WO2023227145A1 - 一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用 - Google Patents

一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用 Download PDF

Info

Publication number
WO2023227145A1
WO2023227145A1 PCT/CN2023/109086 CN2023109086W WO2023227145A1 WO 2023227145 A1 WO2023227145 A1 WO 2023227145A1 CN 2023109086 W CN2023109086 W CN 2023109086W WO 2023227145 A1 WO2023227145 A1 WO 2023227145A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum nanoparticles
cordyceps
solution
cordyceps flower
preparing platinum
Prior art date
Application number
PCT/CN2023/109086
Other languages
English (en)
French (fr)
Inventor
郭爱玲
刘玲
郭骁
钟源
吕健曼
陈美霖
左栖枫
Original Assignee
开贝科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 开贝科技(苏州)有限公司 filed Critical 开贝科技(苏州)有限公司
Publication of WO2023227145A1 publication Critical patent/WO2023227145A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for preparing platinum nanoparticles (PtNPs) using Cordyceps flower, and specifically relates to a preparation method of platinum nanoparticles and the application of the prepared platinum nanoparticles and platinum nanoparticles.
  • metal nanoparticles have attracted much attention due to their unique antibacterial, anticancer, catalytic and antioxidant activities.
  • Conventional preparation methods of metal nanoparticles such as physical and chemical methods, usually have the disadvantages of consuming energy and using toxic chemical reagents, which may cause harm to humans and the environment.
  • the biosynthesis process mainly involves plants, bacteria and fungi.
  • the synthesis of metal nanoparticles using plant extracts is faster than the synthesis using fungi or bacteria.
  • the biosynthesis scheme mediated by plant extracts is due to its simplicity. and eco-friendliness have become important areas of research on nanoparticle preparation.
  • Cordyceps flower is a fruiting body of Cordyceps formed by the growth of Cordyceps fungus in a nutritionally sufficient culture medium inoculated with optimal natural strains.
  • Current application research reports on Cordyceps flower mainly focus on the optimization of the extraction process of chemical components (such as polysaccharides, ergosterol and total flavonoids) and biomedical applications (such as prevention of hyperlipidemia, anti-cancer). It is worth noting that some literature has reported the use of Cordyceps militaris mycelium to biosynthesize metal nanoparticles (such as nanosilver, nanogold, and nanozinc oxide), but there are no research reports on the use of Cordyceps flowers to synthesize platinum nanoparticles.
  • Cordyceps flowers Based on the difference in the chemical substances contained in Cordyceps flowers and Cordyceps militaris, the applicant used Cordyceps flowers to biosynthesize PtNPs. The resulting product not only has better performance, but also the raw materials of Cordyceps flowers are more readily available and cheaper than Cordyceps militaris.
  • the object of the present invention is to provide a method for preparing platinum nanoparticles, which uses Cordyceps sinensis flowers as raw materials for biosynthesis.
  • the prepared platinum nanoparticles have the advantages of small particle size, uniformity and stability, high free radical scavenging ability and antibacterial activity.
  • the invention also provides a platinum nanoparticle prepared by the above method.
  • the present invention also provides an application of the platinum nanoparticles prepared by the above method in the preparation of antioxidant drugs and/or antibacterial drugs.
  • a method for preparing platinum nanoparticles comprising:
  • the pH adjuster can be an alkaline solution or an acid solution.
  • the alkaline solution includes but is not limited to an aqueous hydrogenoxide solution.
  • the acid solution includes but is not limited to an aqueous hydrogen chloride solution, that is, hydrochloric acid.
  • Another technical solution provided by the present invention a method for preparing platinum nanoparticles using Cordyceps flowers, including the following steps:
  • H 2 PtCl 6 ⁇ 6H 2 O Dissolve H 2 PtCl 6 ⁇ 6H 2 O in distilled water to prepare a H 2 PtCl 6 solution with a concentration of 1 mmol/L.
  • H 2 to the Cordyceps flower extract in a proportion of 10-90% of the total reaction volume.
  • PtCl 6 solution mix evenly, heat at 30-100°C and stir at high speed until the color of the solution changes from light yellow to dark brown;
  • chloroplatinic acid has extremely strong hygroscopicity, so its hydrate can be used to add in the process, usually with six crystal waters, molecular formula: H 2 PtCI 6 ⁇ 6H 2 O, reddish brown or orange red crystal.
  • Chloroplatinic acid can be purchased commercially, or can be prepared by reacting platinum black and nitric acid. The specific steps are as follows: (1) Mix platinum black and concentrated nitric acid, and heat the reaction. (2) Filter to obtain a light yellow liquid. (3) Add hydrochloric acid to precipitate chloroplatinic acid.
  • the material-to-liquid ratio of the cordyceps flower powder and water is 1:10.
  • the water bath temperature is 25°C and the water bath time is 30 minutes.
  • step 2) the pH of the cordyceps flower extract is adjusted to 10 with NaOH solution.
  • the cordyceps flower extract accounts for 50% of the total reaction volume.
