WO2023228498A1 - 人流予測装置、人流予測プログラム、および、人流予測方法 - Google Patents

人流予測装置、人流予測プログラム、および、人流予測方法 Download PDF

Info

Publication number
WO2023228498A1
WO2023228498A1 PCT/JP2023/007150 JP2023007150W WO2023228498A1 WO 2023228498 A1 WO2023228498 A1 WO 2023228498A1 JP 2023007150 W JP2023007150 W JP 2023007150W WO 2023228498 A1 WO2023228498 A1 WO 2023228498A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
time period
target area
traffic volume
point
Prior art date
Application number
PCT/JP2023/007150
Other languages
English (en)
French (fr)
Inventor
健太 石井
英里香 田中
大輔 松原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023228498A1 publication Critical patent/WO2023228498A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a people flow prediction device, a people flow prediction program, and a people flow prediction method.
  • Patent Document 1 describes a people flow prediction system using a learning model, which uses people flow data observed on a certain field, divides the field into zones such as a grid, and then uses information on the inflow and outflow of people between each zone. , discloses a method of predicting the flow of people at the current time based on data at a time before the prediction time on the same field.
  • Patent Document 2 uses a model that converts the surrounding environment of the prediction target into features and learns the relationship between the features and the movement/stasis behavior of the prediction target. It describes a method that can predict the distribution of people even under specific conditions such as knowing the traffic volume at a time before the prediction target time.
  • JP2020-9124A Japanese Patent Application Publication No. 2020-194255
  • Patent Document 1 can predict trends in the flow of people depending on the time of day, but it requires the traffic volume of the previous time period as input information and cannot take into account the impact of measures on the flow of people.
  • the invention described in Patent Document 2 does not require the traffic volume of the previous time period as input information when predicting the flow of people, but it is not possible to evaluate the impact of measures implemented in limited time periods on the flow of people. It is also not possible to take into account the effects that a policy has on the behavior of people who are not near the implementation location.
  • an object of the present invention is to appropriately evaluate the effect on the flow of people of a measure that is implemented only in a limited time period without using the traffic volume of the previous time period as input information.
  • the human flow prediction device of the present invention includes a generated traffic volume extraction unit that acquires the generated traffic volume within the prediction target area, and a generated traffic volume extraction unit that acquires the generated traffic volume within the prediction target area, and a measure to be evaluated within the prediction target area during the implementation time period.
  • a measure registration unit that reflects the feature values of the implementation points, and a model that has been learned by associating people flow information including movement and stagnation by time zone with the feature values of each point within the prediction target area, registers the measures.
  • the feature amounts in the prediction target area for each time period set by the unit and the generated traffic volume in the prediction target time period acquired by the generated traffic volume extraction unit are input, and each prediction of the prediction target area is performed. It includes a people flow prediction unit that predicts the travel route of the target person or the traffic volume at each point.
  • the human flow prediction program of the present invention includes a procedure for extracting the amount of traffic generated within the prediction target area on a computer, a procedure for reflecting the measure to be evaluated in the feature amount of the implementation point within the prediction target area during the implementation time period, A model learned by associating people flow information including movement and stagnation for each time period with the feature values of each point within the prediction target area, and a model learned by associating the flow information including movement and stagnation for each time period with the feature values of each point within the prediction target area, and the extracted This is for executing a procedure for predicting the movement route of each prediction target person or the traffic volume at each point in the prediction target area based on the traffic volume generated in the prediction target time period.
  • the people flow prediction method of the present invention includes the steps of receiving policy information in an input device, and using the policy information and the traffic volume generated within the prediction target area as input, and using a route selection model to determine the movement route of each predicted target person and each point. and displaying the predicted travel route or the traffic volume within the prediction target area on a map showing the prediction target area so as to display the predicted travel route or the traffic volume.
  • the method includes the step of displaying a prediction result screen in which the prediction target time period is clearly displayed in a display mode according to the amount. Other means will be explained in the detailed description.
  • FIG. 1 is a block diagram showing the overall configuration of a people flow prediction system according to the present embodiment.
  • FIG. 2 is a block diagram showing the hardware configuration of the people flow prediction system.
  • FIG. 2 is an explanatory diagram of a configuration of a network database and an example of data.
  • FIG. 2 is an explanatory diagram of a configuration of a human flow database and an example of data. It is a flowchart of the model learning process performed by the people flow prediction system.
  • FIG. 1 is a diagram showing an example of a recurrent neural network. It is a flowchart of the people flow prediction process performed by the people flow prediction system.
  • FIG. 2 is an explanatory diagram of a measure registration screen output by the people flow prediction system. It is an example of an explanatory diagram of a prediction result screen outputted by the people flow prediction system. It is another example of the explanatory diagram of the prediction result screen output by the people flow prediction system.
  • FIG. 1 is a block diagram showing the overall configuration of a people flow prediction system 100 according to this embodiment. The actual hardware configuration will be described later using FIG. 2.
  • the human flow prediction system 100 of this embodiment is an information processing system including an input device 101, a display device 102, and a server computer 103.
  • the input device 101 is an input interface, such as a mouse, keyboard, or touch device, for transmitting user operations to the server computer 103.
  • the display device 102 is an output interface such as a liquid crystal display, and is used for displaying prediction results of the server computer 103, interactive operations with the user, and the like.
  • the input device 101 and the display device 102 may be configured as an integrated touch panel display.
  • the display device 102 displays a policy registration screen 701 shown in FIG. 8, which will be described later. Operations on the buttons on the policy registration screen 701 are performed by the user operating the input device 101.
  • the server computer 103 is a computer that functions as a human flow prediction device, and is configured to include a learning section 104, a prediction section 105, and a time-series-based route selection model 110 generated by the learning section 104.
  • the learning unit 104 includes a network database 106 , a human flow database 107 , a map matching unit 108 , and a model learning unit 109 .
  • the prediction unit 105 includes a policy registration unit 111, a generated traffic volume extraction unit 112, and a people flow prediction unit 113. Further, a time series consideration type route selection model 110 is stored in a predetermined storage area of the server computer 103.
  • the human flow database 107 stores trajectory data that is time-series data of the position coordinate points of each observation subject.
  • the network database 106 stores network data of the prediction target area.
  • the map matching unit 108 receives as input the trajectory data of the people flow database 107 and the network data of the prediction target area of the network database 106, and converts the trajectory data, which is time series data of position coordinate points, into a time series of passing links on the network. Convert to data (hereinafter referred to as link transition series)
  • the trajectory data is time-series data of observation information including the position coordinates and speed of a person at each observation time.
  • the trajectory data is obtained by observing the position of a communication device such as a mobile phone held by each observation subject using GPS (Global Positioning System), Wi-Fi (registered trademark) positioning, or the like.
  • network data is a graph in which intersections in the prediction target area are nodes and roads are links. It includes link data to connect and link-specific feature amounts (hereinafter referred to as link feature amounts).
  • link feature amounts link-specific feature amounts
  • the prediction target area refers to the area in which the user wants to make predictions.
  • the prediction target area is an area where nodes and links can be obtained, where there is trajectory data that can be used for learning, and where there are node features and link features (hereinafter referred to as network features) that can be obtained. It is.
  • the node feature refers to environmental information linked to a node, such as the presence or absence of a traffic light at the intersection corresponding to the node, the number of connected roads, etc.
  • the link feature amount refers to environmental information associated with a link, such as the width and length of the road corresponding to the link, the number of stores and parks adjacent to the road, and the like. Note that the data structure of the node feature amount and link feature amount will be described later.
  • the map matching unit 108 associates trajectory data with network data within the prediction target area, and converts the trajectory data, which is coordinate information, into a transition sequence of passing links or passing nodes on the network.
  • the map matching unit 108 uses an identifiable ID (hereinafter referred to as "trip information") in order to manage information summarizing a series of links passed through each individual or a transition sequence of passed nodes and their respective transit times (hereinafter referred to as trip information).
  • trip information an identifiable ID
  • This processing can be realized using any method, such as a known method. For example, the following is an example of a map matching method for trajectory data including observation errors.
  • the people flow prediction system 100 cannot determine only one link to pass through. When the coordinate points of the trajectory are missing, there are cases where the people flow prediction system 100 is unable to determine the passing link.
  • the people flow prediction system 100 connects each person's passing link with a subsequent passing link, or connects a passing link with a link whose total distance between the coordinate point in the connection trajectory data and the candidate link is small. This is handled by a rule-based algorithm.
  • the map matching unit 108 sends the created series of passing links of each individual or the transition series of passing nodes and each passing time to the model learning unit 109, and the trip data management information 420 of each trip information to the people flow database 107. Hand over.
  • the model learning unit 109 associates the trip information whose departure time is the time zone passed from the map matching unit 108 with the network feature amount of each time zone passed from the network database 106, and considers the time series.
  • the time series-based route selection model 110 is generated by learning the parameters of the route selection model 110.
  • Trip information is information on the flow of people, including movement and stagnation for each time period.
  • the network feature amount of each time period passed from the network database 106 is the feature amount of each point within the prediction target area.
  • the model learning unit 109 uses the feature amount of a node that handles environmental information linked to a node and the feature amount of a link that handles environmental information linked to a link as the feature amount of each point for learning the model.
  • the feature quantity of a node is environmental information linked to the node, including the presence or absence of a traffic light at an intersection corresponding to the node and the number of connected roads.
  • the feature amount of the link is environmental information associated with the link, including any one of the width of the road corresponding to the link, the length of the road, the number of stores adjacent to the road, and the number of parks adjacent to the road.
  • the model learning unit 109 is an arbitrary component.
  • the human flow prediction system 100 may not include the model learning unit 109, and may instead be set with a trained time-series consideration type route selection model 110, and is not limited thereto.
  • the time series consideration type route selection model 110 of this embodiment has a graph convolution layer for extracting intermediate features.
  • the graph convolution layer is used for each point for each time period. Input the feature values.
  • the model learning unit 109 inputs the output of the graph convolution layer for each time period to the recurrent neural network of the corresponding time step.
  • intermediate feature values for each time period are associated with information on the flow of people, including movement and stagnation, for each time period.
  • LSTM Long-Short Term Memory
  • the time step of the model corresponds to one step of time series data.
