WO2023228635A1 - Semiconductor device and switching power supply - Google Patents

Semiconductor device and switching power supply Download PDF

Info

Publication number
WO2023228635A1
WO2023228635A1 PCT/JP2023/015759 JP2023015759W WO2023228635A1 WO 2023228635 A1 WO2023228635 A1 WO 2023228635A1 JP 2023015759 W JP2023015759 W JP 2023015759W WO 2023228635 A1 WO2023228635 A1 WO 2023228635A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
boot
transistor
switch
output
Prior art date
Application number
PCT/JP2023/015759
Other languages
French (fr)
Japanese (ja)
Inventor
壮彦 今田
和樹 徳岡
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023228635A1 publication Critical patent/WO2023228635A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents

Definitions

  • the present disclosure relates to a semiconductor device and a switching power supply using the same.
  • the present disclosure also relates to a gate drive circuit.
  • a bootstrap circuit is widely used as an internal power supply means for driving an N-channel type output transistor.
  • Patent Document 1 can be mentioned as an example of the conventional technology related to the above.
  • a gate drive circuit that drives each gate of a high-side transistor and a low-side transistor connected in series.
  • the high-side transistor as well as the low-side transistor is composed of an N-channel MOSFET (metal-oxide-semiconductor field-effect transistor).
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • a so-called bootstrap is provided to drive the high-side transistor.
  • a boot capacitor for turning on a high-side transistor is used for the bootstrap (for example, Patent Document 2).
  • a semiconductor device includes a first driver configured to drive an output element forming a switch output stage, and a first driver that generates a boot voltage higher than a switch voltage output from the switch output stage. at least a portion of a bootstrap circuit configured to supply the voltage to the first driver; and when the output element is in an off state, a difference value between the boot voltage and the switch voltage is lower than a lower limit detection value.
  • a boot voltage detection circuit configured to charge the boot voltage by detecting that the boot voltage has turned off; and a controller configured to switch the boot voltage detection circuit between an operating state and a non-operating state. Be prepared.
  • a signal output section a second level shifter configured to be able to input the output of the first level shifter, a third level shifter configured to be able to input the high side gate control signal, and the output of the second level shifter and the third level shifter configured to input the output of the first level shifter; a first logic gate configured to be able to input the output of a level shifter; and a high side gate configured to generate a high side gate signal for driving the gate of the high side transistor based on the output of the first logic gate.
  • a signal output section, the first level shifter is configured to output the input voltage as a high level
  • the second level shifter and the third level shifter are configured such that the high side transistor and the low side transistor are connected to each other.
  • the high-side gate signal output section is configured to output a boot voltage generated at a second end of a boot capacitor having a first end connected to a connected node as a high level, and the high-side gate signal output section outputs the high-side gate signal as the high-side gate signal.
  • a boot voltage can be applied to the gate of the high-side transistor.
  • the configuration according to one aspect of the present disclosure it is possible to provide a semiconductor device that can prevent a drop in the boot voltage generated by a bootstrap circuit, and a switching power supply using the same.
  • the exemplary gate drive circuit of the present disclosure it is possible to shorten the dead time in a configuration using a boot capacitor.
  • FIG. 1 is a diagram showing the overall configuration of a switching power supply.
  • FIG. 2 is a diagram showing a first embodiment (first comparative example) of a switching power supply.
  • FIG. 3 is a diagram showing a second embodiment (second comparative example) of a switching power supply.
  • FIG. 4 is a diagram showing the switching operation of the second embodiment.
  • FIG. 5 is a diagram showing a third embodiment of the switching power supply.
  • FIG. 6 is a diagram showing the switching operation of the third embodiment.
  • FIG. 7 is a diagram showing a configuration example of a boot voltage detection circuit.
  • FIG. 8 is a diagram showing an example of the operation of the charge pump.
  • FIG. 9 is a diagram showing the configuration of a DC/DC converter according to a comparative example.
  • FIG. 9 is a diagram showing the configuration of a DC/DC converter according to a comparative example.
  • FIG. 10 is a diagram illustrating a configuration of a DC/DC converter according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a timing chart illustrating an example of operation in a gate drive circuit according to an exemplary embodiment of the present disclosure.
  • FIG. 12 is a diagram showing the configuration of a DC/DC converter according to a modification.
  • FIG. 1 is a diagram showing the overall configuration of a switching power supply.
  • the switching power supply X0 of this configuration example is a step-down DC/DC converter that steps down the input voltage Vin (for example, 2.7 to 5.5V) to generate a desired output voltage Vout (for example, 0.6 to 4.0V). It is a DC converter.
  • the switching power supply X0 includes a semiconductor device 10, various discrete components externally attached thereto (capacitors C1 and C2, inductor L1, and resistors R1 and R2), Equipped with.
  • the semiconductor device 10 is a main body (so-called power supply control IC [integrated circuit]) that centrally controls the operation of the switching power supply X0.
  • the semiconductor device 10 includes a plurality of external terminals (pins 1 to 4 in this figure) as means for establishing electrical connection with the outside of the device.
  • the 1st pin is a power supply terminal VIN to which the input voltage Vin is applied.
  • the 2nd pin is a switch output terminal SW.
  • the third pin is a ground terminal GND.
  • the 4th pin is a feedback input terminal FB.
  • a first end of the capacitor C1 is connected to a power supply terminal VIN.
  • a second end of the capacitor C1 is connected to a ground end.
  • a first end of the inductor L1 is connected to the switch output terminal SW.
  • the second end of the inductor L1 and the first ends of the resistor R1 and capacitor C2 are all connected to the application end of the output voltage Vout.
  • the second terminals of the capacitor C2 and the resistor R2 are both connected to a ground terminal.
  • the inductor L1 and capacitor C2 function as an LC filter that rectifies and smoothes the rectangular waveform switch voltage Vsw to generate the output voltage Vout.
  • a speed-up capacitor may be connected in parallel between both ends of the resistor R1 so that the switching power supply X0 can start up smoothly.
  • the resistors R1 and R2 may be omitted and the output voltage Vout may be directly input to the feedback input terminal FB.
  • the semiconductor device 10 of this configuration example includes an error amplifier 11, a comparison circuit 12, an on-time setting circuit 13, a ripple generation circuit 14, an addition circuit 15, a drive control circuit 16, and a reference voltage generation circuit 17. , a charge pump 18, a zero-cross detection circuit 19, capacitors C3 and C4, a switch BS, an output element M1, and a synchronous rectifier M2 are integrated.
  • the error amplifier 11 generates an error voltage Vc according to the difference between the reference voltage Vref input to the non-inverting input terminal (+) and the feedback voltage Vfb input to the inverting input terminal (-). Note that the error voltage Vc increases when the feedback voltage Vfb is lower than the reference voltage Vref, and decreases when the feedback voltage Vfb is higher than the reference voltage Vref.
  • the comparison circuit 12 includes a first comparator 121 and a second comparator 122.
  • the first comparator 121 compares the slope voltage Vslp input to the inverting input terminal (-) and the error voltage Vc input to the non-inverting input terminal (+) to generate a comparison signal Sc1.
  • the comparison signal Sc1 becomes a high level when the slope voltage Vslp is lower than the error voltage Vc, and becomes a low level when the slope voltage Vslp is higher than the error voltage Vc.
  • the first comparator 121 may have a hysteresis characteristic.
  • the second comparator 122 compares the feedback voltage Vfb input to the inverting input terminal (-) and the error voltage Vc input to the non-inverting input terminal (+) to generate a comparison signal Sc2.
  • the comparison signal Sc2 becomes a high level when the feedback voltage Vfb is lower than the error voltage Vc, and becomes a low level when the feedback voltage Vfb is higher than the error voltage Vc.
  • the second comparator 122 may have hysteresis characteristics.
  • the timing at which the comparison signal Sc2 rises to high level is earlier than the timing at which the comparison signal Sc1 rises to high level.
  • the second comparator 122 may have lower responsiveness (current output capability) than the first comparator 121.
  • the on-time setting circuit 13 basically generates the switch control signal S0 so as to maintain the output element M1 in the on-state for the on-time Ton after the comparison signal Sc1 rises to a high level.
  • the on-time setting circuit 13 also has a function of ignoring the logic level of the comparison signal Sc1 for a predetermined mask period (for example, 100 ns) after the comparison signal Sc2 rises to a high level.
  • the ripple generation circuit 14 generates a ripple voltage Vr that simulates the ripple component of the output voltage Vout in synchronization with the switch control signal S0.
  • Adder circuit 15 adds ripple voltage Vr to feedback voltage Vfb to generate slope voltage Vslp.
  • the drive control circuit 16 includes a controller 161, a level shifter 162, and drivers 163 and 164 as its components.
  • the controller 161 As basic output feedback control, the controller 161 generates gate control signals S1 and S2 so that the output voltage Vout matches a desired target value using a bottom detection type on-time fixed method according to the switch control signal S0. do.
  • the controller 161 also has a function of stopping the switching drive of each of the output element M1 and the synchronous rectifier M2 when the load is light, according to the zero-crossing detection signal S9. For example, when the zero-cross detection signal S9 rises to a high level while the output element M1 is in the off state and the synchronous rectifier M2 is in the on state, the controller 161 detects that the switch voltage Vsw is at the zero-cross detection value (for example, GND ), the synchronous rectifier M2 may be turned off.
  • the zero-cross detection signal S9 rises to a high level while the output element M1 is in the off state and the synchronous rectifier M2 is in the on state
  • the controller 161 detects that the switch voltage Vsw is at the zero-cross detection value (for example, GND ), the synchronous rectifier M2 may be turned off.
  • the level shifter 162 level-shifts the gate control signal S1 to generate the gate control signal S1'.
  • the driver 163 drives the output element M1 by generating a gate drive signal G1 according to the gate control signal S1'.
  • the driver 164 drives the synchronous rectifier M2 by generating a gate drive signal G2 according to the gate control signal S2.
  • the charge pump 18 generates a boosted voltage Vcp higher than the input voltage Vin in accordance with the charge pump control signal CPON output from the controller 161, and applies this to the application terminal of the boot voltage Vb.
  • the charge pump 18 does not always maintain the boot voltage Vb at a voltage value higher than the input voltage Vin, but only needs to have a current capacity that can slightly raise the boot voltage Vb when it decreases. Therefore, as the charge pump 18, for example, an existing charge pump provided for the purpose of maintaining the boot voltage Vb during 100% duty driving of the switch output stage SWO may be used.
  • the zero cross detection circuit 19 detects synchronization by monitoring the voltage across the synchronous rectifier M2 (corresponding to the switch voltage Vsw) when the output element M1 is in the off state and the synchronous rectifier M2 is in the on state. A zero cross (reverse current) of the inductor current IL flowing through the rectifying element M2 is detected.
  • the capacitor C3 is connected between the output end of the error amplifier 11 and the ground end as a phase compensation means for preventing the error amplifier 11 from oscillating.
  • the output element M1 (for example, NMOSFET [N-channel type metal oxide semiconductor field effect transistor]) functions as an upper switch of the switch output stage SWO that generates the switch voltage Vsw from the input voltage Vin.
  • the drain of the output element M1 is connected to the power supply terminal VIN.
  • the source of the output element M1 is connected to the switch output terminal SW.
  • the gate of the output element M1 is connected to the application end of the gate drive signal G1.
  • the output element M1 is turned on when the gate drive signal G1 is at a high level, and is turned off when the gate drive signal G1 is at a low level.
  • the synchronous rectifier M2 (eg, NMOSFET) functions as a lower switch of the switch output stage SWO.
  • the drain of the synchronous rectifier M2 is connected to the switch output terminal SW.
  • the source of the synchronous rectifier M2 is connected to the ground terminal GND.
  • the gate of the synchronous rectifier M2 is connected to the application end of the gate drive signal G2.
  • the synchronous rectifier M2 is turned on when the gate drive signal G2 is at a high level, and is turned off when the gate drive signal G2 is at a low level.
  • a rectifier diode for example, a Schottky barrier diode whose cathode is connected to the switch output terminal SW and whose anode is connected to the ground terminal GND may be used instead of the synchronous rectifier M2.
  • the output element M1 and the synchronous rectifier M2 may be externally attached to the semiconductor device 10.
  • an external input terminal for the switch voltage Vsw and an external output terminal for each of the gate drive signals G1 and G2 are required.
  • a high voltage element such as an IGBT [insulated gate bipolar transistor], a SiC device, or a GaN device is used as the output element M1 and the synchronous rectifier M2. Good too.
  • the switch output stage SWO is driven in pulses between the input voltage Vin and the ground voltage PGND by complementarily turning on and off the output element M1 and the synchronous rectifier M2 connected to form a half bridge.
  • a rectangular waveform switch voltage Vsw is generated.
  • the word "complementary" in this specification refers to cases where the on/off states of output element M1 and synchronous rectifier M2 are completely reversed, as well as cases where there is a delay in the on/off transition timing of each.
  • the first end of the switch BS is connected to the power supply terminal VIN.
  • the second end of the switch BS and the first end of the capacitor C4 are both connected to the application end of the boot voltage Vb.
  • a second end of the capacitor C4 is connected to the switch output terminal SW.
  • the switch BS and capacitor C4 connected in this manner form a bootstrap circuit BST that generates a boot voltage Vb higher than the switch voltage Vsw by the voltage across the capacitor C4 and supplies it to the level shifter 162 and driver 163.
  • bootstrap circuit BST When the output element M1 is in the off state and the synchronous rectifier element M2 is in the on state, the switch BS is in the on state. Therefore, the capacitor C4 is charged by the current flowing from the application end of the input voltage Vin through the switch BS. At this time, the voltage across the capacitor C4 increases until it reaches approximately the same potential as the input voltage Vin.
  • the switch BS is in the off state. Therefore, the boot voltage Vb is raised to a potential ( ⁇ 2Vin) higher than the switch voltage Vsw ( ⁇ Vin) by the voltage across the capacitor C4 ( ⁇ Vin) in accordance with the law of conservation of charge of the capacitor C4.
  • switch BS for example, a PMOSFET [P-channel type MOSFET] configured such that the drain is connected to the power supply terminal VIN and the source is connected to the application terminal of the boot voltage Vb may be used, or , a diode configured such that its anode is connected to the power supply terminal VIN and its cathode is connected to the end to which the boot voltage Vb is applied may be used.
  • PMOSFET P-channel type MOSFET
  • the capacitor C4 is built into the semiconductor device 10. Therefore, the number of discrete components externally attached to the semiconductor device 10 can be reduced. However, compared to the case where the capacitor C4 is externally attached to the semiconductor device 10, the capacitance value of the capacitor C4 becomes smaller. Therefore, it is necessary to consider countermeasures for reducing the boot voltage Vb (details will be described later).
  • FIG. 2 is a diagram showing a first embodiment of the switching power supply X0 (corresponding to a first comparative example to be compared with a third embodiment described later).
  • the switching power supply X0 of this embodiment is based on the above-mentioned overall configuration (FIG. 1), but further includes a boot voltage detection circuit 20.
  • the boot voltage detection circuit 20 detects that the divided voltage Vbd of the boot voltage Vb has become lower than the lower limit detection voltage Vth, and generates the boot drop detection signal BU.
  • the boot voltage detection circuit 20 includes a comparator CMP and resistors R3 and R4.
  • the resistors R3 and R4 are connected in series between the application terminal of the boot voltage Vb and the ground terminal, and output a divided voltage Vbd of the boot voltage Vb from the connection node between them.
  • the comparator CMP compares the divided voltage Vbd input to the inverting input terminal (-) and the lower limit detection voltage Vth input to the non-inverting input terminal (+) to generate a boot drop detection signal BU.
  • the boot drop detection signal BU becomes a high level when the divided voltage Vbd is lower than the lower limit detection voltage Vth, and becomes a low level when the divided voltage Vbd is higher than the lower limit detection voltage Vth.
  • the comparator CMP may have a hysteresis characteristic.
  • the boot voltage detection circuit 20 of this embodiment is of a constant detection type using resistive voltage division, and a circuit current always flows from the boot voltage Vb application terminal to the ground terminal. Therefore, the boot voltage Vb tends to drop during the drive stop period of the switch output stage SWO.
  • the semiconductor device 10 reaches a high temperature (for example, 125° C. or higher), element leakage increases, so the boot voltage Vb tends to decrease.
  • a high temperature for example, 125° C. or higher
  • FIG. 3 is a diagram showing a second embodiment of the switching power supply X0 (corresponding to a second comparative example compared to a third embodiment described later).
  • the switching power supply X0 of this embodiment is based on the above-mentioned overall configuration (FIG. 1), but a gate monitoring function is added to the controller 161.
  • the controller 161 of this embodiment determines whether the gate drive signal G1 has risen to a potential sufficient to turn on the output element M1. It has a function of monitoring and detecting a drop in the boot voltage Vb.
  • the drive control circuit 16 includes a level shifter 165 configured to level shift the gate drive signal G1 to generate a gate drive signal G1' and output it to the controller 161. But that's fine.
  • FIG. 4 is a diagram showing the switching operation of the second embodiment, and in order from the top, the switch voltage Vsw (solid line), the boot voltage Vb (broken line), the gate control signal S1, the gate feedback signal G1fb, and the boot drop detection signal BU , as well as the gate control signal S2. Note that this figure shows an intermittent switching operation waveform at a light load.
  • the gate feedback signal G1fb is one of the internal signals of the controller 161. Specifically, the gate feedback signal G1fb becomes high level when the gate drive signal G1 rises to a potential sufficient to turn on the output element M1 after the gate control signal S1 rises to a high level. Furthermore, in this embodiment, the boot deterioration detection signal BU can also be understood as one of the internal signals of the controller 161.
  • the gate control signals S1 and S2 are both set to low level, so the output element M1 and the synchronous rectification element M2 are both turned off.
  • the boot voltage Vb decreases with the passage of time. Then, as shown from time t11 to t12, the boot voltage Vb eventually decreases to approximately the same potential as the switch voltage Vsw.
  • the boot voltage Vb tends to decrease.
  • the gate control signal S1 is raised to a high level.
  • the boot voltage Vb has decreased to approximately the same potential as the switch voltage Vsw
  • the gate drive signal G1 does not rise to a potential sufficient to turn on the output element M1.
  • the gate feedback signal G1fb remains at a low level.
  • the gate control signal S2 is raised to a high level as shown at times t13 to t14.
  • synchronous rectifier M2 is switched to the on state.
  • capacitor C4 is charged and boot voltage Vb increases. Therefore, from time t14 to time t15, the gate drive signal G1 can be raised to a high level due to the transition of the gate control signal S1 to a high level, so that the output element M1 is switched to the on state.
  • the ripple component of the output voltage Vout will increase.
  • the ripple component may increase significantly.
  • the gate-source voltage of the output element M1 may increase when the switch voltage Vsw decreases due to the insufficient ability of the driver 163.
  • the output element M1 may be turned on, and an excessive through current may flow through the switch output stage SWO.
  • FIG. 5 is a diagram showing a third embodiment of the switching power supply X0.
  • the switching power supply X0 of this embodiment is based on the first embodiment (FIG. 2) and second embodiment (FIG. 3), but the configuration and operation of the boot voltage detection circuit 20 are changed.
  • a boot normality detection signal BOK is generated to charge the boot voltage Vb upon detecting that it has become lower than the lower limit detection value Vdet.
  • the controller 161 drives the charge pump 18 to charge the boot voltage Vb when the boot normality detection signal BOK falls to a low level during the driving stop period of the switch output stage SWO.
  • the charge pump 18 generates a boosted voltage Vcp higher than the input voltage Vin in response to the charge pump control signal CPON output from the controller 161, and applies this to the application terminal of the boot voltage Vb. Apply.
  • the high level of the gate drive signal G1 can be raised to a potential sufficient to turn on the output element M1. Therefore, it becomes possible to restart the switching operation of the switch output stage SWO without any trouble.
  • the configuration uses the charge pump 18, there is no need to turn on the synchronous rectifier M2 extra in order to charge the boot voltage Vb. Therefore, the ripple component of the output voltage Vout can be suppressed to a small level.
  • the charge pump 18 for example, an existing charge pump provided for the purpose of maintaining the boot voltage Vb during 100% duty driving of the switch output stage SWO may be used. Such circuit sharing makes it possible to shrink the chip area of the semiconductor device 10.
  • the semiconductor device 10 does not include the charge pump 18, the synchronous rectifier M2 is turned on to charge the boot voltage Vb, as in the second embodiment (see FIGS. 3 and 4). Any configuration may be adopted.
  • the controller 161 has a function of generating a boot detection control signal BUON to switch the boot voltage detection circuit 20 between an operating state and a non-operating state.
  • the boot voltage detection circuit 20 is activated only when a certain condition (details will be described later) is met. Therefore, unlike the first embodiment (FIG. 2) described above, the circuit current does not always flow from the end to which the boot voltage Vb is applied toward the ground end, making it possible to suppress a drop in the boot voltage Vb. Further, it can also contribute to lower current consumption of the boot voltage detection circuit 20 (and by extension, the semiconductor device 10).
  • FIG. 6 is a diagram showing the switching operation of the third embodiment, and in order from the top, switch voltage Vsw (solid line), boot voltage Vb (broken line), comparison signals Sc2 and Sc1, wake signal WAKE, deep signal DEEP, boot A detection control signal BUON and a normal boot detection signal BOK are depicted.
  • the boot voltage Vb has a voltage value higher than the switch voltage Vsw by the voltage across the capacitor C4.
  • the switch BS of the bootstrap circuit BST is also in the on state. Therefore, the capacitor C4 is charged by the current flowing from the application end of the input voltage Vin through the switch BS, so that the boot voltage Vb increases.
  • the boot voltage Vb has a voltage value higher than the switch voltage Vsw by the voltage across the capacitor C4.
  • the boot voltage Vb decreases due to natural discharge or high temperature leakage.
  • the wake signal WAKE is a logic signal indicating whether the switching power supply X0 is in a light load state.
  • the deep signal DEEP is a logic signal that indicates whether the switching power supply X0 is in a no-load state (or a very light load state).
  • the deep signal DEEP is generated by the wake signal WAKE during the no-load determination period T2 after the zero cross of the inductor current IL flowing through the synchronous rectifier M2 is detected, as shown at time t21 to t22. It becomes high level when it is maintained at low level throughout.
  • the timing at which the comparison signal Sc2 rises to a high level is earlier than the timing at which the comparison signal Sc1 rises to a high level.
  • the controller 161 sets the boot voltage detection period T1 and puts the boot voltage detection circuit 20 into the operating state before switching the output element M1 to the on state. For example, in this figure, as shown from time t23 to t24 or from time t26 to t27, a boot voltage detection period T1 of a predetermined length (for example, 100 ns) is set after the comparison signal Sc2 rises to a high level, and the boot The detection control signal BUON is set at high level.
  • a boot voltage detection period T1 of a predetermined length for example, 100 ns
  • the method for setting the boot voltage detection period T1 is not limited to the above.
  • the controller 161 outputs the comparison signal Sc2 ( Furthermore, the boot voltage detection period T1 may be provided when the wake signal WAKE) rises to a high level.
  • the boot detection control signal BUON remains at a low level even after the comparison signal Sc2 rises to a high level, as shown at time t20.
  • the boot normality detection signal BOK falls to low level.
  • the boot normality detection signal BOK falls to a low level after a predetermined delay time d ( ⁇ T1) has elapsed after the boot detection control signal BUON rose to a high level.
  • the start of charging the boot voltage Vb is on standby until the boot voltage detection period T1 of a predetermined length expires after the boot normality detection signal BOK falls to a low level.
  • the charging start timing of the boot voltage Vb is not limited to this.
  • the charging operation of the boot voltage Vb may be started without delay when the boot normality detection signal BOK falls to a low level.
  • the controller 161 After starting charging the boot voltage Vb in response to a low level transition of the boot normal detection signal BOK, the controller 161 maintains the boot detection control signal BUON at a high level at least until the boot voltage Vb exceeds the lower limit detection value Vdet. It's good to do that. As a result, the boot voltage detection circuit 20 is maintained in an operating state, so that it is possible to continue monitoring whether the boot voltage Vb has recovered.
  • the series of reboot operations described above are not performed after a problem occurs in the on-transition of the output element M1, but when the boot voltage Vb and the switch voltage Vsw This is carried out by detecting that the difference value (Vb-Vsw) has become lower than the lower limit detection value Vdet. Therefore, compared to the previously mentioned second embodiment (FIG. 4), the on-timing of the output element M1 is less likely to be delayed, so that the amount of decrease in the output voltage Vout can be suppressed.
  • the synchronous rectifier M2 is turned on to charge the capacitor C4. It never happens. Therefore, compared to the previously mentioned second embodiment (FIG. 4), it is possible to further suppress a decrease in the output voltage Vout.
  • FIG. 7 is a diagram showing an example of the configuration of the boot voltage detection circuit 20.
  • the boot voltage detection circuit 20 of this configuration example includes transistors P1 to P7 (for example, PMOSFET), transistors N1 to N7 (for example, NMOSFET), inverters INV1 to INV4, and resistors R10 to R13.
  • resistor R10 corresponds to a gate resistor.
  • Resistors R11 and R12 correspond to a first resistance and a second resistance, respectively.
  • Transistors P1 and P2 correspond to a first transistor and a second transistor, respectively.
  • Transistors N1 and N2 correspond to a third transistor and a fourth transistor, respectively.
  • the first end of the resistor R11 is connected to the application end of the boot voltage Vb.
  • a second end of the resistor R11 is connected to the source of the transistor P1.
  • a first end of the resistor R10 is connected to an application end of the switch voltage Vsw.
  • a second end of the resistor R10 is connected to the gate of the transistor P1.
  • the drain of transistor P1 is connected to the drain of transistor N1.
  • the source of the transistor P2 and the gate of the transistor N1 are both connected to the application terminal of the input voltage Vin.
  • the drain of the transistor P2, the source of the transistor N1, and the first end of the resistor R12 are all connected to the application end of the node voltage Vx.
  • a second end of the resistor R12 is connected to the drain of the transistor N2.
  • the source of transistor N2 is connected to the ground terminal.
  • the input end of the inverter INV1 is connected to the application end of the boot detection control signal BUON.
  • the output end of the inverter INV1 is connected to the input end of the inverter INV2.
  • the output terminal of inverter INV3 is connected to the input terminal of inverter INV4.
  • the drain and gate of the transistor N3 and the sources of each of the transistors P5 to P7 are both connected to the application terminal of the input voltage Vin.
  • the source of transistor N3 and the drain of transistor P6 are both connected to the source of transistor P3.
  • the drain of transistor P3 is connected to the source of transistor P4.
  • the drains of the transistors P4 and N4, the gates of the transistors N6, N7, and P7, and the first end of the resistor R13 are all connected to the application end of the node voltage Vy.
  • the drain of transistor P5 is connected to the drain of transistor N6.
  • the sources of transistors N4 and N6 are both connected to the drain of transistor N5.
  • the sources of the transistors N5 and N7, the gate of the transistor P5, and the second end of the resistor R13 are all connected to the ground terminal.
  • the gates of transistors P3, P4, N4, and N5 are all connected to the terminal to which node voltage Vx is applied.
  • the gate of the transistor P6 and the drains of the transistors P7 and N7 are both connected to the application terminal of the boot normality detection signal BOK.
  • the controller 161 sets the boot detection control signal BUON to a low level when placing the boot voltage detection circuit 20 in a non-operating state.
  • the boot detection control signal BUON is at a low level
  • both gate voltages GP2 and GN2 are at a low level, so the transistor P2 is turned on and the transistor N2 is turned off. Become.
  • the transistor N1 is also turned off. In this way, when the boot detection control signal BUON is at a low level, a current path from the application terminal of the boot voltage Vb to the ground terminal via the resistor R11, transistor P1, transistor N1, resistor R12, and transistor N2 is established. Be cut off. As a result, a decrease in boot voltage Vb is suppressed.
  • the resistor R13 is used to fix the node voltage Vy to a low level in a situation where the terminal to which the node voltage Vy is applied may be floating in potential, and by extension, to fix the boot normality detection signal BOK to a high level. Functions as a pull-down resistor.
  • the controller 161 sets the boot detection control signal BUON to a high level when putting the boot voltage detection circuit 20 into the operating state.
  • the boot detection control signal BUON is at a high level
  • the gate voltages GP2 and GN2 are both at a high level, so the transistor P2 is turned off and the transistor N2 is turned on. .
  • the boot detection control signal BUON when the boot detection control signal BUON is at a high level, the current path from the application terminal of the boot voltage Vb to the ground terminal via the resistor R11, the transistor P1, the transistor N1, the resistor R12, and the transistor N2 becomes conductive. be done. That is, the detection operation of the boot voltage Vb is started.
  • the method for setting the lower limit detection value Vdet is not limited to the above, and, for example, the lower limit detection value Vdet may be set using only the diode connection of the transistor P1.
  • the node voltage Vx When the node voltage Vx is at a high level ( ⁇ I2 ⁇ R12), the node voltage Vy is at a low level, and as a result, the boot normality detection signal BOK is at a high level.
  • the node voltage Vx is at a low level ( ⁇ GND)
  • the node voltage Vy becomes a high level
  • the transistors P3 to P5 and N4 to N6 form an inverter with hysteresis. Therefore, the boot normality detection signal BOK is prevented from returning to the high level at the moment the boot normality detection signal BOK falls to a low level and the charge pump 18 starts charging the boot voltage Vb.
  • the transistor N1 functions as a breakdown voltage protection clamper for limiting the node voltage Vx to a predetermined upper limit value or less ( ⁇ Vin ⁇ Vgsn, where Vgsn is the on-threshold voltage of the transistor N1). Note that the transistor N1 has a high breakdown voltage between its drain and backgate, so it has a circuit configuration (so-called self-suspension) in which the backgate is connected to the source.
  • the transistor N3 functions as a breakdown voltage protection clamper to limit the drain voltage of the transistor P3 to a predetermined upper limit value or less ( ⁇ Vin ⁇ Vgsn, where Vgsn is the on-threshold voltage of the transistor N3). Note that the transistor N3 also requires a self-suspending high voltage element in accordance with the input range of the node voltage Vx.
  • the transistor P6 is turned off when the node voltage Vx is at a high level (and when the normal boot detection signal BOK is at a high level). On the other hand, when the node voltage Vx is at a low level, the transistor P6 is turned on to match the input range of the inverter with hysteresis that receives the node voltage Vx.
  • this figure illustrates the circuit specifications assuming a low-voltage type model, it can also be applied to a high-voltage type model.
  • FIG. 8 is a diagram showing an example of the operation of the charge pump 18. From the top, the output voltage Vout, the switch voltage Vsw, the boot voltage Vb, the wake signal WAKE, the deep signal DEEP, the comparison signals Sc2 and Sc1, and the boot detection control The signal BUON, the boot normality detection signal BOK, the charge pump control signal CPON, and the driving clock signal CLK of the charge pump 18 are depicted.
  • the charge pump control signal CPON rises to a high level without delay.
  • pulse driving of the drive clock signal CLK is started, and the charging operation of the boot voltage Vb by the charge pump 18 is performed.
  • FIG. 9 is a diagram showing the configuration of a DC/DC converter X according to a comparative example.
  • the DC/DC converter X shown in FIG. 9 is a step-down DC/DC converter that converts the input voltage PVIN to the output voltage Vout.
  • the DC/DC converter X includes a semiconductor device 1, a boot capacitor Cb, an inductor L, and an output capacitor Cout.
  • the boot capacitor Cb, the inductor L, and the output capacitor Cout are elements provided outside the semiconductor device 1.
  • the semiconductor device 1 includes an integrated gate drive circuit 9, a high-side transistor HM, and a low-side transistor LM.
  • the gate drive circuit 9 is a circuit for driving the gate of the high-side transistor HM and the gate of the low-side transistor LM.
  • the semiconductor device 1 includes an input voltage terminal Tin, a boot terminal Tb, a switch terminal Tsw, and a ground terminal Tgnd as external terminals for establishing electrical connection with the outside.
  • the gate drive circuit 9 includes a logic section 2, a level shifter 3, a high side driver 4, a low side driver 5, a switch voltage detection section 6, and a boot switch 7.
  • the high-side transistor HM and the low-side transistor LM are both constructed from NMOS transistors (N-channel MOSFETs).
  • the drain of the high-side transistor HM is connected to the application terminal of the input voltage PVIN via the input voltage terminal Tin.
  • the source of the high-side transistor HM is connected to the drain of the low-side transistor LM.
  • the source of the low-side transistor LM is connected to a ground potential application terminal via a ground terminal Tgnd. That is, the high-side transistor HM and the low-side transistor LM are connected in series between the input voltage PVIN and the ground potential.
  • a so-called half bridge is constituted by the high side transistor HM and the low side transistor LM.
  • a node Nsw to which the source of the high-side transistor HM and the drain of the low-side transistor LM are connected is connected to one end of the inductor L via the switch terminal Tsw.
  • the other end of the inductor L is connected to one end of the output capacitor Cout.
  • the other end of the output capacitor Cout is connected to a ground potential application end.
  • An output voltage Vout is generated at one end of the output capacitor Cout.
  • the logic section 2 includes an AND circuit 21 and an AND circuit 22.
  • a high side gate control input signal HGCTL_IN is input to a first input terminal of the AND circuit 21 .
  • a low-side gate signal LG applied to the gate of the low-side transistor LM is input to a second input terminal of the AND circuit 21 as a low-side feedback signal LGFB.
  • the AND circuit 21 performs a logical product of the high-side gate control input signal HGCTL_IN and the logically inverted low-side feedback signal LGFB, and outputs the high-side gate control signal HGCTL.
  • the level shifter 3 converts the level of the high-side gate control signal HGCTL into a level-shifted high-side gate control signal HGCTL_LVS in which the boot voltage BOOT is at a high level and the switch voltage SW is at a low level, and outputs the level-shifted high-side gate control signal HGCTL_LVS. Specifically, when the high-side gate control signal HGCTL is at a high level, the level-shifted high-side gate control signal HGCTL_LVS is at a high level, and when the high-side gate control signal HGCTL is at a low level, the level-shifted high-side gate control signal HGCTL_LVS is at a high level. The signal HGCTL_LVS becomes low level.
  • the high-side driver 4 generates a high-side gate signal HG to be applied to the gate of the high-side transistor HM based on the input level-shifted high-side gate control signal HGCTL_LVS. Specifically, when the level-shifted high-side gate control signal HGCTL_LVS is at a high level, the high-side gate signal HG of the boot voltage BOOT is applied as a high level to the gate of the high-side transistor HM, and the high-side transistor HM is turned on. becomes.
  • the high-side gate signal HG of the switch voltage SW is applied to the gate of the high-side transistor HM as a low level, and the high-side transistor HM is turned off.
  • a bootstrap is constructed from the boot capacitor Cb and the boot switch 7. One end of the boot capacitor Cb is connected to the switch terminal Tsw. The other end of boot capacitor Cb is connected to boot terminal Tb.
  • a boot switch 7 that can be turned on and off is connected between the input voltage terminal Tin and the boot terminal Tb.
  • the boot switch 7 When the low-side transistor LM is in the on state, the boot switch 7 is controlled to be in the on state, and the boot capacitor Cb is charged with the input voltage PVIN. When the low-side transistor LM is in the off state, the boot switch 7 is controlled to be in the off state.
  • the boot voltage BOOT is higher than the switch voltage SW generated at the switch terminal Tsw. Therefore, by applying the high-side gate signal HG set as the boot voltage BOOT to the gate of the high-side transistor HM by the high-side driver 4, the high-side transistor HM can be turned on.
  • a low-side gate control input signal LGCTL_IN is input to the first input terminal of the AND circuit 22.
  • a detection signal SWFB output from the switch voltage detection section 6 is input to a second input terminal of the AND circuit 22 .
  • the switch voltage detection section 6 is a circuit that detects the turn-off of the high-side transistor HM by detecting the switch voltage SW that decreases when the high-side transistor HM is turned off.
  • the AND circuit 22 performs a logical product of the low-side gate control input signal LGCTL_IN and the logically inverted detection signal SWFB, and outputs the low-side gate control signal LGCTL.
  • the low-side driver 5 generates a low-side gate signal LG to be applied to the gate of the low-side transistor LM based on the input low-side gate control signal LGCTL. Specifically, when the low-side gate control signal LGCTL is at a high level, the low-side gate signal LG of the input voltage PVIN at a high level is applied to the gate of the low-side transistor LM, and the low-side transistor LM is turned on. When the low-side gate control signal LGCTL is at the low level, the low-side gate signal LG at the ground potential is applied to the gate of the low-side transistor LM, and the low-side transistor LM is turned off.
  • the switching of the high-side transistor HM and the low-side transistor LM is controlled in a complementary manner.
  • Complementary means that one is in the on state while the other is in the off state. However, at the time of switching transition, a dead time (simultaneous off period) is provided.
  • the operation when the high-side transistor HM is in the off state and the low-side transistor LM is in the on state is transitioned to the high-side transistor HM in the on state and the low-side transistor LM in the off state.
  • the high-side gate control input signal HGCTL_IN switches from low level to high level
  • the low-side gate control input signal LGCTL_IN switches from high level to low level.
  • the low side gate signal LG falls to a low level (ground potential)
  • the low side transistor LM is turned off
  • the high side transistor HM and the low side transistor LM are both turned off, and dead time starts.
  • the high side gate control signal HGCTL output from the AND circuit 21 switches to high level, and the high side gate signal HG becomes high level. As a result, the high side transistor HM is turned on and the dead time ends.
  • FIG. 10 is a diagram illustrating a configuration of a DC/DC converter Y according to an exemplary embodiment of the present disclosure.
  • the differences between the configuration of the DC/DC converter Y and the configuration of the above-mentioned comparative example (FIG. 9) will be mainly explained.
  • the DC/DC converter Y includes a semiconductor device 1, an inductor L, and an output capacitor Cout.
  • the boot capacitor Cb is built into the semiconductor device 1, unlike the comparative example. As a result, the semiconductor device 1 is not provided with the boot terminal Tb.
  • the semiconductor device 1 has a built-in gate drive circuit 9.
  • the gate drive circuit 9 includes a logic section 2, a level shifter 3, a high side driver 4, a low side driver 5, a switch voltage detection section 6, a boot switch 7, and a level shifter 8.
  • the low-side driver 5 includes an AND circuit 51, an inverter 52, and a low-side gate signal output section 53.
  • a low-side gate control signal LGCTL output from the logic section 2 is input to a first input terminal of the AND circuit 51 .
  • a detection signal SWFB output from the switch voltage detection section 6 is input to a second input terminal of the AND circuit 51.
  • the AND circuit 51 performs a logical product of the low-side gate control signal LGCTL and the logically inverted detection signal SWFB, and outputs the low-side input signal LG_IN.
  • the inverter 52 inverts the level of the input low-side input signal LG_IN and outputs the low-side feedback signal XLGFB.
  • the low-side feedback signal XLGFB sets the input voltage PVIN to a high level and sets the ground potential to a low level.
  • the AND circuit 51 and the inverter 52 constitute a level shifter 5A.
  • the low-side gate signal output section 53 inverts the level of the low-side feedback signal XLGFB and outputs the low-side gate signal LG.
  • the low-side gate signal LG is applied to the gate of the low-side transistor LM.
  • the level shifter 8 converts the level of the low-side feedback signal XLGFB into a level-shifted low-side feedback signal XLGFB_LVS in which the boot voltage BOOT is at a high level and the switch voltage SW is at a low level, and outputs the level-shifted low-side feedback signal XLGFB_LVS. Specifically, when the low-side feedback signal XLGFB is at a high level, the level-shifted low-side feedback signal XLGFB_LVS is at a high level, and when the low-side feedback signal XLGFB is at a low level, the level-shifted low-side feedback signal XLGFB_LVS is at a low level.
  • the high-side driver 4 includes a logic gate 41, a high-side gate signal output section 42, an AND circuit 43, and a switch 44.
  • the logic gate 41 is composed of an AND circuit.
  • a level-shifted high-side gate control signal HGCTL_LVS output from the level shifter 3 is input to a first input terminal of the logic gate 41 .
  • a level-shifted low-side feedback signal XLGFB_LVS is input to the second input terminal of the logic gate 41.
  • Logic gate 41 outputs high side input signal HG_IN.
  • the high side gate signal output section 42 generates a high side gate signal HG based on the input high side input signal HG_IN.
  • High side gate signal HG is applied to the gate of high side transistor HM.
  • the high-side gate signal HG becomes the boot voltage BOOT at a high level
  • the high-side gate signal HG is The switch voltage SW becomes a low level.
  • the precharge function is a function that charges the gate of the high-side transistor HM in advance before turning on the high-side transistor HM, as will be described later.
  • the level-shifted high-side gate control signal HGCTL_LVS is input to the first input terminal of the AND circuit 43.
  • a high-side input signal HG_IN is input to the second input terminal of the AND circuit 43.
  • the AND circuit 43 performs a logical product of the level-shifted high-side gate control signal HGCTL_LVS and the logically inverted version of the high-side input signal HG_IN.
  • Switch 44 is connected between the application terminal of input voltage PVIN and the gate of high-side transistor HM. The switch 44 is turned on and off according to the output of the AND circuit 43.
  • FIG. 11 is a timing chart showing an example of operation in such a transition state.
  • the switch voltage SW high side gate control signal HGCTL, level shifted high side gate control signal HGCTL_LVS, low side gate control signal LGCTL, low side feedback signal XLGFB, low side gate signal LG, level shifted
  • the waveforms of the low-side feedback signal XLGFB_LVS, the high-side input signal HG_IN, and the high-side gate signal HG are shown.
  • the high-side gate control signal HGCTL switches from low level to high level
  • the low-side gate control signal LGCTL switches from high level to low level.
  • the low-side input signal LG_IN switches to low level
  • the low-side feedback signal XLGFB switches to high level.
  • the low-side feedback signal XLGFB rises to a high level at timing t2 delayed by delay time td3_1 from timing t1.
  • the delay time td3_1 is the delay time between input and output at the level shifter 5A.
  • the delay time td3_2 is a delay time between input and output at the low side gate signal output section 53.
  • the low-side transistor LM is turned off and enters the off state. Therefore, both the high-side transistor HM and the low-side transistor LM are turned off, and dead time DT starts from timing t3. Note that at this time, since the current flowing through the inductor L toward the load side flows through the body diode of the low-side transistor LM, the switch voltage SW decreases to a negative voltage.
  • the level-shifted high-side gate control signal HGCTL_LVS rises to a high level.
  • the level-shifted high-side gate control signal HGCTL_LVS rises to a high level at timing t4 delayed by delay time td1 from timing t1.
  • the delay time td1 is the delay time between input and output of the level shifter 3.
  • the output of the AND circuit 43 switches to a high level because the high-side input signal HG_IN is at a low level.
  • the switch 44 changes from the off state to the on state, and charging of the gate of the high-side transistor HM by the input voltage PVIN is started.
  • the high side gate signal HG rises to the input voltage PVIN.
  • the level-shifted low-side feedback signal XLGFB_LVS rises to a high level.
  • the level-shifted low-side feedback signal XLGFB_LVS rises at timing t5 delayed by delay time td2 from timing t2.
  • the delay time td2 is the delay time between input and output of the level shifter 8.
  • BOOT boot voltage
  • the high-side transistor HM turns on, and the switch voltage SW rises to the input voltage PVIN.
  • the dead time DT ends.
  • the delay time td4_2 from timing t6 to timing t7 when the high-side gate signal HG reaches the boot voltage BOOT is a delay time in the high-side gate signal output section 42.
  • the gate of the high-side transistor HM is charged in advance before the high-side transistor HM is turned on by the precharge function using the input voltage PVIN, charge loss in the boot capacitor Cb can be suppressed. Therefore, the capacitance of the boot capacitor Cb can be reduced, making it suitable for the boot capacitor Cb built into the semiconductor device 1.
  • the precharge function will not function unless the timing at which the level-shifted high-side gate control signal HGCTL_LVS rises to a high level is before the timing at which the level-shifted low-side feedback signal XLGFB_LVS rises to a high level. Therefore, it is necessary to satisfy td1 ⁇ td3_1+td2.
  • FIG. 12 is a diagram showing the configuration of a DC/DC converter Z according to a modification example of the present disclosure.
  • a delay circuit 45 is added to the high side driver 4 as a difference from the previously described embodiment (FIG. 10).
  • Delay circuit 45 is provided between AND circuit 43 and switch 44.
  • the switch 44 can be turned on at a timing delayed by a predetermined delay time after the level-shifted high-side gate control signal HGCTL_LVS rises to a high level, and precharging can be started. This allows the precharge start timing to be adjusted.
  • td3_1+td3_2 which determines the timing at which the low-side transistor LM turns off, becomes longer due to not only element delay but also wiring delay, the switch 44 is turned on in order to suppress simultaneous turning on of the high-side transistor HM and the low-side transistor LM. It would be useful to have the ability to adjust the timing.
  • a semiconductor device includes a first driver configured to drive an output element forming a switch output stage, and a boot voltage higher than a switch voltage output from the switch output stage. at least a portion of a bootstrap circuit configured to generate and supply the voltage to the first driver; and when the output element is in an off state, a difference value between the boot voltage and the switch voltage is lower than a lower limit detection value.
  • a boot voltage detection circuit configured to charge the boot voltage upon detecting that the boot voltage has become low; and a boot voltage detection circuit configured to switch the boot voltage detection circuit between an operating state and a non-operating state.
  • the configuration includes a controller (first configuration).
  • the controller provides a predetermined boot voltage detection period before switching the output element and the rectifier forming the switch output stage from an OFF state to an ON state.
  • a configuration (second configuration) may be adopted in which the boot voltage detection circuit is put into an operating state.
  • the controller is configured to provide the voltage detection period when both the output element and the rectifier are in an off state for a no-load determination period (a third configuration). configuration).
  • the controller may cause at least the boot voltage to exceed the lower limit detection value after charging of the boot voltage is started according to the detection result of the boot voltage detection circuit.
  • a configuration (fourth configuration) may be adopted in which the operating state of the boot voltage detection circuit is maintained until the operation.
  • the rectifying element may be a synchronous rectifying element configured to be driven complementary to the output element (fifth configuration). good.
  • the semiconductor device further includes a second driver configured to drive the synchronous rectifier, and the controller drives the output element and the synchronous rectifier in a complementary manner and outputs the output.
  • a second driver configured to drive the synchronous rectifier
  • the controller drives the output element and the synchronous rectifier in a complementary manner and outputs the output.
  • the boot voltage detection circuit detects that the difference value between the boot voltage and the switch voltage has become lower than the lower limit detection value, and A configuration (seventh configuration) may be adopted in which the switch is turned on.
  • the boot voltage detection circuit detects that the difference value between the boot voltage and the switch voltage has become lower than the lower limit detection value;
  • a configuration (eighth configuration) may be adopted in which a boosted voltage higher than the input voltage input to the switch output stage is applied to the boot voltage application terminal.
  • the boot voltage detection circuit includes a first resistor and a second resistor, a gate resistor, a P-channel type first transistor and a second transistor, and an N-channel type transistor. a third transistor and a fourth transistor, a first end of the first resistor is connected to the application end of the boot voltage, and a second end of the first resistor is connected to the first end of the first transistor. A first end of the gate resistor is connected to the application end of the switch voltage, a second end of the gate resistor is connected to the gate of the first transistor, and the second end of the gate resistor is connected to the gate of the first transistor.
  • the drain of the first transistor is connected to the drain of the third transistor, and the source of the second transistor and the gate of the third transistor are both applied to an input voltage input to the switch output stage.
  • the drain of the second transistor, the source of the third transistor, and the first end of the second resistor are all connected to a node voltage application terminal, and the drain of the second transistor is connected to the node voltage application terminal.
  • the second end is connected to the drain of the fourth transistor, the source of the fourth transistor is connected to the ground terminal, and the boot voltage detection circuit generates a boot normality detection signal according to the node voltage.
  • the controller is configured to turn off the second transistor and turn on the fourth transistor when the boot voltage detection circuit is in an operating state, and to set the second transistor in an on state when the boot voltage detection circuit is in an inactive state.
  • a configuration may be adopted in which the second transistor is in an on state and the fourth transistor is in an off state.
  • the switching power supply disclosed in this specification includes a semiconductor device according to any one of the first to ninth configurations, and drives the switch output stage to generate a desired output voltage from the input voltage.
  • the configuration (10th configuration) is as follows.
  • the gate drive circuit (2) includes a high-side transistor (HM) and a low-side transistor connected in series between an input voltage (PVIN) application end and a ground potential application end.
  • a low side gate signal output section (53) configured to generate a low side gate signal (LG) for driving the gate of the low side transistor, and a second level shifter (8) configured to be able to receive the output of the first level shifter.
  • a third level shifter (3) configured to be able to input a high side gate control signal (HGCTL), and a first logic gate configured to be configured to receive the output of the second level shifter and the output of the third level shifter.
  • a high-side gate signal output section (42) configured to generate a high-side gate signal (HG) for driving the gate of the high-side transistor based on the output of the first logic gate;
  • the first level shifter is configured to output the input voltage as a high level
  • the second level shifter and the third level shifter are configured to connect the high side transistor and the low side transistor to a node
  • the high-side gate signal output section is configured to output, as a high level, a boot voltage (BOOT) generated at a second end of a boot capacitor (Cb) having a first end connected to the high-side
  • the boot voltage can be applied to the gate of the high-side transistor as a gate signal (eleventh configuration).
  • the first level shifter (5A) further includes a switch voltage detection section (6) configured to detect a decrease in the switch voltage (SW) occurring at the node (Nsw). , a second logic gate (51) configured to be able to input the low side gate control signal (LGCTL) and the detection signal (SWFB) of the switch voltage detection section; and a second logic gate (51) configured to be able to input the output of the second logic gate. (12th configuration).
  • a third logic gate (43) configured to be able to input the output of the third level shifter (3) and the output of the first logic gate (41), and a power supply voltage a switch (44) connected between the application terminal of (PVIN) and the gate of the high-side transistor (HM) and configured to be turned on and off based on the output of the third logic gate; It is good also as a structure further provided (13th structure).
  • the power supply voltage is preferably the input voltage (PVIN) (fourteenth configuration).
  • a delay time between input and output in the first level shifter (5A) is td3_1
  • a delay time in the low side gate signal output section (53) is td3_2
  • a delay time in the third level shifter (5A) is td3_1. It is also possible to adopt a configuration in which td3_1+td3_2 ⁇ td1 holds, assuming that the delay time between input and output in (3) is td1 (fifteenth configuration).
  • the delay time between input and output at the first level shifter (5A) is td3_1
  • the delay time between input and output at the third level shifter (3) is td1.
  • the delay time between input and output of the second level shifter (8) may be td2, and a configuration may be adopted in which td1 ⁇ td3_1+td2 holds true (sixteenth configuration).
  • the second level shifter (8) and the third level shifter (3) may have the same configuration (seventeenth configuration).
  • a configuration may further include a delay circuit (45) connected between the third logic gate (43) and the switch (44). 18 configurations).
  • a semiconductor device (1) includes a built-in gate drive circuit (10) having any one of the thirteenth to eighteenth configurations and the boot capacitor (Cb). 19th configuration).
  • a DC/DC converter (Y) includes a gate drive circuit (10) having any of the first to eighth configurations, the high side transistor (HM), and the low side transistor. (LM), an inductor (L) having a first end connected to a node (Nsw) to which the high-side transistor and the low-side transistor are connected, and an output capacitor (L) connected to the second end of the inductor. Cout) and (20th configuration).
  • the present disclosure can be applied not only to a DC/DC converter but also to driving a transistor in an inverter circuit that performs DC/AC conversion.

