WO2023227552A1 - Title: assembly for dissipating heat from a semiconductor light source - Google Patents

Title: assembly for dissipating heat from a semiconductor light source Download PDF

Info

Publication number
WO2023227552A1
WO2023227552A1 PCT/EP2023/063694 EP2023063694W WO2023227552A1 WO 2023227552 A1 WO2023227552 A1 WO 2023227552A1 EP 2023063694 W EP2023063694 W EP 2023063694W WO 2023227552 A1 WO2023227552 A1 WO 2023227552A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
radiator
conductive material
printed circuit
adhesive sheet
Prior art date
Application number
PCT/EP2023/063694
Other languages
French (fr)
Inventor
Nicolas Martin
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Publication of WO2023227552A1 publication Critical patent/WO2023227552A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/005Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by permanent fixing means, e.g. gluing, riveting or embedding in a potting compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Definitions

  • the present invention relates to the field of heat dissipation generated by a semiconductor light source, such as an LED. More specifically, the invention relates to an assembly for heat dissipation, an associated manufacturing method and a light module.
  • radiators are generally attached under a printed circuit, called PCB, for “Printed Circuit Board”, on which a semiconductor light source is installed.
  • the radiator thus dissipates heat generated by the semiconductor source.
  • Patent application US2011001418 A presents a heat dissipation system from a printed circuit comprising an electrically insulating sheet between a layer of graphite connected to a radiator, and a printed circuit.
  • the insulating sheet thus positioned has the effect of limiting heat conduction between the printed circuit and the graphite layer. Heat dissipation is thus limited by the insulating sheet.
  • Patent application CN201606728U proposes superimposing a layer of graphite and a layer of thermally conductive grease.
  • thermal grease is a poorer conductor than the graphite layer, and again, it limits heat dissipation in the system.
  • the present invention improves the situation.
  • a first aspect of the invention concerns a set comprising:
  • the adhesive sheet comprises an opening shaped so that, in the opening, at least part of the sheet of thermally conductive material is directly included between the printed circuit and the radiator. Around the opening, at least part of the adhesive sheet is directly between the radiator and the printed circuit.
  • the sheet of thermally conductive material is directly included between the radiator and the printed circuit, without an intermediate layer in series with the sheet of thermally conductive material. Heat dissipation is thus improved compared to solutions of the prior art.
  • the adhesive layer makes it easier to position the elements of the assembly during manufacturing.
  • the sheet of thermal conductive material can have a thermal conductivity greater than 5 W.nr 1.K- 1 , for example is based on graphite.
  • a thermal conductivity greater than 5 W.nr 1.K- 1 , for example is based on graphite.
  • the expression “graphite sheet” is used to designate a graphite-based sheet.
  • graphite makes it possible to obtain high thermal conductivity between the printed circuit and the radiator, thus improving heat dissipation, and thus improving the operation of the semiconductor source.
  • At least one dimension of the sheet of thermally conductive material may be larger than a dimension of the opening, the sheet of thermally conductive material being arranged overall so that a portion center of the sheet of thermally conductive material is directly included between the printed circuit and the radiator, and so that the edges of the sheet of thermally conductive material are directly included between the adhesive sheet and the printed circuit.
  • the positioning of the sheet of thermal conductive material is facilitated and the position is maintained when adding the printed circuit. This maintenance is permitted without limiting heat dissipation since part of the sheet of thermally conductive material is directly included between the radiator and the printed circuit.
  • the radiator may comprise an upper surface comprising a support facing a part of the printed circuit in contact with the light source and at least one groove bordering the support, a part of the sheet of thermally conductive material can be directly included between the radiator support and the printed circuit, and the support and the groove can be shaped so that an edge of the sheet of thermally conductive material is directly included between the adhesive sheet and the printed circuit in the groove.
  • a groove advantageously makes it easier to position the adhesive layer, limits its deformation, and prevents the formation of air pockets between the sheet of thermally conductive material and the printed circuit.
  • the radiator comprises two grooves on either side of the support.
  • a depth of the groove may be less than or equal to a thickness of the adhesive sheet, so that the adhesive sheet is directly included between the edge of the sheet of thermally conductive material and the radiator in the groove.
  • the two faces of the adhesive layer are in contact with the radiator on the one hand and with the sheet of thermally conductive material on the other hand, in the groove, which helps maintain the sheet of thermally conductive material in position. during the manufacturing of the assembly.
  • At least one edge of the opening of the adhesive sheet is cut so as to form slots in the adhesive sheet, each portion of adhesive sheet between two slots being positioned in a groove of the radiator.
  • the positioning of the adhesive sheet in the groove(s) is facilitated and the deformation of the adhesive sheet is limited.
  • the adhesive layer can be electrically insulating.
  • An insulating adhesive layer prevents current leakage from the printed circuit to the radiator.
  • the assembly may further comprise at least one screw arranged so as to tighten the printed circuit, the adhesive layer and the radiator.
  • a second aspect of the invention relates to a light module comprising an assembly according to the first aspect of the invention and projection optics capable of projecting rays light coming from the semiconductor light source towards the outside of the light module.
  • a third aspect of the invention relates to a method of manufacturing an assembly comprising the following steps:
  • the method may further comprise tightening the printed circuit, the adhesive sheet and the radiator by one or more screws.
  • FIG 1 illustrates a light module comprising an assembly according to a first embodiment of the invention
  • FIG 2 illustrates an assembly according to a second embodiment of the invention
  • FIG 3 illustrates an assembly according to a third embodiment of the invention
  • FIG 4 illustrates an adhesive sheet of the assembly according to the third embodiment of the invention
  • FIG 5 is a diagram illustrating the steps of a manufacturing process according to the invention.
  • FIG 6 presents a monolithic source capable of being integrated into an assembly according to one embodiment of the invention.
  • Figure 1 illustrates a light module 10 comprising an assembly 100 according to a first embodiment of the invention.
  • Set 100 includes:
  • thermal conductive material 130 such as a graphite-based sheet.
  • thermal conductive material is meant any material whose thermal conductivity is greater than a threshold value, for example 5 W.nr 1.K- 1 .
  • a threshold value for example 5 W.nr 1.K- 1 .
  • graphite is considered for illustrative purposes only. Graphite advantageously allows a thermal conductivity greater than the threshold value above, for example equal to 7 W.nr 1 .K- 1 ;
  • PCB printed circuit 140
  • the light source 150 which can be a monolithic source comprising a plurality of electroluminescent elements.
  • the light source 150 may alternatively comprise a single electroluminescent element, such as an LED.
  • the light source 150 is a monolithic source. Indeed, the invention is particularly advantageous in the case of a light source 150 of the monolithic type, due to the high heating constraints linked to such a source.
  • a so-called “monolithic” source comprises a plurality of electroluminescent semiconductor elements with submillimeter dimensions, epitaxied directly on a substrate common, the substrate generally being made of silicon. These electroluminescent semiconductor elements each form an elementary light source.
  • a monolithic source forms a single electronic component.
  • several areas of electroluminescent semiconductor junctions are generated on a common substrate, in the form of a matrix.
  • the gaps between the elementary light sources can have submillimeter dimensions.
  • Monolithic sources therefore differ from conventional LED matrices, in which each elementary light source is an electronic component produced individually and mounted on a substrate such as a printed circuit, PCB.
  • the monolithic source 150 is mounted on the printed circuit 140, so that it can be powered and controlled, in particular to participate in a lighting, signaling or aesthetic function.
  • the assembly 100 can be used in a motor vehicle to perform one or more of the functions mentioned above.
  • the adhesive sheet 120 comprises an opening 170 in which the graphite sheet 130 is at least partially included.
  • the graphite sheet 130 is completely included in the opening 170, the graphite sheet 130 being of smaller dimensions than the opening 170 of the adhesive sheet 120.
  • the adhesive sheet 120 is directly included between the printed circuit 140 and the radiator 110; - in the opening 170, the graphite sheet 130 is directly included between the printed circuit 140 and the radiator 110.
  • the graphite sheet 130 is in particular in contact with an area of the printed circuit 140 located under the monolithic source 150. From this way, the heat dissipation in the radiator 110 is improved compared to the solutions of the prior art, in which the adhesive layer is placed in series with a thermal conduction layer, which limits the thermal conduction between the monolithic source and the radiator .
  • the adhesive sheet and the graphite sheet 130 are of substantially equal thickness, that is to say that the ratio between their thicknesses is close to 1, for example between 0.95 and 1.05.