  • the number of link or node transitions tends to increase.
  • a problem with recurrent neural networks is that learning becomes more difficult as the number of transitions increases.
  • the present invention learns the relationship between each time period by assuming that the behavioral preferences of people in the same time period are constant.
  • the model learning unit 109 trains the parameters of the graph convolution layer and LSTM so that this transition probability distribution and the transition probability distribution obtained from the observed link transition sequence become close to each other. Specifically, link transition sequences within trips whose departure times are in the same time zone are used as training data for a recurrent neural network that all have the same time step, and these and the output of the graph pooling layer for each time zone are used as training data. By linking, the parameters of each layer and the parameters of the recurrent neural network are learned simultaneously. The specific calculation flow will be explained in detail in the explanation of FIG.
  • the policy registration unit 111 acquires policy information to be evaluated from the input device 101, and reflects the policy to be evaluated in the feature amount of the implementation point within the prediction target area in the implementation time period.
  • the policy information includes any one of the type of policy, time period for implementing the policy, location of implementing the policy, and scale of implementing the policy. Note that the types of measures to be evaluated are limited to items included in the feature amounts of each point learned in advance.
  • the policy registration unit 111 acquires network data from the network database 106, reflects the policy information acquired from the input device 101 on the network data, and passes the network data to the people flow prediction unit 113.
  • the generated traffic extraction unit 112 acquires trip information from the people flow database 107, totals the number of trips starting from each point in each time period, and passes it to the people flow prediction unit 113.
  • the trip information is the amount of traffic generated in the prediction target time period acquired by the amount of traffic extraction unit 112.
  • the people flow prediction unit 113 can predict the amount of traffic passing through each link or each node in each time period. Furthermore, when the sampled generated traffic volume is aggregated, such as trip information processed by the map matching unit 108, it is possible to predict the traffic distribution passing through each link or each node in each time period. Furthermore, if the amount of traffic occurring at a certain point in each time period can be grasped, it is also possible to predict the amount of traffic passing through each link or each node of people departing from that point. A specific prediction method will be described later in the explanation of the people flow prediction unit 113 and the explanation of FIG. 5.
  • the people flow prediction unit 113 uses the network data received from the policy registration unit 111 and the generated traffic information for each time period to be predicted received from the generated traffic volume extraction unit 112 into a time series consideration type route selection model. 110 to predict the flow of people for each time period.
  • the network data received from the policy registration unit 111 is the feature amount within the prediction target area for each time period.
  • the people flow prediction unit 113 constructs a network graph in which intersections in the prediction target area are nodes and roads are links as feature quantities, and each node or each link is treated as a point.
  • the feature amount of a node is environmental information linked to the node, including the presence or absence of a traffic light at an intersection corresponding to the node, or the number of roads connected to the node.
  • the feature quantity of a link includes any one of the width of the road corresponding to the link, the length of the road, the number of stores adjacent to the road, and the number of parks adjacent to the road, and is environmental information linked to the link.
  • the people flow prediction unit 113 uses the parameters of the time-series-based route selection model 110 learned by the model learning unit 109 and the generated traffic information for each time period to be predicted, into the time-series-based route selection model 110. to predict each link transition probability.
  • Each link transition probability is a prediction of the movement route of each agent (person to be predicted) in the prediction target area or the traffic volume at each point.
  • the people flow prediction unit 113 calculates the passing traffic volume or passing traffic volume distribution of each link or each node for each time slot based on the link transition probability for each time slot and the generated traffic volume or generated traffic volume distribution at each point. can do. This calculation can be realized using any method, such as a known method.
  • the people flow prediction unit 113 predicts the route that each prediction target person will select from the selection probability of the travel route to each departure point for each time period.
  • the human flow prediction unit 113 randomly generates a number of routes proportional to each generated traffic volume based on the probability of selecting a travel route for each departure point for each time period.
  • the people flow prediction unit 113 may adjust the route pattern to be generated depending on the amount of calculation. In that case, the people flow prediction unit 113 multiplies the total number of agents (persons to be predicted) who have selected the route of each pattern by a constant so that it matches each generated traffic volume.
  • the people flow prediction unit 113 assumes that the agent (the person to be predicted) moves at a constant speed on the generated route, and calculates the coordinates of the passing position on the route and its passing time information (hereinafter referred to as movement time) at a predetermined time interval. point information). Note that whether or not the human flow prediction unit 113 performs a movement route prediction process can be changed in advance, and does not necessarily have to predict a route.
  • the people flow prediction unit 113 outputs the predicted passing traffic volume of each link and each node for each time period, passing traffic volume distribution, or moving point information to the display device 102.
  • link traffic volume when displaying link traffic volume, there may be a method of expressing the size of traffic volume using, for example, the thickness of the link or the darkness of the color.
  • a method of expressing points moving at a constant velocity on the selected route using animation can be considered. Details of the screen configuration will be described later using FIGS. 9 and 10.
  • FIG. 2 is a block diagram showing the hardware configuration of the people flow prediction system 100.
  • the server computer 103 is, for example, a general computer having a processor 201 and a storage device 202 that are interconnected.
  • Storage device 202 is configured by any type of storage medium.
  • storage device 202 may include semiconductor memory and hard disk drives.
  • the processes executed by each of the above functional units are actually executed by the processor 201 according to instructions written in the processing program 203.
  • the network database 106 and the people flow database 107 are included in the storage device 202 .
  • display on the display device 102 is performed by the processor 201 generating data for display and outputting it to the display device 102, and the display device 102 performing display according to the data.
  • the server computer 103 further includes a network interface device 204 connected to the processor 201.
  • FIG. 3 is an explanatory diagram of the configuration and data example of the network database 106. Although a table format configuration example is shown here, the data format is not limited to the table format and may be any arbitrary data format.
  • Network database 106 includes node information 300 and link information 310 shown in FIG. The table configuration and field configuration of each table in FIG. 3 are necessary for implementing the present invention, and tables and fields may be added depending on the application.
  • the node information 300 has a node ID field 301, a latitude field 302, a longitude field 303, and a node feature field 304.
  • the node ID field 301 holds identification information (hereinafter referred to as node ID) of each node.
  • the latitude field 302 holds latitude information of the position coordinates of each node.
  • the longitude field 303 holds longitude information of the position coordinates of each node.
  • the node feature field 304 holds feature amounts (hereinafter referred to as node feature amounts) associated with each node. If the node feature amount differs depending on the time period, a node feature amount field 304 may be added for each time period.
  • examples of the node feature amount include the presence or absence of a signal at the intersection corresponding to each node, the number of connected roads, the presence or absence of a crosswalk, etc.
  • the first line [0, 3, 0] of the node feature field 304 indicates that the node with node ID 1 has no traffic lights, the connecting road is a three-way intersection, and there is no crosswalk. There is.
  • the link information 310 has a link ID field 311, a starting node field 312, an end node field 313, and a link feature field 314.
  • the link ID field 311 holds identification information (hereinafter referred to as link ID) of each link.
  • the origin node field 312 holds the node ID of the origin node of each link.
  • the end node field 313 holds the node ID of the end node of each link.
  • the link feature field 314 holds feature amounts (hereinafter referred to as link feature amounts) associated with each link. If the link feature amount differs depending on the time period, a link feature amount field 314 may be added for each time period.
  • examples of link feature amounts include the width and length of the road corresponding to each link, the number of stores and parks adjacent to the road, and the like. [10, 150, 15, 1] in the first line of the link feature field 314 indicates that the link with link ID 1 has a width of 10 m, a road length of 150 m, 15 adjacent stores, and 1 adjacent park. This shows that.
  • FIG. 4 is an explanatory diagram of the configuration and data example of the people flow database 107.
  • the people flow database 107 includes trajectory data management information 400, link transition data management information 410, and trip data management information 420 shown in FIG.
  • the table configuration and field configuration of each table in FIG. 4 are necessary for implementing the present invention, and tables and fields may be added depending on the application.
  • the trajectory data management information 400 has an agent ID field 401, a data acquisition time field 402, a latitude field 403, and a longitude field 404.
  • the agent ID field 401 holds identification information (hereinafter referred to as agent ID) of the target person who acquired each trajectory data.
  • the data acquisition time field 402 holds information on the time when the trajectory point was acquired.
  • the latitude field 403 holds latitude information of the position where the trajectory point was acquired.
  • Longitude field 404 holds longitude information of the location where the trajectory point was acquired.
  • the link transition data management information 410 has a trip ID field 411, a link ID field 412, a link departure time field 413, a required time field 414, and a speed field 415.
  • the trip ID field 411 holds identification information (hereinafter referred to as trip ID) of the trip to which each link transition series belongs.
  • the link ID field 412 holds a link ID that is identification information of each link that the agent has passed through.
  • Link departure time field 413 holds the time at which the agent departed from the starting point of each traversed link.
  • the required time field 414 holds the time required for the agent to traverse each link.
  • the unit of time required is seconds, but it may be changed depending on the means of transportation of the object being observed.
  • the speed field 415 holds the speed at which each agent passes through each link.
  • the unit of speed in the speed field 415 is km/h, but it may be changed depending on the means of transportation of the object being observed.
  • the trip data management information 420 has an agent ID field 421, a trip ID field 422, a movement start time field 423, a movement end time field 424, a departure link field 425, and an arrival link field 426.
  • the agent ID field 421 holds the agent ID of the agent that made the trip for each trip ID.
  • Trip ID field 422 holds the trip ID of each trip.
  • the travel start time field 423 holds the time at which each trip started. Travel end time field 424 holds the time each trip ended the trip.
  • the departure link field 425 holds a link ID, which is the identifier of the link from which each trip originates.
  • Arrival link field 426 holds a link ID, which is the identifier of the link that is the destination of each trip.
  • FIG. 5 is a flowchart of the model learning process executed by the people flow prediction system 100.
  • a method for learning and predicting link transition sequences will be described below. However, it is also possible to learn and predict node transition sequences using a similar method.
  • the model learning unit 109 obtains link transition data from the map matching unit 108 (step S501).
  • the model learning unit 109 acquires node information and link information as network features from the network database 106 (step S502).
  • the people flow prediction system 100 repeatedly executes steps S504 to S507, which are processes related to a predetermined time period t (steps S503 and S508).
  • the method for determining the time slot width is to train the model for each of multiple time slot widths, compare the estimation accuracy after learning between the time slot widths, and decide on the time slot width with the best estimation accuracy.
