WO2017001760A1 - Light-emitting semiconductor device including a structured photoluminescent layer - Google Patents

Light-emitting semiconductor device including a structured photoluminescent layer Download PDF

Info

Publication number
WO2017001760A1
WO2017001760A1 PCT/FR2016/051592 FR2016051592W WO2017001760A1 WO 2017001760 A1 WO2017001760 A1 WO 2017001760A1 FR 2016051592 W FR2016051592 W FR 2016051592W WO 2017001760 A1 WO2017001760 A1 WO 2017001760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
photoluminescent layer
cavity
emitting diode
Prior art date
Application number
PCT/FR2016/051592
Other languages
French (fr)
Inventor
Marianne Consonni
Abdenacer Ait-Mani
Pascal BOURION
Adrien Gasse
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Best
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives, Best filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Publication of WO2017001760A1 publication Critical patent/WO2017001760A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material

Definitions

  • the invention relates to a semiconductor light-emitting device, that is to say an optoelectronic device comprising at least one light-emitting diode, adapted to emit light radiation according to desired colorimetric characteristics, and also relates to a method for producing a light-emitting diode. such an electroluminescent device.
  • the invention finds application particularly in lighting systems, in particular those emitting a white light.
  • an optoelectronic device comprising a light-emitting diode whose emission surface is covered with a layer of photoluminescent material adapted to convert at least a portion of the light radiation. emitted by the light-emitting diode into radiation of another wavelength.
  • devices comprising a light-emitting diode based on gallium nitride (GaN) adapted to emit blue light, that is to say whose emission spectrum has a peak of intensity. around 440nm at approximately 490nm, combined with a photoluminescent layer of yttrium aluminum garnet (YAG, for Yttrium Aluminum Garnet) activated by the cerium ion, called YAG: Ce, adapted to convert a portion of the blue light in a yellow light, that is to say whose emission spectrum has a peak intensity between 560nm and 590nm approximately.
  • GaN gallium nitride
  • the white light is thus obtained by superposition of the blue light flux emitted by the light-emitting diode and not converted by the photoluminescent layer and the yellow light flux emitted by the photoluminescent layer.
  • a semiconductor light-emitting device can be characterized electrically and optically in particular by its light output, that is to say the ratio between the luminous flux emitted by the device and the electrical power injected at the source.
  • the colorimetric properties of the device can be characterized in particular in terms of color temperature, that is to say the black body temperature whose emitted radiation has a substantially identical spectral distribution, ie a shade similar to that device, and color rendering index that describes the ability of the device to render the different colors of an object.
  • a GaN-based light-emitting diode coated with a YAG-based photoluminescent layer has a color temperature ranging from 4000 K to a so-called hot white color at 6500 K for a so-called cold white color.
  • the color rendering index is usually greater than 80 (on a scale of 0 to 100) and a light output of the order of 150 Im / W.
  • the colorimetric properties of the electroluminescent device may be desired to adjust the colorimetric properties of the electroluminescent device, for example so that the emitted light has a warm white, that is to say with a color temperature of the order of 2500K to 3500K.
  • the wavelength spectrum of the radiation emitted by the device then has a proportion of decreased blue light and a new red component.
  • the color temperature can then be of the order of 2500K to 3500K and the perceived color is said to be hot.
  • Document US2009 / 0221106 describes an example of a semiconductor light-emitting device that has a structured photoluminescent layer so as to adjust the intensity and / or the color of the emitted light radiation.
  • This device comprises a plurality of light-emitting diodes assembled on a first face of an optically transparent layer whose opposite face is covered with a photoluminescent layer.
  • the photoluminescent layer has different adjacent areas which differ from each other by the addition or removal of photoluminescent material.
  • the photoluminescent layer is formed of the stack of two elementary layers made of a different photoluminescent material, wherein a pad of a third photoluminescent material is disposed on certain areas of the photoluminescent layer while other areas have a cavity more or less deep formed in the photoluminescent layer.
  • the arrangement of the different areas and the depth of the cavities depend on the desired intensity and color of the light radiation.
  • US2013 / 0126918 discloses an optoelectronic device comprising a LED chip (for Light Emitting Diode, in English) partially covered by a light conversion wall. This defines a through cavity opening on the chip.
  • the document US2006 / 0099449 describes an optoelectronic device of which an LED chip is covered by a photoluminescent layer. This has a concavity at which it is coated by a second photoluminescent layer.
  • US2015 / 0194579 discloses an optoelectronic device having a plurality of diodes covered by a glass color conversion element with cavities filled with phosphors.
  • the document WO2013 / 038579 describes an optoelectronic device comprising a plurality of diodes covered by a photoluminescent layer with non-through cavities.
  • the object of the invention is to remedy at least in part the drawbacks of the prior art, and more particularly to propose an optoelectronic device with a light-emitting diode whose colorimetric characteristics can be precisely adjusted.
  • Another objective of the invention is to propose an optoelectronic device with a light-emitting diode whose luminous efficiency is improved.
  • Another object of the invention is to provide a particularly compact optoelectronic device with a light-emitting diode.
  • the object of the invention is an optoelectronic light emitting device, comprising:
  • a photoluminescent layer which at least partly covers the emission surface, comprising at least a first phosphor adapted to absorb at least part of an incident light radiation emitted by the light-emitting diode and to emit light radiation at a first wavelength, and having at least one cavity formed from a face of the photoluminescent layer opposite to the emission surface.
  • At least one second phosphor is disposed in said cavity, the second phosphor being adapted to absorb at least part of incident light radiation and to emit in response light radiation at a second wavelength different from the first one. wave length.
  • the cavity is non-traversing so that the photoluminescent layer locally has a cavity bottom portion located under said cavity.
  • the photoluminescent layer comprises a plurality of cavities each housing at least one phosphor pad different from the first phosphor. It is then possible to adjust the colorimetric properties of the optoelectronic device at the emission face of the light-emitting diode, along an axis substantially orthogonal to the emission surface by adjusting the depth of the non-cavity or cavities. through their phosphor studs, as well as in a plane parallel to the emission surface by means of cavities and their luminescent pads. This adjustment of the colorimetric properties can be obtained without causing any degradation of the emission surface of the light-emitting diode.
  • the photoluminescent layer may be in contact with the emission surface of the light emitting diode.
  • the emission surface may be a face of a semiconductor layer doped with a PN junction of said light emitting diode. It may alternatively be a transparent passivation layer covering and in contact with a semiconductor layer doped with a PN junction of the light emitting diode.
  • Each cavity of the photoluminescent layer may be non-through.
  • the cavity bottom portion may have an average thickness less than or equal to 10% of a minimum thickness of photoluminescent layer necessary to absorb substantially all the incident light radiation emitted by the light emitting diode.
  • the cavity bottom portion may have an average thickness less than or equal to ⁇ .
  • Said phosphor pads are adapted to each emit a light selected from blue, red, yellow, green and orange.
  • a part of the cavities may not have a phosphor pad, the corresponding cavity bottom portion may have an average thickness less than or equal to 10% of a minimum photoluminescent layer thickness necessary to absorb substantially all the incident light radiation emitted by the light-emitting diode.
  • the optoelectronic device may comprise a single light-emitting diode whose emission surface is covered by the photoluminescent layer.
  • the light-emitting diode may be based on a III-V compound and preferably III-N.
  • the invention also relates to a method for producing an optoelectronic device having any of the preceding features, comprising the steps in which:
  • a photoluminescent layer comprising at least a first phosphor
  • At least one cavity is made from a face of the photoluminescent layer opposite to the emission surface, said cavity being non-through so that the photoluminescent layer locally has a cavity bottom portion situated under said cavity;
  • the photoluminescent layer comprising a plurality of cavities each housing at least one phosphor pad different from the first phosphor.
  • Said cavity may be formed by laser ablation.
  • the photoluminescent layer may be obtained from a mixture of the first phosphor with a solvent, the step of depositing said photoluminescent layer comprising a phase of deposition of said mixture on the emission surface followed by a phase of evaporation of solvent.
  • the photoluminescent layer may be obtained from a mixture of a first phosphor powder with a binder matrix of a transparent and optically inert material, the step of depositing said photoluminescent layer comprising a phase of depositing said mixture on the surface of emission followed by a phase of sedimentation of the powder of first phosphor within the matrix binder
  • FIGS. 1a and 1b are diagrammatic sectional views of an optoelectronic light-emitting diode device according to one embodiment, comprising a structured photoluminescent layer (FIG. 1a) and phosphor pads disposed in cavities of the structured photoluminescent layer (FIG. lb);
  • FIGS. 2a and 2b are diagrammatic views from above of an optoelectronic light-emitting diode device according to an embodiment in which FIG. 2a represents a spatial distribution of the phosphor pads in the structured photoluminescent layer, and FIG. 2b represents the color. corresponding light emitted by the pads and the photoluminescent layer;
  • FIGS. 3a to 3d are diagrammatic cross-sectional views of a light-emitting diode optoelectronic device part according to one embodiment, for different steps of the production method.
  • the invention relates to an optoelectronic light-emitting diode device comprising a photoluminescent structure.
  • photoluminescent structure is meant here a structure comprising at least two photoluminescent materials each adapted to absorb light at a first wavelength and to emit in response light radiation at a wavelength greater than the first length of light. wave.
  • the two photoluminescent materials are different from each other in the sense that their photoluminescence emission spectrum is different from each other.
  • phosphors These materials are generally called phosphors (phosphor), and, for illustrative purposes, can be adapted to emit: in the green, that is to say that the emission spectrum has a peak intensity between 495nm and 560nm approximately, and can be for example made based on SrSi 2 0 2 N 2 : Eu 2+ , ⁇ -sialon: Eu 2+ , or Sr 3 Si 3 Al 2 O 2 N 2 : Eu 2+ ;
  • the emission spectrum has a peak intensity of between 560nm and 580nm approximately, and can be for example made from YAG: Ce, Sr 3 B 2 0 6 Eu 2+ , Ca 3 Si 2 0 7 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , or even a mixture of YAG: Ce and Sr 3 SiOs: Eu 2+ ;
  • the emission spectrum has a peak intensity of between 580 nm and 600 nm approximately, and can be made for example based on a material of silicate, nitride and / or sulphide;
  • the emission spectrum has a peak intensity of between 600 nm and 650 nm approximately, and can be for example made based on M 2 SÎ5N8: Eu 2+ where M is selected from Ca, Sr, Ba, Sr x Cai x AISiN3: Eu 2+ , Sr 2 Si 5 N 8 : Eu 2+ , or (Ca, Sr) SiO 4 : Eu 2+ .
  • the photoluminescent material may also be in the form of quantum dots (quantum dots), that is to say in the form of semiconductor nanocrystals, whose mean size may be between 0.2 nm and 1000 nm, for example example between 1nm and 100nm, and especially between 2nm and 30nm.
  • the semiconductor material of the nanocrystals may be chosen in particular from cadmium selenide (CdS), indium phosphorus (InP), cadmium sulphide (CdS), zinc sulphide (ZnS), cadmium oxide (CdO ), zinc and cadmium selenide (CdZnSe), or among other semiconductor materials that may be suitable.
  • the semiconductor nanocrystals may be dispersed in a binder matrix, for example silica.
  • the phosphors may be in the form of a layer or a pad.
  • layer is meant a range of phosphor whose thickness is less, for example ten times or even twenty times, to its longitudinal dimensions of width and length.
  • the layer is produced by depositing, on the light-emitting diode, at least one material comprising a luminophore and is therefore not a layer, possibly self-supporting, previously produced and then assembled to the light-emitting diode.
  • plot we mean a volume of phosphor whose thickness is less than, equal to or greater than its longitudinal dimensions of width and length, and whose longitudinal dimensions are smaller than those of the phosphor layer.
  • a plot can take the form of a drop or even a structured volume.
  • the phosphor layer or pad may also comprise, especially when the phosphor is in the form of a grain or a powder, a binding matrix in the form of a transparent and optically inert material providing a binder function with respect to the phosphor for example silicone.
  • Transparency means a material which transmits at least 50% of the incident light, and preferably at least 80%.
  • optically inert is meant a material that does not emit light in response to its incident light absorption.
  • the quantum efficiency, or conversion efficiency ⁇ , specific to each phosphor is defined as the ratio between the number of photons converted by the phosphor to the number of photons absorbed by it.
  • the conversion efficiency is relative to the type of phosphor and does not depend substantially on the dimensional characteristics of the phosphor portion considered.
  • the conversion efficiency of the phosphors listed above is of the order of 70% to 98%.
  • the absorption rate i a bs is also defined as being the ratio between the number of photons absorbed by the phosphor portion over the number of incident photons.
  • the absorption rate thus depends, as a first approximation, on the dimensional characteristics of the phosphor portion, in particular its thickness, and on the phosphor volume fraction (ratio of the volume of phosphor in the portion under consideration to the total volume of this phosphor. portion). It is understood that the absorption rate can be adjusted according to the phosphor thickness in the portion in question and / or its volume fraction.
  • the conversion rate ⁇ is defined as the ratio between the number of photons converted by the phosphor portion to the number of incident photons.
  • the conversion rate ⁇ can be expressed as the product of the conversion efficiency ⁇ and the absorption rate i a bs.
  • the terms “substantially”, “approximately”, “approximately” extend “to within 10%”.
  • the terms “between ... and ", “from ... to " mean that the terminals are included unless otherwise stated.
  • FIG. 1a partially and schematically illustrates an optoelectronic device 1 with a light-emitting diode 10 according to one embodiment, comprising a photoluminescent structure 20 with a structured photoluminescent layer 30.
  • a three-dimensional orthonormal reference is defined here and for the rest of the description, in which the X and Y axes are oriented along the longitudinal dimensions of the light-emitting diode and the Z axis is oriented along its transverse dimension, that is to say according to its thickness.
  • the optoelectronic device 1 comprises at least one light-emitting diode 10 having a transmission surface 11 through which light radiation is intended to be emitted.
  • the optoelectronic device 1 here comprises only one light-emitting diode 10 but, as mentioned hereinafter, the optoelectronic device may comprise a plurality of light-emitting diodes arranged with respect to one another so as to define a surface of emission common to all diodes.
  • the light-emitting diode 10 comprises, arranged on a support 2, a stack formed of a doped semiconductor portion 12 of a first type of conductivity, for example of the P type, of an active zone 13 from which is emitted the light radiation of the light emitting diode, and a doped semiconductor portion 14 of a second conductivity type opposite to the first type of conductivity, for example of type N.
  • the light-emitting diode 10 may be made based on III-V semiconductor material, that is to say mainly comprising at least one group III element and a group V element. More precisely, the diode can be made on the basis of a III-N compound, such as, for example, GaN, InGaN, AIGaN, AlN, InN and AllnGaN.
  • the active zone 13 may comprise at least one quantum well made from a material semiconductor having a band gap energy lower than doped semiconductor portions 12 and 14.
  • the doped semiconductor portions 12, 14 are here made of GaN and the active zone 13 comprises an alternation of unintentionally doped semiconductor layers forming barrier layers based GaN, and at least one quantum well for example based on InGaN.
  • the diode is here adapted to emit a blue light, that is to say whose emission spectrum has a peak intensity around 440nm to 490nm approximately.
  • the thickness of the doped semiconductor portion P may be between 50 nm and 20 ⁇ m; that of the active zone 13 may be between 10 nm and 500 nm; and that of the semiconductor portion 14 doped N may be between ⁇ , ⁇ and 20 ⁇ .
  • the light emitting diode 10 may have dimensions along the X axis and / or Y between 200 ⁇ and 5mm. Preferably, the diode has a square surface of 1mm side.
  • the emitting surface 11 of the light-emitting diode forms a substantially flat surface (by virtue of the surface micro-structuring facilitating the extraction of light) which extends along the plane (X, Y). It corresponds here to the upper face along the Z axis of the N doped semiconductor portion 14, or even to the upper face of a thin passivation layer (not shown) covering the semiconductor portion 14.
  • Figure 1b partially and schematically illustrates the optoelectronic device shown in Figure la where the structured photoluminescent layer 30 is partially covered with phosphor pads P 1.
  • the optoelectronic device 1 thus comprises a photoluminescent structure 20 which at least partially covers the emission surface 11 of the light-emitting diode 10.
  • the photoluminescent structure 20 comprises a structured photoluminescent layer 30 formed of minus a first phosphor (Figure la) and at least a second phosphor different from the first phosphor ( Figure lb).
  • the photoluminescent layer 30 extends between a lower face 31 facing the light emitting diode 10 and an upper face 32 opposite the lower face.
  • the photoluminescent layer 30 is in contact with the light emitting diode 10, that is to say that there is no additional intermediate element between the photoluminescent layer and the light emitting diode.
  • the emitting surface 11 of the light-emitting diode (for example the upper face of the doped semiconductor portion 14 or the upper face of a passivation layer) is in contact with the lower face 31 of the photoluminescent layer.
  • the photoluminescent layer 30 comprises at least a first phosphor Le, adapted to convert at least a portion of the light emitted by the light-emitting diode 10 into a light radiation of wavelength greater than that of the absorbed radiation.
  • the phosphor Le may be adapted to absorb emitted light by the diode and to emit in response yellow, green, orange, red, or other light.
  • the phosphor Le is adapted to emit yellow light and is for example made from YAG: Ce.
  • the average thickness of the photoluminescent layer 30 may be between ⁇ and 500 ⁇ , preferably between ⁇ and ⁇ , for example equal to approximately 30 ⁇ or approximately 50 ⁇ .
  • the photoluminescent layer 30 may be adapted to absorb all or part of the incident light emitted by the light-emitting diode 10 as a function of the desired colorimetric properties, as a function, in particular, of the volume fraction of the phosphor Le and the average thickness e c of the layer.
  • a layer of YAG: Ce with a high volume fraction, for example greater than or equal to 30%, and with an average thickness e c greater than or equal to 50 ⁇ m leads to an absorption rate i a bs approximately greater than or equal to 90%, or even close to 100% vis-à-vis the incident radiation emitted by a light emitting diode emitting blue light.
  • the light flux emitted by the optoelectronic device therefore essentially has a yellow color.
  • the average thickness e c of the layer Photoluminescent as well as the type of phosphor Le and its volume fraction can be adjusted according to the desired colorimetric properties of the optoelectronic device.
  • the photoluminescent layer 30 is said to be structured in the sense that it comprises at least one cavity 33 at its upper face 32.
  • the optoelectronic device here comprises a plurality of cavities 33i, 33 2 , 333 separated from each other by a so-called Zc zone.
  • the term "cavity" means a recess extending from the upper face 32 of the photoluminescent layer 30 in the direction of the depth of the photoluminescent layer 30.
  • the cavities 33i, 33 2 , 333 may have a horizontal profile, that is to say in the plane (X, Y) and / or a vertical profile, that is to say in a plane containing the axis Z, of any shape, for example triangular, square, rectangular and more generally polygonal, even circular, oval, oblong, or other.
  • the transverse dimensions along X and Y cavities may be between a few microns and a few millimeters, for example between 50 ⁇ and 500 ⁇ , and preferably between ⁇ and 300 ⁇ .
  • the transverse dimensions of the cavities as well as their surface density, that is to say their number per surface unit of the photoluminescent layer, can be adjusted according to the desired colorimetric properties of the optoelectronic device.
