WO2023226844A1 - 反向散射信号传输方法、装置、通信设备及可读存储介质 - Google Patents

反向散射信号传输方法、装置、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2023226844A1
WO2023226844A1 PCT/CN2023/094718 CN2023094718W WO2023226844A1 WO 2023226844 A1 WO2023226844 A1 WO 2023226844A1 CN 2023094718 W CN2023094718 W CN 2023094718W WO 2023226844 A1 WO2023226844 A1 WO 2023226844A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
information
value
parameter
backscattered
Prior art date
Application number
PCT/CN2023/094718
Other languages
English (en)
French (fr)
Inventor
吴凯
蔡建生
王勇
顾一
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023226844A1 publication Critical patent/WO2023226844A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10019Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers.
    • G06K7/10069Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers. the collision being resolved in the frequency domain, e.g. by hopping from one frequency to the other
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10346Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the far field type, e.g. HF types or dipoles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/45Transponders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a backscatter signal transmission method, device, communication equipment and readable storage medium.
  • tags are used to backscatter incident carrier signals for signal transmission. Since there are a large number of tags, tags transmit information through backscattered signals at a randomly determined time point. When there are a large number of tags, different tags may transmit backscattered signals at the same time. At this time, due to conflicts between backscattered signals, the reader's performance in receiving backscattered signals will decrease.
  • Embodiments of the present application provide a backscattered signal transmission method, device, communication equipment and readable storage medium to solve the problem of reduced performance of a reader/writer in receiving backscattered signals due to conflicts between backscattered signals.
  • a backscatter signal transmission method including:
  • the tag determines parameters related to backscattered signal transmission based on the first information
  • the first information includes at least one of the following:
  • a first identification includes the identification of the tag or the temporary identification of the tag;
  • a first value is used to indicate the random number generated by the tag
  • the second value being used to indicate the counter value of the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the group identifier or intra-group identifier of the tag
  • a backscatter signal transmission method including:
  • the reader/writer determines parameters related to backscattered signal transmission based on the first information
  • the reader/writer detects the backscattered signal according to the parameters
  • the first information includes at least one of the following:
  • a first identification includes an identification of a tag or a temporary identification of the tag
  • a first value is used to indicate the random number generated by the tag
  • the second value being used to indicate the counter value of the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the group identifier or intra-group identifier of the tag
  • a backscatter signal transmission device applied to tags, and the device includes:
  • a first determination module configured to determine parameters related to backscatter signal transmission based on the first information
  • the first information includes at least one of the following:
  • a first identification includes the identification of the tag or the temporary identification of the tag;
  • a first value is used to indicate the random number generated by the tag
  • the second value being used to indicate the counter value of the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the group identifier or intra-group identifier of the tag
  • a backscatter signal transmission device for use in a reader/writer.
  • the device includes:
  • a third determination module configured to determine parameters related to backscattered signal transmission based on the first information
  • a detection module configured to detect the backscattered signal according to the parameters
  • a first identification includes the identification of the tag or the temporary identification of the tag;
  • a first value is used to indicate the random number generated by the tag
  • the second value being used to indicate the counter value of the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the group identifier or intra-group identifier of the tag
  • a communication device including: a processor, a memory, and a program or instruction stored on the memory and executable on the processor.
  • the program or instruction is executed by the processor Implement the steps of the method described in the first aspect or the second aspect.
  • a readable storage medium In a sixth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first or second aspect are implemented. .
  • a chip in a seventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect or the second aspect. the steps of the method described.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first aspect or the steps of the method described in the second aspect.
  • a ninth aspect provides a communication system.
  • the communication system includes a terminal and a network side device.
  • the terminal is configured to perform the steps of the method described in the first aspect.
  • the network side device is configured to perform the method described in the second aspect. steps of the method.
  • the tag determines the parameters related to backscatter signal transmission based on the first information. Since the content contained in the first information is related to the tag itself or the content contained is a non-fixed value, this can make multiple Each tag generates different parameters based on different first information, so that multiple tags can use different parameters to transmit backscatter signals at the same time, so that the reader can detect multiple tags at the same time.
  • Backscattering signals can support multiple tags to perform backscattering transmission at the same time. When the number of tags is large, it improves the efficiency of backscattering communication between the reader and the tag.