  • one of the sheets may be thinner than the other sheet, in which case the radiator may include a step to raise the thinner sheet in order to compensate for the difference in thickness.
  • X is directly between Y and Z
  • X is in contact with both Y and Z, in particular on opposite surfaces when X is a sheet.
  • sheet we mean any element of which one of the dimensions, called thickness, is lower by more than a given factor compared to the other dimensions.
  • the given factor can be greater than 50, for example equal to 500.
  • the assembly 100 may also include one or more screws 160.1 and 160.2. No restriction is attached to the number of screws included in the set. The example of two screws located near the edges of the adhesive sheet 120 is given for illustrative purposes only.
  • the light module 10 further comprises projection optics 20 and a support 30 for the projection optics, making it possible to position the projection optics 10 relative to the assembly 100. No restriction is attached to the optics projection which may in particular comprise one or more optical elements such as lenses. Optics projection 20 is placed opposite the light source 150 so as to project the light rays coming from the light source 150 towards the outside of the light module 10.
  • Figure 2 shows an assembly 200 according to a second embodiment of the invention.
  • set 200 which are identical to those of set 100 have the same references. Only the differences with the first embodiment are detailed below. For the rest, the description of set 100 also applies to set 200.
  • the assembly 200 can be integrated into a light module further comprising the projection optics 20 and the support 30 presented with reference to Figure 1.
  • the assembly 200 comprises an adhesive layer 220 comprising an opening 270 of which at least one of the dimensions is less than at least one dimension of a thermal conduction sheet 230, such as a sheet of graphite.
  • the width of the graphite sheet 230 is greater than the width of the opening 270, so that at least one of the edges 231.1 and 231.2 of the graphite sheet 230 is directly between the adhesive sheet 220 and the printed circuit 140.
  • the two edges 231.1 and 231.2 are directly included between the adhesive sheet 220 and the printed circuit 140.
  • the part of the adhesive sheet 220 located under the edges 231.1 and 231.2 is then directly included between the graphite sheet 230 and the radiator 110.
  • the second embodiment advantageously makes it easier to position the graphite sheet 230 during the assembly/manufacture of the assembly 200, in particular compared to the assembly 100 according to the first embodiment.
  • the adhesive sheet 220 can be placed on the radiator 110, then the graphite sheet 230 can be placed in the opening, with the edges 231.1 and 231.2 in contact with the adhesive sheet 220.
  • the graphite sheet 230 is thus held in position.
  • the printed circuit 140 on which the monolithic source 150 is mounted then covers the graphite sheet 230 and the adhesive sheet 220. During this step of covering, the adhesive sheet 220 holds the graphite sheet 230 in place by its edges 231.1 and 231.2.
  • the dimension of the opening 270 may be greater than the dimension of the graphite sheet 230.
  • the dimension of the opening 270 in the direction normal to the plane of Figure 2 is less than the dimension of the graphite sheet 230.
  • at least one other edge, for example the two other edges, of the graphite sheet 230, not shown in Figure 2 are directly included between the adhesive sheet 220 and the printed circuit 140, which improves the retention in position of the graphite sheet 230.
  • Figure 3 illustrates an assembly 300 according to a third embodiment of the invention.
  • the assembly 300 can be integrated into a light module further comprising the projection optics 20 and the support 30 presented with reference to Figure 1.
  • a radiator 310 of the assembly 300 comprises an upper surface 311 facing a sheet of thermally conductive material 330, such as a sheet of graphite, and an adhesive sheet 320.
  • the upper surface 311 of the radiator 310 comprises a support 313 facing the monolithic source 150 and capable of being partly covered by the graphite sheet 330, as detailed below.
  • the support 313 can be a central support of the radiator as shown in Figure 3. However, the support 313 is not necessarily centered on the upper surface 311.
  • the adhesive sheet 320 has not a central opening, but a U-shaped opening on one edge of the adhesive sheet. In this case, the opening is formed by only three edges of the adhesive sheet.
  • the upper surface 311 comprises at least one groove bordering the support 313. As an illustration, it is considered in the following that the upper surface 311 comprises two grooves 312.1 and 312.2 on either side of the support 313. The support 313 is thus raised relative to the interior surface 311 in the grooves 312.1 and 312.2.
  • Such grooves 312.1 and 312.2 advantageously make it possible to facilitate the positioning of the graphite sheet and the adhesive sheet 320 so that edges 331.1 and 331.2 of the graphite sheet 330 are directly included between the adhesive sheet 320 and the printed circuit 140.
  • the grooves ensure good contact between the graphite sheet 330 and the printed circuit 140, compared to the second embodiment.
  • the grooves make it possible in particular to avoid raising the edges 331.1 and 331.2, which could create spaces between the graphite sheet 330 and the printed circuit 140.
  • the depth 315 of the grooves 312.1 and 312.2 is equal to or less, preferably slightly less, than the thickness 321 of the adhesive layer 320, so that the adhesive layer is in contact with both the edges 331.1 and 331.2, and with the upper surface 311 of the radiator 310 in the grooves 312.1 and 312.2.
  • the depth is between 80% and 99% of the thickness 321 of the adhesive layer 320.
  • the dimension of the opening 370 in a direction normal to the plane of Figure 3, can be greater than the dimension of the graphite sheet 330.
  • the dimension of the opening 370 in the direction normal to the plane of Figure 3 is less than the dimension of the graphite sheet 330.
  • at least one of the two other edges of the graphite sheet 330, not shown in Figure 3 is directly included between the adhesive sheet 320 and the printed circuit 140, which improves the retention in position of the graphite sheet 330.
  • Figure 4 illustrates the adhesive sheet 320 of the assembly 300 according to the third embodiment. Edges of the opening 370 of the adhesive sheet 320 may be cut so as to form slots 400 in the adhesive sheet 320. Such slots 400 facilitate the positioning of the portions of the adhesive sheet between two respective slots in the grooves 312.1 and 311.2, and limit the deformation of the adhesive sheet 320.
  • the adhesive sheet 320 may not include such slots.
  • the opening 370 can be II-shaped when the support 313 is at the edge of the radiator.
  • the adhesive sheets 120, 220 and 320 can also be made of an electrically insulating material, which advantageously makes it possible to avoid current leaks from the printed circuit 140 to the radiator 110 or 310. Such an embodiment is particularly advantageous when the printed circuit 40 is of the multilayer type.
  • a printed circuit 140 of the multilayer type makes it possible to limit the surface of the printed circuit 140.
  • “via” type connections between the layers can promote electrical leaks towards the radiator 310.
  • An insulating material for the adhesive sheet 120, 220 and 320 makes it possible to avoid, or at least limit, such leaks.
  • Figure 5 is a diagram illustrating the steps of a process for manufacturing the assembly 100, 200 or 300, according to one embodiment of the invention.
  • the adhesive sheet 120, 220 or 320 is placed on the upper surface of the radiator 110 or 310.
  • the edges of the opening 320 of the adhesive sheet 320 are placed in at least one groove, for example in the grooves 312.1 and 312.2 of the radiator 310.
  • the graphite sheet 130, 230 or 330 is placed in the opening 170, 270 or 370.
  • the edges 231.1 and 231.2 of the graphite sheet 230, or the edges 331.1 and 331.2 of the graphite sheet 330, are placed on the adhesive sheet 220 or 320.
  • the positioning of the graphite sheet 130, 230 or 330 can be controlled, for example by a camera.
  • the process proceeds to the next step 503. Otherwise, the process returns in step 501 in order to reposition the graphite sheet 130, 230 or 230.
  • step 503 the printed circuit 140 on which the monolithic source 150 is mounted is placed on the adhesive layer 120, 220 or 320 and on the graphite layer 130, 230 or 330.
  • the method may also include a step of holding the elements of the assembly 100, 200 or 300 in position by tightening using screws 160.1 and 160.2.
  • Figure 6 shows a monolithic source 150 capable of being integrated into an assembly according to one embodiment of the invention.
  • the monolithic source 150 is fixed on a generally planar support 620, such as the PCB 140 described above.
  • the source 150 is a so-called “monolithic” component comprising a substrate 612 on which elementary electroluminescent light sources 614 with submillimeter dimensions are epitaxied.
  • Electrical connections 630 which may include cables, solder balls or conductive paste, are provided between the monolithic source 150 and its support 620. These connections ensure the electrical supply of each of the elementary sources 614 of the monolithic source. It is thus made possible to individually control each of the elementary sources 614 via the support 620 which can be the PCB 140.
  • the empty gap between the cables 630 can be filled with a thermally conductive resin 632, which ensures the good holding of the source 150 on the support 620, as well as the thermal exchange between the source 150 and the support 620.
  • the matrix of elementary sources 615 can be one-dimensional, in which case the elementary sources 614 are placed next to each other in a single direction, or can be distributed in a two-dimensional manner.
  • the size of the emission surface of the monolithic source 150 can vary, depending on the number of elementary sources 614, each elementary source being able to have a width of the order of 10 microns, as a function of the distribution of the elementary sources 614, and as a function of the spacing between the elementary sources 614.