  • Possible methods include conducting a grid search, and manually interpreting and deciding on commuting hours, lunch hours, and return home hours, depending on the characteristics of the city being analyzed.
  • the people flow prediction system 100 performs graph convolution processing in the graph convolution layer.
  • the number of graph convolutions is given as L, and the l (l ⁇ A, 0 ⁇ l ⁇ L)-th graph convolution process is calculated as follows (step S504).
  • a ⁇ t Adjacency matrix representing the connection relationship of links in time period t
  • D ⁇ Degree matrix whose diagonal elements are the degrees of each link and are 0 otherwise
  • Nonlinear activation such as ReLU (Rectified Linear Unit) Function
  • W (l) The first parameter that is the learning target of the time series-based route selection model.
  • H t (0) is the feature amount of each link in the time period t equal to X t . is a feature matrix representing
  • FIG. 6 shows an example of the LSTM network configuration according to this embodiment.
  • information flows from bottom to top.
  • a recurrent join recursive join
  • + surrounded by a circle represents an operation that takes the sum of each component
  • an ⁇ surrounded by a circle represents an operation that takes the product of each component.
  • the solid line is the flow that works immediately.
  • the dotted line represents a time delay, indicating that it affects the next time.
  • the LSTM is composed of a storage element called a memory cell, a block input 901, an input gate 902, an output gate 903, and a forget gate 904.
  • the weight W in corresponding to the input and the weight R in corresponding to the recursive input are multiplied by the corresponding inputs, the results are added, and then processed by a sigmoid function.
  • the weight W out corresponding to the input and the weight R out corresponding to the recursive input are multiplied by the corresponding inputs, the results are added, and then processed by a sigmoid function.
  • the input W f and the recursive input R f are input to the forgetting gate 904 and added, and processed using a sigmoid function.
  • the input to the cell is a normal neural network input. Inputs are also added to three other gates. The inputs to the three gates are used to open and close the gates.
  • the three gates are used to control how much information passes through. If the gate is closed, that is, it approaches 0, it becomes difficult for information to pass through. On the other hand, the state where the gate is open is a positive state and the sigmoid function is close to 1.
  • the forget gate 904 When the forget gate 904 is open, the cell's own state one time ago will affect its own state. In other words, the role of the forgetting gate 904 is to determine the extent to which the immediately preceding influence is taken into account. Normal recurrent nets do not have gates. In LSTM, the gate is given an active role and the gate itself learns the coupling coefficient to control the flow of information.
  • the people flow prediction system 100 calculates the output of the LSTM in the time period t using equations (3) to (8) below (step S505).
  • W z Weight corresponding to the input value of the LSTM block input
  • R z Weight corresponding to the recursive input value of the LSTM block input
  • z t Output value of the LSTM block input in time period t
  • W in Weight corresponding to the input value of the LSTM input gate
  • R in Weight corresponding to the recursive input value of the LSTM input gate it : Output value of the LSTM input gate in time period t ⁇ s : Sigmoid function
  • W f Weight corresponding to the input value of the forgetting gate of LSTM
  • c t Temporary value of LSTM in time period t
  • c t-1 Temporary value of LSTM in time period t-1
  • W out Weight corresponding to the input value of the output gate of LSTM
  • n t Index of a link transition belonging to a trip whose link departure time is time zone t k (nt) : Link existing before the transition of a link transition belonging to a trip whose link departure time is time zone t a (nt ) : Link that exists after the transition of the relevant link transition
  • the model learning unit 109 completes the calculation of the loss function and proceeds to step S509. Based on this, the model learning unit 109 updates the second parameters of the learning targets W (l) , W z , W in , W f , W out and R z , R in , R f , R out (Step S509).
  • step S510 the model learning unit 109 determines whether learning has converged. If the learning has not converged (No), the model learning unit 109 returns to step S503 and updates the parameters again. On the other hand, if the learning has converged (Yes), the model learning unit 109 proceeds to step S511.
  • step S511 the model learning unit 109 stores the learning parameters of the model obtained through the above learning in the time series consideration type route selection model 110, and then ends the process of FIG.
  • the model learning unit 109 generates a first parameter indicating the degree of influence of the feature amount of each point in each time period on a probability distribution representing the probability of moving from each point to an adjacent point or staying at a point; , a second parameter indicating the degree of influence that the relationship between the feature value of each point before the prediction target time period and the probability of the corresponding time period has on the probability distribution of the prediction target time period is defined as a second parameter in the target area.
  • the system learns so that the probability distribution of the target time period predicted from the feature values of each point matches the probability distribution of the target time period obtained from the information on the observed flow of people, which is training data.
  • This training data is obtained by mapping multiple trajectory data expressed as a time series of observation information, including position coordinates and speed at each observation time, to positions on a network graph and converting them into a transition sequence of nodes or links. be.
  • FIG. 7 is a flowchart of the crowd flow prediction process executed by the crowd flow prediction system 100.
  • the people flow prediction unit 113 acquires node information and link information that reflect the study measures as network features from the policy registration unit 111, and obtains the generated traffic volume at each point for each time period from the generated traffic volume extraction unit 112. is acquired (step S601).
  • the human flow prediction system 100 executes steps S603 to S608, which are processes in a predetermined time period (steps S602 and S609).
  • the people flow prediction unit 113 first calculates the evaluation value of each link using the network feature amount and the time series consideration type route selection model 110 as shown in the above-mentioned equation (8). Thereby, the people flow prediction unit 113 calculates the transition probability from link k to link a (a ⁇ A(k)) connected to this link k, as in the above-mentioned equation (9) (step S603).
  • the people flow prediction unit 113 calculates the traffic volume of each link from the link transition probability matrix that stores the generated traffic volume and each link transition probability (step S604).
  • the people flow prediction unit 113 can calculate the link traffic volume from the generated traffic volume and the link transition probability matrix using any method such as traffic volume allocation using an absorption Markov process or other known methods.
  • step S605 the people flow prediction unit 113 determines whether or not to predict the route, and branches. Note that this determination flag should be specified in advance. If the human flow prediction unit 113 does not predict the route (No), the process advances to step S609. On the other hand, if the people flow prediction unit 113 makes a prediction including the route (Yes), the process proceeds to step S606.
  • step S607 the people flow prediction unit 113 executes the process of step S607 for each traffic volume occurrence point.
  • step S607 the people flow prediction unit 113 randomly generates as many routes as the number of generated traffic volumes according to the link transition probability matrix.
  • step S608 the human flow prediction unit 113 repeats all the traffic generation points, and then proceeds to step S609. If there is an unprocessed traffic generation point, the people flow prediction unit 113 returns to step S606.
  • step S609 after the people flow prediction unit 113 repeats the process for all time periods, the process proceeds to step S610. If there is any unprocessed time slot processing, the people flow prediction unit 113 returns to step S602.
  • step S610 the people flow prediction unit 113 displays the prediction result and ends the process of FIG. 7.
  • the people flow prediction unit 113 displays the link traffic volume
  • a method of expressing points moving at a constant velocity on the selected route using animation can be considered. Details of the surface configuration will be described later using FIGS. 9 and 10.
  • FIG. 8 is an explanatory diagram of the policy registration screen 701 outputted to the display device 102 by the people flow prediction system 100.
  • the people flow prediction unit 113 displays a policy registration screen 701 on which policy information can be input on a map showing the prediction target area.
  • the policy registration screen 701 shown in FIG. 8 includes a map area 702, a policy registration area 703, and a scale management area 704.
  • a map showing the prediction target area is displayed in the map area 702, and a policy registration pin 702A and a simulation start button 702B are also displayed. Information on measures can be input into this map area 702.
  • the policy registration pin 702A displays a number whose identification number (implementation policy ID) is the order of policy registration.
  • the measure registration pin 702A is displayed when the user selects a location where the user wants to implement the measure.
  • the simulation start button 702B becomes operable.
  • the crowd flow prediction unit 113 executes a crowd flow prediction process, and transitions to a prediction result screen 801 shown in FIGS. 9 and 10.
  • the user can change the scale and display position by operating the map area itself. At this time, the angle of the displayed map may be changeable. This makes it easier to consider measures according to the location of major facilities, rivers, and other distinctive locations.
  • an implementation measure ID 703A is provided for each implementation measure ID. Is displayed.
  • the user operates the policy type selection button 703B to select the policy type to be implemented at the position of the policy registration pin 702A corresponding to each implementation policy ID 703A.
  • the selectable policy types are limited to those included in the network features used for learning by the learning unit 104.
  • the options of the policy scale selection button 703D are determined to be those corresponding to the policy, and the user selects the implementation scale of the policy by operating the policy scale selection button 703D.
  • the user operates the implementation time slot selection button 703C to select the time slot to implement from among the time slots preset by the learning unit 104. At this time, it is also possible to select multiple time periods.
  • a scale management area 704 manages the scale of the map displayed in the map area 702.
  • the scale of the map being displayed is displayed in a map area 702 and buttons that can change the size of the scale.
  • 9 and 10 are other examples of explanatory diagrams of the prediction result screen 801 outputted to the display device 102 by the people flow prediction system 100.
  • the prediction result screen 801 shown in FIGS. 9 and 10 includes a prediction result display area 802, an animation control area 803, a policy registration area 703, and a scale management area 704.
  • the prediction result display area 802 shown in FIG. 9 displays a traffic volume line 802A in which the thickness of the line or the shade of color is changed according to the traffic volume of each street in the prediction result, depending on the format you want to display. be done.
  • the people flow prediction unit 113 displays a prediction result screen 801 on a map showing the prediction target area, in which each link of the prediction target area is displayed in a display mode according to the traffic volume at each point for each predicted time period. do.
  • a moving point 802B moving on the predicted route and a moving trajectory 802C several meters before are displayed.
  • the human flow prediction unit 113 displays a prediction result screen that displays the movement route of each person to be predicted for each predicted time period in the prediction target area on a map indicating the prediction target area in a display mode according to the movement route. 801 is displayed.
  • the display mode according to the moving route displays the moving route using points indicating positions at each point in the moving route and the locus to that position.
  • a play button 803A for controlling playback/stop of the animation to control the traffic flow line 802A, moving point 802B, and moving trajectory 802C that change over time, and display timing are displayed and specified.
  • a seek bar 803B that allows you to rewind the animation, a movement trajectory 803C that allows you to rewind the animation, and a time zone designation button 803D that allows you to select the time zone to display are displayed.
  • the display mode according to the traffic volume is expressed by a change in line thickness or color on the road at the predicted location.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is also possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
  • Part or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware such as an integrated circuit.
  • Each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that realize each function can be stored in storage devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as flash memory cards and DVDs (Digital Versatile Disks). can.
  • control lines and information lines are shown to be considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all components may be considered interconnected.