Abstract

A semiconductor device 10 comprises, for example, the following: a first driver 163 configured to drive an output element M1 that forms a switch output stage SWO; at least a portion of a bootstrap circuit BST configured to generate a boot voltage Vb that is higher than a switch voltage Vsw output from the switch output stage SWO, and to supply the boot voltage to the first driver 163; a boot voltage detection circuit 20 configured to detect that a differential value (=Vb-Vsw) between the boot voltage Vb and the switch voltage Vsw, when the output element M1 is in an off state, has become less than a lower limit detection value, and to charge the boot voltage Vb; and a controller 161 configured to switch the boot voltage detection circuit 20 between an operating state and a non-operating state.

Description

半導体装置、スイッチング電源Semiconductor equipment, switching power supplies
 本開示は、半導体装置及びこれを用いたスイッチング電源に関する。また、本開示は、ゲート駆動回路に関する。 The present disclosure relates to a semiconductor device and a switching power supply using the same. The present disclosure also relates to a gate drive circuit.
 ブートストラップ回路は、Nチャネル型の出力トランジスタを駆動するための内部電源手段として広く一般に用いられている。 A bootstrap circuit is widely used as an internal power supply means for driving an N-channel type output transistor.
 なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。 Incidentally, Patent Document 1 can be mentioned as an example of the conventional technology related to the above.
 また、従来、直列に接続されたハイサイドトランジスタとローサイドトランジスタの各ゲートを駆動するゲート駆動回路が知られている。 Furthermore, conventionally, a gate drive circuit is known that drives each gate of a high-side transistor and a low-side transistor connected in series.
 ローサイドトランジスタとともにハイサイドトランジスタがNチャネル型MOSFET(metal-oxide-semiconductor field-effect transistor)により構成される場合がある。この場合、ハイサイドトランジスタを駆動するために、いわゆるブートストラップが設けられる。ブートストラップには、ハイサイドトランジスタをターンオンさせるためのブートキャパシタ(ブートコンデンサ)が用いられる(例えば、特許文献2)。 In some cases, the high-side transistor as well as the low-side transistor is composed of an N-channel MOSFET (metal-oxide-semiconductor field-effect transistor). In this case, a so-called bootstrap is provided to drive the high-side transistor. A boot capacitor for turning on a high-side transistor is used for the bootstrap (for example, Patent Document 2).
 一方、ハイサイドトランジスタとローサイドトランジスタが同時にオン状態では、貫通電流が発生するため、ハイサイドトランジスタとローサイドトランジスタのオンオフの切り替わりのときに、いわゆるデッドタイム(同時オフ期間)を設ける場合がある。 On the other hand, when the high-side transistor and the low-side transistor are in the ON state at the same time, a through current occurs, so a so-called dead time (simultaneous OFF period) may be provided when the high-side transistor and the low-side transistor are switched on and off.
特開2018-133916号公報Japanese Patent Application Publication No. 2018-133916 特開2021-158720号公報Japanese Patent Application Publication No. 2021-158720
 しかしながら、ブートストラップ回路で生成されるブート電圧の低下防止については、改善の余地があった。 However, there was room for improvement in preventing a drop in the boot voltage generated by the bootstrap circuit.
 また、デッドタイムでは、電流がトランジスタのボディダイオードに流れるため、損失が発生して効率の低下が課題となっていた。 Additionally, during dead time, current flows through the body diode of the transistor, causing loss and reducing efficiency.
 本開示の一側面に係る半導体装置は、スイッチ出力段を形成する出力素子を駆動するように構成された第1ドライバと、前記スイッチ出力段から出力されるスイッチ電圧よりも高いブート電圧を生成して前記第1ドライバに供給するように構成されたブートストラップ回路の少なくとも一部と、前記出力素子がオフ状態であるときに前記ブート電圧と前記スイッチ電圧との差分値が下限検出値よりも低くなったことを検出して前記ブート電圧を充電するように構成されたブート電圧検出回路と、前記ブート電圧検出回路を動作状態とするか非動作状態とするかを切り替えるように構成されたコントローラを備える。 A semiconductor device according to one aspect of the present disclosure includes a first driver configured to drive an output element forming a switch output stage, and a first driver that generates a boot voltage higher than a switch voltage output from the switch output stage. at least a portion of a bootstrap circuit configured to supply the voltage to the first driver; and when the output element is in an off state, a difference value between the boot voltage and the switch voltage is lower than a lower limit detection value. a boot voltage detection circuit configured to charge the boot voltage by detecting that the boot voltage has turned off; and a controller configured to switch the boot voltage detection circuit between an operating state and a non-operating state. Be prepared.
 また、例えば、本開示の一側面に係るゲート駆動回路は、入力電圧の印加端とグランド電位の印加端との間に直列に接続されるハイサイドトランジスタおよびローサイドトランジスタを駆動するためのゲート駆動回路であって、ローサイドゲート制御信号が入力可能に構成された第1レベルシフタと、前記第1レベルシフタの出力に基づいて前記ローサイドトランジスタのゲートを駆動するローサイドゲート信号を生成するように構成されたローサイドゲート信号出力部と、前記第1レベルシフタの出力が入力可能に構成された第2レベルシフタと、ハイサイドゲート制御信号が入力可能に構成された第3レベルシフタと、前記第2レベルシフタの出力と前記第3レベルシフタの出力が入力可能に構成された第1論理ゲートと、前記第1論理ゲートの出力に基づいて前記ハイサイドトランジスタのゲートを駆動するハイサイドゲート信号を生成するように構成されたハイサイドゲート信号出力部と、を備え、前記第1レベルシフタは、前記入力電圧をハイレベルとして出力するように構成され、前記第2レベルシフタ、および前記第3レベルシフタは、前記ハイサイドトランジスタと前記ローサイドトランジスタとが接続されるノードに接続される第1端を有するブートキャパシタの第2端に生じるブート電圧をハイレベルとして出力するように構成され、前記ハイサイドゲート信号出力部は、前記ハイサイドゲート信号として前記ブート電圧を前記ハイサイドトランジスタのゲートに印加可能に構成される。 Further, for example, a gate drive circuit according to one aspect of the present disclosure is a gate drive circuit for driving a high-side transistor and a low-side transistor connected in series between an input voltage application end and a ground potential application end. a first level shifter configured to be able to receive a low-side gate control signal; and a low-side gate configured to generate a low-side gate signal for driving the gate of the low-side transistor based on the output of the first level shifter. a signal output section, a second level shifter configured to be able to input the output of the first level shifter, a third level shifter configured to be able to input the high side gate control signal, and the output of the second level shifter and the third level shifter configured to input the output of the first level shifter; a first logic gate configured to be able to input the output of a level shifter; and a high side gate configured to generate a high side gate signal for driving the gate of the high side transistor based on the output of the first logic gate. a signal output section, the first level shifter is configured to output the input voltage as a high level, and the second level shifter and the third level shifter are configured such that the high side transistor and the low side transistor are connected to each other. The high-side gate signal output section is configured to output a boot voltage generated at a second end of a boot capacitor having a first end connected to a connected node as a high level, and the high-side gate signal output section outputs the high-side gate signal as the high-side gate signal. A boot voltage can be applied to the gate of the high-side transistor.
 なお、その他の特徴、要素、ステップ、利点、及び、特性については、以下に続く発明を実施するための形態及びこれに関する添付の図面によって、さらに明らかとなる。 Note that other features, elements, steps, advantages, and characteristics will become clearer from the detailed description and accompanying drawings that follow.
 本開示の一側面に係る構成によれば、ブートストラップ回路で生成されるブート電圧の低下を防止することのできる半導体装置及びこれを用いたスイッチング電源を提供することが可能となる。 According to the configuration according to one aspect of the present disclosure, it is possible to provide a semiconductor device that can prevent a drop in the boot voltage generated by a bootstrap circuit, and a switching power supply using the same.
 また、本開示の例示的なゲート駆動回路によれば、ブートキャパシタを用いた構成において、デッドタイムを短縮化することが可能となる。 Furthermore, according to the exemplary gate drive circuit of the present disclosure, it is possible to shorten the dead time in a configuration using a boot capacitor.
図1は、スイッチング電源の全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of a switching power supply. 図2は、スイッチング電源の第1実施形態(第1比較例)を示す図である。FIG. 2 is a diagram showing a first embodiment (first comparative example) of a switching power supply. 図3は、スイッチング電源の第2実施形態(第2比較例)を示す図である。FIG. 3 is a diagram showing a second embodiment (second comparative example) of a switching power supply. 図4は、第2実施形態のスイッチング動作を示す図である。FIG. 4 is a diagram showing the switching operation of the second embodiment. 図5は、スイッチング電源の第3実施形態を示す図である。FIG. 5 is a diagram showing a third embodiment of the switching power supply. 図6は、第3実施形態のスイッチング動作を示す図である。FIG. 6 is a diagram showing the switching operation of the third embodiment. 図7は、ブート電圧検出回路の一構成例を示す図である。FIG. 7 is a diagram showing a configuration example of a boot voltage detection circuit. 図8は、チャージポンプの一動作例を示す図である。FIG. 8 is a diagram showing an example of the operation of the charge pump. 図9は、比較例に係るDC/DCコンバータの構成を示す図である。FIG. 9 is a diagram showing the configuration of a DC/DC converter according to a comparative example. 図10は、本開示の例示的な実施形態に係るDC/DCコンバータの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a DC/DC converter according to an exemplary embodiment of the present disclosure. 図11は、本開示の例示的な実施形態に係るゲート駆動回路における動作例を示すタイミングチャートである。FIG. 11 is a timing chart illustrating an example of operation in a gate drive circuit according to an exemplary embodiment of the present disclosure. 図12は、変形例に係るDC/DCコンバータの構成を示す図である。FIG. 12 is a diagram showing the configuration of a DC/DC converter according to a modification.
<スイッチング電源>
 図1は、スイッチング電源の全体構成を示す図である。本構成例のスイッチング電源X0は、入力電圧Vin(例えば、2.7~5.5V)を降圧して所望の出力電圧Vout(例えば0.6~4.0V)を生成する降圧型のDC/DCコンバータである。本図に即して具体的に述べると、スイッチング電源X0は、半導体装置10と、これに外付けされる種々のディスクリート部品(キャパシタC1及びC2、インダクタL1、並びに、抵抗R1及びR2)と、を備える。
<Switching power supply>
FIG. 1 is a diagram showing the overall configuration of a switching power supply. The switching power supply X0 of this configuration example is a step-down DC/DC converter that steps down the input voltage Vin (for example, 2.7 to 5.5V) to generate a desired output voltage Vout (for example, 0.6 to 4.0V). It is a DC converter. To be more specific with reference to this figure, the switching power supply X0 includes a semiconductor device 10, various discrete components externally attached thereto (capacitors C1 and C2, inductor L1, and resistors R1 and R2), Equipped with.
 半導体装置10は、スイッチング電源X0の動作を統括的に制御する主体(いわゆる電源制御IC[integrated circuit])である。半導体装置10は、装置外部との電気的な接続を確立する手段として複数の外部端子(本図では1ピン~4ピン)を備える。 The semiconductor device 10 is a main body (so-called power supply control IC [integrated circuit]) that centrally controls the operation of the switching power supply X0. The semiconductor device 10 includes a plurality of external terminals (pins 1 to 4 in this figure) as means for establishing electrical connection with the outside of the device.
 なお、1ピンは、入力電圧Vinが印加される電源端子VINである。2ピンは、スイッチ出力端子SWである。3ピンは、接地端子GNDである。4ピンは、帰還入力端子FBである。 Note that the 1st pin is a power supply terminal VIN to which the input voltage Vin is applied. The 2nd pin is a switch output terminal SW. The third pin is a ground terminal GND. The 4th pin is a feedback input terminal FB.
 次に、半導体装置10の外部接続について説明する。キャパシタC1の第1端は、電源端子VINに接続されている。キャパシタC1の第2端は、接地端に接続されている。インダクタL1の第1端は、スイッチ出力端子SWに接続されている。インダクタL1の第2端と抵抗R1及びキャパシタC2それぞれの第1端は、いずれも出力電圧Voutの印加端に接続されている。抵抗R1の第2端と抵抗R2の第1端は、いずれも帰還入力端子FB(=帰還電圧Vfbの印加端)に接続されている。キャパシタC2及び抵抗R2それぞれの第2端は、いずれも接地端に接続されている。 Next, external connections of the semiconductor device 10 will be explained. A first end of the capacitor C1 is connected to a power supply terminal VIN. A second end of the capacitor C1 is connected to a ground end. A first end of the inductor L1 is connected to the switch output terminal SW. The second end of the inductor L1 and the first ends of the resistor R1 and capacitor C2 are all connected to the application end of the output voltage Vout. The second end of the resistor R1 and the first end of the resistor R2 are both connected to the feedback input terminal FB (=the end to which the feedback voltage Vfb is applied). The second terminals of the capacitor C2 and the resistor R2 are both connected to a ground terminal.
 インダクタL1とキャパシタC2は、矩形波状のスイッチ電圧Vswを整流及び平滑して出力電圧Voutを生成するLCフィルタとして機能する。 The inductor L1 and capacitor C2 function as an LC filter that rectifies and smoothes the rectangular waveform switch voltage Vsw to generate the output voltage Vout.
 抵抗R1及びR2は、相互間の接続ノードから出力電圧Voutに応じた帰還電圧Vfb(=出力電圧Voutの分圧電圧)を出力する帰還電圧生成回路(分圧回路)として機能する。なお、本図では明示していないが、抵抗R1の両端間には、スイッチング電源X0がスムーズに起動するように、スピードアップ用のキャパシタを並列接続してもよい。また、出力電圧Voutが半導体装置10の入力ダイナミックレンジに収まっている場合には、抵抗R1及びR2を省略し、出力電圧Voutを帰還入力端子FBに直接入力しても構わない。 The resistors R1 and R2 function as a feedback voltage generation circuit (voltage dividing circuit) that outputs a feedback voltage Vfb (=divided voltage of the output voltage Vout) according to the output voltage Vout from the connection node between them. Although not explicitly shown in this figure, a speed-up capacitor may be connected in parallel between both ends of the resistor R1 so that the switching power supply X0 can start up smoothly. Furthermore, if the output voltage Vout is within the input dynamic range of the semiconductor device 10, the resistors R1 and R2 may be omitted and the output voltage Vout may be directly input to the feedback input terminal FB.
<半導体装置>
 引き続き、図1を参照しながら、半導体装置10の内部構成について詳細に説明する。本構成例の半導体装置10には、エラーアンプ11と、比較回路12と、オン時間設定回路13と、リップル生成回路14と、加算回路15と、駆動制御回路16と、基準電圧生成回路17と、チャージポンプ18と、ゼロクロス検出回路19と、キャパシタC3及びC4と、スイッチBSと、出力素子M1と、同期整流素子M2と、が集積化されている。
<Semiconductor device>
Continuing with reference to FIG. 1, the internal configuration of the semiconductor device 10 will be described in detail. The semiconductor device 10 of this configuration example includes an error amplifier 11, a comparison circuit 12, an on-time setting circuit 13, a ripple generation circuit 14, an addition circuit 15, a drive control circuit 16, and a reference voltage generation circuit 17. , a charge pump 18, a zero-cross detection circuit 19, capacitors C3 and C4, a switch BS, an output element M1, and a synchronous rectifier M2 are integrated.
 エラーアンプ11は、非反転入力端(+)に入力される基準電圧Vrefと、反転入力端(-)に入力される帰還電圧Vfbとの差分に応じた誤差電圧Vcを生成する。なお、誤差電圧Vcは、基準電圧Vrefよりも帰還電圧Vfbが低いときに上昇し、基準電圧Vrefよりも帰還電圧Vfbが高いときに低下する。 The error amplifier 11 generates an error voltage Vc according to the difference between the reference voltage Vref input to the non-inverting input terminal (+) and the feedback voltage Vfb input to the inverting input terminal (-). Note that the error voltage Vc increases when the feedback voltage Vfb is lower than the reference voltage Vref, and decreases when the feedback voltage Vfb is higher than the reference voltage Vref.
 比較回路12は、第1コンパレータ121と第2コンパレータ122を含む。 The comparison circuit 12 includes a first comparator 121 and a second comparator 122.
 第1コンパレータ121は、反転入力端(-)に入力されるスロープ電圧Vslpと、非反転入力端(+)に入力される誤差電圧Vcとを比較して比較信号Sc1を生成する。比較信号Sc1は、スロープ電圧Vslpが誤差電圧Vcよりも低いときにハイレベルとなり、スロープ電圧Vslpが誤差電圧Vcよりも高いときにローレベルとなる。なお、第1コンパレータ121には、ヒステリシス特性を持たせてもよい。 The first comparator 121 compares the slope voltage Vslp input to the inverting input terminal (-) and the error voltage Vc input to the non-inverting input terminal (+) to generate a comparison signal Sc1. The comparison signal Sc1 becomes a high level when the slope voltage Vslp is lower than the error voltage Vc, and becomes a low level when the slope voltage Vslp is higher than the error voltage Vc. Note that the first comparator 121 may have a hysteresis characteristic.
 第2コンパレータ122は、反転入力端(-)に入力される帰還電圧Vfbと、非反転入力端(+)に入力される誤差電圧Vcとを比較して比較信号Sc2を生成する。比較信号Sc2は、帰還電圧Vfbが誤差電圧Vcよりも低いときにハイレベルとなり、帰還電圧Vfbが誤差電圧Vcよりも高いときにローレベルとなる。なお、第2コンパレータ122には、ヒステリシス特性を持たせてもよい。 The second comparator 122 compares the feedback voltage Vfb input to the inverting input terminal (-) and the error voltage Vc input to the non-inverting input terminal (+) to generate a comparison signal Sc2. The comparison signal Sc2 becomes a high level when the feedback voltage Vfb is lower than the error voltage Vc, and becomes a low level when the feedback voltage Vfb is higher than the error voltage Vc. Note that the second comparator 122 may have hysteresis characteristics.
 また、帰還電圧Vfbが誤差電圧Vcを下回るタイミングは、帰還電圧Vfbにリップル電圧Vrを足し合わせたスロープ電圧Vslp(=Vfb+Vr)が誤差電圧Vcを下回るタイミングよりも早い。言い換えると、比較信号Sc2がハイレベルに立ち上がるタイミングは、比較信号Sc1がハイレベルに立ち上がるタイミングよりも早い。 Further, the timing at which the feedback voltage Vfb falls below the error voltage Vc is earlier than the timing at which the slope voltage Vslp (=Vfb+Vr), which is the sum of the feedback voltage Vfb and the ripple voltage Vr, falls below the error voltage Vc. In other words, the timing at which the comparison signal Sc2 rises to high level is earlier than the timing at which the comparison signal Sc1 rises to high level.
 なお、第2コンパレータ122は、第1コンパレータ121と比べて応答性(電流出力能力)が低くても構わない。 Note that the second comparator 122 may have lower responsiveness (current output capability) than the first comparator 121.
 オン時間設定回路13は、基本的に比較信号Sc1がハイレベルに立ち上がってからオン時間Tonに亘って出力素子M1をオン状態に維持するようにスイッチ制御信号S0を生成する。また、オン時間設定回路13は、比較信号Sc2がハイレベルに立ち上がってから所定のマスク期間(例えば100ns)に亘って、比較信号Sc1の論理レベルを無視する機能も備えている。 The on-time setting circuit 13 basically generates the switch control signal S0 so as to maintain the output element M1 in the on-state for the on-time Ton after the comparison signal Sc1 rises to a high level. The on-time setting circuit 13 also has a function of ignoring the logic level of the comparison signal Sc1 for a predetermined mask period (for example, 100 ns) after the comparison signal Sc2 rises to a high level.
 リップル生成回路14は、スイッチ制御信号S0に同期して出力電圧Voutのリップル成分を模擬したリップル電圧Vrを生成する。 The ripple generation circuit 14 generates a ripple voltage Vr that simulates the ripple component of the output voltage Vout in synchronization with the switch control signal S0.
 加算回路15は、帰還電圧Vfbにリップル電圧Vrを足し合わせてスロープ電圧Vslpを生成する。 Adder circuit 15 adds ripple voltage Vr to feedback voltage Vfb to generate slope voltage Vslp.
 駆動制御回路16は、その構成要素として、コントローラ161と、レベルシフタ162と、ドライバ163及び164を含む。 The drive control circuit 16 includes a controller 161, a level shifter 162, and drivers 163 and 164 as its components.
 コントローラ161は、基本的な出力帰還制御として、スイッチ制御信号S0に応じたボトム検出型のオン時間固定方式により、出力電圧Voutが所望の目標値と一致するようにゲート制御信号S1及びS2を生成する。 As basic output feedback control, the controller 161 generates gate control signals S1 and S2 so that the output voltage Vout matches a desired target value using a bottom detection type on-time fixed method according to the switch control signal S0. do.
 なお、コントローラ161は、ゼロクロス検出信号S9に応じて、軽負荷時に出力素子M1及び同期整流素子M2それぞれのスイッチング駆動を停止する機能も備えている。例えば、コントローラ161は、出力素子M1がオフ状態であって同期整流素子M2がオン状態であるときにゼロクロス検出信号S9がハイレベルに立ち上がったとき、すなわち、スイッチ電圧Vswがゼロクロス検出値(例えばGND)よりも高くなったことが検出されたときに、同期整流素子M2をオフ状態としてもよい。 Note that the controller 161 also has a function of stopping the switching drive of each of the output element M1 and the synchronous rectifier M2 when the load is light, according to the zero-crossing detection signal S9. For example, when the zero-cross detection signal S9 rises to a high level while the output element M1 is in the off state and the synchronous rectifier M2 is in the on state, the controller 161 detects that the switch voltage Vsw is at the zero-cross detection value (for example, GND ), the synchronous rectifier M2 may be turned off.
 レベルシフタ162は、ゲート制御信号S1をレベルシフトしてゲート制御信号S1’を生成する。本図に即して述べると、レベルシフタ162は、ゲート制御信号S1がハイレベル(=Vin)であるときにゲート制御信号S1’をハイレベル(=Vb)とし、ゲート制御信号S1がローレベル(=GND)であるときにゲート制御信号S1’をローレベル(=Vsw)とする。 The level shifter 162 level-shifts the gate control signal S1 to generate the gate control signal S1'. Referring to this diagram, the level shifter 162 sets the gate control signal S1' to a high level (=Vb) when the gate control signal S1 is at a high level (=Vin), and sets the gate control signal S1 to a low level (=Vb). =GND), the gate control signal S1' is set to low level (=Vsw).
 ドライバ163は、ゲート制御信号S1’に応じてゲート駆動信号G1を生成することにより出力素子M1を駆動する。ゲート駆動信号G1は、例えば、ゲート制御信号S1’がハイレベルであるときにハイレベル(=Vb)となり、ゲート制御信号S1’がローレベルであるときにローレベル(=Vsw)となる。 The driver 163 drives the output element M1 by generating a gate drive signal G1 according to the gate control signal S1'. For example, the gate drive signal G1 becomes a high level (=Vb) when the gate control signal S1' is a high level, and becomes a low level (=Vsw) when the gate control signal S1' is a low level.
 ドライバ164は、ゲート制御信号S2に応じてゲート駆動信号G2を生成することにより同期整流素子M2を駆動する。ゲート駆動信号G2は、例えば、ゲート制御信号S2がハイレベルであるときにハイレベル(=Vin)となり、ゲート制御信号S2がローレベルであるときにローレベル(=GND)となる。 The driver 164 drives the synchronous rectifier M2 by generating a gate drive signal G2 according to the gate control signal S2. For example, the gate drive signal G2 becomes a high level (=Vin) when the gate control signal S2 is a high level, and becomes a low level (=GND) when the gate control signal S2 is a low level.
 基準電圧生成回路17は、所定の基準電圧Vref(=帰還電圧Vfbの目標値、延いては、出力電圧Voutの目標値に相当)を生成する。 The reference voltage generation circuit 17 generates a predetermined reference voltage Vref (=target value of the feedback voltage Vfb, which in turn corresponds to the target value of the output voltage Vout).
 チャージポンプ18は、コントローラ161から出力されるチャージポンプ制御信号CPONに応じて入力電圧Vinよりも高い昇圧電圧Vcpを生成し、これをブート電圧Vbの印加端に印加する。 The charge pump 18 generates a boosted voltage Vcp higher than the input voltage Vin in accordance with the charge pump control signal CPON output from the controller 161, and applies this to the application terminal of the boot voltage Vb.
 なお、チャージポンプ18は、ブート電圧Vbを常に入力電圧Vinよりも高い電圧値に維持するものではなく、ブート電圧Vbの低下時にこれを僅かに引き上げられるだけの電流能力を備えていれば足りる。従って、チャージポンプ18としては、例えば、スイッチ出力段SWOの100%デューティ駆動時にブート電圧Vbを維持する目的で設けられた既設のチャージポンプを流用してもよい。 It should be noted that the charge pump 18 does not always maintain the boot voltage Vb at a voltage value higher than the input voltage Vin, but only needs to have a current capacity that can slightly raise the boot voltage Vb when it decreases. Therefore, as the charge pump 18, for example, an existing charge pump provided for the purpose of maintaining the boot voltage Vb during 100% duty driving of the switch output stage SWO may be used.
 ゼロクロス検出回路19は、出力素子M1がオフ状態であって同期整流素子M2がオン状態であるときに、同期整流素子M2の両端間電圧(=スイッチ電圧Vswに相当)を監視することにより、同期整流素子M2に流れるインダクタ電流ILのゼロクロス(逆流)を検出する。 The zero cross detection circuit 19 detects synchronization by monitoring the voltage across the synchronous rectifier M2 (corresponding to the switch voltage Vsw) when the output element M1 is in the off state and the synchronous rectifier M2 is in the on state. A zero cross (reverse current) of the inductor current IL flowing through the rectifying element M2 is detected.
 キャパシタC3は、エラーアンプ11の発振を防止するための位相補償手段として、エラーアンプ11の出力端と接地端との間に接続されている。 The capacitor C3 is connected between the output end of the error amplifier 11 and the ground end as a phase compensation means for preventing the error amplifier 11 from oscillating.
 出力素子M1(例えば、NMOSFET[N-channel type metal oxide semiconductor field effect transistor])は、入力電圧Vinからスイッチ電圧Vswを生成するスイッチ出力段SWOの上側スイッチとして機能する。出力素子M1のドレインは、電源端子VINに接続されている。出力素子M1のソースは、スイッチ出力端子SWに接続されている。出力素子M1のゲートは、ゲート駆動信号G1の印加端に接続されている。出力素子M1は、ゲート駆動信号G1がハイレベルであるときにオン状態となり、ゲート駆動信号G1がローレベルであるときにオフ状態となる。 The output element M1 (for example, NMOSFET [N-channel type metal oxide semiconductor field effect transistor]) functions as an upper switch of the switch output stage SWO that generates the switch voltage Vsw from the input voltage Vin. The drain of the output element M1 is connected to the power supply terminal VIN. The source of the output element M1 is connected to the switch output terminal SW. The gate of the output element M1 is connected to the application end of the gate drive signal G1. The output element M1 is turned on when the gate drive signal G1 is at a high level, and is turned off when the gate drive signal G1 is at a low level.
 同期整流素子M2(例えばNMOSFET)は、スイッチ出力段SWOの下側スイッチとして機能する。同期整流素子M2のドレインは、スイッチ出力端子SWに接続されている。同期整流素子M2のソースは、接地端子GNDに接続されている。同期整流素子M2のゲートは、ゲート駆動信号G2の印加端に接続されている。同期整流素子M2は、ゲート駆動信号G2がハイレベルであるときにオン状態となり、ゲート駆動信号G2がローレベルであるときにオフ状態となる。 The synchronous rectifier M2 (eg, NMOSFET) functions as a lower switch of the switch output stage SWO. The drain of the synchronous rectifier M2 is connected to the switch output terminal SW. The source of the synchronous rectifier M2 is connected to the ground terminal GND. The gate of the synchronous rectifier M2 is connected to the application end of the gate drive signal G2. The synchronous rectifier M2 is turned on when the gate drive signal G2 is at a high level, and is turned off when the gate drive signal G2 is at a low level.
 なお、整流素子としては、同期整流素子M2に代えて、カソードがスイッチ出力端子SWに接続されてアノードが接地端子GNDに接続された整流ダイオード(例えばショットキーバリアダイオード)を用いてもよい。 Note that as the rectifier, a rectifier diode (for example, a Schottky barrier diode) whose cathode is connected to the switch output terminal SW and whose anode is connected to the ground terminal GND may be used instead of the synchronous rectifier M2.