  • the cavities 33 each comprise a lateral wall 34, which extends towards the emission surface 11 and laterally delimits the cavity volume.
  • the side wall 34 may terminate at a point or a bottom line of the cavity.
  • the side wall 34 joins a bottom wall 35, cavity, which extends here substantially parallel to the underside of the photoluminescent layer.
  • the cavities 33 are advantageously non-through in the sense that they do not open onto the emitting surface 11 of the light-emitting diode.
  • the photoluminescent layer 30 locally comprises a cavity bottom portion Q delimited by the bottom wall 35, and the lower face 31.
  • the bottom portion C, of cavity C has an average thickness e C i measured along the axis Z.
  • the photoluminescent structure 20 further comprises at least a second phosphor L, and preferably a plurality of pads P, of second phosphor, arranged in the cavities 33,.
  • the second phosphor L is different from the phosphor Le of the photoluminescent layer 20 in the sense that it is adapted to absorb light and to emit spectrum light in response different from that of the first phosphor.
  • the volume of the phosphor L thus forms a pad which may or may not fill the interior space of the cavity 33 in which it is arranged. It is thus possible to define an average thickness ep, along the Z axis of the pad P, of phosphor.
  • the phosphor L can be adapted to emit a yellow, green, red orange or other light, and be made, for example, based on a luminescent material mentioned above.
  • the phosphor Le of the photoluminescent layer 30 is adapted to emit yellow light
  • the phosphor L is preferably adapted to emit green, red or orange light.
  • Each pad P, phosphor may comprise a phosphor different from that of other pads, and have a thickness ep, different from each other.
  • each phosphor pad may be characterized by the type of phosphor and the volume fraction thereof, as well as by transverse and thickness dimensions, the choice of which makes it possible to adjust the desired colorimetric properties of the optoelectronic device.
  • the photoluminescent structure 20 thus has a plurality of portions Z, of colored light, juxtaposed from each other, thus forming a set of pixels Z, of color whose characteristics can be adjusted so as to obtain the desired colorimetric properties of the optoelectronic device, while optimizing the light output of it.
  • the portions Z are light conversion zones formed portions of the photoluminescent layer 30 having cavities 33, at least some of which comprise P-pads, phosphor. They are separated from each other by the intermediate zone Zc of photoluminescent layer located between two neighboring color pixels. Color pixels are used in the sense that these portions have colorimetric properties different from those of the photoluminescent layer intermediate zone.
  • FIG. 1b three color pixels Z1, Z2, Z3 are shown, separated from each other by the intermediate zone Zc of photoluminescent layer.
  • the color pixel ZI comprises a cavity 33i, whose depth defines a bottom portion C1 of thickness eci comprising the phosphor Le. This cavity houses a plot PI of a luminophore L1 of average thickness e P i.
  • the color pixel ZI is therefore characterized by two pairs of conversion efficiency and absorption rate (r
  • the absorption rate T a bs, ci of the bottom portion C1 and the absorption rate T a bs, pi of the pad PI depend in particular, respectively, on the thickness eci and the thickness epi.
  • the luminous flux cp c , i_c converted by the phosphor Le depends on the absorption rate T a bs, ci, of the conversion efficiency r
  • the luminous flux cp c , i_i converted by the luminophore L1 depends on the absorption rate T a bs, pi, the conversion efficiency r ⁇ , and the luminous flux (1- T a bs, ci) x cpi_ED, zi emitted by the diode and not absorbed by the bottom portion Cl.
  • the luminous flux cpzi emitted by the portion ZI that is to say the luminous flux from the portion ZI, whether transmitted or emitted by photoluminescence , is formed by the superposition of the luminous flux cp c , i_c converted by the phosphor Le, the luminous flux cp c , i_i converted by the luminophore L1, and a part of the luminous flux emitted by the light-emitting diode and not absorbed by the Ll and Le phosphors.
  • the colorimetric properties of the ZI portion can be adjusted by the choice of phosphors, their respective volume fraction and the dimensions of the bottom portion C1 and the pad Pl.
  • the luminous flux emitted by a color pixel may be modified in the event of reabsorption, that is to say absorption by the phosphor L1 of at least a portion of the luminous flux cp c , i_c converted by the luminophore The.
  • the phosphor L1 may also be adapted to absorb light radiation emitted by the phosphor Le and to emit radiation in response to its luminescence wavelength. This double absorption phenomenon at a color pixel occurs in particular when the luminescence wavelength of the phosphor Le is lower than that of the phosphor L1, for example when the phosphor Le emits in the yellow and the phosphor L1 emits in the Red.
  • the spectral distribution of the luminous flux emitted by the pixel ZI has a reduced proportion of yellow and a greater proportion of red.
  • this reabsorption decreases the conversion rate insofar as a fraction of the luminous flux emitted by the pixel ZI depends on ⁇ _ ⁇ x ⁇ , ⁇ which consequently impacts the overall efficiency of the optoelectronic device.
  • the color pixel Z2 can be sized in order to reduce the reabsorption phenomenon and thus optimize the overall efficiency of the optoelectronic device. It comprises here a cavity 33 2 whose depth defines a bottom portion C2 of average thickness e C2 comprising the phosphor Le, in which is located a pad P2 of a phosphor L2 of average thickness ep 2 .
  • the color pixel Z2 is therefore characterized by two pairs of the conversion efficiency and the absorption rate ( ⁇ , Tabs, c 2 ) and ( ⁇ _ 2 , Tabs, p 2 ).
  • the thickness ec 2 of the bottom portion C2 is such that the absorption rate T a bs, c 2 by the phosphor Le is less than or equal to 10%, and preferably less than or equal to 5%, so as to to limit the absorption by the phosphor of incident light emitted by the light-emitting diode.
  • the thickness e C2 of the bottom portion is less than or equal to 10%, and preferably less than or equal to 5%, of the thickness of the photoluminescent layer that would be necessary to obtain an absorption rate approximately equal to 100%.
  • a thickness of 50 ⁇ m for a phosphor volume fraction of greater than or equal to 30% may be sufficient to convert approximately all the incident light emitted by the light into yellow light. light emitting diode.
  • the thickness e C2 of the bottom portion C2 can thus be less than or equal to 5 ⁇ , for example equal to 2 ⁇ . It is also advantageous that the volume fraction of phosphor is less than 30% so as to further reduce the absorption rate tabs, C2-
  • the photoluminescent structure 20 here comprises a third color pixel Z3 having a cavity 33 3 whose depth defines a bottom portion C3 of thickness ec3 comprising the luminophore Le.
  • the pixel Z3 has no phosphor pad in the cavity.
  • the pixel Z3 is therefore characterized by the conversion efficiency and the absorption rate ( ⁇ , Tabs, c3).
  • the thickness e C3 of the bottom portion is such that the absorption rate T a bs, c3 by the first phosphor Le is less than or equal to 10%, and preferably less than or equal to 5%, so as to limit the absorption by the phosphor Le of incident light emitted by the light-emitting diode.
  • the thickness ec3 of the bottom portion is less than or equal to 10%, and preferably less than or equal to 5% to the thickness of the photoluminescent layer that would be necessary to obtain an absorption rate approximately equal to 100%. It is also advantageous that the volume fraction of phosphor is less than 30% so as to further reduce the absorption rate Tabs, c3. A pixel is thus obtained whose emitted light comes essentially from the light-emitting diode, this emitting for example a blue light.
  • FIG. 1b three examples of pixels are represented for purely illustrative purposes and other examples are feasible, which differ in particular from the depth of the cavity, the type of phosphors, as well as from the number and thickness of studs. phosphor present in each cavity.
  • the luminous flux emitted by the optoelectronic device corresponds to the superposition of the luminous flux emitted by the intermediate zone Zc of the photoluminescent layer and the luminous flux emitted by the different pixels Z, of color.
  • the colorimetric properties of the optoelectronic device thus depend on those of the intermediate zone Zc and the various pixels Z ,, and can be adjusted as a function of the surface density and the dimensions of the pixels, and the dimensions of the phosphor pads and the phosphor type. present or not in the cavities.
  • the overall efficiency of the optoelectronic device is optimized by the presence of pixels sized to limit the reabsorption phenomena.
  • the photoluminescence structure 20 here has a cross section in the plane (X, Y) of square profile and comprises a matrix of 3 ⁇ 3 pixels of color Z, separated from each other by an intermediate zone Zc of photoluminescent layer 30.
  • the photoluminescent layer 30 is adapted to absorb incident light emitted by the light emitting diode and to emit in response a yellow light indicated in the figure by the letter Y (for yellow, in English).
  • the photoluminescent structure 20 comprises three color pixels Z 4, each comprising a phosphor pad P4 adapted to absorb incident light and to emit green light, indicated in the figure by the letter G (for green, in English). ; three color pixels Z5 each comprising a phosphor pad P5 adapted to absorb incident light and to emit red light in response, indicated in the figure by the letter R (for red in English).
  • the photoluminescent structure also comprises three color pixels Ze each having a cavity 33e having no phosphor pad and whose depth is adapted so that the absorption rate by the cavity bottom portion is less than 10% and preferably less than or equal to 5%.
  • the light emitted by these pixels comes essentially from the light, for example blue indicated in the figure by the letter B (for blue, in English), emitted by the light-emitting diode and transmitted through the cavity bottom portion. .
  • the photoluminescent structure has a square section of 1mm side.
  • the photoluminescent layer is made based on YAG: Ce and has an average thickness of 30 ⁇ with a phosphor volume fraction of 30%.
  • the color pixels have a square section of 200 ⁇ and are separated from each other by an intermediate photoluminescent layer area of average width of ⁇ .
  • FIG. 2b illustrates the light emitted locally by the optoelectronic device according to the example of FIG. 2a.
  • the average thickness e c of photoluminescent layer 30, associated with the volume fraction of phosphor Le is insufficient. to absorb most of the incident light emitted by the light-emitting diode.
  • the light emitted by the luminescent layer at the intermediate zone Zc is the superposition of a portion of blue light emitted by the diode and yellow light emitted by the photoluminescent layer, so that the perceived light is white, indicated in the figure by the letter W (white, in English).
  • the color pixels distributed in the plane (X, Y) of the photoluminescent structure, make it possible to finely adjust the colorimetric properties of the optoelectronic device, in particular the color temperature and the color rendering index, by the adjustment of the parameters such as the surface density and the dimensions of the color pixels, the type of luminophores used, their volume fraction, and the dimensional and colorimetric characteristics of the different color pixels.
  • the overall efficiency of the latter can be optimized by sizing color pixels whose absorption rate by the first phosphor Le is less than 10% so as to reduce the reabsorption phenomenon.
  • the fact that the photoluminescent layer is in contact with the light emitting diode makes it possible to improve the extraction efficiency, defined as the ratio between the luminous flux received. by the photoluminescent layer on the light flux emitted by the light emitting diode, and thus to further optimize the overall efficiency of the optoelectronic device.
  • an intermediate transparent layer between the light-emitting diode and the photoluminescent layer can reduce the transmission of the light flux emitted by the diode by total internal reflection in the transparent layer, thereby reducing the extraction efficiency.
  • FIG. 3a shows a light-emitting diode according to the VTF (Vertical Thin Film) configuration.
  • VTF Very Thin Film
  • Other diode configurations electroluminescent can be used, such as the configuration TFFC (for Thin Film Flip Chip, in English).
  • the light-emitting diode 10 comprises the stack formed of the doped semiconductor portions 12 and 14 and of the active zone 13. This stack rests on a support 2, more precisely on an electrically conductive layer 3 intended to form the electrode P.
  • an electrically conductive strip 4 intended to form the electrode N is disposed on the upper face of the N-doped semiconductor portion 14, part of which is illustrated on FIG. FIG. 3a, situated on the edge of the upper face of the N-doped semiconductor portion 14.
  • An electrical connection pad 5 also rests on the upper face of the support 2, so as to ensure the electrical connection of the N electrode.
  • the upper face the stack forms the emission surface 11 through which the light radiation is intended to be emitted. This configuration, conventional for those skilled in the art, is not described in more detail.
  • the photoluminescent layer 30 is deposited on the light-emitting diode, more precisely on the whole of the emission surface 11 thereof. Preferably, it is in contact with the emitting surface 11 of the light emitting diode. It has an average thickness e c substantially constant over its entire surface area.
  • the deposition may be performed by a conventional technique known to those skilled in the art, such as screen printing, dispensing, electrophoresis, spin coating, or the like.
  • the photoluminescent layer 30 is made based on at least one phosphor material Le, for example in the form of a powder, and may comprise a binder matrix of a transparent and optically inert material, for example silicone.
  • a photoluminescent layer with a high luminophore volume fraction for example greater than or equal to 20% and preferably greater than or equal to 30%.
  • a high volume fraction indeed contributes to increasing the absorption rate and therefore the conversion rate of the photoluminescent layer. She can also help to improve the heat dissipation of the heat produced by the light-emitting diode. It can finally simplify and make more robust the cavity forming step when it is performed by laser ablation.
  • a mixture of phosphor Le, a binder and a solvent is prepared beforehand.
  • the phosphor Le may be YAG: Ce in powder form, the silicone binder and the glycerol solvent.
  • the phosphor volume fraction is chosen less than or equal to 25%, and preferably less than or equal to 5%.
  • the volume fraction of binder is chosen less than or equal to 30%, and preferably less than or equal to 15%.
  • the phosphor may have a mass of between 100 .mu.g and 200 .mu.g and the binder a mass of about 100 .mu.g.
  • the proportion of solvent can be adjusted depending on the viscosity of the desired mixture, to facilitate the deposition of the layer.
  • the mixture thus obtained is deposited on the emitting surface 11 of the light-emitting diode 10, and then the solvent is evaporated so as to obtain in fine a photoluminescent layer 30 where the arrangement of the phosphor grains leads to a volume fraction. high and homogeneous.
  • the evaporation is carried out for a sufficiently long time to prevent any convection movement in the mixture, for example for several minutes, between 120 ° C. and 150 ° C.
  • a photoluminescent layer 30 of constant average thickness, less than ⁇ and between about 30 ⁇ and 50 ⁇ , with a volume fraction of phosphor greater than or equal to 20%.
  • a mixture of luminophores is produced in a large quantity of binder, without solvent, with a phosphor volume fraction typically less than 20% of phosphor and preferably less than 5%, for example 100 ⁇ g of phosphor in 1 mg of phosphor. binder.
  • the mixture is then deposited on the emission surface of the light emitting diode and the luminophore is allowed to settle, for example for 10 h at 50.degree.
  • a photoluminescent layer having an average thickness of 30 ⁇ m with a phosphor volume fraction greater than or equal to 20% covered with a layer containing mainly binder is thus obtained.
  • a mixture comprising mainly the phosphor and the binder is deposited on the emission surface of the light-emitting diode, with a phosphor volume fraction greater than or equal to 20%, and preferably less than 30% to adjust the phosphor. viscosity and facilitate the dispensation.
  • cavities 33i, 33 2 , 333 are made from the upper face 32 of the photoluminescent layer. This step can be carried out by thin-film material removal techniques known to those skilled in the art, such as laser ablation, dry etching of the plasma etching or RIE etching type, or even photolithography.
  • the cavities 33 7 , 33 8 , 33 9 by laser ablation, to precisely control the depth of the cavities and thus the thickness ea of the bottom portion C, cavity. This thus makes it possible to finely control the colorimetric properties of the color pixel in question, but also to avoid damaging the emitting surface 11 and therefore the doped semiconductor portion 14 of the light emitting diode.
  • the laser may be chosen from lasers emitting in the UV range, for example between 193 nm and 355 nm, in the visible range, for example in the red at 633 nm or the green at 532 nm or even in the infrared, for example between 9 ⁇ m and ⁇ ⁇ m ( laser C0 2 ), or between 0.9 ⁇ and 1.4 ⁇ (YAG laser).
  • the power of the laser can be chosen between a few milliJoules or less and a few joules, depending in particular on the hardness of the layer to be etched and the expected accuracy of the etching.
  • the power of the laser is advantageously chosen to be of the order of a few milli-joules, and several passes of the laser are made. to engrave the same cavity.
  • a cavity 200 de330 ⁇ of side and 25 ⁇ deep can be made in a photoluminescent layer, having a mass fraction of 68% of YAG: Ce and 32% of silicone, using a laser UV pulsed at 50Hz, wavelength 355nm and power 0.2mJ.
  • Several passages are made in order to obtain the desired dimensions.
  • the size of the focusing spot of the laser beam can be adapted according to the area of the cavity to be formed.
  • a spot of 2 ⁇ 2 ⁇ can be used to form the profile of the cavity and a spot of larger size, for example 45 ⁇ 90 ⁇ can be used to form the interior of the cavity.
  • a cavity 33io is made facing the electrode N 4, in a through manner to open locally on the electrode N 4.
  • the absence, at this stage, of wire 6 for electrical connection between the electrode N 4 and the electrical connection pad 5 makes it possible to prevent the deposition of the photoluminescent layer 30 from being disturbed by the presence of the wire 6.
  • the electrode portion 4 forms an etch stop layer with respect to laser etching when a UV laser in the range of 255nm to 355nm and low power is used.
  • the phosphor studs P are then deposited in all the cavities 33, or preferably in certain cavities so as to leave empty cavities of phosphor studs, with the exception of the through cavity 33io.
  • the deposition of the phosphor pads P may be effected by dispensing small drops whose volume depends on the desired dimensions of the pad. By way of example, for cavities with a depth of between approximately 30 ⁇ and 50 ⁇ and transverse dimensions between ⁇ and 300 ⁇ , the drop volume deposited can be between 10 ⁇ 4 mm 3 and 10 ⁇ 2 mm 3 .
  • Each cavity 33 may receive one or more pads P, the size and type of phosphor depends on the desired colorimetric properties. Thus, several different phosphor pads can be deposited superimposed in the same cavity. Furthermore, the phosphor pad may have a smaller volume, equal to or even greater than the volume of the cavity receiving it.
  • the deposited drops intended to form the phosphor pads may be prepared according to the same examples of preparation of the photoluminescent layer, for example with a solvent intended to be evaporated or with a high proportion of binder and a step of sedimentation of the luminophores so as to form the plot.
  • an electrically conductive wire 6 is placed so as to connect electrically the electrode 4 to the electrical connection pad 5.
  • a protective layer or dome of the optoelectronic device made of a transparent and optically inert material, for example silicone, can be deposited on the optoelectronic device so as to cover the photoluminescent structure.
  • the optoelectronic device comprises a single light-emitting diode whose emission face is covered by the structured photoluminescent layer.
  • the optoelectronic device may comprise a plurality of light emitting diodes arranged mutually so as to define an emitting surface common to the diodes, preferably plane.
  • the light emitting diodes have the structure described in the patent application FR 14 50077 filed January 7, 2014, where the light emitting diodes have a mesa structure, that is to say that the active zone of the diodes is located protruding above the substrate following a step of etching its flanks, and comprise a common cathode.
  • the light-emitting diodes have a structure described in the publication of Fan et al entitled lll-nitride micro-emitter arrays development and applications,].
  • Phys. D Appl. Phys. 41 (2008) 094001.
  • the embodiments described above show a photoluminescent layer advantageously disposed in contact with the emission surface of the light emitting diode.
  • an intermediate layer made of a transparent and optically inert material, may be present between the emission surface and the photoluminescent layer.
  • This transparent intermediate layer may provide additional protection for the light-emitting diode during the cavity-forming step, in particular by laser ablation.
  • the cavities described above are not through, so that a cavity bottom portion is present between the cavity and the emission surface of the light emitting diode. Alternatively, at least a portion of the cavities may be through and lead to the emission surface of the light emitting diode.
  • the photoluminescent layer may be formed of a single layer of phosphor or a stack of several photoluminescent layers having different optical properties.
  • the stack may comprise a first elementary layer based on a first type of phosphor covered with one or more elementary layers made on the basis of different luminophores, that is to say with a wavelength of photoluminescence emission is different from that of the phosphor of other elementary layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

