mm,最为靠近于 排气口310的排气孔2411的孔径例如为2mm。当然,内环241的长度h并不限于为5mm,还可以是根据实际需求灵活地设定为其它数值。同样地,排气孔2411的孔径也不限于为2mm,还可以是根据实际需求灵活地设定为其它数值。
在一个实施例中,反应室250的喷头220上均匀开设形成多个进气孔,从而保证制程气体均匀地输送到半导体基板400的上表面,保证薄膜厚度的均匀性良好。制程气体经过喷头220进入到反应室250内部后发生化学反应,反应过程中产生的气体和过量的制程气体将通过排气管道240的内环241上的排气孔2411向外排出到排气口120,最终通过抽吸装置抽到厂务。
请参阅图5至图8,在一个实施例中,一种半导体基板的膜厚改善方法,采用了半导体基板加工装置,半导体基板加工装置包括反应器200以及共用排气机构300;反应器200为至少两个,反应器200包括用于承载半导体基板400的承载台210、与承载台210相对间隔设置的喷头220、环绕承载台210周向布置的气流控制环230、以及环绕承载台210周向布置的排气管道240,排气管道240、承载台210、气流控制环230以及喷头220围合形成反应室250;共用排气机构300设有与反应室250连通的排气口310;
半导体基板400的膜厚改善方法包括如下步骤:调整半导体基板400不同位置处的气流量大小,以减小半导体基板400不同位置处的气流量偏差。
上述的半导体基板400的膜厚改善方法,能弥补排气口310位置偏离反应室250中心位置造成的半导体基板400上不同位置气流不同的影响,最终生产得到的半导体基板400上的薄膜厚度均匀性较好,产品质量得以提高。
需要说明的是,在一个实施例中,上述的一种半导体基板的膜厚改善方法可以是采用上述任一实施例的半导体基板加工装置。
请参阅图5至图8,在一个实施例中,调整半导体基板400不同位置处的气流量大小,以减小半导体基板400不同位置处的气流量偏差的方法包括:对排气管道240进行改造,使得反应室250周向方向上的各个位置通过排气管道240向外排气的大小偏差减小。
在一个实施例中,对排气管道240进行改造包括如下步骤:
使得排气管道240的底端与气流控制环230的上表面相抵接或相连;
换言之,将排气管道240的底端通过延伸的方式,使得与气流控制环230的上表面相抵接或相连,这样便能避免排气管道240的底端与气流控制环230的上表面之间形成环绕反应室250气流通过的间隙。当然,作为一些可选的方案,在实际调试气流速度过程中,为了使得内环241上各个区域的排气孔2411向外的排气速度保持一致或基本一致,也允许将排气管道240的底端和/或气流控制环230的上表面的某一个部位或某些部位设置成缺口的形式来让气流通过。
在一个实施例中,对排气管道240进行改造还包括如下步骤:
排气管道240的底端设有内环241,在内环241上设有间隔的多个排气孔2411,排气孔2411与反应室250相连通,反应室250通过排气孔2411与排气口310相连通,使内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。
如此,通过在内环241上设置排气孔2411,通过排气孔2411与反应室250相连通。此外,内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势,也即对内环241上各个区域的排气孔2411向外的排气速度进行改善,能使得内环241上各个区域的排气孔2411向外的排气速度保持一致或基本一致。这样能弥补排气口310位置偏离反应室250中心位置造成的半导体基板400上不同位置气流不同的影响,最终生产得到的半导体基板400上的薄膜厚度均匀性较好,产品质量得以提高。
在一个实施例中,当半导体基板400上某区域位置的膜厚大小高于半导体基板400上膜厚平均值时,使内环241上与某区域位置相对应的部位的开孔率增大;当半导体基板400上某区域位置的膜厚大小低于半导体基板400上膜厚平均值时,使内环241上与某区域位置相对应的部位的开孔率减小。
在一个实施例中,使内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势包括:使内环241上的排气孔2411孔径在远离于排气口310的方向上呈增大趋势。如此,通过改变内环241上不同位置的排气孔2411的孔径来实现调整内环241上不同区域的排气孔2411开孔率,能实现内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。