 また、出力素子M1及び同期整流素子M2は、半導体装置10に外付けしてもよい。その場合には、スイッチ出力端子SWに代えて、スイッチ電圧Vswの外部入力端子とゲート駆動信号G1及びG2それぞれの外部出力端子が必要となる。 Furthermore, the output element M1 and the synchronous rectifier M2 may be externally attached to the semiconductor device 10. In that case, instead of the switch output terminal SW, an external input terminal for the switch voltage Vsw and an external output terminal for each of the gate drive signals G1 and G2 are required.
 また、スイッチ出力段SWOに高電圧が印加され得る場合には、出力素子M1及び同期整流素子M2として、IGBT[insulated gate bipolar transistor]、SiCデバイス、又は、GaNデバイスなどの高耐圧素子を用いてもよい。 In addition, when a high voltage can be applied to the switch output stage SWO, a high voltage element such as an IGBT [insulated gate bipolar transistor], a SiC device, or a GaN device is used as the output element M1 and the synchronous rectifier M2. Good too.
 スイッチ出力段SWOは、ハーフブリッジを形成するように接続された出力素子M1と同期整流素子M2を相補的にオン/オフすることにより、入力電圧Vinと接地電圧PGNDとの間でパルス駆動される矩形波状のスイッチ電圧Vswを生成する。 The switch output stage SWO is driven in pulses between the input voltage Vin and the ground voltage PGND by complementarily turning on and off the output element M1 and the synchronous rectifier M2 connected to form a half bridge. A rectangular waveform switch voltage Vsw is generated.
 なお、本明細書中の「相補的」という文言は、出力素子M1と同期整流素子M2それぞれのオン/オフ状態が完全に逆転している場合のほか、それぞれのオン/オフ遷移タイミングに遅延が与えられている場合(=同時オフ期間が設けられている場合)も含む意味で用いられている。 Note that the word "complementary" in this specification refers to cases where the on/off states of output element M1 and synchronous rectifier M2 are completely reversed, as well as cases where there is a delay in the on/off transition timing of each. The term is used in a meaning that also includes the case where a simultaneous off period is provided (=a case where a simultaneous off period is provided).
 スイッチBSの第1端は、電源端子VINに接続されている。スイッチBSの第2端及びキャパシタC4の第1端は、いずれもブート電圧Vbの印加端に接続されている。キャパシタC4の第2端は、スイッチ出力端子SWに接続されている。 The first end of the switch BS is connected to the power supply terminal VIN. The second end of the switch BS and the first end of the capacitor C4 are both connected to the application end of the boot voltage Vb. A second end of the capacitor C4 is connected to the switch output terminal SW.
 このように接続されたスイッチBS及びキャパシタC4は、スイッチ電圧VswよりもキャパシタC4の両端間電圧だけ高いブート電圧Vbを生成してレベルシフタ162及びドライバ163に供給するブートストラップ回路BSTを形成する。 The switch BS and capacitor C4 connected in this manner form a bootstrap circuit BST that generates a boot voltage Vb higher than the switch voltage Vsw by the voltage across the capacitor C4 and supplies it to the level shifter 162 and driver 163.
 ブートストラップ回路BSTの動作について簡単に説明する。出力素子M1がオフ状態であり、同期整流素子M2がオン状態であるときには、スイッチBSがオン状態となる。従って、入力電圧Vinの印加端からスイッチBSを介して流れる電流により、キャパシタC4が充電される。このとき、キャパシタC4の両端間電圧は、入力電圧Vinとほぼ同電位になるまで上昇する。 The operation of bootstrap circuit BST will be briefly explained. When the output element M1 is in the off state and the synchronous rectifier element M2 is in the on state, the switch BS is in the on state. Therefore, the capacitor C4 is charged by the current flowing from the application end of the input voltage Vin through the switch BS. At this time, the voltage across the capacitor C4 increases until it reaches approximately the same potential as the input voltage Vin.
 一方、出力素子M1がオン状態であり、同期整流素子M2がオフ状態であるときには、スイッチBSがオフ状態となる。従って、ブート電圧Vbは、キャパシタC4の電荷保存則に従い、スイッチ電圧Vsw(≒Vin)よりもキャパシタC4の両端間電圧(≒Vin)だけ高い電位(≒2Vin)まで引き上げられる。 On the other hand, when the output element M1 is in the on state and the synchronous rectifier element M2 is in the off state, the switch BS is in the off state. Therefore, the boot voltage Vb is raised to a potential (≈2Vin) higher than the switch voltage Vsw (≈Vin) by the voltage across the capacitor C4 (≈Vin) in accordance with the law of conservation of charge of the capacitor C4.
 なお、スイッチBSとしては、例えばドレインが電源端子VINに接続されてソースがブート電圧Vbの印加端に接続されるように構成されたPMOSFET[P-channel type MOSFET]を用いてもよいし、或いは、アノードが電源端子VINに接続されてカソードがブート電圧Vbの印加端に接続されるように構成されたダイオードを用いてもよい。 Note that as the switch BS, for example, a PMOSFET [P-channel type MOSFET] configured such that the drain is connected to the power supply terminal VIN and the source is connected to the application terminal of the boot voltage Vb may be used, or , a diode configured such that its anode is connected to the power supply terminal VIN and its cathode is connected to the end to which the boot voltage Vb is applied may be used.
 また、本実施形態では、キャパシタC4が半導体装置10に内蔵されている。従って、半導体装置10に外付けされるディスクリート部品の点数を削減することができる。ただし、キャパシタC4を半導体装置10に外付けする場合と比べて、キャパシタC4の容量値が小さくなる。そのため、ブート電圧Vbの低下対策について検討する必要がある(詳細は後述)。 Furthermore, in this embodiment, the capacitor C4 is built into the semiconductor device 10. Therefore, the number of discrete components externally attached to the semiconductor device 10 can be reduced. However, compared to the case where the capacitor C4 is externally attached to the semiconductor device 10, the capacitance value of the capacitor C4 becomes smaller. Therefore, it is necessary to consider countermeasures for reducing the boot voltage Vb (details will be described later).
<スイッチング電源(第2実施形態)>
 図2は、スイッチング電源X0の第1実施形態(=後出の第3実施形態と対比される第1比較例に相当)を示す図である。本実施形態のスイッチング電源X0は、先の全体構成(図1)を基本としつつ、ブート電圧検出回路20をさらに備える。
<Switching power supply (second embodiment)>
FIG. 2 is a diagram showing a first embodiment of the switching power supply X0 (corresponding to a first comparative example to be compared with a third embodiment described later). The switching power supply X0 of this embodiment is based on the above-mentioned overall configuration (FIG. 1), but further includes a boot voltage detection circuit 20.
 ブート電圧検出回路20は、ブート電圧Vbの分圧電圧Vbdが下限検出電圧Vthよりも低くなったことを検出してブート低下検出信号BUを生成する。本図に即して述べると、ブート電圧検出回路20は、コンパレータCMPと、抵抗R3及びR4と、を含む。 The boot voltage detection circuit 20 detects that the divided voltage Vbd of the boot voltage Vb has become lower than the lower limit detection voltage Vth, and generates the boot drop detection signal BU. Referring to the figure, the boot voltage detection circuit 20 includes a comparator CMP and resistors R3 and R4.
 抵抗R3及びR4は、ブート電圧Vbの印加端と接地端との間に直列接続されており、相互間の接続ノードからブート電圧Vbの分圧電圧Vbdを出力する。 The resistors R3 and R4 are connected in series between the application terminal of the boot voltage Vb and the ground terminal, and output a divided voltage Vbd of the boot voltage Vb from the connection node between them.
 コンパレータCMPは、反転入力端(-)に入力される分圧電圧Vbdと、非反転入力端(+)に入力される下限検出電圧Vthとを比較してブート低下検出信号BUを生成する。ブート低下検出信号BUは、分圧電圧Vbdが下限検出電圧Vthよりも低いときにハイレベルとなり、分圧電圧Vbdが下限検出電圧Vthよりも高いときにローレベルとなる。なお、コンパレータCMPには、ヒステリシス特性を持たせてもよい。 The comparator CMP compares the divided voltage Vbd input to the inverting input terminal (-) and the lower limit detection voltage Vth input to the non-inverting input terminal (+) to generate a boot drop detection signal BU. The boot drop detection signal BU becomes a high level when the divided voltage Vbd is lower than the lower limit detection voltage Vth, and becomes a low level when the divided voltage Vbd is higher than the lower limit detection voltage Vth. Note that the comparator CMP may have a hysteresis characteristic.
 コントローラ161は、スイッチ出力段SWOの駆動停止期間(=出力素子M1及び同期整流素子M2の両オフ期間)において、ブート低下検出信号BUがハイレベルに立ち上がったときに同期整流素子M2及びスイッチBSをオンしてブート電圧Vbを充電する。従って、ゲート駆動信号G1のハイレベルを出力素子M1のオン遷移に足る電位まで引き上げることができる。 The controller 161 controls the synchronous rectifier M2 and the switch BS when the boot drop detection signal BU rises to a high level during the drive stop period of the switch output stage SWO (=the off period of both the output element M1 and the synchronous rectifier M2). Turn on and charge the boot voltage Vb. Therefore, the high level of the gate drive signal G1 can be raised to a potential sufficient to turn on the output element M1.
 ただし、本実施形態のブート電圧検出回路20は、抵抗分圧を利用した常時検出型であり、ブート電圧Vbの印加端から接地端に向けて常に回路電流が流れる。そのため、スイッチ出力段SWOの駆動停止期間にブート電圧Vbが低下しやすい。 However, the boot voltage detection circuit 20 of this embodiment is of a constant detection type using resistive voltage division, and a circuit current always flows from the boot voltage Vb application terminal to the ground terminal. Therefore, the boot voltage Vb tends to drop during the drive stop period of the switch output stage SWO.
 特に、キャパシタC4が半導体装置10に内蔵される場合には、キャパシタC4の容量値を十分に確保することが難しいので、上記の問題が顕在化しやすい。 In particular, when the capacitor C4 is built into the semiconductor device 10, it is difficult to ensure a sufficient capacitance value of the capacitor C4, so the above problem is likely to occur.
 また、半導体装置10が高温(例えば125℃以上)になると素子リークが大きくなるので、ブート電圧Vbが低下しやすくなる。 Further, when the semiconductor device 10 reaches a high temperature (for example, 125° C. or higher), element leakage increases, so the boot voltage Vb tends to decrease.
<スイッチング電源(第2実施形態)>
 図3は、スイッチング電源X0の第2実施形態(=後出の第3実施形態と対比される第2比較例に相当)を示す図である。本実施形態のスイッチング電源X0は、先の全体構成(図1)を基本としつつ、コントローラ161にゲート監視機能が付加されている。
<Switching power supply (second embodiment)>
FIG. 3 is a diagram showing a second embodiment of the switching power supply X0 (corresponding to a second comparative example compared to a third embodiment described later). The switching power supply X0 of this embodiment is based on the above-mentioned overall configuration (FIG. 1), but a gate monitoring function is added to the controller 161.
 具体的に述べると、本実施形態のコントローラ161は、ゲート制御信号S1がハイレベルに立ち上げられた後、ゲート駆動信号G1が出力素子M1のオン遷移に足る電位まで上昇しているか否かを監視してブート電圧Vbの低下を検出する機能を備えている。 Specifically, after the gate control signal S1 is raised to a high level, the controller 161 of this embodiment determines whether the gate drive signal G1 has risen to a potential sufficient to turn on the output element M1. It has a function of monitoring and detecting a drop in the boot voltage Vb.
 例えば、駆動制御回路16は、本図で示したように、ゲート駆動信号G1をレベルシフトしてゲート駆動信号G1’を生成し、これをコントローラ161に出力するように構成されたレベルシフタ165を含んでもよい。 For example, as shown in this figure, the drive control circuit 16 includes a level shifter 165 configured to level shift the gate drive signal G1 to generate a gate drive signal G1' and output it to the controller 161. But that's fine.
 図4は、第2実施形態のスイッチング動作を示す図であり、上から順に、スイッチ電圧Vsw(実線)及びブート電圧Vb(破線)、ゲート制御信号S1、ゲート帰還信号G1fb、ブート低下検出信号BU、並びに、ゲート制御信号S2が描写されている。なお、本図では、軽負荷時における間欠スイッチング動作波形が示されている。 FIG. 4 is a diagram showing the switching operation of the second embodiment, and in order from the top, the switch voltage Vsw (solid line), the boot voltage Vb (broken line), the gate control signal S1, the gate feedback signal G1fb, and the boot drop detection signal BU , as well as the gate control signal S2. Note that this figure shows an intermittent switching operation waveform at a light load.
 ゲート帰還信号G1fbは、コントローラ161の内部信号の一つである。具体的に述べると、ゲート帰還信号G1fbは、ゲート制御信号S1がハイレベルに立ち上げられた後、ゲート駆動信号G1が出力素子M1のオン遷移に足る電位まで上昇したときにハイレベルとなる。また、本実施形態では、ブート低下検出信号BUについても、コントローラ161の内部信号の一つとして理解され得る。 The gate feedback signal G1fb is one of the internal signals of the controller 161. Specifically, the gate feedback signal G1fb becomes high level when the gate drive signal G1 rises to a potential sufficient to turn on the output element M1 after the gate control signal S1 rises to a high level. Furthermore, in this embodiment, the boot deterioration detection signal BU can also be understood as one of the internal signals of the controller 161.
 スイッチ出力段SWOの駆動停止期間(=時刻t12以前)には、ゲート制御信号S1及びS2がいずれもローレベルとされるので、出力素子M1及び同期整流素子M2がいずれもオフ状態となる。このとき、時刻t11以前で示すように、ブート電圧Vbは、時間の経過と共に低下していく。そして、時刻t11~t12で示すように、ブート電圧Vbは、最終的にスイッチ電圧Vswとほぼ同電位まで低下する。 During the drive stop period of the switch output stage SWO (=before time t12), the gate control signals S1 and S2 are both set to low level, so the output element M1 and the synchronous rectification element M2 are both turned off. At this time, as shown before time t11, the boot voltage Vb decreases with the passage of time. Then, as shown from time t11 to t12, the boot voltage Vb eventually decreases to approximately the same potential as the switch voltage Vsw.
 なお、先にも述べたように、キャパシタC4が内蔵型である場合、及び、半導体装置10が高温である場合には、ブート電圧Vbが低下しやすい。 Note that, as described above, when the capacitor C4 is a built-in type and when the semiconductor device 10 is at a high temperature, the boot voltage Vb tends to decrease.
 時刻t12~t13では、ゲート制御信号S1がハイレベルに立ち上げられている。しかしながら、先にも述べたように、ブート電圧Vbがスイッチ電圧Vswとほぼ同電位まで低下しているので、ゲート駆動信号G1が出力素子M1のオン遷移に足る電位まで上昇しない。その結果、出力素子M1を正しくオン状態に切り替えることができない。このとき、ゲート帰還信号G1fbは、ローレベルに維持されたままとなる。 Between times t12 and t13, the gate control signal S1 is raised to a high level. However, as described above, since the boot voltage Vb has decreased to approximately the same potential as the switch voltage Vsw, the gate drive signal G1 does not rise to a potential sufficient to turn on the output element M1. As a result, the output element M1 cannot be correctly switched on. At this time, the gate feedback signal G1fb remains at a low level.
 時刻t13では、ゲート帰還信号G1fbがローレベルであることから、ブート低下検出信号BUがハイレベル(=ブート電圧Vbの低下検出時における論理レベル)に立ち上げられる。 At time t13, since the gate feedback signal G1fb is at a low level, the boot drop detection signal BU is raised to a high level (=the logic level when detecting a drop in the boot voltage Vb).
 なお、ゲート駆動信号G1の立ち上がりが検出されず、ブート低下検出信号BUがハイレベルに立ち上げられた場合には、時刻t13~t14で示したように、ゲート制御信号S2がハイレベルに立ち上げられて同期整流素子M2がオン状態に切り替えられる。その結果、キャパシタC4が充電されてブート電圧Vbが上昇する。従って、時刻t14~t15では、ゲート制御信号S1のハイレベル遷移によりゲート駆動信号G1をハイレベルに立ち上げることができるようになるので、出力素子M1がオン状態に切り替えられる。 Note that if the rise of the gate drive signal G1 is not detected and the boot drop detection signal BU is raised to a high level, the gate control signal S2 is raised to a high level as shown at times t13 to t14. synchronous rectifier M2 is switched to the on state. As a result, capacitor C4 is charged and boot voltage Vb increases. Therefore, from time t14 to time t15, the gate drive signal G1 can be raised to a high level due to the transition of the gate control signal S1 to a high level, so that the output element M1 is switched to the on state.
 ただし、上記一連のリブート動作は、ゲート駆動信号G1が十分に立ち上がらないことを受けて実施されるので、出力素子M1のオンタイミングが本来よりも遅れる。本図に即して述べると、スイッチング1発目(=時刻t12)では出力素子M1がオンされず、スイッチング2発目(=時刻t14)で出力素子M1がオンされる。 However, since the series of reboot operations described above are performed in response to the fact that the gate drive signal G1 does not rise sufficiently, the on-timing of the output element M1 is delayed from the original timing. Referring to this figure, the output element M1 is not turned on at the first switching time (=time t12), and the output element M1 is turned on at the second switching time (=time t14).
 出力素子M1のオンタイミングが遅れると、出力電圧Voutがボトム検出値よりも低下してしまうので、出力電圧Voutのリップル成分が増大する。特に、ブート電圧Vbを充電するために同期整流素子M2を余分にオンする構成では、出力電圧Voutの印加端から電荷を捨てることになる。そのため、出力電圧Voutの低下量が大きくなり、延いては、リップル成分の増大が顕著となり得る。 If the on-timing of the output element M1 is delayed, the output voltage Vout will fall below the bottom detection value, so the ripple component of the output voltage Vout will increase. In particular, in a configuration in which the synchronous rectifier M2 is turned on extra to charge the boot voltage Vb, charge is discarded from the terminal to which the output voltage Vout is applied. Therefore, the amount of decrease in the output voltage Vout becomes large, and as a result, the ripple component may increase significantly.
 また、ブート電圧Vbが不十分な状態で同期整流素子M2がオンされると、ドライバ163の能力不足により、スイッチ電圧Vswの低下時に出力素子M1のゲート・ソース間電圧が上昇し得る。その結果、同期整流素子M2だけでなく出力素子M1までオンしてしまい、スイッチ出力段SWOに過大な貫通電流が流れるおそれもある。 Further, if the synchronous rectifier M2 is turned on with the boot voltage Vb insufficient, the gate-source voltage of the output element M1 may increase when the switch voltage Vsw decreases due to the insufficient ability of the driver 163. As a result, not only the synchronous rectifying element M2 but also the output element M1 may be turned on, and an excessive through current may flow through the switch output stage SWO.
 なお、上記した第1実施形態(図2)及び第2実施形態(図3)それぞれの問題は、スイッチ出力段SWOにおいてダイオード整流方式が採用されている場合にも当てはまる。 Note that the problems of the first embodiment (FIG. 2) and second embodiment (FIG. 3) described above also apply to the case where the diode rectification method is adopted in the switch output stage SWO.
 以下では、これらの問題を解消することのできる第3実施形態について提案する。 A third embodiment that can solve these problems will be proposed below.
<スイッチング電源(第3実施形態)>
 図5は、スイッチング電源X0の第3実施形態を示す図である。本実施形態のスイッチング電源X0は、先の第1実施形態(図2)及び第2実施形態(図3)を基本としつつ、ブート電圧検出回路20の構成及び動作が変更されている。
<Switching power supply (third embodiment)>
FIG. 5 is a diagram showing a third embodiment of the switching power supply X0. The switching power supply X0 of this embodiment is based on the first embodiment (FIG. 2) and second embodiment (FIG. 3), but the configuration and operation of the boot voltage detection circuit 20 are changed.
 ブート電圧検出回路20は、スイッチ出力段SWOの駆動停止期間(=出力素子M1及び同期整流素子M2の両オフ期間)において、ブート電圧Vbとスイッチ電圧Vswとの差分値(=Vb-Vsw)が下限検出値Vdetよりも低くなったことを検出してブート電圧Vbを充電するようにブート正常検出信号BOKを生成する。 The boot voltage detection circuit 20 detects that the difference value (=Vb-Vsw) between the boot voltage Vb and the switch voltage Vsw is in the drive stop period of the switch output stage SWO (=the off period of both the output element M1 and the synchronous rectifier M2). A boot normality detection signal BOK is generated to charge the boot voltage Vb upon detecting that it has become lower than the lower limit detection value Vdet.
 なお、ブート正常検出信号BOKは、差分値(Vb-Vsw)が下限検出値Vdetよりも高いときにハイレベル(=BOOTUVLO未検出時の論理レベル)となり、差分値(Vb-Vsw)が下限検出値Vdetよりも低いときにローレベル(=BOOTUVLO検出時の論理レベル)となる。 Note that the boot normal detection signal BOK becomes a high level (=logic level when BOOTUVLO is not detected) when the difference value (Vb-Vsw) is higher than the lower limit detection value Vdet, and the difference value (Vb-Vsw) is higher than the lower limit detection value Vdet. When it is lower than the value Vdet, it becomes a low level (=logic level at the time of BOOTUVLO detection).
 コントローラ161は、スイッチ出力段SWOの駆動停止期間において、ブート正常検出信号BOKがローレベルに立ち下がったときにチャージポンプ18を駆動してブート電圧Vbを充電する。本図に即して述べると、チャージポンプ18は、コントローラ161から出力されるチャージポンプ制御信号CPONに応じて入力電圧Vinよりも高い昇圧電圧Vcpを生成し、これをブート電圧Vbの印加端に印加する。 The controller 161 drives the charge pump 18 to charge the boot voltage Vb when the boot normality detection signal BOK falls to a low level during the driving stop period of the switch output stage SWO. Referring to this figure, the charge pump 18 generates a boosted voltage Vcp higher than the input voltage Vin in response to the charge pump control signal CPON output from the controller 161, and applies this to the application terminal of the boot voltage Vb. Apply.
 このようなリブート動作により、ゲート駆動信号G1のハイレベルを出力素子M1のオン遷移に足る電位まで引き上げることができる。従って、スイッチ出力段SWOのスイッチング動作を支障なく再開することが可能となる。 Through such a reboot operation, the high level of the gate drive signal G1 can be raised to a potential sufficient to turn on the output element M1. Therefore, it becomes possible to restart the switching operation of the switch output stage SWO without any trouble.
 また、チャージポンプ18を用いる構成であれば、ブート電圧Vbを充電するために同期整流素子M2を余分にオンせずに済む。従って、出力電圧Voutのリップル成分を小さく抑えることができる。 Furthermore, if the configuration uses the charge pump 18, there is no need to turn on the synchronous rectifier M2 extra in order to charge the boot voltage Vb. Therefore, the ripple component of the output voltage Vout can be suppressed to a small level.
 なお、先にも述べたように、チャージポンプ18としては、例えば、スイッチ出力段SWOの100%デューティ駆動時にブート電圧Vbを維持する目的で設けられた既設のチャージポンプを流用してもよい。このような回路共有により、半導体装置10のチップ面積をシュリンクすることが可能となる。 As mentioned above, as the charge pump 18, for example, an existing charge pump provided for the purpose of maintaining the boot voltage Vb during 100% duty driving of the switch output stage SWO may be used. Such circuit sharing makes it possible to shrink the chip area of the semiconductor device 10.
 ただし、半導体装置10がチャージポンプ18を備えていない場合には、先出の第2実施形態(図3及び図4を参照)と同様、同期整流素子M2をオン状態としてブート電圧Vbを充電する構成を採用しても構わない。 However, if the semiconductor device 10 does not include the charge pump 18, the synchronous rectifier M2 is turned on to charge the boot voltage Vb, as in the second embodiment (see FIGS. 3 and 4). Any configuration may be adopted.
 さらに、本実施形態のスイッチング電源X0において、コントローラ161は、ブート電圧検出回路20を動作状態とするか非動作状態とするかを切り替えるようにブート検出制御信号BUONを生成する機能を備えている。 Further, in the switching power supply X0 of this embodiment, the controller 161 has a function of generating a boot detection control signal BUON to switch the boot voltage detection circuit 20 between an operating state and a non-operating state.
 言い換えると、ブート電圧検出回路20は、或る一定の条件(詳細は後述)が満たされたときにのみ動作状態となる。従って、先出の第1実施形態(図2)と異なり、ブート電圧Vbの印加端から接地端に向けて常に回路電流が流れないので、ブート電圧Vbの低下を抑えることが可能となる。また、ブート電圧検出回路20(延いては半導体装置10)の低消費電流化にも寄与し得る。 In other words, the boot voltage detection circuit 20 is activated only when a certain condition (details will be described later) is met. Therefore, unlike the first embodiment (FIG. 2) described above, the circuit current does not always flow from the end to which the boot voltage Vb is applied toward the ground end, making it possible to suppress a drop in the boot voltage Vb. Further, it can also contribute to lower current consumption of the boot voltage detection circuit 20 (and by extension, the semiconductor device 10).
 図6は、第3実施形態のスイッチング動作を示す図であり、上から順に、スイッチ電圧Vsw(実線)及びブート電圧Vb(破線)、比較信号Sc2及びSc1、ウェイク信号WAKE、ディープ信号DEEP、ブート検出制御信号BUON、並びに、ブート正常検出信号BOKが描写されている。 FIG. 6 is a diagram showing the switching operation of the third embodiment, and in order from the top, switch voltage Vsw (solid line), boot voltage Vb (broken line), comparison signals Sc2 and Sc1, wake signal WAKE, deep signal DEEP, boot A detection control signal BUON and a normal boot detection signal BOK are depicted.
 まず、時刻t24~t25を参照しながら、基本的なスイッチング動作について簡単に説明しておく。出力素子M1がオン状態であって同期整流素子M2がオフ状態であるときには、インダクタ電流ILが入力電圧Vinの印加端から出力素子M1及びインダクタL1を介して出力電圧Voutの印加端に向かう方向に流れる。その結果、出力電圧Voutが上昇する。また、スイッチ電圧Vswは、ハイレベル(=Vin-IL×Ron(M1)、ただし、Ron(M1)は出力素子M1のオン抵抗)となる。 First, the basic switching operation will be briefly explained with reference to times t24 to t25. When the output element M1 is in the on state and the synchronous rectifier element M2 is in the off state, the inductor current IL flows in the direction from the application end of the input voltage Vin to the application end of the output voltage Vout via the output element M1 and the inductor L1. flows. As a result, the output voltage Vout increases. Further, the switch voltage Vsw becomes a high level (=Vin-IL×Ron(M1), where Ron(M1) is the on-resistance of the output element M1).
 なお、同期整流素子M2がオフ状態であるときには、ブートストラップ回路BSTのスイッチBSもオフ状態となる。従って、ブート電圧Vbは、スイッチ電圧VswよりもキャパシタC4の両端間電圧だけ高い電圧値となる。 Note that when the synchronous rectifier M2 is in the off state, the switch BS of the bootstrap circuit BST is also in the off state. Therefore, the boot voltage Vb has a voltage value higher than the switch voltage Vsw by the voltage across the capacitor C4.
 一方、出力素子M1がオフ状態であって同期整流素子M2がオン状態であるときには、インダクタL1に誘起される起電力により、インダクタ電流ILが接地端子GNDから同期整流素子M2及びインダクタL1を介して出力電圧Voutの印加端に向かう方向に流れ続ける。その結果、出力電圧Voutが引き続き上昇する。また、スイッチ電圧Vswは、ローレベル(=GND-IL×Ron(M2)、ただし、Ron(M2)は同期整流素子M2のオン抵抗)となる。 On the other hand, when the output element M1 is in the off state and the synchronous rectifier M2 is in the on state, the inductor current IL flows from the ground terminal GND through the synchronous rectifier M2 and the inductor L1 due to the electromotive force induced in the inductor L1. It continues to flow in the direction toward the application end of the output voltage Vout. As a result, the output voltage Vout continues to rise. Further, the switch voltage Vsw becomes a low level (=GND-IL×Ron(M2), where Ron(M2) is the on-resistance of the synchronous rectifier M2).
 なお、同期整流素子M2がオン状態であるときには、ブートストラップ回路BSTのスイッチBSもオン状態となる。従って、入力電圧Vinの印加端からスイッチBSを介して流れる電流により、キャパシタC4が充電されるので、ブート電圧Vbが上昇する。 Note that when the synchronous rectifier M2 is in the on state, the switch BS of the bootstrap circuit BST is also in the on state. Therefore, the capacitor C4 is charged by the current flowing from the application end of the input voltage Vin through the switch BS, so that the boot voltage Vb increases.
 その後、時刻t25において、インダクタL1の起電力が乏しくなり、同期整流素子M2に流れるインダクタ電流ILのゼロクロス(逆流)が検出されると、同期整流素子M2がオフされる。その結果、出力素子M1及び同期整流素子M2がいずれもオフ状態となるので、スイッチ出力端子SWがハイインピーダンス状態となる。このとき、スイッチ電圧Vswは、出力電圧Voutとほぼ一致する。 After that, at time t25, when the electromotive force of the inductor L1 becomes insufficient and a zero cross (reverse current) of the inductor current IL flowing through the synchronous rectifier M2 is detected, the synchronous rectifier M2 is turned off. As a result, both the output element M1 and the synchronous rectifier M2 are turned off, so that the switch output terminal SW is placed in a high impedance state. At this time, the switch voltage Vsw substantially matches the output voltage Vout.