  • the heating temperature is 50°C.
  • the dialysis bag has a molecular weight cutoff of 1,000.
  • the invention has the beneficial effects: (1) The method is simple and fast.
  • the present invention uses a biosynthetic method to prepare platinum nanoparticles.
  • the raw materials used are natural and environmentally friendly.
  • the reaction time is only about 1 hour. During the reaction process, no other strict condition control is required except temperature. Therefore, it has the advantages of high synthesis efficiency and simple method.
  • the present invention finally selected the nanoparticles prepared using Cordyceps sinensis flowers as synthetic raw materials.
  • Rice particles have better particle size distribution, antioxidant properties and antibacterial properties, and the raw materials are easy to obtain and low in price.
  • Figure 1 Effect of extraction temperature and time on antioxidant activity of Cordyceps flower extract.
  • FIG. 1 Effect of extraction material-liquid ratio on antioxidant activity of Cordyceps flower extract.
  • FIG. 3 Effect of pH value of cordyceps flower extract on particle size of PtNPs.
  • Figure 4 Effect of the volume ratio of Cordyceps flower extract and H 2 PtCl 6 solution on the particle size of PtNPs.
  • Figure 6 Particle size distribution curve of PtNPs synthesized from different biological resources, where a is PtNPs synthesized using cordyceps flower fine powder aqueous extract, b is PtNPs synthesized using fresh cordyceps flower aqueous extract, c is synthesized using tomato aqueous extract PtNPs, d is PtNPs synthesized using aqueous extract of Cordyceps militaris mycelium.
  • Figure 7 Transmission electron microscope image of PtNPs synthesized using cordyceps flower fine powder aqueous extract.
  • Figure 8 Transmission electron microscope image of PtNPs synthesized using fresh Cordyceps flower aqueous extract.
  • Figure 9 Transmission electron microscope image of PtNPs synthesized using tomato water extract.
  • Figure 10 Transmission electron microscope image of PtNPs synthesized using aqueous extract of Cordyceps militaris mycelium.
  • Figure 11 Plot of particle size information measured for the nanoparticles in Figure 7.
  • Figure 12 Antioxidant activity of PtNPs synthesized using different biological resources, where a is PtNPs synthesized using Cordyceps flower fine powder water extract, b is PtNPs synthesized using fresh Cordyceps flower water extract, c is tomato water extract Synthesized PtNPs, d is PtNPs synthesized using aqueous extract of Cordyceps militaris mycelium.
  • Figure 13 Antibacterial activity of PtNPs, where a-d is Escherichia coli, e-h is Salmonella typhimurium, i-l is Bacillus subtilis, and m-p is Staphylococcus aureus.
  • a and b, e and f, i and j, m and n respectively represent the strains of the test group under different magnifications;
  • c and d, g and h, k and l, o and p respectively represent the control group under different magnifications. strains.
  • Cordyceps flower fine powder is made by drying and grinding fresh Cordyceps flowers.
  • Cordyceps flower fine powder was dissolved in distilled water according to different material-to-liquid ratios (1:10, 1:20, 1:30, 1:40, 1:50), and heated at different temperatures (25°C, 60°C, 70°C, 80°C). °C, 90 °C) in a water bath and stirred for different times (0.5h, 1.0h, 2.0h, 3.0h, 4.0h); centrifuge (11000r/min, 30min) to retain the supernatant and filter it with a filter membrane with a pore size of 0.22 ⁇ m. From the supernatant, a sterile cordyceps flower extract was obtained and stored at 4°C. The DPPH free radical scavenging rate of the cordyceps flower extract prepared under various conditions was measured to preliminarily evaluate its ability to reduce metal ions.
  • the prepared Cordyceps flower extract has strong antioxidant activity, and is significantly better than the material-liquid ratio of 1:20, 1:30, 1:40, 1:50 condition.
  • the pH of the Cordyceps flower extract prepared at this time is about 6.0.
  • Use NaOH solution or HCl Adjust the pH value of the solution to 2.0-12.0 respectively; add the extract solution to the 1 mmol/L H 2 PtCl 6 solution according to 50% of the total reaction volume, mix evenly, heat at 50°C and stir at high speed for 1 hour , the color of the mixture changes from light yellow to dark brown.
  • the obtained product was dialyzed to a neutral pH value using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • the pH values of the extraction solution are 2, 4, 6, 8, 10, and 12 respectively.
  • the pH value of the extraction solution is adjusted to 10.0, the average particle size of the synthesized PtNPs is relatively smaller. The quality is more stable and uniform.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of Cordyceps flower extract is about 6.0, use
  • the NaOH solution adjusts its pH from the original 6.0 to 10.0.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-to-liquid ratio of 1:10, stirring in a water bath at 25°C for 30 minutes, centrifuging and then filtering and sterilizing.
  • the pH of the cordyceps flower extract is about 6.0, and the pH is adjusted from the original 6.0 to 10.0 with NaOH solution.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • This example provides a method for preparing platinum nanoparticles.