Abstract

限定された時間帯でしか実施しない施策が人流に与える効果を適切に評価する。サーバ計算機(103)は、予測対象領域内の発生交通量を取得する発生交通量抽出部(112)と、評価対象となる施策を、実施時間帯における予測対象領域内の実施地点の特徴量に反映する施策登録部(111)と、時間帯ごとの移動および停滞を含む人流情報と予測対象領域内の各地点の特徴量とを対応付けて学習した時系列考慮型経路選択モデル(110)に、施策登録部(11)により設定された時間帯ごとにおける予測対象領域内の特徴量、および、発生交通量抽出部(112)により取得された予測対象の時間帯の発生交通量を入力し、予測対象領域の各予測対象者の移動経路または各地点の交通量を予測する人流予測部(113)を含む。

Description

人流予測装置、人流予測プログラム、および、人流予測方法
 本発明は、人流予測装置、人流予測プログラム、および、人流予測方法に関する。
 近年、都市空間の一時的利用が盛んに行われている。人口減少が進む昨今、キッチンカーの出店や、道路空間を一時的に占有して人のための空間とするパークレットなど、需要に合わせて時間帯を限定した施策の実施は、より重要になると考えられる。このように時間帯を限定した施策を、需要に合わせて実施するためには、施策を実施した効果を事前に検証することが必要となる。
 特許文献1には、学習モデルを用いた人流予測システムとして、あるフィールド上で観測した人流データに対し、フィールドを格子状などにゾーニングしたのち、各ゾーン間における人の流入出情報を用いることで、同フィールド上における予測時点より前の時点におけるデータを根拠として現在時点における人流を予測する手法が開示されている。
 これに対し、特許文献2には、予測対象の周囲の環境を特徴量化し、その特徴量と予測対象の移動・停滞行動との関係性を学習したモデルを用いることで、従来手法で前提とされる予測対象時刻より前の時刻の交通量を把握できているといった特定の条件下でなくとも、人流分布を予測可能な手法が記載されている。
特開2020-9124号公報 特開2020-194255号公報
 特許文献1に記載の発明は、時間帯による人流の傾向変化を予測できるが、前時間帯の交通量を入力情報として必要とし、かつ施策が人流に与える影響を考慮できない。一方で特許文献2に記載の発明は、人流予測時、前時間帯の交通量を入力情報として必要としないが、時間帯を限定して実施する施策が人流に与える影響を評価できず、その施策がその実施場所付近にいない人々の行動に及ぼす影響も考慮できない。
 そこで、本発明は、前時間帯の交通量を入力情報として用いず、限定された時間帯でしか実施しない施策が人流に与える効果を適切に評価することを課題とする。
 前記した課題を解決するため、本発明の人流予測装置は、予測対象領域内の発生交通量を取得する発生交通量抽出部と、評価対象となる施策を、実施時間帯における前記予測対象領域内の実施地点の特徴量に反映する施策登録部と、時間帯ごとの移動および停滞を含む人流情報と前記予測対象領域内の各地点の特徴量とを対応付けて学習したモデルに、前記施策登録部により設定された時間帯ごとにおける前記予測対象領域内の特徴量、および、前記発生交通量抽出部により取得された予測対象の時間帯の発生交通量を入力し、前記予測対象領域の各予測対象者の移動経路または各地点の交通量を予測する人流予測部と、を含む。
 本発明の人流予測プログラムは、コンピュータに、予測対象領域内の発生交通量を抽出する手順、評価対象となる施策を実施時間帯における前記予測対象領域内の実施地点の特徴量に反映する手順、時間帯ごとの移動および停滞を含む人流情報と前記予測対象領域内の各地点の特徴量とを対応付けて学習したモデルと、時間帯ごとにおける前記予測対象領域内の特徴量と、抽出された予測対象時間帯の発生交通量に基づいて、前記予測対象領域の各予測対象者の移動経路または各地点の交通量を予測する手順、を実行させるためのものである。
 本発明の人流予測方法は、入力装置において施策情報を受けつけるステップと、前記施策情報と予測対象領域内の発生交通量を入力として、経路選択モデルを用いて各予測対象者の移動経路および各地点の交通量を予測するステップと、予測された前記移動経路または前記交通量を表示するように、前記予測対象領域を示す地図上に、前記予測対象領域内の予測された前記移動経路または前記交通量に応じた表示態様で、予測対象時間帯を明示した形式で表示した予測結果画面を表示するステップと、を含む。
 その他の手段については、発明を実施するための形態のなかで説明する。
 本発明によれば、前時間帯の交通量を入力情報として用いず、限定された時間帯でしか実施しない施策が人流に与える効果を適切に評価することが可能となる。
本実施形態に係る人流予測システムの全体構成を示すブロック図である。 人流予測システムのハードウェア構成を示すブロック図である。 ネットワークデータベースの構成およびデータ例の説明図である。 人流データベースの構成およびデータ例の説明図である。 人流予測システムが実行するモデル学習処理のフローチャートである。 再帰型ニューラルネットワークの一例を示す図である。 人流予測システムが実行する人流予測処理のフローチャートである。 人流予測システムによって出力される施策登録画面の説明図である。 人流予測システムによって出力される予測結果画面の説明図の一例である。 人流予測システムによって出力される予測結果画面の説明図の別例である。
 以降、本発明を実施するための形態を、各図と数式を参照して詳細に説明する。
 図1は、本実施形態に係る人流予測システム100の全体構成を示すブロック図である。実際のハードウェア構成については、図2を用いて後述する。
 本実施形態の人流予測システム100は、入力装置101、表示装置102、および、サーバ計算機103を備える情報処理システムである。
 入力装置101は、マウス、キーボード、タッチデバイスなど、ユーザの操作をサーバ計算機103に伝えるための入力インタフェースである。表示装置102は、液晶ディスプレイなどの出力インタフェースであり、サーバ計算機103の予測結果の表示、ユーザとの対話的操作などのために用いられる。入力装置101と表示装置102とは、一体化されたタッチパネルディスプレイとして構成されていてもよい。表示装置102は、後述する図8に示す施策登録画面701を表示する。施策登録画面701中のボタンに対する操作は、ユーザが入力装置101を操作することによって行われる。
 サーバ計算機103は、人流予測装置として機能するコンピュータであり、機能構成として、学習部104と、予測部105と、学習部104が生成する時系列考慮型経路選択モデル110を含んで構成される。
 学習部104は、ネットワークデータベース106と人流データベース107とマップマッチング部108とモデル学習部109とを含んで構成される。予測部105は、施策登録部111と、発生交通量抽出部112と、人流予測部113とを含んで構成される。また、サーバ計算機103の所定の記憶領域には、時系列考慮型経路選択モデル110が記憶される。
 以下、学習部104の各機能構成について説明する。
 人流データベース107には、各観測対象者の位置座標点の時系列データである軌跡データが保管されている。ネットワークデータベース106には、予測対象領域のネットワークデータが保管されている。
 マップマッチング部108は、人流データベース107の軌跡データと、ネットワークデータベース106の予測対象領域のネットワークデータを入力として受けつけ、位置座標点の時系列データである軌跡データを、ネットワーク上の通過リンクの時系列データ(以下、リンク遷移系列)に変換する
 軌跡データは、観測時刻ごとの人の位置座標、速度を含む観測情報の時系列データである。ここで、軌跡データは、各観測対象者が保持する携帯電話等の通信機器の位置を、GPS(Global Positioning System)やWi-fi(登録商標)測位等により観測したものを想定する。また、ネットワークデータは、予測対象領域内の交差点をノード、道路をリンクとして張られるグラフであり、時間帯ごとのノードの座標情報、ノード固有の特徴量(以下、ノード特徴量)、ノード間を結ぶリンクデータ、リンク固有の特徴量(以下、リンク特徴量)とを含む。以降、各地点とは、このネットワーク上の各ノードまたは各リンクのことをいう。
 予測対象領域とは、利用者が予測を行いたい領域のことをいう。予測対象領域とは、ノードやリンクが取得可能な領域であり、学習に使用可能な軌跡データが存在し、かつ取得可能なノード特徴量およびリンク特徴量(以下、ネットワーク特徴量)が存在する領域である。
 ここでノード特徴量とは、ノードに対応する交差点の信号の有無や、接続する道路数等のように、ノードに紐づく環境情報を指す。またリンク特徴量とは、リンクに対応する道路の幅員や道路長、道路に隣接する店舗数や公園数等のように、リンクに紐づく環境情報を指す。なお、ノード特徴量とリンク特徴量のデータ構造等については後述する。
 マップマッチング部108は、予測対象領域内において軌跡データとネットワークデータを対応させ、座標情報である軌跡データをネットワーク上の通過リンク、または通過ノードの遷移系列に変換する。その際、マップマッチング部108は、各個人の一連の通過リンク、または通過ノードの遷移系列とその各通過時間をまとめた情報(以下、トリップ情報)を管理するため、識別可能なID(以下、トリップID)を振る。
 この処理は公知の方法など、任意の方法を用いて実現することができる。例えば、観測誤差を含む軌跡データのマップマッチング手法として以下の例が挙げられる。
 軌跡データに観測誤差が含まれている場合、人流予測システム100は、通過リンクを1つに判定できない。軌跡の座標点が欠測している場合、人流予測システム100は、通過リンクの判定が不可能な場合が存在する。これに対し、人流予測システム100は、各個人の通過リンクを、その後の通過リンクと接続させるか、また接続軌跡データ内の座標点と候補リンクとの距離の総和が小さいリンクを通過リンクと接続させるとするというルールベースのアルゴリズムにより対処する。