The invention relates to a light-emitting optoelectronic device (1) including: - at least one light-emitting diode (10) having an emission surface (11); and - a photoluminescent layer (30), which at least partially coats the emission surface, including at least one first luminophore (Le) suitable for absorbing incident light radiation emitted by the light-emitting diode and for emitting in response light radiation at a first wavelength, and including at least one cavity (33i) formed from a side (32) of the photoluminescent layer that is opposite the emission surface. At least one second luminophore (Li) is placed in said cavity (33i), the second luminophore being suitable for absorbing incident light radiation and for emitting in response light radiation at a second wavelength different from the first wavelength.

Description

DISPOSITIF ELECTROLUMINESCENT A SEMICONDUCTEUR COMPORTANT UNE COUCHE  SEMICONDUCTOR ELECTROLUMINESCENT DEVICE HAVING A LAYER
PHOTOLUMINESCENTE STRUCTUREE STRUCTURED PHOTOLUMINESCENT
DOMAINE TECHNIQUE TECHNICAL AREA
L'invention porte sur un dispositif électroluminescent à semiconducteur, c'est-à-dire un dispositif optoélectronique comportant au moins une diode électroluminescente, adapté à émettre un rayonnement lumineux selon des caractéristiques colorimétriques voulues, et concerne également un procédé de réalisation d'un tel dispositif électroluminescent. L'invention trouve une application notamment dans les systèmes d'éclairage, en particulier ceux émettant une lumière blanche. The invention relates to a semiconductor light-emitting device, that is to say an optoelectronic device comprising at least one light-emitting diode, adapted to emit light radiation according to desired colorimetric characteristics, and also relates to a method for producing a light-emitting diode. such an electroluminescent device. The invention finds application particularly in lighting systems, in particular those emitting a white light.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
Dans le but d'obtenir une lumière blanche, il est connu d'utiliser un dispositif optoélectronique comprenant une diode électroluminescente dont la surface d'émission est recouverte d'une couche d'un matériau photoluminescent adapté pour convertir au moins une partie du rayonnement lumineux émis par la diode électroluminescente en un rayonnement d'une autre longueur d'onde. In order to obtain a white light, it is known to use an optoelectronic device comprising a light-emitting diode whose emission surface is covered with a layer of photoluminescent material adapted to convert at least a portion of the light radiation. emitted by the light-emitting diode into radiation of another wavelength.
A titre d'exemple, on peut citer les dispositifs comportant une diode électroluminescente à base de nitrure de gallium (GaN) adaptée à émettre une lumière bleue, c'est-à-dire dont le spectre d'émission présente un pic d'intensité autour de 440nm à 490nm environ, combinée à une couche photoluminescente de grenat d'yttrium et d'aluminium (YAG, pour Yttrium Aluminium Garnet, en anglais) activé par l'ion cérium, appelé YAG:Ce, adaptée à convertir une partie de la lumière bleue en une lumière jaune, c'est-à-dire dont le spectre d'émission présente un pic d'intensité compris entre 560nm et 590nm environ. La lumière blanche est ainsi obtenue par superposition du flux de lumière bleue émise par la diode électroluminescente et non convertie par la couche photoluminescente et le flux de lumière jaune émise par la couche photoluminescente. Un tel dispositif électroluminescent à semiconducteur peut être caractérisé électriquement et optiquement notamment par son rendement lumineux, c'est-à-dire le rapport entre le flux lumineux émis par le dispositif et la puissance électrique injectée à la source. De plus, les propriétés colorimétriques du dispositif peuvent être caractérisées notamment en termes de température de couleur, c'est-à-dire la température de corps noir dont le rayonnement émis présente une répartition spectrale sensiblement identique, autrement dit une teinte similaire, à celle du dispositif, et d'indice de rendu des couleurs qui décrit la capacité du dispositif de restituer les différentes couleurs d'un objet. Ainsi, à titre d'exemple, une diode électroluminescente à base de GaN recouverte d'une couche photoluminescente à base de YAG:Ce présente une température de couleur allant de 4000K pour une couleur blanche dite chaude à 6500K pour une couleur blanche dite froide. L'indice de rendu des couleurs est habituellement supérieur à 80 (sur une échelle de 0 à 100) et un rendement lumineux de l'ordre de 150 Im/W. By way of example, mention may be made of devices comprising a light-emitting diode based on gallium nitride (GaN) adapted to emit blue light, that is to say whose emission spectrum has a peak of intensity. around 440nm at approximately 490nm, combined with a photoluminescent layer of yttrium aluminum garnet (YAG, for Yttrium Aluminum Garnet) activated by the cerium ion, called YAG: Ce, adapted to convert a portion of the blue light in a yellow light, that is to say whose emission spectrum has a peak intensity between 560nm and 590nm approximately. The white light is thus obtained by superposition of the blue light flux emitted by the light-emitting diode and not converted by the photoluminescent layer and the yellow light flux emitted by the photoluminescent layer. Such a semiconductor light-emitting device can be characterized electrically and optically in particular by its light output, that is to say the ratio between the luminous flux emitted by the device and the electrical power injected at the source. In addition, the colorimetric properties of the device can be characterized in particular in terms of color temperature, that is to say the black body temperature whose emitted radiation has a substantially identical spectral distribution, ie a shade similar to that device, and color rendering index that describes the ability of the device to render the different colors of an object. Thus, by way of example, a GaN-based light-emitting diode coated with a YAG-based photoluminescent layer has a color temperature ranging from 4000 K to a so-called hot white color at 6500 K for a so-called cold white color. The color rendering index is usually greater than 80 (on a scale of 0 to 100) and a light output of the order of 150 Im / W.
On peut souhaiter ajuster les propriétés colorimétriques du dispositif électroluminescent, par exemple pour que la lumière émise présente un blanc chaud, c'est-à-dire dont la température de couleur de l'ordre de 2500K à 3500K. Pour cela, il est connu de modifier la répartition spectrale du rayonnement lumineux émis par le dispositif en recouvrant la couche photoluminescente d'une seconde couche photoluminescente réalisée en un matériau adapté à absorber une partie de la lumière bleue et à émettre en réponse une lumière par exemple rouge. Le spectre en longueur d'onde du rayonnement émis par le dispositif présente alors une proportion de lumière bleue diminuée et une nouvelle composante rouge. La température de couleur peut alors être de l'ordre de 2500K à 3500K et la couleur perçue est dite chaude. It may be desired to adjust the colorimetric properties of the electroluminescent device, for example so that the emitted light has a warm white, that is to say with a color temperature of the order of 2500K to 3500K. For this, it is known to modify the spectral distribution of the light radiation emitted by the device by covering the photoluminescent layer with a second photoluminescent layer made of a material adapted to absorb a portion of the blue light and to emit light in response. red example. The wavelength spectrum of the radiation emitted by the device then has a proportion of decreased blue light and a new red component. The color temperature can then be of the order of 2500K to 3500K and the perceived color is said to be hot.
Le document US2009/0221106 décrit un exemple de dispositif électroluminescent à semiconducteur qui présente une couche photoluminescente structurée de manière à ajuster l'intensité et/ou la couleur du rayonnement lumineux émis. Ce dispositif comporte une pluralité de diodes électroluminescentes assemblées sur une première face d'une couche optiquement transparente dont la face opposée est recouverte d'une couche photoluminescente. La couche photoluminescente comporte différentes zones adjacentes qui diffèrent les unes des autres par l'ajout ou le retrait de matériau photoluminescent. Plus précisément, la couche photoluminescente est formée de l'empilement de deux couches élémentaires réalisées en un matériau photoluminescent différent, où un plot d'un troisième matériau photoluminescent est disposé sur certaines zones de la couche photoluminescente alors que d'autres zones comportent une cavité plus ou moins profonde formée dans la couche photoluminescente. La disposition des différentes zones et la profondeur des cavités dépendent de l'intensité et de la couleur souhaitées du rayonnement lumineux. Document US2009 / 0221106 describes an example of a semiconductor light-emitting device that has a structured photoluminescent layer so as to adjust the intensity and / or the color of the emitted light radiation. This device comprises a plurality of light-emitting diodes assembled on a first face of an optically transparent layer whose opposite face is covered with a photoluminescent layer. The photoluminescent layer has different adjacent areas which differ from each other by the addition or removal of photoluminescent material. More specifically, the photoluminescent layer is formed of the stack of two elementary layers made of a different photoluminescent material, wherein a pad of a third photoluminescent material is disposed on certain areas of the photoluminescent layer while other areas have a cavity more or less deep formed in the photoluminescent layer. The arrangement of the different areas and the depth of the cavities depend on the desired intensity and color of the light radiation.
Le document US2013/0126918 décrit un dispositif optoélectronique comportant une puce LED (pour Light Emitting Diode, en anglais) partiellement recouverte par une paroi de conversion de lumière. Celle-ci délimite une cavité traversante débouchant sur la puce. Le document US2006/0099449 décrit un dispositif optoélectronique dont une puce LED est recouverte par une couche photoluminescente. Celle-ci présente une concavité au niveau de laquelle elle est revêtue par une deuxième couche photoluminescente. Le document US2015/0194579 décrit un dispositif optoélectronique comportant une pluralité de diodes recouvertes par un élément de conversion de couleur en verre à cavités remplies de luminophores. Le document WO2013/038579 décrit un dispositif optoélectronique comportant une pluralité de diodes recouvertes par une couche photoluminescente à cavités non traversantes. US2013 / 0126918 discloses an optoelectronic device comprising a LED chip (for Light Emitting Diode, in English) partially covered by a light conversion wall. This defines a through cavity opening on the chip. The document US2006 / 0099449 describes an optoelectronic device of which an LED chip is covered by a photoluminescent layer. This has a concavity at which it is coated by a second photoluminescent layer. US2015 / 0194579 discloses an optoelectronic device having a plurality of diodes covered by a glass color conversion element with cavities filled with phosphors. The document WO2013 / 038579 describes an optoelectronic device comprising a plurality of diodes covered by a photoluminescent layer with non-through cavities.
Il existe cependant un besoin pour ajuster davantage les propriétés colorimétriques du rayonnement lumineux émis par le dispositif électroluminescent. Il existe également un besoin pour améliorer le rendement lumineux de ce type de dispositif électroluminescent. There is however a need to further adjust the colorimetric properties of the light radiation emitted by the light emitting device. There is also a need to improve the light output of this type of electroluminescent device.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
L'invention a pour objectif de remédier au moins en partie aux inconvénients de l'art antérieur, et plus particulièrement de proposer un dispositif optoélectronique à diode électroluminescente dont les caractéristiques colorimétriques peuvent être ajustées précisément. Un autre objectif de l'invention est de proposer un dispositif optoélectronique à diode électroluminescente dont le rendement lumineux est amélioré. The object of the invention is to remedy at least in part the drawbacks of the prior art, and more particularly to propose an optoelectronic device with a light-emitting diode whose colorimetric characteristics can be precisely adjusted. Another objective of the invention is to propose an optoelectronic device with a light-emitting diode whose luminous efficiency is improved.
Un autre objectif de l'invention est de proposer un dispositif optoélectronique à diode électroluminescente particulièrement compact. Another object of the invention is to provide a particularly compact optoelectronic device with a light-emitting diode.
Pour cela, l'objet de l'invention est un dispositif optoélectronique d'émission de lumière, comportant : For this, the object of the invention is an optoelectronic light emitting device, comprising:
- au moins une diode électroluminescente présentant une surface d'émission ;  at least one light-emitting diode having an emission surface;
- une couche photoluminescente, qui revêt au moins en partie la surface d'émission, comportant au moins un premier luminophore adapté à absorber au moins en partie un rayonnement lumineux incident émis par la diode électroluminescente et à émettre en réponse un rayonnement lumineux à une première longueur d'onde, et comportant au moins une cavité formée à partir d'une face de la couche photoluminescente opposée à la surface d'émission.  a photoluminescent layer, which at least partly covers the emission surface, comprising at least a first phosphor adapted to absorb at least part of an incident light radiation emitted by the light-emitting diode and to emit light radiation at a first wavelength, and having at least one cavity formed from a face of the photoluminescent layer opposite to the emission surface.
Selon l'invention, au moins un second luminophore est disposé dans ladite cavité, le second luminophore étant adapté à absorber au moins en partie un rayonnement lumineux incident et à émettre en réponse un rayonnement lumineux à une seconde longueur d'onde différente de la première longueur d'onde. According to the invention, at least one second phosphor is disposed in said cavity, the second phosphor being adapted to absorb at least part of incident light radiation and to emit in response light radiation at a second wavelength different from the first one. wave length.
De plus, la cavité est non traversante de sorte que la couche photoluminescente présente localement une portion de fond de cavité située sous ladite cavité. Par ailleurs, la couche photoluminescente comporte une pluralité de cavités logeant chacune au moins un plot de luminophore différent du premier luminophore. Il est alors possible d'ajuster les propriétés colorimétriques du dispositif optoélectronique au niveau de la face d'émission de la diode électroluminescente, suivant un axe sensiblement orthogonal à la surface d'émission par l'ajustement de la profondeur de la ou des cavités non traversantes et par leurs plots de luminophores, ainsi que dans un plan parallèle à la surface d'émission au moyen des cavités et de leurs plots de luminophores. Cet ajustement des propriétés colorimétriques peut être obtenu sans que cela n'entraîne une éventuelle dégradation de la surface d'émission de la diode électroluminescente. Certains aspects préférés mais non limitatifs de ce dispositif optoélectronique sont les suivants : In addition, the cavity is non-traversing so that the photoluminescent layer locally has a cavity bottom portion located under said cavity. Furthermore, the photoluminescent layer comprises a plurality of cavities each housing at least one phosphor pad different from the first phosphor. It is then possible to adjust the colorimetric properties of the optoelectronic device at the emission face of the light-emitting diode, along an axis substantially orthogonal to the emission surface by adjusting the depth of the non-cavity or cavities. through their phosphor studs, as well as in a plane parallel to the emission surface by means of cavities and their luminescent pads. This adjustment of the colorimetric properties can be obtained without causing any degradation of the emission surface of the light-emitting diode. Some preferred but non-limiting aspects of this optoelectronic device are the following:
La couche photoluminescente peut être au contact de la surface d'émission de la diode électroluminescente. The photoluminescent layer may be in contact with the emission surface of the light emitting diode.
La surface d'émission peut être une face d'une couche semiconductrice dopée d'une jonction PN de ladite diode électroluminescente. Il peut en variante s'agir d'une couche transparente de passivation recouvrant et au contact d'une couche semiconductrice dopée d'une jonction PN de la diode électroluminescente. The emission surface may be a face of a semiconductor layer doped with a PN junction of said light emitting diode. It may alternatively be a transparent passivation layer covering and in contact with a semiconductor layer doped with a PN junction of the light emitting diode.
Chaque cavité de la couche photoluminescente peut être non traversante. Each cavity of the photoluminescent layer may be non-through.
La portion de fond de cavité peut présenter une épaisseur moyenne inférieure ou égale à 10% d'une l'épaisseur minimale de couche photoluminescente nécessaire pour absorber sensiblement tout le rayonnement lumineux incident émis par la diode électroluminescente. The cavity bottom portion may have an average thickness less than or equal to 10% of a minimum thickness of photoluminescent layer necessary to absorb substantially all the incident light radiation emitted by the light emitting diode.
La portion de fond de cavité peut présenter une épaisseur moyenne inférieure ou égale à ΙΟμιη. The cavity bottom portion may have an average thickness less than or equal to ΙΟμιη.
Lesdits plots de luminophore sont adaptés à émettre chacun une lumière choisie parmi le bleu, le rouge, le jaune, le vert et l'orange. Said phosphor pads are adapted to each emit a light selected from blue, red, yellow, green and orange.
Une partie des cavités peut ne pas comporter de plot de luminophore, la portion de fond de cavité correspondante peut présenter une épaisseur moyenne inférieure ou égale à 10% d'une l'épaisseur minimale de couche photoluminescente nécessaire pour absorber sensiblement tout le rayonnement lumineux incident émis par la diode électroluminescente. A part of the cavities may not have a phosphor pad, the corresponding cavity bottom portion may have an average thickness less than or equal to 10% of a minimum photoluminescent layer thickness necessary to absorb substantially all the incident light radiation emitted by the light-emitting diode.
Le dispositif optoélectronique peut comporter une unique diode électroluminescente dont la surface d'émission est recouverte par la couche photoluminescente. The optoelectronic device may comprise a single light-emitting diode whose emission surface is covered by the photoluminescent layer.
La diode électroluminescente peut être réalisée à base d'un composé lll-V et de préférence lll-N. L'invention porte également sur un procédé de réalisation d'un dispositif optoélectronique présentant l'une quelconque des caractéristiques précédentes, comportant les étapes dans lesquelles : The light-emitting diode may be based on a III-V compound and preferably III-N. The invention also relates to a method for producing an optoelectronic device having any of the preceding features, comprising the steps in which:
- on dépose, sur une surface d'émission d'au moins une diode électroluminescente, une couche photoluminescente comportant au moins un premier luminophore ; depositing, on an emission surface of at least one light-emitting diode, a photoluminescent layer comprising at least a first phosphor;
- on réalise au moins une cavité à partir d'une face de la couche photoluminescente opposée à la surface d'émission, ladite cavité étant non traversante de sorte que la couche photoluminescente présente localement une portion de fond de cavité située sous ladite cavité ; at least one cavity is made from a face of the photoluminescent layer opposite to the emission surface, said cavity being non-through so that the photoluminescent layer locally has a cavity bottom portion situated under said cavity;