  • the method includes: mixing Cordyceps flower fine powder and distilled water at a material-liquid ratio of 1:10. Mix, stir in a water bath at 25°C for 30 minutes, centrifuge and then filter and sterilize.
  • the pH of the Cordyceps flower extract prepared at this time is about 6.0.
  • Use NaOH solution to adjust the pH from the original 6.0 to 10.0.
  • the obtained product was dialyzed to a neutral pH using a dialysis bag with a molecular weight cutoff of 1000, and the average particle size of the nanoparticles in the solution was measured using dynamic light scattering.
  • Figure 6 shows the particle size distribution curve of PtNPs synthesized from different biological resources, where a is PtNPs synthesized using Cordyceps flower fine powder aqueous extract, b is PtNPs synthesized using fresh Cordyceps flower aqueous extract, and c is tomato aqueous extract. Synthesized PtNPs, d is PtNPs synthesized using aqueous extract of Cordyceps militaris mycelium.
  • Dynamic light scattering method was used to measure the particle size distribution curves of four types of nanoparticles, and their particle dispersion and particle size were preliminarily evaluated, and transmission electron microscopy was used to further observe their morphology.
  • the extraction method of fresh Cordyceps flower aqueous extract, tomato aqueous extract, Cordyceps militaris mycelium aqueous extract and the process of synthesizing PtNPs all use the best process optimized in Examples 1-3.
  • PtNPs synthesized using Cordyceps flower fine powder aqueous extract have better monodispersity and smaller average particle size, while other biological resources such as fresh Cordyceps flowers, tomatoes, and Cordyceps militaris mycelium, due to these
  • the material contains a low concentration of compounds that can react with platinum, and a low content of proteins and polysaccharides that can stabilize nanoparticles. This causes the synthesized PtNPs to be polydisperse, have uneven particle sizes, and easily aggregate into large particles.
  • Figure 7 is a transmission electron microscope image of PtNPs synthesized using aqueous extract of Cordyceps flower fine powder.
  • Figure 8 is a transmission electron microscope image of PtNPs synthesized using fresh Cordyceps flower aqueous extract.
  • Figure 9 is a transmission electron microscope image of PtNPs synthesized using tomato aqueous extract.
  • Figure 10 is a transmission electron microscopy image of PtNPs synthesized using aqueous extract of Cordyceps militaris mycelium.
  • the antioxidant activity of PtNPs synthesized from different biological resources at different concentrations (0.50-125.00 ⁇ g/mL) was evaluated through the DPPH free radical scavenging capacity test.
  • a is PtNPs synthesized using Cordyceps flower fine powder aqueous extract
  • b is PtNPs synthesized using fresh Cordyceps flower aqueous extract
  • c is PtNPs synthesized using tomato aqueous extract
  • d is using Cordyceps militaris bacteria PtNPs synthesized from silk body aqueous extract
  • the DPPH radical scavenging rate of PtNPs synthesized using cordyceps flower fine powder aqueous extract increases from 27.77% to 44.00%, using fresh
  • the free radical scavenging rate of PtNPs synthesized from cordyceps flower aqueous extract increased from 4.50% to 12.66%
  • the free radical scavenging rate of PtNPs synthesized from tomato aqueous extract The free radical scavenging rate of PtNPs synthesized using Cordyceps militaris mycelium aqueous extract increased from 3.12% to 11.40% from 5.31% to 17.08%.
  • the antioxidant activities of the four PtNPs are concentration-dependent, but at the same concentration, the DPPH free radical scavenging rate of PtNPs synthesized using Cordyceps flower fine powder aqueous extract is much higher than the other three PtNPs. At low concentrations, that is Has significant antioxidant activity.
  • PtNPs synthesized using the aqueous extract of Cordyceps flower fine powder have obvious advantages, and then four kinds of bacteria (Escherichia coli, Salmonella typhimurium, Bacillus subtilis, Grapevine aureus) were observed by scanning electron microscopy. Staphylococcus aureus) were exposed to 100 ⁇ g/mL of PtNPs synthesized from Cordyceps flower fine powder aqueous extract before and after 15 min to evaluate the antibacterial activity of PtNPs.
  • a-d are Escherichia coli
  • e-h are Salmonella typhimurium
  • i-l are Bacillus subtilis
  • m-p are Staphylococcus aureus.
  • a and b, e and f, i and j, m and n respectively represent the strains of the test group under different magnifications
  • c and d, g and h, k and l, o and p respectively represent the control group under different magnifications. strain;
  • PtNPs synthesized using Cordyceps flower fine powder aqueous extract can have a destructive effect on the bacterial structure in a short time (15 minutes), causing cell perforation, rupture, content leakage, etc., and the PtNPs
  • the destructive effect on Gram-negative bacteria is stronger than that on Gram-positive bacteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用,该方法包括:将新鲜的虫草花烘干并磨成细粉,然后将虫草花细粉溶于水中,水浴加热;离心后保留上清液并采用滤膜过滤,得到无菌的虫草花提取液;用pH值调节剂将pH值调至2-12;将氯铂酸溶于水中配制成溶液,将虫草花提取液加入氯铂酸溶液中,混合均匀后加热并高速搅拌,直到溶液颜色由淡黄色变为深棕色;将反应后的溶液用透析袋透析至pH值为中性,真空冷冻干燥后即得铂纳米粒。方法合成效率高,简便快捷。制备的铂纳米粒粒径小且均一稳定,自由基清除能力和抑菌活性高,可以在制备抗氧化药物和抑菌药物中应用。