 マップマッチング部108は、作成した各個人の一連の通過リンク、または通過ノードの遷移系列と各通過時間をモデル学習部109へ、各トリップ情報のうち、トリップデータ管理情報420を人流データベース107へそれぞれ受け渡す。
 モデル学習部109は、マップマッチング部108から受け渡された時間帯を出発時間に持つトリップ情報と、ネットワークデータベース106から受け渡された各時間帯のネットワーク特徴量とを対応付けて、時系列考慮型経路選択モデル110のパラメータを学習して、この時系列考慮型経路選択モデル110を生成する。トリップ情報は、時間帯ごとの移動および停滞を含む人流情報である。ネットワークデータベース106から受け渡された各時間帯のネットワーク特徴量は、予測対象領域内の各地点の特徴量である。
 モデル学習部109は、ノードに紐づく環境情報を扱うノードの特徴量、および、リンクに紐づく環境情報を扱うリンクの特徴量を、モデルを学習するための各地点の特徴量として用いる。ノードの特徴量は、ノードに対応する交差点の信号の有無、接続する道路数を含む前記ノードに紐づく環境情報である。リンクの特徴量は、リンクに対応する道路の幅員、道路長、道路に隣接する店舗数、道路に隣接する公園数のうち何れかを含むリンクに紐づく環境情報である。
 なお、モデル学習部109は、任意の構成要素である。人流予測システム100は、モデル学習部109を備えず、代わりに学習済みの時系列考慮型経路選択モデル110が設定されていてもよく、限定されない。
 本実施形態の時系列考慮型経路選択モデル110は、中間特徴量を抽出するためのグラフ畳み込み層を有する。時系列考慮型経路選択モデル110では、時間帯ごとに、各地点の特徴量からネットワークグラフ上の周囲との関係性に係る中間特徴量を計算するため、グラフ畳み込み層に時間帯ごとの各地点の特徴量を入力する。
 次に、モデル学習部109は、時間帯ごとのグラフ畳み込み層の出力を、対応するタイムステップの再帰型ニューラルネットワークへ入力する。これにより、時間帯ごとの中間特徴量と時間帯ごとの移動および停滞を含む人流情報を対応付けて学習する。本実施形態ではLong-Short Term Memory(LSTM) のモデル構造を用いる場合について説明する。
 従来のLSTM等の再帰型ニューラルネットワークを用いた手法の多くは、モデルのタイムステップと時系列データの1ステップとを対応させる。一方で、特に屋外の人の移動はリンク、またはノードの遷移数が多くなる傾向がある。そして、再帰型ニューラルネットワークは、遷移数が多くなるほど学習が困難になる課題がある。この課題に対し、本発明では、同一時間帯の人の行動選好は一定であるという仮定を行うことで、各時間帯間の関係性を学習することとする。
 モデル学習部109は、この遷移確率分布と観測したリンク遷移系列から得られる遷移確率分布を近づけるようグラフ畳み込み層、LSTMのパラメータを学習させる。
 具体的には、出発時間が同一時間帯であるトリップ内のリンク遷移系列を、全て同一タイムステップの再帰型ニューラルネットワークの教師データとして用いることとし、それらと時間帯ごとのグラフプーリング層の出力を対応付けることで、各層のパラメータおよび再帰型ニューラルネットワークのパラメータを同時学習させる。具体の計算フローは、図5の説明の中で詳述する。
 次に、予測部105の各機能構成について説明する。
 施策登録部111は、入力装置101から評価対象となる施策情報を取得し、評価対象となる施策を実施時間帯における予測対象領域内の実施地点の特徴量に反映する。ここで、施策情報とは、施策の種類、施策実施時間帯、施策実施箇所、施策実施規模の何れかを含んで構成される。なお、評価対象となる施策の種類は、事前に学習した各地点の特徴量に含まれている項目に限られる。
 施策登録部111は、ネットワークデータベース106からネットワークデータを取得し、入力装置101から取得した施策情報をネットワークデータに反映して、人流予測部113へ受け渡す。
 発生交通量抽出部112は、人流データベース107からトリップ情報を取得し、各時間帯の各地点を起点とするトリップ数を集計し、人流予測部113へ受け渡す。ここでトリップ情報とは、発生交通量抽出部112により取得された予測対象時間帯の発生交通量である。
 この際、各地点の発生交通量が全数把握できている場合、人流予測部113は、各時間帯における各リンク、または各ノードの通過交通量を予測することができる。また、マップマッチング部108で加工したトリップ情報などのように、サンプリングされた発生交通量を集計する場合は、各時間帯における各リンク、または各ノードの通過交通分布を予測することができる。また、ある一地点のみ各時間帯の発生交通量が把握できる場合、その地点を出発地とする人々の各リンク、または各ノードの通過交通量を予測するという使用方法も可能である。具体の予測方法は、人流予測部113の説明と図5の説明にて後述する。
 人流予測部113は、施策登録部111から受け渡されたネットワークデータと、発生交通量抽出部112から受け渡された予測対象の各時間帯の発生交通量情報とを時系列考慮型経路選択モデル110に入力し、時間帯ごとに人流情報を予測する。施策登録部111から受け渡されたネットワークデータは、時間帯ごとにおける予測対象領域内の特徴量である。
 人流予測部113は、特徴量として、予測対象領域内の交差点をノード、道路をリンクとするネットワークグラフを構築し、各ノードまたは各リンクを各地点として扱う。ノードの特徴量は、ノードに対応する交差点の信号の有無、または、ノードに接続する道路数を含むノードに紐づく環境情報である。リンクの特徴量は、リンクに対応する道路の幅員、道路の長さ、道路に隣接する店舗数、道路に隣接する公園数のうち何れかを含み、リンクに紐づく環境情報である。
 はじめに、人流予測部113は、モデル学習部109で学習された時系列考慮型経路選択モデル110のパラメータと、予測対象の時間帯ごとの発生交通量情報とを、時系列考慮型経路選択モデル110に入力し、各リンク遷移確率を予測する。各リンク遷移確率とは、予測対象領域の各エージェント(予測対象者)の移動経路または各地点の交通量の予測である。
 人流予測部113は、時間帯ごとのリンク遷移確率と、各地点の発生交通量、または発生交通量分布より、時間帯ごとの各リンクまたは各ノードの通過交通量、または通過交通量分布を計算することができる。この計算は、公知の方法など、任意の方法を用いて実現することができる。
 次に、人流予測部113は、時間帯ごとの各出発地に移動経路の選択確率から、各予測対象者が選択する経路の予測を行う。人流予測部113は、時間帯ごとの各出発地ごとに移動経路の選択確率から、その確率に従い、経路を各発生交通量に比例する数だけランダムに生成する。このとき人流予測部113は、計算量に応じて、生成する経路のパターンを調節してもよい。その場合、人流予測部113は、各パターンの経路を選択したエージェント(予測対象者)の数の合計が、各発生交通量と一致するように定数倍する。
 次に、人流予測部113は、生成した経路上をエージェント(予測対象者)が等速移動すると仮定し、所定の時間間隔でその経路上の通過位置の座標とその通過時間情報(以下、移動点情報)を計算する。なお、人流予測部113が、移動経路の予測処理を行うか否かは予め設定で変更可能であり、必ずしも経路を予測しなくてもよい。
 具体の計算フローは、図6の説明の中で詳述する。
 人流予測部113は、予測された時間帯ごとの各リンクおよび各ノードの通過交通量、または、通過交通量分布、もしくは移動点情報を、表示装置102に出力する。
 具体的には、リンク交通量を表示する場合、例えばリンクの太さや色の濃さなどで交通量の大小を表現する方法等が考えられる。また、経路を表示する場合、例えば選択経路上を等速運動する点をアニメーションで表現する方法等が考えられる。画面構成の詳細は、図9と図10を用いて後述する。
 図2は、人流予測システム100のハードウェア構成を示すブロック図である。
 サーバ計算機103は、例えば、相互に接続されたプロセッサ201および記憶装置202を有する一般的な計算機である。記憶装置202は、任意の種類の記憶媒体によって構成される。例えば、記憶装置202は、半導体メモリおよびハードディスクドライブを含んでもよい。
 この例において、図1に示したマップマッチング部108、モデル学習部109、施策登録部111、発生交通量抽出部112および人流予測部113といった機能部は、プロセッサ201が記憶装置202に格納された処理プログラム203を実行することによって実現される。
 言い換えると、この実施例において、上記の各機能部が実行する処理は、実際には、処理プログラム203に記述された命令に従うプロセッサ201によって実行される。また、ネットワークデータベース106および人流データベース107は、記憶装置202に含まれる。また、表示装置102による表示は、プロセッサ201が表示のためのデータを生成して表示装置102に出力し、表示装置102がそのデータに従って表示を行うことによって実行される。
 サーバ計算機103は、更に、プロセッサ201に接続されたネットワークインタフェース装置204を含む。
 図3は、ネットワークデータベース106の構成およびデータ例の説明図である。ここではテーブル形式の構成例を示すが、データ形式はテーブル形式に限らず、任意でよい。
 ネットワークデータベース106は、図3に示すノード情報300とリンク情報310、を含む。図3のテーブル構成および各テーブルのフィールド構成は、本発明を実施する上で必要となる構成であり、アプリケーションに応じてテーブルおよびフィールドを追加してもよい。
 ノード情報300は、ノードIDフィールド301、緯度フィールド302、経度フィールド303、ノード特徴量フィールド304を有する。
 ノードIDフィールド301は、各ノードの識別情報(以下、ノードID)を保持する。
 緯度フィールド302は、各ノードの位置座標の緯度情報を保持する。
 経度フィールド303は、各ノードの位置座標の経度情報を保持する。
 ノード特徴量フィールド304は、各ノードに紐づけられる特徴量(以下、ノード特徴量)を保持する。時間帯ごとにノード特徴量が異なる場合、時間帯別にノード特徴量フィールド304を追加してもよい。