- on dépose au moins un plot de second luminophore dans ladite cavité, la couche photoluminescente comportant une pluralité de cavités logeant chacune au moins un plot de luminophore différent du premier luminophore. at least one pad of second phosphor is deposited in said cavity, the photoluminescent layer comprising a plurality of cavities each housing at least one phosphor pad different from the first phosphor.
Ladite cavité peut être formée par ablation laser. Said cavity may be formed by laser ablation.
La couche photoluminescente peut être obtenue à partir d'un mélange du premier luminophore avec un solvant, l'étape de dépôt de ladite couche photoluminescente comportant une phase de dépôt dudit mélange sur la surface d'émission suivie d'une phase d'évaporation de solvant. The photoluminescent layer may be obtained from a mixture of the first phosphor with a solvent, the step of depositing said photoluminescent layer comprising a phase of deposition of said mixture on the emission surface followed by a phase of evaporation of solvent.
La couche photoluminescente peut être obtenue à partir d'un mélange d'une poudre de premier luminophore avec une matrice liante en un matériau transparent et optiquement inerte, l'étape de dépôt de ladite couche photoluminescente comportant une phase de dépôt dudit mélange sur la surface d'émission suivie d'une phase de sédimentation de la poudre de premier luminophore au sein de la matrice liante The photoluminescent layer may be obtained from a mixture of a first phosphor powder with a binder matrix of a transparent and optically inert material, the step of depositing said photoluminescent layer comprising a phase of depositing said mixture on the surface of emission followed by a phase of sedimentation of the powder of first phosphor within the matrix binder
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
D'autres aspects, buts, avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : Les figures la et lb sont des vues schématiques en coupe d'un dispositif optoélectronique à diode électroluminescente selon un mode de réalisation, comportant une couche photoluminescente structurée (figure la) et des plots de luminophore disposés dans des cavités de la couche photoluminescente structurée (figure lb) ; Other aspects, objects, advantages and characteristics of the invention will appear better on reading the following detailed description of preferred embodiments thereof, given by way of non-limiting example, and with reference to the accompanying drawings. on which ones : FIGS. 1a and 1b are diagrammatic sectional views of an optoelectronic light-emitting diode device according to one embodiment, comprising a structured photoluminescent layer (FIG. 1a) and phosphor pads disposed in cavities of the structured photoluminescent layer (FIG. lb);
Les figures 2a et 2b sont des vues schématiques de dessus d'un dispositif optoélectronique à diode électroluminescente selon un mode de réalisation où la figure 2a représente une répartition spatiale des plots de luminophore dans la couche photoluminescente structurée, et où la figure 2b représente la couleur correspondante de la lumière émise par les plots et la couche photoluminescente ; FIGS. 2a and 2b are diagrammatic views from above of an optoelectronic light-emitting diode device according to an embodiment in which FIG. 2a represents a spatial distribution of the phosphor pads in the structured photoluminescent layer, and FIG. 2b represents the color. corresponding light emitted by the pads and the photoluminescent layer;
Les figures 3a à 3d sont des vues schématiques en coupe d'une partie de dispositif optoélectronique à diode électroluminescente selon un mode de réalisation, pour différentes étapes du procédé de réalisation. FIGS. 3a to 3d are diagrammatic cross-sectional views of a light-emitting diode optoelectronic device part according to one embodiment, for different steps of the production method.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Sur les figures et dans la suite de la description, les mêmes références représentent les éléments identiques ou similaires. De plus, les différents éléments ne sont pas représentés à l'échelle de manière à privilégier la clarté des figures. In the figures and in the remainder of the description, the same references represent identical or similar elements. In addition, the various elements are not represented on the scale so as to favor the clarity of the figures.
L'invention porte sur un dispositif optoélectronique à diode électroluminescente comportant une structure photoluminescente. Par structure photoluminescente, on entend ici une structure comportant au moins deux matériaux photoluminescents adaptés chacun à absorber de la lumière à une première longueur d'onde et à émettre en réponse un rayonnement lumineux à une longueur d'onde supérieure à la première longueur d'onde. Les deux matériaux photoluminescents sont différents l'un de l'autre au sens où leur spectre d'émission par photoluminescence est différent l'un de l'autre. Ces matériaux sont généralement appelés luminophores (phosphor, en anglais), et, à titre purement illustratif, peuvent être adaptés à émettre : dans le vert, c'est-à-dire que le spectre d'émission présente un pic d'intensité compris entre 495nm et 560nm environ, et peuvent être par exemple réalisés à base de SrSi202N2:Eu2+, de a-sialon:Eu2+, ou de Sr3Sii3Al302N2i:Eu2+ ; The invention relates to an optoelectronic light-emitting diode device comprising a photoluminescent structure. By photoluminescent structure is meant here a structure comprising at least two photoluminescent materials each adapted to absorb light at a first wavelength and to emit in response light radiation at a wavelength greater than the first length of light. wave. The two photoluminescent materials are different from each other in the sense that their photoluminescence emission spectrum is different from each other. These materials are generally called phosphors (phosphor), and, for illustrative purposes, can be adapted to emit: in the green, that is to say that the emission spectrum has a peak intensity between 495nm and 560nm approximately, and can be for example made based on SrSi 2 0 2 N 2 : Eu 2+ , α-sialon: Eu 2+ , or Sr 3 Si 3 Al 2 O 2 N 2 : Eu 2+ ;
dans le jaune, c'est-à-dire que le spectre d'émission présente un pic d'intensité compris entre 560nm et 580nm environ, et peuvent être par exemple réalisés à base de YAG:Ce, de Sr3B206:Eu2+, de Ca3Si207:Eu2+, de Sr2Si04:Eu2+, voire d'un mélange de YAG:Ce et de Sr3SiOs:Eu2+ ; in the yolk, that is to say that the emission spectrum has a peak intensity of between 560nm and 580nm approximately, and can be for example made from YAG: Ce, Sr 3 B 2 0 6 Eu 2+ , Ca 3 Si 2 0 7 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , or even a mixture of YAG: Ce and Sr 3 SiOs: Eu 2+ ;
dans l'orange, c'est-à-dire que le spectre d'émission présente un pic d'intensité compris entre 580 nm et 600nm environ, et peuvent être par exemple réalisés à base d'un matériau de type silicate, nitrure et/ou sulfure ;  in the orange, that is to say that the emission spectrum has a peak intensity of between 580 nm and 600 nm approximately, and can be made for example based on a material of silicate, nitride and / or sulphide;
dans le rouge, c'est-à-dire que le spectre d'émission présente un pic d'intensité compris entre 600 nm et 650nm environ, et peuvent être par exemple réalisés à base de M2SÎ5N8:Eu2+ où M est choisi parmi Ca, Sr, Ba, de SrxCai-xAISiN3:Eu2+, de Sr2Si5N8:Eu2+, ou de (Ca,Sr)Si04:Eu2+. in the red, that is to say that the emission spectrum has a peak intensity of between 600 nm and 650 nm approximately, and can be for example made based on M 2 SÎ5N8: Eu 2+ where M is selected from Ca, Sr, Ba, Sr x Cai x AISiN3: Eu 2+ , Sr 2 Si 5 N 8 : Eu 2+ , or (Ca, Sr) SiO 4 : Eu 2+ .
Le matériau photoluminescent peut également se présenter sous la forme de boîtes quantiques (quantum dots, en anglais), c'est-à-dire sous la forme de nanocristaux semiconducteurs, dont la taille moyenne peut être comprise entre 0,2nm et lOOOnm, par exemple entre lnm et lOOnm, et notamment entre 2nm et 30nm. Le matériau semiconducteur des nanocristaux peut être notamment choisi parmi le séléniure de cadmium (CdS), le phosphore d'indium (InP), le sulfure de cadmium (CdS), le sulfure de zinc (ZnS), l'oxyde de cadmium (CdO), le séléniure de zinc et de cadmium (CdZnSe), ou parmi d'autres matériaux semiconducteurs pouvant convenir. Les nanocristaux semiconducteurs peuvent être dispersés dans une matrice liante, par exemple en silice. The photoluminescent material may also be in the form of quantum dots (quantum dots), that is to say in the form of semiconductor nanocrystals, whose mean size may be between 0.2 nm and 1000 nm, for example example between 1nm and 100nm, and especially between 2nm and 30nm. The semiconductor material of the nanocrystals may be chosen in particular from cadmium selenide (CdS), indium phosphorus (InP), cadmium sulphide (CdS), zinc sulphide (ZnS), cadmium oxide (CdO ), zinc and cadmium selenide (CdZnSe), or among other semiconductor materials that may be suitable. The semiconductor nanocrystals may be dispersed in a binder matrix, for example silica.
Les luminophores peuvent se présenter ici sous la forme de couche ou de plot. Par couche, on entend une étendue de luminophore dont l'épaisseur est inférieure, par exemple dix fois voire vingt fois, à ses dimensions longitudinales de largeur et de longueur. La couche est réalisée par dépôt, sur la diode électroluminescente, d'au moins un matériau comportant un luminophore et n'est donc pas une couche, éventuellement autoportante, préalablement réalisée puis assemblée à la diode électroluminescente. Par plot, on entend un volume de luminophore dont l'épaisseur est inférieure, égale, voire supérieure à ses dimensions longitudinales de largeur et de longueur, et dont ses dimensions longitudinales sont inférieures à celles de la couche de luminophore. Un plot peut prendre la forme d'une goutte voire d'un volume structuré. The phosphors may be in the form of a layer or a pad. By layer is meant a range of phosphor whose thickness is less, for example ten times or even twenty times, to its longitudinal dimensions of width and length. The layer is produced by depositing, on the light-emitting diode, at least one material comprising a luminophore and is therefore not a layer, possibly self-supporting, previously produced and then assembled to the light-emitting diode. By plot, we mean a volume of phosphor whose thickness is less than, equal to or greater than its longitudinal dimensions of width and length, and whose longitudinal dimensions are smaller than those of the phosphor layer. A plot can take the form of a drop or even a structured volume.
La couche ou le plot de luminophore peut également comporter, notamment lorsque le luminophore se présente sous forme de grain ou de poudre, une matrice liante sous forme d'un matériau transparent et optiquement inerte assurant une fonction de liant vis-à-vis du luminophore, par exemple du silicone. Par transparent, on entend un matériau qui transmet au moins 50% de la lumière incidente, et de préférence au moins 80%. Par optiquement inerte, on entend un matériau qui n'émet pas de lumière en réponse à son absorption de lumière incidente. The phosphor layer or pad may also comprise, especially when the phosphor is in the form of a grain or a powder, a binding matrix in the form of a transparent and optically inert material providing a binder function with respect to the phosphor for example silicone. Transparency means a material which transmits at least 50% of the incident light, and preferably at least 80%. By optically inert is meant a material that does not emit light in response to its incident light absorption.
On définit ici le rendement quantique, ou rendement de conversion η, propre à chaque luminophore, comme étant le rapport entre le nombre de photons convertis par le luminophore sur le nombre de photons absorbés par celui-ci. Le rendement de conversion est relatif au type de luminophore et ne dépend sensiblement pas des caractéristiques dimensionnelles de la portion de luminophore considérée. Le rendement de conversion des luminophores listés précédemment est de l'ordre de 70% à 98%. Here, the quantum efficiency, or conversion efficiency η, specific to each phosphor, is defined as the ratio between the number of photons converted by the phosphor to the number of photons absorbed by it. The conversion efficiency is relative to the type of phosphor and does not depend substantially on the dimensional characteristics of the phosphor portion considered. The conversion efficiency of the phosphors listed above is of the order of 70% to 98%.
On définit également le taux d'absorption iabs, propre à une portion de luminophore, comme étant le rapport entre le nombre de photons absorbés par la portion de luminophore sur le nombre de photons incidents. Le taux d'absorption dépend ainsi, en première approximation, des caractéristiques dimensionnelles de la portion de luminophore, en particulier son épaisseur, et de la fraction volumique de luminophore (rapport entre le volume de luminophore dans la portion considérée sur le volume total de cette portion). On comprend que le taux d'absorption peut être ajusté en fonction de l'épaisseur de luminophore dans la portion considérée et/ou de sa fraction volumique. The absorption rate i a bs, specific to a phosphor portion, is also defined as being the ratio between the number of photons absorbed by the phosphor portion over the number of incident photons. The absorption rate thus depends, as a first approximation, on the dimensional characteristics of the phosphor portion, in particular its thickness, and on the phosphor volume fraction (ratio of the volume of phosphor in the portion under consideration to the total volume of this phosphor. portion). It is understood that the absorption rate can be adjusted according to the phosphor thickness in the portion in question and / or its volume fraction.
On définit enfin le taux de conversion τ∞ην, propre à une portion de luminophore, comme étant le rapport entre le nombre de photons convertis par la portion de luminophore sur le nombre de photons incidents. Le taux de conversion τ∞ην peut s'exprimer comme le produit du rendement de conversion η et du taux d'absorption iabs. Dans la suite de la description, les termes « sensiblement », « approximativement », « environ » s'étendent « à 10% près ». Par ailleurs, les termes « compris entre ... et ... », « allant de ... à ... » signifient que les bornes sont incluses, sauf mention contraire. Finally, the conversion rate τ∞ην, specific to a phosphor portion, is defined as the ratio between the number of photons converted by the phosphor portion to the number of incident photons. The conversion rate τ∞ην can be expressed as the product of the conversion efficiency η and the absorption rate i a bs. In the remainder of the description, the terms "substantially", "approximately", "approximately" extend "to within 10%". In addition, the terms "between ... and ...", "from ... to ..." mean that the terminals are included unless otherwise stated.
La figure la illustre de manière partielle et schématique un dispositif optoélectronique 1 à diode électroluminescente 10 selon un mode de réalisation, comportant une structure photoluminescente 20 à couche photoluminescente structurée 30. FIG. 1a partially and schematically illustrates an optoelectronic device 1 with a light-emitting diode 10 according to one embodiment, comprising a photoluminescent structure 20 with a structured photoluminescent layer 30.
On définit ici et pour la suite de la description un repère orthonormé tridimensionnel, où les axes X et Y sont orientés suivant les dimensions longitudinales de la diode électroluminescente et l'axe Z est orienté suivant sa dimension transversale, c'est-à-dire suivant son épaisseur. A three-dimensional orthonormal reference is defined here and for the rest of the description, in which the X and Y axes are oriented along the longitudinal dimensions of the light-emitting diode and the Z axis is oriented along its transverse dimension, that is to say according to its thickness.
Le dispositif optoélectronique 1 comprend au moins une diode électroluminescente 10 présentant une surface d'émission 11 au travers de laquelle un rayonnement lumineux est destiné à être émis. Le dispositif optoélectronique 1 ne comprend ici qu'une seule diode électroluminescente 10 mais, comme mentionné ci-après, le dispositif optoélectronique peut comporter une pluralité de diodes électroluminescentes agencées les unes vis-à-vis des autres de manière à définir une surface d'émission commune à toutes les diodes. The optoelectronic device 1 comprises at least one light-emitting diode 10 having a transmission surface 11 through which light radiation is intended to be emitted. The optoelectronic device 1 here comprises only one light-emitting diode 10 but, as mentioned hereinafter, the optoelectronic device may comprise a plurality of light-emitting diodes arranged with respect to one another so as to define a surface of emission common to all diodes.
De manière classique, la diode électroluminescente 10 comprend, disposé sur un support 2, un empilement formé d'une portion semiconductrice dopée 12 d'un premier type de conductivité, par exemple de type P, d'une zone active 13 à partir de laquelle est émis le rayonnement lumineux de la diode électroluminescente, et d'une portion semiconductrice dopée 14 d'un second type de conductivité opposé au premier type de conductivité, par exemple de type N. In a conventional manner, the light-emitting diode 10 comprises, arranged on a support 2, a stack formed of a doped semiconductor portion 12 of a first type of conductivity, for example of the P type, of an active zone 13 from which is emitted the light radiation of the light emitting diode, and a doped semiconductor portion 14 of a second conductivity type opposite to the first type of conductivity, for example of type N.
La diode électroluminescente 10 peut être réalisée à base de matériau semiconducteur III- V, c'est-à-dire comprenant principalement au moins un élément du groupe III et un élément du groupe V. Plus précisément, la diode peut être réalisée à base d'un composé lll-N, tel que, par exemple, le GaN, l'InGaN, l'AIGaN, l'AIN, l'InN et l'AllnGaN. La zone active 13 peut comprendre au moins un puits quantique réalisé à base d'un matériau semiconducteur présentant une énergie de bande interdite inférieure à celle des portions semiconductrices dopées 12 et 14. Les portions semiconductrices dopées 12, 14 sont ici réalisées en GaN et la zone active 13 comporte une alternance de couches semiconductrices non intentionnellement dopées formant des couches barrières à base de GaN, et au moins un puits quantique par exemple à base d'InGaN. La diode est ici adaptée à émettre une lumière bleue, c'est-à-dire dont le spectre d'émission présente un pic d'intensité autour de 440nm à 490nm environ. The light-emitting diode 10 may be made based on III-V semiconductor material, that is to say mainly comprising at least one group III element and a group V element. More precisely, the diode can be made on the basis of a III-N compound, such as, for example, GaN, InGaN, AIGaN, AlN, InN and AllnGaN. The active zone 13 may comprise at least one quantum well made from a material semiconductor having a band gap energy lower than doped semiconductor portions 12 and 14. The doped semiconductor portions 12, 14 are here made of GaN and the active zone 13 comprises an alternation of unintentionally doped semiconductor layers forming barrier layers based GaN, and at least one quantum well for example based on InGaN. The diode is here adapted to emit a blue light, that is to say whose emission spectrum has a peak intensity around 440nm to 490nm approximately.