Description

一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用 技术领域
本发明涉及一种利用虫草花(Cordyceps flower)制备铂纳米粒(Platinum nanoparticles,PtNPs)的方法,具体涉及一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用。
背景技术
近年来,金属纳米颗粒以其独特的抑菌、抗癌、催化和抗氧化活性而成为倍受关注的热点研究。金属纳米颗粒的常规制备方法如物理法和化学法通常存在耗能和使用有毒化学试剂的缺点,可能对人类和环境造成危害。生物合成工艺主要涉及到植物、细菌和真菌等,据文献报道,用植物提取物合成金属纳米颗粒的速度要比用真菌或细菌合成速度快,植物提取物介导的生物合成方案由于其简单性和生态友好性成为了纳米颗粒制备研究的重要领域。
虫草花是在营养充分的培养基上接种优选的天然菌种,在适宜的生长环境下,由虫草菌生长形成的虫草子实体。目前虫草花的应用研究报道主要集中在化学成分(如多糖、麦角甾醇和总黄酮)的提取工艺优化方面和生物医学应用(如预防高血脂、抗癌)方面。值得注意的是,有部分文献报道了利用蛹虫草菌丝体生物合成金属纳米颗粒(如纳米银,纳米金,纳米氧化锌),但未有利用虫草花合成铂纳米粒的研究报道。申请人基于虫草花与蛹虫草所含化学物质的差异,利用虫草花生物合成PtNPs,得到的产物不仅具有更加优异的性能,而且虫草花相比蛹虫草原料更加易得,价格更加低廉。
发明内容
本发明的目的在于提供一种制备铂纳米粒的方法,该方法使用虫草花为原料进行生物合成,制备的铂纳米粒具有粒径小且均一稳定,自由基清除能力和抑菌活性高等优点。
本发明同时还提供了一种上述方法制备的铂纳米粒。
本发明同时还提供了一种上述方法制备的铂纳米粒在制备抗氧化药物和/或抑菌药物中的应用。
为达到上目的,本发明至少通过以下一种技术方案实现:
一种制备铂纳米粒的方法,该方法包括:
1)将新鲜的虫草花烘干并磨成细粉,然后将虫草花细粉溶于水中,水浴加热;离心后保留上清液并采用滤膜过滤,得到无菌的虫草花提取液;
2)用pH值调节剂将虫草花提取液的pH值调至2-12;
3)将氯铂酸溶于水中,配制成H2PtCl6溶液,将虫草花提取液加入H2PtCl6溶液中,混合均匀后在30-100℃温度下加热并高速搅拌,直到溶液颜色由淡黄色变为深棕色;
4)将反应后的溶液用透析袋透析至pH值为中性,真空冷冻干燥后即得铂纳米粒。
在本发明的一些实施方式中,所述pH值调节剂可以为碱溶液或酸溶液,碱溶液包括但不限于可以为氢氧化水溶液,酸溶液包括但不限于可以为氯化氢水溶液即盐酸。
本发明提供的又一技术方案:一种采用虫草花制备铂纳米粒的方法,包括如下步骤:
1)将新鲜的虫草花烘干并磨成细粉,然后按照1:10-50的料液比将虫草花细粉溶于水中,在25-90℃温度下水浴0.5-4h;离心后保留上清液并用孔径为0.22μm的滤膜过滤,得到无菌的虫草花提取液;
2)用NaOH或HCl溶液将虫草花提取液的pH值调至2-12;
3)将H2PtCl6·6H2O溶于蒸馏水中,配制为浓度为1mmol/L的H2PtCl6溶液,将虫草花提取液按照总反应体积占比10-90%的比例加入H2PtCl6溶液中,混合均匀后在30-100℃温度下加热并高速搅拌,直到溶液颜色由淡黄色变为深棕色;
4)将反应后的溶液用截留分子量为500-5000的透析袋透析至pH为中性,真空冷冻干燥后即得铂纳米粒。
本发明中,氯铂酸吸潮性极强,因此可以采用其水合物添加在工艺中,通常带有六个结晶水,分子式:H2PtCI6·6H2O,红棕色或橙红色结晶。
氯铂酸可以商购获得,或者可以通过铂黑和硝酸反应制备得到,具体步骤如下:(1)将铂黑和浓硝酸混合,加热反应。(2)过滤得到淡黄色液体。(3)加入盐酸,沉淀出氯铂酸。
优选地,步骤1)中,所述虫草花细粉与水的料液比为1:10。
优选地,步骤1)中,所述水浴温度为25℃,水浴时间是30min。
优选地,步骤2)中,用NaOH溶液将虫草花提取液的pH调至10。
优选地,步骤3)中,所述虫草花提取液占总反应体积比50%。
优选地,步骤3)中,所述加热温度为50℃。
优选地,所述透析袋的截留分子量为1000。
本发明的有益效果:(1)方法简便、快捷。本发明使用生物合成的方法制备铂纳米粒,使用的原料天然环保,反应时间只有1小时左右,反应过程中除了温度不需要进行其它严格的条件控制,因此具有合成效率高,方法简便等优点。
(2)本发明通过对多种生物资源进行比较,最终筛选到使用虫草花为合成原料,所制备的纳 米粒子具有更优异的粒径分布、抗氧化性能和抑菌性能,而且该原料容易获得、价格低廉。
附图说明
图1:提取温度和时间对虫草花提取物抗氧化活性的影响。
图2:提取料液比对虫草花提取物抗氧化活性的影响。
图3:虫草花提取物的pH值对PtNPs粒径的影响。
图4:虫草花提取物与H2PtCl6溶液的体积比对PtNPs粒径的影响。
图5:反应温度对PtNPs粒径的影响。
图6:不同生物资源所合成PtNPs的粒度分布曲线,其中a为利用虫草花细粉水提物合成的PtNPs,b为利用新鲜虫草花水提物合成的PtNPs,c为利用西红柿水提物合成的PtNPs,d为利用蛹虫草菌丝体水提物合成的PtNPs。
图7:利用虫草花细粉水提物合成的PtNPs的透射电镜图。
图8:利用新鲜虫草花水提物合成的PtNPs的透射电镜图。
图9:利用西红柿水提物合成的PtNPs的透射电镜图。
图10:利用蛹虫草菌丝体水提物合成的PtNPs的透射电镜图。
图11:对图7中的纳米颗粒测量所得粒径信息图。
图12:利用不同生物资源所合成PtNPs的抗氧化活性,其中a为利用虫草花细粉水提物合成的PtNPs,b为利用新鲜虫草花水提物合成的PtNPs,c为利用西红柿水提物合成的PtNPs,d为利用蛹虫草菌丝体水提物合成的PtNPs。
图13:PtNPs的抑菌活性,其中a-d为大肠杆菌,e-h为鼠伤寒沙门菌,i-l为枯草芽胞杆菌,m-p为金黄色葡萄球菌。a和b、e和f、i和j、m和n分别代表不同放大倍数下的测试组菌株;c和d、g和h、k和l、o和p分别代表不同放大倍数下的对照组菌株。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
虫草花细粉通过将新鲜的虫草花烘干并磨成而成。
实施例1虫草花的提取
按照不同料液比(1:10,1:20,1:30,1:40,1:50)将虫草花细粉溶于蒸馏水中,在不同温度(25℃,60℃,70℃,80℃,90℃)下水浴搅拌不同时间(0.5h,1.0h,2.0h,3.0h,4.0h);离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。测定各条件下所制备的虫草花提取液的DPPH自由基清除率,进而初步评估其还原金属离子的能力。
从图1可以看出,在25℃的水浴条件下,制备的虫草花提取液抗氧化活性较强,并且在该温度下,不同搅拌时间之间虫草花提取液抗氧化活性相差较小,从提高生产效率方面而言,选择搅拌时间0.5h为最优时间;
从图2可以看出,料液比为1:10的条件下,制备的虫草花提取液抗氧化活性较强,并且显著优于料液比为1:20、1:30、1:40、1:50的条件。
因此,从图1和图2可以综合看出,将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴30min,此时制备的虫草花提取液抗氧化活性较强,并且生产效率最高,能耗相对更低。
实施例1a虫草花的提取