 ここでノード特徴量には、例として各ノードに対応する交差点の信号の有無や、接続する道路数、横断歩道の有無等が挙げられる。ノード特徴量フィールド304の1行目[0, 3, 0]は、ノードIDが1のノードには信号が無く、接続する道路が3本の三叉路であり、横断歩道が存在しないことを示している。
 リンク情報310は、リンクIDフィールド311、起点ノードフィールド312、終点ノードフィールド313、リンク特徴量フィールド314を有する。
 リンクIDフィールド311は、各リンクの識別情報(以下、リンクID)を保持する。起点ノードフィールド312は、各リンクの起点ノードのノードIDを保持する。終点ノードフィールド313は、各リンクの終点ノードのノードIDを保持する。
 リンク特徴量フィールド314は、各リンクに紐づけられる特徴量(以下、リンク特徴量)を保持する。時間帯ごとにリンク特徴量が異なる場合は、リンク特徴量フィールド314を時間帯別に追加してもよい。
 ここでリンク特徴量には、例として各リンクに対応する道路の幅員や道路長、前記道路に隣接する店舗数や公園数等が挙げられる。リンク特徴量フィールド314の1行目の[10, 150, 15, 1]は、リンクIDが1のリンクの幅員が10m、道路長150m、隣接する店舗数15件、隣接する公園数1か所ということを示している。
 図4は、人流データベース107の構成およびデータ例の説明図である。ここではテーブル形式の構成例を示すが、データ形式はテーブル形式に限らず、任意でよい。
 人流データベース107は、図4に示す軌跡データ管理情報400、リンク遷移データ管理情報410およびトリップデータ管理情報420を含む。図4のテーブル構成および各テーブルのフィールド構成は、本発明を実施する上で必要となる構成であり、アプリケーションに応じてテーブルおよびフィールドが追加されてもよい。
 軌跡データ管理情報400は、エージェントIDフィールド401、データ取得時間フィールド402、緯度フィールド403および経度フィールド404を有する。
 エージェントIDフィールド401は、各軌跡データを取得した対象者の識別情報(以下、エージェントID)を保持する。
 データ取得時間フィールド402は、軌跡点が取得された時刻の情報を保持する。
 緯度フィールド403は、軌跡点が取得された位置の緯度情報を保持する。
 経度フィールド404は、軌跡点が取得された位置の経度情報を保持する。
 リンク遷移データ管理情報410は、トリップIDフィールド411、リンクIDフィールド412、リンク出発時刻フィールド413、所要時間フィールド414、速度フィールド415を有する。
 トリップIDフィールド411は、各リンク遷移系列が所属するトリップの識別情報(以下、トリップID)を保持する。
 リンクIDフィールド412は、エージェントが通過した各リンクの識別情報であるリンクIDを保持する。
 リンク出発時刻フィールド413は、エージェントが各通過リンクの始点を出発した時刻を保持する。
 所要時間フィールド414は、エージェントが各リンクの通過に要した時間を保持する。ここでは、所要時間の単位は秒を採用しているが、観測している対象の交通手段等に応じて変更してもよい。
 速度フィールド415は、各エージェントが各リンクを通過した時の速度を保持する。ここで速度フィールド415の速度の単位は、km/hを採用しているが、観測している対象の交通手段等に応じて変更してもよい。
 トリップデータ管理情報420は、エージェントIDフィールド421、トリップIDフィールド422、移動開始時刻フィールド423、移動終了時刻フィールド424、出発リンクフィールド425、到着リンクフィールド426を有する。
 エージェントIDフィールド421は、各トリップIDのトリップを行ったエージェントのエージェントIDを保持する。
 トリップIDフィールド422は、各トリップのトリップIDを保持する。
 移動開始時刻フィールド423は、各トリップがトリップを開始した時刻を保持する。
 移動終了時刻フィールド424は、各トリップがトリップを終了した時刻を保持する。
 出発リンクフィールド425は、各トリップの出発地であるリンクの識別子であるリンクIDを保持する。
 到着リンクフィールド426は、各トリップの到着地であるリンクの識別子であるリンクIDを保持する。
 図5は、人流予測システム100が実行するモデル学習処理のフローチャートである。
 本発明の実施例では、以降リンク遷移系列を学習、予測する方法について説明する。しかしながら、ノード遷移系列を学習、予測することも同様の方法で可能である。
 最初に、モデル学習部109は、マップマッチング部108からリンク遷移データを取得する(ステップS501)。次に、モデル学習部109は、ネットワークデータベース106からネットワーク特徴量としてノード情報とリンク情報を取得する(ステップS502)。次に、人流予測システム100は、予め定められた時間帯tに係る処理であるステップS504~S507を繰り返し実行する(ステップS503とS508)。
 ここで時間帯幅の決定方法として、複数の時間帯幅でそれぞれモデルの学習を行い、学習後の推定精度を時間帯幅間で比較して推定精度の最も良い時間帯幅に決定するようなグリッドサーチを行う方法や、分析対象である街の特徴から、例えば通勤時間帯、ランチ時間帯、帰宅時間帯というように人手で解釈したうえで決定する方法等が考えられる。
 最初に、人流予測システム100は、グラフ畳み込み層においてグラフ畳み込み処理を行う。グラフ畳み込み回数をLと与え、l(l∈A,0≦l≦L)回目のグラフ畳み込み処理は以下のように計算する(ステップS504)。
Figure JPOXMLDOC01-appb-M000001
 ここで、関数fは以下のように定義される。
Figure JPOXMLDOC01-appb-M000002
 ここで、
   A^t :時間帯tのリンクの接続関係を表す隣接行列
   D^ :対角成分が各リンクの次数でそれ以外0である次数行列
    σ :ReLU(Rectified Linear Unit)のような非線形な活性化関数
   W(l):時系列考慮型経路選択モデルの学習対象である第1のパラメータ
 なお、l=0のとき、H (0)はXと等しい時間帯tの各リンクの特徴量を表す特徴行列である。
 次に、本実施形態に係るLSTMのネットワーク構成を示した例を、図6に示す。
 図6にて情報は、下から上へと流れる。中央にセルと書いてある部分にリカレント結合(再帰結合)がある。マルで囲まれた+は各成分の和を取る演算、マルで囲まれた×は、各成分の積を取る演算を表している。実線は即時的に働く流れである。点線は時間遅延を表し、次の時刻に影響を及ぼすことを示している。
 LSTMは、メモリセルと呼ばれる記憶素子と、ブロック入力901と、入力ゲート902と、出力ゲート903と、忘却ゲート904から構成されている。
 入力ゲート902には、入力に対応する重みであるWinと、再帰入力に対応する重みであるRinとがそれぞれ対応する入力と乗算され、その結果を加算された後、シグモイド関数で処理される。
 出力ゲート903には、入力に対応する重みであるWoutと、再帰入力に対応する重みであるRoutとがそれぞれ対応する入力と乗算され、その結果を加算された後、シグモイド関数で処理される。
 忘却ゲート904には、入力であるWと、再帰入力であるRとが入力されて加算され、シグモイド関数で処理される。
 セルへの入力は、通常のニューラルネットワークの入力である。この他に3つのゲートにも入力が加わる。3つのゲートへの入力はゲートの開閉のために使われる。
 3つのゲートは情報をどの程度通すのかの制御に使われる。ゲートが閉じていれば、すなわち0に近づくので、情報は通りにくくなる。一方、ゲートが開いている状態は、正の状態でありシグモイド関数が1に近い場合である。忘却ゲート904が開いていると、1時刻前のセル自身の状態が自分の状態に影響を及ぼすことになる。すなわち忘却ゲート904の役割は、直前の影響をどの程度考慮するかを定めることになる。通常のリカレントネットにはゲートがない。LSTMでは、ゲートに積極的な役割を与えて、ゲート自身が結合係数を学習することで、情報の流れを制御する。
 図5に戻り説明を続ける。人流予測システム100は、下記の式(3)から式(8)を用いて、時間帯tのLSTMの出力を計算する(ステップS505)。
Figure JPOXMLDOC01-appb-M000003
 ここで、
   W:LSTMのブロック入力の入力値に対応する重み
   R:LSTMのブロック入力の再帰入力値に対応する重み
   z:時間帯tにおけるLSTMのブロック入力の出力値
Figure JPOXMLDOC01-appb-M000004
 ここで、
   Win:LSTMの入力ゲートの入力値に対応する重み
   Rin:LSTMの入力ゲートの再帰入力値に対応する重み
   i:時間帯tにおけるLSTMの入力ゲートの出力値
    σs:シグモイド関数
Figure JPOXMLDOC01-appb-M000005
 ここで、
   W:LSTMの忘却ゲートの入力値に対応する重み
   R:LSTMの忘却ゲートの再帰入力値に対応する重み
   f:時間帯tにおけるLSTMの忘却ゲートの出力値
Figure JPOXMLDOC01-appb-M000006
 ここで、
   c:時間帯tにおけるLSTMの一時値
   ct―1:時間帯tー1におけるLSTMの一時値
Figure JPOXMLDOC01-appb-M000007
 ここで、
   Wout:LSTMの出力ゲートの入力値に対応する重み
   Rout:LSTMの出力ゲートの再帰入力値に対応する重み
   o:LSTMの出力ゲートの出力値である。
Figure JPOXMLDOC01-appb-M000008
 ここで、
   W,Win,W,Wout,R,Rin,R,Rout:学習対象である第2のパラメータ
   Q(k):LSTMの時間帯tの出力のk番目の要素であるリンクkの評価値
 