L'épaisseur de la portion semiconductrice 12 dopée P peut être comprise entre 50nm et 20μιη ; celle de la zone active 13 peut être comprise entre lOnm et 500nm ; et celle de la portion semiconductrice 14 dopée N peut être comprise entre Ο,ΐμιη et 20μιη. La diode électroluminescente 10 peut présenter des dimensions suivant l'axe X et/ou Y comprises entre 200μιη et 5mm. De préférence, la diode présente une surface carrée de 1mm de côté. La surface d'émission 11 de la diode électroluminescente forme une surface sensiblement plane (moyennant les micro-structurations de surface permettant de favoriser l'extraction de lumière) qui s'étend suivant le plan (X,Y). Elle correspond ici à la face supérieure suivant l'axe Z de la portion semiconductrice 14 dopée N, voire à la face supérieure d'une couche mince de passivation (non représentée) recouvrant la portion semiconductrice 14. The thickness of the doped semiconductor portion P may be between 50 nm and 20 μm; that of the active zone 13 may be between 10 nm and 500 nm; and that of the semiconductor portion 14 doped N may be between Ο, ΐμιη and 20μιη. The light emitting diode 10 may have dimensions along the X axis and / or Y between 200μιη and 5mm. Preferably, the diode has a square surface of 1mm side. The emitting surface 11 of the light-emitting diode forms a substantially flat surface (by virtue of the surface micro-structuring facilitating the extraction of light) which extends along the plane (X, Y). It corresponds here to the upper face along the Z axis of the N doped semiconductor portion 14, or even to the upper face of a thin passivation layer (not shown) covering the semiconductor portion 14.
La figure lb illustre de manière partielle et schématique le dispositif optoélectronique représenté sur la figure la où la couche photoluminescente structurée 30 est partiellement recouverte de plots de luminophore P,. Figure 1b partially and schematically illustrates the optoelectronic device shown in Figure la where the structured photoluminescent layer 30 is partially covered with phosphor pads P 1.
En référence aux figures la et lb, le dispositif optoélectronique 1 comporte donc une structure photoluminescente 20 qui recouvre au moins en partie la surface d'émission 11 de la diode électroluminescente 10. La structure photoluminescente 20 comporte une couche photoluminescente structurée 30 formée d'au moins un premier luminophore (figure la) et d'au moins un second luminophore différent du premier luminophore (figure lb). La couche photoluminescente 30 s'étend entre une face inférieure 31 orientée vers la diode électroluminescente 10 et une face supérieure 32 opposée à la face inférieure. Dans cet exemple, la couche photoluminescente 30 est au contact de la diode électroluminescente 10, c'est-à-dire qu'il n'y a pas d'élément intermédiaire additionnel entre la couche photoluminescente et la diode électroluminescente. Ainsi, la surface d'émission 11 de la diode électroluminescente (par exemple la face supérieure de la portion semiconductrice dopée 14 ou la face supérieure d'une couche de passivation) est au contact de la face inférieure 31 de la couche photoluminescente. With reference to FIGS. 1a and 1b, the optoelectronic device 1 thus comprises a photoluminescent structure 20 which at least partially covers the emission surface 11 of the light-emitting diode 10. The photoluminescent structure 20 comprises a structured photoluminescent layer 30 formed of minus a first phosphor (Figure la) and at least a second phosphor different from the first phosphor (Figure lb). The photoluminescent layer 30 extends between a lower face 31 facing the light emitting diode 10 and an upper face 32 opposite the lower face. In this example, the photoluminescent layer 30 is in contact with the light emitting diode 10, that is to say that there is no additional intermediate element between the photoluminescent layer and the light emitting diode. Thus, the emitting surface 11 of the light-emitting diode (for example the upper face of the doped semiconductor portion 14 or the upper face of a passivation layer) is in contact with the lower face 31 of the photoluminescent layer.
La couche photoluminescente 30 comporte au moins un premier luminophore Le, adapté à convertir au moins une partie de la lumière émise par la diode électroluminescente 10 en un rayonnement lumineux de longueur d'onde supérieure à celle du rayonnement absorbé. Dans le cas d'une diode électroluminescente émettant une lumière bleue, c'est-à-dire dont le spectre d'émission comporte un pic d'intensité centré entre 440nm et 490nm, le luminophore Le peut être adapté à absorber de la lumière émise par la diode et à émettre en réponse de la lumière jaune, verte, orange, rouge, ou autre. De préférence, le luminophore Le est adapté à émettre de la lumière jaune et est par exemple réalisé à base de YAG:Ce. L'épaisseur moyenne de la couche photoluminescente 30 peut être comprise entre ΙΟμιη et 500μιη, de préférence comprise entre ΙΟμιη et ΙΟΟμιη, par exemple égale à 30μιη environ ou à 50μιη environ. The photoluminescent layer 30 comprises at least a first phosphor Le, adapted to convert at least a portion of the light emitted by the light-emitting diode 10 into a light radiation of wavelength greater than that of the absorbed radiation. In the case of a light-emitting diode emitting a blue light, that is to say whose emission spectrum comprises a peak of intensity centered between 440 nm and 490 nm, the phosphor Le may be adapted to absorb emitted light by the diode and to emit in response yellow, green, orange, red, or other light. Preferably, the phosphor Le is adapted to emit yellow light and is for example made from YAG: Ce. The average thickness of the photoluminescent layer 30 may be between ΙΟμιη and 500μιη, preferably between ΙΟμιη and ΙΟΟμιη, for example equal to approximately 30μιη or approximately 50μιη.
La couche photoluminescente 30 peut être adaptée à absorber tout ou partie de la lumière incidente émise par la diode électroluminescente 10 en fonction des propriétés colorimétriques souhaitées, en fonction notamment de la fraction volumique de luminophore Le et de l'épaisseur moyenne ec de la couche photoluminescente 30. A titre d'exemple, une couche de YAG:Ce de fraction volumique élevée, par exemple supérieure ou égale à 30%, et d'épaisseur moyenne ec supérieure ou égale à 50μιη conduit à un taux d'absorption iabs approximativement supérieur ou égal à 90%, voire proche de 100% vis-à- vis du rayonnement incident émis par une diode électroluminescente émettant une lumière bleue. Le flux lumineux émis par le dispositif optoélectronique présente donc essentiellement une couleur jaune. Ainsi, l'épaisseur moyenne ec de la couche photoluminescente ainsi que le type de luminophore Le et sa fraction volumique peuvent être ajustés en fonction des propriétés colorimétriques souhaitées du dispositif optoélectronique. The photoluminescent layer 30 may be adapted to absorb all or part of the incident light emitted by the light-emitting diode 10 as a function of the desired colorimetric properties, as a function, in particular, of the volume fraction of the phosphor Le and the average thickness e c of the layer. By way of example, a layer of YAG: Ce with a high volume fraction, for example greater than or equal to 30%, and with an average thickness e c greater than or equal to 50 μm, leads to an absorption rate i a bs approximately greater than or equal to 90%, or even close to 100% vis-à-vis the incident radiation emitted by a light emitting diode emitting blue light. The light flux emitted by the optoelectronic device therefore essentially has a yellow color. Thus, the average thickness e c of the layer Photoluminescent as well as the type of phosphor Le and its volume fraction can be adjusted according to the desired colorimetric properties of the optoelectronic device.
La couche photoluminescente 30 est dite structurée au sens où elle comporte au moins une cavité 33 au niveau de sa face supérieure 32. Le dispositif optoélectronique comporte ici une pluralité de cavités 33i, 332, 333 séparées les unes des autres par une zone Zc dite intermédiaire de la couche photoluminescente 30. Par cavité, on entend un évidement qui s'étend à partir de la face supérieure 32 de la couche photoluminescente 30 dans le sens de la profondeur de celle-ci. The photoluminescent layer 30 is said to be structured in the sense that it comprises at least one cavity 33 at its upper face 32. The optoelectronic device here comprises a plurality of cavities 33i, 33 2 , 333 separated from each other by a so-called Zc zone. The term "cavity" means a recess extending from the upper face 32 of the photoluminescent layer 30 in the direction of the depth of the photoluminescent layer 30.
Les cavités 33i, 332, 333 peuvent présenter un profil horizontal, c'est-à-dire dans le plan (X,Y) et/ou un profil vertical, c'est-à-dire dans un plan contenant l'axe Z, de forme quelconque, par exemple triangulaire, carrée, rectangulaire et plus généralement polygonale, voire circulaire, ovale, oblongue, ou autre. Les dimensions transversales suivant X et Y des cavités peuvent être comprises entre quelques microns et quelques millimètres, par exemple être comprises entre 50μιη et 500μιη, et de préférence comprises entre ΙΟΟμιη et 300μιη. Les dimensions transversales des cavités ainsi que leur densité surfacique, c'est-à-dire leur nombre par unité de surface de la couche photoluminescente, peuvent être ajustées en fonction des propriétés colorimétriques souhaitées du dispositif optoélectronique. The cavities 33i, 33 2 , 333 may have a horizontal profile, that is to say in the plane (X, Y) and / or a vertical profile, that is to say in a plane containing the axis Z, of any shape, for example triangular, square, rectangular and more generally polygonal, even circular, oval, oblong, or other. The transverse dimensions along X and Y cavities may be between a few microns and a few millimeters, for example between 50μιη and 500μιη, and preferably between ΙΟΟμιη and 300μιη. The transverse dimensions of the cavities as well as their surface density, that is to say their number per surface unit of the photoluminescent layer, can be adjusted according to the desired colorimetric properties of the optoelectronic device.
Les cavités 33, comportent chacune une paroi latérale 34, qui s'étend en direction de la surface d'émission 11 et délimite latéralement le volume de cavité. Dans le cas d'un profil vertical triangulaire, la paroi latérale 34, peut se terminer en un point ou une ligne de fond de cavité. Dans le cas d'un profil vertical rectangulaire, tel que représenté sur les figures la et lb, la paroi latérale 34, rejoint une paroi de fond 35, de cavité, qui s'étend ici de manière sensiblement parallèle à la face inférieure de la couche photoluminescente. The cavities 33 each comprise a lateral wall 34, which extends towards the emission surface 11 and laterally delimits the cavity volume. In the case of a triangular vertical profile, the side wall 34 may terminate at a point or a bottom line of the cavity. In the case of a rectangular vertical profile, as shown in Figures 1a and 1b, the side wall 34, joins a bottom wall 35, cavity, which extends here substantially parallel to the underside of the photoluminescent layer.
Les cavités 33, sont avantageusement non traversantes dans le sens où elles ne débouchent pas sur la surface d'émission 11 de la diode électroluminescente. Ainsi, la couche photoluminescente 30 comporte localement une portion de fond Q de cavité délimitée par la paroi de fond 35, et la face inférieure 31. La portion de fond C, de cavité C, présente une épaisseur moyenne eCi mesurée suivant l'axe Z. The cavities 33 are advantageously non-through in the sense that they do not open onto the emitting surface 11 of the light-emitting diode. Thus, the photoluminescent layer 30 locally comprises a cavity bottom portion Q delimited by the bottom wall 35, and the lower face 31. The bottom portion C, of cavity C, has an average thickness e C i measured along the axis Z.
Comme l'illustre la figure lb, la structure photoluminescente 20 comporte en outre au moins un second luminophore L, et de préférence une pluralité de plots P, de second luminophore, disposés dans les cavités 33,. Le second luminophore L est différent du luminophore Le de la couche photoluminescente 20 au sens où il est adapté à absorber de la lumière et à émettre en réponse de la lumière de spectre différent de celui du premier luminophore. Le volume du luminophore L forme ainsi un plot qui peut remplir ou non l'espace intérieur de la cavité 33, dans laquelle il est disposé. On peut ainsi définir une épaisseur moyenne ep, suivant l'axe Z du plot P, de luminophore. As illustrated in FIG. 1b, the photoluminescent structure 20 further comprises at least a second phosphor L, and preferably a plurality of pads P, of second phosphor, arranged in the cavities 33,. The second phosphor L is different from the phosphor Le of the photoluminescent layer 20 in the sense that it is adapted to absorb light and to emit spectrum light in response different from that of the first phosphor. The volume of the phosphor L thus forms a pad which may or may not fill the interior space of the cavity 33 in which it is arranged. It is thus possible to define an average thickness ep, along the Z axis of the pad P, of phosphor.
A titre d'exemple, le luminophore L, peut être adapté à émettre une lumière jaune, verte, orange rouge, ou autre, et être réalisé, par exemple, à base d'un matériau luminescent cité précédemment. Dans le cas où le luminophore Le de la couche photoluminescente 30 est adapté à émettre de la lumière jaune, le luminophore L est de préférence adapté à émettre de la lumière verte, rouge ou orange. Chaque plot P, de luminophore peut comporter un luminophore différent de celui des autres plots, et présenter une épaisseur ep, différente les uns des autres. Ainsi, chaque plot de luminophore peut être caractérisé par le type de luminophore et la fraction volumique de celui-ci, ainsi que par des dimensions transversales et d'épaisseur, dont le choix permet d'ajuster les propriétés colorimétriques souhaitées du dispositif optoélectronique. By way of example, the phosphor L can be adapted to emit a yellow, green, red orange or other light, and be made, for example, based on a luminescent material mentioned above. In the case where the phosphor Le of the photoluminescent layer 30 is adapted to emit yellow light, the phosphor L is preferably adapted to emit green, red or orange light. Each pad P, phosphor may comprise a phosphor different from that of other pads, and have a thickness ep, different from each other. Thus, each phosphor pad may be characterized by the type of phosphor and the volume fraction thereof, as well as by transverse and thickness dimensions, the choice of which makes it possible to adjust the desired colorimetric properties of the optoelectronic device.
La structure photoluminescente 20 présente ainsi une pluralité de portions Z, de lumière colorée, juxtaposées les unes des autres, formant ainsi un ensemble de pixels Z, de couleur dont les caractéristiques peuvent être ajustées de manière à obtenir les propriétés colorimétriques souhaitées du dispositif optoélectronique, tout en optimisant le rendement lumineux de celui-ci. The photoluminescent structure 20 thus has a plurality of portions Z, of colored light, juxtaposed from each other, thus forming a set of pixels Z, of color whose characteristics can be adjusted so as to obtain the desired colorimetric properties of the optoelectronic device, while optimizing the light output of it.
Les portions Z, de lumière colorée, ou pixels de couleur, sont des zones de conversion de lumière formées des portions de la couche photoluminescente 30 comportant des cavités 33, dont au moins certaines comprennent des plots P, de luminophore. Elles sont séparées les unes des autres par la zone intermédiaire Zc de couche photoluminescente située entre deux pixels de couleur voisins. On parle de pixels de couleur au sens où ces portions présentent des propriétés colorimétriques différentes de celles de la zone intermédiaire de couche photoluminescente. The portions Z, of colored light, or pixels of color, are light conversion zones formed portions of the photoluminescent layer 30 having cavities 33, at least some of which comprise P-pads, phosphor. They are separated from each other by the intermediate zone Zc of photoluminescent layer located between two neighboring color pixels. Color pixels are used in the sense that these portions have colorimetric properties different from those of the photoluminescent layer intermediate zone.
Sur l'exemple de la figure lb, trois pixels de couleur ZI, Z2, Z3 sont représentés, séparés les uns des autres par la zone intermédiaire Zc de couche photoluminescente. In the example of FIG. 1b, three color pixels Z1, Z2, Z3 are shown, separated from each other by the intermediate zone Zc of photoluminescent layer.
Le pixel de couleur ZI comporte une cavité 33i, dont la profondeur définit une portion de fond Cl d'épaisseur eci comportant le luminophore Le. Cette cavité loge un plot PI d'un luminophore Ll d'épaisseur moyenne ePi. Le pixel de couleur ZI se caractérise donc par deux couples de rendement de conversion et de taux d'absorption (r|i_c, Tabs,ci) et (r|Li, iabs,pi). Le taux d'absorption Tabs,ci de la portion de fond Cl et le taux d'absorption Tabs,pi du plot PI dépendent notamment, respectivement, de l'épaisseur eci et de l'épaisseur epi. Ainsi, en première approximation, le flux lumineux cpc,i_c converti par le luminophore Le dépend du taux d'absorption Tabs,ci, du rendement de conversion r|Lc et du flux lumineux incident CPLED,ZI émis par la diode. De plus, le flux lumineux cpc,i_i converti par le luminophore Ll dépend du taux d'absorption Tabs,pi, du rendement de conversion r\ , et du flux lumineux (1- Tabs,ci) x cpi_ED,zi émis par la diode et non absorbé par la portion de fond Cl. Le flux lumineux cpzi émis par la portion ZI, c'est-à-dire le flux lumineux provenant de la portion ZI, qu'il soit transmis ou émis par photoluminescence, est formé par la superposition du flux lumineux cpc,i_c converti par le luminophore Le, du flux lumineux cpc,i_i converti par le luminophore Ll, et d'une partie du flux lumineux émis par la diode électroluminescente et non absorbé par les luminophores Ll et Le. Ainsi, les propriétés colorimétriques de la portion ZI peuvent être ajustées par le choix des luminophores, leur fraction volumique respective et les dimensions de la portion de fond Cl et du plot Pl. The color pixel ZI comprises a cavity 33i, whose depth defines a bottom portion C1 of thickness eci comprising the phosphor Le. This cavity houses a plot PI of a luminophore L1 of average thickness e P i. The color pixel ZI is therefore characterized by two pairs of conversion efficiency and absorption rate (r | i_ c , Tabs, ci) and (r | L i, iabs, pi). The absorption rate T a bs, ci of the bottom portion C1 and the absorption rate T a bs, pi of the pad PI depend in particular, respectively, on the thickness eci and the thickness epi. Thus, as a first approximation, the luminous flux cp c , i_c converted by the phosphor Le depends on the absorption rate T a bs, ci, of the conversion efficiency r | Lc and incident light flux CPLED, ZI emitted by the diode. In addition, the luminous flux cp c , i_i converted by the luminophore L1 depends on the absorption rate T a bs, pi, the conversion efficiency r \, and the luminous flux (1- T a bs, ci) x cpi_ED, zi emitted by the diode and not absorbed by the bottom portion Cl. The luminous flux cpzi emitted by the portion ZI, that is to say the luminous flux from the portion ZI, whether transmitted or emitted by photoluminescence , is formed by the superposition of the luminous flux cp c , i_c converted by the phosphor Le, the luminous flux cp c , i_i converted by the luminophore L1, and a part of the luminous flux emitted by the light-emitting diode and not absorbed by the Ll and Le phosphors. Thus, the colorimetric properties of the ZI portion can be adjusted by the choice of phosphors, their respective volume fraction and the dimensions of the bottom portion C1 and the pad Pl.
Cependant, le flux lumineux émis par un pixel de couleur peut être modifié en cas de réabsorption, c'est-à-dire d'absorption par le luminophore Ll d'au moins une partie du flux lumineux cpc,i_c converti par le luminophore Le. Plus précisément, le luminophore Ll peut également être adapté à absorber un rayonnement lumineux émis par le luminophore Le et à émettre en réponse un rayonnement à sa longueur d'onde de luminescence. Ce double phénomène d'absorption au niveau d'un pixel de couleur se présente notamment lorsque la longueur d'onde de luminescence du luminophore Le est inférieure à celle du luminophore Ll, par exemple lorsque le luminophore Le émet dans le jaune et le luminophore Ll émet dans le rouge. En conséquence, la répartition spectrale du flux lumineux émis par le pixel ZI comporte une proportion de jaune réduite et une proportion de rouge plus importante. De plus, outre le fait que les propriétés colorimétriques sont modifiées, cette réabsorption diminue le taux de conversion dans la mesure où une fraction du flux lumineux émis par le pixel ZI dépend de ηι_ι x ηι,ο ce qui impacte en conséquence le rendement global du dispositif optoélectronique. However, the luminous flux emitted by a color pixel may be modified in the event of reabsorption, that is to say absorption by the phosphor L1 of at least a portion of the luminous flux cp c , i_c converted by the luminophore The. More specifically, the phosphor L1 may also be adapted to absorb light radiation emitted by the phosphor Le and to emit radiation in response to its luminescence wavelength. This double absorption phenomenon at a color pixel occurs in particular when the luminescence wavelength of the phosphor Le is lower than that of the phosphor L1, for example when the phosphor Le emits in the yellow and the phosphor L1 emits in the Red. As a result, the spectral distribution of the luminous flux emitted by the pixel ZI has a reduced proportion of yellow and a greater proportion of red. In addition, besides the fact that the colorimetric properties are modified, this reabsorption decreases the conversion rate insofar as a fraction of the luminous flux emitted by the pixel ZI depends on ηι_ι x ηι , ο which consequently impacts the overall efficiency of the optoelectronic device.