按照料液比1:11将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1b虫草花的提取
按照料液比1:12将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1c虫草花的提取
按照料液比1:13将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1d虫草花的提取
按照料液比1:14将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1e虫草花的提取
按照料液比1:15将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1f虫草花的提取
按照料液比1:16将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液, 并储存在4℃环境中。
实施例1g虫草花的提取
按照料液比1:9将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1h虫草花的提取
按照料液比1:8将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1i虫草花的提取
按照料液比1:7将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1j虫草花的提取
按照料液比1:6将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1k虫草花的提取
按照料液比1:5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1l虫草花的提取
按照料液比1:4将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1m虫草花的提取
按照料液比1:3将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1n虫草花的提取
按照料液比1:2将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1o虫草花的提取
按照料液比1:1将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1p虫草花的提取
按照料液比1:10.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1q虫草花的提取
按照料液比1:9.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1r虫草花的提取
按照料液比1:8.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1s虫草花的提取
按照料液比1:7.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1t虫草花的提取
按照料液比1:11.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1u虫草花的提取
按照料液比1:12.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花 提取液,并储存在4℃环境中。
实施例1v虫草花的提取
按照料液比1:6.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例1w虫草花的提取
按照料液比1:13.5将虫草花细粉溶于蒸馏水中,在25℃下水浴搅拌不同时间0.5h;离心(11000r/min,30min)后保留上清液,用孔径为0.22μm的滤膜过滤上清液,得到无菌的虫草花提取液,并储存在4℃环境中。
实施例2酸碱度的调节
将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液或HCl溶液将其pH值分别调节至2.0-12.0;将提取液按照50%的总反应体积占比加入到1mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH值为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
从图3中可以看出,提取液的pH值分别为2、4、6、8、10、12中,将提取液的pH值调至10.0,所合成的PtNPs的平均粒径相对更小,质量更稳定均一。
实施例3 PtNPs合成条件的优化
将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1mmol/L的H2PtCl6溶液中,混合均匀后,在不同温度(30℃,50℃,70℃,90℃,100℃)下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
从图4中可以看出,将提取液与H2PtCl6溶液按照1:1的体积比混合均匀后,此时所制备的PtNPs的平均粒径更小,质量更稳定。
从图5中可以看出,在50℃下加热并高速搅拌1h,此时所制备的PtNPs的平均粒径更小,质量更稳定。
因此,从图4和图5中可以综合看出,将提取液与H2PtCl6溶液按照1:1的体积比混合均匀后,在50℃下加热并高速搅拌1h,此时所制备的PtNPs的平均粒径更小,质量更稳定。
实施例3a
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1.2mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3b
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1.3mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3c
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1.5mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3d
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入2mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3e
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用 NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入3mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3f
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入5mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3g
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.9mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3h
