WO2023229144A1 - 인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템 - Google Patents
인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템 Download PDFInfo
- Publication number
- WO2023229144A1 WO2023229144A1 PCT/KR2023/000877 KR2023000877W WO2023229144A1 WO 2023229144 A1 WO2023229144 A1 WO 2023229144A1 KR 2023000877 W KR2023000877 W KR 2023000877W WO 2023229144 A1 WO2023229144 A1 WO 2023229144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foot
- type
- insole
- level
- artificial intelligence
- Prior art date
Links
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 37
- 210000002683 foot Anatomy 0.000 claims abstract description 236
- 210000000548 hind-foot Anatomy 0.000 claims abstract description 26
- 210000004744 fore-foot Anatomy 0.000 claims description 45
- 238000013528 artificial neural network Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- 238000004458 analytical method Methods 0.000 claims description 21
- 210000001872 metatarsal bone Anatomy 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 19
- 241000469816 Varus Species 0.000 claims description 18
- 210000000452 mid-foot Anatomy 0.000 claims description 17
- 210000000474 heel Anatomy 0.000 claims description 16
- 238000013527 convolutional neural network Methods 0.000 claims description 15
- 230000007935 neutral effect Effects 0.000 claims description 13
- 244000309466 calf Species 0.000 claims description 12
- 210000001255 hallux Anatomy 0.000 claims description 12
- 241001227561 Valgus Species 0.000 claims description 11
- 210000000459 calcaneus Anatomy 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000012417 linear regression Methods 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 210000003195 fascia Anatomy 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 7
- 230000005856 abnormality Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003094 microcapsule Substances 0.000 description 5
- 230000000399 orthopedic effect Effects 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000003062 neural network model Methods 0.000 description 4
- 208000032170 Congenital Abnormalities Diseases 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000000454 fifth toe Anatomy 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 210000003423 ankle Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 208000004067 Flatfoot Diseases 0.000 description 1
- 208000014770 Foot disease Diseases 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 208000010332 Plantar Fasciitis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0621—Item configuration or customization
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B7/00—Footwear with health or hygienic arrangements
- A43B7/14—Footwear with health or hygienic arrangements with foot-supporting parts
- A43B7/28—Adapting the inner sole or the side of the upper of the shoe to the sole of the foot
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43D—MACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
- A43D1/00—Foot or last measuring devices; Measuring devices for shoe parts
- A43D1/02—Foot-measuring devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
Definitions
- the present invention relates to an ordering system for customized insoles using an artificial intelligence (AI) algorithm. More specifically, it establishes a learning model to classify foot types according to the corresponding foot types from various human foot images using an artificial intelligence algorithm, and the learning This is about a system that reads the image of the customer's hindfoot based on the model and provides the customer with customized insole information corresponding to the foot type, allowing the customer to order an optimized insole.
- AI artificial intelligence
- the feet are comprised of 52 large and small bones, numerous joints, tendons, ligaments, nerves, and blood vessels, playing an important role in supporting our body and maintaining balance. Abnormalities and deformities of the feet affect the entire skeletal system, from the knees, pelvis, waist, and neck.
- An insole (insole) is inserted inside a shoe and is a means of improving the fit of the shoe and alleviating the shock that occurs while walking or exercising, thereby protecting the wearer's feet and relieving fatigue.
- Insoles are as important as shoes as they are called second shoes. However, when purchasing shoes, the insoles that are first included may not fully reflect the condition of the wearer's feet, especially if abnormalities or deformities occur in the feet.
- Customized insoles are made to reflect the user's foot condition, so they are more beneficial to foot health.
- people who experience foot abnormalities or deformities or foot diseases such as plantar fasciitis prefer customized insoles.
- customized insoles require a direct visit to the store, and are made individually by hand, which is a burden in terms of production time and cost.
- Republic of Korea Patent No. 10-1899064 discloses a system and method for manufacturing customized assembled insoles using foot size measurement information using a smart device.
- the purpose of the present invention is to use an artificial intelligence algorithm to select the optimal foot type and insole for customers, and to provide optimized customized insoles through a simple online method rather than visiting a store.
- a customer terminal 100 where the customer's personal information and foot image information are input and transmitted;
- It is connected to the customer terminal 100 or the provider server 200 through a network, and includes a provider terminal 300 that outputs guide order information by the customer,
- the provider server 200 includes a customer information database 210 that stores personal information and foot image information of customers; And a foot analysis processor 220 that calculates the foot type by analyzing foot image information,
- the foot analysis process 220 is
- a foot detection unit 221 that removes background and/or noise from the original foot image
- an malleolus detection unit 222 that detects the coordinates of the malleolus from the foot image with the background and/or noise removed, and detects the tilt angle of the inner malleolus and the tilt angle of the outer malleolus;
- a lower leg bisecting line detection unit 223 that detects a tilt angle of the lower leg bisecting line from the foot image with the background and/or noise removed;
- an artificial intelligence algorithm is used to measure the foot.
- a foot type determination unit 224 that learns or determines with type output data (output layer);
- an insole selection unit 225 that selects an insole optimized for the foot type determined by the foot type determination unit 224.
- the lower leg bisecting line detection unit 223 detects the left and right areas of the heel divided by the lower leg bisecting line, and the foot type determination unit 224 uses the heel area data as input data for the learning model. It may be further included to determine the foot type.
- the artificial intelligence algorithm in the foot type determination unit 224 includes a deep neural network and a convolutional neural network, and the tilt angle of the medial malleolus, the tilt angle of the lateral malleolus, and the tilt angle of the lower leg bisector are deep It is learned using a neural network, and the hindfoot image may be learned using a convolutional neural network.
- the inclination angle of the medial malleolus is the angle of a straight line generated by connecting the medial malleolus calculated from the hindfoot image and the inner surface of the sole of the foot
- the inclination angle of the lateral malleolus is the angle of the straight line generated from the hindfoot image. It may be a straight line angle created by connecting the lateral malleolus calculated from and the outer surface of the sole of the foot.
- the inclination angle of the lower leg bisection line is a plurality of horizontal lines (horizontal lines) and the outline of the lower leg (calf) generated by dividing the portion corresponding to the lower leg (calf) into multiple segments at a certain height in the image of the lower leg (calf) foot. It may be the angle of a vertical line that sets a series of center points from the coordinates of both sides and detects the center points using a linear regression method and a least squares approximation method.
- the foot type may be selected from among the following six types.
- Type A The rearfoot is uncompensated rearfoot varus, the forefoot is the highest 3-level valgus, the arch height is 3-level, and the overall 3-level supinated. (supinated) type;
- the rearfoot is a rearfoot valgus
- the forefoot is a flexible forefoot valgus
- the arch height is 1-level
- the hindfoot is a compensated barus, the forefoot is neutral, the arch height is 1-level, and the overall 2-level pronated type;
- the hindfoot is an uncompensated varus, the forefoot is a 2-level varus, the arch height is 2-level, and the overall 2-level supinated type;
- the rearfoot is a compensated rearfoot varus
- the forefoot is varus
- the arch height is 0-level
- the pronated type has 3 levels overall.
- the insole applied to the A-type has the hindfoot formed at a higher inclination angle of 5 to 15 degrees on the lateral side compared to the medial side, and the forefoot formed at a higher inclination angle of 5 to 15 degrees compared to the medial side.
- the 2, 3, 4, and 5 metatarsal head receiving areas are formed high, the midfoot is formed higher on the lateral side compared to the medial, and the calcaneal-cuboid arch where the calcaneus and cuboid are joined.
- the area may be formed with three levels of high support.
- the insole applied to the B-type is formed such that the rearfoot portion is formed higher with a gentle slope on the inner side compared to the outer side to prevent the foot from falling inward (eversion), and the midfoot portion is excessive on the medial tarsal plantar membrane.
- a groove Plant Fascia Groove
- the forefoot is formed higher on the inside than the outside, and the big toe area extends from the first metatarsal head and is raised higher. It is formed, and the lateral calcaneal-cuboid arch area may have a 1-level low support formed.
- the insole applied to the multi-type has a rearfoot portion formed a little higher on the inner side with no slope or a gentle slope compared to the outer side, a support portion for controlling the lateral arch on the midfoot portion, and a forefoot portion formed on the inner side with a slight slope compared to the outer side.
- the receiving portions of the 2nd, 3rd, and 4th metatarsal heads may be formed a little higher than the left and right peripheral regions, and the lateral calcaneal-cuboid arch region may have a 1-level low support portion.
- the insole applied to the La-type has the rearfoot portion formed at a gentle slope higher on the inner side than the outer side to prevent the foot from falling inward (eversion), and the midfoot portion to prevent excessive tension on the medial plantar fascia.
- a groove Plant Fascia Groove
- the forefoot is formed higher on the inside than the outside
- the big toe area is formed higher by extending from the first metatarsal head (Mortons Extension). It may be something that has been done.
- the insole applied to the horse-type has the rearfoot portion formed at a higher inclination angle of 2 to 10° on the lateral side compared to the medial side, and the forefoot portion formed on the medial side slightly higher than the outer side.
- a groove (Plantar Fascia Groove) is formed to accommodate the medial plantar fascia to prevent excessive tension in the medial plantar fascia, and the area of the calcaneal-cuboid arch where the calcaneus and cuboid are joined is 2.
- the level support may be formed.
- the insole applied to the bar-type has the hindfoot formed to be higher on the inside than the outside to prevent the foot from falling inward (eversion), and the forefoot formed higher on the inside than the outside.
- the big toe area extends from the first metatarsal head (Mortons Extension) and is formed higher, and the lateral calcaneal-cuboid arch area may have a 1-level low support.
- a pressure-sensitive film that develops color due to pressure is attached to the lower or upper surface of the insole, so that the distribution of pressure applied to the insole when a customer uses the insole can be confirmed.
- the foot analysis processor 220 of the present invention further includes a foot type re-determination detection unit 226 that determines whether the pressure-sensitive film image data transmitted from the customer is appropriate for the foot type, and the foot type plate
- the government 224 may re-learn the foot type by reflecting the foot type data obtained from the foot type re-determination detection unit 226.
- the customized insole ordering system using an artificial intelligence algorithm according to the present invention is advantageous in terms of cost and time compared to conventional customized insoles because it is a ready-made product produced in advance, and is optimized to reflect the user's foot condition, so it is equivalent in terms of functionality.
- it has the advantage of being suitable for the online era because it can be purchased online without having to visit a store.
- Figure 1 shows a network relationship of components according to an embodiment of the present invention.
- Figure 2 shows a block diagram of an insole ordering system optimized for customers according to an embodiment of the present invention.
- Figure 3 shows “pronated,” “neutral,” and “supinated” configurations of the foot.
- Figure 4 shows a foot image with background and noise removed from the original foot image according to an embodiment of the present invention.
- Figure 5 shows the calculation process of the lower leg bisector line according to an embodiment of the present invention.
- Figure 6 shows the AI model structure of the output value (foot type) according to the input values (medial malleolus, lateral malleolus, angle of the lower leg bisection, left and right area data of the heel, and foot image) in the model structure according to an embodiment of the present invention.
- This is a diagram that represents
- Figure 7 shows learning results according to an artificial intelligence algorithm according to an embodiment of the present invention.
- Figure 8 is a perspective view (a), front view (b), top view (c), cut-away cross-sectional view (d), bottom view (e), and side view (f) of the 'A-type' insole according to an embodiment of the present invention. am.
- Figure 9 is a perspective view (a), front view (b), top view (c), cut-away cross-sectional view (d), and bottom view (e) of a 'B-type' insole according to an embodiment of the present invention.
- Figure 10 is a perspective view (a), a front view (b), a top view (c), a cut-away cross-sectional view (d), and a bottom view (e) of a 'multi-type' insole according to an embodiment of the present invention.
- Figure 11 is a perspective view (a), front view (b), top view (c), cut-away cross-sectional view (d), and bottom view (e) of the 'La-type' insole according to an embodiment of the present invention.
- Figure 12 is a perspective view (a), a front view (b), a top view (c), a cut-away cross-sectional view (d), and a bottom view (e) of a 'horse-type' insole according to an embodiment of the present invention.
- Figure 13 is a perspective view (a), front view (b), top view (c), cut-away cross-sectional view (d), and bottom view (e) of a 'bar-type' insole according to an embodiment of the present invention.
- Figure 14 shows an insole with a pressure-sensitive film attached according to an embodiment of the present invention, (a) pressure-sensitive film attached, (b) normal, (c) abnormal in a supinated state, (d) pronaed. It is in a pronated state and indicates abnormality.