Le pixel de couleur Z2 peut être dimensionné dans le but de diminuer le phénomène de réabsorption et ainsi optimiser le rendement global du dispositif optoélectronique. II comporte ici une cavité 332 dont la profondeur définit une portion de fond C2 d'épaisseur moyenne eC2 comportant le luminophore Le, dans laquelle se situe un plot P2 d'un luminophore L2 d'épaisseur moyenne ep2. Le pixel de couleur Z2 se caractérise donc par deux couples du rendement de conversion et du taux d'absorption (ηΐ , Tabs,c2) et (ηι_2, Tabs,p2). L'épaisseur ec2 de la portion de fond C2 est telle que le taux d'absorption Tabs,c2 par le luminophore Le est inférieur ou égal à 10%, et de préférence inférieur ou égal à 5%, de manière à limiter l'absorption par le luminophore Le de lumière incidente émise par la diode électroluminescente. Pour cela, l'épaisseur eC2 de la portion de fond est inférieure ou égale à 10%, et de préférence inférieure ou égale à 5%, de l'épaisseur de la couche photoluminescente qui serait nécessaire pour obtenir un taux d'absorption approximativement égal à 100%. A titre illustratif, dans le cas d'une couche photoluminescente à base de YAG:Ce, une épaisseur de 50μιη pour une fraction volumique de luminophore supérieure ou égale à 30% peut suffire à convertir en lumière jaune approximativement toute la lumière incidente émise par la diode électroluminescente. L'épaisseur eC2 de la portion de fond C2 peut ainsi être inférieure ou égale à 5μιη, par exemple égale à 2μιη. II est également avantageux que la fraction volumique de luminophore soit inférieure à 30% de manière à diminuer encore le taux d'absorption tabs,C2- La structure photoluminescente 20 comporte ici un troisième pixel de couleur Z3 présentant une cavité 333 dont la profondeur définit une portion de fond C3 d'épaisseur ec3 comportant le luminophore Le. A la différence des pixels ZI et Z2, le pixel Z3 ne comporte pas de plot de luminophore dans la cavité. Le pixel Z3 se caractérise donc par le rendement de conversion et le taux d'absorption (ηΐ , Tabs,c3). Comme pour le pixel Z2, l'épaisseur eC3 de la portion de fond est telle que le taux d'absorption Tabs,c3 par le premier luminophore Le est inférieur ou égal à 10%, et de préférence inférieur ou égal à 5%, de manière à limiter l'absorption par le luminophore Le de lumière incidente émise par la diode électroluminescente. Pour cela, l'épaisseur ec3 de la portion de fond est inférieure ou égale à 10%, et de préférence inférieure ou égale à 5% à l'épaisseur de la couche photoluminescente qui serait nécessaire pour obtenir un taux d'absorption approximativement égal à 100%. Il est également avantageux que la fraction volumique de luminophore soit inférieure à 30% de manière à diminuer encore le taux d'absorption Tabs,c3. On obtient ainsi un pixel dont la lumière émise provient essentiellement de la diode électroluminescente, celle-ci émettant par exemple une lumière bleue. The color pixel Z2 can be sized in order to reduce the reabsorption phenomenon and thus optimize the overall efficiency of the optoelectronic device. It comprises here a cavity 33 2 whose depth defines a bottom portion C2 of average thickness e C2 comprising the phosphor Le, in which is located a pad P2 of a phosphor L2 of average thickness ep 2 . The color pixel Z2 is therefore characterized by two pairs of the conversion efficiency and the absorption rate (ηΐ, Tabs, c 2 ) and (ηι_ 2 , Tabs, p 2 ). The thickness ec 2 of the bottom portion C2 is such that the absorption rate T a bs, c 2 by the phosphor Le is less than or equal to 10%, and preferably less than or equal to 5%, so as to to limit the absorption by the phosphor of incident light emitted by the light-emitting diode. For this, the thickness e C2 of the bottom portion is less than or equal to 10%, and preferably less than or equal to 5%, of the thickness of the photoluminescent layer that would be necessary to obtain an absorption rate approximately equal to 100%. By way of illustration, in the case of a photoluminescent layer based on YAG: Ce, a thickness of 50 μm for a phosphor volume fraction of greater than or equal to 30% may be sufficient to convert approximately all the incident light emitted by the light into yellow light. light emitting diode. The thickness e C2 of the bottom portion C2 can thus be less than or equal to 5μιη, for example equal to 2μιη. It is also advantageous that the volume fraction of phosphor is less than 30% so as to further reduce the absorption rate tabs, C2- The photoluminescent structure 20 here comprises a third color pixel Z3 having a cavity 33 3 whose depth defines a bottom portion C3 of thickness ec3 comprising the luminophore Le. Unlike the pixels Z1 and Z2, the pixel Z3 has no phosphor pad in the cavity. The pixel Z3 is therefore characterized by the conversion efficiency and the absorption rate (ηΐ, Tabs, c3). As for the pixel Z2, the thickness e C3 of the bottom portion is such that the absorption rate T a bs, c3 by the first phosphor Le is less than or equal to 10%, and preferably less than or equal to 5%, so as to limit the absorption by the phosphor Le of incident light emitted by the light-emitting diode. For this, the thickness ec3 of the bottom portion is less than or equal to 10%, and preferably less than or equal to 5% to the thickness of the photoluminescent layer that would be necessary to obtain an absorption rate approximately equal to 100%. It is also advantageous that the volume fraction of phosphor is less than 30% so as to further reduce the absorption rate Tabs, c3. A pixel is thus obtained whose emitted light comes essentially from the light-emitting diode, this emitting for example a blue light.
Sur la figure lb, trois exemples de pixels sont représentés à titre purement illustratif et d'autres exemples sont réalisables, qui diffèrent notamment par la profondeur de la cavité, le type de luminophores, ainsi que par le nombre et l'épaisseur de plots de luminophore présents dans chaque cavité. In FIG. 1b, three examples of pixels are represented for purely illustrative purposes and other examples are feasible, which differ in particular from the depth of the cavity, the type of phosphors, as well as from the number and thickness of studs. phosphor present in each cavity.
Ainsi, le flux lumineux émis par le dispositif optoélectronique correspond à la superposition du flux lumineux émis par la zone intermédiaire Zc de la couche photoluminescente et du flux lumineux émis par les différents pixels Z, de couleur. Les propriétés colorimétriques du dispositif optoélectronique dépendent ainsi de celles de la zone intermédiaire Zc et des différents pixels Z,, et peuvent être ajustées en fonction de la densité surfacique et des dimensions des pixels, et des dimensions des plots de luminophores et du type de luminophore présents ou non dans les cavités. De plus, le rendement global du dispositif optoélectronique est optimisé par la présence de pixels dimensionnés de manière à limiter les phénomènes de réabsorption. La figure 2a illustre un exemple de dispositif optoélectronique 1 en vue de dessus où la structure photoluminescente est représentée. La structure photoluminescence 20 présente ici une section droite dans le plan (X,Y) de profil carré et comporte une matrice de 3x3 pixels de couleur Z, séparés les uns des autres par une zone intermédiaire Zc de couche photoluminescente 30. Dans cet exemple, la couche photoluminescente 30 est adaptée à absorber de la lumière incidente émise par la diode électroluminescente et à émettre en réponse une lumière jaune indiquée sur la figure par la lettre Y (pour yellow, en anglais). Thus, the luminous flux emitted by the optoelectronic device corresponds to the superposition of the luminous flux emitted by the intermediate zone Zc of the photoluminescent layer and the luminous flux emitted by the different pixels Z, of color. The colorimetric properties of the optoelectronic device thus depend on those of the intermediate zone Zc and the various pixels Z ,, and can be adjusted as a function of the surface density and the dimensions of the pixels, and the dimensions of the phosphor pads and the phosphor type. present or not in the cavities. In addition, the overall efficiency of the optoelectronic device is optimized by the presence of pixels sized to limit the reabsorption phenomena. FIG. 2a illustrates an example of an optoelectronic device 1 in plan view where the photoluminescent structure is represented. The photoluminescence structure 20 here has a cross section in the plane (X, Y) of square profile and comprises a matrix of 3 × 3 pixels of color Z, separated from each other by an intermediate zone Zc of photoluminescent layer 30. In this example, the photoluminescent layer 30 is adapted to absorb incident light emitted by the light emitting diode and to emit in response a yellow light indicated in the figure by the letter Y (for yellow, in English).
La structure photoluminescente 20 comporte trois pixels de couleur Z4 comportant chacun un plot de luminophore P4 adapté à absorber de la lumière incidente et à émettre en réponse de la lumière verte, indiquée sur la figure par la lettre G (pour green, en anglais) ; trois pixels de couleur Z5 comportant chacun un plot de luminophore P5 adapté à absorber de la lumière incidente et à émettre en réponse de la lumière rouge, indiquée sur la figure par la lettre R (pour red, en anglais). La structure photoluminescente comporte également trois pixels de couleur Ze comportant chacun une cavité 33e ne comportant pas de plot de luminophore et dont la profondeur est adaptée à ce que le taux d'absorption par la portion de fond de cavité soit inférieur à 10% et de préférence inférieur ou égal à 5%. Ainsi, la lumière émise par ces pixels provient essentiellement de la lumière, par exemple bleue indiquée sur la figure par la lettre B (pour blue, en anglais), émise par la diode électroluminescente et transmise au-travers de la portion de fond de cavité. The photoluminescent structure 20 comprises three color pixels Z 4, each comprising a phosphor pad P4 adapted to absorb incident light and to emit green light, indicated in the figure by the letter G (for green, in English). ; three color pixels Z5 each comprising a phosphor pad P5 adapted to absorb incident light and to emit red light in response, indicated in the figure by the letter R (for red in English). The photoluminescent structure also comprises three color pixels Ze each having a cavity 33e having no phosphor pad and whose depth is adapted so that the absorption rate by the cavity bottom portion is less than 10% and preferably less than or equal to 5%. Thus, the light emitted by these pixels comes essentially from the light, for example blue indicated in the figure by the letter B (for blue, in English), emitted by the light-emitting diode and transmitted through the cavity bottom portion. .
Dans cet exemple, la structure photoluminescente présente une section carrée de 1mm de côté. La couche photoluminescente est réalisée à base de YAG:Ce et présente une épaisseur moyenne de 30μιη avec une fraction volumique de luminophore de 30%. Les pixels de couleur présentent une section carrée de 200μιη de côté et sont séparés les uns des autres par une zone intermédiaire de couche photoluminescente de largeur moyenne de ΙΟΟμιη. In this example, the photoluminescent structure has a square section of 1mm side. The photoluminescent layer is made based on YAG: Ce and has an average thickness of 30μιη with a phosphor volume fraction of 30%. The color pixels have a square section of 200μιη and are separated from each other by an intermediate photoluminescent layer area of average width of ΙΟΟμιη.
La figure 2b illustre la lumière émise localement par le dispositif optoélectronique selon l'exemple de la figure 2a. Dans cet exemple, l'épaisseur moyenne ec de couche photoluminescente 30, associée à la fraction volumique de luminophore Le, est insuffisante pour absorber l'essentiel de la lumière incidente émise par la diode électroluminescente. Ainsi, la lumière émise par la couche luminescente au niveau de la zone intermédiaire Zc est la superposition d'une partie de lumière bleue émise par la diode et de lumière jaune émise par la couche photoluminescente, de sorte que la lumière perçue soit blanche, indiquée sur la figure par la lettre W (white, en anglais). FIG. 2b illustrates the light emitted locally by the optoelectronic device according to the example of FIG. 2a. In this example, the average thickness e c of photoluminescent layer 30, associated with the volume fraction of phosphor Le, is insufficient. to absorb most of the incident light emitted by the light-emitting diode. Thus, the light emitted by the luminescent layer at the intermediate zone Zc is the superposition of a portion of blue light emitted by the diode and yellow light emitted by the photoluminescent layer, so that the perceived light is white, indicated in the figure by the letter W (white, in English).
Ainsi, les pixels de couleur, répartis dans le plan (X,Y) de la structure photoluminescente, permettent d'ajuster finement les propriétés colorimétriques du dispositif optoélectronique, notamment la température de couleur et l'indice de rendu des couleurs, par l'ajustement des paramètres tels que la densité surfacique et les dimensions des pixels de couleur, le type de luminophores utilisés, leur fraction volumique, et les caractéristiques dimensionnelles et colorimétriques des différents pixels de couleur. De plus, tout en ajustant les propriétés colorimétriques du dispositif optoélectronique, le rendement global de ce dernier peut être optimisé par le dimensionnement de pixels de couleur dont le taux d'absorption par le premier luminophore Le est inférieur à 10% de manière à réduire le phénomène de réabsorption. Thus, the color pixels, distributed in the plane (X, Y) of the photoluminescent structure, make it possible to finely adjust the colorimetric properties of the optoelectronic device, in particular the color temperature and the color rendering index, by the adjustment of the parameters such as the surface density and the dimensions of the color pixels, the type of luminophores used, their volume fraction, and the dimensional and colorimetric characteristics of the different color pixels. In addition, while adjusting the colorimetric properties of the optoelectronic device, the overall efficiency of the latter can be optimized by sizing color pixels whose absorption rate by the first phosphor Le is less than 10% so as to reduce the reabsorption phenomenon.
De plus, à la différence de l'exemple de l'art antérieur mentionné précédemment, le fait que la couche photoluminescente soit au contact de la diode électroluminescente permet d'améliorer le rendement d'extraction, défini comme le rapport entre le flux lumineux reçu par la couche photoluminescente sur le flux lumineux émis par la diode électroluminescente, et donc d'optimiser encore le rendement global du dispositif optoélectronique. En effet, une couche transparente intermédiaire entre la diode électroluminescente et la couche photoluminescente peut réduire la transmission du flux lumineux émis par la diode par réflexion totale interne dans la couche transparente, ce qui réduit ainsi le rendement d'extraction. In addition, unlike the example of the prior art mentioned above, the fact that the photoluminescent layer is in contact with the light emitting diode makes it possible to improve the extraction efficiency, defined as the ratio between the luminous flux received. by the photoluminescent layer on the light flux emitted by the light emitting diode, and thus to further optimize the overall efficiency of the optoelectronic device. Indeed, an intermediate transparent layer between the light-emitting diode and the photoluminescent layer can reduce the transmission of the light flux emitted by the diode by total internal reflection in the transparent layer, thereby reducing the extraction efficiency.
Un exemple de procédé de réalisation est maintenant décrit en référence aux figures 3a à 3d. Sur la figure 3a est représentée une diode électroluminescente selon la configuration VTF (pour Vertical Thin Film, en anglais). D'autres configurations de diode électroluminescente peuvent être utilisées, comme par exemple la configuration TFFC (pour Thin Film Flip Chip, en anglais). An exemplary embodiment method is now described with reference to FIGS. 3a to 3d. FIG. 3a shows a light-emitting diode according to the VTF (Vertical Thin Film) configuration. Other diode configurations electroluminescent can be used, such as the configuration TFFC (for Thin Film Flip Chip, in English).
La diode électroluminescente 10 comporte l'empilement formé des portions semiconductrices dopées 12 et 14 et de la zone active 13. Cet empilement repose sur un support 2, plus précisément sur une couche électriquement conductrice 3 destinée à former l'électrode P. De plus, une bande électriquement conductrice 4 destinée à former l'électrode N, réalisée de préférence en un matériau transparent au rayonnement lumineux émis par la diode électroluminescente, est disposée sur la face supérieure de la portion semiconductrice 14 dopée N, dont une partie est illustrée sur la figure 3a, située en bordure de la face supérieure de la portion semiconductrice 14 dopée N. Un plot de connexion électrique 5 repose également sur la face supérieure du support 2, de manière à assurer la connexion électrique de l'électrode N. La face supérieure de l'empilement forme la surface d'émission 11 au travers de laquelle est destiné à être émis le rayonnement lumineux. Cette configuration, classique pour l'homme du métier, n'est pas décrite plus en détail. The light-emitting diode 10 comprises the stack formed of the doped semiconductor portions 12 and 14 and of the active zone 13. This stack rests on a support 2, more precisely on an electrically conductive layer 3 intended to form the electrode P. In addition, an electrically conductive strip 4 intended to form the electrode N, preferably made of a material transparent to the light radiation emitted by the light-emitting diode, is disposed on the upper face of the N-doped semiconductor portion 14, part of which is illustrated on FIG. FIG. 3a, situated on the edge of the upper face of the N-doped semiconductor portion 14. An electrical connection pad 5 also rests on the upper face of the support 2, so as to ensure the electrical connection of the N electrode. The upper face the stack forms the emission surface 11 through which the light radiation is intended to be emitted. This configuration, conventional for those skilled in the art, is not described in more detail.
Sur la figure 3b, la couche photoluminescente 30 est déposée sur la diode électroluminescente, plus précisément sur l'ensemble de la surface d'émission 11 de celle- ci. De préférence, elle est au contact de la surface d'émission 11 de la diode électroluminescente. Elle présente une épaisseur moyenne ec sensiblement constante sur toute son étendue surfacique. Le dépôt peut être effectué par une technique classique connue de l'homme du métier, telle que la sérigraphie, la dispense, l'électrophorèse, le dépôt à la tournette, ou autre. La couche photoluminescente 30 est réalisée à base d'au moins un matériau luminophore Le, se présentant par exemple sous forme d'une poudre, et peut comporter une matrice liante en un matériau transparent et optiquement inerte, par exemple du silicone. In FIG. 3b, the photoluminescent layer 30 is deposited on the light-emitting diode, more precisely on the whole of the emission surface 11 thereof. Preferably, it is in contact with the emitting surface 11 of the light emitting diode. It has an average thickness e c substantially constant over its entire surface area. The deposition may be performed by a conventional technique known to those skilled in the art, such as screen printing, dispensing, electrophoresis, spin coating, or the like. The photoluminescent layer 30 is made based on at least one phosphor material Le, for example in the form of a powder, and may comprise a binder matrix of a transparent and optically inert material, for example silicone.