Abstract

The invention relates to an assembly (300) comprising a circuit board (140) on which a semiconductor light source (150) is mounted. The assembly comprises an adhesive sheet (120; 220; 320), a sheet of thermally conductive material (130; 230; 330) and a radiator (110; 310). The adhesive sheet comprises an opening (170; 270; 370) shaped such that, in the opening, at least one portion of the sheet of thermally conductive material is directly positioned between the circuit board and the radiator. Around the opening, at least one portion of the adhesive sheet is directly positioned between the radiator and the circuit board.

Description

Description Description
Titre : Ensemble pour la dissipation de chaleur d’une source lumineuse à semi-conducteur Title: Assembly for heat dissipation of a semiconductor light source
La présente invention se rapporte au domaine de la dissipation de chaleur générée par une source lumineuse à semi-conducteur, telle qu’une LED. Plus précisément, l’invention concerne un ensemble pour la dissipation de chaleur, un procédé de fabrication associé et un module lumineux. The present invention relates to the field of heat dissipation generated by a semiconductor light source, such as an LED. More specifically, the invention relates to an assembly for heat dissipation, an associated manufacturing method and a light module.
Il devient de plus en plus courant d’utiliser des sources lumineuses à semi-conducteur, telles que des diodes électroluminescentes, LEDs, pour réaliser différentes fonctions lumineuses, par exemple dans des véhicules automobiles. L’utilisation de ces petites sources lumineuses à forte luminosité et à consommation électrique réduite permet également de réaliser des contours lumineux originaux dans un système compact et d’énergie électrique réduite.It is becoming more and more common to use semiconductor light sources, such as light-emitting diodes, LEDs, to perform different lighting functions, for example in automobile vehicles. The use of these small light sources with high brightness and reduced electrical consumption also makes it possible to produce original light contours in a compact system with reduced electrical energy.
Toutefois, lorsqu’une source lumineuse est alimentée électriquement, la température de la source augmente avec le temps de fonctionnement et l’intensité du courant qui l’alimente.However, when a light source is electrically powered, the temperature of the source increases with the operating time and the intensity of the current supplying it.
Il en résulte a minima une diminution de sa luminance et, dans le pire des cas, un endommagement de la source lumineuse à semi-conducteur. This results in at least a reduction in its luminance and, in the worst case, damage to the semiconductor light source.
Afin de palier à ce problème, des radiateurs sont généralement rapportés sous un circuit imprimé, appelé PCB, pour « Printed Circuit Board », sur lequel est installé une source lumineuse à semi-conducteur. In order to overcome this problem, radiators are generally attached under a printed circuit, called PCB, for “Printed Circuit Board”, on which a semiconductor light source is installed.
Le radiateur dissipe ainsi de la chaleur générée par la source à semi-conducteur. The radiator thus dissipates heat generated by the semiconductor source.
La demande de brevet US2011001418 A présente un système de dissipation de la chaleur d’un circuit imprimé comprenant une feuille isolante électriquement comprise entre une couche de graphite reliée à un radiateur, et un circuit imprimé. La feuille isolante ainsi positionnée a pour effet de limiter la conduction de chaleur entre le circuit imprimé et la couche de graphite. La dissipation de chaleur est ainsi limitée par la feuille isolante. La demande de brevet CN201606728U propose quant à elle de superposer une couche de graphite et une couche de graisse conductrice thermiquement. Toutefois, la graisse thermique est un moins bon conducteur que la couche de graphite, et à nouveau, elle limite la dissipation de la chaleur dans le système. Patent application US2011001418 A presents a heat dissipation system from a printed circuit comprising an electrically insulating sheet between a layer of graphite connected to a radiator, and a printed circuit. The insulating sheet thus positioned has the effect of limiting heat conduction between the printed circuit and the graphite layer. Heat dissipation is thus limited by the insulating sheet. Patent application CN201606728U proposes superimposing a layer of graphite and a layer of thermally conductive grease. However, thermal grease is a poorer conductor than the graphite layer, and again, it limits heat dissipation in the system.
Il existe ainsi un besoin d’améliorer l’efficacité associée à la dissipation de la chaleur d’une source lumineuse à semi-conducteur. There is thus a need to improve the efficiency associated with the heat dissipation of a semiconductor light source.
La présente invention vient améliorer la situation. The present invention improves the situation.
A cet effet un premier aspect de l’invention concerne un ensemble comprenant: To this end, a first aspect of the invention concerns a set comprising:
- une source lumineuse à semi-conducteur ; - a semiconductor light source;
- un circuit imprimé sur lequel est monté la source lumineuse; - a printed circuit on which the light source is mounted;
- une feuille adhésive ; - an adhesive sheet;
- une feuille de matériau conducteur thermique ; et - a sheet of thermal conductive material; And
- un radiateur. - a radiator.
La feuille adhésive comprend une ouverture conformée de manière à ce que, dans l’ouverture, au moins une partie de la feuille de matériau conducteur thermique soit directement comprise entre le circuit imprimé et le radiateur. Autour de l’ouverture, au moins une partie de la feuille adhésive est directement comprise entre le radiateur et le circuit imprimé. The adhesive sheet comprises an opening shaped so that, in the opening, at least part of the sheet of thermally conductive material is directly included between the printed circuit and the radiator. Around the opening, at least part of the adhesive sheet is directly between the radiator and the printed circuit.
Ainsi, la feuille de matériau conducteur thermique est directement comprise entre le radiateur et le circuit imprimé, sans couche intermédiaire en série avec la feuille de matériau conducteur thermique. La dissipation de chaleur est ainsi améliorée comparativement aux solutions de l’art antérieur. La couche adhésive quant à elle permet de faciliter le positionnement des éléments de l’ensemble lors de la fabrication. Thus, the sheet of thermally conductive material is directly included between the radiator and the printed circuit, without an intermediate layer in series with the sheet of thermally conductive material. Heat dissipation is thus improved compared to solutions of the prior art. The adhesive layer makes it easier to position the elements of the assembly during manufacturing.
Selon un mode de réalisation, la feuille de matériau conducteur thermique peut avoir une conductivité thermique supérieure à 5 W.nr1.K-1, par exemple est à base de graphite. On entend par « est à base de graphite » le fait que la couche de matériau conducteur thermique comprend du graphite, ce qui n’exclut pas qu’elle puisse comprendre d’autres matériaux dans sa composition. Dans ce qui suit, l’expression « la feuille de graphite » est utilisée pour désigner une feuille à base de graphite. According to one embodiment, the sheet of thermal conductive material can have a thermal conductivity greater than 5 W.nr 1.K- 1 , for example is based on graphite. We means by “is based on graphite” the fact that the layer of thermal conductive material comprises graphite, which does not exclude the possibility that it may include other materials in its composition. In the following, the expression “graphite sheet” is used to designate a graphite-based sheet.
Le graphite permet notamment d’obtenir une conductivité thermique élevée entre le circuit imprimé et le radiateur, améliorant ainsi la dissipation de chaleur, et améliorant ainsi le fonctionnement de la source à semi-conducteur. In particular, graphite makes it possible to obtain high thermal conductivity between the printed circuit and the radiator, thus improving heat dissipation, and thus improving the operation of the semiconductor source.
Selon un mode de réalisation, au moins une dimension de la feuille de matériau conducteur thermique peut être plus grande qu’une dimension de l’ouverture, la feuille de matériau conducteur thermique étant agencée dans l’ensemble de manière à ce qu’une partie centrale de la feuille de matériau conducteur thermique soit directement comprise entre le circuit imprimé et le radiateur, et de manière à ce que des bords de la feuille de matériau conducteur thermique soient directement compris entre la feuille adhésive et le circuit imprimé. According to one embodiment, at least one dimension of the sheet of thermally conductive material may be larger than a dimension of the opening, the sheet of thermally conductive material being arranged overall so that a portion center of the sheet of thermally conductive material is directly included between the printed circuit and the radiator, and so that the edges of the sheet of thermally conductive material are directly included between the adhesive sheet and the printed circuit.
Ainsi, lors de la fabrication de l’ensemble, le positionnement de la feuille de matériau conducteur thermique est facilité et la position est maintenue lors de l’ajout du circuit imprimé. Ce maintien est permis sans limiter la dissipation de chaleur puisqu’une partie de la feuille de matériau conducteur thermique est directement comprise entre le radiateur et le circuit imprimé. Thus, during the manufacturing of the assembly, the positioning of the sheet of thermal conductive material is facilitated and the position is maintained when adding the printed circuit. This maintenance is permitted without limiting heat dissipation since part of the sheet of thermally conductive material is directly included between the radiator and the printed circuit.