- the expression “rearfoot varus” refers to the point where the extension of the calcaneal bisection and the lower leg bisection meet when viewed from the heel. It refers to a condition in which the body spreads outward (or distally) from the center line.
- the expression “rearfoot valgus” refers to the point where the extension of the metatarsal bisection and the lower leg bisection meet when viewed from the heel. This refers to a condition where the body gathers inward (or proximally) from the center line.
- the expression “forefoot varus” refers to a state in which the big toe (or first metatarsal head) is lifted relatively higher than the little toe (or fifth metatarsal head) side.
- the expression “forefoot valgus” refers to a state in which the little toe (or 5th metatarsal head) side is lifted relative to the big toe (or 1st metatarsal head) side.
- the expression "supinated” refers to a three-dimensional movement state in which the foot collapses or collapses in the outward (or distal) direction relative to the body's center line, and is usually performed by inversion. It can happen.
- the expression "pronated” refers to a three-dimensional movement state in which the foot collapses or collapses in the medial (or proximal) direction relative to the body's center line, and is usually performed by eversion. It can happen.
- 'level' indicates the degree of orthopedic symptoms of the foot, and in the present invention, it is classified into levels 0, 1, 2, and 3.
- Level 3 means a severe state
- level 2 means a moderate state
- level 1 means a relatively mild state
- level 0 means a normal state.
- step c) data on the left and right areas of the heel divided left and right by the lower leg bisecting line may be further included as input data for the learning model.
- Figure 1 shows a network relationship of components according to an embodiment of the present invention.
- Figure 2 shows a block diagram of an insole ordering system optimized for customers according to an embodiment of the present invention.
- the insole ordering system of the present invention determines the customer's foot type by analyzing the customer terminal 100 used by the customer, the supplier terminal 300 used by the supplier, and foot image information provided by the customer. And, it includes a provider server 200 that transmits insole information optimized for the foot type to the customer terminal.
- the customer terminal 100, the provider server 200, and the provider terminal 300 are directly or indirectly connected to each other through a network such as the Internet or wireless communication.
- the customer terminal 100 can be used as any device capable of display, data storage, and communication, such as a smartphone, tablet, or PC computer.
- the customer terminal 100 can be connected to the provider server 200 by installing a series of applications provided by the provider, or it can also access the website of the provider server 200 without a separate application.
- Customer information may be entered into the application or website of the customer terminal 100 and transmitted to the provider server 200.
- the customer information includes the customer's name, address, and contact information, and, if necessary, may include gender, age, weight, height, foot size, or shoe size. It may also be stored on the provider server 200 through customer authentication procedures, membership registration procedures, etc.
- the customer terminal 100 is a smartphone or tablet, a shooting module (camera function) is built-in, so foot image information can be directly created through the shooting module, and foot images taken in advance on another device can be sent to the customer terminal (e.g. , it is also possible to save it on a PC computer).
- a shooting module camera function
- Foot image information captured or stored in the customer terminal 100 is transmitted to the provider server 200.
- the foot image information may be a photo (2D image) or a 3D image taken of the customer's foot (hereinafter referred to as the original image).
- the 3D image may be created using a 3D creation program (or application) provided by the supplier, or may be created using a separate 3D creation application or program.
- the foot image information basically includes a hindfoot image and, if necessary, may further include a side image of the foot and a sole image.
- the rearfoot image is an image taken from the rear toward the heel and includes the lower leg (calf).
- the foot side image may be an image of the medial side of the foot, that is, the inner arch of the foot and the height of the instep.
- the height, width, and slope of the arch of the foot and the top of the foot can be used to determine the foot type, which will be described later.
- the foot image is sensitive to imaging conditions.
- the shape of the foot appears in many different ways depending on the up and down, left and right shooting angles, and shooting height, and the color and contrast also appear in various ways depending on the lighting conditions. Therefore, it is possible to present guidance (manual) on shooting conditions and shooting methods for optimal image creation to the customer's terminal.
- separate shooting modules are provided on the front and back.
- the rear shooting module is the same as the subject, but in the case of the front shooting module, the subject may be set to the left and right opposite. Accordingly, guidance on how to reverse left and right with the original image may be provided.
- the provider server 200 analyzes the foot image transmitted from the customer terminal 100 using a series of artificial intelligence algorithms to determine the foot type, and then provides information on the type of insole appropriate for the foot type. It is selected and transmitted to the customer terminal (100).
- the provider server 200 includes a customer information database 210 that stores customer information, and a foot analysis processor 220 that analyzes the customer's foot image and determines the foot type.
- the foot analysis processor 220 includes an artificial intelligence algorithm to learn and determine the foot type from the original image of the hindfoot.
- the artificial intelligence algorithm may be a neural network algorithm.
- the neural network algorithm may be a deep neural network (DNN) or a convolutional neural network (CNN), and may include both deep neural networks and convolutional neural networks.
- the artificial intelligence algorithm may be a supervised learning model based on deep learning.
- the artificial intelligence algorithm may preferably be a supervised learning algorithm in which input data (input layer) and output data (output layer) are given in advance.
- the learning method of deriving the foot type according to the foot image of the present invention is as follows.
- the foot-related expert establishes in advance the type of foot he or she wants to classify in the learning model based on orthopedic clinical data.
- one of the criteria for determining the foot type is the relationship between the lower leg bisection line and the calcaneal bisection line from the foot image.
- the calcaneus is the heel bone
- the calcaneus bisector is the center line that bisects the calcaneus vertically.
- the customer's feet are orthopedically classified into “pronated”, “neutral”, and “supinated” types depending on the tilted direction and angle of the calcaneal bifurcation. It is one of the main criteria for determining whether the condition is “mild,” “moderate,” or “severe,” and is very important in choosing the right insole.
- the foot type is determined based on six types, but this type classification is only optimal based on the clinical data acquired by the present inventor, and is not limited to the six types described later, and the foot type can be added or subtracted as needed.
- the six foot types are classified in Korean order as A-type (S+++), B-type (P+), D-type (P), D-type (P++), Ma-type (S++), Ba-type ( It is classified as P+++).
- levels are classified into levels 0, 1, 2, and 3 depending on the degree. Level 3 indicates the most severe severity, Level 2 indicates relatively severe severity, and Level 1 indicates relatively mild severity.
- Type A An inversion type in which the foot falls severely outward.
- the rearfoot is uncompensated rearfoot varus, the forefoot is the highest 3-level valgus, and the arch height is high.
- the rearfoot is a rearfoot valgus
- the forefoot is a flexible forefoot valgus
- the arch height is 1-level
- the hindfoot is compensated barus, the forefoot is neutral, the arch height is 1-level, and the overall 2-level pronated type (P++);
- Horse-type The hindfoot is an uncompensated varus, the forefoot is a 2-level varus, the arch height is 2-level, and the overall 2-level supinated type (S++);
- the rearfoot is a compensated rearfoot varus
- the forefoot is a varus
- the arch height is 0-level
- Cnp type Classification not possible
- CwP type Consult with Doctor, Doctor
- Additional classifications may be added (top).
- a model combining a deep neural network model and a convolutional neural network model can be used as a learning model.
- Each acquired image is labeled with a serial number, and an expert visually analyzes each original image, selects from the eight foot types, and labels the results according to each image.
- the foot and foot analysis processor 220 of the present invention mechanically extracts a foot image with the background removed from the original image and input data (input layer) from the foot image.
- the input data includes the inclination angle of the inner malleolus and the inclination angle of the lateral malleolus, and if necessary, area data (left and right area ratio) of the heel of the foot can be added as input data (input layer).
- Labeled input data is calculated through a neural network algorithm of the foot analysis processor 220, and a foot type is derived as a result.
- the results (foot type) output by the foot analysis processor 220 show a large error value (high loss) compared to the results (foot type) classified by the expert, but through repeated learning, the results gradually become more accurate for the expert.
- the neural network algorithm of the present invention is established by converging (matching the foot type) to the foot type classified by.
- the foot analysis processor 220 includes a foot detection unit 221 that removes unnecessary background and/or noise from the original foot image and detects only the foot image.
- a method for removing the background from an original image may use Salient Object Detection (“SOD”) technology.
- SOD technology is a technique that detects objects considered important within an image, and only separates important foreground objects from the background.
- SOD technology predicts a saliency map that expresses the probability that a salient object belongs to each pixel in the image as an intensity value.
- the saliency map is an attribution method created by calculating the gradient for the input image of the prediction class logit. By observing it, you can visually check which part of the image a specific prediction result of a convolution neural network (CNN) is due to. It becomes possible. Specifically, only the outline area of the foot in the image can be extracted through regression analysis.
- CNN convolution neural network
- Figure 4 shows an image from which the background has been removed from the original image using SOD technology.
- an error or unnecessary part that is, noise, may occur in an image of the foot from which the background has been removed in order to obtain the desired input data.
- Such background and noise in the original image can be removed using a background separation AI model, etc.
- an image from which the background or noise has been removed may be converted to a black-and-white image using a grayscale method. Thereafter, in one aspect, the grayscale image may be converted into a white image through a threshold, such as a binary threshold process, and converted into a two-color image containing only black and white. Then, the outline and its coordinates are extracted from the boundary between black and white, for example, through approximate polygon extraction.
- a threshold such as a binary threshold process
- the above background, noise-removed hindfoot image, its grayscale image or binary image data can be used to extract input data (independent variables) from an artificial intelligence model, preferably a convolutional neural network. there is.
- the foot analysis processor 220 automatically extracts input data required for the neural network model of the present invention from the background-removed foot image. From the hindfoot image, the tilt angle of the medial malleolus, the tilt angle of the lateral malleolus, the tilt angle of the lower leg bisecting line, and the left and right area data of the heel divided left and right by the lower leg bisecting line can be calculated, and the data can be calculated using an artificial intelligence model. , Preferably, it can be used as input data (independent variable) in a deep neural network.
- the input data of the present invention includes the inclination angle of the medial malleolus, the inclination angle of the lateral malleolus, and the inclination angle of the lower leg bisection line.
- the medial malleolus is the protruding part on the inside of the foot, and the lateral malleolus is the protruding part on the outside of the foot.
- the foot analysis processor 220 includes an malleolus detection unit 222 that detects the coordinates of the inner malleolus and the outer malleolus.
- the coordinate values of the medial malleolus and the coordinate values of the lateral malleolus can be obtained by comprehensively reflecting, for example, the coordinate deviation of the extracted outline, ankle detection, ROI (region of interest) settings, foot tilt, etc. there is.
- the inclination angle of the medial malleolus can be determined by setting a series of virtual lines connecting the end coordinate value of the medial malleolus and the outer coordinate value near the inner side of the sole, and then the highest inclination angle among them can be used as input data.
- the inclination angle of the lateral malleolus can be determined by setting a series of virtual lines connecting the end coordinate value of the lateral malleolus and the outer coordinate value near the outside of the sole, and then the highest inclination angle among them can be used as input data.
- the foot analysis processor 220 includes a lower leg bisecting line detection unit 223 that detects the lower leg bisecting line.
- the lower leg bisection refers to the center line that symmetrically bisects the lower leg, that is, the calf area above the ankle.
- the lower leg bisecting line can be calculated without substantial error.
- Figure 5 shows a preferred embodiment of calculating the lower leg bisection line (calf center line).
- a series of coordinates are obtained from both coordinates where the outline of the lower leg (calf) meets a number of horizontal lines (horizontal lines) created by dividing the portion corresponding to the lower leg (calf) into multiple segments at a certain height in the image of the lower leg (calf).
- Set the center points and detect the lower leg bisector line in the form of a straight line using linear regression and least squares approximation for the center points.
- the detected lower leg bisecting line is close to vertical on the foot image, and the angle of the lower leg bisecting line is used as one of the input data in the algorithm model of the present invention.
- another method of calculating the lower leg bisection line that can be used in the present invention is to set the point that bisects the distance between the coordinate value of the inner malleolus and the coordinate value of the outer malleolus as the malleolus center point, and set a predetermined value around the malleolus center point.
- a number of radii of the distance may be set, and the central point bisecting the two points where the radius and the calf outline meet may be in the form of a straight line close to a vertical line detected using linear regression and least squares approximation.
- the above-mentioned inclination angle of the medial malleolus, inclination angle of the lateral malleolus, and inclination angle of the lower leg bisector are used as input data for the neural network model of the present invention.
- left and right area data of the heel of the foot may be further included as input data for the neural network model of the present invention.
- the left and right heel area data refers to the ratio of the area where the heel portion is divided into left and right sides by the lower leg bisecting line.
- the foot analysis processor 220 includes a foot type determination unit 224 that derives a foot type from input data using a series of neural networks.