  • Figure 1 is one of the schematic diagrams of backscatter communication
  • Figure 2 is the second schematic diagram of backscatter communication
  • Figure 3 is a schematic diagram of information transmission between the reader and the Tag
  • Figure 4 is a schematic diagram of a backscatter application scenario
  • FIG. 5a, Figure 5b and Figure 5c are schematic diagrams of another Backscatter application scenario
  • Figure 6 is one of the flow charts of a backscatter signal transmission method provided by an embodiment of the present application.
  • Figure 7 is the second flow chart of a backscatter signal transmission method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of Miller subcarrier modulation provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the frequency components of a backscattered signal provided by an embodiment of the present application.
  • Figure 10 is one of the schematic diagrams of a backscatter signal transmission device provided by an embodiment of the present application.
  • Figure 11 is a second schematic diagram of a backscatter signal transmission device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • NR New Radio
  • BSC Backscatter Communication
  • Backscatter communication means that backscatter communication equipment uses radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information.
  • Backscatter communications equipment which may include:
  • the backscatter communication device in traditional radio frequency identification is generally a tag (Tag), which is a passive Internet of Things (IoT) device (or called Passive-IoT) .
  • Tags with active sending capabilities can send information to readers (such as readers) without relying on reflection of incident signals.
  • the reader is a radio frequency tag reading and writing device and is one of the two important components of the radio frequency identification system (tag and reader). Radio frequency tag reading and writing equipment also has some other popular nicknames according to the specific implementation functions, such as: Reader (Reader), Interrogator (Interrogator), Communicator (Communicator), Scanner (Scanner), Reader and Writer (Reader and Writer) ), Programmer, Reading Device, Portable Readout Device, Automatic Equipment Identification Device (AEI), etc.
  • Reader Reader
  • Interrogator Interrogator
  • Communicator Communicator
  • Scanner Scanner
  • Reader and Writer Reader and Writer
  • Programmer Reading Device, Portable Readout Device, Automatic Equipment Identification Device (AEI), etc.
  • AEI Automatic Equipment Identification Device
  • Link 1 is the reader.
  • Link to tag link 2 is the link from tag to reader.
  • a simple implementation method is that when the Tag needs to send '1', the Tag reflects the incident carrier signal, and when the Tag needs to send '0', it does not reflect.
  • Backscatter communication equipment controls the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • Z 0 is the antenna characteristic impedance
  • Z 1 is the load impedance
  • Table 1 Reader/writer instructions.
  • the status of the Tag tag is shown in Table 2.
  • UHF Ultra High Frequency
  • Scenario 2 Terminal-assisted cellular backscatter scenarios (Scenarios for cellular backscatter with UE assisted), as shown in Figure 5a, Figure 5b and Figure 5c.
  • the terminal receives feedback information sent by the tag.
  • the terminal sends a control word (CW) or control signaling to Tag; the control signaling type includes at least one of the following: select, inventory, access.
  • Network equipment such as base stations
  • the terminal sends the carrier wave and receives the backscattered signal of the Tag. After receiving the backscattered signal of the Tag, the terminal forwards the collected information to the network equipment (such as the base station).
  • the reader can usually only receive the backscatter signal of one Tag at the same time.
  • the reader when the reader sends a control command to start the inventory process, it will indicate a value Q.
  • Tag locally generates a value of ⁇ 0,...,2 ⁇ Q-1 ⁇ , randomly select a value q.
  • the Tag whose current random value is 0 will respond to the control command of the reader and write and transmit backscattered signals.
  • Tags whose current random value is not 0 will not transmit backscatter signals for the time being.
  • the reader can continue to send control commands (for example, queryRep), for example, instructing the Tag to decrement the generated random number by 1, and the Tag with a random value reduced to 0 responds to the control command. , perform backscatter transmission.
  • control commands for example, queryRep
  • the above process belongs to a random multiple access process, and there is a possibility that no Tag will perform backscattering. For example, the current random number of no Tag is 0. There is also the possibility that multiple Tags may generate the same random number locally, resulting in the possibility of multiple Tags performing backscattering transmission at the same time. In this case, the reader will most likely be unable to detect the reverse direction of any Tag. Scatter signal, and will not receive backscatter signal feedback to Tag. In this case, these Tags will continue to receive control commands from the reader and wait for new backscattering transmission opportunities. Therefore, the reader should select a reasonable Q value when sending control commands, and can gradually adjust the Q value during the inventory process to reduce the probability of conflict during communication with multiple Tags. Of course, this also means that it takes longer to complete communication with multiple tags.