 なお、同期整流素子M2がオフ状態になると、ブートストラップ回路BSTのスイッチBSもオフ状態となる。従って、スイッチ出力段SWOの駆動停止期間には、ブート電圧Vbがスイッチ電圧VswよりもキャパシタC4の両端間電圧だけ高い電圧値となる。ただし、ブート電圧Vbは、スイッチ出力段SWOの駆動停止期間中、自然放電又は高温リークにより低下していく。 Note that when the synchronous rectifier M2 is turned off, the switch BS of the bootstrap circuit BST is also turned off. Therefore, during the driving stop period of the switch output stage SWO, the boot voltage Vb has a voltage value higher than the switch voltage Vsw by the voltage across the capacitor C4. However, during the driving stop period of the switch output stage SWO, the boot voltage Vb decreases due to natural discharge or high temperature leakage.
 次に、コントローラ161の内部信号であるウェイク信号WAKE及びディープ信号DEEPについて説明する。 Next, the wake signal WAKE and deep signal DEEP, which are internal signals of the controller 161, will be explained.
 ウェイク信号WAKEは、スイッチング電源X0が軽負荷状態であるか否かを示す論理信号である。本図に即して述べると、ウェイク信号WAKEは、時刻t21及びt25で示したように、同期整流素子M2に流れるインダクタ電流ILのゼロクロス検出タイミング(=スイッチ出力段SWOの駆動停止タイミング)でローレベルとなる。また、ウェイク信号WAKEは、時刻t23又はt26で示したように、比較信号Sc2がハイレベルに立ち上がるタイミング(=ブート電圧検出期間T1の開始タイミング)でハイレベルとなる。なお、ウェイク信号WAKEは、インダクタ電流ILのゼロクロスが検出されない限りハイレベルに維持される。 The wake signal WAKE is a logic signal indicating whether the switching power supply X0 is in a light load state. Referring to this figure, the wake signal WAKE goes low at the zero-cross detection timing of the inductor current IL flowing through the synchronous rectifying element M2 (=driving stop timing of the switch output stage SWO), as shown at times t21 and t25. level. Further, the wake signal WAKE becomes high level at the timing when the comparison signal Sc2 rises to high level (=start timing of the boot voltage detection period T1), as shown at time t23 or t26. Note that the wake signal WAKE is maintained at a high level unless a zero crossing of the inductor current IL is detected.
 ディープ信号DEEPは、スイッチング電源X0が無負荷状態(又は超軽負荷状態)であるか否かを示す論理信号である。本図に即して述べると、ディープ信号DEEPは、時刻t21~t22で示すように、同期整流素子M2に流れるインダクタ電流ILのゼロクロスが検出された後、ウェイク信号WAKEが無負荷判定期間T2に亘ってローレベルに維持されたときにハイレベルとなる。 The deep signal DEEP is a logic signal that indicates whether the switching power supply X0 is in a no-load state (or a very light load state). Referring to this figure, the deep signal DEEP is generated by the wake signal WAKE during the no-load determination period T2 after the zero cross of the inductor current IL flowing through the synchronous rectifier M2 is detected, as shown at time t21 to t22. It becomes high level when it is maintained at low level throughout.
 なお、半導体装置10の動作モードに着目すると、ウェイク信号WAKEがハイレベルであるときには、半導体装置10が通常モードとなる。一方、ウェイク信号WAKEがローレベルであるときには、半導体装置10が通常モードよりも消費電流の小さい軽負荷モード(=スリープモード)に移行する。また、ウェイク信号WAKEがローレベルであってかつディープ信号DEEPがハイレベルであるときには、半導体装置10が軽負荷モードよりもさらに消費電流の小さい無負荷モード又は超軽負荷モード(=ディープスリープモード)に移行する。 Note that focusing on the operating mode of the semiconductor device 10, when the wake signal WAKE is at a high level, the semiconductor device 10 is in the normal mode. On the other hand, when the wake signal WAKE is at a low level, the semiconductor device 10 shifts to a light load mode (=sleep mode) with lower current consumption than the normal mode. Further, when the wake signal WAKE is at a low level and the deep signal DEEP is at a high level, the semiconductor device 10 is in a no-load mode or an ultra-light load mode (= deep sleep mode) in which current consumption is lower than in the light-load mode. to move to.
 次に、ブート電圧検出期間T1の設定手法について説明する。先にも述べたように、比較信号Sc2がハイレベルに立ち上がるタイミングは、比較信号Sc1がハイレベルに立ち上がるタイミングよりも早い。 Next, a method of setting the boot voltage detection period T1 will be explained. As mentioned above, the timing at which the comparison signal Sc2 rises to a high level is earlier than the timing at which the comparison signal Sc1 rises to a high level.
 そこで、コントローラ161は、比較信号Sc1及びSc2の上記挙動を利用することにより、出力素子M1をオン状態に切り替える前にブート電圧検出期間T1を設けてブート電圧検出回路20を動作状態とする。例えば、本図では、時刻t23~t24又は時刻t26~t27で示したように、比較信号Sc2がハイレベルに立ち上がってから所定長(例えば100ns)のブート電圧検出期間T1が設定されており、ブート検出制御信号BUONがハイレベルとされている。 Therefore, by utilizing the above behavior of the comparison signals Sc1 and Sc2, the controller 161 sets the boot voltage detection period T1 and puts the boot voltage detection circuit 20 into the operating state before switching the output element M1 to the on state. For example, in this figure, as shown from time t23 to t24 or from time t26 to t27, a boot voltage detection period T1 of a predetermined length (for example, 100 ns) is set after the comparison signal Sc2 rises to a high level, and the boot The detection control signal BUON is set at high level.
 ただし、ブート電圧検出期間T1の設定手法については、上記に限定されるものではない。例えば、比較回路12を2つの第1コンパレータ121及び第2コンパレータ122で形成することなく、単一の比較信号に適切な遅延を与えてシステムを成立させることも可能である。 However, the method for setting the boot voltage detection period T1 is not limited to the above. For example, it is also possible to establish a system by giving an appropriate delay to a single comparison signal, without forming the comparison circuit 12 with two first comparators 121 and two second comparators 122.
 また、ブート検出制御信号BUONをハイレベルを立ち上げるための条件として、ウェイク信号WAKEとディープ信号DEEPがいずれもハイレベルであることを追加してもよい。言い換えると、コントローラ161は、出力素子M1及び同期整流素子M2の両オフ状態が無負荷判定期間T2に亘って継続したことに伴いディープ信号DEEPがハイレベルに立ち上がっている状態で、比較信号Sc2(延いてはウェイク信号WAKE)がハイレベルに立ち上がったときにブート電圧検出期間T1を設けるようにしてもよい。 Furthermore, as a condition for raising the boot detection control signal BUON to a high level, it may be added that the wake signal WAKE and the deep signal DEEP are both at a high level. In other words, the controller 161 outputs the comparison signal Sc2 ( Furthermore, the boot voltage detection period T1 may be provided when the wake signal WAKE) rises to a high level.
 例えば、スイッチング電源X0の負荷が重くなってスイッチング周期が短くなると、ブート電圧Vbがさほど低下しなくなる。このような状況では、上記の追加条件が成り立たなくなるので、時刻t20で示すように比較信号Sc2がハイレベルに立ち上がった後もブート検出制御信号BUONがローレベルに維持されたままとなる。なお、上記の追加条件が不成立であるときには、ブート正常検出信号BOKがハイレベル(=BOOTUVLO未検出時の論理レベル)に固定されるとよい。ただし上記の条件付与は必須ではない。 For example, if the load on the switching power supply X0 becomes heavy and the switching period becomes short, the boot voltage Vb will not decrease so much. In such a situation, the above additional condition no longer holds true, so the boot detection control signal BUON remains at a low level even after the comparison signal Sc2 rises to a high level, as shown at time t20. Note that when the above additional condition is not satisfied, the boot normality detection signal BOK is preferably fixed at a high level (=logic level when BOOTUVLO is not detected). However, the above conditions are not mandatory.
 次に、ブート電圧検出動作に着目する。時刻t23~t24におけるブート電圧検出期間T1では、ブート電圧Vbとスイッチ電圧Vswとの差分値(=Vb-Vsw)が下限検出値Vdetを上回っている。従って、ブート正常検出信号BOKがハイレベルに維持されるので、チャージポンプ18によるブート電圧Vbの充電動作は行われない。このように、ブート電圧Vbの低下量が小さければ、ブート電圧Vbの充電動作を行わなくても出力素子M1のオン遷移に支障を来たすことはない。 Next, we will focus on the boot voltage detection operation. During the boot voltage detection period T1 from time t23 to time t24, the difference value (=Vb−Vsw) between the boot voltage Vb and the switch voltage Vsw exceeds the lower limit detection value Vdet. Therefore, since the boot normality detection signal BOK is maintained at a high level, the charging operation of the boot voltage Vb by the charge pump 18 is not performed. In this way, if the amount of decrease in the boot voltage Vb is small, the on-transition of the output element M1 will not be hindered even if the boot voltage Vb is not charged.
 一方、時刻t26~t27におけるブート電圧検出期間T1では、スイッチ出力段SWOの駆動停止期間におけるブート電圧Vbの低下に伴い、ブート電圧Vbとスイッチ電圧Vswとの差分値(Vb-Vsw)が下限検出値Vdetを下回っている。従って、ブート正常検出信号BOKがローレベルに立ち下がる。本図では、ブート検出制御信号BUONがハイレベルに立ち上がった後、所定の遅延時間d(≦T1)が経過した時点で、ブート正常検出信号BOKがローレベルに立ち下がっている。その結果、出力素子M1のオン遷移に先立って、チャージポンプ18によるブート電圧Vbの充電動作が行われる。 On the other hand, during the boot voltage detection period T1 from time t26 to t27, as the boot voltage Vb decreases during the driving stop period of the switch output stage SWO, the difference value (Vb-Vsw) between the boot voltage Vb and the switch voltage Vsw is detected as the lower limit. It is below the value Vdet. Therefore, the boot normality detection signal BOK falls to low level. In this figure, the boot normality detection signal BOK falls to a low level after a predetermined delay time d (≦T1) has elapsed after the boot detection control signal BUON rose to a high level. As a result, the charging operation of the boot voltage Vb by the charge pump 18 is performed prior to the on-transition of the output element M1.
 なお、本図では、ブート正常検出信号BOKがローレベルに立ち下がった後、所定長のブート電圧検出期間T1が満了するまでの間、ブート電圧Vbの充電開始が待機されている。ただし、ブート電圧Vbの充電開始タイミングは、これに限定されるものではない。例えば、ブート正常検出信号BOKがローレベルに立ち下がった時点で、遅滞なくブート電圧Vbの充電動作を開始しても構わない。 Note that in this figure, the start of charging the boot voltage Vb is on standby until the boot voltage detection period T1 of a predetermined length expires after the boot normality detection signal BOK falls to a low level. However, the charging start timing of the boot voltage Vb is not limited to this. For example, the charging operation of the boot voltage Vb may be started without delay when the boot normality detection signal BOK falls to a low level.
 また、コントローラ161は、ブート正常検出信号BOKのローレベル遷移に応じてブート電圧Vbの充電を開始した後、少なくともブート電圧Vbが下限検出値Vdetを上回るまでブート検出制御信号BUONをハイレベルに維持するとよい。これにより、ブート電圧検出回路20が動作状態に維持されるので、ブート電圧Vbが回復したか否かを監視し続けることができる。 Further, after starting charging the boot voltage Vb in response to a low level transition of the boot normal detection signal BOK, the controller 161 maintains the boot detection control signal BUON at a high level at least until the boot voltage Vb exceeds the lower limit detection value Vdet. It's good to do that. As a result, the boot voltage detection circuit 20 is maintained in an operating state, so that it is possible to continue monitoring whether the boot voltage Vb has recovered.
 その後、ブート電圧Vbが下限検出値Vdetを上回ると、時刻t28において、出力素子M1がオン状態に切り替えられる。その結果、スイッチ出力段SWOのスイッチング動作が再開される。 Thereafter, when the boot voltage Vb exceeds the lower limit detection value Vdet, the output element M1 is switched to the on state at time t28. As a result, the switching operation of the switch output stage SWO is restarted.
 なお、上記一連のリブート動作は、先出の第2実施形態(図4)と異なり、出力素子M1のオン遷移に支障が生じてから実施されるのではなく、ブート電圧Vbとスイッチ電圧Vswとの差分値(Vb-Vsw)が下限検出値Vdetよりも低くなったことを検出して実施される。従って、先出の第2実施形態(図4)と比べて、出力素子M1のオンタイミングが遅れにくいので、出力電圧Voutの低下量が抑えられる。 Note that, unlike the second embodiment (FIG. 4) mentioned above, the series of reboot operations described above are not performed after a problem occurs in the on-transition of the output element M1, but when the boot voltage Vb and the switch voltage Vsw This is carried out by detecting that the difference value (Vb-Vsw) has become lower than the lower limit detection value Vdet. Therefore, compared to the previously mentioned second embodiment (FIG. 4), the on-timing of the output element M1 is less likely to be delayed, so that the amount of decrease in the output voltage Vout can be suppressed.
 また、ブート電圧Vbの充電期間(=時刻t27~t28)では、先出の第2実施形態(図4の時刻t13~t14)と異なり、キャパシタC4を充電するために同期整流素子M2がオンされることはない。従って、先出の第2実施形態(図4)と比べて、出力電圧Voutの低下をさらに抑制することが可能となる。 Furthermore, during the charging period of the boot voltage Vb (=time t27 to t28), unlike the second embodiment (time t13 to t14 in FIG. 4), the synchronous rectifier M2 is turned on to charge the capacitor C4. It never happens. Therefore, compared to the previously mentioned second embodiment (FIG. 4), it is possible to further suppress a decrease in the output voltage Vout.
<ブート電圧検出回路>
 図7は、ブート電圧検出回路20の一構成例を示す図である。本構成例のブート電圧検出回路20は、トランジスタP1~P7(例えばPMOSFET)トランジスタN1~N7(例えばNMOSFET)と、インバータINV1~INV4と、抵抗R10~R13と、を含む。
<Boot voltage detection circuit>
FIG. 7 is a diagram showing an example of the configuration of the boot voltage detection circuit 20. The boot voltage detection circuit 20 of this configuration example includes transistors P1 to P7 (for example, PMOSFET), transistors N1 to N7 (for example, NMOSFET), inverters INV1 to INV4, and resistors R10 to R13.
 なお、抵抗R10は、ゲート抵抗に相当する。抵抗R11及びR12は、それぞれ、第1抵抗及び第2抵抗に相当する。トランジスタP1及びP2は、それぞれ、第1トランジスタ及び第2トランジスタに相当する。トランジスタN1及びN2は、それぞれ、第3トランジスタ及び第4トランジスタに相当する。 Note that the resistor R10 corresponds to a gate resistor. Resistors R11 and R12 correspond to a first resistance and a second resistance, respectively. Transistors P1 and P2 correspond to a first transistor and a second transistor, respectively. Transistors N1 and N2 correspond to a third transistor and a fourth transistor, respectively.
 抵抗R11の第1端は、ブート電圧Vbの印加端に接続されている。抵抗R11の第2端は、トランジスタP1のソースに接続されている。抵抗R10の第1端は、スイッチ電圧Vswの印加端に接続されている。抵抗R10の第2端は、トランジスタP1のゲートに接続されている。トランジスタP1のドレインは、トランジスタN1のドレインに接続されている。トランジスタP2のソース及びトランジスタN1のゲートは、いずれも入力電圧Vinの印加端に接続されている。トランジスタP2のドレイン、トランジスタN1のソース、及び、抵抗R12の第1端は、いずれもノード電圧Vxの印加端に接続されている。抵抗R12の第2端は、トランジスタN2のドレインに接続されている。トランジスタN2のソースは、接地端に接続されている。 The first end of the resistor R11 is connected to the application end of the boot voltage Vb. A second end of the resistor R11 is connected to the source of the transistor P1. A first end of the resistor R10 is connected to an application end of the switch voltage Vsw. A second end of the resistor R10 is connected to the gate of the transistor P1. The drain of transistor P1 is connected to the drain of transistor N1. The source of the transistor P2 and the gate of the transistor N1 are both connected to the application terminal of the input voltage Vin. The drain of the transistor P2, the source of the transistor N1, and the first end of the resistor R12 are all connected to the application end of the node voltage Vx. A second end of the resistor R12 is connected to the drain of the transistor N2. The source of transistor N2 is connected to the ground terminal.
 インバータINV1の入力端は、ブート検出制御信号BUONの印加端に接続されている。インバータINV1の出力端は、インバータINV2の入力端に接続されている。インバータINV2の出力端(=ゲート電圧GP2の印加端)は、インバータINV3の入力端とトランジスタP2のゲートに接続されている。インバータINV3の出力端は、インバータINV4の入力端に接続されている。インバータINV4の出力端(=ゲート電圧GN2の印加端)は、トランジスタN2のゲートに接続されている。 The input end of the inverter INV1 is connected to the application end of the boot detection control signal BUON. The output end of the inverter INV1 is connected to the input end of the inverter INV2. The output terminal of the inverter INV2 (=the terminal to which the gate voltage GP2 is applied) is connected to the input terminal of the inverter INV3 and the gate of the transistor P2. The output terminal of inverter INV3 is connected to the input terminal of inverter INV4. The output end of the inverter INV4 (=the end to which gate voltage GN2 is applied) is connected to the gate of the transistor N2.
 トランジスタN3のドレイン及びゲートと、トランジスタP5~P7それぞれのソースは、いずれも入力電圧Vinの印加端に接続されている。トランジスタN3のソース及びトランジスタP6のドレインは、いずれもトランジスタP3のソースに接続されている。トランジスタP3のドレインは、トランジスタP4のソースに接続されている。トランジスタP4及びトランジスタN4それぞれのドレインと、トランジスタN6、N7及びP7それぞれのゲートと、抵抗R13の第1端は、いずれもノード電圧Vyの印加端に接続されている。トランジスタP5のドレインは、トランジスタN6のドレインに接続されている。トランジスタN4及びN6それぞれのソースは、いずれもトランジスタN5のドレインに接続されている。トランジスタN5及びN7それぞれのソースと、トランジスタP5のゲートと、抵抗R13の第2端は、いずれも接地端に接続されている。トランジスタP3、P4、N4及びN5それぞれのゲートは、いずれもノード電圧Vxの印加端に接続されている。トランジスタP6のゲートと、トランジスタP7及びN7それぞれのドレインは、いずれもブート正常検出信号BOKの印加端に接続されている。 The drain and gate of the transistor N3 and the sources of each of the transistors P5 to P7 are both connected to the application terminal of the input voltage Vin. The source of transistor N3 and the drain of transistor P6 are both connected to the source of transistor P3. The drain of transistor P3 is connected to the source of transistor P4. The drains of the transistors P4 and N4, the gates of the transistors N6, N7, and P7, and the first end of the resistor R13 are all connected to the application end of the node voltage Vy. The drain of transistor P5 is connected to the drain of transistor N6. The sources of transistors N4 and N6 are both connected to the drain of transistor N5. The sources of the transistors N5 and N7, the gate of the transistor P5, and the second end of the resistor R13 are all connected to the ground terminal. The gates of transistors P3, P4, N4, and N5 are all connected to the terminal to which node voltage Vx is applied. The gate of the transistor P6 and the drains of the transistors P7 and N7 are both connected to the application terminal of the boot normality detection signal BOK.
 コントローラ161は、ブート電圧検出回路20を非動作状態とするときにブート検出制御信号BUONをローレベルとする。本図に即して述べると、ブート検出制御信号BUONがローレベルである場合には、ゲート電圧GP2及びGN2がいずれもローレベルとなるので、トランジスタP2がオン状態となり、トランジスタN2がオフ状態となる。 The controller 161 sets the boot detection control signal BUON to a low level when placing the boot voltage detection circuit 20 in a non-operating state. Referring to this diagram, when the boot detection control signal BUON is at a low level, both gate voltages GP2 and GN2 are at a low level, so the transistor P2 is turned on and the transistor N2 is turned off. Become.
 このとき、ノード電圧Vxがハイレベル(≒Vin)に固定されるので、トランジスタN1もオフ状態となる。このようにブート検出制御信号BUONがローレベルである場合には、ブート電圧Vbの印加端から抵抗R11、トランジスタP1、トランジスタN1、抵抗R12、及び、トランジスタN2を介して接地端に至る電流経路が遮断される。その結果、ブート電圧Vbの低下が抑制される。 At this time, since the node voltage Vx is fixed at a high level (≈Vin), the transistor N1 is also turned off. In this way, when the boot detection control signal BUON is at a low level, a current path from the application terminal of the boot voltage Vb to the ground terminal via the resistor R11, transistor P1, transistor N1, resistor R12, and transistor N2 is established. Be cut off. As a result, a decrease in boot voltage Vb is suppressed.
 トランジスタP3~P5及びN4~N6は、ヒステリシス付きのインバータを形成している。従って、ノード電圧Vxがハイレベル(≒Vin)に固定されているときには、ノード電圧Vxの論理レベルを反転させたノード電圧Vyがローレベル(≒GND)に固定される。その結果、ノード電圧Vyの論理レベルをさらに反転させたブート正常検出信号BOKがハイレベル(=BOOTUVLO未検出時の論理レベル)に固定される。 Transistors P3 to P5 and N4 to N6 form an inverter with hysteresis. Therefore, when the node voltage Vx is fixed at a high level (≈Vin), the node voltage Vy, which is an inversion of the logic level of the node voltage Vx, is fixed at a low level (≈GND). As a result, the boot normality detection signal BOK, which is the logic level of the node voltage Vy further inverted, is fixed at a high level (=the logic level when BOOTUVLO is not detected).
 なお、抵抗R13は、ノード電圧Vyの印加端が電位的にフローティングとなり得る状況において、ノード電圧Vyをローレベルに固定するため、延いては、ブート正常検出信号BOKをハイレベルに固定するためのプルダウン抵抗として機能する。 Note that the resistor R13 is used to fix the node voltage Vy to a low level in a situation where the terminal to which the node voltage Vy is applied may be floating in potential, and by extension, to fix the boot normality detection signal BOK to a high level. Functions as a pull-down resistor.
 一方、コントローラ161は、ブート電圧検出回路20を動作状態とするときにブート検出制御信号BUONをハイレベルとする。本図に即して述べると、ブート検出制御信号BUONがハイレベルである場合には、ゲート電圧GP2及びGN2がいずれもハイレベルとなるので、トランジスタP2がオフ状態となりトランジスタN2がオン状態となる。 On the other hand, the controller 161 sets the boot detection control signal BUON to a high level when putting the boot voltage detection circuit 20 into the operating state. Referring to this diagram, when the boot detection control signal BUON is at a high level, the gate voltages GP2 and GN2 are both at a high level, so the transistor P2 is turned off and the transistor N2 is turned on. .
 このように、ブート検出制御信号BUONがハイレベルである場合には、ブート電圧Vbの印加端から抵抗R11、トランジスタP1、トランジスタN1、抵抗R12及びトランジスタN2を介して接地端に至る電流経路が導通される。すなわち、ブート電圧Vbの検出動作が開始される。 In this way, when the boot detection control signal BUON is at a high level, the current path from the application terminal of the boot voltage Vb to the ground terminal via the resistor R11, the transistor P1, the transistor N1, the resistor R12, and the transistor N2 becomes conductive. be done. That is, the detection operation of the boot voltage Vb is started.
 このとき、ノード電圧Vxは、ブート電圧Vbとスイッチ電圧Vswとの差分値(=Vb-Vsw)が下限検出値Vdetよりも高いか低いかに応じて決定される。具体的に述べると、Vb-Vsw>Vdetであるときには、抵抗R11に電流I1が流れ、延いては、抵抗R12に電流I2が流れる。従って、ノード電圧Vxがハイレベル(≒I2×R12)となる。一方、Vb-Vsw<Vdetであるときには、抵抗R11に電流I1が流れず、延いては、抵抗R12に電流I2が流れない。従って、ノード電圧Vxがローレベル(≒GND)となる。 At this time, the node voltage Vx is determined depending on whether the difference value (=Vb-Vsw) between the boot voltage Vb and the switch voltage Vsw is higher or lower than the lower limit detection value Vdet. Specifically, when Vb-Vsw>Vdet, current I1 flows through resistor R11, and in turn, current I2 flows through resistor R12. Therefore, the node voltage Vx becomes high level (≈I2×R12). On the other hand, when Vb-Vsw<Vdet, current I1 does not flow through resistor R11, and by extension, current I2 does not flow through resistor R12. Therefore, the node voltage Vx becomes low level (≈GND).
 なお、トランジスタP1のオン閾値電圧をVgspとすると、下限検出値Vdetは、Vdet=Vgsp+I1×R11と表される。このように、負の温度特性を持つオン閾値電圧Vgspと、正の温度特性を持つ抵抗R11を組み合わせることにより、下限検出値Vdetの温度特性をフラットに調整することができる。 Note that, assuming that the on-threshold voltage of the transistor P1 is Vgsp, the lower limit detection value Vdet is expressed as Vdet=Vgsp+I1×R11. In this way, by combining the on-threshold voltage Vgsp with negative temperature characteristics and the resistor R11 with positive temperature characteristics, the temperature characteristics of the lower limit detection value Vdet can be adjusted to be flat.
 ただし、下限検出値Vdetの設定手法については、上記に限定されるものではなく、例えば、トランジスタP1のダイオード接続のみを利用して下限検出値Vdetを設定しても構わない。 However, the method for setting the lower limit detection value Vdet is not limited to the above, and, for example, the lower limit detection value Vdet may be set using only the diode connection of the transistor P1.
 ノード電圧Vxがハイレベル(≒I2×R12)であるときには、ノード電圧Vyがローレベルとなり、延いては、ブート正常検出信号BOKがハイレベルとなる。一方、ノード電圧Vxがローレベル(≒GND)であるときには、ノード電圧Vyがハイレベルとなり、延いては、ブート正常検出信号BOKがローレベル(=BOOTUVLO検出時の論理レベル)となる。 When the node voltage Vx is at a high level (≈I2×R12), the node voltage Vy is at a low level, and as a result, the boot normality detection signal BOK is at a high level. On the other hand, when the node voltage Vx is at a low level (≈GND), the node voltage Vy becomes a high level, and as a result, the boot normality detection signal BOK becomes a low level (=logic level at the time of BOOTUVLO detection).
 なお、先にも述べたように、トランジスタP3~P5及びN4~N6は、ヒステリシス付きのインバータを形成している。従って、ブート正常検出信号BOKがローレベルに立ち下がり、チャージポンプ18によりブート電圧Vbの充電が開始された瞬間に、ブート正常検出信号BOKがハイレベルに戻ってしまうことは防止されている。 Note that, as mentioned earlier, the transistors P3 to P5 and N4 to N6 form an inverter with hysteresis. Therefore, the boot normality detection signal BOK is prevented from returning to the high level at the moment the boot normality detection signal BOK falls to a low level and the charge pump 18 starts charging the boot voltage Vb.
 その他の回路要素についても簡単に説明する。トランジスタN1は、ノード電圧Vxを所定の上限値以下(≦Vin-Vgsn、ただし、VgsnはトランジスタN1のオン閾値電圧)に制限するための耐圧保護用クランパとして機能する。なお、トランジスタN1は、そのドレイン・バックゲート間耐圧が高いので、バックゲートをソースに接続した回路構成(いわゆる自己吊り)とされている。 Other circuit elements will also be briefly explained. The transistor N1 functions as a breakdown voltage protection clamper for limiting the node voltage Vx to a predetermined upper limit value or less (≦Vin−Vgsn, where Vgsn is the on-threshold voltage of the transistor N1). Note that the transistor N1 has a high breakdown voltage between its drain and backgate, so it has a circuit configuration (so-called self-suspension) in which the backgate is connected to the source.
 トランジスタN3は、トランジスタP3のドレイン電圧を所定の上限値以下(≦Vin-Vgsn、ただしVgsnはトランジスタN3のオン閾値電圧)に制限するための耐圧保護用クランパとして機能する。なお、トランジスタN3についても、ノード電圧Vxの入力レンジに合わせて自己吊りの高耐圧素子が必要である。 The transistor N3 functions as a breakdown voltage protection clamper to limit the drain voltage of the transistor P3 to a predetermined upper limit value or less (≦Vin−Vgsn, where Vgsn is the on-threshold voltage of the transistor N3). Note that the transistor N3 also requires a self-suspending high voltage element in accordance with the input range of the node voltage Vx.
 トランジスタP6は、ノード電圧Vxがハイレベルであるとき(延いてはブート正常検出信号BOKがハイレベルであるとき)にオフ状態となる。一方、トランジスタP6は、ノード電圧Vxがローレベルであるときに、ノード電圧Vxを受けるヒステリシス付きインバータの入力レンジを合わせるためにオンされる。 The transistor P6 is turned off when the node voltage Vx is at a high level (and when the normal boot detection signal BOK is at a high level). On the other hand, when the node voltage Vx is at a low level, the transistor P6 is turned on to match the input range of the inverter with hysteresis that receives the node voltage Vx.
 抵抗R12の抵抗値は、トランジスタP1のリーク特性、及び、ノード電圧Vxの電圧変動時間を考慮して設定するとよい。抵抗R12の抵抗値を小さく設定し過ぎると、ノード電圧Vxの電圧変動は速くなる半面、ブート電圧検出回路20が動作状態であるときにブート電圧Vbの印加端から接地端に向けて流れる電流I1(=I2=Vx/R12)が大きくなる。 The resistance value of the resistor R12 is preferably set in consideration of the leakage characteristics of the transistor P1 and the voltage fluctuation time of the node voltage Vx. If the resistance value of the resistor R12 is set too small, the voltage fluctuation of the node voltage Vx becomes faster, but when the boot voltage detection circuit 20 is in the operating state, the current I1 flows from the end to which the boot voltage Vb is applied toward the ground end. (=I2=Vx/R12) increases.