En complément, le radiateur peut comprendre une surface supérieure comprenant un support en regard d’une partie du circuit imprimé en contact avec la source lumineuse et au moins une gorge bordant le support, une partie de la feuille de matériau conducteur thermique peut être directement comprise entre le support du radiateur et le circuit imprimé, et le support et la gorge peuvent être conformés de manière à ce qu’un bord de la feuille de matériau conducteur thermique soit directement compris entre la feuille adhésive et le circuit imprimé dans la gorge. Une telle gorge permet avantageusement de faciliter le positionnement de la couche adhésive, permet d’en limiter la déformation, et permet d’éviter la formation de poches d’air entre la feuille de matériau conducteur thermique et le circuit imprimé. De manière préférentielle, le radiateur comprend deux gorges de part et d’autre du support. In addition, the radiator may comprise an upper surface comprising a support facing a part of the printed circuit in contact with the light source and at least one groove bordering the support, a part of the sheet of thermally conductive material can be directly included between the radiator support and the printed circuit, and the support and the groove can be shaped so that an edge of the sheet of thermally conductive material is directly included between the adhesive sheet and the printed circuit in the groove. Such a groove advantageously makes it easier to position the adhesive layer, limits its deformation, and prevents the formation of air pockets between the sheet of thermally conductive material and the printed circuit. Preferably, the radiator comprises two grooves on either side of the support.
En complément, une profondeur de la gorge peut être inférieure ou égale à une épaisseur de la feuille adhésive, de manière à ce que la feuille adhésive soit directement comprise entre le bord de la feuille de matériau conducteur thermique et le radiateur dans la gorge. In addition, a depth of the groove may be less than or equal to a thickness of the adhesive sheet, so that the adhesive sheet is directly included between the edge of the sheet of thermally conductive material and the radiator in the groove.
Ainsi, les deux faces de la couche adhésive sont en contact avec le radiateur d’une part et avec la feuille de matériau conducteur thermique d’autre part, dans la gorge, ce qui favorise le maintien en position de la feuille de matériau conducteur thermique lors de la fabrication de l’ensemble. Thus, the two faces of the adhesive layer are in contact with the radiator on the one hand and with the sheet of thermally conductive material on the other hand, in the groove, which helps maintain the sheet of thermally conductive material in position. during the manufacturing of the assembly.
En complément ou en variante, au moins un bord de l’ouverture de la feuille adhésive est découpé de manière à former des fentes dans la feuille adhésive, chaque portion de feuille adhésive entre deux fentes étant positionnée dans une gorge du radiateur. In addition or as a variant, at least one edge of the opening of the adhesive sheet is cut so as to form slots in the adhesive sheet, each portion of adhesive sheet between two slots being positioned in a groove of the radiator.
Ainsi, le positionnement de la feuille adhésive dans la ou les gorges est facilité et la déformation de la feuille adhésive est limitée. Thus, the positioning of the adhesive sheet in the groove(s) is facilitated and the deformation of the adhesive sheet is limited.
Selon un mode de réalisation, la couche adhésive peut être isolante électriquement. According to one embodiment, the adhesive layer can be electrically insulating.
Une couche adhésive isolante permet de prévenir des fuites de courant du circuit imprimé vers le radiateur. An insulating adhesive layer prevents current leakage from the printed circuit to the radiator.
Selon un mode de réalisation, l’ensemble peut comprendre en outre au moins une vis agencée de manière à serrer le circuit imprimé, la couche adhésive et le radiateur. According to one embodiment, the assembly may further comprise at least one screw arranged so as to tighten the printed circuit, the adhesive layer and the radiator.
Le maintien des éléments de l’ensemble est ainsi amélioré. En particulier, il est assuré que la feuille de matériau conducteur thermique est bien en contact direct entre le radiateur et le circuit imprimé de manière à favoriser la dissipation de chaleur. The maintenance of the elements of the whole is thus improved. In particular, it is ensured that the sheet of thermal conductive material is in direct contact between the radiator and the printed circuit so as to promote heat dissipation.
Un deuxième aspect de l’invention concerne un module lumineux comprenant un ensemble selon le premier aspect de l’invention et une optique de projection apte à projeter des rayons lumineux issus de la source lumineuse à semi-conducteur vers l’extérieur du module lumineux. A second aspect of the invention relates to a light module comprising an assembly according to the first aspect of the invention and projection optics capable of projecting rays light coming from the semiconductor light source towards the outside of the light module.
Un troisième aspect de l’invention concerne un procédé de fabrication d’un ensemble comprenant les étapes suivantes : A third aspect of the invention relates to a method of manufacturing an assembly comprising the following steps:
- disposer une couche adhésive sur un radiateur, la couche adhésive comprenant une ouverture ; - place an adhesive layer on a radiator, the adhesive layer comprising an opening;
- disposer une feuille de matériau conducteur thermique au moins partiellement dans l’ouverture, de manière à ce qu’au moins une partie du matériau conducteur thermique soit en contact avec le radiateur ; - place a sheet of thermal conductive material at least partially in the opening, so that at least part of the thermal conductive material is in contact with the radiator;
- vérifier qu’un positionnement de la feuille de matériau conducteur thermique corresponde à un positionnement nominal ; - check that the positioning of the sheet of thermal conductive material corresponds to a nominal positioning;
- disposer un circuit imprimé sur lequel est monté une source lumineuse à semi-conducteur, sur la feuille adhésive et sur la feuille de matériau conducteur thermique. - arrange a printed circuit on which a semiconductor light source is mounted, on the adhesive sheet and on the sheet of thermally conductive material.
Selon un mode de réalisation, le procédé peut comprendre en outre un serrage du circuit imprimé, de la feuille adhésive et du radiateur par une ou plusieurs vis. According to one embodiment, the method may further comprise tightening the printed circuit, the adhesive sheet and the radiator by one or more screws.
D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés sur lesquels : Other characteristics and advantages of the invention will appear on examination of the detailed description below, and the appended drawings in which:
[Fig 1] illustre un module lumineux comprenant un ensemble selon un premier mode de réalisation de l’invention; [Fig 1] illustrates a light module comprising an assembly according to a first embodiment of the invention;
[Fig 2] illustre un ensemble selon un deuxième mode de réalisation de l’invention ; [Fig 2] illustrates an assembly according to a second embodiment of the invention;
[Fig 3] illustre un ensemble selon un troisième mode de réalisation de l’invention ; [Fig 3] illustrates an assembly according to a third embodiment of the invention;
[Fig 4] illustre une feuille adhésive de l’ensemble selon le troisième mode de réalisation de l’invention ; [Fig 4] illustrates an adhesive sheet of the assembly according to the third embodiment of the invention;
[Fig 5] est un diagramme illustrant les étapes d’un procédé de fabrication selon l’invention ; [Fig 6] présente une source monolithique apte à être intégrée dans un ensemble selon un mode de réalisation de l’invention. [Fig 5] is a diagram illustrating the steps of a manufacturing process according to the invention; [Fig 6] presents a monolithic source capable of being integrated into an assembly according to one embodiment of the invention.
La description se concentre sur les caractéristiques qui démarquent le procédé ou l’ensemble de ceux connus dans l’état de l’art. The description focuses on the characteristics which distinguish the process or all of those known in the state of the art.
La figure 1 illustre un module lumineux 10 comprenant un ensemble 100 selon un premier mode de réalisation de l’invention. Figure 1 illustrates a light module 10 comprising an assembly 100 according to a first embodiment of the invention.
L’ensemble 100 comprend : Set 100 includes:
- un radiateur 110 ; - a radiator 110;
- une feuille adhésive 120 ; - an adhesive sheet 120;
- une feuille de matériau conducteur thermique 130, telle qu’une feuille à base de graphite. On entend par matériau conducteur thermique tout matériau dont la conductivité thermique est supérieure à une valeur seuil, par exemple 5 W.nr1.K-1. Dans ce qui suit, l’exemple du graphite est considéré à titre illustratif uniquement. Le graphite permet avantageusement une conductivité thermique supérieure à la valeur seuil ci-dessus, par exemple égale à 7 W.nr 1.K-1 ; - a sheet of thermal conductive material 130, such as a graphite-based sheet. By thermal conductive material is meant any material whose thermal conductivity is greater than a threshold value, for example 5 W.nr 1.K- 1 . In the following, the example of graphite is considered for illustrative purposes only. Graphite advantageously allows a thermal conductivity greater than the threshold value above, for example equal to 7 W.nr 1 .K- 1 ;
- un circuit imprimé 140, aussi appelé PCB, pour « Printed Circuit Board » en anglais ; - a printed circuit 140, also called PCB, for “Printed Circuit Board” in English;
- une source lumineuse à semi-conducteur 150. - a semiconductor light source 150.