  • an embodiment of the present application provides a backscatter signal transmission method applied to tags. Specific steps include: step 601.
  • Step 601 The tag determines parameters related to backscatter signal transmission based on the first information
  • the first information includes at least one of the following:
  • the first identification includes the identification of the tag or the temporary identification of the tag;
  • the tag's ID is A
  • the tag's temporary ID is B
  • tag ID#0 uses parameter 0
  • tag ID#1 uses parameter 1
  • a first value the first value is used to indicate the random number generated by the tag
  • the random number generated by the tag is C.
  • the counter value generated by the tag is D
  • the initial value of the tag's counter can be a random number generated by the tag.
  • Tags with current counter values of 0, 1,...M-1 can transmit backscatter signals at the same time.
  • Tags with different counter values use different parameters for backscatter transmission.
  • Tag 0 uses parameter 0
  • tag 1 uses parameter 1
  • a third value is used to indicate the step size of the counter of the tag
  • the step size of the counter generated by the tag is E.
  • the tag can perform backscattering signal transmission in a grouped mode, and the tag can include a group identifier and an intra-group identifier.
  • the reader/writer instructs the tag to transmit backscatter signals at a specific frequency. It is understandable that the specific content of the information indicated by the card reader is not limited.
  • the content contained in the first information used by the tag to generate parameters related to backscatter signal transmission is related to the tag itself or the content contained is a non-fixed value, this can make multiple tags based on Different first information generates different parameters respectively, so that multiple tags can use different parameters to transmit backscatter signals at the same time.
  • parameters related to backscatter signal transmission are used to indicate frequency information for tags to transmit backscatter signals. This ensures that multiple tags perform backscattering in a frequency division multiplexing manner. parameters of the signal.
  • the parameters include at least one of the following:
  • a first parameter the first parameter is used to indicate the transmission of backscattered signals
  • the first parameter is 1-bit indication information
  • the value of the 1-bit indication information is "1", indicating transmission of the backscattered signal.
  • the first parameter is a 1-bit indication information
  • the value of the 1-bit indication information is "0", indicating that the backscatter signal is not to be transmitted.
  • a third parameter is used to indicate the frequency of the backscattered signal
  • tag 0 transmits backscattered signals at frequency
  • tag 1 transmits backscattered signals at frequency 1
  • tag 2 transmits backscattered signals at frequency 2, so that multiple tags can Backscattering is transmitted at different frequencies at the same time, and backscattering signals are transmitted through frequency division multiplexing to reduce conflicts.
  • the third parameter is a first frequency offset value
  • the first frequency offset value is used to indicate a frequency offset value relative to an incident carrier frequency, wherein the incident carrier frequency or the third A frequency offset value can be predefined or indicated by the reader.
  • Subcarriers in this article can also be described as subcarriers.
  • tag 0 transmits backscattered signals on subcarrier 0; tag 1 transmits backscattered signals on subcarrier 1; tag 2 transmits backscattered signals on subcarrier 2, so multiple Tags can backscatter transmissions on different subcarriers at the same time.
  • the subcarrier frequency of the backscattered signal may be N times or 1/N times the reference subcarrier frequency, where N is a natural number greater than 0, and the reference subcarrier frequency and N may be Predefined, or indicated by the reader/writer.
  • the first duration or the first level switching period for tag 0 to transmit the backscatter signal is X
  • the first duration or the first level switching period for tag 1 to transmit the backscatter signal is Y
  • the first duration or the first level switching period of tag 2 to transmit the backscattered signal is Z, where X, Y, and Z are different, and thus the frequency of the backscattered signal is different, so that multiple tags can use it at the same time.
  • Different first durations or first level switching periods are used for backscattering transmission to avoid conflicts.
  • the first duration is K times or 1/K times the reference level duration, where K is a natural number greater than 0.
  • the reference level duration and K may be predefined, or may be read as indicated by the writer.
  • the method further includes: the tag receiving second information, the second information being used to instruct the tag to determine whether to transmit the backscattered signal based on the first information. Relevant parameters, or the second information is used to instruct the tag to determine parameters related to the backscatter signal transmission based on a specific session number or process number.
  • the tag receives the second information from the reader/writer, so that the reader/writer can explicitly instruct the tag to use different parameters to transmit the backscatter signal at the same time, or the reader/writer can directly instruct the tag to transmit backscattered signals according to specific parameters.
  • the session number or process number determines parameters related to the backscattered signal transmission.