 なお、ブート電圧検出回路20は、或る一定の温度領域(=半導体装置10に内蔵されたキャパシタC4のリーク電流増大に伴い、ブート電圧Vbの低下が問題となり得る温度領域)でのみ動作する。このように、ブート電圧検出回路20は、その動作領域が限定されている分、回路面積のシュリンクが比較的容易となる。 Note that the boot voltage detection circuit 20 operates only in a certain temperature range (=a temperature range where a decrease in the boot voltage Vb may become a problem due to an increase in the leakage current of the capacitor C4 built in the semiconductor device 10). In this way, since the boot voltage detection circuit 20 has a limited operating area, it is relatively easy to shrink the circuit area.
 また、本図では、低耐圧系の機種を想定した回路仕様を例示したが、高耐圧系の機種にも応用することが可能である。 In addition, although this figure illustrates the circuit specifications assuming a low-voltage type model, it can also be applied to a high-voltage type model.
<チャージポンプ>
 図8は、チャージポンプ18の一動作例を示す図であり、上から順に、出力電圧Vout、スイッチ電圧Vsw及びブート電圧Vb、ウェイク信号WAKE、ディープ信号DEEP、比較信号Sc2及びSc1、ブート検出制御信号BUON、ブート正常検出信号BOK、チャージポンプ制御信号CPON、並びに、チャージポンプ18の駆動クロック信号CLKが描写されている。
<Charge pump>
FIG. 8 is a diagram showing an example of the operation of the charge pump 18. From the top, the output voltage Vout, the switch voltage Vsw, the boot voltage Vb, the wake signal WAKE, the deep signal DEEP, the comparison signals Sc2 and Sc1, and the boot detection control The signal BUON, the boot normality detection signal BOK, the charge pump control signal CPON, and the driving clock signal CLK of the charge pump 18 are depicted.
 本図で示すように、時刻t31において、ブート正常検出信号BOKがローレベルに立ち下がると、チャージポンプ制御信号CPONが遅滞なくハイレベルに立ち上がる。これを受けて駆動クロック信号CLKのパルス駆動が開始され、チャージポンプ18によるブート電圧Vbの充電動作が行われる。 As shown in this figure, at time t31, when the boot normality detection signal BOK falls to a low level, the charge pump control signal CPON rises to a high level without delay. In response to this, pulse driving of the drive clock signal CLK is started, and the charging operation of the boot voltage Vb by the charge pump 18 is performed.
 一方、時刻t32において、ブート正常検出信号BOKがハイレベルに立ち上がると、チャージポンプ制御信号CPONが遅滞なくローレベルに立ち下がる。その結果、駆動クロック信号CLKのパルス駆動が停止され、チャージポンプ18によるブート電圧Vbの充電動作が終了される。 On the other hand, at time t32, when the boot normality detection signal BOK rises to a high level, the charge pump control signal CPON falls to a low level without delay. As a result, the pulse drive of the drive clock signal CLK is stopped, and the charging operation of the boot voltage Vb by the charge pump 18 is ended.
 以下、本開示の例示的な実施形態について、図面を参照して説明する。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
<1.比較例>
 ここでは、本開示の実施形態について説明する前に、対比のための比較例について説明する。これにより、本開示の実施形態の課題が明らかとなる。
<1. Comparative example>
Here, before describing the embodiments of the present disclosure, a comparative example will be described for comparison. This makes clear the problems of the embodiments of the present disclosure.
 図9は、比較例に係るDC/DCコンバータXの構成を示す図である。図9に示すDC/DCコンバータXは、入力電圧PVINを出力電圧Voutに変換する降圧型のDC/DCコンバータである。DC/DCコンバータXは、半導体装置1と、ブートキャパシタCbと、インダクタLと、出力コンデンサCoutと、を備える。ブートキャパシタCb、インダクタL、および出力コンデンサCoutは、半導体装置1の外部に設けられる素子である。 FIG. 9 is a diagram showing the configuration of a DC/DC converter X according to a comparative example. The DC/DC converter X shown in FIG. 9 is a step-down DC/DC converter that converts the input voltage PVIN to the output voltage Vout. The DC/DC converter X includes a semiconductor device 1, a boot capacitor Cb, an inductor L, and an output capacitor Cout. The boot capacitor Cb, the inductor L, and the output capacitor Cout are elements provided outside the semiconductor device 1.
 半導体装置1は、ゲート駆動回路9と、ハイサイドトランジスタHMと、ローサイドトランジスタLMと、を集積化して内蔵する。ゲート駆動回路9は、ハイサイドトランジスタHMのゲートとローサイドトランジスタLMのゲートを駆動するための回路である。 The semiconductor device 1 includes an integrated gate drive circuit 9, a high-side transistor HM, and a low-side transistor LM. The gate drive circuit 9 is a circuit for driving the gate of the high-side transistor HM and the gate of the low-side transistor LM.
 また、半導体装置1は、外部との電気的接続を確立するための外部端子として、入力電圧端子Tinと、ブート端子Tbと、スイッチ端子Tswと、グランド端子Tgndと、を備える。 Further, the semiconductor device 1 includes an input voltage terminal Tin, a boot terminal Tb, a switch terminal Tsw, and a ground terminal Tgnd as external terminals for establishing electrical connection with the outside.
 ゲート駆動回路9は、ロジック部2と、レベルシフタ3と、ハイサイドドライバ4と、ローサイドドライバ5と、スイッチ電圧検出部6と、ブートスイッチ7と、を有する。 The gate drive circuit 9 includes a logic section 2, a level shifter 3, a high side driver 4, a low side driver 5, a switch voltage detection section 6, and a boot switch 7.
 ハイサイドトランジスタHMおよびローサイドトランジスタLMは、ともにNMOSトランジスタ(Nチャネル型MOSFET)により構成される。ハイサイドトランジスタHMのドレインは、入力電圧端子Tinを介して入力電圧PVINの印加端に接続される。ハイサイドトランジスタHMのソースは、ローサイドトランジスタLMのドレインに接続される。ローサイドトランジスタLMのソースは、グランド端子Tgndを介してグランド電位の印加端に接続される。すなわち、ハイサイドトランジスタHMとローサイドトランジスタLMは、入力電圧PVINとグランド電位との間で直列に接続される。ハイサイドトランジスタHMとローサイドトランジスタLMからいわゆるハーフブリッジが構成される。 The high-side transistor HM and the low-side transistor LM are both constructed from NMOS transistors (N-channel MOSFETs). The drain of the high-side transistor HM is connected to the application terminal of the input voltage PVIN via the input voltage terminal Tin. The source of the high-side transistor HM is connected to the drain of the low-side transistor LM. The source of the low-side transistor LM is connected to a ground potential application terminal via a ground terminal Tgnd. That is, the high-side transistor HM and the low-side transistor LM are connected in series between the input voltage PVIN and the ground potential. A so-called half bridge is constituted by the high side transistor HM and the low side transistor LM.
 ハイサイドトランジスタHMのソースとローサイドトランジスタLMのドレインが接続されるノードNswは、スイッチ端子Tswを介してインダクタLの一端に接続される。インダクタLの他端は、出力コンデンサCoutの一端に接続される。出力コンデンサCoutの他端は、グランド電位の印加端に接続される。出力コンデンサCoutの一端に出力電圧Voutが発生する。 A node Nsw to which the source of the high-side transistor HM and the drain of the low-side transistor LM are connected is connected to one end of the inductor L via the switch terminal Tsw. The other end of the inductor L is connected to one end of the output capacitor Cout. The other end of the output capacitor Cout is connected to a ground potential application end. An output voltage Vout is generated at one end of the output capacitor Cout.
 ロジック部2は、AND回路21と、AND回路22と、を有する。AND回路21の第1入力端には、ハイサイドゲート制御入力信号HGCTL_INが入力される。AND回路21の第2入力端には、ローサイドトランジスタLMのゲートに印加されるローサイドゲート信号LGがローサイドフィードバック信号LGFBとして入力される。AND回路21は、ハイサイドゲート制御入力信号HGCTL_INと、ローサイドフィードバック信号LGFBを論理反転したものとの論理積をとり、ハイサイドゲート制御信号HGCTLを出力する。 The logic section 2 includes an AND circuit 21 and an AND circuit 22. A high side gate control input signal HGCTL_IN is input to a first input terminal of the AND circuit 21 . A low-side gate signal LG applied to the gate of the low-side transistor LM is input to a second input terminal of the AND circuit 21 as a low-side feedback signal LGFB. The AND circuit 21 performs a logical product of the high-side gate control input signal HGCTL_IN and the logically inverted low-side feedback signal LGFB, and outputs the high-side gate control signal HGCTL.
 レベルシフタ3は、ハイサイドゲート制御信号HGCTLのレベルをブート電圧BOOTをハイレベル、スイッチ電圧SWをローレベルとするレベルシフト済ハイサイドゲート制御信号HGCTL_LVSにレベル変換して出力する。具体的には、ハイサイドゲート制御信号HGCTLがハイレベルの場合、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSはハイレベルとなり、ハイサイドゲート制御信号HGCTLがローレベルの場合、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSはローレベルとなる。 The level shifter 3 converts the level of the high-side gate control signal HGCTL into a level-shifted high-side gate control signal HGCTL_LVS in which the boot voltage BOOT is at a high level and the switch voltage SW is at a low level, and outputs the level-shifted high-side gate control signal HGCTL_LVS. Specifically, when the high-side gate control signal HGCTL is at a high level, the level-shifted high-side gate control signal HGCTL_LVS is at a high level, and when the high-side gate control signal HGCTL is at a low level, the level-shifted high-side gate control signal HGCTL_LVS is at a high level. The signal HGCTL_LVS becomes low level.
 ハイサイドドライバ4は、入力されるレベルシフト済ハイサイドゲート制御信号HGCTL_LVSに基づき、ハイサイドトランジスタHMのゲートに印加するハイサイドゲート信号HGを生成する。具体的には、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSがハイレベルの場合、ハイレベルとしてブート電圧BOOTのハイサイドゲート信号HGがハイサイドトランジスタHMのゲートに印加され、ハイサイドトランジスタHMはオン状態となる。レベルシフト済ハイサイドゲート制御信号HGCTL_LVSがローレベルの場合、ローレベルとしてスイッチ電圧SWのハイサイドゲート信号HGがハイサイドトランジスタHMのゲートに印加され、ハイサイドトランジスタHMはオフ状態となる。 The high-side driver 4 generates a high-side gate signal HG to be applied to the gate of the high-side transistor HM based on the input level-shifted high-side gate control signal HGCTL_LVS. Specifically, when the level-shifted high-side gate control signal HGCTL_LVS is at a high level, the high-side gate signal HG of the boot voltage BOOT is applied as a high level to the gate of the high-side transistor HM, and the high-side transistor HM is turned on. becomes. When the level-shifted high-side gate control signal HGCTL_LVS is at a low level, the high-side gate signal HG of the switch voltage SW is applied to the gate of the high-side transistor HM as a low level, and the high-side transistor HM is turned off.
 ブートキャパシタCbとブートスイッチ7とからブートストラップが構成される。ブートキャパシタCbの一端は、スイッチ端子Tswに接続される。ブートキャパシタCbの他端は、ブート端子Tbに接続される。入力電圧端子Tinとブート端子Tbとの間にオンオフ可能なブートスイッチ7が接続される。 A bootstrap is constructed from the boot capacitor Cb and the boot switch 7. One end of the boot capacitor Cb is connected to the switch terminal Tsw. The other end of boot capacitor Cb is connected to boot terminal Tb. A boot switch 7 that can be turned on and off is connected between the input voltage terminal Tin and the boot terminal Tb.
 ローサイドトランジスタLMがオン状態のときにブートスイッチ7がオン状態に制御され、入力電圧PVINによりブートキャパシタCbに電荷がチャージされる。ローサイドトランジスタLMがオフ状態のときに、ブートスイッチ7はオフ状態に制御される。ブート電圧BOOTは、スイッチ端子Tswに発生するスイッチ電圧SWよりも高い電圧となる。そのため、ハイサイドドライバ4によりブート電圧BOOTとしたハイサイドゲート信号HGをハイサイドトランジスタHMのゲートに印加することで、ハイサイドトランジスタHMをオン状態とすることができる。 When the low-side transistor LM is in the on state, the boot switch 7 is controlled to be in the on state, and the boot capacitor Cb is charged with the input voltage PVIN. When the low-side transistor LM is in the off state, the boot switch 7 is controlled to be in the off state. The boot voltage BOOT is higher than the switch voltage SW generated at the switch terminal Tsw. Therefore, by applying the high-side gate signal HG set as the boot voltage BOOT to the gate of the high-side transistor HM by the high-side driver 4, the high-side transistor HM can be turned on.
 AND回路22の第1入力端には、ローサイドゲート制御入力信号LGCTL_INが入力される。AND回路22の第2入力端には、スイッチ電圧検出部6から出力される検出信号SWFBが入力される。スイッチ電圧検出部6は、ハイサイドトランジスタHMがターンオフするときに低下するスイッチ電圧SWを検出することで、ハイサイドトランジスタHMのターンオフを検出する回路である。AND回路22は、ローサイドゲート制御入力信号LGCTL_INと、検出信号SWFBを論理反転したものとの論理積をとり、ローサイドゲート制御信号LGCTLを出力する。 A low-side gate control input signal LGCTL_IN is input to the first input terminal of the AND circuit 22. A detection signal SWFB output from the switch voltage detection section 6 is input to a second input terminal of the AND circuit 22 . The switch voltage detection section 6 is a circuit that detects the turn-off of the high-side transistor HM by detecting the switch voltage SW that decreases when the high-side transistor HM is turned off. The AND circuit 22 performs a logical product of the low-side gate control input signal LGCTL_IN and the logically inverted detection signal SWFB, and outputs the low-side gate control signal LGCTL.
 ローサイドドライバ5は、入力されるローサイドゲート制御信号LGCTLに基づき、ローサイドトランジスタLMのゲートに印加するローサイドゲート信号LGを生成する。具体的には、ローサイドゲート制御信号LGCTLがハイレベルの場合、ハイレベルとして入力電圧PVINのローサイドゲート信号LGがローサイドトランジスタLMのゲートに印加され、ローサイドトランジスタLMはオン状態となる。ローサイドゲート制御信号LGCTLがローレベルの場合、ローレベルとしてグランド電位のローサイドゲート信号LGがローサイドトランジスタLMのゲートに印加され、ローサイドトランジスタLMはオフ状態となる。 The low-side driver 5 generates a low-side gate signal LG to be applied to the gate of the low-side transistor LM based on the input low-side gate control signal LGCTL. Specifically, when the low-side gate control signal LGCTL is at a high level, the low-side gate signal LG of the input voltage PVIN at a high level is applied to the gate of the low-side transistor LM, and the low-side transistor LM is turned on. When the low-side gate control signal LGCTL is at the low level, the low-side gate signal LG at the ground potential is applied to the gate of the low-side transistor LM, and the low-side transistor LM is turned off.
 このような構成により、ハイサイドトランジスタHMとローサイドトランジスタLMは、相補的にスイッチング制御される。相補的とは、一方がオン状態のときに、他方がオフ状態のことである。ただし、スイッチングの遷移時には、デッドタイム(同時オフ期間)が設けられる。 With such a configuration, the switching of the high-side transistor HM and the low-side transistor LM is controlled in a complementary manner. Complementary means that one is in the on state while the other is in the off state. However, at the time of switching transition, a dead time (simultaneous off period) is provided.
 ここで、ハイサイドトランジスタHMがオフ状態、ローサイドトランジスタLMがオン状態から、ハイサイドトランジスタHMがオン状態、ローサイドトランジスタLMがオフ状態へ遷移する場合の動作について説明する。 Here, the operation when the high-side transistor HM is in the off state and the low-side transistor LM is in the on state is transitioned to the high-side transistor HM in the on state and the low-side transistor LM in the off state.
 ハイサイドゲート制御入力信号HGCTL_INがローレベルからハイレベルに切り替わるとともに、ローサイドゲート制御入力信号LGCTL_INがハイレベルからローレベルに切り替わるとする。すると、ローサイドゲート信号LGがローレベル(グランド電位)に低下し、ローサイドトランジスタLMがターンオフされ、ハイサイドトランジスタHMとローサイドトランジスタLMがともにオフ状態となり、デッドタイムが開始される。 Assume that the high-side gate control input signal HGCTL_IN switches from low level to high level, and the low-side gate control input signal LGCTL_IN switches from high level to low level. Then, the low side gate signal LG falls to a low level (ground potential), the low side transistor LM is turned off, the high side transistor HM and the low side transistor LM are both turned off, and dead time starts.
 ローサイドゲート信号LGがローレベルのため、AND回路21から出力されるハイサイドゲート制御信号HGCTLがハイレベルに切り替わり、ハイサイドゲート信号HGがハイレベルとなる。これにより、ハイサイドトランジスタHMがターンオンされ、デッドタイムが終了する。 Since the low side gate signal LG is at low level, the high side gate control signal HGCTL output from the AND circuit 21 switches to high level, and the high side gate signal HG becomes high level. As a result, the high side transistor HM is turned on and the dead time ends.
 しかしながら、本構成では、レベルシフタ3での入出力間の遅延時間をtd1、ハイサイドドライバ4での入出力間の遅延時間をtd4とすると、デッドタイム=td1+td4となる。従って、デッドタイムは遅延時間の加算で表されるため、デッドタイムを最小化しにくい課題がある。 However, in this configuration, if the delay time between input and output in the level shifter 3 is td1, and the delay time between input and output in the high-side driver 4 is td4, dead time=td1+td4. Therefore, since the dead time is expressed by adding delay times, it is difficult to minimize the dead time.
<2.本開示の実施形態>
 図10は、本開示の例示的な実施形態に係るDC/DCコンバータYの構成を示す図である。ここでは、DC/DCコンバータYの上記比較例の構成(図9)との相違点について主に説明する。
<2. Embodiments of the present disclosure>
FIG. 10 is a diagram illustrating a configuration of a DC/DC converter Y according to an exemplary embodiment of the present disclosure. Here, the differences between the configuration of the DC/DC converter Y and the configuration of the above-mentioned comparative example (FIG. 9) will be mainly explained.
 DC/DCコンバータYは、半導体装置1と、インダクタLと、出力コンデンサCoutと、を備える。ブートキャパシタCbは、比較例と異なり、半導体装置1に内蔵されている。これにより、半導体装置1では、ブート端子Tbは設けられない。 The DC/DC converter Y includes a semiconductor device 1, an inductor L, and an output capacitor Cout. The boot capacitor Cb is built into the semiconductor device 1, unlike the comparative example. As a result, the semiconductor device 1 is not provided with the boot terminal Tb.
 半導体装置1は、ゲート駆動回路9を内蔵している。ゲート駆動回路9は、ロジック部2と、レベルシフタ3と、ハイサイドドライバ4と、ローサイドドライバ5と、スイッチ電圧検出部6と、ブートスイッチ7と、レベルシフタ8と、を有する。 The semiconductor device 1 has a built-in gate drive circuit 9. The gate drive circuit 9 includes a logic section 2, a level shifter 3, a high side driver 4, a low side driver 5, a switch voltage detection section 6, a boot switch 7, and a level shifter 8.
 ローサイドドライバ5は、AND回路51と、インバータ52と、ローサイドゲート信号出力部53と、を有する。AND回路51の第1入力端には、ロジック部2から出力されるローサイドゲート制御信号LGCTLが入力される。AND回路51の第2入力端には、スイッチ電圧検出部6から出力される検出信号SWFBが入力される。AND回路51は、ローサイドゲート制御信号LGCTLと、検出信号SWFBを論理反転したものとの論理積をとり、ローサイド入力信号LG_INを出力する。 The low-side driver 5 includes an AND circuit 51, an inverter 52, and a low-side gate signal output section 53. A low-side gate control signal LGCTL output from the logic section 2 is input to a first input terminal of the AND circuit 51 . A detection signal SWFB output from the switch voltage detection section 6 is input to a second input terminal of the AND circuit 51. The AND circuit 51 performs a logical product of the low-side gate control signal LGCTL and the logically inverted detection signal SWFB, and outputs the low-side input signal LG_IN.
 インバータ52は、入力されるローサイド入力信号LG_INをレベル反転させ、ローサイドフィードバック信号XLGFBを出力する。ローサイドフィードバック信号XLGFBは、入力電圧PVINをハイレベル、グランド電位をローレベルとする。 The inverter 52 inverts the level of the input low-side input signal LG_IN and outputs the low-side feedback signal XLGFB. The low-side feedback signal XLGFB sets the input voltage PVIN to a high level and sets the ground potential to a low level.
 AND回路51とインバータ52からレベルシフタ5Aが構成される。 The AND circuit 51 and the inverter 52 constitute a level shifter 5A.
 ローサイドゲート信号出力部53は、ローサイドフィードバック信号XLGFBをレベル反転させ、ローサイドゲート信号LGを出力する。ローサイドゲート信号LGは、ローサイドトランジスタLMのゲートに印加される。 The low-side gate signal output section 53 inverts the level of the low-side feedback signal XLGFB and outputs the low-side gate signal LG. The low-side gate signal LG is applied to the gate of the low-side transistor LM.
 レベルシフタ8は、ローサイドフィードバック信号XLGFBのレベルをブート電圧BOOTをハイレベル、スイッチ電圧SWをローレベルとするレベルシフト済ローサイドフィードバック信号XLGFB_LVSにレベル変換して出力する。具体的には、ローサイドフィードバック信号XLGFBがハイレベルの場合、レベルシフト済ローサイドフィードバック信号XLGFB_LVSはハイレベルとなり、ローサイドフィードバック信号XLGFBがローレベルの場合、レベルシフト済ローサイドフィードバック信号XLGFB_LVSはローレベルとなる。 The level shifter 8 converts the level of the low-side feedback signal XLGFB into a level-shifted low-side feedback signal XLGFB_LVS in which the boot voltage BOOT is at a high level and the switch voltage SW is at a low level, and outputs the level-shifted low-side feedback signal XLGFB_LVS. Specifically, when the low-side feedback signal XLGFB is at a high level, the level-shifted low-side feedback signal XLGFB_LVS is at a high level, and when the low-side feedback signal XLGFB is at a low level, the level-shifted low-side feedback signal XLGFB_LVS is at a low level.
 ハイサイドドライバ4は、論理ゲート41と、ハイサイドゲート信号出力部42と、AND回路43と、スイッチ44と、を有する。 The high-side driver 4 includes a logic gate 41, a high-side gate signal output section 42, an AND circuit 43, and a switch 44.
 論理ゲート41は、AND回路により構成される。論理ゲート41の第1入力端にはレベルシフタ3から出力されるレベルシフト済ハイサイドゲート制御信号HGCTL_LVSが入力される。論理ゲート41の第2入力端には、レベルシフト済ローサイドフィードバック信号XLGFB_LVSが入力される。論理ゲート41は、ハイサイド入力信号HG_INを出力する。ハイサイドゲート信号出力部42は、入力されるハイサイド入力信号HG_INに基づき、ハイサイドゲート信号HGを生成する。ハイサイドゲート信号HGは、ハイサイドトランジスタHMのゲートに印加される。 The logic gate 41 is composed of an AND circuit. A level-shifted high-side gate control signal HGCTL_LVS output from the level shifter 3 is input to a first input terminal of the logic gate 41 . A level-shifted low-side feedback signal XLGFB_LVS is input to the second input terminal of the logic gate 41. Logic gate 41 outputs high side input signal HG_IN. The high side gate signal output section 42 generates a high side gate signal HG based on the input high side input signal HG_IN. High side gate signal HG is applied to the gate of high side transistor HM.
 具体的には、ハイサイド入力信号HG_INがハイレベルの場合、ハイサイドゲート信号HGは、ハイレベルとしてのブート電圧BOOTとなり、ハイサイド入力信号HG_INがローレベルの場合、ハイサイドゲート信号HGは、ローレベルとしてのスイッチ電圧SWとなる。 Specifically, when the high-side input signal HG_IN is at a high level, the high-side gate signal HG becomes the boot voltage BOOT at a high level, and when the high-side input signal HG_IN is at a low level, the high-side gate signal HG is The switch voltage SW becomes a low level.
 AND回路43およびスイッチ44は、プリチャージ機能のために設けられる。プリチャージ機能は、後述するようにハイサイドトランジスタHMのターンオン前にあらかじめハイサイドトランジスタHMのゲートに電荷をチャージする機能である。 AND circuit 43 and switch 44 are provided for a precharge function. The precharge function is a function that charges the gate of the high-side transistor HM in advance before turning on the high-side transistor HM, as will be described later.
 AND回路43の第1入力端には、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSが入力される。AND回路43の第2入力端には、ハイサイド入力信号HG_INが入力される。AND回路43は、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSと、ハイサイド入力信号HG_INを論理反転したものとの論理積をとる。スイッチ44は、入力電圧PVINの印加端とハイサイドトランジスタHMのゲートとの間に接続される。スイッチ44は、AND回路43の出力に応じてオンオフされる。 The level-shifted high-side gate control signal HGCTL_LVS is input to the first input terminal of the AND circuit 43. A high-side input signal HG_IN is input to the second input terminal of the AND circuit 43. The AND circuit 43 performs a logical product of the level-shifted high-side gate control signal HGCTL_LVS and the logically inverted version of the high-side input signal HG_IN. Switch 44 is connected between the application terminal of input voltage PVIN and the gate of high-side transistor HM. The switch 44 is turned on and off according to the output of the AND circuit 43.
 このような構成の本開示の実施形態に係るゲート駆動回路9における動作について説明する。ここでは、ハイサイドトランジスタHMがオフ状態、ローサイドトランジスタLMがオン状態から、ハイサイドトランジスタHMがオン状態、ローサイドトランジスタLMがオフ状態へ遷移する場合の動作について説明する。図11は、このような遷移状態での動作例を示すタイミングチャートである。 The operation of the gate drive circuit 9 according to the embodiment of the present disclosure having such a configuration will be described. Here, a description will be given of the operation when the high-side transistor HM is in an off state and the low-side transistor LM is in an on-state, and then the high-side transistor HM is in an on-state and the low-side transistor LM is in an off state. FIG. 11 is a timing chart showing an example of operation in such a transition state.
 なお、図11において、上段から順に、スイッチ電圧SW、ハイサイドゲート制御信号HGCTL、レベルシフト済ハイサイドゲート制御信号HGCTL_LVS、ローサイドゲート制御信号LGCTL、ローサイドフィードバック信号XLGFB、ローサイドゲート信号LG、レベルシフト済ローサイドフィードバック信号XLGFB_LVS、ハイサイド入力信号HG_IN、およびハイサイドゲート信号HGの各波形を示す。 In FIG. 11, from the top, the switch voltage SW, high side gate control signal HGCTL, level shifted high side gate control signal HGCTL_LVS, low side gate control signal LGCTL, low side feedback signal XLGFB, low side gate signal LG, level shifted The waveforms of the low-side feedback signal XLGFB_LVS, the high-side input signal HG_IN, and the high-side gate signal HG are shown.
 まず、タイミングt1で、ハイサイドゲート制御信号HGCTLがローレベルからハイレベルに切り替わるとともに、ローサイドゲート制御信号LGCTLがハイレベルからローレベルに切り替わる。 First, at timing t1, the high-side gate control signal HGCTL switches from low level to high level, and the low-side gate control signal LGCTL switches from high level to low level.
 すると、ローサイド入力信号LG_INがローレベルに切り替わり、ローサイドフィードバック信号XLGFBがハイレベルに切り替わる。ローサイドフィードバック信号XLGFBは、タイミングt1から遅延時間td3_1だけ遅延したタイミングt2でハイレベルに立ち上がる。遅延時間td3_1は、レベルシフタ5Aでの入出力間の遅延時間である。 Then, the low-side input signal LG_IN switches to low level, and the low-side feedback signal XLGFB switches to high level. The low-side feedback signal XLGFB rises to a high level at timing t2 delayed by delay time td3_1 from timing t1. The delay time td3_1 is the delay time between input and output at the level shifter 5A.
 ローサイドフィードバック信号XLGFBがハイレベルに切り替わるため、ローサイドゲート信号LGがハイレベルからグランド電位(ローレベル)まで立ち下がる。ローサイドフィードバック信号XLGFBがハイレベルに切り替わるタイミングt2からローサイドゲート信号LGがグランド電位まで立ち下がるタイミングt3までは、遅延時間td3_2だけ遅延する。遅延時間td3_2は、ローサイドゲート信号出力部53での入出力間の遅延時間である。 Since the low-side feedback signal XLGFB switches to high level, the low-side gate signal LG falls from high level to ground potential (low level). There is a delay time td3_2 from timing t2 when the low-side feedback signal XLGFB switches to high level to timing t3 when the low-side gate signal LG falls to the ground potential. The delay time td3_2 is a delay time between input and output at the low side gate signal output section 53.
 これにより、ローサイドトランジスタLMがターンオフされてオフ状態となる。従って、ハイサイドトランジスタHMおよびローサイドトランジスタLMともにオフ状態となり、タイミングt3からデッドタイムDTが開始される。なお、このとき、インダクタLを負荷側へ流れる電流がローサイドトランジスタLMのボディダイオードを流れるため、スイッチ電圧SWは、負電圧に低下する。 As a result, the low-side transistor LM is turned off and enters the off state. Therefore, both the high-side transistor HM and the low-side transistor LM are turned off, and dead time DT starts from timing t3. Note that at this time, since the current flowing through the inductor L toward the load side flows through the body diode of the low-side transistor LM, the switch voltage SW decreases to a negative voltage.
 一方、ハイサイドゲート制御信号HGCTLがハイレベルに立ち上がることで、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSがハイレベルに立ち上がる。レベルシフト済ハイサイドゲート制御信号HGCTL_LVSは、タイミングt1から遅延時間td1だけ遅延したタイミングt4でハイレベルに立ち上がる。遅延時間td1は、レベルシフタ3での入出力間の遅延時間である。 On the other hand, as the high-side gate control signal HGCTL rises to a high level, the level-shifted high-side gate control signal HGCTL_LVS rises to a high level. The level-shifted high-side gate control signal HGCTL_LVS rises to a high level at timing t4 delayed by delay time td1 from timing t1. The delay time td1 is the delay time between input and output of the level shifter 3.