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.8mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3i
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.7mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1 h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3j
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.6mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3k
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.5mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3l
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.3mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3m
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入0.1mmol/L的H2PtCl6溶液中,混合均匀后,在50℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3n
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1mmol/L的H2PtCl6溶液中,混合均匀后,在52℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3o
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1mmol/L的H2PtCl6溶液中,混合均匀后,在48℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3p
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1mmol/L的H2PtCl6溶液中,混合均匀后,在55℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3q
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1mmol/L的H2PtCl6溶液中,混合均匀后,在45℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例3r
本例提供一种制备铂纳米粒的方法,该方法包括:将虫草花细粉与蒸馏水按照1:10的料液比 混合,25℃下水浴搅拌30min,离心后过滤除菌,此时所制备的虫草花提取液的pH约为6.0,用NaOH溶液将其pH由原始的6.0调节至10.0。将提取液按照不同的总反应体积占比(10%,30%,50%,70%,90%)加入1mmol/L的H2PtCl6溶液中,混合均匀后,在56℃下加热并高速搅拌1h,混合物颜色由淡黄色变为深棕色。所得产物用截留分子量为1000的透析袋透析至pH为中性,采用动态光散射法测定该溶液中纳米颗粒的平均粒径。
实施例4利用不同生物资源合成PtNPs的表征
图6为不同生物资源所合成PtNPs的粒度分布曲线,其中,a为利用虫草花细粉水提物合成的PtNPs,b为利用新鲜虫草花水提物合成的PtNPs,c为利用西红柿水提物合成的PtNPs,d为利用蛹虫草菌丝体水提物合成的PtNPs。
采用动态光散射法测定4种纳米颗粒的粒度分布曲线,初步评估其粒子分散性和粒径大小,并采用透射电镜进一步观察其形貌。其中,新鲜虫草花水提物、西红柿水提物、蛹虫草菌丝体水提物的提取方法以及合成PtNPs的工艺均使用实施例1-3优选的最佳工艺。
从图6可以看出,利用虫草花细粉水提物合成的PtNPs单分散性更好,且平均粒径更小,而其他生物资源如新鲜虫草花、西红柿、蛹虫草菌丝体,由于这些材料中能够与铂发生还原反应的化合物浓度低、同时能够使纳米颗粒稳定的蛋白质和多糖类物质含量少,造成合成的PtNPs呈现多分散性,粒径不均一,容易聚集成大的颗粒。
图7为利用虫草花细粉水提物合成的PtNPs的透射电镜图,图8为利用新鲜虫草花水提物合成的PtNPs的透射电镜图,图9为利用西红柿水提物合成的PtNPs的透射电镜图,图10为利用蛹虫草菌丝体水提物合成的PtNPs的透射电镜图。
从图7-10的比较可知,利用虫草花细粉合成的PtNPs在视野中最为分散,其他纳米颗粒则表现为不同程度的团聚或尺寸较大,该结果与动态光散射法所测数据较为吻合,进一步对图7中的粒子尺寸进行测定可得图11,可知利用虫草花细粉合成的PtNPs的平均粒径为13.34±4.06nm。
实施例5利用不同生物资源合成PtNPs的抗氧化活性测定
通过DPPH自由基清除能力测试评估了利用不同生物资源合成的PtNPs在不同浓度(0.50-125.00μg/mL)时的抗氧化活性。
具体参见图12,其中a为利用虫草花细粉水提物合成的PtNPs,b为利用新鲜虫草花水提物合成的PtNPs,c为利用西红柿水提物合成的PtNPs,d为利用蛹虫草菌丝体水提物合成的PtNPs
从图12可以看出,随着样品浓度从0.50μg/mL增加到125.00μg/mL,利用虫草花细粉水提物合成的PtNPs的DPPH自由基清除率从27.77%增加到44.00%,利用新鲜虫草花水提物合成的PtNPs的自由基清除率从4.50%增加到12.66%,利用西红柿水提物合成的PtNPs的自由基清除率 从3.12%增加到11.40%,利用蛹虫草菌丝体水提物合成的PtNPs的自由基清除率从5.31%增加到17.08%。4种PtNPs的抗氧化活性均具有浓度依赖性,但在同一浓度下,利用虫草花细粉水提物合成的PtNPs的DPPH自由基清除率远远高于其他3种PtNPs,在低浓度下即具有明显的抗氧化活性。
实施例6 PtNPs的抑菌活性测定
由上述结果可知,利用虫草花细粉水提物合成的PtNPs具有明显优势,进而通过扫描电镜观察4种细菌(大肠杆菌Escherichia coli,鼠伤寒沙门菌Salmonella typhimurium,枯草芽胞杆菌Bacillus subtilis,金黄色葡萄球菌Staphylococcus aureus)暴露于100μg/mL的虫草花细粉水提物合成的PtNPs 15min前后的形态变化,以评估该种PtNPs的抑菌活性。
图13中,其中a-d为大肠杆菌,e-h为鼠伤寒沙门菌,i-l为枯草芽胞杆菌,m-p为金黄色葡萄球菌。a和b、e和f、i和j、m和n分别代表不同放大倍数下的测试组菌株;c和d、g和h、k和l、o和p分别代表不同放大倍数下的对照组菌株;
从图13可以看出利用虫草花细粉水提物合成的PtNPs在短时间(15min)内即可对细菌结构产生破坏作用,使其出现细胞穿孔、破裂、内容物泄露等现象,且该PtNPs对革兰氏阴性菌的破坏效果强于革兰氏阳性菌。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (26)