  • the tag determines the parameters of the backscattered signal based on the first information, including:
  • the tag determines parameters related to the backscatter signal transmission based on the first information.
  • the tag determines parameters related to the backscattered signal transmission based on the first information.
  • the reader/writer can indicate to the tag that when the step size of the tag's counter is E>1, the tag can determine parameters related to the backscattered signal transmission based on the first information.
  • the method further includes:
  • the tag When the counter value of the tag is any one of 0 to a fourth value, the tag transmits a backscatter signal, the fourth value is equal to the third value minus 1, and the third value Three values are greater than or equal to 1.
  • tags with counter values of 0...E-1 can transmit backscatter signals at the same time. Try to avoid having no tags transmitting backscatter signals.
  • the multiple tags can transmit backscatter signals through different parameters to reduce the probability of conflict.
  • the method further includes:
  • the tag receives third information, and the third information is used to instruct the tag to change the counter value to To subtract the third value, for example, the reader/writer can instruct the tag through a control command to subtract the counter value by the step size.
  • the tag determines that parameters related to backscatter signal transmission include one of the following based on the first information:
  • the tag determines the parameter based on the group identifier of the tag
  • the tag determines parameters such as frequency, subcarrier frequency, first level duration/first level switching period, etc. based on the tag's group identifier.
  • the tag determines the parameter based on the group identifier of the tag.
  • the tag determines parameters such as frequency, subcarrier frequency, first level duration/first level switching period, etc. according to the group identifier of the tag.
  • the group identifier or intra-group identifier of the tag is determined based on one of the following: the first identifier; the first value; the second value; the reader-writer indication Information.
  • the tag determines the parameter based on the tag's group identifier or intra-group identifier, including:
  • the tag determines the remainder obtained by dividing the first identifier (A or B) or the first value (C) or the second value (D) by the fifth value as the parameter;
  • the fifth value is indicated by the reader/writer or predefined.
  • the method further includes:
  • the tag receives fourth information, and the fourth information is used to indicate at least one of the following:
  • At least one of the first information, the second information, the third information, and the fourth information is carried in the control command sent by the reader/writer;
  • control command includes at least one of the following: a selection command, a query command, a repeat query command, and an adjustment query command.
  • the method further includes:
  • the tag transmits the backscattered signal according to the first requirement and the parameters of the backscattered signal;
  • the first requirement includes: when the tag uses any parameter of the backscatter signal to transmit the backscatter signal, if the number of bits transmitted is the same, the second duration for transmitting the same number of bits is the same. .
  • the subcarrier frequency of the backscattered signal when the subcarrier frequency of the backscattered signal is N times the reference subcarrier frequency, during the second duration, the subcarrier frequency of the backscattered signal is The number of level switching cycles corresponding to the carrier frequency is 1/N of the number of level switching cycles corresponding to the reference subcarrier frequency.
  • the level switching period includes: high level and low level, or low level and high level, wherein the duration of the high level and the low level The sum of the durations of the levels is the level switching period.
  • the information carried by the backscatter signal includes at least one of the following: a temporary identification of the tag, an item code, a handle of the tag, an error code, and data.
  • the tag determines the parameters related to backscatter signal transmission based on the first information. Since the content contained in the first information is related to the tag itself or the content contained is a non-fixed value, this can make multiple Each tag generates different parameters based on different first information, so that multiple tags can use different parameters to transmit backscatter signals at the same time, so that the reader can detect multiple tags at the same time.
  • Backscattering signals can support multiple tags to perform backscattering transmission at the same time. When the number of tags is large, it improves the efficiency of backscattering communication between the reader and the tag.
  • an embodiment of the present application provides a backscatter signal transmission method, which is applied to a reader/writer.
  • the specific steps include: step 701 and step 702.
  • Step 701 The reader/writer determines parameters related to backscattered signal transmission based on the first information
  • Step 702 The reader/writer detects the backscattered signal according to the parameters
  • the first information includes at least one of the following:
  • the first identification includes the identification of the tag or the temporary identification of the tag;
  • a first value the first value is used to indicate the random number generated by the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the parameters include at least one of the following:
  • a first parameter the first parameter is used to indicate the transmission of backscattered signals
  • a third parameter is used to indicate the frequency of the backscattered signal
  • Subcarriers in this article can also be described as subcarriers.
  • the reader/writer detects the backscattered signal based on the parameters, including:
  • the reader/writer detects the backscattered signal according to the parameter within at least one bandwidth range.