- a deep neural network is an artificial neural network consisting of multiple hidden networks between an input layer and an output layer. As the number of hidden layers increases, the artificial neural network becomes deeper, and it is useful for classifying input data, interpreting clusters, and recognizing specific patterns in the data.
- numerical information that is, the inclination angle of the malleolus, the inclination angle of the lower leg bisection, and the left and right area ratio of the heel of the foot, can be performed through a deep neural network.
- Convolutional Neural Network is a method to more effectively process two-dimensional data such as images by applying filtering techniques to artificial neural networks. Unlike processing images using fixed filtering techniques, convolutional neural networks automatically learn each element of the filter, expressed as a matrix, to be suitable for data processing.
- the structure of a convolutional neural network is to apply a filtering technique to the original image by adding a new layer called a convolutional layer and a pooling layer before the fully connected layer, and then to the filtered image. It is configured to perform a classification operation.
- the background-removed foot image is performed through a convolutional neural network, and after being quantified through a probability calculation function such as the softmax function, the tilt angle of the malleolus described above, the tilt angle of the lower leg bisector,
- a deep neural network can be formed by combining the left and right area ratio of the heel of the foot with the hidden layer of the deep neural network.
- the results (foot type) output by the foot analysis processor 220 show a large error value (high loss) compared to the results (foot type) classified by the expert, but through repeated learning, the results gradually become more accurate for the expert.
- the neural network algorithm of the present invention is established by converging (matching the foot type) to the foot type classified by.
- the foot analysis processor 220 includes an insole selection unit 225 that derives the foot type from foot type input data using a series of neural networks.
- a type (P+++) is derived, customized insole information optimized for each foot type is selected and sent to the customer.
- the customized insole according to the present invention adjusts the height, inclination, etc. of the inside (inside) and outside (outside) of the forefoot (FF), midfoot (MF), and rearfoot (RF) according to the foot type. Through this, it can be provided in a form optimized for the customer’s feet.
- Materials of the insole according to the present invention may be materials known as insole materials.
- the entire insole framework of the present invention may be made of synthetic resin, and examples may include ethylene vinyl acetate copolymer (EVA), polyurethane, and latex, and foam molded products thereof may be used, but are not limited thereto. No.
- the GA-type is an overall 3-level supinated type and corresponds to severe cavus.
- Figure 8 shows an example of a preferred insole (Type A insole) applied to Type A of the present invention.
- the A-type insole 10 has a rearfoot (RF) of the insole that is formed to be higher on the lateral side than on the medial side and has an inclined shape in order to control strong hindfoot varus. .
- the tilt angle may be between 5 and 15 degrees. Since the 3-level supinated foot has an overall shape that falls outward, the midfoot of the A-type insole 10 is also formed to be relatively higher on the lateral side than on the medial side.
- a CCA support portion 11 for accommodating the CCA may be further formed in the portion of the insole 10 corresponding to the portion (hereinafter referred to as “CCA”).
- the CCA support 11 is preferably a relatively high 3-level support, but 2-level and 1-level CCA supports are also possible.
- the little toe is raised more than the big toe or the big toe is pressed down, so the 1st metatarsal head (12) receiving site (12) in the forefoot (FF) of the insole is located at the 2nd, 3rd, and 4th. And it may be formed lower than the 5 metatarsal head receiving area (13) (Reverse Mortions Extenstion).
- the A-type insole may, if necessary, be provided with a shank 14 at the lower center of the insole to firmly support the center of the arch of the foot.
- the material of the shank is a hard material and may be a polymer resin such as polypropylene or polyethylene, but is not limited thereto.
- Na-type is an Eversion-shaped foot with a low instep, low arch of the foot, and the foot falls inward, clinically equivalent to a mild foot.
- Figure 9 shows an example of a preferred insole (B-type insole) applied to the B-type of the present invention.
- the rearfoot portion of the insole of the B-type 20 is formed to be higher on the inside with a gentle slope compared to the outside to prevent the foot from falling inward (eversion).
- the forefoot is formed higher on the inside (22) than on the outside (23), the big toe area is formed higher by extending from the first metatarsal head (Mortons Extension), and the outer CCA area has a relatively low support of 1-level. It may have been formed.
- the B-type insole may, if necessary, be provided with a shank 24 at the lower center of the insole to firmly support the center of the arch of the foot.
- the midfoot may be further formed with a groove (Plantar Fascia Groove) 25 to accommodate the medial plantar fascia to prevent excessive tension in the medial plantar fascia.
- Multi-type has a low instep and low arch of the foot, but generally corresponds to a type of foot that has little tilt in either direction.
- Figure 10 shows an example of a preferred insole (multi-type insole) applied to the multi-type of the present invention.
- the rearfoot portion of the multi-type insole 30 is formed slightly higher on the inner side with a flat or gentle slope than the outer side, and the midfoot portion has a protruding support portion 32 to control the lateral arch. may be formed, and a protruding support portion 33 for accommodating the third metatarsal head may be formed in the center of the forefoot, and a 1-level low CCA support portion 31 may be formed in the CCA region.
- the multi-type insole may, if necessary, be provided with a shank 34 at the lower center of the insole to firmly support the center of the arch of the foot.
- the L-type is an everversion type of foot in which the instep is low, the arch of the foot is low, and the foot falls inward, clinically equivalent to a normal foot.
- Figure 11 shows an example of a preferred insole (La-type insole) applied to the La-type of the present invention.
- the rearfoot portion of the La-type insole 40 is formed to be higher at a gentle slope on the inner side compared to the outer side to prevent the foot from falling inward (eversion), and the forefoot portion is on the outer side 43.
- the inner side 42 may be formed higher, and the big toe area may be formed higher by extending from the first metatarsal head (Mortons Extension).
- the L-type insole may, if necessary, be provided with a shank 44 at the lower center of the insole to firmly support the center of the arch of the foot.
- the midfoot may be further formed with a groove (Plantar Fascia Groove) 41 to accommodate the medial plantar fascia to prevent excessive tension in the medial plantar fascia.
- Type Ma is an inverted type of foot with a high instep and high arch of the foot, and the foot falls outward. Clinically, it corresponds to a less severe type of foot than the above-mentioned Type A.
- Figure 12 shows an example of a preferred insole (Ma-type insole) applied to the Ma-type of the present invention.
- the hindfoot of the hemp-type insole 50 is formed at a higher inclination angle of about 2 to 10 degrees on the lateral side compared to the medial side, and the forefoot is higher than the lateral side (43).
- the inner side 42 may be formed slightly higher, and the CCA portion may be formed with a two-level CCA support portion 51.
- hemp-type insole may, if necessary, be further provided with a shank at the lower center of the insole to firmly support the center of the arch of the foot.
- the midfoot may be further formed with a groove (Plantar Fascia Groove) 52 to accommodate the medial plantar fascia to prevent excessive tension in the medial plantar fascia.
- the bar-type is an everversion type of foot with a low instep, low arch of the foot, and the foot falls inward. It is clinically severe and corresponds to flat feet.
- Figure 13 shows an example of a preferred insole (bar-type insole) applied to the bar-type of the present invention. Referring to FIG. 13, the rearfoot of the bar-type insole 60 is inclined higher on the inside than the outside to prevent the foot from falling inward (eversion), and the midfoot is formed on the outside (literal) to increase the arc.
- the medial side may be formed sufficiently high compared to the above.
- the multi-type insole may, if necessary, be provided with a shank 34 at the lower center of the insole to firmly support the center of the arch of the foot.
- the above-described insoles of the present invention may have a pressure sensitive film attached to the lower or upper surface.
- Pressure-sensitive film is a film in which color develops in the corresponding area due to pressure applied to the film surface, and the pressure distribution according to color development and color intensity can be visually confirmed.
- Pressure-sensitive film is a structure in which a microcapsule layer filled with a coloring agent and a color developer layer are formed on a film substrate such as PET. Below the critical pressure, the coloring agent and the developer are separated by a microcapsule membrane, and above the critical pressure, the coloring agent and the developer are separated. When the microcapsule is broken by pressure, the coloring agent and the developing agent chemically react with each other, creating a structure in which color is developed.
- the microcapsule membrane may be made of a polymer resin such as polyurea resin or polyurethane resin, and the critical pressure can be increased or decreased by adjusting the thickness of the microcapsule membrane.
- the pressure-sensitive film may be attached to the insole, or may be attached to the insole by the customer after being delivered to the customer in an unattached state.
- the pressure-sensitive film may be attached to the entire size of the insole as a single film, for example, or may be attached separately to the forefoot and rear foot portions of the insole as shown in FIG. 14, that is, in the form of two films.
- the customer who purchased the insole of the present invention inserts the insole with the pressure-sensitive film attached into the shoe, walks for a certain period of time, obtains an image (photo) of the colored pressure-sensitive film or insole, and then sends the insole to the supplier server 200 through the customer terminal. will be transmitted to.
- the supplier server 200 determines whether the ordered insole matches the customer's foot type by analyzing the color shown on the pressure-sensitive film and evaluating the pressure distribution.
- the foot analysis processor 220 may further include a foot type re-determination detection unit 226 that determines whether the pressure-sensitive film image data transmitted from the customer is appropriate for the foot type. Thereafter, the foot type determination unit 224 is able to re-learn the foot type by reflecting the foot type data obtained from the foot type re-determination detection unit 226.
- Figure 14 shows an insole with a pressure-sensitive film attached according to an embodiment of the present invention, (a) pressure-sensitive film attached, (b) normal, (c) abnormal in a supinated state, (d) pronaed. It is in a pronated state and indicates abnormality.
- the ordered insole is determined to be within the normal range and conforms to the customer's foot type, and Figure 14(c), ( In cases where the pressure distribution is concentrated on one side of the insole as shown in d), the ordered insole may be judged to be in an abnormal range and not suitable for the customer's foot type.
- the determination of conformity of the pressure-sensitive film may be made by a pressure-sensitive film analysis unit or analysis algorithm provided in the supplier server. In another aspect, the determination of conformity of the pressure-sensitive film is made based on the visual observation of a foot expert, and the re-determined foot type can be re-learned in the foot type determination unit 224.
- the present invention relates to an ordering system for customized insoles using an artificial intelligence (AI) algorithm. More specifically, it establishes a learning model to classify foot types according to the corresponding foot types from various human foot images using an artificial intelligence algorithm, and the learning This is about a system that reads the image of the customer's hindfoot based on the model and provides the customer with customized insole information corresponding to the foot type, allowing the customer to order an optimized insole.
- AI artificial intelligence
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Business, Economics & Management (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Finance (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- Marketing (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Public Health (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Geometry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
본 발명은 인공지능 알고리즘을 이용하여 인간의 다양한 족부 이미지로부터 그에 따른 족부 유형을 분류하는 학습 모델을 정립하고, 상기 학습된 모델을 토대로 고객의 후족부 이미지를 판독하여 족부 유형에 대응되는 맞춤형 인솔 정보를 고객에게 제공하여, 고객이 최적화된 인솔을 주문할 수 있는 시스템을 제공한다.
Description
본 발명은 인공지능(AI) 알고리즘을 이용한 맞춤형 인솔의 주문 시스템에 관한 것으로, 보다 상세히는 인공지능 알고리즘을 이용하여 인간의 다양한 족부 이미지로부터 그에 따른 족부 유형을 분류하는 학습 모델을 정립하고, 상기 학습된 모델을 토대로 고객의 후족부 이미지를 판독하여 족부 유형에 대응되는 맞춤형 인솔 정보를 고객에게 제공하여, 고객이 최적화된 인솔을 주문할 수 있는 시스템에 관한 것이다.
발은 양쪽을 합치면 52개의 크고 작은 뼈들과, 수많은 관절, 힘줄, 인대, 신경, 혈관이 모여 우리 몸을 지탱하고 균형을 유지시키는 중요한 역할을 한다. 발의 이상과 변형은 무릎과 골반, 허리, 목에 이르기까지 골격계 전체에 영향을 미치게 된다.
인솔(insole: 깔창)은 신발 내부에 삽입되어 신발 착용감을 향상시키고 보행이나 운동시 발생하는 충격을 완화시켜 착용자의 발을 보호함과 동시에 피로감을 덜어주는 수단이다.
인솔은 제2의 신발이라고 불리는 만큼 신발 못지않게 중요한 데, 신발을 구매할 때 처음 들어있는 깔창은 착용자의 발 상태를 온전히 반영하여 주지 못하는 경우가 있으며, 발의 이상이나 변형이 발생한 경우에는 더욱 그렇다.