 レベルシフト済ハイサイドゲート制御信号HGCTL_LVSがハイレベルに立ち上がると、ハイサイド入力信号HG_INはローレベルのため、AND回路43の出力がハイレベルに切り替わる。これにより、スイッチ44がオフ状態からオン状態となり、ハイサイドトランジスタHMのゲートに対する入力電圧PVINによる電荷のチャージが開始される。これにより、ハイサイドゲート信号HGは、入力電圧PVINまで上昇する。 When the level-shifted high-side gate control signal HGCTL_LVS rises to a high level, the output of the AND circuit 43 switches to a high level because the high-side input signal HG_IN is at a low level. As a result, the switch 44 changes from the off state to the on state, and charging of the gate of the high-side transistor HM by the input voltage PVIN is started. As a result, the high side gate signal HG rises to the input voltage PVIN.
 ここで、タイミングt2でローサイドフィードバック信号XLGFBがハイレベルに立ち上がるため、レベルシフト済ローサイドフィードバック信号XLGFB_LVSがハイレベルに立ち上がる。このとき、レベルシフト済ローサイドフィードバック信号XLGFB_LVSは、タイミングt2から遅延時間td2だけ遅延したタイミングt5で立ち上がる。遅延時間td2は、レベルシフタ8での入出力間の遅延時間である。 Here, since the low-side feedback signal XLGFB rises to a high level at timing t2, the level-shifted low-side feedback signal XLGFB_LVS rises to a high level. At this time, the level-shifted low-side feedback signal XLGFB_LVS rises at timing t5 delayed by delay time td2 from timing t2. The delay time td2 is the delay time between input and output of the level shifter 8.
 すると、論理ゲート41における遅延時間td4_1だけタイミングt5から遅延したタイミングt6でハイサイド入力信号HG_INがハイレベルに立ち上がる。すると、AND回路43の出力がローレベルとなり、スイッチ44がオフ状態に切り替えられ、入力電圧PVINによるチャージが停止される。 Then, at timing t6 delayed from timing t5 by delay time td4_1 in the logic gate 41, the high-side input signal HG_IN rises to a high level. Then, the output of the AND circuit 43 becomes low level, the switch 44 is turned off, and charging by the input voltage PVIN is stopped.
 一方、ハイサイドゲート信号出力部42により、ハイサイドゲート信号HGは、ブート電圧BOOTまで立ち上がる(BOOT=PVIN+PVIN)。これにより、ハイサイドトランジスタHMがオン状態となり、スイッチ電圧SWは入力電圧PVINまで立ち上がる。このとき、デッドタイムDTは終了する。なお、タイミングt6からハイサイドゲート信号HGがブート電圧BOOTに達するタイミングt7までの遅延時間td4_2は、ハイサイドゲート信号出力部42における遅延時間である。 On the other hand, the high side gate signal output section 42 causes the high side gate signal HG to rise to the boot voltage BOOT (BOOT=PVIN+PVIN). As a result, the high-side transistor HM turns on, and the switch voltage SW rises to the input voltage PVIN. At this time, the dead time DT ends. Note that the delay time td4_2 from timing t6 to timing t7 when the high-side gate signal HG reaches the boot voltage BOOT is a delay time in the high-side gate signal output section 42.
 以上より、ハイサイドゲート制御信号HGCTLがハイレベルに立ち上がってからハイサイドゲート信号HGがブート電圧BOOTに立ち上がるまでの時間TH(タイミングt1~t7)は、TH=td3_1+td2+td4_1+td4_2となる。一方、ローサイドゲート制御信号LGCTLがローレベルに立ち下がってからローサイドゲート信号LGがローレベルに立ち下がるまでの時間TL(タイミングt1~t3)は、TL=td3_1+td3_2となる。 From the above, the time TH (timings t1 to t7) from when the high-side gate control signal HGCTL rises to high level until the high-side gate signal HG rises to the boot voltage BOOT is TH=td3_1+td2+td4_1+td4_2. On the other hand, the time TL (timings t1 to t3) from when the low side gate control signal LGCTL falls to low level to when the low side gate signal LG falls to low level is TL=td3_1+td3_2.
 従って、デッドタイムDTは、DT=TH-TL=td2+td4_1+td4_2-td3_2となり、遅延時間の加算と減算により表される。これにより、td2+td4_1+td4_2-td3_2≧0となるような回路構成をとればよく、デッドタイムDTをなるべく最小化することが容易となる。 Therefore, the dead time DT is DT=TH−TL=td2+td4_1+td4_2−td3_2, which is expressed by adding and subtracting the delay time. Accordingly, it is sufficient to adopt a circuit configuration such that td2+td4_1+td4_2−td3_2≧0, and it becomes easy to minimize the dead time DT as much as possible.
 また、入力電圧PVINによるプリチャージ機能によりハイサイドトランジスタHMのターンオン前にあらかじめハイサイドトランジスタHMのゲートに対するチャージを行うため、ブートキャパシタCbにおける電荷ロスを抑制できる。従って、ブートキャパシタCbの容量を小さくすることができ、半導体装置1に内蔵されるブートキャパシタCbに好適となる。 Furthermore, since the gate of the high-side transistor HM is charged in advance before the high-side transistor HM is turned on by the precharge function using the input voltage PVIN, charge loss in the boot capacitor Cb can be suppressed. Therefore, the capacitance of the boot capacitor Cb can be reduced, making it suitable for the boot capacitor Cb built into the semiconductor device 1.
 なお、遅延時間td1の制約条件としては、遅延時間td1が経過してプリチャージが開始されるため、ハイサイドトランジスタHMとローサイドトランジスタLMの同時オンを回避すべく、td3_1+td3_2<td1とする必要がある。 Note that as a constraint on the delay time td1, since precharging is started after the delay time td1 has elapsed, it is necessary to set td3_1+td3_2<td1 in order to avoid simultaneous turning on of the high-side transistor HM and the low-side transistor LM. .
 また、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSがハイレベルに立ち上がるタイミングは、レベルシフト済ローサイドフィードバック信号XLGFB_LVSがハイレベルに立ち上がるタイミングより前としないと、プリチャージ機能が機能しない。そのため、td1<td3_1+td2とする必要がある。ここで、td1=td2の場合、td3_1>0となり、回路遅延だけで自動的に条件が成立する。従って、td1=td2とすべく、レベルシフタ3とレベルシフタ8は同じ構成とすることが好ましい。 Furthermore, the precharge function will not function unless the timing at which the level-shifted high-side gate control signal HGCTL_LVS rises to a high level is before the timing at which the level-shifted low-side feedback signal XLGFB_LVS rises to a high level. Therefore, it is necessary to satisfy td1<td3_1+td2. Here, when td1=td2, td3_1>0, and the condition is automatically satisfied only by the circuit delay. Therefore, it is preferable that the level shifter 3 and the level shifter 8 have the same configuration so that td1=td2.
<3.変形例>
 図12は、本開示の変形例に係るDC/DCコンバータZの構成を示す図である。本変形例においては、先述した実施形態(図10)との相違点として、ハイサイドドライバ4において、遅延回路45を追加している。遅延回路45は、AND回路43とスイッチ44との間に設けられる。
<3. Modified example>
FIG. 12 is a diagram showing the configuration of a DC/DC converter Z according to a modification example of the present disclosure. In this modification, a delay circuit 45 is added to the high side driver 4 as a difference from the previously described embodiment (FIG. 10). Delay circuit 45 is provided between AND circuit 43 and switch 44.
 これにより、レベルシフト済ハイサイドゲート制御信号HGCTL_LVSがハイレベルに立ち上がってから所定の遅延時間だけ遅延したタイミングでスイッチ44をオン状態とし、プリチャージを開始できる。これにより、プリチャージの開始タイミングを調整できる。ローサイドトランジスタLMがオフ状態となるタイミングを決めるtd3_1+td3_2が、素子遅延だけでなく配線遅延により長くなる場合において、ハイサイドトランジスタHMとローサイドトランジスタLMの同時オンを抑制するために、スイッチ44をオン状態とするタイミングを調整する機能が有用となる。 Thereby, the switch 44 can be turned on at a timing delayed by a predetermined delay time after the level-shifted high-side gate control signal HGCTL_LVS rises to a high level, and precharging can be started. This allows the precharge start timing to be adjusted. In the case where td3_1+td3_2, which determines the timing at which the low-side transistor LM turns off, becomes longer due to not only element delay but also wiring delay, the switch 44 is turned on in order to suppress simultaneous turning on of the high-side transistor HM and the low-side transistor LM. It would be useful to have the ability to adjust the timing.
<付記>
 以下では、上記で説明した種々の実施形態について総括的に述べる。
<Additional notes>
Below, the various embodiments described above will be described in general.
 例えば、本開示の一側面に係る半導体装置は、スイッチ出力段を形成する出力素子を駆動するように構成された第1ドライバと、前記スイッチ出力段から出力されるスイッチ電圧よりも高いブート電圧を生成して前記第1ドライバに供給するように構成されたブートストラップ回路の少なくとも一部と、前記出力素子がオフ状態であるときに前記ブート電圧と前記スイッチ電圧との差分値が下限検出値よりも低くなったことを検出して前記ブート電圧を充電するように構成されたブート電圧検出回路と、前記ブート電圧検出回路を動作状態とするか非動作状態とするかを切り替えるように構成されたコントローラとを備える構成(第1の構成)とされている。 For example, a semiconductor device according to one aspect of the present disclosure includes a first driver configured to drive an output element forming a switch output stage, and a boot voltage higher than a switch voltage output from the switch output stage. at least a portion of a bootstrap circuit configured to generate and supply the voltage to the first driver; and when the output element is in an off state, a difference value between the boot voltage and the switch voltage is lower than a lower limit detection value. a boot voltage detection circuit configured to charge the boot voltage upon detecting that the boot voltage has become low; and a boot voltage detection circuit configured to switch the boot voltage detection circuit between an operating state and a non-operating state. The configuration includes a controller (first configuration).
 上記第1の構成による半導体装置において、前記コントローラは、前記スイッチ出力段を形成する前記出力素子及び整流素子の両オフ状態から前記出力素子をオン状態に切り替える前に所定のブート電圧検出期間を設けて前記ブート電圧検出回路を動作状態とする構成(第2の構成)にしてもよい。 In the semiconductor device according to the first configuration, the controller provides a predetermined boot voltage detection period before switching the output element and the rectifier forming the switch output stage from an OFF state to an ON state. A configuration (second configuration) may be adopted in which the boot voltage detection circuit is put into an operating state.
 上記第2の構成による半導体装置において、前記コントローラは、前記出力素子及び前記整流素子の両オフ状態が無負荷判定期間に亘って継続しているときに前記電圧検出期間を設ける構成(第3の構成)にしてもよい。 In the semiconductor device according to the second configuration, the controller is configured to provide the voltage detection period when both the output element and the rectifier are in an off state for a no-load determination period (a third configuration). configuration).
 上記第2又は第3の構成による半導体装置において、前記コントローラは、前記ブート電圧検出回路の検出結果に応じて前記ブート電圧の充電が開始された後、少なくとも前記ブート電圧が前記下限検出値を上回るまで前記ブート電圧検出回路の動作状態を維持する構成(第4の構成)にしてもよい。 In the semiconductor device according to the second or third configuration, the controller may cause at least the boot voltage to exceed the lower limit detection value after charging of the boot voltage is started according to the detection result of the boot voltage detection circuit. A configuration (fourth configuration) may be adopted in which the operating state of the boot voltage detection circuit is maintained until the operation.
 上記第2~第4いずれかの構成による半導体装置において、前記整流素子は、前記出力素子と相補的に駆動されるように構成された同期整流素子である構成(第5の構成)にしてもよい。 In the semiconductor device according to any one of the second to fourth configurations, the rectifying element may be a synchronous rectifying element configured to be driven complementary to the output element (fifth configuration). good.
 上記第5の構成による半導体装置は、前記同期整流素子を駆動するように構成された第2ドライバをさらに備え、前記コントローラは、前記出力素子及び前記同期整流素子を相補的に駆動するとともに前記出力素子がオフ状態であって前記同期整流素子がオン状態であるときに前記スイッチ電圧がゼロクロス検出値よりも高くなったことを検出して前記同期整流素子をオフ状態とする構成(第6の構成)にしてもよい。 The semiconductor device according to the fifth configuration further includes a second driver configured to drive the synchronous rectifier, and the controller drives the output element and the synchronous rectifier in a complementary manner and outputs the output. A configuration in which the synchronous rectifier is turned off by detecting that the switch voltage has become higher than a zero-cross detection value when the element is in the off state and the synchronous rectifier is in the on state (sixth configuration) ).
 第5又は第6の構成による半導体装置において、前記ブート電圧検出回路は、前記ブート電圧と前記スイッチ電圧との前記差分値が前記下限検出値よりも低くなったことを検出して前記同期整流素子をオン状態とする構成(第7の構成)にしてもよい。 In the semiconductor device according to the fifth or sixth configuration, the boot voltage detection circuit detects that the difference value between the boot voltage and the switch voltage has become lower than the lower limit detection value, and A configuration (seventh configuration) may be adopted in which the switch is turned on.
 第1~第6のいずれかの構成による半導体装置において、前記ブート電圧検出回路は、前記ブート電圧と前記スイッチ電圧との前記差分値が前記下限検出値よりも低くなったことを検出して前記スイッチ出力段に入力される入力電圧よりも高い昇圧電圧を前記ブート電圧の印加端に印加する構成(第8の構成)にしてもよい。 In the semiconductor device according to any one of the first to sixth configurations, the boot voltage detection circuit detects that the difference value between the boot voltage and the switch voltage has become lower than the lower limit detection value; A configuration (eighth configuration) may be adopted in which a boosted voltage higher than the input voltage input to the switch output stage is applied to the boot voltage application terminal.
 第1~第8いずれかの構成による半導体装置において、前記ブート電圧検出回路は、第1抵抗及び第2抵抗と、ゲート抵抗と、Pチャネル型の第1トランジスタ及び第2トランジスタと、Nチャネル型の第3トランジスタ及び第4トランジスタと、を含み、前記第1抵抗の第1端は、前記ブート電圧の印加端に接続されており、前記第1抵抗の第2端は、前記第1トランジスタのソースに接続されており、前記ゲート抵抗の第1端は、前記スイッチ電圧の印加端に接続されており、前記ゲート抵抗の第2端は、前記第1トランジスタのゲートに接続されており、前記第1トランジスタのドレインは、前記第3トランジスタのドレインに接続されており、前記第2トランジスタのソース及び前記第3トランジスタのゲートは、いずれも前記スイッチ出力段に入力される入力電圧の印加端に接続されており、前記第2トランジスタのドレイン、前記第3トランジスタのソース、及び、前記第2抵抗の第1端は、いずれもノード電圧の印加端に接続されており、前記第2抵抗の第2端は、前記第4トランジスタのドレインに接続されており、前記第4トランジスタのソースは、接地端に接続されており、前記ブート電圧検出回路は、前記ノード電圧に応じたブート正常検出信号を出力し、前記コントローラは、前記ブート電圧検出回路を動作状態とするときに前記第2トランジスタをオフ状態として前記第4トランジスタをオン状態とし、前記ブート電圧検出回路を非動作状態とするときに前記第2トランジスタをオン状態として前記第4トランジスタをオフ状態とする構成(第9の構成)にしてもよい。 In the semiconductor device according to any one of the first to eighth configurations, the boot voltage detection circuit includes a first resistor and a second resistor, a gate resistor, a P-channel type first transistor and a second transistor, and an N-channel type transistor. a third transistor and a fourth transistor, a first end of the first resistor is connected to the application end of the boot voltage, and a second end of the first resistor is connected to the first end of the first transistor. A first end of the gate resistor is connected to the application end of the switch voltage, a second end of the gate resistor is connected to the gate of the first transistor, and the second end of the gate resistor is connected to the gate of the first transistor. The drain of the first transistor is connected to the drain of the third transistor, and the source of the second transistor and the gate of the third transistor are both applied to an input voltage input to the switch output stage. The drain of the second transistor, the source of the third transistor, and the first end of the second resistor are all connected to a node voltage application terminal, and the drain of the second transistor is connected to the node voltage application terminal. The second end is connected to the drain of the fourth transistor, the source of the fourth transistor is connected to the ground terminal, and the boot voltage detection circuit generates a boot normality detection signal according to the node voltage. The controller is configured to turn off the second transistor and turn on the fourth transistor when the boot voltage detection circuit is in an operating state, and to set the second transistor in an on state when the boot voltage detection circuit is in an inactive state. A configuration (ninth configuration) may be adopted in which the second transistor is in an on state and the fourth transistor is in an off state.
 また、例えば、本明細書中に開示されているスイッチング電源は、上記第1~第9いずれかの構成による半導体装置を備え、前記スイッチ出力段を駆動して入力電圧から所望の出力電圧を生成する構成(第10の構成)とされている。 Further, for example, the switching power supply disclosed in this specification includes a semiconductor device according to any one of the first to ninth configurations, and drives the switch output stage to generate a desired output voltage from the input voltage. The configuration (10th configuration) is as follows.
 また、例えば、本開示の一側面に係るゲート駆動回路(2)は、入力電圧(PVIN)の印加端とグランド電位の印加端との間に直列に接続されるハイサイドトランジスタ(HM)およびローサイドトランジスタ(LM)を駆動するためのゲート駆動回路(10)であって、ローサイドゲート制御信号(LGCTL)が入力可能に構成された第1レベルシフタ(5A)と、前記第1レベルシフタの出力に基づいて前記ローサイドトランジスタのゲートを駆動するローサイドゲート信号(LG)を生成するように構成されたローサイドゲート信号出力部(53)と、前記第1レベルシフタの出力が入力可能に構成された第2レベルシフタ(8)と、ハイサイドゲート制御信号(HGCTL)が入力可能に構成された第3レベルシフタ(3)と、前記第2レベルシフタの出力と前記第3レベルシフタの出力が入力可能に構成された第1論理ゲート(41)と、前記第1論理ゲートの出力に基づいて前記ハイサイドトランジスタのゲートを駆動するハイサイドゲート信号(HG)を生成するように構成されたハイサイドゲート信号出力部(42)と、を備え、前記第1レベルシフタは、前記入力電圧をハイレベルとして出力するように構成され、前記第2レベルシフタ、および前記第3レベルシフタは、前記ハイサイドトランジスタと前記ローサイドトランジスタとが接続されるノード(Nsw)に接続される第1端を有するブートキャパシタ(Cb)の第2端に生じるブート電圧(BOOT)をハイレベルとして出力するように構成され、前記ハイサイドゲート信号出力部は、前記ハイサイドゲート信号として前記ブート電圧を前記ハイサイドトランジスタのゲートに印加可能に構成される(第11の構成)。 For example, the gate drive circuit (2) according to one aspect of the present disclosure includes a high-side transistor (HM) and a low-side transistor connected in series between an input voltage (PVIN) application end and a ground potential application end. A gate drive circuit (10) for driving a transistor (LM), comprising a first level shifter (5A) configured to be able to input a low side gate control signal (LGCTL), and a gate drive circuit (10) based on the output of the first level shifter. A low side gate signal output section (53) configured to generate a low side gate signal (LG) for driving the gate of the low side transistor, and a second level shifter (8) configured to be able to receive the output of the first level shifter. ), a third level shifter (3) configured to be able to input a high side gate control signal (HGCTL), and a first logic gate configured to be configured to receive the output of the second level shifter and the output of the third level shifter. (41); and a high-side gate signal output section (42) configured to generate a high-side gate signal (HG) for driving the gate of the high-side transistor based on the output of the first logic gate; The first level shifter is configured to output the input voltage as a high level, and the second level shifter and the third level shifter are configured to connect the high side transistor and the low side transistor to a node ( The high-side gate signal output section is configured to output, as a high level, a boot voltage (BOOT) generated at a second end of a boot capacitor (Cb) having a first end connected to the high-side The boot voltage can be applied to the gate of the high-side transistor as a gate signal (eleventh configuration).
 また、上記第11の構成において、前記ノード(Nsw)に生じるスイッチ電圧(SW)の低下を検出するように構成されたスイッチ電圧検出部(6)をさらに備え、前記第1レベルシフタ(5A)は、前記ローサイドゲート制御信号(LGCTL)および前記スイッチ電圧検出部の検出信号(SWFB)が入力可能に構成された第2論理ゲート(51)と、前記第2論理ゲートの出力が入力可能に構成されたインバータ(52)と、を有する構成としてもよい(第12の構成)。 Further, in the eleventh configuration, the first level shifter (5A) further includes a switch voltage detection section (6) configured to detect a decrease in the switch voltage (SW) occurring at the node (Nsw). , a second logic gate (51) configured to be able to input the low side gate control signal (LGCTL) and the detection signal (SWFB) of the switch voltage detection section; and a second logic gate (51) configured to be able to input the output of the second logic gate. (12th configuration).
 また、上記第11または第12の構成において、前記第3レベルシフタ(3)の出力と前記第1論理ゲート(41)の出力が入力可能に構成された第3論理ゲート(43)と、電源電圧(PVIN)の印加端と前記ハイサイドトランジスタ(HM)のゲートとの間に接続され、前記第3論理ゲートの出力に基づいてオンオフを制御されるように構成されたスイッチ(44)と、をさらに備える構成としてもよい(第13の構成)。 Further, in the eleventh or twelfth configuration, a third logic gate (43) configured to be able to input the output of the third level shifter (3) and the output of the first logic gate (41), and a power supply voltage a switch (44) connected between the application terminal of (PVIN) and the gate of the high-side transistor (HM) and configured to be turned on and off based on the output of the third logic gate; It is good also as a structure further provided (13th structure).
 また、上記第13の構成において、前記電源電圧は、前記入力電圧(PVIN)であることが好ましい(第14の構成)。 Furthermore, in the thirteenth configuration, the power supply voltage is preferably the input voltage (PVIN) (fourteenth configuration).
 また、上記第13または第14の構成において、前記第1レベルシフタ(5A)での入出力間の遅延時間をtd3_1、前記ローサイドゲート信号出力部(53)での遅延時間をtd3_2、前記第3レベルシフタ(3)での入出力間の遅延時間をtd1として、td3_1+td3_2<td1が成立する構成としてもよい(第15の構成)。 Further, in the thirteenth or fourteenth configuration, a delay time between input and output in the first level shifter (5A) is td3_1, a delay time in the low side gate signal output section (53) is td3_2, and a delay time in the third level shifter (5A) is td3_1. It is also possible to adopt a configuration in which td3_1+td3_2<td1 holds, assuming that the delay time between input and output in (3) is td1 (fifteenth configuration).
 また、上記第13から第15のいずれかの構成において、前記第1レベルシフタ(5A)での入出力間の遅延時間をtd3_1、前記第3レベルシフタ(3)での入出力間の遅延時間をtd1、前記第2レベルシフタ(8)での入出力間の遅延時間をtd2として、td1<td3_1+td2が成立する構成としてもよい(第16の構成)。 Further, in any one of the thirteenth to fifteenth configurations, the delay time between input and output at the first level shifter (5A) is td3_1, and the delay time between input and output at the third level shifter (3) is td1. , the delay time between input and output of the second level shifter (8) may be td2, and a configuration may be adopted in which td1<td3_1+td2 holds true (sixteenth configuration).
 また、上記第16の構成において、前記第2レベルシフタ(8)と前記第3レベルシフタ(3)は、同じ構成である構成としてもよい(第17の構成)。 Furthermore, in the sixteenth configuration, the second level shifter (8) and the third level shifter (3) may have the same configuration (seventeenth configuration).
 また、上記第13から第17のいずれかの構成において、前記第3論理ゲート(43)と前記スイッチ(44)との間に接続される遅延回路(45)をさらに備える構成としてもよい(第18の構成)。 Further, in any one of the thirteenth to seventeenth configurations, a configuration may further include a delay circuit (45) connected between the third logic gate (43) and the switch (44). 18 configurations).
 また、本開示の一側面に係る半導体装置(1)は、上記第13から第18のいずれかの構成のゲート駆動回路(10)と、前記ブートキャパシタ(Cb)と、を内蔵して有する(第19の構成)。 Further, a semiconductor device (1) according to an aspect of the present disclosure includes a built-in gate drive circuit (10) having any one of the thirteenth to eighteenth configurations and the boot capacitor (Cb). 19th configuration).
 また、本開示の一側面に係るDC/DCコンバータ(Y)は、上記第1から第8のいずれかの構成のゲート駆動回路(10)と、前記ハイサイドトランジスタ(HM)と、前記ローサイドトランジスタ(LM)と、前記ハイサイドトランジスタと前記ローサイドトランジスタとが接続されるノード(Nsw)に接続される第1端を有するインダクタ(L)と、前記インダクタの第2端に接続される出力コンデンサ(Cout)と、を備える(第20の構成)。 Further, a DC/DC converter (Y) according to one aspect of the present disclosure includes a gate drive circuit (10) having any of the first to eighth configurations, the high side transistor (HM), and the low side transistor. (LM), an inductor (L) having a first end connected to a node (Nsw) to which the high-side transistor and the low-side transistor are connected, and an output capacitor (L) connected to the second end of the inductor. Cout) and (20th configuration).
<その他の変形例>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本開示の技術的範囲は、特許請求の範囲により規定されるものであって、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
<Other variations>
Note that the various technical features disclosed in this specification can be modified in addition to the above-described embodiments without departing from the gist of the technical creation. In other words, the above embodiments should be considered to be illustrative in all respects and not restrictive, and the technical scope of the present disclosure is defined by the claims, and the technical scope of the present disclosure is defined by the claims. It should be understood that all changes that come within the meaning and range of equivalence of the claims are included.
 例えば、本開示は、DC/DCコンバータに限らず、DC/AC変換を行うインバータ回路などにおけるトランジスタの駆動に適用することも可能である。 For example, the present disclosure can be applied not only to a DC/DC converter but also to driving a transistor in an inverter circuit that performs DC/AC conversion.
   1   半導体装置
   2   ロジック部
   3   レベルシフタ
   4   ハイサイドドライバ
   5   ローサイドドライバ
   6   スイッチ電圧検出部
   7   ブートスイッチ
   8   レベルシフタ
   9   ゲート駆動回路
   10  半導体装置(電源制御IC)
   11  エラーアンプ
   12  比較回路
   121  第1コンパレータ
   122  第2コンパレータ
   13  オン時間設定回路
   14  リップル生成回路
   15  加算回路
   16  駆動制御回路
   161  コントローラ
   162、165  レベルシフタ
   163、164  ドライバ
   17  基準電圧生成回路
   18  チャージポンプ
   19  ゼロクロス検出回路
   20  ブート電圧検出回路
   21   AND回路
   22   AND回路
   41   論理ゲート
   42   ハイサイドゲート信号出力部
   43   AND回路
   44   スイッチ
   45   遅延回路
   5A   レベルシフタ
   51   AND回路
   52   インバータ
   53   ローサイドゲート信号出力部
   BS  スイッチ
   BST  ブートストラップ回路
   C1~C4  キャパシタ
   Cb   ブートキャパシタ
   Cout   出力コンデンサ
   CMP  コンパレータ
   HM   ハイサイドトランジスタ
   INV1~INV4  インバータ
   L1、L  インダクタ
   LM   ローサイドトランジスタ
   M1  出力素子(NMOSFET)
   M2  同期整流素子(NMOSFET)
   N1~N7  トランジスタ(NMOSFET)
   P1~P7  トランジスタ(PMOSFET)
   R1~R4、R10~R13  抵抗
   SWO  スイッチ出力段
   Tb   ブート端子
   Tgnd   グランド端子
   Tin   入力電圧端子
   Tsw   スイッチ端子
   X0  スイッチング電源
   X,Y,Z   DC/DCコンバータ
1 Semiconductor device 2 Logic section 3 Level shifter 4 High side driver 5 Low side driver 6 Switch voltage detection section 7 Boot switch 8 Level shifter 9 Gate drive circuit 10 Semiconductor device (power supply control IC)
11 Error amplifier 12 Comparison circuit 121 First comparator 122 Second comparator 13 On-time setting circuit 14 Ripple generation circuit 15 Addition circuit 16 Drive control circuit 161 Controller 162, 165 Level shifter 163, 164 Driver 17 Reference voltage generation circuit 18 Charge pump 19 Zero cross Detection circuit 20 Boot voltage detection circuit 21 AND circuit 22 AND circuit 41 Logic gate 42 High side gate signal output section 43 AND circuit 44 Switch 45 Delay circuit 5A Level shifter 51 AND circuit 52 Inverter 53 Low side gate signal output section BS switch BST Bootstrap circuit C1-C4 Capacitor Cb Boot capacitor Cout Output capacitor CMP Comparator HM High-side transistor INV1-INV4 Inverter L1, L Inductor LM Low-side transistor M1 Output element (NMOSFET)
M2 synchronous rectifier (NMOSFET)
N1~N7 Transistor (NMOSFET)
P1~P7 Transistor (PMOSFET)
R1 to R4, R10 to R13 Resistor SWO Switch output stage Tb Boot terminal Tgnd Ground terminal Tin Input voltage terminal Tsw Switch terminal X0 Switching power supply X, Y, Z DC/DC converter