具体而言,使内环241上的排气孔2411孔径在远离于排气口310的方向上按照等差数列逐渐增大。如此,能较好地控制内环241上各个区域的排气孔2411向外的排气速度,使得内环241上各个区域的排气速度保持一致或基本一致,有利于薄膜厚度均一性。
在一个实施例中,使内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势包括:使内环241上的排气孔2411孔间距在远离于排气口310的方向上呈减小趋势。如此,通过改变内环241上排气孔2411孔间距来实现调整内环241上不同区域的排气孔2411开孔率,能实现内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势。也即,越靠近于排气口310的内环241上的排气孔2411越分散,越远离于排气口310的内环241上的排气孔2411将越密集。
具体而言,使内环241上的排气孔2411孔间距在远离于排气口310的方向上按照等差数列逐渐减小。如此,能较好地控制内环241上各个区域的排气孔2411向外的排气速度,使得内环241上各个区域的排气速度保持一致或基本一致,有利于薄膜厚度均一性。
在一个实施例中,使内环241上各个区域的排气孔2411开孔率在远离于排气口310的方向上呈增大趋势包括:使内环241上的排气孔2411孔径在远离于排气口310的方向上呈增大趋势;以及,使内环241上的排气孔2411孔间距在远离于排气口310的方向上呈减小趋势。 如此,能较好地控制内环241上各个区域的排气孔2411向外的排气速度,使得内环241上各个区域的排气速度保持一致或基本一致,有利于薄膜厚度均一性。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方 式。
Claims (20)
- 一种半导体基板加工装置,所述半导体基板加工装置包括:反应器,所述反应器为至少两个,所述反应器包括用于承载半导体基板的承载台、与所述承载台相对间隔设置的喷头、环绕所述承载台周向布置的气流控制环、以及环绕所述承载台周向布置的排气管道,所述排气管道、所述承载台、所述气流控制环以及所述喷头围合形成反应室,所述排气管道的底端与所述气流控制环的上表面相抵接或相连,所述排气管道的底端设有内环,所述内环上设有间隔的多个排气孔,所述排气孔与所述反应室相连通;以及共用排气机构,所述共用排气机构设有排气口,所述反应室通过所述排气孔与所述排气口相连通,所述内环上各个区域的所述排气孔开孔率在远离于所述排气口的方向上呈增大趋势。
- 根据权利要求1所述的半导体基板加工装置,其中,所述内环上的所述排气孔孔径在远离于所述排气口的方向上呈增大趋势。
- 根据权利要求2所述的半导体基板加工装置,其中,所述内环上的所述排气孔孔径在远离于所述排气口的方向上按照等差数列逐渐增大。
- 根据权利要求3所述的半导体基板加工装置,其中,所述排气孔孔径的公差定义为t1,t1为0.01nm-0.1nm。
- 根据权利要求1所述的半导体基板加工装置,其中,所述内环上的所述排气孔孔间距在远离于所述排气口的方向上呈减小趋势。
- 根据权利要求5所述的半导体基板加工装置,其中,所述内环上的所述排气孔孔间距在远离于所述排气口的方向上按照等差数列逐渐减小。
- 根据权利要求6所述的半导体基板加工装置,其中,所述排气孔孔间距的公差定义为t2,t2为-5mm至-0.5mm。
- 根据权利要求1所述的半导体基板加工装置,其中,将所述内环上最为靠近于所述排气口的排气孔的孔径定义为d,将所述内环沿着其轴向方向上的长度定义为h,d与h满足于如下关系:d=20%h~50%h。
- 根据权利要求8所述的半导体基板加工装置,其中,d=30%h~40%h。
- 根据权利要求1所述的半导体基板加工装置,其中,将经过所述反应室的中心轴线与所述排气口的中心轴线的平面定义为参考面,所述内环上的所述排气孔关于所述参考面对称布置。
- 根据权利要求1所述的半导体基板加工装置,其中,所述排气孔的数量为60个至200个。
- 根据权利要求1所述的半导体基板加工装置,其中,当所述反应器为至少三个时,至少三个所述反应器环绕所述排气口间隔设置。
- 根据权利要求1所述的半导体基板加工装置,其中,所述反应器为两个,将经过所述反应室的中心轴线与所述排气口的中心轴线的平面定义为参考面,两个所述参考面连线呈夹角设置。
- 根据权利要求13所述的半导体基板加工装置,其中,将两个所述参考面的夹角定义为a,a为45°至135°。