Il peut être avantageux de réaliser une couche photoluminescente de haute fraction volumique de luminophore, par exemple supérieure ou égale à 20% et de préférence supérieure ou égale à 30%. Une fraction volumique élevée contribue en effet à augmenter le taux d'absorption et donc le taux de conversion de la couche photoluminescente. Elle peut également contribuer à améliorer la dissipation thermique de la chaleur produite par la diode électroluminescente. Elle peut enfin simplifier et rendre plus robuste l'étape de formation de cavité lorsque celle-ci est réalisée par ablation laser. It may be advantageous to produce a photoluminescent layer with a high luminophore volume fraction, for example greater than or equal to 20% and preferably greater than or equal to 30%. A high volume fraction indeed contributes to increasing the absorption rate and therefore the conversion rate of the photoluminescent layer. She can also help to improve the heat dissipation of the heat produced by the light-emitting diode. It can finally simplify and make more robust the cavity forming step when it is performed by laser ablation.
Selon une première variante, on réalise au préalable un mélange de luminophore Le, d'un liant et d'un solvant. A titre d'exemple, le luminophore Le peut être du YAG:Ce sous forme de poudre, le liant du silicone et le solvant du glycérol. La fraction volumique de luminophore est choisie inférieure ou égale à 25%, et de préférence inférieure ou égale à 5%. La fraction volumique de liant est choisie inférieure ou égale à 30%, et de préférence inférieure ou égale à 15%. A titre d'exemple, pour une surface de diode électroluminescente de 1mm2 de côté, le luminophore peut présenter une masse comprise entre 100μg et 200μg et le liant une masse de 100μg environ. La proportion de solvant peut être ajustée en fonction de la viscosité du mélange souhaitée, afin de faciliter le dépôt de la couche. Le mélange ainsi obtenu est déposé sur la surface d'émission 11 de la diode électroluminescente 10, puis on effectue l'évaporation du solvant de manière à obtenir in fine une couche photoluminescente 30 où l'agencement des grains de luminophore conduit à une fraction volumique élevée et homogène. L'évaporation est réalisée sur une durée suffisamment longue pour éviter tout mouvement de convection dans le mélange, par exemple durant plusieurs minutes, entre 120°C et 150°C. Dans l'exemple donné précédemment, on obtient ici une couche photoluminescente 30 d'épaisseur moyenne constante, inférieure à ΙΟΟμιη et comprise entre 30μιη et 50μιη environ, avec une fraction volumique de luminophore supérieure ou égale à 20%. According to a first variant, a mixture of phosphor Le, a binder and a solvent is prepared beforehand. By way of example, the phosphor Le may be YAG: Ce in powder form, the silicone binder and the glycerol solvent. The phosphor volume fraction is chosen less than or equal to 25%, and preferably less than or equal to 5%. The volume fraction of binder is chosen less than or equal to 30%, and preferably less than or equal to 15%. For example, for a light emitting diode surface of 1 mm 2 side, the phosphor may have a mass of between 100 .mu.g and 200 .mu.g and the binder a mass of about 100 .mu.g. The proportion of solvent can be adjusted depending on the viscosity of the desired mixture, to facilitate the deposition of the layer. The mixture thus obtained is deposited on the emitting surface 11 of the light-emitting diode 10, and then the solvent is evaporated so as to obtain in fine a photoluminescent layer 30 where the arrangement of the phosphor grains leads to a volume fraction. high and homogeneous. The evaporation is carried out for a sufficiently long time to prevent any convection movement in the mixture, for example for several minutes, between 120 ° C. and 150 ° C. In the example given above, here we obtain a photoluminescent layer 30 of constant average thickness, less than ΙΟΟμιη and between about 30μιη and 50μιη, with a volume fraction of phosphor greater than or equal to 20%.
Selon une deuxième variante, on réalise un mélange de luminophores dans une grande quantité de liant, sans solvant, avec une fraction volumique de luminophore typiquement inférieure à 20% de luminophore et de préférence moins de 5%, par exemple 100μg de luminophore dans lmg de liant. On dépose ensuite le mélange sur la surface d'émission de la diode électroluminescente et on laisse le luminophore sédimenter, par exemple pendant lOh à 50°C. On obtient ainsi une couche photoluminescente d'une épaisseur moyenne de 30μιη avec une fraction volumique de luminophore supérieure ou égale à 20% recouverte d'une couche contenant principalement du liant. Selon une troisième variante, on dépose sur la surface d'émission de la diode électroluminescente un mélange comportant principalement le luminophore et le liant, avec une fraction volumique de luminophore supérieure ou égale à 20%, et de préférence inférieure à 30% pour ajuster la viscosité et faciliter la dispense. According to a second variant, a mixture of luminophores is produced in a large quantity of binder, without solvent, with a phosphor volume fraction typically less than 20% of phosphor and preferably less than 5%, for example 100 μg of phosphor in 1 mg of phosphor. binder. The mixture is then deposited on the emission surface of the light emitting diode and the luminophore is allowed to settle, for example for 10 h at 50.degree. A photoluminescent layer having an average thickness of 30 μm with a phosphor volume fraction greater than or equal to 20% covered with a layer containing mainly binder is thus obtained. According to a third variant, a mixture comprising mainly the phosphor and the binder is deposited on the emission surface of the light-emitting diode, with a phosphor volume fraction greater than or equal to 20%, and preferably less than 30% to adjust the phosphor. viscosity and facilitate the dispensation.
Une fois la couche photoluminescente 30 obtenue sur la surface d'émission 11 de la diode électroluminescente, on réalise les cavités 33i, 332, 333 à partir de la face supérieure 32 de la couche photoluminescente. Cette étape peut être effectuée par les techniques d'enlèvement de matière de couche mince connues de l'homme du métier, telles que l'ablation laser, la gravure sèche du type gravure au plasma ou gravure RIE, voire la photolithographie. Once the photoluminescent layer 30 has been obtained on the emission surface 11 of the light-emitting diode, cavities 33i, 33 2 , 333 are made from the upper face 32 of the photoluminescent layer. This step can be carried out by thin-film material removal techniques known to those skilled in the art, such as laser ablation, dry etching of the plasma etching or RIE etching type, or even photolithography.
Il est particulièrement avantageux de réaliser les cavités 337, 338, 339 par ablation laser, pour contrôler précisément la profondeur des cavités et ainsi l'épaisseur ea de la portion de fond C, de cavité. Cela permet ainsi de maîtriser finement les propriétés colorimétriques du pixel de couleur considéré, mais également d'éviter d'endommager la surface d'émission 11 et donc la portion semiconductrice dopée 14 de la diode électroluminescente. It is particularly advantageous to make the cavities 33 7 , 33 8 , 33 9 by laser ablation, to precisely control the depth of the cavities and thus the thickness ea of the bottom portion C, cavity. This thus makes it possible to finely control the colorimetric properties of the color pixel in question, but also to avoid damaging the emitting surface 11 and therefore the doped semiconductor portion 14 of the light emitting diode.
Le laser peut être choisi parmi les lasers émettant dans la gamme UV par exemple entre 193nm et 355nm, dans la gamme du visible par exemple dans le rouge à 633nm ou le vert à 532nm, voire dans l'infrarouge par exemple entre 9μιη et ΙΟμιη (laser C02), voire entre 0,9μιη et 1,4μιη (laser YAG). La puissance du laser peut être choisie entre quelques milli- joules voire moins et quelques joules, en fonction notamment de la dureté de la couche à graver et de la précision attendue de la gravure. De manière à obtenir une précision de gravure tant en ce qui concerne la profondeur de la cavité que le profil latéral de la cavité, la puissance du laser est avantageusement choisie de l'ordre de quelques milli-joules, et plusieurs passages du laser sont effectués pour graver la même cavité. The laser may be chosen from lasers emitting in the UV range, for example between 193 nm and 355 nm, in the visible range, for example in the red at 633 nm or the green at 532 nm or even in the infrared, for example between 9 μm and ΙΟ μm ( laser C0 2 ), or between 0.9μιη and 1.4μιη (YAG laser). The power of the laser can be chosen between a few milliJoules or less and a few joules, depending in particular on the hardness of the layer to be etched and the expected accuracy of the etching. In order to obtain an etching accuracy as regards both the depth of the cavity and the lateral profile of the cavity, the power of the laser is advantageously chosen to be of the order of a few milli-joules, and several passes of the laser are made. to engrave the same cavity.
A titre d'exemple, une cavité de 200χ330μιη de côté et de 25μιη de profondeur peut être réalisée dans une couche photoluminescente, comportant une fraction massique de 68% de YAG:Ce et 32% de silicone, à l'aide d'un laser UV puisé à 50Hz, de longueur d'onde 355nm et de puissance 0,2mJ. Plusieurs passages sont effectués de manière à obtenir les dimensions voulues. La taille du spot de focalisation du faisceau laser peut être adaptée en fonction de la zone de la cavité à former. Ainsi, un spot de 2χ2μιη peut être utilisé pour former le profil de la cavité et un spot de dimension plus importante, par exemple 45χ90μιη peut être utilisé pour former l'intérieur de la cavité. For example, a cavity 200 de330μιη of side and 25μιη deep can be made in a photoluminescent layer, having a mass fraction of 68% of YAG: Ce and 32% of silicone, using a laser UV pulsed at 50Hz, wavelength 355nm and power 0.2mJ. Several passages are made in order to obtain the desired dimensions. The size of the focusing spot of the laser beam can be adapted according to the area of the cavity to be formed. Thus, a spot of 2χ2μιη can be used to form the profile of the cavity and a spot of larger size, for example 45χ90μιη can be used to form the interior of the cavity.
Dans la configuration VTF de la diode électroluminescente comme illustrée sur la figure 3c, une cavité 33io est réalisée en regard de l'électrode N 4, de manière traversante pour déboucher localement sur l'électrode N 4. L'absence, à cette étape, de fil 6 de connexion électrique entre l'électrode N 4 et le plot de connexion électrique 5 permet d'éviter que le dépôt de la couche photoluminescente 30 ne soit perturbé par la présence du fil 6. De plus, la partie d'électrode 4 forme une couche d'arrêt de gravure vis-à-vis de la gravure laser lorsqu'un laser UV dans la gamme de 255nm à 355nm et à faible puissance est utilisé. In the VTF configuration of the light-emitting diode as illustrated in FIG. 3c, a cavity 33io is made facing the electrode N 4, in a through manner to open locally on the electrode N 4. The absence, at this stage, of wire 6 for electrical connection between the electrode N 4 and the electrical connection pad 5 makes it possible to prevent the deposition of the photoluminescent layer 30 from being disturbed by the presence of the wire 6. In addition, the electrode portion 4 forms an etch stop layer with respect to laser etching when a UV laser in the range of 255nm to 355nm and low power is used.
On réalise ensuite le dépôt des plots de luminophore P, dans toutes les cavités 33, ou, de préférence dans certaines cavités de manière à laisser des cavités vides de plots de luminophore, hormis la cavité traversante 33io. Le dépôt des plots de luminophore P, peut être effectué par dispense de petites gouttes dont le volume dépend des dimensions du plot souhaitées. A titre d'exemple, pour des cavités de profondeur comprise entre 30μιη et 50μιη environ et des dimensions transversales comprises entre ΙΟΟμιη et 300μιη, le volume de goutte déposé peut être compris entre 10~4mm3 et 10~2mm3. The phosphor studs P are then deposited in all the cavities 33, or preferably in certain cavities so as to leave empty cavities of phosphor studs, with the exception of the through cavity 33io. The deposition of the phosphor pads P may be effected by dispensing small drops whose volume depends on the desired dimensions of the pad. By way of example, for cavities with a depth of between approximately 30μιη and 50μιη and transverse dimensions between ΙΟΟμιη and 300μιη, the drop volume deposited can be between 10 ~ 4 mm 3 and 10 ~ 2 mm 3 .
Chaque cavité 33, peut recevoir un ou plusieurs plots P, dont les dimensions et le type de luminophore dépend des propriétés colorimétriques souhaitées. Ainsi, plusieurs plots de luminophores différents peuvent être déposés de manière superposée dans une même cavité. Par ailleurs, le plot de luminophore peut présenter un volume inférieur, égal, voire supérieur au volume de la cavité le recevant. Each cavity 33 may receive one or more pads P, the size and type of phosphor depends on the desired colorimetric properties. Thus, several different phosphor pads can be deposited superimposed in the same cavity. Furthermore, the phosphor pad may have a smaller volume, equal to or even greater than the volume of the cavity receiving it.
Les gouttes déposées destinées à former les plots de luminophore peuvent être préparées suivant les mêmes exemples de préparation de la couche photoluminescente, par exemple avec un solvant destiné à être évaporé ou avec une forte proportion de liant et une étape de sédimentation des luminophores de manière à former le plot. The deposited drops intended to form the phosphor pads may be prepared according to the same examples of preparation of the photoluminescent layer, for example with a solvent intended to be evaporated or with a high proportion of binder and a step of sedimentation of the luminophores so as to form the plot.
Enfin, les étapes classiques de réalisation d'un composant électroluminescent sont ensuite effectuées. Ainsi, un fil 6 électriquement conducteur est placé de manière à relier électriquement l'électrode 4 au plot de connexion électrique 5. Enfin, une couche ou un dôme de protection du dispositif optoélectronique (non représenté), réalisé en un matériau transparent et optiquement inerte, par exemple du silicone, peut être déposé sur le dispositif optoélectronique de manière à recouvrir la structure photoluminescente. Ces étapes sont connues de l'homme du métier et ne sont pas détaillées davantage. Finally, the conventional steps of producing an electroluminescent component are then carried out. Thus, an electrically conductive wire 6 is placed so as to connect electrically the electrode 4 to the electrical connection pad 5. Finally, a protective layer or dome of the optoelectronic device (not shown), made of a transparent and optically inert material, for example silicone, can be deposited on the optoelectronic device so as to cover the photoluminescent structure. These steps are known to those skilled in the art and are not detailed further.
Des modes de réalisation particuliers viennent d'être décrits. Différentes variantes et modifications apparaîtront à l'homme du métier. Specific embodiments have just been described. Various variations and modifications will occur to those skilled in the art.
Dans les modes de réalisation décrits précédemment, le dispositif optoélectronique comporte une unique diode électroluminescente dont la face d'émission est recouverte par la couche photoluminescente structurée. De manière alternative, le dispositif optoélectronique peut comporter une pluralité de diodes électroluminescentes agencées mutuellement de manière à définir une surface d'émission commune aux diodes, de préférence plane. Selon un premier exemple, les diodes électroluminescentes présentent la structure décrite dans la demande de brevet FR 14 50077 déposée le 7 janvier 2014, où les diodes électroluminescentes ont une structure mésa, c'est-à-dire que la zone active des diodes se trouve en saillie au-dessus du substrat suite à une étape de gravure de ses flancs, et comportent une cathode commune. Selon un second exemple, les diodes électroluminescentes présentent une structure décrite dans la publication de Fan et al intitulé lll-nitride micro-emitter arrays development and applications, ]. Phys. D: Appl. Phys. 41 (2008) 094001. In the embodiments described above, the optoelectronic device comprises a single light-emitting diode whose emission face is covered by the structured photoluminescent layer. Alternatively, the optoelectronic device may comprise a plurality of light emitting diodes arranged mutually so as to define an emitting surface common to the diodes, preferably plane. According to a first example, the light emitting diodes have the structure described in the patent application FR 14 50077 filed January 7, 2014, where the light emitting diodes have a mesa structure, that is to say that the active zone of the diodes is located protruding above the substrate following a step of etching its flanks, and comprise a common cathode. According to a second example, the light-emitting diodes have a structure described in the publication of Fan et al entitled lll-nitride micro-emitter arrays development and applications,]. Phys. D: Appl. Phys. 41 (2008) 094001.
Par ailleurs, les exemples de réalisation décrits précédemment montrent une couche photoluminescente avantageusement disposée au contact de la surface d'émission de la diode électroluminescente. En variante, une couche intermédiaire, réalisée en un matériau transparent et optiquement inerte, peut être présente entre la surface d'émission et la couche photoluminescente. Cette couche intermédiaire transparente peut assurer une protection supplémentaire de la diode électroluminescente lors de l'étape de formation des cavités, notamment par ablation laser. Par ailleurs, les cavités décrites précédemment ne sont pas traversantes, de sorte qu'une portion de fond de cavité est présente entre la cavité et la surface d'émission de la diode électroluminescente. En variante, au moins une partie des cavités peut être traversante et déboucher sur la surface d'émission de la diode électroluminescente. Furthermore, the embodiments described above show a photoluminescent layer advantageously disposed in contact with the emission surface of the light emitting diode. Alternatively, an intermediate layer, made of a transparent and optically inert material, may be present between the emission surface and the photoluminescent layer. This transparent intermediate layer may provide additional protection for the light-emitting diode during the cavity-forming step, in particular by laser ablation. Moreover, the cavities described above are not through, so that a cavity bottom portion is present between the cavity and the emission surface of the light emitting diode. Alternatively, at least a portion of the cavities may be through and lead to the emission surface of the light emitting diode.
Enfin, la couche photoluminescente peut être formée d'une seule couche de luminophore ou d'un empilement de plusieurs couches photoluminescentes présentant des propriétés optiques différentes. Ainsi, l'empilement peut comporter une première couche élémentaire à base d'un premier type de luminophore recouverte d'une ou plusieurs couches élémentaires réalisées à base de luminophores différents, c'est-à-dire dont la longueur d'onde d'émission par photoluminescence est différente de celle du luminophore des autres couches élémentaires. Finally, the photoluminescent layer may be formed of a single layer of phosphor or a stack of several photoluminescent layers having different optical properties. Thus, the stack may comprise a first elementary layer based on a first type of phosphor covered with one or more elementary layers made on the basis of different luminophores, that is to say with a wavelength of photoluminescence emission is different from that of the phosphor of other elementary layers.