Claims (10)

  1.  スイッチ出力段を形成する出力素子を駆動するように構成された第1ドライバと、
     前記スイッチ出力段から出力されるスイッチ電圧よりも高いブート電圧を生成して前記第1ドライバに供給するように構成されたブートストラップ回路の少なくとも一部と、
     前記出力素子がオフ状態であるときに前記ブート電圧と前記スイッチ電圧との差分値が下限検出値よりも低くなったことを検出して前記ブート電圧を充電するように構成されたブート電圧検出回路と、
     前記ブート電圧検出回路を動作状態とするか非動作状態とするかを切り替えるように構成されたコントローラと、
     を備える、半導体装置。
    a first driver configured to drive an output element forming a switch output stage;
    at least a portion of a bootstrap circuit configured to generate and supply a boot voltage higher than a switch voltage output from the switch output stage to the first driver;
    A boot voltage detection circuit configured to charge the boot voltage by detecting that a difference value between the boot voltage and the switch voltage has become lower than a lower limit detection value when the output element is in an off state. and,
    a controller configured to switch the boot voltage detection circuit between an active state and a non-active state;
    A semiconductor device comprising:
  2.  前記コントローラは、前記スイッチ出力段を形成する前記出力素子及び整流素子の両オフ状態から前記出力素子をオン状態に切り替える前に所定のブート電圧検出期間を設けて前記ブート電圧検出回路を動作状態とする、請求項1に記載の半導体装置。 The controller provides a predetermined boot voltage detection period to bring the boot voltage detection circuit into an operating state before switching the output element and the rectifier forming the switch output stage from an OFF state to an ON state. The semiconductor device according to claim 1.
  3.  前記コントローラは、前記出力素子及び前記整流素子の両オフ状態が無負荷判定期間に亘って継続しているときに前記電圧検出期間を設ける、請求項2に記載の半導体装置。 The semiconductor device according to claim 2, wherein the controller provides the voltage detection period when both the output element and the rectifier are in an off state over a no-load determination period.
  4.  前記コントローラは、前記ブート電圧検出回路の検出結果に応じて前記ブート電圧の充電が開始された後、少なくとも前記ブート電圧が前記下限検出値を上回るまで前記ブート電圧検出回路の動作状態を維持する、請求項2又は3に記載の半導体装置。 The controller maintains the operating state of the boot voltage detection circuit at least until the boot voltage exceeds the lower limit detection value after charging of the boot voltage is started according to the detection result of the boot voltage detection circuit. The semiconductor device according to claim 2 or 3.
  5.  前記整流素子は、前記出力素子と相補的に駆動されるように構成された同期整流素子である、請求項2~4のいずれか一項に記載の半導体装置。 5. The semiconductor device according to claim 2, wherein the rectifying element is a synchronous rectifying element configured to be driven complementary to the output element.
  6.  前記同期整流素子を駆動するように構成された第2ドライバをさらに備え、
     前記コントローラは、前記出力素子及び前記同期整流素子を相補的に駆動するとともに前記出力素子がオフ状態であって前記同期整流素子がオン状態であるときに前記スイッチ電圧がゼロクロス検出値よりも高くなったことを検出して前記同期整流素子をオフ状態とする、請求項5に記載の半導体装置。
    further comprising a second driver configured to drive the synchronous rectifier,
    The controller drives the output element and the synchronous rectifier in a complementary manner, and the switch voltage becomes higher than a zero-cross detection value when the output element is in an off state and the synchronous rectifier is in an on state. 6. The semiconductor device according to claim 5, wherein said synchronous rectifying element is turned off by detecting that said synchronous rectifying element is turned off.
  7.  前記ブート電圧検出回路は、前記ブート電圧と前記スイッチ電圧との前記差分値が前記下限検出値よりも低くなったことを検出して前記同期整流素子をオン状態とする、請求項5又は6に記載の半導体装置。 The boot voltage detection circuit detects that the difference value between the boot voltage and the switch voltage has become lower than the lower limit detection value and turns on the synchronous rectifier. The semiconductor device described.
  8.  前記ブート電圧検出回路は、前記ブート電圧と前記スイッチ電圧との前記差分値が前記下限検出値よりも低くなったことを検出して前記スイッチ出力段に入力される入力電圧よりも高い昇圧電圧を前記ブート電圧の印加端に印加する、請求項1~6のいずれか一項に記載の半導体装置。 The boot voltage detection circuit detects that the difference value between the boot voltage and the switch voltage has become lower than the lower limit detection value, and outputs a boosted voltage higher than the input voltage input to the switch output stage. 7. The semiconductor device according to claim 1, wherein the boot voltage is applied to the application terminal.
  9.  前記ブート電圧検出回路は、第1抵抗及び第2抵抗と、ゲート抵抗と、Pチャネル型の第1トランジスタ及び第2トランジスタと、Nチャネル型の第3トランジスタ及び第4トランジスタと、を含み、
     前記第1抵抗の第1端は、前記ブート電圧の印加端に接続されており、
     前記第1抵抗の第2端は、前記第1トランジスタのソースに接続されており、
     前記ゲート抵抗の第1端は、前記スイッチ電圧の印加端に接続されており、
     前記ゲート抵抗の第2端は、前記第1トランジスタのゲートに接続されており、
     前記第1トランジスタのドレインは、前記第3トランジスタのドレインに接続されており、
     前記第2トランジスタのソース及び前記第3トランジスタのゲートは、いずれも前記スイッチ出力段に入力される入力電圧の印加端に接続されており、
     前記第2トランジスタのドレイン、前記第3トランジスタのソース、及び、前記第2抵抗の第1端は、いずれもノード電圧の印加端に接続されており、
     前記第2抵抗の第2端は、前記第4トランジスタのドレインに接続されており、
     前記第4トランジスタのソースは、接地端に接続されており、
     前記ブート電圧検出回路は、前記ノード電圧に応じたブート正常検出信号を出力し、
     前記コントローラは、前記ブート電圧検出回路を動作状態とするときに前記第2トランジスタをオフ状態として前記第4トランジスタをオン状態とし、前記ブート電圧検出回路を非動作状態とするときに前記第2トランジスタをオン状態として前記第4トランジスタをオフ状態とする、請求項1~8のいずれか一項に記載の半導体装置。
    The boot voltage detection circuit includes a first resistor and a second resistor, a gate resistor, a P-channel type first transistor and a second transistor, and an N-channel type third transistor and a fourth transistor,
    A first end of the first resistor is connected to an application end of the boot voltage,
    a second end of the first resistor is connected to a source of the first transistor;
    A first end of the gate resistor is connected to an application end of the switch voltage,
    A second end of the gate resistor is connected to the gate of the first transistor,
    The drain of the first transistor is connected to the drain of the third transistor,
    The source of the second transistor and the gate of the third transistor are both connected to an application terminal of an input voltage input to the switch output stage,
    The drain of the second transistor, the source of the third transistor, and the first end of the second resistor are all connected to a node voltage application end,
    a second end of the second resistor is connected to a drain of the fourth transistor,
    The source of the fourth transistor is connected to a ground terminal,
    The boot voltage detection circuit outputs a boot normality detection signal according to the node voltage,
    The controller is configured to turn off the second transistor and turn on the fourth transistor when the boot voltage detection circuit is in an active state, and to turn off the second transistor when the boot voltage detection circuit is in an inactive state. 9. The semiconductor device according to claim 1, wherein the fourth transistor is turned on and the fourth transistor is turned off.
  10.  請求項1~9のいずれか一項に記載の半導体装置を備え、前記スイッチ出力段を駆動して入力電圧から所望の出力電圧を生成する、スイッチング電源。 A switching power supply comprising the semiconductor device according to any one of claims 1 to 9, which drives the switch output stage to generate a desired output voltage from an input voltage.
PCT/JP2023/015759 2022-05-25 2023-04-20 Semiconductor device and switching power supply WO2023228635A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022085315 2022-05-25
JP2022-085315 2022-05-25
JP2022-089611 2022-06-01
JP2022089611 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023228635A1 true WO2023228635A1 (en) 2023-11-30