Aucune restriction n’est attachée à la source lumineuse 150 qui peut être une source monolithique comprenant une pluralité d’éléments électroluminescents. La source lumineuse 150 peut alternativement comprendre un unique élément électroluminescent, tel qu’une LED. Dans ce qui suit, il est considéré que la source lumineuse 150 est une source monolitihique. En effet, l’invention est particulièrement avantageuse dans le cas d’une source lumineuse 150 de type monolithique, en raison des contraintes d’échauffement élevées liées à une telle source. No restriction is attached to the light source 150 which can be a monolithic source comprising a plurality of electroluminescent elements. The light source 150 may alternatively comprise a single electroluminescent element, such as an LED. In the following, it is considered that the light source 150 is a monolithic source. Indeed, the invention is particularly advantageous in the case of a light source 150 of the monolithic type, due to the high heating constraints linked to such a source.
Une source dite « monolithique » comprend une pluralité d’éléments semi-conducteurs électroluminescents à dimensions submillimétriques, épitaxiés directement sur un substrat commun, le substrat étant généralement formé de silicium. Ces éléments semi-conducteurs électroluminescents forment chacun une source lumineuse élémentaire. A so-called “monolithic” source comprises a plurality of electroluminescent semiconductor elements with submillimeter dimensions, epitaxied directly on a substrate common, the substrate generally being made of silicon. These electroluminescent semiconductor elements each form an elementary light source.
Une source monolithique forme un composant électronique unique. En particulier, lors de sa production, plusieurs plages de jonctions semi-conductrices électroluminescentes sont générées sur un substrat commun, sous forme d’une matrice. Les interstices entre les sources lumineuses élémentaires peuvent présenter des dimensions submillimétriques. Un avantage de cette technique de production est le niveau élevé de la densité de pixels qui peut en résulter sur un substrat unique. A monolithic source forms a single electronic component. In particular, during its production, several areas of electroluminescent semiconductor junctions are generated on a common substrate, in the form of a matrix. The gaps between the elementary light sources can have submillimeter dimensions. An advantage of this production technique is the high level of pixel density that can result on a single substrate.
Les sources monolithiques diffèrent donc de matrices de LEDs conventionnelles, dans lesquelles chaque source lumineuse élémentaire est un composant électronique produit de manière individuelle et monté sur un substrat tel qu’un circuit imprimé, PCB. Monolithic sources therefore differ from conventional LED matrices, in which each elementary light source is an electronic component produced individually and mounted on a substrate such as a printed circuit, PCB.
A noter que la densité de sources lumineuses élémentaires particulièrement élevée rend particulièrement intéressante les sources monolithiques pour une pluralité d’applications.Note that the particularly high density of elementary light sources makes monolithic sources particularly interesting for a plurality of applications.
Un exemple de source monolithique 150 formée sur un substrat unique sera décrit ultérieurement en référence à la figure 6. An example of a monolithic source 150 formed on a single substrate will be described later with reference to Figure 6.
La source monolithique 150 est montée sur le circuit imprimé 140, de manière à pouvoir être alimentée et contrôlée, pour participer notamment à une fonction d’éclairage, de signalisation ou esthétique. L’ensemble 100 peut être utilisé dans un véhicule automobile pour réaliser une ou plusieurs des fonctions évoquées ci-dessus. The monolithic source 150 is mounted on the printed circuit 140, so that it can be powered and controlled, in particular to participate in a lighting, signaling or aesthetic function. The assembly 100 can be used in a motor vehicle to perform one or more of the functions mentioned above.
Selon l’invention, la feuille adhésive 120 comprend une ouverture 170 dans laquelle la feuille de graphite 130 est au moins partiellement comprise. Dans le premier mode de réalisation, la feuille de graphite 130 est complètement comprise dans l’ouverture 170, la feuille de graphite 130 étant de dimensions inférieures à l’ouverture 170 de la feuille adhésive 120. De cette manière : According to the invention, the adhesive sheet 120 comprises an opening 170 in which the graphite sheet 130 is at least partially included. In the first embodiment, the graphite sheet 130 is completely included in the opening 170, the graphite sheet 130 being of smaller dimensions than the opening 170 of the adhesive sheet 120. In this way:
- autour de l’ouverture 170, la feuille adhésive 120 est directement comprise entre le circuit imprimé 140 et le radiateur 110 ; - dans l’ouverture 170, la feuille de graphite 130 est directement comprise entre le circuit imprimé 140 et le radiateur 110. La feuille de graphite 130 est notamment en contact avec une zone du circuit imprimé 140 située sous la source monolithique 150. De cette manière, la dissipation de chaleur dans le radiateur 110 est améliorée comparativement aux solutions de l’art antérieur, dans lesquelles la couche adhésive est placée en série avec une couche de conduction thermique, ce qui limite la conduction thermique entre la source monolithique et le radiateur. - around the opening 170, the adhesive sheet 120 is directly included between the printed circuit 140 and the radiator 110; - in the opening 170, the graphite sheet 130 is directly included between the printed circuit 140 and the radiator 110. The graphite sheet 130 is in particular in contact with an area of the printed circuit 140 located under the monolithic source 150. From this way, the heat dissipation in the radiator 110 is improved compared to the solutions of the prior art, in which the adhesive layer is placed in series with a thermal conduction layer, which limits the thermal conduction between the monolithic source and the radiator .
De manière avantageuse, afin de permettre un tel agencement, la feuille adhésive et la feuille de graphite 130 sont d’épaisseurs sensiblement égales, c’est à dire que le rapport entre leurs épaisseurs est proche de 1, par exemple compris entre 0,95 et 1,05. En variante, l’une des feuilles peut être moins épaisse que l’autre feuille, auquel cas le radiateur peut comprendre une marche pour surélever la feuille la moins épaisse afin de compenser la différence d’épaisseur. Advantageously, in order to allow such an arrangement, the adhesive sheet and the graphite sheet 130 are of substantially equal thickness, that is to say that the ratio between their thicknesses is close to 1, for example between 0.95 and 1.05. Alternatively, one of the sheets may be thinner than the other sheet, in which case the radiator may include a step to raise the thinner sheet in order to compensate for the difference in thickness.
L’expression « X est directement compris entre Y et Z » indique qu’un élément X est à la fois en contact avec Y et avec Z, notamment sur des surfaces opposés lorsque X est une feuille.The expression “X is directly between Y and Z” indicates that an element X is in contact with both Y and Z, in particular on opposite surfaces when X is a sheet.
On entend par « feuille » tout élément dont l’une des dimensions, appelée épaisseur, est inférieure de plus d’un facteur donné par rapport aux autres dimensions. Le facteur donné peut être supérieure à 50, par exemple égal à 500. By “sheet” we mean any element of which one of the dimensions, called thickness, is lower by more than a given factor compared to the other dimensions. The given factor can be greater than 50, for example equal to 500.
En complément, l’ensemble 100 peut en outre comprendre une ou plusieurs vis 160.1 et 160.2. Aucune restriction n’est attachée au nombre de vis que comprend l’ensemble. L’exemple de deux vis situées à proximité de bords de la feuille adhésive 120 est donné à titre illustratif uniquement. In addition, the assembly 100 may also include one or more screws 160.1 and 160.2. No restriction is attached to the number of screws included in the set. The example of two screws located near the edges of the adhesive sheet 120 is given for illustrative purposes only.
Le module lumineux 10 comprend en outre une optique de projection 20 et un support 30 de l’optique de projection, permettant de positionner l’optique de projection 10 par rapport à l’ensemble 100. Aucune restriction n’est attachée à l’optique de projection qui peut notamment comprendre un ou plusieurs éléments optiques tels que des lentilles. L’optique de projection 20 est placée en regard de la source lumineuse 150 de manière à projeter les rayons lumineux issus de la source lumineuse 150 vers l’extérieur du module lumineux 10.The light module 10 further comprises projection optics 20 and a support 30 for the projection optics, making it possible to position the projection optics 10 relative to the assembly 100. No restriction is attached to the optics projection which may in particular comprise one or more optical elements such as lenses. Optics projection 20 is placed opposite the light source 150 so as to project the light rays coming from the light source 150 towards the outside of the light module 10.
La figure 2 présente un ensemble 200 selon un deuxième mode de réalisation de l’invention.Figure 2 shows an assembly 200 according to a second embodiment of the invention.
Les éléments de l’ensemble 200 qui sont identiques à ceux de l’ensemble 100 ont les mêmes références. Seules les différences avec le premier mode de réalisation sont détaillées ci-après. Pour le reste, la description de l’ensemble 100 s’applique également à l’ensemble 200. The elements of set 200 which are identical to those of set 100 have the same references. Only the differences with the first embodiment are detailed below. For the rest, the description of set 100 also applies to set 200.
L’ensemble 200 peut être intégré dans un module lumineux comprenant en outre l’optique de projection 20 et le support 30 présentés en référence à la figure 1. The assembly 200 can be integrated into a light module further comprising the projection optics 20 and the support 30 presented with reference to Figure 1.