최근에는, 건강을 유지하기 위하여 발을 편안하게 해주는 기능성 인솔에 대한 수요가 점점 증가하고 있다. 기능성 인솔은 대량생산되는 기성품이므로 맞춤형 인솔에 비해 가격, 구입시간 면에서 유리한 점이 있다. 그러나 기능성 인솔이 나름대로 사용자의 발 건강을 위해 제작되었다고는 하지만 맞춤형에 비해서는 사용자의 발 상태를 모두 충족시키기는 어려운 한계가 있다.
맞춤형 인솔은 사용자의 발 상태를 반영하여 제작되므로 발 건강에 더욱 이롭다. 특히 발 이상이나 변형을 경험하거나 족저근막염과 같은 발 질환을 경험하는 사람들은 맞춤형 인솔을 선호한다. 그러나 맞춤형 인솔은 직접 매장에 방문하여야 하며, 일일이 수작업으로 제작하므로 제작 시간, 비용면에서 부담이 되고 있다.
대한민국 등록특허 제10-1899064호는 스마트 기기를 이용하여 발 치수 측정 정보 통해 맞춤형 조립인솔을 제작하는 시스템과 방법을 개시하고 있다.
본 발명은 인공지능 알고리즘을 이용하여 고객에게 최적화된 족부 유형 및 인솔을 선정하고, 매장 방문이 아닌 온라인이라는 간편한 방식을 통하면서도 최적화된 맞춤형 인솔을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명에 따른 인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템은,
고객의 개인 정보 및 족부 이미지 정보가 입력되고, 전송되는 고객 단말기(100);
상기 고객 단말기(100)와 네트워크를 통하여 연결되고, 상기 고객 단말기(100)로부터 전송되는 족부 원본 이미지 정보로부터 족부 유형을 판정하고, 족부 유형에 적합한 인솔 타입 정보를 상기 고객 단말기(100)로 전송하는 공급자 서버(200);
상기 고객 단말기(100) 또는 공급자 서버(200)와 네트워크를 통하여 연결되며, 고객에 의한 인솔 주문 정보가 출력되는 공급자 단말기(300)를 포함하고,
상기 공급자 서버(200)는 고객의 개인 정보 및 족부 이미지 정보를 저장하는 고객정보 데이터베이스(210); 및 족부 이미지 정보를 분석하여 족부 유형을 산정하는 족부 분석 프로세서(220)를 포함하고,
상기 족부 분석 프로세스(220)는
족부 원본 이미지로부터 배경 및/또는 노이즈를 게거하는 족부 검출부(221);
상기 배경 및/또는 노이즈가 게거된 족부 이미지로부터 복사뼈의 좌표를 검출하고, 내측 복사뼈의 기울기 각도 및 외측 복사뼈의 기울기 각도를 검출하는 복사뼈 검출부(222);
상기 배경 및/또는 노이즈가 게거된 족부 이미지로부터 하퇴 이분선의 기울기 각도를 검출하는 하퇴 이분선 검출부(223);
상기 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도, 및 배경 및/또는 노이즈를 게거된 족부 이미지를 학습 모델의 입력 데이터(입력 레이어)로 하여 인공지능 알고리즘을 이용하여 족부 유형의 출력 데이터(출력 레이어)로 학습 또는 판정하는 족부 유형 판정부(224); 및
상기 족부 유형 판정부(224)에서 판정된 족부 유형에 최적화된 인솔을 선정하는 인솔 선정부(225)를 포함하는 것을 특징으로 한다.
일 양태에서, 상기 하퇴 이분선 검출부(223)는 하퇴 이분선으로 좌우 구획된 발 뒤꿈치의 좌우 면적을 검출하고, 상기 족부 유형 판정부(224)는 상기 발 뒤꿈치의 면적 데이터를 학습 모델의 입력 데이터로 더 포함하여 족부 유형을 판정하는 것일 수 있다.
일 양태에서, 상기 족부 유형 판정부(224)에서 인공지능 알고리즘은 심층 신경망 및 합성곱 신경망을 포함하여 이루어 지고, 상기 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도는 심층 신경망을 이용하여 학습되고, 상기 후족부 이미지는 합성곱 신경망을 이용하여 학습되는 것일 수 있다.
일 양태에서, 상기 내측 복사뼈의 기울기 각도는 후족부 이미지로부터 산출된 내측 복사뼈(medial malleolus)와 족부바닥 부위의 내측면을 연결하여 생성되는 직선의 각도이고, 상기 외측 복사뼈의 기울기 각도는 후족부 이미지로부터 산출된 외측 복사뼈(lateral malleolus)와 족부바닥 부위의 외측면을 연결하여 생성되는 직선의 각도인 것일 수 있다.
일 양태에서, 상기 하퇴 이분선의 기울기 각도는 하퇴(종아리) 족부 이미지에서 하퇴(종아리)에 해당하는 부분을 일정 높이로 다분할하여 생성되는 다수의 수평선(가로선)과 하퇴(종아리)의 윤곽선이 만나는 양쪽 좌표로부터 일련의 중심점들을 설정하고, 상기 중심점들 대상으로 선형 회귀법 및 최소제곱 근사법을 이용하여 검출되는 수직선의 각도인 것일 수 있다.
일 양태에서, 상기 족부 유형은 하기 6가지 타입을 포함하는 유형 중에서 선정되는 것일 수 있다.
① 가-유형: 후족부가 보상되지 않는 바루스(uncompensated rearfoot varus)이고, 전족부가 가장 높은 3-레벨 발구스(forefoot valgus)이고, 아치의 높이가 3-레벨이며, 전체적으로 3-레벨 수피네이티드(supinated) 유형;
② 나-유형: 후족부가 발구스(rearfoot valgus)이고, 전족부가 플렉스블한 발구스(forefoot valgus)이고, 아치의 높이가 1-레벨이며, 전체적으로 1-레벨의 프로네이티드(pronated) 유형;
③ 다-유형: 후족부가 보상되지 않는 바루스이고, 전족부가 중립(neutral)이고, 아치의 높이가 중간의 2-레벨이며, 전체적으로 뉴트럴(neutral, normal) 유형;
④ 라-유형: 후족부가 보상된 바루스이고, 전족부가 중립이고, 아치의 높이가 1-레벨이며, 전체적으로 2-레벨의 프로네이티드 유형;
⑤ 마-유형: 후족부가 보상되지 않는 바루스이고, 전족부가 2-레벨 바루스이고, 아치의 높이가 2-레벨이며, 전체적으로 2-레벨의 수피네이티드 유형;
⑥ 바-유형: 후족부가 보상된 바루스(compensated rearfoot varus)이고, 전족부가 바루스이고, 아치의 높이가 0-레벨이며, 전체적으로 3-레벨의 프로네이티드 유형
일 양태에서, 상기 가-유형에 적용되는 인솔은, 후족부는 내측(medial)에 비해 외측(lateral)이 5~15도 경사 각도로 높게 형성되고, 전족부는 제1 중족골두 수용 부위에 비해 제2, 3, 4 및 5 중족골두 수용 부위가 높게 형성되고, 중족부는 내측(medial)에 비해 외측(lateral)이 높게 형성되며, 종골과 입방골이 결합되는 종골-입방골 아치(Caclneual cuboid arch) 부위는 3-레벨의 높은 지지부가 형성되어 있는 것일 수 있다.
일 양태에서, 상기 나-유형에 적용되는 인솔은, 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 완만한 경사로 더 높게 형성되고, 중족부는 내측 족근저막에 과긴장이 발생하지 않도록 내측 족저근막을 수용하는 홈(Plantar Fascia Groove)이 형성되고, 전족부는 외측에 비해 내측이 좀더 높게 형성되고, 엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되며, 외측 종골-입방골 아치(Caclneual cuboid arch) 부위는 1-레벨의 낮은 지지부가 형성되어 있는 것일 수 있다.
일 양태에서, 상기 다-유형에 적용되는 인솔은, 후족부는 외측에 비해 내측이 경사가 없거나 완만한 경사로 조금 더 높게 형성되고, 중족부는 횡 아치를 제어하기 위한 지지부가 형성되고, 전족부는 제2, 3 및 4 중족골두 수용 부분이 좌우 주변부에 비해 좀 더 높게 형성되어 있고, 외측 종골-입방골 아치(Caclneual cuboid arch) 부위는 1-레벨의 낮은 지지부가 형성되어 있는 것일 수 있다.
일 양태에서, 상기 라-유형에 적용되는 인솔은, 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 완만한 경사로 더 높게 형성되고, 중족부는 내측 족저근막에 과긴장이 발생하지 않도록 내측 족저근막을 수용하는 홈(Plantar Fascia Groove)이 형성되고, 전족부는 외측에 비해 내측이 좀더 높게 형성되고, 엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되어 있는 것일 수 있다.
일 양태에서, 상기 마-유형에 적용되는 인솔은, 후족부는 내측(medial)에 비해 외측(lateral)이 2~10°의 경사각으로 높게 형성되고, 전족부는 외측에 비해 내측이 조금 높게 형성되고, 중족부는 내측 족근저막에 과긴장이 발생하지 않도록 내측 족저근막을 수용하는 홈(Plantar Fascia Groove)이 형성되며, 종골과 입방골이 결합되는 종골-입방골 아치(Caclneual cuboid arch) 부위는 2-레벨의 지지부가 형성되어 있는 것일 수 있다.
일 양태에서, 상기 바-유형에 적용되는 인솔은, 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 경사로 더 높게 형성되고, 전족부는 외측에 비해 내측이 좀더 높게 형성되고, 엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되며, 외측 종골-입방골 아치(Caclneual cuboid arch) 부위는 1-레벨의 낮은 지지부가 형성되어 있는 것일 수 있다.
일 양태에서, 상기 인솔에는 그 하부면 또는 상부면에 압력에 의해 발색되는 감압필름이 부착됨으로써, 고객의 인솔 사용시 인솔에 가해지는 압력 분포를 확인할 수 있는 것일 수 있다.
한편, 일 양태에서, 본 발명의 상기 족부 분석 프로세서(220)는 고객으로부터 전송되어온 감압필름 이미지 데이터를 족부 유형의 적합 여부를 판단하는 족부 유형 재판정 검출부(226)를 더 포함하고, 상기 족부 유형 판정부(224)는 족부 유형 재판정 검출부(226)에서 획득된 족부 유형 데이터를 반영하여 족부 유형을 재학습하는 것일 수 있다.
본 발명에 따른 인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템은 미리 대량으로 생산된 기성물이므로 종래 맞춤식 인솔에 비해 비용, 시간 면에서 유리하고, 사용자의 발 상태를 반영하여 최적화되어 있어 기능성 면에서 대등할 뿐 아니라, 매장 방문 필요없이 온라인으로 구매가 가능하므로 온라인 시대에 부합하는 장점을 가진다.
도 1은 본 발명의 일 실시예에 따른 구성들의 네트워크 관계를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 고객에 최적화된 인솔 주문 시스템의 블록다이어그램을 나타낸다.
도 3은 발의 "프로네이티드(pronated)", "뉴트럴(neutral)", "수피네이티드(supinated)" 형태를 보여준다.
도 4는 본 발명의 일 실시예에 따른 족부 원본 이미지로부터 배경, 노이즈를 제거한 족부 이미지를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 하퇴 이분선의 산출과정을 나타낸다.
도 6은 본 발명의 일 실시예에 따른 모델 구조에서 입력값(내측 복사뼈, 외측 복사뼈, 하퇴 이분선의 각도 및 뒷꿈치의 좌우 면적 데이터, 족부 이미지)에 따른 출력값(족부 유형)의 AI 모델 구조를 나타내는 다이어그램이다.
도 7은 본 발명의 일 실시예에 따른 인공지능 알고리즘에 따른 학습 결과를 나타낸다.
도 8은 본 발명의 일 실시예에 따른 '가-유형' 인솔의 사시도(a), 정면도(b), 평면도(c), 절취 단면도(d), 저면도(e) 및 측면도(f)이다.
도 9는 본 발명의 일 실시예에 따른 '나-유형' 인솔의 사시도(a), 정면도(b), 평면도(c), 절취 단면도(d) 및 저면도(e)이다.
도 10은 본 발명의 일 실시예에 따른 '다-유형' 인솔의 사시도(a), 정면도(b), 평면도(c), 절취 단면도(d) 및 저면도(e)이다.
도 11은 본 발명의 일 실시예에 따른 '라-유형' 인솔의 사시도(a), 정면도(b), 평면도(c), 절취 단면도(d) 및 저면도(e)이다.
도 12는 본 발명의 일 실시예에 따른 '마-유형' 인솔의 사시도(a), 정면도(b), 평면도(c), 절취 단면도(d) 및 저면도(e)이다.