  • the third parameter is a first frequency offset value, and the first frequency offset value is used to indicate a frequency offset value relative to the incident carrier frequency;
  • the subcarrier frequency of the backscattered signal is N times or 1/N times the reference subcarrier frequency
  • the first duration is K times or 1/K times the reference level duration
  • N and K are natural numbers greater than 0.
  • one of the incident carrier frequency, the reference subcarrier frequency, the reference level duration, the first frequency offset value, the N and the K item or Multiple items are predefined or determined by the reader/writer.
  • the method further includes:
  • the reader/writer sends second information, the second information is used to instruct the tag to determine the parameters related to the backscatter signal transmission according to the first information, or the second information is used to instruct the tag to determine the parameters related to the backscatter signal transmission according to A specific session number or process number determines the parameters associated with the transmission of the backscattered signal.
  • the method further includes:
  • the reader/writer sends third information, and the third information is used to instruct the tag to subtract the third value from the counter value.
  • the group identifier or intra-group identifier of the tag is determined based on one of the following: the first identifier; the first value; the second value; the reader-writer indication Information.
  • the method further includes: the reader/writer sending fourth information, the fourth information being used to indicate at least one of the following:
  • At least one of the first information, the second information, the third information, and the fourth information is carried by a control command
  • control command includes at least one of the following: a selection command, a query command, a repeat query command, and an adjustment query command.
  • the reader/writer includes at least one of the following: a terminal, a base station, a dedicated receiving device, and a dedicated sending device.
  • the reader/writer determines parameters related to backscatter signal transmission based on the first information. Since the content contained in the first information is related to the tag itself or the content contained is a non-fixed value, this can This allows multiple tags to use different parameters to transmit backscatter signals at the same time, allowing the reader to detect the backscatter signals of multiple tags at the same time based on the parameters, thus supporting multiple tags in the Backscatter transmission is performed at the same time, which improves the efficiency of backscatter communication between the reader and the tag when there are a large number of tags. efficiency.
  • Applicable scenarios for the embodiments of this application include: direct communication between the Tag and the base station, and UE-assisted communication between the Tag and the base station.
  • Embodiment 1 Different Tags use different backscattering signal parameters.
  • the Tag After receiving the control command from the reader/writer, the Tag can use different parameters to send the backscatter signal, that is, the reader/writer can instruct the tag whether to use the first information to determine the parameters of the backscatter signal.
  • Method 1 Transmit backscattered signals at a specific frequency.
  • Tag0 transmits the backscattered signal at frequency 0;
  • Tag1 transmits the backscattered signal at frequency 1;
  • Tag2 transmits the backscattered signal at frequency 2, so that multiple different Tags can transmit the backscattered signal at the same frequency.
  • the backscattered signal is transmitted at different frequencies at different times.
  • Tag generates backscattered signals of different frequencies through a local oscillator; or Tag generates backscattered signals of different frequencies by changing the devices in the circuit or the parameters of the devices.
  • the device can be a capacitor.
  • Method 2 Use different subcarriers (or subcarriers) to modulate the information carried by the backscattered signal.
  • the backscatter signal usually uses subcarrier modulation to modulate the useful signal and backscatter the transmission.
  • One implementation method is as follows:
  • Each bit of information is modulated through multiple periods of level switching.
  • the level switching of each period T includes at least two levels.
  • the two levels of high level and low level correspond to different reflection coefficients of the tag.
  • Figure 8 shows a Miller subcarrier modulation method.
  • the subcarrier On the basis of the subcarrier modulation signal, the subcarrier is used to reflect the incident carrier with frequency Fc, so that the backscattered signal is modulated on the subcarrier of Fc+Fs and/or Fc-Fs.
  • Tag0 transmits the backscattered signal on subcarrier 0;
  • Tag1 transmits the backscattered signal on subcarrier 1;
  • Tag2 transmits the backscattered signal on subcarrier 2; multiple Tags can transmit the backscattered signal on the same subcarrier.
  • Backscattered transmission is performed on different subcarriers at different times. That is, Tag0 passes through the vice
  • the signal after carrier modulation is at Fc+Fs0 and/or Fc-Fs0; the signal after Tag1 is modulated by subcarrier is at Fc+Fs1 and/or Fc-Fs1; the signal after Tag2 is modulated by subcarrier is at Fc+Fs2 and/or Fc-Fs2;
  • Tag supports different subcarrier frequencies for backscatter transmission.