Selon le deuxième mode de réalisation, l’ensemble 200 comprend une couche adhésive 220 comprenant une ouverture 270 dont au moins l’une des dimensions est inférieure à au moins une dimension d’une feuille de conduction thermique 230, telle qu’une feuille de graphite.According to the second embodiment, the assembly 200 comprises an adhesive layer 220 comprising an opening 270 of which at least one of the dimensions is less than at least one dimension of a thermal conduction sheet 230, such as a sheet of graphite.
Comme il est visible sur la figure 2, la largeur de la feuille de graphite 230 est supérieure à la largeur de l’ouverture 270, de manière à ce qu’au moins un des bords 231.1 et 231.2 de la feuille de graphite 230 soit directement compris entre la feuille adhésive 220 et le circuit imprimé 140. Dans ce qui suit, il est considéré à titre illustratif que les deux bords 231.1 et 231.2 sont directement compris entre la feuille adhésive 220 et le circuit imprimé 140. As can be seen in Figure 2, the width of the graphite sheet 230 is greater than the width of the opening 270, so that at least one of the edges 231.1 and 231.2 of the graphite sheet 230 is directly between the adhesive sheet 220 and the printed circuit 140. In what follows, it is considered for illustration purposes that the two edges 231.1 and 231.2 are directly included between the adhesive sheet 220 and the printed circuit 140.
La partie de la feuille adhésive 220 située sous les bords 231 .1 et 231 .2 est alors directement comprise entre la feuille de graphite 230 et le radiateur 110. The part of the adhesive sheet 220 located under the edges 231.1 and 231.2 is then directly included between the graphite sheet 230 and the radiator 110.
Le deuxième mode de réalisation permet avantageusement de faciliter le positionnement de la feuille de graphite 230 lors de l’assemblage/fabrication de l’ensemble 200, notamment comparativement à l’ensemble 100 selon le premier mode de réalisation. En effet, lors de la fabrication de l’ensemble 200, la feuille adhésive 220 peut être placée sur le radiateur 110, puis la feuille de graphite 230 peut être placée dans l’ouverture, avec les bords 231 .1 et 231.2 en contact avec la feuille adhésive 220. La feuille de graphite 230 est ainsi maintenue en position. Le circuit imprimé 140 sur lequel est montée la source monolithique 150 recouvre ensuite la feuille de graphite 230 et la feuille adhésive 220. Durant cette étape de recouvrement, la feuille adhésive 220 maintient en place la feuille de graphite 230 par ses bords 231.1 et 231.2. The second embodiment advantageously makes it easier to position the graphite sheet 230 during the assembly/manufacture of the assembly 200, in particular compared to the assembly 100 according to the first embodiment. Indeed, during the manufacture of the assembly 200, the adhesive sheet 220 can be placed on the radiator 110, then the graphite sheet 230 can be placed in the opening, with the edges 231.1 and 231.2 in contact with the adhesive sheet 220. The graphite sheet 230 is thus held in position. The printed circuit 140 on which the monolithic source 150 is mounted then covers the graphite sheet 230 and the adhesive sheet 220. During this step of covering, the adhesive sheet 220 holds the graphite sheet 230 in place by its edges 231.1 and 231.2.
Dans une direction normale au plan de la figure 2, la dimension de l’ouverture 270 peut être supérieure à la dimension de la feuille de graphite 230. Alternativement, la dimension de l’ouverture 270 dans la direction normale au plan de la figure 2 est inférieure à la dimension de la feuille de graphite 230. Dans cette alternative, au moins un autre bord, par exemple les deux autres bords, de la feuille de graphite 230, non représentés sur la figure 2, sont directement compris entre la feuille adhésive 220 et le circuit imprimé 140, ce qui améliore le maintien en position de la feuille de graphite 230. In a direction normal to the plane of Figure 2, the dimension of the opening 270 may be greater than the dimension of the graphite sheet 230. Alternatively, the dimension of the opening 270 in the direction normal to the plane of Figure 2 is less than the dimension of the graphite sheet 230. In this alternative, at least one other edge, for example the two other edges, of the graphite sheet 230, not shown in Figure 2, are directly included between the adhesive sheet 220 and the printed circuit 140, which improves the retention in position of the graphite sheet 230.
La figure 3 illustre un ensemble 300 selon un troisième mode de réalisation de l’invention.Figure 3 illustrates an assembly 300 according to a third embodiment of the invention.
Les éléments de l’ensemble 300 qui sont identiques à ceux de l’ensemble 100 et/ou de l’ensemble 200 ont les mêmes références. Seules les différences avec le deuxième mode de réalisation sont détaillées ci-après. Pour le reste, la description de l’ensemble 200 s’applique également à l’ensemble 300 selon le troisième mode de réalisation de l’invention. The elements of set 300 which are identical to those of set 100 and/or set 200 have the same references. Only the differences with the second embodiment are detailed below. For the rest, the description of the assembly 200 also applies to the assembly 300 according to the third embodiment of the invention.
L’ensemble 300 peut être intégré dans un module lumineux comprenant en outre l’optique de projection 20 et le support 30 présentés en référence à la figure 1. The assembly 300 can be integrated into a light module further comprising the projection optics 20 and the support 30 presented with reference to Figure 1.
Selon le troisième mode de réalisation, un radiateur 310 de l’ensemble 300 comprend une surface supérieure 311 en regard d’une feuille de matériau conducteur thermique 330, telle qu’une feuille de graphite, et d’une feuille adhésive 320. According to the third embodiment, a radiator 310 of the assembly 300 comprises an upper surface 311 facing a sheet of thermally conductive material 330, such as a sheet of graphite, and an adhesive sheet 320.
La surface supérieure 311 du radiateur 310 comprend un support 313 en regard de la source monolithique 150 et apte à être recouverte en partie par la feuille de graphite 330, comme détaillé ci-après. Le support 313 peut être un support central du radiateur comme représenté sur la figure 3. Toutefois, le support 313 n’est pas nécessairement centré sur la surface supérieure 311. Dans le cas où le support 313 est situé sur un bord du radiateur, la feuille adhésive 320 présente non pas une ouverture centrale, mais une ouverture en forme de U sur un bord de la feuille adhésive. Dans ce cas, l’ouverture est formé par trois bords seulement de la feuille adhésive. Selon le troisième mode de réalisation, la surface supérieure 311 comprend au moins une gorge bordant le support 313. A titre illustratif, il est considéré dans ce qui suit que la surface supérieure 311 comprend deux gorges 312.1 et 312.2 de part et d’autre du support 313. Le support 313 est ainsi surélevée par rapport à la surface intérieure 311 dans les gorges 312.1 et 312.2. The upper surface 311 of the radiator 310 comprises a support 313 facing the monolithic source 150 and capable of being partly covered by the graphite sheet 330, as detailed below. The support 313 can be a central support of the radiator as shown in Figure 3. However, the support 313 is not necessarily centered on the upper surface 311. In the case where the support 313 is located on one edge of the radiator, the adhesive sheet 320 has not a central opening, but a U-shaped opening on one edge of the adhesive sheet. In this case, the opening is formed by only three edges of the adhesive sheet. According to the third embodiment, the upper surface 311 comprises at least one groove bordering the support 313. As an illustration, it is considered in the following that the upper surface 311 comprises two grooves 312.1 and 312.2 on either side of the support 313. The support 313 is thus raised relative to the interior surface 311 in the grooves 312.1 and 312.2.
De telles gorges 312.1 et 312.2 permettent avantageusement de faciliter le positionnement de la feuille de graphite et de la feuille adhésive 320 de manière à ce que des bords 331 .1 et 331.2 de la feuille de graphite 330 soient directement compris entre la feuille adhésive 320 et le circuit imprimé 140. En outre, les gorges permettent d’assurer un bon contact entre la feuille de graphite 330 et le circuit imprimé 140, comparativement au deuxième mode de réalisation. Les gorges permettent notamment d’éviter de surélever les bords 331.1 et 331.2 ce qui pourrait créer des espaces entre la feuille de graphite 330 et le circuit imprimé 140.Such grooves 312.1 and 312.2 advantageously make it possible to facilitate the positioning of the graphite sheet and the adhesive sheet 320 so that edges 331.1 and 331.2 of the graphite sheet 330 are directly included between the adhesive sheet 320 and the printed circuit 140. In addition, the grooves ensure good contact between the graphite sheet 330 and the printed circuit 140, compared to the second embodiment. The grooves make it possible in particular to avoid raising the edges 331.1 and 331.2, which could create spaces between the graphite sheet 330 and the printed circuit 140.
De manière avantageuse, la profondeur 315 des gorges 312.1 et 312.2 est égale ou inférieure, de préférence légèrement inférieure, à l’épaisseur 321 de la couche adhésive 320, de manière à ce que la couche adhésive soit en contact à la fois avec les bords 331 .1 et 331.2, et avec la surface supérieure 311 du radiateur 310 dans les gorges 312.1 et 312.2.Advantageously, the depth 315 of the grooves 312.1 and 312.2 is equal to or less, preferably slightly less, than the thickness 321 of the adhesive layer 320, so that the adhesive layer is in contact with both the edges 331.1 and 331.2, and with the upper surface 311 of the radiator 310 in the grooves 312.1 and 312.2.
On entend par « légèrement inférieure » le fait que la profondeur soit comprise entre 80 % et 99% de l’épaisseur 321 de la couche adhésive 320. By “slightly less” is meant the fact that the depth is between 80% and 99% of the thickness 321 of the adhesive layer 320.