도 13은 본 발명의 일 실시예에 따른 '바-유형' 인솔의 사시도(a), 정면도(b), 평면도(c), 절취 단면도(d) 및 저면도(e)이다.
도 14는 본 발명의 일 실시예에 따른 감압필름이 부착된 인솔로서, (a)감압필름 부착, (b)는 정상, (c) 수피네이티드(supinated) 상태로서 비정상, (d) 프로네이티드(pronated) 상태로서 비정상을 나타낸다.
본 발명에서 사용되는 다음과 같은 용어는 발과 관련한 정형외과적 표현과 메커니즘에 기반한다.
본 발명에서, "후족부 바루스(rearfoot varus)"의 표현은, 발 뒷꿈치(heel) 부분에서 바라보았을 때, 중족골 이분선(calcaneal bisection)과 하퇴 이분선(lower leg bisection)의 연장선이 만나는 지점이 몸의 중심선으로부터 외측(또는 원위)으로 벌어지는 상태를 의미한다.
본 발명에서, "후족부 발구스(rearfoot valgus)"의 표현은, 발 뒷꿈치(heel) 부분에서 바라보았을 때, 중족골 이분선(calcaneal bisection)과 하퇴 이분선(lower leg bisection)의 연장선이 만나는 지점이 몸의 중심선으로부터 내측(또는 근위)으로 모이는 상태를 의미한다.
본 발명에서, "전족부 바루스(forefoot varus)"의 표현은, 엄지 발가락(또는 제1 중족골두) 쪽이 새끼 발가락(또는 제5 중족골두) 쪽보다 상대적으로 위로 들리는 상태를 의미한다.
본 발명에서, "전족부 발구스(forefoot valgus)"의 표현은, 새끼 발가락(또는 제5 중족골두) 쪽이 엄지 발가락(또는 제1 중족골두) 쪽보다 상대적으로 위로 들리는 상태를 의미한다.
본 발명에서, "수피네이티드(supinated)"의 표현은, 몸의 중심선을 기준으로 발이 외측(또는 원위) 방향으로 무너지거나 쓰러지는 3차원 운동 상태를 의미하고, 통상적으로 인버젼(inversion)에 의해 발생할 수 있다.
본 발명에서, "프로네이티드(pronated)"의 표현은, 몸의 중심선을 기준으로 발이 내측(또는 근위) 방향으로 무너지거나 쓰러지는 3차원 운동 상태를 의미하고, 통상적으로 이버젼(eversion)에 의해 발생할 수 있다.
본 발명에서 '레벨'은 발의 정형학적 증상의 정도를 나타내는 것으로, 본 발명에서 0, 1, 2, 3 레벨로 분류한다. 3-레벨은 그 정도가 심각한 상태, 2-레벨은 중간 상태, 1-레벨은 비교적 약한 상태, 0-레벨은 정상인 상태를 의미한다.
일 양태에서, 상기 c) 단계에서 상기 하퇴 이분선으로 좌우 구획된 발 뒤꿈치의 좌우 면적 데이터를 학습 모델의 입력 데이터로 더 포함할 수 있다.
본 발명의 바람직한 예시적 실시예들에 따른 온라인 인솔 주문 시스템을 첨부된 도면들을 참조하여 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 구성들의 네트워크 관계를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 고객에 최적화된 인솔 주문 시스템의 블록다이어그램을 나타낸다.
도 1에 도시된 바와 같이 본 발명의 인솔 주문 시스템은 고객이 사용하는 고객 단말기(100), 공급자가 사용하는 공급자 단말기(300), 고객으로부터 제공되는 족부 이미지 정보를 분석하여 고객의 족부 유형을 판정하고, 족부 유형에 최적화된 인솔 정보를 고객 단말기로 전송하는 공급자 서버(200)를 포함한다. 상기 고객 단말기(100), 공급자 서버(200) 및 공급자 단말기(300)는 인터넷 또는 무선통신 등과 같은 네트워크를 통하여 직접 또는 간접적으로 서로 연결된다.
먼저, 고객 단말기(100)는 스마트폰, 태블릿, PC 컴퓨터와 같이 디스플레이, 데이터 저장, 통신이 가능한 기기라면 모두 이용될 수 있다.
상기 고객 단말기(100)는 공급자가 제공하는 일련의 어플리케이션이 설치되어 공급자 서버(200)와 연결되거나, 별도의 어플리케이션 없이 공급자 서버(200)의 웹사이트에 접속하는 것도 가능하다.
고객 단말기(100)의 어플리케이션 또는 웹사이트 상에는 고객 정보가 입력되어, 공급자 서버(200)에 전송될 수 있다. 상기 고객 정보는 고객 성명, 주소, 연락처를 포함하고, 필요에 따라서는 성별, 나이, 체중, 신장, 발 치수 또는 신발 치수 등이 포함될 수 있다. 고객 인증 절차, 회원 가입 절차 등을 통하여 공급자 서버(200)에 저장될 수도 있다.
고객 단말기(100)가 스마트폰, 태블릿인 경우 촬영모듈(카메라 기능)이 기본 내장되어 있으므로 촬영모듈을 통해 족부 이미지 정보는 직접 생성될 수 있으며, 다른 기기에서 미리 촬영된 족부 이미지가 고객 단말기(예컨대, PC 컴퓨터)에 저장된 것도 가능하다.
고객 단말기(100)에서 촬영되거나 저장된 족부 이미지 정보는 공급자 서버(200)로 전송된다.
족부 이미지 정보는 고객의 족부 부분을 촬영한 사진(2D 이미지)이나 3D 이미지일 수 있다(이하, 원본 이미지). 3D 이미지는 공급자가 제공하는 3D 생성 프로그램(또는 어플리케이션)을 이용하여 생성되거나 별도의 3D 생성 어플리케이션이나 프로그램을 이용하여 생성된 것일 수도 있다.
상기 족부 이미지 정보는 후족부 이미지를 기본으로 포함하고, 필요에 따라서는 족부의 측면 이미지, 발바닥 이미지를 더 포함할 수 있다.
후족부 이미지는 후방에서 발 뒷꿈치(heel) 쪽을 촬영한 이미지로, 하퇴(lower leg)(종아리) 부분을 포함한다.
족부 측면 이미지는 발의 안쪽 측면(medial), 즉 발의 안쪽 아치(arch)와 발등 높이 부분이 촬영된 이미지일 수 있다. 발 아치와 발등의 높이, 너비, 기울기 형태 등은 후술하는 족부 유형의 판정에 이용될 수 있다.
발바닥 이미지에서 예컨대, 굳은 살과 같은 특이 정보는 후술하는 족부 유형의 판정에 이용될 수 있다.
상기 족부 이미지는 촬영 조건에 민감하다. 예를들어, 상하, 좌우 촬영각도, 촬영 높이에 따라 족부 형태는 매우 다양하게 나타나며, 빛 조건에 의해 색도, 명암 등도 다양하게 나타난다. 따라서, 고객의 단말기에는 최적의 이미지 생성을 위한 촬영 조건, 촬영 방법 등에 대한 안내(매뉴얼)가 제시되는 것이 가능하다. 한편, 스마트폰, 태블릿의 경우 전면과 후면에 각각의 촬영모듈이 구비되어 있는 데, 후면 촬영모듈은 피사체와 동일하지만, 전면 촬영모듈의 경우에는 피사체가 좌우 반대로 설정된 경우가 있다. 따라서, 본래 이미지로 좌우 반전 방법 등에 대한 안내가 제시될 수도 있다.
상기 공급자 서버(200)는 고객단말기(100)로부터 전송되어 온 족부 이미지를 대상으로 일련의 인공지능 알고리즘을 이용하여 족부 이미지를 분석하여 족부 유형을 판정한 다음, 족부 유형에 맞는 타입의 인솔 정보를 선정하여 고객 단말기(100)로 전송한다.
상기 공급자 서버(200)는 고객 정보를 저장하는 고객정보 데이터베이스(210)를 포함하고, 고객의 족부 이미지를 분석, 족부 유형을 판정하기 위한 족부 분석 프로세서(220)를 포함한다.
상기 족부 분석 프로세서(220)는 후족부 원본 이미지로부터 족부 유형을 학습하고, 판정하기 위하여 인공지능 알고리즘을 포함한다. 일 양태에서, 상기 인공지능 알고리즘은 신경망 알고리즘일 수 있다. 상기 신경망 알고리즘은 심층 신경망(DNN) 또는 합성곱 신경망(CNN)일 수 있으며, 심층 신경망과 합성곱 신경망을 모두 포함할 수 있다. 상기 인공지능 알고리즘은 딥 러닝(Deep Learning) 기반의 지도학습(Supervised Learning) 모델일 수 있다. 상기 인공지능 알고리즘은 바람직하게는 입력 데이터(입력 레이어)과 출력 데이터(출력 레이어)가 미리 주어지는 방법으로 학습되는 지도학습 알고리즘일 수 있다.
본 발명의 족부 이미지에 따른 족부 유형 도출의 학습 방법은 다음과 같다.
먼저, 족부관련 전문가는 정형학적 임상 자료에 기반하여 학습 모델에서 분류하고자 하는 족부 유형을 미리 정립한다.
족부 정형학에 있어서, 족부 유형의 판정 기준 중 하나는 족부 이미지로부터 하퇴 이분선과 종골 이분선(calcaneal bisection line)의 관계이다. 종골(calcaneus)은 발뒤꿈치 뼈로서 종골 이분선은 종골을 수직으로 이등분하는 중심선이다. 도 3에 보이는 바와 같이, 종골 이분선의 기울어진 방향 및 각도에 따라 고객의 발은 정형학적으로 "프로네이티드(pronated)", "뉴트럴(neutral)", "수피네이티드(supinated)" 유형인지, 그 정도가 "온화(mild)", "보통(moderate)", "심각(severe)"인지 등을 판정하는 주요 기준 중 하나이고, 적합한 인솔을 선택하는 데 있어서 매우 중요하다.
본 발명의 일 양태에서 족부 유형은 6가지 유형을 기준으로 판정되나, 이러한 유형 분류는 본 발명자가 습득한 임상 자료를 기준으로 최적한 것일 뿐, 후술하는 6가지 유형에 제한되는 것은 아니며, 족부 유형은 필요에 따라서 가감될 수 있다.
본 발명에서는 6가지 족부 유형을 한글순서로 가-유형(S+++), 나-유형(P+), 다-유형(P), 라-유형(P++), 마-유형(S++), 바-유형(P+++)으로 분류한다.
본 발명에서 레벨은 정도에 따라 0, 1, 2, 3 레벨로 분류한다. 3-레벨은 그 정도가 가장 심한 것을, 2-레벨은 비교적 심한 것은, 1-레벨은 비교적 약한 정도를 나타낸다.
① 가-유형: 발이 바깥쪽으로 심하게 쓰러지는 Inversion 형태로서, 후족부(rearfoot)가 보상되지 않는 바루스(uncompensated rearfoot varus)이고, 전족부가 가장 높은 3-레벨 발구스(forefoot valgus)이고, 아치의 높이가 3-레벨이며, 전체적으로 3-레벨의 수피네이티드(supinated) 유형(S+++);
② 나-유형: 후족부가 발구스(rearfoot valgus)이고, 전족부가 플렉스블한 발구스(forefoot valgus)이고, 아치의 높이가 1-레벨이며, 전체적으로 1-레벨의 프로네이티드(pronated) 유형(P+);
③ 다-유형: 후족부가 보상되지 않는 바루스이고, 전족부가 중립(neutral)이고, 아치의 높이가 중간의 2-레벨이며, 전체적으로 뉴트럴(neutral, normal) 유형(P);
④ 라-유형: 후족부가 보상된 바루스이고, 전족부가 중립이고, 아치의 높이가 1-레벨이며, 전체적으로 2-레벨의 프로네이티드 유형(P++);
⑤ 마-유형: 후족부가 보상되지 않는 바루스이고, 전족부가 2-레벨 바루스이고, 아치의 높이가 2-레벨이며, 전체적으로 2-레벨의 수피네이티드 유형(S++);
⑥ 바-유형: 후족부가 보상된 바루스(compensated rearfoot varus)이고, 전족부가 바루스이고, 아치의 높이가 0-레벨이며, 전체적으로 3-레벨의 프로네이티드 유형(P+++).
상기 6가지 족부 유형들로 분류가 어려운 경우에는 Cnp 유형(Classification not possible)으로 분류가 더 추가될 수 있고, 본 발명의 인솔 적용이 어려울 정도로 심각한 족부 유형인 경우에는 CwP 유형(Consult with Doctor, 닥터 상의)으로 분류가 더 추가될 수 있다.