- 根据权利要求1所述的半导体基板加工装置,其中,所述排气孔的形状为圆形、椭圆形、方形、三角形、五边形、六边形、八边形;所述排气口的形状为圆形、椭圆形、方形、三角形、五边形、六边形、八边形。
- 一种半导体基板的膜厚改善方法,采用了半导体基板加工装置,所述半导体基板加工装置包括反应器以及共用排气机构;所述反应器为至少两个,所述反应器包括用于承载半导体基板的承载台、与所述承载台相对间隔设置的喷头、环绕所述承载台周向布置的气流控制环、以及环绕所述承载台周向布置的排气管道,所述排气管道、所述承载台、所述气流控制环以及所述喷头围合形成反应室;所述共用排气机构设有与所述反应室连通的排气口;所述半导体基板的膜厚改善方法包括如下步骤:调整所述半导体基板不同位置处的气流量大小,以减小所述半导体基板不同位置处的气流量偏差。
- 根据权利要求16所述的半导体基板的膜厚改善方法,其中,所述调整所述半导体基板不同位置处的气流量大小,以减小所述半导体基板不同位置处的气流量偏差的方法包括:对所述排气管道进行改造,使得所述反应室周向方向上的各个位置通过所述排气管道向外排气的大小偏差减小。
- 根据权利要求17所述的半导体基板的膜厚改善方法,对所述排气管道进行改造包括如下步骤:使得所述排气管道的底端与所述气流控制环的上表面相抵接或相连;所述排气管道的底端设有内环,在所述内环上设有间隔的多个排气孔,所述排气孔与所述反应室相连通,所述反应室通过所述排气孔与所述排气口相连通,使所述内环上各个区域的所述排气孔开孔率在远离于所述排气口的方向上呈增大趋势。
- 根据权利要求18所述的半导体基板的膜厚改善方法,其中,当所述半导体基板上某区域位置的膜厚大小高于所述半导体基板上膜厚平均值时,使所述内环上与所述某区域位置相对应的部位的开孔率增大;当所述半导体基板上某区域位置的膜厚大小低于所述半导体基板上膜厚平均值时,使所述内环上与所述某区域位置相对应的部位的开孔率减小。
- 根据权利要求18所述的半导体基板的膜厚改善方法,其中,所述使所述内环上各个区域的所述排气孔开孔率在远离于所述排气口的方向上呈增大趋势包括:使所述内环上的所述排气孔孔径在远离于所述排气口的方向上呈增大趋势;使所述内环上的所述排气孔孔间距在远离于所述排气口的方向上呈减小趋势。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210597406.7 | 2022-05-30 | ||
CN202210597406.7A CN117187780A (zh) | 2022-05-30 | 2022-05-30 | 半导体基板加工装置与膜厚改善方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023231054A1 true WO2023231054A1 (zh) | 2023-12-07 |
Family
ID=88983700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/097276 WO2023231054A1 (zh) | 2022-05-30 | 2022-06-07 | 半导体基板加工装置与膜厚改善方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117187780A (zh) |
WO (1) | WO2023231054A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020601A1 (en) * | 2000-02-10 | 2004-02-05 | Applied Materials, Inc. | Process and an integrated tool for low k dielectric deposition including a pecvd capping module |
CN104718602A (zh) * | 2012-08-28 | 2015-06-17 | 株式会社Eugene科技 | 基板处理装置 |
CN105789015A (zh) * | 2014-12-26 | 2016-07-20 | 中微半导体设备(上海)有限公司 | 一种实现均匀排气的等离子体处理设备 |
CN105789014A (zh) * | 2014-12-26 | 2016-07-20 | 中微半导体设备(上海)有限公司 | 一种实现均匀排气的等离子体处理装置 |
CN112908821A (zh) * | 2019-12-04 | 2021-06-04 | 中微半导体设备(上海)股份有限公司 | 一种实现均匀排气的双工位处理器及其排气方法 |