Comme pour le deuxième mode de réalisation, dans une direction normale au plan de la figure 3, la dimension de l’ouverture 370 peut être supérieure à la dimension de la feuille de graphite 330. Alternativement, la dimension de l’ouverture 370 dans la direction normale au plan de la figure 3 est inférieure à la dimension de la feuille de graphite 330. Dans cette alternative, au moins l’un des deux autres bords de la feuille de graphite 330, non représentés sur la figure 3, est directement compris entre la feuille adhésive 320 et le circuit imprimé 140, ce qui améliore le maintien en position de la feuille de graphite 330. As for the second embodiment, in a direction normal to the plane of Figure 3, the dimension of the opening 370 can be greater than the dimension of the graphite sheet 330. Alternatively, the dimension of the opening 370 in the direction normal to the plane of Figure 3 is less than the dimension of the graphite sheet 330. In this alternative, at least one of the two other edges of the graphite sheet 330, not shown in Figure 3, is directly included between the adhesive sheet 320 and the printed circuit 140, which improves the retention in position of the graphite sheet 330.
La figure 4 illustre la feuille adhésive 320 de l’ensemble 300 selon le troisième mode de réalisation. Des bords de l’ouverture 370 de la feuille adhésive 320 peuvent être découpés de manière à former des fentes 400 dans la feuille adhésive 320. De telles fentes 400 facilitent le positionnement des portions de la feuille adhésives entre deux fentes respectives dans les gorges 312.1 et 311.2, et limitent la déformation de la feuille adhésive 320. Figure 4 illustrates the adhesive sheet 320 of the assembly 300 according to the third embodiment. Edges of the opening 370 of the adhesive sheet 320 may be cut so as to form slots 400 in the adhesive sheet 320. Such slots 400 facilitate the positioning of the portions of the adhesive sheet between two respective slots in the grooves 312.1 and 311.2, and limit the deformation of the adhesive sheet 320.
Toutefois, selon le troisième mode de réalisation, la feuille adhésive 320 peut ne pas comprendre de telles fentes. However, according to the third embodiment, the adhesive sheet 320 may not include such slots.
Comme évoqué plus haut, l’ouverture 370 peut être en forme de II lorsque le support 313 est au bord du radiateur. As mentioned above, the opening 370 can be II-shaped when the support 313 is at the edge of the radiator.
Les feuilles adhésives 120, 220 et 320 peuvent en outre être en un matériau isolant électriquement, ce qui permet avantageusement d’éviter des fuites de courant du circuit imprimé 140 vers le radiateur 110 ou 310. Un tel mode de réalisation est notamment avantageux lorsque le circuit imprimél 40 est de type multicouches. Un circuit imprimé 140 de type multicouches permet de limiter la surface du circuit imprimé 140. Toutefois, des liaisons de types « via » entre les couches peuvent favoriser les fuites électriques vers le radiateur 310. Un matériau isolant pour la feuille adhésive 120, 220 et 320 permet d’éviter , ou a minima de limiter, de telles fuites. The adhesive sheets 120, 220 and 320 can also be made of an electrically insulating material, which advantageously makes it possible to avoid current leaks from the printed circuit 140 to the radiator 110 or 310. Such an embodiment is particularly advantageous when the printed circuit 40 is of the multilayer type. A printed circuit 140 of the multilayer type makes it possible to limit the surface of the printed circuit 140. However, “via” type connections between the layers can promote electrical leaks towards the radiator 310. An insulating material for the adhesive sheet 120, 220 and 320 makes it possible to avoid, or at least limit, such leaks.
La figure 5 est un diagramme illustrant les étapes d’un procédé de fabrication de l’ensemble 100, 200 ou 300, selon un mode de réalisation de l’invention. Figure 5 is a diagram illustrating the steps of a process for manufacturing the assembly 100, 200 or 300, according to one embodiment of the invention.
A une étape 500, la feuille adhésive 120, 220 ou 320 est disposée sur la surface supérieure du radiateur 110 ou 310. Dans le troisième mode de réalisation, les bords de l’ouverture 320 de la feuille adhésive 320 sont placés dans au moins une gorge, par exemple dans les gorges 312.1 et 312.2 du radiateur 310. In a step 500, the adhesive sheet 120, 220 or 320 is placed on the upper surface of the radiator 110 or 310. In the third embodiment, the edges of the opening 320 of the adhesive sheet 320 are placed in at least one groove, for example in the grooves 312.1 and 312.2 of the radiator 310.
A une étape 501 , la feuille de graphite 130, 230 ou 330 est placée dans l’ouverture 170, 270 ou 370. Pour les deuxième et troisième modes de réalisation, les bords 231.1 et 231.2 de la feuille de graphite 230, ou les bords 331.1 et 331.2 de le feuille de graphite 330, sont placés sur la feuille adhésive 220 ou 320. In a step 501, the graphite sheet 130, 230 or 330 is placed in the opening 170, 270 or 370. For the second and third embodiments, the edges 231.1 and 231.2 of the graphite sheet 230, or the edges 331.1 and 331.2 of the graphite sheet 330, are placed on the adhesive sheet 220 or 320.
A une étape 502, le positionnement de la feuille de graphite 130, 230 ou 330 peut être contrôlé, par une caméra par exemple. Dans le cas où la feuille de graphite 130, 230 ou 330 est positionnée dans une position nominale, telle que les positions indiquées sur les figures 1 à 3, le procédé passe à l’étape suivante 503. Dans le cas contraire, le procédé retourne à l’étape 501 afin de repositionner la feuille de graphite 130, 230 ou 230. At a step 502, the positioning of the graphite sheet 130, 230 or 330 can be controlled, for example by a camera. In the case where the graphite sheet 130, 230 or 330 is positioned in a nominal position, such as the positions indicated in Figures 1 to 3, the process proceeds to the next step 503. Otherwise, the process returns in step 501 in order to reposition the graphite sheet 130, 230 or 230.
A l’étape 503, le circuit imprimé 140 sur lequel est montée la source monolithique 150 est disposé sur la couche adhésive 120, 220 ou 320 et sur la couche de graphite 130, 230 ou 330. In step 503, the printed circuit 140 on which the monolithic source 150 is mounted is placed on the adhesive layer 120, 220 or 320 and on the graphite layer 130, 230 or 330.
Le procédé peut comprendre en outre une étape de maintien en position des éléments de l’ensemble 100, 200 ou 300 par un serrage par vis 160.1 et 160.2. The method may also include a step of holding the elements of the assembly 100, 200 or 300 in position by tightening using screws 160.1 and 160.2.
La figure 6 présente une source monolithique 150 apte à être intégrée dans un ensemble selon un mode de réalisation de l’invention. Figure 6 shows a monolithic source 150 capable of being integrated into an assembly according to one embodiment of the invention.
La source monolithique 150 est fixée sur un support 620 généralement plan, tel que le PCB 140 décrit précédemment. La source 150 est un composant dit « monolithique » comprenant un substrat 612 sur lequel sont épitaxiées des sources lumineuses électroluminescentes élémentaires 614 à dimensions submillimétriques. Des connexions électriques 630, qui peuvent comprendre des câbles, des billes de soudure ou une pâte conductrice , sont prévues entre la source monolithique 150 et son support 620. Ces connexions assurent l’alimentation électrique de chacune des sources élémentaires 614 de la source monolithique. Il est ainsi rendu possible de piloter individuellement chacune des sources élémentaires 614 via le support 620 pouvant être le PCB 140. The monolithic source 150 is fixed on a generally planar support 620, such as the PCB 140 described above. The source 150 is a so-called “monolithic” component comprising a substrate 612 on which elementary electroluminescent light sources 614 with submillimeter dimensions are epitaxied. Electrical connections 630, which may include cables, solder balls or conductive paste, are provided between the monolithic source 150 and its support 620. These connections ensure the electrical supply of each of the elementary sources 614 of the monolithic source. It is thus made possible to individually control each of the elementary sources 614 via the support 620 which can be the PCB 140.
L’interstice vide entre les câbles 630 peut être rempli d’une résine thermo-conductrice 632, qui assure la bonne tenue de la source 150 sur le support 620, ainsi que l’échange thermique entre la source 150 et le support 620. The empty gap between the cables 630 can be filled with a thermally conductive resin 632, which ensures the good holding of the source 150 on the support 620, as well as the thermal exchange between the source 150 and the support 620.
La matrice de sources élémentaires 615 peut être mono-dimensionnelle, auquel cas les sources élémentaires 614 sont placées les unes à côté des autres selon une unique direction, ou peuvent être réparties de manière bidimensionnelle. La taille de la surface d’émission de la source monolithique 150 peut varier, en fonction du nombre de sources élémentaires 614, chaque source élémentaire pouvant avoir une largeur de l’ordre de 10 microns, en fonction de la répartition des sources élémentaires 614, et en fonction de l’espacement entre les sources élémentaires 614. The matrix of elementary sources 615 can be one-dimensional, in which case the elementary sources 614 are placed next to each other in a single direction, or can be distributed in a two-dimensional manner. The size of the emission surface of the monolithic source 150 can vary, depending on the number of elementary sources 614, each elementary source being able to have a width of the order of 10 microns, as a function of the distribution of the elementary sources 614, and as a function of the spacing between the elementary sources 614.
La présente invention ne se limite pas aux formes de réalisation décrites ci-avant à titre d’exemples ; elle s’étend à d’autres variantes. The present invention is not limited to the embodiments described above by way of examples; it extends to other variants.