본 발명에서는 학습 모델로서 심층 신경망 모델과 합성곱 신경망 모델을 결합한 모델이 이용될 수 있다.
본 발명의 모델링 학습을 위해 많은 수의 족부 원본 이미지가 획득된다.
상기 획득된 각각의 이미지는 일련 번호로 레이블화되고, 전문가는 각각의 원본 이미지를 시각적으로 분석하여 상기 8가지 족부 유형에서 선택하여 각각 이미지에 따른 결과값을 레이블화한다.
본 발명의 족부 분석 프로세서(220)는 원본 이미지로부터 배경이 제거된 족부 이미지와 상기 족부 이미지로부터 입력 데이터(입력 레이어)를 기계적으로 추출한다. 상기 입력 데이터는 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도를 포함하며, 필요에 따라서는 발뒷굼치의 면적 데이터(좌우 면적 비율)가 입력 데이터(입력 레이어)로 추가될 수 있다. 레이블화된 입력 데이터들은 족부 분석 프로세서(220)의 신경망 알고리즘을 통하여 계산되어 그 결과값으로 족부 유형이 도출된다. 학습 초기에는 족부 분석 프로세서(220)에 의해 출력된 결과(족부 유형)은 전문가에 의해 분류된 결과(족부 유형)과 비교하여 큰 오차값(높은 loss)를 보이지만, 반복 학습을 통해 점차적으로 전문가에 의해 분류된 족부 유형에 수렴(족부 유형 일치)하게 됨으로써 본 발명의 신경망 알고리즘이 정립된다.
상기 인공지능 알고리즘의 입력 데이터의 정확한 추출을 위하여 족부 원본 이미지에서 불필요한 배경은 제거되어야 한다.
상기 족부 분석 프로세서(220)는 족부 원본 이미지에서 불필요한 배경 및/또는 노이즈가 제거되고 족부 이미지 만이 검출되도록 하는 족부 검출부(221)를 포함한다.
본 발명의 일 양태에서, 원본 이미지로부터 배경의 제거 방법은 중요 객체 검출(Salient Object Detection, "SOD") 기술이 이용될 수 있다. SOD 기술은 이미지 내에서 중요하다고 생각되는 물체를 검출해내는 기법으로, 배경(background)에서 중요한 전경(foreground) 물체만을 분할해낸다. SOD 기술은 이미지 속의 각 픽셀(pixel)들에 중요 객체(salient object)가 속할 확률을 intensity 값으로 표현한 saliency map을 예측한다. Saliency map은 예측 클래스 logit의 입력 이미지에 대한 gradient를 계산하여 생성해 낸 attribution 수단으로, 이를 관찰함으로써 합성곱 신경망(Convolution Neural Network, CNN)의 특정 예측 결과가 이미지 상의 어느 부분에 기인하였는지 가시적으로 확인할 수 있게 된다. 구체적으로 회귀분석(regression analysis)을 통해서 이미지 내 족부의 외곽선 영역만을 추출할 수 있다.
도 4는 원본 이미지로부터 SOD 기술을 이용하여 배경이 제거된 이미지를 나타낸다. 도 4에 보이는 바와 같이 배경이 제거된 족부 이미지에는 원하는 입력 데이터를 얻는데 오류를 발생시키거나 불필요한 부분, 즉 노이즈(Noise)가 발생할 수 있다. 원본 이미지에서 이러한 배경 및 노이즈는 배경 분리 AI 모델 등을 이용하여 제거될 수 있다.
일 양태에서, 배경 또는 노이즈가 제거된 이미지는 그레이스케일(Grayscale) 방법으로 흑백 이미지로 변환될 수 있다. 이후, 일 양태에서 상기 Grayscale 이미지는 쓰레스홀드(threshold) 예컨대 binary threshold 과정을 거쳐 회색 이미지는 백색 이미지로 변환되어 흑색과 백색만 있는 2색의 이미지로 변환될 수 있다. 그런 다음, 흑색과 백색의 경계를 예컨대, 근사 polygon 추출을 통하여 윤곽선 및 이의 좌표가 추출된다. 상기 외곽선 추출 방법은 예시적인 것으로 외곽선 추출 방법은 이에 한정되는 것은 아니며 다른 공지 방법도 이용가능하다.
상기와 같은 배경, 노이즈가 제거된 후족부 이미지, 이의 그레이스케일 이미지 또는 2색(binary) 이미지 데이터는 인공지능 모델, 바람직하게는 합성곱 신경망에서 입력 데이터(독립변수)를 추출하는 데 이용될 수 있다.
족부 분석 프로세서(220)는 상기 배경이 제거된 족부 이미지로부터 본 발명의 신경망 모델에서 필요한 입력 데이터들을 자동 추출한다. 상기 후족부 이미지로부터 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도, 상기 하퇴 이분선으로 좌우 구획된 발 뒤꿈치의 좌우 면적 데이터가 산출될 수 있고, 상기 데이터들은 인공지능 모델, 바람직하게는 심층 신경망에서 입력 데이터(독립변수)로 이용될 수 있다.
본 발명의 입력 데이터는 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도를 포함한다.
내측 복사뼈는 발의 안쪽에 돌출된 부분이고, 외측 복사뼈는 발의 바깥쪽에 돌출된 부분이다.
족부 분석 프로세서(220)는 내측 복사뼈, 외측 복사뼈의 좌표를 검출하는 복사뼈 검출부(222)를 포함한다.
본 발명의 족부 이미지에서 내측 복사뼈의 좌표값, 외측 복사뼈의 좌표값은 예를들어 추출된 외곽선의 좌표 편차, 발목 검출, ROI(region of interest) 설정, 발 기울기 등을 종합적으로 반영하여 획득될 수 있다. 내측 복사뼈의 기울기 각도는 내측 복사뼈의 말단 좌표값과 발바닥의 내측 부근의 외각선 좌표값을 연결한 일련의 가상선들을 설정한 후 그 중 가장 높은 기울기의 각도가 입력 데이터로 이용될 수 있다. 외측 복사뼈의 기울기 각도는 외측 복사뼈의 말단 좌표값과 발바닥의 외측 부근의 외각선 좌표값을 연결한 일련의 가상선들을 설정한 후 그 중 가장 높은 기울기의 각도가 입력 데이터로 이용될 수 있다.
족부 분석 프로세서(220)는 하퇴 이분선을 검출하는 하퇴 이분선 검출부(223)를 포함한다.
하퇴 이분선(lower leg bisection)은 족부 정형학에 있어서 하퇴(lower leg), 즉 발목 위 종아리 부분을 좌우 대칭으로 양분하는 중심선을 의미한다.
본 발명에 있어서, 상기 하퇴 이분선은 실질적인 오차없이 산출될 수 있다.
도 5는 하퇴 이분선(종아리 중심선) 산출하는 바람직한 일 양태이다.
도 5에 보이는 바와 같이, 하퇴(종아리) 족부 이미지에서 하퇴(종아리)에 해당하는 부분을 일정 높이로 다분할하여 생성되는 다수의 수평선(가로선)과 하퇴(종아리)의 윤곽선이 만나는 양쪽 좌표로부터 일련의 중심점들을 설정하고, 상기 중심점들 대상으로 선형 회귀법 및 최소제곱 근사법을 이용하여 직선형태의 하퇴 이분선을 검출한다. 상기 검출되는 하퇴 이분선은 족부 이미지 상에서 수직에 가까운 형태이고, 하퇴 이분선의 각도는 본 발명의 알고리즘 모델에서 입력 데이터 중 하나로 이용된다.
한편, 본 발명에 이용될 수 있는 하퇴 이분선의 또 다른 산출 방법으로는, 내측 복사뼈의 좌표값과 외측 복사뼈 좌표값의 거리를 이분하는 점을 복사뼈 중심점으로 설정하고, 상기 복사뼈 중심점을 중심으로 소정거리의 반지름을 다수 설정하고, 상기 반지름와 종아리 외곽선이 만나는 양 점을 이분하는 중심점을 대상으로 선형 회귀법 및 최소제곱 근사법을 이용하여 검출되는 수직선(세로선)에 가까운 직선 형태일 수 있다.
상술한 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도는 본 발명의 신경망 모델의 입력 데이터로 이용된다.
또한, 본 발명의 신경망 모델의 입력 데이터로 발뒷굼치의 좌우 면적 데이터가 더 포함될 수 있다. 상기 발뒷꿈치 좌우 면적 데이터는 상기 하퇴 이분선에 의해 발뒷꿈치 부분이 좌우 분할되는 면적의 비율을 의미한다.
족부 분석 프로세서(220)는 입력 데이터로부터 일련의 신경망을 이용하여 족부 유형을 도출하는 족부 유형 판정부(224)를 포함한다.
심층 신경망(Deep Neural Network, DNN)은 입력층(input layer)과 출력층(output layer) 사이에 다중의 은닉층(hidden network)들로 이루어진 인공 신경망이다. 은닉층의 개수가 많아질수록 인공신경망이 깊어지며(deep), 입력 데이터를 분류, 군집을 해석하고, 데이터에서 특정 패턴을 인식하는 데 유용하게 이용된다. 상기 입력 데이터 중 수치적 정보 즉, 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도, 발뒷굼치의 좌우 면적 비율은 심층 신경망을 통하여 수행될 수 있다.
합성곱 신경망(CNN ; Convolutional Neural Network)은 필터링 기법을 인공신경망에 적용함으로써 이미지와 같은 2차원 데이터 처리를 더욱 효과적으로 처리하기 위한 방법이다. 고정된 필터링 기법을 이용해 이미지를 처리하는 것과 달리, 합성곱 신경망은 행렬로 표현된 필터의 각 요소가 데이터 처리에 적합하도록 자동으로 학습되게 한다. 합성곱 신경망의 구조는 합성곱 계층(Convolutional layer)과 풀링 계층(Pooling layer)이라고 하는 새로운 층을 풀리 커넥티드(Fully-connected) 계층 이전에 추가함으로써 원본 이미지에 필터링 기법을 적용한 뒤에 필터링된 이미지에 대해 분류 연산이 수행되도록 구성된다. 상기 입력 데이터 중 배경이 제거된 족부 이미지는 합성곱 신경망을 통하여 수행되고, 소프트맥스(softmax) 함수 등과 같은 확률계산 함수를 통하여 수치화된 후, 상술한 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도, 발뒷굼치의 좌우 면적 비율의 심층 신경망의 은닉층과 결합하여 심층 신경망을 이룰 수 있다. 학습 초기에는 족부 분석 프로세서(220)에 의해 출력된 결과(족부 유형)은 전문가에 의해 분류된 결과(족부 유형)과 비교하여 큰 오차값(높은 loss)를 보이지만, 반복 학습을 통해 점차적으로 전문가에 의해 분류된 족부 유형에 수렴(족부 유형 일치)하게 됨으로써 본 발명의 신경망 알고리즘이 정립된다.
족부 분석 프로세서(220)는 족부 유형 입력 데이터로부터 일련의 신경망을 이용하여 족부 유형을 도출하는 인솔 선정부(225)를 포함한다.
본 발명의 학습 모델에 따라 상술한 8가지 유형 중 가-유형(S+++), 나-유형(P+), 다-유형(P), 라-유형(P++), 마-유형(S++), 바-유형(P+++)이 도출되는 경우에는 각각의 족부 유형에 최적화된 맞춤형 인솔 정보가 선택되어 고객에게 전송되게 된다.
본 발명에 따른 맞춤형 인솔은 족부 유형에 맞추어 전족부(Forefoot, FF), 중족부(Midfoot, MF), 후족부(Rearfoot, RF)의 내측(안쪽)과 외측(바깥쪽)의 높이, 경사 등을 통해 고객 발에 최적화된 형태로 제공될 수 있다. 본 발명에 따른 인솔의 재질은 인솔의 재료로 공지되어 있는 재료들이 이용될 수 있다. 본 발명의 인솔 전체 뼈대는 합성수지가 이용될 수 있으며, 일 예시로서 에틸렌초산비닐 공중합체(EVA), 폴리우레탄(Polyurethane), 라텍스일 수 있고, 이들의 발포 성형체가 이용될 수 있으나 이에 제한되지는 않는다.