Family

ID=88919175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015759 WO2023228635A1 (en) 2022-05-25 2023-04-20 Semiconductor device and switching power supply

Country Status (1)

Country Link
WO (1) WO2023228635A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023269A (en) * 2012-07-18 2014-02-03 Renesas Electronics Corp Semiconductor integrated circuit and method of operating the same
JP2019134595A (en) * 2018-01-31 2019-08-08 ローム株式会社 Switching circuit, semiconductor device, dc/dc converter
JP2019537417A (en) * 2016-12-01 2019-12-19 エフィシエント パワー コンヴァーション コーポレーション Bootstrap capacitor overvoltage management circuit for power converter based on GaN transistor
JP2021090272A (en) * 2019-12-03 2021-06-10 ローム株式会社 Power supply control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023269A (en) * 2012-07-18 2014-02-03 Renesas Electronics Corp Semiconductor integrated circuit and method of operating the same
JP2019537417A (en) * 2016-12-01 2019-12-19 エフィシエント パワー コンヴァーション コーポレーション Bootstrap capacitor overvoltage management circuit for power converter based on GaN transistor
JP2019134595A (en) * 2018-01-31 2019-08-08 ローム株式会社 Switching circuit, semiconductor device, dc/dc converter
JP2021090272A (en) * 2019-12-03 2021-06-10 ローム株式会社 Power supply control device

Similar Documents

Publication Publication Date Title
US7538531B2 (en) Drive circuit and switching regulator comprising the same
US11251691B2 (en) Floating power supply for a driver circuit configured to drive a high-side switching transistor
US6812782B2 (en) Switch mode converter that allows 100% duty cycle on gate driver
JP4527480B2 (en) Method and circuit for optimizing power efficiency in a DC-DC converter
CN110176859B (en) Switching power supply
JP4976086B2 (en) Buck-boost DC-DC converter
JP2019514330A (en) DC-DC converter and control circuit
JPH1189222A (en) Voltage converter circuit
JP2008079360A (en) Boosting converter and semiconductor integrated circuit
EP2277256A1 (en) Step-down switching regulator
JP2005304226A (en) Power supply driver circuit and switching power supply device
JP2002281743A (en) Semiconductor integrated circuit and portable electronic apparatus
US20100085776A1 (en) Switching power supply apparatus
US20160065074A1 (en) Dc-dc converter and control method for the same
JP2007329748A (en) Switching element controller
US11784567B2 (en) Synchronization of an electronic device
JP2010154706A (en) Control circuit and method of switching regulator, and switching regulator using the same
US20100085111A1 (en) Charge pump-type voltage booster circuit and semiconductor integrated circuit device
WO2023228635A1 (en) Semiconductor device and switching power supply
JP2012115039A (en) Control circuit of switching power supply, and switching power supply and electronic using the same
WO2022047795A1 (en) Buck switching power supply, electronic device, and control method
JP4098494B2 (en) Switching power supply
WO2023223679A1 (en) Semiconductor device and switching power supply
WO2023090029A1 (en) Power supply control device and switching power supply
JP7216846B1 (en) Control circuit for power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811513

Country of ref document: EP

Kind code of ref document: A1