 このように時間帯ごとの各リンクの評価値は、以上で示した手法であるLSTM等再帰型ニューラルネットワークの公知のモデル構造により定義されるものを用いることができる。
 次に、各リンクへの遷移確率を計算する。リンクkから、このリンクkに接続するリンクa(a∈A(k))への遷移確率は、下記の式(9)のようにソフトマックス関数を用いて計算する(ステップS506)。
Figure JPOXMLDOC01-appb-M000009
 ここで、
   A(k):リンクkに接続するリンク集合
 そして、計算された各リンクへの遷移確率と観測したリンク遷移系列を用いて、損失関数LLを、下記の式(10)のように計算する(ステップS507)。
Figure JPOXMLDOC01-appb-M000010
 ここで、
  n:時間帯tをリンク出発時刻にもつトリップに所属するリンク遷移のインデックス
  k(nt):時間帯tをリンク出発時刻にもつトリップに所属するリンク遷移の遷移前に存在するリンク
  a(nt):当該リンク遷移の遷移後に存在するリンク
 
 全ての時間帯に関する処理であるステップS504~S507を終了すると、モデル学習部109は、損失関数の計算を終了して、ステップS509に進む。これに基づいて、モデル学習部109は、学習対象であるW(l),W,Win,W,WoutとR,Rin,R,Routの第2のパラメータを更新する(ステップS509)。
 ステップS510において、モデル学習部109は、学習が収束したか否かを判定する。学習が収束していない場合(No)、モデル学習部109は、ステップS503に戻り、再度パラメータ更新を行う。一方、学習が収束した場合(Yes)、モデル学習部109は、ステップS511に進む。
 ステップS511において、モデル学習部109は、上記の学習により得られたモデルの学習パラメータを、時系列考慮型経路選択モデル110に格納すると、図6の処理を終了する。
 つまりモデル学習部109は、時間帯ごとにおける各地点の特徴量が、各地点から隣接する地点への移動、または地点に滞在する確率を表す確率分布に与える影響度を示す第1のパラメータ、および、予測対象時間帯より前の各地点の特徴量とそれに対応する時間帯の前記確率の関係性が、予測対象時間帯の確率分布に与える影響度を示す第2のパラメータを、対象領域内の時間帯ごと、各地点の特徴量から予測される予測対象時間帯の確率分布と、教師データである観測された人流に関する情報から得られる対象時間帯の確率分布とが一致するように学習する。この教師データは、観測時刻ごとの位置座標と速度を含む観測情報の時系列で表される複数の軌跡データを、ネットワークグラフ上の位置に対応付け、ノードまたはリンクの遷移系列に変換したものである。
 図7は、人流予測システム100が実行する人流予測処理のフローチャートである。
 最初に、人流予測部113は、施策登録部111からネットワーク特徴量として検討施策が反映されたノード情報とリンク情報を取得し、発生交通量抽出部112から時間帯ごとの各地点の発生交通量を取得する(ステップS601)。
 次に、人流予測システム100は、予め定められた時間帯の処理であるステップS603~S608を実行する(ステップS602とS609)。
 人流予測部113は、最初にネットワーク特徴量と時系列考慮型経路選択モデル110を用いて、各リンクの評価値を、前述した式(8)のように計算する。これにより人流予測部113は、リンクkから、このリンクkに接続するリンクa(a∈A(k))への遷移確率を、前述した式(9)のように計算する(ステップS603)。
 次に、人流予測部113は、発生交通量と各リンク遷移確率を保管したリンク遷移確率行列から、各リンクの交通量を計算する(ステップS604)。人流予測部113は、発生交通量とリンク遷移確率行列から、例えば吸収マルコフ過程による交通量配分やその他公知の方法など、任意の方法を用いてリンク交通量の計算を実現できる。
 ステップS605において、人流予測部113は、経路まで予測するか否かを判定して分岐する。なお、この判定フラグは、事前に指定しておくこととする。人流予測部113は、経路までは予測しない場合(No)、ステップS609へ進む。一方、人流予測部113は、経路を含めて予測する場合(Yes)、ステップS606に進む。
 ステップS606からS608にて、人流予測部113は、交通量発生地点ごとに、ステップS607の処理を実行する。
 ステップS607にて、人流予測部113は、リンク遷移確率行列に従い、発生交通量の数だけ経路をランダム生成する。そしてステップS608にて、人流予測部113は、全ての交通量発生地点を繰り返したならば、ステップS609に進む。人流予測部113は、未処理の交通量発生地点があったならば、ステップS606に戻る。
 ステップS609にて、人流予測部113は、全ての時間帯の処理を繰り返したならば、ステップS610に進む。人流予測部113は、未処理の時間帯の処理があったならば、ステップS602に戻る。
 ステップS610にて、人流予測部113は、予測結果を表示すると、図7の処理を終了する。人流予測部113がリンク交通量を表示する場合、例えばリンクの太さや色の濃さなどで交通量の大小を表現する方法等が考えられる。また、経路を表示する場合、例えば選択経路上を等速運動する点をアニメーションで表現する方法等が考えられる。面構成の詳細は、図9と図10を用いて後述する。
 図8は、人流予測システム100によって表示装置102に出力される施策登録画面701の説明図である。
 人流予測部113は、予測対象領域を示す地図上に、施策の情報を入力可能な施策登録画面701を表示する。
 図8に示す施策登録画面701は、地図エリア702と、施策登録エリア703と、縮尺管理エリア704を含む。
 地図エリア702には、予測対象領域を示す地図が表示されており、更に施策登録ピン702Aとシミュレーション開始ボタン702Bが表示されている。この地図エリア702には、施策の情報を入力可能である。
 施策登録ピン702Aは、施策登録順を識別番号(実施施策ID)とする番号が表示されている。施策登録ピン702Aは、ユーザが施策を実施したい箇所を選択することにより表示される。
 施策登録エリア703にて、登録した施策全ての内容の設定が完了すると、シミュレーション開始ボタン702Bが操作可能となる。シミュレーション開始ボタン702Bがユーザにより操作されたとき、人流予測部113が人流の予測処理を実行し、図9と図10で示す予測結果画面801に遷移する。またユーザが地図エリア自体を操作することで、縮尺や表示位置を変更できる。このとき、表示する地図の角度が変更できてもよい。これによって、主要施設や川など特徴的な場所の位置に合わせて、施策を検討することが可能になり、検討が容易になる。
 施策登録エリア703には、地図エリア702で登録した施策に応じて、実施施策IDごとに実施施策ID703Aと、施策種別選択ボタン703Bと、実施時間帯選択ボタン703Cと、施策規模選択ボタン703Dなどが表示される。
 ユーザは、各実施施策ID703Aに対応する施策登録ピン702Aの位置に実施したい施策種別を、施策種別選択ボタン703Bを操作して選択する。ここで、選択可能な施策種別は、学習部104で学習に用いたネットワーク特徴量に含まれるものに限られる。この選択により施策規模選択ボタン703Dの選択肢が施策に応じたものに確定され、ユーザは、施策規模選択ボタン703Dを操作することにより、施策の実施規模を選択する。また、ユーザは実施時間帯選択ボタン703Cを操作し、学習部104が予め設定した時間帯枠の中から、実施する時間帯を選択する。この際、複数の時間帯を選択することも可能である。
 縮尺管理エリア704は、地図エリア702で表示する地図の縮尺を管理する。縮尺の大小を変更可能なボタンと地図エリア702で表示中の地図の縮尺を表示する。
 ここで、地図エリア702で表示中の地図における方位を示す表示が存在してもよい。これによって、方角を考慮した施策検討が容易になる。
 図9と図10は、人流予測システム100によって表示装置102に出力される予測結果画面801の説明図の別例である。
 図9と図10に示す予測結果画面801は、予測結果表示エリア802と、アニメーション制御エリア803と、施策登録エリア703と、縮尺管理エリア704を含む。
 図9で示す予測結果表示エリア802には、表示したい形式に応じて、予測結果の街路ごとの交通量に応じて線の太さ、または色の濃淡等を変化させた交通量ライン802Aが表示される。つまり人流予測部113は、予測対象領域を示す地図上に、予測対象領域の各リンクを、予測された時間帯ごと、各地点の交通量に応じた表示態様で表示した予測結果画面801を表示する。
 図10で示す予測結果表示エリア802には、予測された経路上を動く移動点802Bと、数m前の移動軌跡802Cが表示される。つまり人流予測部113は、予測対象領域を示す地図上に、予測対象領域の予測された時間帯ごとの各予測対象者の移動経路を、前記移動経路に応じた表示態様で表示した予測結果画面801を表示する。移動経路に応じた表示態様は、動経路の各時点での位置を示す点とその位置までの軌跡を用いて移動経路を表示する。
 アニメーション制御エリア803には、時系列で変化する交通量ライン802A、移動点802B、移動軌跡802Cを制御するためアニメーションの再生・停止を制御する再生ボタン803Aと、表示するタイミングを表示し、指定することが可能なシークバー803B、アニメーションの巻き戻しが可能な移動軌跡803C、表示する時間帯を選択可能な時間帯指定ボタン803Dが表示される。交通量に応じた表示態様は、予測箇所の道路上における線の太さまたは色の変化で表現される。
 これにより、予測対象時刻より前の時刻の交通量を把握できているといった特定の条件下でなくとも、施策の実施時間帯による人流変化、または、実施場所から離れた位置の人流に与える影響が評価可能である。
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。
 各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。
100 人流予測システム
101 入力装置
102 表示装置
103 サーバ計算機 (人流予測装置)
104 学習部
105 予測部
106 ネットワークデータベース
107 人流データベース
108 マップマッチング部
109 モデル学習部
110 時系列考慮型経路選択モデル (経路選択モデル)
111 施策登録部
112 発生交通量抽出部
113 人流予測部
201 プロセッサ
202 記憶装置
203 処理プログラム
204 ネットワークインタフェース装置
300 ノード情報
310 リンク情報
301 ノードIDフィールド
302 緯度フィールド
303 経度フィールド
304 ノード特徴量フィールド
311 リンクIDフィールド
312 起点ノードフィールド
313 終点ノードフィールド
314 リンク特徴量フィールド
400 軌跡データ管理情報
401 エージェントIDフィールド
402 データ取得時間フィールド
403 緯度フィールド
404 経度フィールド
410 リンク遷移データ管理情報
411 トリップIDフィールド
412 リンクIDフィールド
413 リンク出発時刻フィールド
414 所要時間フィールド
415 速度フィールド
420 トリップデータ管理情報
421 エージェントIDフィールド
422 トリップIDフィールド
423 移動開始時刻フィールド
424 移動終了時刻フィールド
425 出発リンクフィールド
426 到着リンクフィールド
701 施策登録画面
702 地図エリア
702A 施策登録ピン
702B シミュレーション開始ボタン
703 施策登録エリア
703A 実施施策ID
703B 施策種別選択ボタン
703C 実施時間帯選択ボタン
703D 施策規模選択ボタン
704 縮尺管理エリア
801 予測結果画面
802 予測結果表示エリア
802A 交通量ライン
802B 移動点
802C 移動軌跡
803 アニメーション制御エリア
803A 再生ボタン
803B シークバー
803D 時間帯指定ボタン
901 ブロック入力
902 入力ゲート
903 出力ゲート
904 忘却ゲート