Claims

REVENDICATIONS
1. Dispositif optoélectronique (1) d'émission de lumière, comportant : An optoelectronic light emitting device (1), comprising:
au moins une diode électroluminescente (10) présentant une surface d'émission at least one light-emitting diode (10) having an emission surface
(il) ; (he) ;
une couche photoluminescente (30), qui revêt au moins en partie la surface d'émission, comportant au moins un premier luminophore (Le) adapté à absorber au moins en partie un rayonnement lumineux incident émis par la diode électroluminescente et à émettre en réponse un rayonnement lumineux à une première longueur d'onde, et comportant au moins une cavité (33,) formée à partir d'une face (32) de la couche photoluminescente opposée à la surface d'émission ;  a photoluminescent layer (30), which at least partially covers the emission surface, comprising at least a first phosphor (Le) adapted to absorb at least part of an incident light radiation emitted by the light-emitting diode and to emit in response a light radiation at a first wavelength, and having at least one cavity (33) formed from a face (32) of the photoluminescent layer opposite the emission surface;
caractérisé en ce que ladite cavité (33,) est non traversante de sorte que la couche photoluminescente (30) présente localement une portion de fond (C,) de cavité située sous ladite cavité (33,), au moins un second luminophore (U), adapté à absorber au moins en partie un rayonnement lumineux incident et à émettre en réponse un rayonnement lumineux à une seconde longueur d'onde différente de la première longueur d'onde, étant disposé dans ladite cavité (33,),  characterized in that said cavity (33) is non-through so that the photoluminescent layer (30) locally has a bottom portion (C) of cavity located under said cavity (33), at least a second phosphor (U) ), adapted to absorb at least part of incident light radiation and to emit in response light radiation at a second wavelength different from the first wavelength, being disposed in said cavity (33,),
et en ce que la couche photoluminescente (30) comporte une pluralité de cavités (33,) logeant chacune au moins un plot (P,) de luminophore (L,) différent du premier luminophore (Le).  and in that the photoluminescent layer (30) comprises a plurality of cavities (33) each housing at least one pad (P) of phosphor (L) different from the first phosphor (Le).
2. Dispositif optoélectronique (1) selon la revendication 1, comportant une unique diode électroluminescente (10) dont la surface d'émission (11) est recouverte par ladite couche photoluminescente (30). Optoelectronic device (1) according to claim 1, comprising a single light-emitting diode (10) whose emission surface (11) is covered by said photoluminescent layer (30).
3. Dispositif optoélectronique (1) selon la revendication 1 ou 2, la surface d'émission (11) est une face d'une couche semiconductrice dopée d'une jonction PN de ladite diode électroluminescente (10). Optoelectronic device (1) according to claim 1 or 2, the emission surface (11) is a face of a semiconductor layer doped with a PN junction of said light emitting diode (10).
4. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 3, dans lequel la couche photoluminescente (30) est au contact de la surface d'émission (11) de la diode électroluminescente (10). Optoelectronic device (1) according to any one of claims 1 to 3, wherein the photoluminescent layer (30) is in contact with the emission surface (11) of the light emitting diode (10).
5. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 4, chaque cavité de la couche photoluminescente (30) étant non traversante. 5. Optoelectronic device (1) according to any one of claims 1 to 4, each cavity of the photoluminescent layer (30) being non-traversing.
6. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 5, dans lequel la portion de fond (C,) de cavité présente une épaisseur moyenne (e ) inférieure ou égale à 10% d'une épaisseur minimale de couche photoluminescente (30) nécessaire pour absorber sensiblement tout le rayonnement lumineux incident émis par la diode électroluminescente (10). Optoelectronic device (1) according to any one of claims 1 to 5, wherein the cavity bottom portion (C) has an average thickness (e) less than or equal to 10% of a minimum layer thickness. photoluminescent device (30) necessary to absorb substantially all the incident light radiation emitted by the light-emitting diode (10).
7. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 6, dans lequel la portion de fond (C,) de cavité présente une épaisseur moyenne (ea) inférieure ou égale à ΙΟμιη. 7. Optoelectronic device (1) according to any one of claims 1 to 6, wherein the cavity bottom portion (C) has an average thickness (ea) less than or equal to ΙΟμιη.
8. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 7, dans lequel lesdits plots de luminophore (P,) sont adaptés à émettre chacun une lumière choisie parmi le bleu, le rouge, le jaune, le vert et l'orange. Optoelectronic device (1) according to any one of claims 1 to 7, wherein said phosphor pads (P,) are adapted to each emit a light selected from blue, red, yellow, green and yellow. 'orange.
9. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 8, dans lequel une partie des cavités (333, 336, 338) ne comporte pas de plot de luminophore, et dont la portion de fond de cavité correspondante présente une épaisseur moyenne inférieure ou égale à 10% d'une épaisseur minimale de couche photoluminescente nécessaire pour absorber sensiblement tout le rayonnement lumineux incident émis par la diode électroluminescente. 9. Optoelectronic device (1) according to any one of claims 1 to 8, wherein a portion of the cavities (33 3 , 33 6 , 33 8 ) has no phosphor pad, and whose cavity bottom portion corresponding has an average thickness less than or equal to 10% of a minimum thickness of photoluminescent layer necessary to substantially absorb all the incident light radiation emitted by the light emitting diode.
10. Dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 9, dans lequel la diode électroluminescente (10) est réalisée à base d'un composé lll-V et de préférence lll-N. 10. Optoelectronic device (1) according to any one of claims 1 to 9, wherein the light emitting diode (10) is made based on a compound III-V and preferably III-N.
11. Procédé de réalisation d'un dispositif optoélectronique (1) selon l'une quelconque des revendications 1 à 10, comportant les étapes dans lesquelles : 11. A method of producing an optoelectronic device (1) according to any one of claims 1 to 10, comprising the steps in which:
on dépose, sur une surface d'émission (11) d'au moins une diode électroluminescente (10), une couche photoluminescente (30) comportant au moins un premier luminophore (Le) ;  depositing, on an emission surface (11) of at least one light-emitting diode (10), a photoluminescent layer (30) comprising at least a first phosphor (Le);
on réalise au moins une cavité (33,) à partir d'une face (32) de la couche photoluminescente opposée à la surface d'émission (11), ladite cavité (33,) étant non traversante de sorte que la couche photoluminescente (30) présente localement une portion de fond ( ) de cavité située sous ladite cavité (33,) ; on dépose au moins un plot (P,) de second luminophore (U) dans ladite cavité (33,), la couche photoluminescente (30) comportant une pluralité de cavités (33,) logeant chacune au moins un plot (P,) de luminophore (U) différent du premier luminophore (Le).  at least one cavity (33,) is made from a face (32) of the photoluminescent layer opposite to the emission surface (11), said cavity (33) being non-through so that the photoluminescent layer ( 30) locally has a bottom portion () of cavity located under said cavity (33,); at least one pad (P) of second phosphor (U) is deposited in said cavity (33), the photoluminescent layer (30) comprising a plurality of cavities (33) each housing at least one pad (P) of phosphor (U) different from the first phosphor (Le).
12. Procédé de réalisation selon la revendication 11, dans lequel ladite cavité (33,) est formée par ablation laser. The method of realization of claim 11, wherein said cavity (33) is formed by laser ablation.
13. Procédé de réalisation selon la revendication 11 ou 12, dans lequel la couche photoluminescente (30) est obtenue à partir d'un mélange du premier luminophore (Le) avec un solvant, l'étape de dépôt de ladite couche photoluminescente comportant une phase de dépôt dudit mélange sur la surface d'émission (11) suivie d'une phase d'évaporation de solvant. 13. Production method according to claim 11 or 12, wherein the photoluminescent layer (30) is obtained from a mixture of the first phosphor (Le) with a solvent, the step of depositing said photoluminescent layer comprising a phase depositing said mixture on the emission surface (11) followed by a solvent evaporation phase.
14. Procédé de réalisation selon la revendication 11 ou 12, dans lequel la couche photoluminescente (30) est obtenue à partir d'un mélange d'une poudre de premier luminophore (Le) avec une matrice liante en un matériau transparent et optiquement inerte, l'étape de dépôt de ladite couche photoluminescente comportant une phase de dépôt dudit mélange sur la surface d'émission (11) suivie d'une phase de sédimentation de la poudre de premier luminophore (Le) au sein de la matrice liante. The production method according to claim 11 or 12, wherein the photoluminescent layer (30) is obtained from a mixture of a first phosphor powder (Le) with a binder matrix of a transparent and optically inert material, the step of depositing said photoluminescent layer comprising a deposition phase of said mixture on the emission surface (11) followed by a sedimentation phase of the first phosphor powder (Le) within the binder matrix.
PCT/FR2016/051592 2015-06-30 2016-06-28 Light-emitting semiconductor device including a structured photoluminescent layer WO2017001760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556177 2015-06-30
FR1556177A FR3038452A1 (en) 2015-06-30 2015-06-30 SEMICONDUCTOR ELECTROLUMINESCENT DEVICE HAVING A STRUCTURED PHOTOLUMINESCENT LAYER

Publications (1)

Publication Number Publication Date
WO2017001760A1 true WO2017001760A1 (en) 2017-01-05

Family

ID=54478143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051592 WO2017001760A1 (en) 2015-06-30 2016-06-28 Light-emitting semiconductor device including a structured photoluminescent layer

Country Status (2)

Country Link
FR (1) FR3038452A1 (en)
WO (1) WO2017001760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129981A1 (en) * 2017-12-14 2019-06-19 Osram Opto Semiconductors Gmbh Display device and method of operation for a display device
WO2019197465A1 (en) * 2018-04-13 2019-10-17 Osram Opto Semiconductors Gmbh Optoelectronic component having a passivation layer and method for producing said optoelectronic component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1450077A (en) 1965-10-08 1966-05-06 Burgue Freres Ets fabric for making articles of clothing, and articles of clothing made from this fabric
US20060099449A1 (en) 2004-11-09 2006-05-11 Kabushiki Kaisha Toshiba Light-emitting device
US20090212305A1 (en) * 2008-02-27 2009-08-27 Mitsunori Harada Semiconductor light emitting device
US20090221106A1 (en) 2008-03-01 2009-09-03 Goldeneye, Inc. Article and method for color and intensity balanced solid state light sources
US20110278606A1 (en) * 2009-02-05 2011-11-17 Hirokazu Suzuki Led light emitting device
WO2013038579A1 (en) 2011-09-16 2013-03-21 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
EP2575185A2 (en) * 2011-09-30 2013-04-03 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and manufacturing method of the same
US20130126918A1 (en) 2007-11-07 2013-05-23 Industrial Technology Research Institute Light emitting device and fabricating method thereof
DE102012106859A1 (en) * 2012-07-27 2014-01-30 Osram Opto Semiconductors Gmbh Method for producing a multicolor LED display
WO2014046488A2 (en) * 2012-09-21 2014-03-27 포항공과대학교 산학협력단 Color converting element and method for manufacturing same
EP2843702A1 (en) * 2013-08-30 2015-03-04 Kabushiki Kaisha Toshiba Semiconductor light emitting device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1450077A (en) 1965-10-08 1966-05-06 Burgue Freres Ets fabric for making articles of clothing, and articles of clothing made from this fabric
US20060099449A1 (en) 2004-11-09 2006-05-11 Kabushiki Kaisha Toshiba Light-emitting device
US20130126918A1 (en) 2007-11-07 2013-05-23 Industrial Technology Research Institute Light emitting device and fabricating method thereof
US20090212305A1 (en) * 2008-02-27 2009-08-27 Mitsunori Harada Semiconductor light emitting device
US20090221106A1 (en) 2008-03-01 2009-09-03 Goldeneye, Inc. Article and method for color and intensity balanced solid state light sources
US20110278606A1 (en) * 2009-02-05 2011-11-17 Hirokazu Suzuki Led light emitting device
WO2013038579A1 (en) 2011-09-16 2013-03-21 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
EP2575185A2 (en) * 2011-09-30 2013-04-03 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and manufacturing method of the same
DE102012106859A1 (en) * 2012-07-27 2014-01-30 Osram Opto Semiconductors Gmbh Method for producing a multicolor LED display
WO2014046488A2 (en) * 2012-09-21 2014-03-27 포항공과대학교 산학협력단 Color converting element and method for manufacturing same
US20150194579A1 (en) 2012-09-21 2015-07-09 Postech Academy-Industry Foundation Color converting element and light emitting device including the same
EP2843702A1 (en) * 2013-08-30 2015-03-04 Kabushiki Kaisha Toshiba Semiconductor light emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN ET AL.: "111-nitride micro-emitter arrays development and applications", J. PHYS. D: APPL. PHYS., vol. 41, 2008, pages 094001

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129981A1 (en) * 2017-12-14 2019-06-19 Osram Opto Semiconductors Gmbh Display device and method of operation for a display device
CN110021584A (en) * 2017-12-14 2019-07-16 欧司朗光电半导体有限公司 Show equipment and the operation method for showing equipment
US10629573B2 (en) 2017-12-14 2020-04-21 Osram Oled Gmbh Display device with different size subpixels and operating method for such a display device
WO2019197465A1 (en) * 2018-04-13 2019-10-17 Osram Opto Semiconductors Gmbh Optoelectronic component having a passivation layer and method for producing said optoelectronic component

Also Published As

Publication number Publication date
FR3038452A1 (en) 2017-01-06

Similar Documents

Publication Publication Date Title
EP3185294B1 (en) Optoelectronic light-emitting device
EP3061137B1 (en) Light emitting device
EP3563420B1 (en) Process for fabricating an optoelectronic device including photoluminescent pads of photoresist
EP3401964B1 (en) Led optoelectronic device
EP1994571A1 (en) Monolithic white light-emitting diode
EP3699967B1 (en) Light-emitting diode, pixel comprising a plurality of light-emitting diodes and associated manufacturing methods
EP3347916B1 (en) Electroluminescent device with integrated light sensor
WO2017001760A1 (en) Light-emitting semiconductor device including a structured photoluminescent layer
EP3732725B1 (en) Optoelectronic device with matrix of three-dimensional diodes
EP3671842A1 (en) Method for manufacturing optoelectronic structures provided with coplanar light-emitting diodes
EP3732723B1 (en) Pseudosubstrate for optoelectronic device and method for manufacturing same
WO2021130136A1 (en) Laser treatment device and laser treatment method
EP3871255A1 (en) Optoelectronic device comprising light-emitting diodes with improved light extraction
EP3479012A1 (en) An improved signalling and/or lighting device, in particular for a motor vehicle
FR3087580A1 (en) METHOD FOR PRODUCING AN OPTOELECTRONIC DEVICE COMPRISING HOMOGENEOUS LIGHT-EMITTING LIGHT-EMITTING DIODES
WO2024126395A1 (en) Method and structure for transferring a semiconductor device
WO2024115528A1 (en) Optoelectronic device and method for producing same
FR3137242A1 (en) Optoelectronic device and manufacturing method
FR3082662A1 (en) Method of manufacturing an optoelectronic device with self-aligned light confinement walls
FR3143188A1 (en) Method and structure for transferring a semiconductor device
FR3048127A1 (en) OPTO-ELECTRONIC CONVERSION LAYER DEVICE COMPRISING A GRID AND METHOD OF MANUFACTURING THE DEVICE
FR3053436A1 (en) LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16741358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16741358

Country of ref document: EP

Kind code of ref document: A1