먼저, 가(GA)-유형은 전체적으로 3-레벨 수피네이티드(supinated) 유형으로서, 심한 요족(cavus)에 해당한다. 도 8은 본 발명의 가-유형에 적용되는 바람직한 인솔(가-타입 인솔)의 일 실시예를 나타낸다. 도 8을 참조하면, 가-유형 인솔(10)은 강한 후족부 바루스를 제어하기 위하여 인솔의 후족부(RF)는 내측(medial)에 비해 외측(lateral)이 높게 형성되며 서로 경사진 형태를 가진다. 일 양태에서, 경사 각도는 5~15도의 경사 각도일 일 수 있다. 3-레벨의 수피네이티드 발은 전체적으로 바깥쪽으로 쓰러지는 형태를 띠므로 가-타입 인솔(10)의 중족부(midfoot) 역시 내측(medial)에 비해 외측(lateral)이 비교적 더 높게 형성된다. 또한 발이 바깥쪽으로 쓰러지는 움직임(Inversion)를 줄여주기 위하여 후족부(RF)의 종골(calcaneus)과 중족부(MF)의 입방골(cuboid)이 결합되는 부위인 종골-입방골 아치(Cacaneual cuboid arch, 이하 "CCA") 부위에 대응되는 인솔(10) 부분에는 CCA를 수용하기 위한 CCA 지지부(11)가 더 형성될 수 있다. 상기 CCA 지지부(11)는 비교적 3-레벨의 높은 지지부가 바람직하나 2-레벨, 1-레벨의 CCA 지지부도 가능하다. 가-유형 족부는 새끼발가락이 엄지발가락보다 들려진 상태 또는 엄지발가락이 아래로 눌려있기 때문에 인솔의 전족부(FF)에서 제1 중족골두(1st Metatarsal) 수용 부위(12)는 제2, 3, 4 및 5 중족골두 수용 부위(13)에 비해 낮게 형성될 수 있다(Reverse Mortions Extenstion). 한편, 가-유형 인솔은 필요에 따라서는 발의 아치 부분 중앙을 견고히 지지하기 위해 생크(shank)(14)가 인솔 하부 중앙 쪽에 구비될 수 있다. 생크(shank)의 재질은 단단한 재질로, 폴리프로필렌, 폴리에틸렌 등과 같은 고분자 수지일 수 있으나 이에 제한되지는 않는다.
나(Na)-유형은 발등이 낮고 발의 아치가 낮고 발이 안쪽으로 쓰러지는 Eversion 형태의 발로서, 임상학적으로 마일드(mild)한 발에 해당한다. 도 9는 본 발명의 나-유형에 적용되는 바람직한 인솔(나-타입 인솔)의 일 실시예를 나타낸다. 도 9를 참조하면, 상기 나-타입(20)의 인솔의 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 완만한 경사로 더 높게 형성되어 있다. 전족부는 외측(23)에 비해 내측(22)이 좀더 높게 형성되고, 엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되며, 외측 CCA 부위는 1-레벨의 비교적 낮은 지지부가 형성되어 있는 것일 수 있다. 한편, 나-유형 인솔은 필요에 따라서는 발의 아치 부분 중앙을 견고히 지지하기 위해 생크(shank)(24)가 인솔 하부 중앙 쪽에 구비될 수 있다. 필요에 따라서는 중족부는 내측 족근저막에 과긴장이 발생하지 않도록 내측 족저근막을 수용하는 홈(Plantar Fascia Groove)(25)이 더 형성될 수 있다.
다-유형은 발등이 낮고 발의 아치가 낮으나, 대체로 발이 좌우 어느 방향으로의 쏠림이 거의 없는 형태의 발에 해당한다. 도 10은 본 발명의 다-유형에 적용되는 바람직한 인솔(다-타입 인솔)의 일 실시예를 나타낸다. 도 10을 참조하면, 상기 다-타입 인솔(30)의 후족부는 외측에 비해 내측이 경사없이 평평하거나 완만한 경사로 조금 더 높게 형성되고, 중족부는 횡 아치를 제어하기 위해 돌출된 지지부(32)가 형성되고, 전족부의 가운데에는 제3 중족골두를 수용하기 위한 돌출 지지부(33)가 형성되고, CCA 부위는 1-레벨의 낮은 CCA 지지부(31)가 형성되어 있는 것일 수 있다. 한편, 다-유형 인솔은 필요에 따라서는 발의 아치 부분 중앙을 견고히 지지하기 위해 생크(shank)(34)가 인솔 하부 중앙 쪽에 구비될 수 있다.
라-유형은 발등이 낮고 발의 아치가 낮고 발이 안쪽으로 쓰러지는 Eversion 형태의 발로서, 임상학적으로 보통(moderate)의 발에 해당한다. 도 11은 본 발명의 라-유형에 적용되는 바람직한 인솔(라-타입 인솔)의 일 실시예를 나타낸다. 도 11을 참조하면, 상기 라-타입 인솔(40)의 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 완만한 경사로 더 높게 형성되고, 전족부는 외측(43)에 비해 내측(42)이 좀더 높게 형성되고, 엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되어 있는 것일 수 있다. 한편, 라-유형 인솔은 필요에 따라서는 발의 아치 부분 중앙을 견고히 지지하기 위해 생크(shank)(44)가 인솔 하부 중앙 쪽에 구비될 수 있다. 필요에 따라서는 중족부는 내측 족저근막에 과긴장이 발생하지 않도록 내측 족저근막을 수용하는 홈(Plantar Fascia Groove)(41)이 더 형성될 수 있다.
마-유형은 발등이 높고 발의 아치가 높고 발이 바깥쪽으로 쓰러지는 Inversion 형태의 발로서, 임상학적으로 상기 가-유형에 비해 심하지 않은 형태의 발에 해당한다. 도 12는 본 발명의 마-유형에 적용되는 바람직한 인솔(마-타입 인솔)의 일 실시예를 나타낸다. 도 12를 참조하면, 상기 마-타입 인솔(50)의 후족부는 내측(medial)에 비해 외측(lateral)이 2~10도 정도의 경사 각도로 높게 형성되고, 전족부는 외측(43)에 비해 내측(42)이 조금 높게 형성되고, CCA 부위는 2-레벨의 CCA 지지부(51)가 형성되어 있는 것일 수 있다. 한편, 마-유형 인솔은 필요에 따라서는 발의 아치 부분 중앙을 견고히 지지하기 위해 생크(shank)가 인솔 하부 중앙 쪽에 더 구비될 수 있다. 필요에 따라서는 중족부는 내측 족근저막에 과긴장이 발생하지 않도록 내측 족저근막을 수용하는 홈(Plantar Fascia Groove)(52)이 더 형성될 수 있다.
바-유형은 발등이 낮고 발의 아치가 낮고 발이 안쪽으로 쓰러지는 Eversion 형태의 발로서, 임상학적으로 심각한(severe) 정도이고, 평편족(평발)에 해당한다. 도 13은 본 발명의 바-유형에 적용되는 바람직한 인솔(바-타입 인솔)의 일 실시예를 나타낸다. 도 13을 참조하면, 바-타입 인솔(60)의 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 경사로 더 높게 형성되고, 중족부는 아크를 높이기 위하여 외측(literal)에 비해 내측(medial)이 충분히 높게 형성되어 있는 것일 수 있다. 한편, 다-유형 인솔은 필요에 따라서는 발의 아치 부분 중앙을 견고히 지지하기 위해 생크(shank)(34)가 인솔 하부 중앙 쪽에 구비될 수 있다.
한편, 일 양태에서, 본 발명의 상술한 인솔들은 그 하부면 또는 상부면에 감압필름(pressure sensitive film)이 부착된 형태일 수 있다. 감압필름은 필름 면에 가해지는 압력에 의해 해당 부분에서 발색이 일어나는 필름으로, 발색 여부 및 발색 강도에 따른 압력 분포를 시각적으로 확인할 수 있다. 감압필름은 PET 등과 같은 필름기재 상에 발색제가 충진된 마이크로캡슐 층과, 현색제 층이 형성되어 있는 구조로, 임계 압력 이하에서는 마이크로캡슐 막에 의해 발색제와 현색제가 분리되어 있다가, 임계 압력 이상의 압력에 의해 마이크로캡슐이 깨지면서 발색제와 현색제가 서로 화학반응함으로써 발색되는 구조를 가진다. 상기 마이크로캡슐 막은 예컨대 폴리우레아 수지 또는 폴리우레탄 수지와 같은 고분자 수지로 구성될 수 있고, 마이크로캡슐 막의 두께 등을 조절함으로써 임계 압력은 증감될 수 있다.
상기 감압필름은 인솔에 부착된 상태이거나, 미부착 상태로 고객에 배송된 후에 고객에 의해 인솔에 부착될 수도 있다. 상기 감압필름은 예컨대 1장의 필름으로 인솔의 전체 크기에 맞게 부착될 수도 있으며, 도 14에 도시된 바와 같이 인솔의 전족부 및 후족부에 분리되어, 즉 2장의 필름 형태로 부착될 수도 있다.
본 발명의 인솔을 구매한 고객은 상기 감압필름이 부착된 인솔을 신발에 끼워넣고 일정 시간 보행한 후 발색된 감압필름 또는 인솔 이미지(사진)를 획득한 다음, 고객단말기를 통하여 공급자 서버(200)에 전송하게 된다.
상기 공급자 서버(200)는 감압필름에 나타난 색채를 분석하여 압력 분포를 평가함으로써 주문된 인솔이 고객의 족부 유형에 부합하는지 여부를 판정한다.
상기 족부 분석 프로세서(220)는 고객으로부터 전송되어온 감압필름 이미지 데이터를 족부 유형의 적합 여부를 판단하는 족부 유형 재판정 검출부(226)를 더 포함할 수 있다. 이후 상기 족부 유형 판정부(224)는 족부 유형 재판정 검출부(226)에서 획득된 족부 유형 데이터를 반영하여 족부 유형을 재학습하는 것이 가능하다.
도 14는 본 발명의 일 실시예에 따른 감압필름이 부착된 인솔로서, (a)감압필름 부착, (b)는 정상, (c) 수피네이티드(supinated) 상태로서 비정상, (d) 프로네이티드(pronated) 상태로서 비정상을 나타낸다.
예컨대, 압력 분포가 인솔 전족부, 후족부의 중심에 형성된 경우(도 14의 (b))에는 주문된 인솔은 정상 범위로 고객의 족부 유형에 부합하는 것으로 판정하고, 도 14의 (c), (d)와 같이 압력 분포가 인솔의 어느 한쪽에 쏠려 있는 경우에는 주문된 인솔은 비정상 범위로 고객의 족부 유형에 부합하지 않는 것으로 판정될 수 있다. 일 양태에서, 이러한 감압필름의 부합 판정은 공급자 서버에 구비된 감압필름 분석부 또는 분석 알고리즘에 의해 이루어질 수 있다. 다른 일 양태에서, 감압필름의 부합 판정은 족부 전문가의 육안에 따른 판단으로 이루어지고, 재판정된 족부 유형은 상기 족부 유형 판정부(224)에서 재학습되는 것이 가능하다.
본 발명은 인공지능(AI) 알고리즘을 이용한 맞춤형 인솔의 주문 시스템에 관한 것으로, 보다 상세히는 인공지능 알고리즘을 이용하여 인간의 다양한 족부 이미지로부터 그에 따른 족부 유형을 분류하는 학습 모델을 정립하고, 상기 학습된 모델을 토대로 고객의 후족부 이미지를 판독하여 족부 유형에 대응되는 맞춤형 인솔 정보를 고객에게 제공하여, 고객이 최적화된 인솔을 주문할 수 있는 시스템에 관한 것이다.