-
2022
- 2022-05-30 CN CN202210597406.7A patent/CN117187780A/zh active Pending
- 2022-06-07 WO PCT/CN2022/097276 patent/WO2023231054A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020601A1 (en) * | 2000-02-10 | 2004-02-05 | Applied Materials, Inc. | Process and an integrated tool for low k dielectric deposition including a pecvd capping module |
CN104718602A (zh) * | 2012-08-28 | 2015-06-17 | 株式会社Eugene科技 | 基板处理装置 |
CN105789015A (zh) * | 2014-12-26 | 2016-07-20 | 中微半导体设备(上海)有限公司 | 一种实现均匀排气的等离子体处理设备 |
CN105789014A (zh) * | 2014-12-26 | 2016-07-20 | 中微半导体设备(上海)有限公司 | 一种实现均匀排气的等离子体处理装置 |
CN112908821A (zh) * | 2019-12-04 | 2021-06-04 | 中微半导体设备(上海)股份有限公司 | 一种实现均匀排气的双工位处理器及其排气方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117187780A (zh) | 2023-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI838594B (zh) | 基板處理設備 | |
TWI756590B (zh) | 基板處理裝置 | |
TWI615499B (zh) | 具有內部擴散器和角度注入件的可調諧氣體輸送組件 | |
TW201619414A (zh) | 預清洗腔室及電漿加工裝置 | |
KR101526505B1 (ko) | 냉각 유닛 및 이를 이용한 냉각 방법, 기판 처리 장치 및 이를 이용한 기판 처리 방법 | |
WO2023231054A1 (zh) | 半导体基板加工装置与膜厚改善方法 | |
WO2019161654A1 (zh) | 一种电极组件和蚀刻设备 | |
TWI814291B (zh) | 均勻的原位清洗及沉積 | |
TW202311559A (zh) | 半導體熱處理設備的氣體噴射裝置及半導體熱處理設備 | |
CN108091587B (zh) | 一种工艺腔室及半导体装置 | |
TW202101581A (zh) | 基板之蝕刻裝置及蝕刻方法 | |
JPH0473289B2 (zh) | ||
JP2000311862A (ja) | 基板処理装置 | |
CN116892015A (zh) | 承载装置和半导体工艺设备 | |
WO2024045390A1 (zh) | 等离子体控流装置、等离子刻蚀机及其均一性优化方法 | |
TWI821771B (zh) | 限制環及其製作方法、以及等離子體處理裝置 | |
CN110249073A (zh) | 用于可流动cvd的扩散器设计 | |
WO2020098187A1 (zh) | 干蚀刻设备的上电极及其制造方法 | |
US20210005501A1 (en) | Substrate processing apparatus | |
WO2024060824A1 (zh) | 基板处理装置 | |
JP2001244256A (ja) | 処理装置 | |
TWM644160U (zh) | 晶圓代工之吹氣盤結構改良 | |
JP2023533858A (ja) | マルチステージポンピングライナ | |
TW202111151A (zh) | 基板處理設備 | |
JP2004186404A (ja) | プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22944381 Country of ref document: EP Kind code of ref document: A1 |