Claims

Revendications Claims
1 Ensemble (100 ; 200 ; 300) comprenant: 1 Set (100; 200; 300) including:
- une source lumineuse (150) à semi-conducteur ; - a semiconductor light source (150);
- un circuit imprimé (140) sur lequel est monté la source lumineuse; - a printed circuit (140) on which the light source is mounted;
- une feuille adhésive (120;220;320) ; - an adhesive sheet (120;220;320);
- une feuille de matériau conducteur thermique (130 ; 230 ; 330) ; - a sheet of thermal conductive material (130; 230; 330);
- un radiateur (110;310); dans lequel la feuille adhésive comprend une ouverture (170 ; 270 ; 370) conformée de manière à ce que, dans ladite ouverture, au moins une partie de la feuille de matériau conducteur thermique soit directement comprise entre le circuit imprimé et le radiateur ; dans lequel, autour de l’ouverture, au moins une partie de la feuille adhésive est directement comprise entre le radiateur et le circuit imprimé. - a radiator (110;310); in which the adhesive sheet comprises an opening (170; 270; 370) shaped so that, in said opening, at least part of the sheet of thermal conductive material is directly included between the printed circuit and the radiator; in which, around the opening, at least part of the adhesive sheet is directly included between the radiator and the printed circuit.
2 Ensemble selon la revendication 1, dans lequel la feuille de matériau conducteur thermique (130 ; 230 ; 330) a une conductivité thermique supérieure à 5 W.nr1.K-1, par exemple est à base de graphite. 2 Assembly according to claim 1, in which the sheet of thermally conductive material (130; 230; 330) has a thermal conductivity greater than 5 W.nr 1 .K- 1 , for example is based on graphite.
3 Ensemble selon la revendication 1 ou 2, dans lequel au moins une dimension de la feuille de matériau conducteur thermique (230 ; 330) est plus grande qu’une dimension de l’ouverture (270 ; 370), ladite feuille de matériau conducteur thermique étant agencée dans l’ensemble (200 ; 300) de manière à ce qu’une partie centrale de la feuille de matériau conducteur thermique soit directement comprise entre le circuit imprimé (140) et le radiateur (110 ; 310), et de manière à ce que des bords (231.1 ; 231.2 ; 331.1 ; 3 assembly according to claim 1 or 2, in which at least one dimension of the sheet of thermally conductive material (230; 330) is larger than a dimension of the opening (270; 370), said sheet of thermally conductive material being arranged in the assembly (200; 300) so that a central part of the sheet of thermally conductive material is directly included between the printed circuit (140) and the radiator (110; 310), and so as to what edges (231.1; 231.2; 331.1;
331.2) de la feuille de matériau conducteur thermique soient directement compris entre la feuille adhésive et le circuit imprimé. Ensemble selon la revendication 3, dans lequel le radiateur (310) comprend une surface supérieure (311) comprenant un support (313) en regard d’une partie du circuit imprimé sous la source lumineuse (150) et au moins une gorge (311.1 ; 312.2) bordant ledit support, dans lequel une partie de la feuille de matériau conducteur thermique (320) est directement comprise entre le support du radiateur et le circuit imprimé (140), dans lequel le support et la gorge sont conformés de manière à ce que au moins un bord (331 .1 ; 331 .2) de la feuille de matériau conducteur thermique soit directement compris entre la feuille adhésive et le circuit imprimé dans la gorge. Ensemble selon la revendication 4, dans lequel une profondeur (315) de la gorge (312.1 ; 312.2) est inférieure ou égale à une épaisseur (321) de la feuille adhésive (320), de manière à ce que la feuille adhésive soit directement comprise entre le bord (331.1 ; 331.2) de la feuille de matériau conducteur thermique et le radiateur dans la gorge. Ensemble selon la revendication 4 ou 5, dans lequel au moins un bord de l’ouverture de la feuille adhésive (320) est découpé de manière à former des fentes (400) dans la feuille adhésive, chaque portion de feuille adhésive entre deux fentes étant positionnée dans une gorge (312.1 ; 312.2) du radiateur (310). Ensemble selon l’une des revendications précédentes, dans lequel la couche adhésive (120 ; 220 ; 320) est isolante électriquement. 8 Ensemble selon l’une des revendications précédentes, comprenant en outre au moins une vis (160.1 ; 160.2) agencée de manière à serrer le circuit imprimé (140), la couche adhésive (120 ; 220 ; 320) et le radiateur (110 ; 210 ; 310). 331.2) of the sheet of thermally conductive material are directly between the adhesive sheet and the printed circuit. Assembly according to claim 3, in which the radiator (310) comprises an upper surface (311) comprising a support (313) facing a part of the printed circuit under the light source (150) and at least one groove (311.1; 312.2) bordering said support, in which a part of the sheet of thermally conductive material (320) is directly included between the radiator support and the printed circuit (140), in which the support and the groove are shaped so that at least one edge (331.1; 331.2) of the sheet of thermally conductive material is directly included between the adhesive sheet and the printed circuit in the groove. Assembly according to claim 4, in which a depth (315) of the groove (312.1; 312.2) is less than or equal to a thickness (321) of the adhesive sheet (320), so that the adhesive sheet is directly included between the edge (331.1; 331.2) of the sheet of thermally conductive material and the radiator in the groove. Assembly according to claim 4 or 5, in which at least one edge of the opening of the adhesive sheet (320) is cut so as to form slots (400) in the adhesive sheet, each portion of adhesive sheet between two slots being positioned in a groove (312.1; 312.2) of the radiator (310). Assembly according to one of the preceding claims, in which the adhesive layer (120; 220; 320) is electrically insulating. 8 Assembly according to one of the preceding claims, further comprising at least one screw (160.1; 160.2) arranged so as to tighten the printed circuit (140), the adhesive layer (120; 220; 320) and the radiator (110; 210; 310).
9 Module lumineux comprenant un ensemble selon l’une des revendications précédentes et une optique de projection apte à projeter des rayons lumineux issus de la source lumineuse à semi-conducteur vers l’extérieur du module lumineux. 9 Light module comprising an assembly according to one of the preceding claims and projection optics capable of projecting light rays coming from the semiconductor light source towards the outside of the light module.
10 Procédé de fabrication d’un ensemble (100 ; 200 ; 300) comprenant les étapes suivantes : 10 Process for manufacturing an assembly (100; 200; 300) comprising the following steps:
- disposer (500) une feuille adhésive (120 ; 220 ; 320) sur un radiateur (110 ; 310), ladite couche adhésive comprenant une ouverture (170 ; 270 ; 370) ; - place (500) an adhesive sheet (120; 220; 320) on a radiator (110; 310), said adhesive layer comprising an opening (170; 270; 370);
- disposer (501) une feuille de matériau conducteur thermique (130 ; 230 ; 330) au moins partiellement dans ladite ouverture, de manière à ce qu’au moins une partie du matériau conducteur thermique soit en contact avec le radiateur ; - arrange (501) a sheet of thermal conductive material (130; 230; 330) at least partially in said opening, so that at least part of the thermal conductive material is in contact with the radiator;
- vérifier (502) qu’un positionnement de la feuille de matériau conducteur thermique corresponde à un positionnement nominal ; - check (502) that a positioning of the sheet of thermal conductive material corresponds to a nominal positioning;
- disposer (503) un circuit imprimé (140) sur lequel est monté une source lumineuse (150) à semi-conducteur, sur la feuille adhésive et sur la feuille de matériau conducteur thermique. - arrange (503) a printed circuit (140) on which a semiconductor light source (150) is mounted, on the adhesive sheet and on the sheet of thermally conductive material.
PCT/EP2023/063694 2022-05-23 2023-05-22 Title: assembly for dissipating heat from a semiconductor light source WO2023227552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2204937A FR3135867A1 (en) 2022-05-23 2022-05-23 Assembly for heat dissipation of a semiconductor light source
FRFR2204937 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023227552A1 true WO2023227552A1 (en) 2023-11-30

Family

ID=82781179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/063694 WO2023227552A1 (en) 2022-05-23 2023-05-22 Title: assembly for dissipating heat from a semiconductor light source

Country Status (2)

Country Link
FR (1) FR3135867A1 (en)
WO (1) WO2023227552A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201606728U (en) 2010-03-19 2010-10-13 河南恒基勤上光电有限公司 LED lamp structure using non-gum graphite heat-conducting materials and heat-conducting silicone grease
US20100302777A1 (en) * 2007-10-24 2010-12-02 Franz Knoll Method for positioning and mounting an led assembly and positioning body for this purpose
US20110001418A1 (en) 2009-07-03 2011-01-06 Chi-Ruei Tsai High heat dissipation electric circuit board and manufacturing method thereof
JP2011035320A (en) * 2009-08-05 2011-02-17 Toyota Motor Corp Bonding structure of substrate
FR3010489A1 (en) * 2013-09-06 2015-03-13 Valeo Vision THERMAL DISSIPATOR AND LED LIGHTING MODULE
US20150369467A1 (en) * 2013-10-24 2015-12-24 Sumitomo Electric Industries, Ltd. Heat dissipation circuit board and method for producing same
DE102019116021A1 (en) * 2019-06-12 2020-12-17 HELLA GmbH & Co. KGaA Flexible circuit board with a thermally conductive connection to a heat sink

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100302777A1 (en) * 2007-10-24 2010-12-02 Franz Knoll Method for positioning and mounting an led assembly and positioning body for this purpose
US20110001418A1 (en) 2009-07-03 2011-01-06 Chi-Ruei Tsai High heat dissipation electric circuit board and manufacturing method thereof
JP2011035320A (en) * 2009-08-05 2011-02-17 Toyota Motor Corp Bonding structure of substrate
CN201606728U (en) 2010-03-19 2010-10-13 河南恒基勤上光电有限公司 LED lamp structure using non-gum graphite heat-conducting materials and heat-conducting silicone grease
FR3010489A1 (en) * 2013-09-06 2015-03-13 Valeo Vision THERMAL DISSIPATOR AND LED LIGHTING MODULE
US20150369467A1 (en) * 2013-10-24 2015-12-24 Sumitomo Electric Industries, Ltd. Heat dissipation circuit board and method for producing same
DE102019116021A1 (en) * 2019-06-12 2020-12-17 HELLA GmbH & Co. KGaA Flexible circuit board with a thermally conductive connection to a heat sink

Also Published As

Publication number Publication date
FR3135867A1 (en) 2023-11-24

Similar Documents

Publication Publication Date Title
EP3513119B1 (en) Lighting module having a monolithic light-emitting source
EP3365924B1 (en) Microelectronic diode with optimised active surface
JP5409366B2 (en) LED semiconductor body
FR3073669A1 (en) METHOD FOR MANUFACTURING AN OPTOELECTRONIC DEVICE COMPRISING A PLURALITY OF DIODES
EP3185294A1 (en) Optoelectronic light-emitting device
EP3273147B1 (en) Land vehicle light module
EP3817054B1 (en) Method for manufacturing at least one light-emitting or light-receiving diode
WO2023227552A1 (en) Title: assembly for dissipating heat from a semiconductor light source
EP3731285B1 (en) Method for producing a light-emitting and/or light-receiving device with metal optical separation grid
WO2018020185A1 (en) Light-emitting device and method for manufacturing same
EP3878242A1 (en) Light device for a motor vehicle, comprising a matrix light source
EP3784953A1 (en) Optical module projecting a pixelated light beam
FR2878077A1 (en) VERTICAL ELECTRONIC COMPONENT AUTOREFROIDI
WO2017001760A1 (en) Light-emitting semiconductor device including a structured photoluminescent layer
EP3427298B1 (en) Head-up display comprising an led-based emissive display
FR3105350A1 (en) Light module for motor vehicle.
FR3055949B1 (en) THERMAL CONNECTION FOR LUMINOUS MODULE
EP3780123B1 (en) Method for manufacturing electronic devices
EP3563647B1 (en) Electronic structure comprising a matrix array of electronic devices having improved thermal performances
WO2020053190A1 (en) Light system for vehicle
FR3119879A1 (en) Luminous device for automobile
FR3105351A1 (en) Motor vehicle light module.
EP3364100A1 (en) Compact light module
WO2020064627A1 (en) Matrix light source with diagnostic circuit for a motor vehicle
FR3011387A1 (en) SECONDARY OPTICAL FIXATION ON A PHOTOVOLTAIC RECEIVER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23728033

Country of ref document: EP

Kind code of ref document: A1