Claims (13)
- 고객의 개인 정보 및 족부 이미지 정보가 입력되고, 전송되는 고객 단말기(100);상기 고객 단말기(100)와 네트워크를 통하여 연결되고, 상기 고객 단말기(100)로부터 전송되는 족부 원본 이미지 정보로부터 족부 유형을 판정하고, 족부 유형에 적합한 인솔 타입 정보를 상기 고객 단말기(100)로 전송하는 공급자 서버(200);상기 고객 단말기(100) 또는 공급자 서버(200)와 네트워크를 통하여 연결되며, 고객에 의한 인솔 주문 정보가 출력되는 공급자 단말기(300)를 포함하고,상기 공급자 서버(200)는 고객의 개인 정보 및 족부 이미지 정보를 저장하는 고객정보 데이터베이스(210); 및 족부 이미지 정보를 분석하여 족부 유형을 산정하는 족부 분석 프로세서(220)를 포함하고,상기 족부 분석 프로세스(220)는족부 원본 이미지로부터 배경 및/또는 노이즈를 게거하는 족부 검출부(221);상기 배경 및/또는 노이즈가 게거된 족부 이미지로부터 복사뼈의 좌표를 검출하고, 내측 복사뼈의 기울기 각도 및 외측 복사뼈의 기울기 각도를 검출하는 복사뼈 검출부(222);상기 배경 및/또는 노이즈가 게거된 족부 이미지로부터 하퇴 이분선의 기울기 각도를 검출하는 하퇴 이분선 검출부(223);상기 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도, 및 배경 및/또는 노이즈를 게거된 족부 이미지를 학습 모델의 입력 데이터(입력 레이어)로 하여 인공지능 알고리즘을 이용하여 족부 유형의 출력 데이터(출력 레이어)로 학습 또는 판정하는 족부 유형 판정부(224); 및상기 족부 유형 판정부(224)에서 판정된 족부 유형에 최적화된 인솔을 선정하는 인솔 선정부(225)를 포함하는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제1항에 있어서,상기 하퇴 이분선 검출부(223)는 하퇴 이분선으로 좌우 구획된 발 뒤꿈치의 좌우 면적을 검출하고, 상기 족부 유형 판정부(224)는 상기 발 뒤꿈치의 면적 데이터를 학습 모델의 입력 데이터로 더 포함하여 족부 유형을 판정하는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제1항에 있어서,상기 족부 유형 판정부(224)에서 인공지능 알고리즘은 심층 신경망 및 합성곱 신경망을 포함하여 이루어 지고,상기 내측 복사뼈의 기울기 각도, 외측 복사뼈의 기울기 각도, 하퇴 이분선의 기울기 각도는 심층 신경망을 이용하여 학습되고,상기 후족부 이미지는 합성곱 신경망을 이용하여 학습되는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제1항에 있어서,상기 내측 복사뼈의 기울기 각도는 후족부 이미지로부터 산출된 내측 복사뼈(medial malleolus)와 족부바닥 부위의 내측면을 연결하여 생성되는 직선의 각도이고,상기 외측 복사뼈의 기울기 각도는 후족부 이미지로부터 산출된 외측 복사뼈(lateral malleolus)와 족부바닥 부위의 외측면을 연결하여 생성되는 직선의 각도인 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제1항에 있어서,상기 하퇴 이분선의 기울기 각도는 하퇴(종아리) 족부 이미지에서 하퇴(종아리)에 해당하는 부분을 일정 높이로 다분할하여 생성되는 다수의 수평선(가로선)과 하퇴(종아리)의 윤곽선이 만나는 양쪽 좌표로부터 일련의 중심점들을 설정하고, 상기 중심점들 대상으로 선형 회귀법 및 최소제곱 근사법을 이용하여 검출되는 수직선의 각도인 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제1항에 있어서,상기 족부 유형은 하기 6가지 타입의 유형을 포함하는 것 중에서 선정되는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.① 가-유형: 후족부가 보상되지 않는 바루스(uncompensated rearfoot varus)이고, 전족부가 가장 높은 3-레벨 발구스(forefoot valgus)이고, 아치의 높이가 3-레벨이며, 전체적으로 3-레벨 수피네이티드(supinated) 유형;② 나-유형: 후족부가 발구스(rearfoot valgus)이고, 전족부가 플렉스블한 발구스(forefoot valgus)이고, 아치의 높이가 1-레벨이며, 전체적으로 1-레벨의 프로네이티드(pronated) 유형;③ 다-유형: 후족부가 보상되지 않는 바루스이고, 전족부가 중립(neutral)이고, 아치의 높이가 중간의 2-레벨이며, 전체적으로 뉴트럴(neutral, normal) 유형;④ 라-유형: 후족부가 보상된 바루스이고, 전족부가 중립이고, 아치의 높이가 1-레벨이며, 전체적으로 2-레벨의 프로네이티드 유형;⑤ 마-유형: 후족부가 보상되지 않는 바루스이고, 전족부가 2-레벨 바루스이고, 아치의 높이가 2-레벨이며, 전체적으로 2-레벨의 수피네이티드 유형;⑥ 바-유형: 후족부가 보상된 바루스(compensated rearfoot varus)이고, 전족부가 바루스이고, 아치의 높이가 0-레벨이며, 전체적으로 3-레벨의 프로네이티드 유형
- 제6항에 있어서,상기 가-유형에 적용되는 인솔의 후족부는 내측(medial)에 비해 외측(lateral)이 5~15도 경사 각도로 높게 형성되고,전족부는 제1 중족골두 수용 부위에 비해 제2, 3, 4 및 5 중족골두 수용 부위가 높게 형성되고,중족부는 내측(medial)에 비해 외측(lateral)이 높게 형성되며,종골과 입방골이 결합되는 종골-입방골 아치(Caclneual cuboid arch) 부위는 3-레벨의 높은 지지부가 형성되어 있는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제6항에 있어서,상기 나-유형에 적용되는 인솔의 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 완만한 경사로 더 높게 형성되고,전족부는 외측에 비해 내측이 좀더 높게 형성되고,엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되며,외측 종골-입방골 아치(Caclneual cuboid arch) 부위는 1-레벨의 낮은 지지부가 형성되어 있는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제6항에 있어서,상기 다-유형에 적용되는 인솔의 후족부는 외측에 비해 내측이 경사가 없거나 완만한 경사로 조금 더 높게 형성되고,중족부는 횡 아치를 제어하기 위한 지지부가 형성되고,전족부는 제2, 3 및 4 중족골두 수용 부분이 좌우 주변부에 비해 좀 더 높게 형성되어 있고,외측 종골-입방골 아치(Caclneual cuboid arch) 부위는 1-레벨의 낮은 지지부가 형성되어 있는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제6항에 있어서,상기 라-유형에 적용되는 인솔의 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 완만한 경사로 더 높게 형성되고,전족부는 외측에 비해 내측이 좀더 높게 형성되고,엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되어 있는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제6항에 있어서,상기 마-유형에 적용되는 인솔의 후족부는 내측(medial)에 비해 외측(lateral)이 2~10°의 경사각으로 높게 형성되고,전족부는 외측에 비해 내측이 조금 높게 형성되고,종골과 입방골이 결합되는 종골-입방골 아치(Caclneual cuboid arch) 부위는 2-레벨의 지지부가 형성되어 있는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제6항에 있어서,상기 바-유형에 적용되는 인솔의 후족부는 발이 안쪽으로 쓰러지는 것(Eversion)을 방지하기 위해 외측에 비해 내측이 경사로 더 높게 형성되고,전족부는 외측에 비해 내측이 좀더 높게 형성되고,엄지발가락 부위는 제1 중족골두로부터 연장(Mortons Extension)되어 좀더 높게 형성되며,외측 종골-입방골 아치(Caclneual cuboid arch) 부위는 1-레벨의 낮은 지지부가 형성되어 있는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
- 제1항에 있어서,고객의 인솔 사용시 인솔에 가해지는 압력 분포를 확인할 수 있도록 압력에 의해 발색되는 감압필름이 상기 인솔의 하부면 또는 상부면에 더 포함되고,상기 족부 분석 프로세서(220)는 고객으로부터 전송되어온 감압필름 이미지 데이터를 족부 유형의 적합 여부를 판단하는 족부 유형 재판정 검출부(226)를 더 포함하고,상기 족부 유형 판정부(224)는 족부 유형 재판정 검출부(226)에서 획득된 족부 유형 데이터를 반영하여 족부 유형을 재학습하는 것을 특징으로 하는,인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0064607 | 2022-05-26 | ||
KR1020220064607A KR102662047B1 (ko) | 2022-05-26 | 2022-05-26 | 인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023229144A1 true WO2023229144A1 (ko) | 2023-11-30 |
Family
ID=88919431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/000877 WO2023229144A1 (ko) | 2022-05-26 | 2023-01-18 | 인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (2) | KR102662047B1 (ko) |
WO (1) | WO2023229144A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661097B1 (ko) * | 2006-03-13 | 2006-12-27 | (주)한신코리아 | 맞춤형 인솔 |
KR101263216B1 (ko) * | 2009-12-21 | 2013-05-10 | 한국전자통신연구원 | 스마트 신발 및 그 동작 방법 |
KR20200027861A (ko) * | 2018-09-05 | 2020-03-13 | 주식회사 알푸스 | 반-맞춤형 인솔 및 반-맞춤형 인솔 선정 방법 |
KR102322873B1 (ko) * | 2021-03-17 | 2021-11-05 | 주식회사 엑스바디 | 발 형상에 따른 기능성 발 보조기 판정 방법 |
KR20220040964A (ko) * | 2020-09-24 | 2022-03-31 | 주식회사 나인투식스 | 사진 촬영을 이용한 발 건강 맞춤형 인솔 정보 제공 장치의 동작 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101899064B1 (ko) | 2017-05-17 | 2018-09-17 | 문광섭 | 스마트 기기의 발 치수 측정을 이용한 개인 맞춤형 조립인솔 제작 시스템과 방법 |
-
2022
- 2022-05-26 KR KR1020220064607A patent/KR102662047B1/ko active IP Right Grant
-
2023
- 2023-01-18 WO PCT/KR2023/000877 patent/WO2023229144A1/ko unknown
-
2024
- 2024-04-19 KR KR1020240052831A patent/KR20240057394A/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661097B1 (ko) * | 2006-03-13 | 2006-12-27 | (주)한신코리아 | 맞춤형 인솔 |
KR101263216B1 (ko) * | 2009-12-21 | 2013-05-10 | 한국전자통신연구원 | 스마트 신발 및 그 동작 방법 |
KR20200027861A (ko) * | 2018-09-05 | 2020-03-13 | 주식회사 알푸스 | 반-맞춤형 인솔 및 반-맞춤형 인솔 선정 방법 |
KR20220040964A (ko) * | 2020-09-24 | 2022-03-31 | 주식회사 나인투식스 | 사진 촬영을 이용한 발 건강 맞춤형 인솔 정보 제공 장치의 동작 방법 |
KR102322873B1 (ko) * | 2021-03-17 | 2021-11-05 | 주식회사 엑스바디 | 발 형상에 따른 기능성 발 보조기 판정 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102662047B1 (ko) | 2024-04-30 |
KR20230164896A (ko) | 2023-12-05 |
KR20240057394A (ko) | 2024-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019240354A1 (ko) | 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법 | |
CN107114861B (zh) | 一种基于压力成像及三维建模技术的定制鞋制作方法及系统 | |
CN110379001B (zh) | 一种足制品定制方法、装置、终端设备及计算机可读存储介质 | |
CN112449576B (zh) | 获得脚部分析数据的方法和系统 | |
WO2019093749A1 (ko) | 사용자 맞춤형 라스트 제공 시스템 및 그 방법 | |
WO2023229144A1 (ko) | 인공지능 알고리즘을 이용한 맞춤형 인솔 주문 시스템 | |
WO2023229143A1 (ko) | 인공지능 알고리즘을 이용한 맞춤형 인솔의 주문 방법 | |
KR102472190B1 (ko) | 사용자 맞춤형 풋웨어 추천 시스템 및 그 방법 | |
Hernandez-Contreras et al. | Statistical approximation of plantar temperature distribution on diabetic subjects based on beta mixture model | |
Samson et al. | Foot roll-over evaluation based on 3D dynamic foot scan | |
WO2023149599A1 (ko) | 온라인 네트워크를 이용한 맞춤형 인솔의 주문 시스템 | |
TWI700051B (zh) | 智能選鞋系統及其方法 | |
KR102578079B1 (ko) | 온라인 개인 맞춤형 인솔 제작 시스템 | |
KR102197859B1 (ko) | 발본기구 시스템 | |
KR102284779B1 (ko) | 보행 상태의 판단 방법 | |
WO2023249189A1 (ko) | 족저근막 보호용 인솔 | |
WO2022065581A1 (ko) | 발 건강 관리 서비스 제공 장치 및 그 동작 방법 | |
Macdonald et al. | Underfoot Pressure-based Left and Right Foot Classification Algorithms: The Impact of Footwear | |
Li et al. | Analysis of plantar pressure image based on flexible force-sensitive sensor array | |
Askarisiahooie et al. | Automated plantar contact area estimation in a dynamic state using K-Means clustering | |
KR102498665B1 (ko) | 족부 질환 진단용 인솔 스캐너 장치 | |
KR102498785B1 (ko) | 활동성 갑상선 눈병증 진료를 위한 내원 안내 방법 및 이를 수행하는 시스템 | |
CN111986218A (zh) | 一种图像识别的方法及系统 | |
KR20230028865A (ko) | 3d 족부 진단 시스템 및 그에 의한 교정 인솔 서비스 플랫폼 | |
KR20220051527A (ko) | 형상 및 상태 진단에 기초하는 교정 기능을 가진 스마트 인솔 제조 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23811932 Country of ref document: EP Kind code of ref document: A1 |