  1. 一种采用虫草花制备铂纳米粒的方法,其特征在于包括如下步骤:1)将新鲜的虫草花烘干并磨成细粉,然后按照1:10-50的料液比将虫草花细粉溶于水中,在25-90℃温度下水浴0.5-4h;离心后保留上清液并用孔径为0.22μm的滤膜过滤,得到无菌的虫草花提取液;2)用NaOH或HCl溶液将虫草花提取液的pH调至2-12;3)将H2PtCl6·6H2O溶于蒸馏水中,配制为浓度为1mmol/L的H2PtCl6溶液,将虫草花提取液按照总反应体积占比10-90%的比例加入H2PtCl6溶液中,混合均匀后在30-100℃温度下加热并高速搅拌,直到溶液颜色由淡黄色变为深棕色;4)将反应后的溶液用截留分子量为500-5000的透析袋透析至pH为中性,真空冷冻干燥后即得铂纳米粒。
  2. 根据权利要求1所述的采用虫草花制备铂纳米粒的方法,其特征在于:步骤1)中,所述虫草花细粉与水的料液比为1:10。
  3. 根据权利要求1所述的采用虫草花制备铂纳米粒的方法,其特征在于:步骤1)中,所述水浴温度为25℃,水浴时间是30min。
  4. 根据权利要求1所述的采用虫草花制备铂纳米粒的方法,其特征在于:步骤2)中,用NaOH溶液将虫草花提取液的pH调至10。
  5. 根据权利要求1所述的采用虫草花制备铂纳米粒的方法,其特征在于:步骤3)中,所述虫草花提取液占总反应体积比50%。
  6. 根据权利要求1所述的采用虫草花制备铂纳米粒的方法,其特征在于:步骤3)中,所述加热温度为50℃。
  7. 根据权利要求1所述的采用虫草花制备铂纳米粒的方法,其特征在于:所述透析袋的截留分子量为1000。
  8. 一种制备铂纳米粒的方法,其特征在于:该方法包括:1)将新鲜的虫草花烘干并磨成细粉,然后将虫草花细粉溶于水中,水浴加热;离心后保留上清液并采用滤膜过滤,得到无菌的虫草花提取液;2)用pH值调节剂将虫草花提取液的pH值调至2-12;3)将氯铂酸溶于水中,配制成H2PtCl6溶液,将虫草花提取液加入H2PtCl6溶液中,混合均匀后在30-100℃温度下加热并高速搅拌,直到溶液颜色由淡黄色变为深棕色;4)将反应后的溶液用透析袋透析至pH值为中性,真空冷冻干燥后即得铂纳米粒。
  9. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤1)中,虫草花细粉与水的质量比例为1∶1-50。
  10. 根据权利要求9所述的制备铂纳米粒的方法,其特征在于:步骤1)中,虫草花细粉与水 的质量比例为1∶3-25。
  11. 根据权利要求10所述的制备铂纳米粒的方法,其特征在于:步骤1)中,虫草花细粉与水的质量比例为1∶8-12。
  12. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤1)中,水浴的温度为25-90℃。
  13. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤1)中,水浴的时间为0.2-4h。
  14. 根据权利要求13所述的制备铂纳米粒的方法,其特征在于:步骤1)中,水浴的时间为0.2-2h。
  15. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤1)中,滤膜的孔径为0.1-0.35μm。
  16. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤2)中,所述pH值调节剂可以为碱溶液或酸溶液。
  17. 根据权利要求16所述的制备铂纳米粒的方法,其特征在于:所述碱溶液为氢氧化水溶液,所述酸溶液为氯化氢水溶液。
  18. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤2)中,用pH值调节剂将虫草花提取液的pH值调至8.5-11。
  19. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤1)或2)中,水为蒸馏水。
  20. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤3)中,H2PtCl6溶液的浓度为0.1-10mmol/L。
  21. 根据权利要求20所述的制备铂纳米粒的方法,其特征在于:步骤3)中,0.5-1.5mmol/L。
  22. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤3)中,将虫草花提取液按照总反应体积占比10-90%的比例加入H2PtCl6溶液中。
  23. 根据权利要求22所述的制备铂纳米粒的方法,其特征在于:步骤3)中,将虫草花提取液按照总反应体积占比40-60%的比例加入H2PtCl6溶液中。
  24. 根据权利要求8所述的制备铂纳米粒的方法,其特征在于:步骤3)中,加热的温度为40-60℃。
  25. 根据权利要求1-24任一项所述的方法制备得到的铂纳米粒。
  26. 权利要求25所述的铂纳米粒在制备抗氧化药物和抑菌药物中的用途。
PCT/CN2023/109086 2022-05-27 2023-07-25 一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用 WO2023227145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210587524.X 2022-05-27
CN202210587524.XA CN114951681B (zh) 2022-05-27 2022-05-27 一种采用虫草花提取物制备铂纳米粒的方法