Claims (16)

  1.  予測対象領域内の発生交通量を取得する発生交通量抽出部と、
     評価対象となる施策を、実施時間帯における前記予測対象領域内の実施地点の特徴量に反映する施策登録部と、
     時間帯ごとの移動および停滞を含む人流情報と前記予測対象領域内の各地点の特徴量とを対応付けて学習したモデルに、前記施策登録部により設定された時間帯ごとにおける前記予測対象領域内の特徴量、および、前記発生交通量抽出部により取得された予測対象の時間帯の発生交通量を入力し、前記予測対象領域の各予測対象者の移動経路または各地点の交通量を予測する人流予測部と、
     を含む人流予測装置。
  2.  前記人流予測部は、前記特徴量として、前記予測対象領域内の交差点をノード、道路をリンクとするネットワークグラフを構築し、各前記ノードまたは各前記リンクを各地点として扱い、
     前記ノードの特徴量は、前記ノードに対応する交差点の信号の有無、または、前記ノードに接続する道路数を含む前記ノードに紐づく環境情報であり、
     前記リンクの特徴量は、前記リンクに対応する道路の幅員、道路の長さ、道路に隣接する店舗数、道路に隣接する公園数のうち何れかを含む前記リンクに紐づく環境情報である、
     請求項1に記載の人流予測装置。
  3.  前記モデルは、時間帯間の関係性を学習した再帰型ニューラルネットワークである、
     請求項1に記載の人流予測装置。
  4.  前記モデルは、時間帯ごとに、各地点の前記特徴量からネットワークグラフ上の関係性に係る中間特徴量を計算し、時間帯ごとの前記中間特徴量と時間帯ごとの移動および停滞を含む人流情報を対応付けて学習したものである、
     請求項2に記載の人流予測装置。
  5.  前記モデルは、前記中間特徴量を抽出するためのグラフ畳み込み層を有する、
     請求項4に記載の人流予測装置。
  6.  前記モデルを学習させる学習部を更に備える、
     請求項1に記載の人流予測装置。
  7.  前記学習部は、
     前記予測対象領域内の交差点をノード、道路をリンクとするネットワークグラフを構築し、各前記ノードまたは各前記リンクを各地点として扱う、
     請求項6に記載の人流予測装置。
  8.  前記学習部は、時間帯ごとにおける各地点の前記特徴量が、各地点から隣接する地点への移動、または前記地点に滞在する確率を表す確率分布に与える影響度を示す第1のパラメータ、および、予測対象時間帯より前の各地点の特徴量とそれに対応する時間帯の前記確率の関係性が、予測対象時間帯の前記確率分布に与える影響度を示す第2のパラメータを、対象領域内の時間帯ごとに各地点の特徴量から予測される予測対象時間帯の前記確率分布と、教師データである観測された人流に関する情報から得られる対象時間帯の前記確率分布とが一致するように学習する、
     請求項7に記載の人流予測装置。
  9.  前記教師データは、観測時刻ごとの位置座標と速度を含む観測情報の時系列で表される複数の軌跡データを、前記ネットワークグラフ上の位置に対応付け、前記ノードまたは前記リンクの遷移系列に変換したものである、
     請求項8に記載の人流予測装置。
  10.  前記人流予測部は、前記予測対象領域を示す地図上に前記施策の情報を入力可能な施策登録画面を表示する、
     請求項1から9のうち何れか1項に記載の人流予測装置。
  11.  前記人流予測部は、前記予測対象領域を示す地図上に前記予測対象領域の各リンクを、予測された時間帯ごと、各地点の交通量に応じた表示態様で表示した予測結果画面を表示する、
     請求項1から9のうち何れか1項に記載の人流予測装置。
  12.  前記人流予測部は、前記予測対象領域を示す地図上に前記予測対象領域の予測された時間帯ごとの各予測対象者の移動経路を、前記移動経路に応じた表示態様で表示した予測結果画面を表示する、
     請求項1から9のうち何れか1項に記載の人流予測装置。
  13.  コンピュータに、
     予測対象領域内の発生交通量を抽出する手順、
     評価対象となる施策を実施時間帯における前記予測対象領域内の実施地点の特徴量に反映する手順、
     時間帯ごとの移動および停滞を含む人流情報と前記予測対象領域内の各地点の特徴量とを対応付けて学習したモデルと、時間帯ごとにおける前記予測対象領域内の特徴量と、抽出された予測対象時間帯の発生交通量に基づいて、前記予測対象領域の各予測対象者の移動経路または各地点の交通量を予測する手順、
     を実行させるための人流予測プログラム。
  14.  入力装置において施策情報を受けつけるステップと、
     前記施策情報と予測対象領域内の発生交通量を入力として、経路選択モデルを用いて各予測対象者の移動経路および各地点の交通量を予測するステップと、
     予測された前記移動経路または前記交通量を表示するように、前記予測対象領域を示す地図上に、前記予測対象領域内の予測された前記移動経路または前記交通量に応じた表示態様で、予測対象時間帯を明示した形式で表示した予測結果画面を表示するステップと、
     を含む人流予測方法。
  15.  前記移動経路に応じた表示態様とは、前記移動経路の各時点での位置を示す点とその位置までの軌跡を用いて移動経路を表示する、
     請求項14に記載の人流予測方法。
  16.  前記交通量に応じた表示態様とは、予測箇所の道路上における線の太さまたは色の変化で表現される、
     請求項14または請求項15に記載の人流予測方法。
PCT/JP2023/007150 2022-05-23 2023-02-27 人流予測装置、人流予測プログラム、および、人流予測方法 WO2023228498A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022083696A JP2023172113A (ja) 2022-05-23 2022-05-23 人流予測装置、人流予測プログラム、および、人流予測方法
JP2022-083696 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228498A1 true WO2023228498A1 (ja) 2023-11-30

Family

ID=88918919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007150 WO2023228498A1 (ja) 2022-05-23 2023-02-27 人流予測装置、人流予測プログラム、および、人流予測方法

Country Status (2)

Country Link
JP (1) JP2023172113A (ja)
WO (1) WO2023228498A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067369A1 (ja) * 2014-10-28 2016-05-06 株式会社日立製作所 人流分析システムおよび人流分析方法
WO2017175551A1 (ja) * 2016-04-04 2017-10-12 株式会社日立製作所 人流評価システム、人流制御の検討方法
WO2018186078A1 (ja) * 2017-04-06 2018-10-11 富士通株式会社 シミュレーションプログラム、シミュレーション方法およびシミュレーション装置
JP2020009124A (ja) * 2018-07-06 2020-01-16 日本電信電話株式会社 時系列学習装置、時系列学習方法、時系列予測装置、時系列予測方法、及びプログラム
JP2020194255A (ja) * 2019-05-27 2020-12-03 株式会社竹中工務店 人流分布予測装置、方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067369A1 (ja) * 2014-10-28 2016-05-06 株式会社日立製作所 人流分析システムおよび人流分析方法
WO2017175551A1 (ja) * 2016-04-04 2017-10-12 株式会社日立製作所 人流評価システム、人流制御の検討方法
WO2018186078A1 (ja) * 2017-04-06 2018-10-11 富士通株式会社 シミュレーションプログラム、シミュレーション方法およびシミュレーション装置
JP2020009124A (ja) * 2018-07-06 2020-01-16 日本電信電話株式会社 時系列学習装置、時系列学習方法、時系列予測装置、時系列予測方法、及びプログラム
JP2020194255A (ja) * 2019-05-27 2020-12-03 株式会社竹中工務店 人流分布予測装置、方法、及びプログラム

Also Published As

Publication number Publication date
JP2023172113A (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
Ward et al. Dynamic calibration of agent-based models using data assimilation
EP3035314B1 (en) A traffic data fusion system and the related method for providing a traffic state for a network of roads
JP6761789B2 (ja) 人流予測装置、システムおよびプログラム
Bovy On modelling route choice sets in transportation networks: a synthesis
Yang et al. Short-term traffic prediction for edge computing-enhanced autonomous and connected cars
CN108537373A (zh) 旅游信息推荐方法和装置
JP2002259888A (ja) シミュレーション制御プログラム、方法及び装置
Fabusuyi et al. Decision analytics for parking availability in downtown Pittsburgh
Sevtsuk et al. Predicting pedestrian flow along city streets: A comparison of route choice estimation approaches in downtown San Francisco
Köksal Ahmed et al. Reinforcement learning-enabled genetic algorithm for school bus scheduling
Wang et al. Deep Q learning-based traffic signal control algorithms: Model development and evaluation with field data
CN110276387B (zh) 一种模型的生成方法及装置
JP6807822B2 (ja) 人流量予測装置、方法、及びプログラム
Li et al. A reinforcement learning-based routing algorithm for large street networks
JP2000322402A (ja) 人の流れ分析方法
WO2023228498A1 (ja) 人流予測装置、人流予測プログラム、および、人流予測方法
Muresan et al. Multi-intersection control with deep reinforcement learning and ring-and-barrier controllers
CN110309953B (zh) 采用目标流动性分布预测的城市安防监控布局系统及方法
Chow A crowdsourcing–geocomputational framework of mobile crowd simulation and estimation
Khodabandelou et al. Attention-based gated recurrent unit for links traffic speed forecasting
Jagtenberg et al. Optimal ambulance dispatching
Guo et al. Fine-grained dynamic price prediction in ride-on-demand services: Models and evaluations
Prabowo Spatiotemporal deep learning
Dev et al. Tourism demand forecasting and management
WO2021235296A1 (ja) 移動体移動予測システム及び移動体移動予測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811379

Country of ref document: EP

Kind code of ref document: A1