Publications (1)

Publication Number Publication Date
WO2023227145A1 true WO2023227145A1 (zh) 2023-11-30

Family

ID=82956744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109086 WO2023227145A1 (zh) 2022-05-27 2023-07-25 一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用

Country Status (2)

Country Link
CN (1) CN114951681B (zh)
WO (1) WO2023227145A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951681B (zh) * 2022-05-27 2023-01-31 华中农业大学 一种采用虫草花提取物制备铂纳米粒的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239585A (ja) * 2004-02-24 2005-09-08 Yasuo Aizono 冬虫夏草より見出された新規抗酸化活性物質とその利用
CN103919712A (zh) * 2014-02-17 2014-07-16 香港科技大学 北虫草提取物及其制备方法和应用
CN105499603A (zh) * 2015-12-25 2016-04-20 鲁东大学 蛹虫草提取液生物合成纳米银抑菌剂的方法
KR20180115438A (ko) * 2017-04-13 2018-10-23 한국원자력연구원 목재 열수 추출물을 이용한 전이금속 나노 입자의 제조방법 및 이를 이용하여 제조된 전이금속 나노 입자
CN114029501A (zh) * 2021-11-12 2022-02-11 中国科学院合肥物质科学研究院 一种纳米铂的绿色合成方法及纳米铂在化妆品中的应用
CN114951681A (zh) * 2022-05-27 2022-08-30 华中农业大学 一种采用虫草花提取物制备铂纳米粒的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095031A1 (en) * 2004-03-31 2005-10-13 Council Of Scientific And Industrial Research A process for the synthesis of mono and bimetallic nanoparticles using palnt extract
WO2016043349A1 (en) * 2014-09-18 2016-03-24 RI, Kyong Min Solution of bio gold nanoparticles produced by extracts of plants
KR102480159B1 (ko) * 2014-10-07 2022-12-22 바스프 코포레이션 제어된 크기 및 형태학을 갖는 콜로이드성 귀금속 나노입자의 합성
CN113908180B (zh) * 2021-11-13 2022-12-16 广东暨创硒源纳米研究院有限公司 纳米硒蛹虫草水提物在减少放疗损伤中的应用及其保护剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239585A (ja) * 2004-02-24 2005-09-08 Yasuo Aizono 冬虫夏草より見出された新規抗酸化活性物質とその利用
CN103919712A (zh) * 2014-02-17 2014-07-16 香港科技大学 北虫草提取物及其制备方法和应用
CN105499603A (zh) * 2015-12-25 2016-04-20 鲁东大学 蛹虫草提取液生物合成纳米银抑菌剂的方法
KR20180115438A (ko) * 2017-04-13 2018-10-23 한국원자력연구원 목재 열수 추출물을 이용한 전이금속 나노 입자의 제조방법 및 이를 이용하여 제조된 전이금속 나노 입자
CN114029501A (zh) * 2021-11-12 2022-02-11 中国科学院合肥物质科学研究院 一种纳米铂的绿色合成方法及纳米铂在化妆品中的应用
CN114951681A (zh) * 2022-05-27 2022-08-30 华中农业大学 一种采用虫草花提取物制备铂纳米粒的方法

Also Published As

Publication number Publication date
CN114951681B (zh) 2023-01-31
CN114951681A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Hashem et al. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200
Husain et al. Screening of cyanobacterial extracts for synthesis of silver nanoparticles
Aisida et al. Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity
Öztürk Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: Their antibacterial and antifungal effects
Joseph et al. Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity
WO2023227145A1 (zh) 一种铂纳米粒的制备方法及其制备的铂纳米粒和铂纳米粒的应用
Veeraputhiran Bio-catalytic synthesis of silver nanoparticles
Swain et al. Green synthesis of gold nanoparticles using root and leaf extracts of Vetiveria zizanioides and Cannabis sativa and its antifungal activities
CN102860325A (zh) 一种杀菌纳米银水凝胶及其制备方法
CN113735175B (zh) 一种纳米拟酶、制备方法及包含其的种子浸泡剂
Shivashankar et al. Biosynthesis, partial characterization and antimicrobial activities of silver nanoparticles from pleurotus species
Kanawaria et al. Rapid biosynthesis and characterization of silver nanoparticles: an assessment of antibacterial and antimycotic activity
Huang et al. A review of selenium (Se) nanoparticles: from synthesis to applications
CN108213459B (zh) 一种葡聚糖/纳米金-银合金复合物的制备方法
CN115120614B (zh) 用于制备纳米银复合物的组合物、纳米银复合物及其应用
CN114160785B (zh) 一种温和条件可控纳米银溶液的制备方法
Bisquera et al. Synthesis and characterization as zinc oxide nanoparticles as a source of zinc micronutrient in organic fertilizer.
CN114734032A (zh) 一种基于木棉花提取液制备纳米银的方法
Zhang et al. Evaluation of antibacterial and antifungal properties of Lonicera japonica Thunb. Leaves mediated silver nanoparticles and mechanism investigation
Natarajan et al. Elaeagnus indica mediated green synthesis of silver nanoparticles and its potent toxicity against human pathogens
JP2013177678A (ja) 銀微粒子とdnaの複合体及びその製造方法
CN114521570B (zh) 一种香菇多糖抗菌复合物及其制备方法
Yousef et al. Enhancement the antibacterial potential of the biosynthesized silver nanoparticles using hydrophilic polymers
Khalaf et al. Extracellular synthesis of silver nanoparticles using culture supernatant of Aspergillus Niger
CN114100676A (zh) 一种功能化修饰金属纳米颗粒的合成方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811215

Country of ref document: EP

Kind code of ref document: A1