  • the first duration of the level (or the first level switching period) is different, but the parameters of any backscatter signal are used for reverse When transmitting scattering signals, it is necessary to ensure that the second duration of the same number of transmitted bits is the same.
  • the signal duration after modulation of information symbol 0/1 is the same.
  • Tag#0 uses a subcarrier frequency of 640kHz
  • Tag#1 uses a subcarrier frequency of 320kHz.
  • the level switching period and electric frequency duration of Tag#0 are 1/2 of Tag#1.
  • the number of switching cycles M of Tag#1 should also be 1/2 of Tag#0.
  • Miller 4 compared to Miller 2, the transmission duration (second duration) after modulation of an information bit becomes longer, at this time the level switching period (or first duration) time) are the same. In this way, Miller 4 has better transmission performance than Miller 2.
  • the level switching periods (first duration) are different, and the modulated transmission duration (second duration) of one information bit is the same.
  • Miller subcarrier or Miller code subcarrier
  • Manchester code FM0 (Bi-Phase Space Coding)
  • FM0 Bi-Phase Space Coding
  • Method 3 Use different signal level durations to modulate the information carried by the backscattered signal.
  • Method 3 is similar to Method 2. By modifying the duration of a high/low level, T is changed. thereby changing the frequency of the backscattered signal.
  • the parameters of the above backscattered signal may be predefined or indicated by the reader.
  • Method 4 Transmit backscattered signals at a specific frequency.
  • the Tag can locally generate transmission signals of one or more frequencies, and does not rely on carrier signal reflection.
  • This type of Tag can directly transmit backscatter signals at specific frequencies according to the reader's control commands, indicated rules, or predefined rules.
  • Tag can perform double-sideband modulation on the signal based on the carrier signal, that is, generating a frequency component in the high-frequency direction and/or the low-frequency direction of the carrier frequency. Or use single sideband modulation, such as using method 4, to only generate frequency components in the high or low frequency direction of the carrier frequency.
  • the frequency components above or below the carrier frequency contain the modulated information of the backscatter.
  • the reader can detect the information transmitted by the backscattered signal using filters to filter out specific frequency components.
  • the reader/writer can extract signals of different frequencies through filters for demodulation, and obtain signals transmitted by different Tags through backscattering, and the frequency components of the backscattered signal, as shown in Figure 9.
  • the reader/writer can usually only receive the backscatter signal of one Tag at the same time.
  • the reader when the reader sends a control command to start the inventory process, it will indicate a value Q.
  • Tag randomly selects a value q from the locally generated values ⁇ 0,...,2 ⁇ Q-1 ⁇ .
  • the Tag whose current random value is 0 will respond to the reader's control command and transmit the backscatter signal.
  • Tags whose current random value is not 0 will not transmit backscatter signals for the time being.
  • the reader can continue to send control commands (for example, queryRep), for example, instructing the Tag to decrement the generated random number by 1, and the Tag with a random value reduced to 0 responds to the control command. , to transmit backscattered signals.
  • control commands for example, queryRep
  • the above process belongs to the process of random multiple access.
  • multiple Tags may generate the same random number locally, which may lead to the possibility of multiple Tags performing backscattering transmission at the same time.
  • the reader/writer There is a high probability that the backscattered signal of any Tag cannot be detected, and no backscattered signal feedback will be received by the Tag. In this case, these Tags will continue to receive control from the reader/writer command, waiting for new backscatter transmission opportunities. Therefore, the reader should select a reasonable Q value when sending control commands, and can gradually adjust the Q value during the inventory process to reduce the probability of conflict during communication with multiple Tags. Of course, this also means that it takes longer to complete communication with multiple tags.
  • different parameters can be used to transmit the backscattered signal at the same time. This can improve the efficiency of the multi-tag communication process. For example, frequency shifting of the incident signal is achieved through hardware, or backscattered signals of different Tags are implemented at different target frequencies through different subcarrier modulation/level durations.
  • the way Tag determines the parameters of different backscatter signals includes determining the parameters of the backscatter signal (or determining the parameters for backscatter transmission) based on the counter value of the Tag, such as:
  • Method a Determine the parameters of the backscattered signal based on the step size.
  • Tags whose current counter values are 0, 1,...M-1 can perform backscattering transmission at the same time.
  • Tags with different counter values use different parameters for backscattering transmission.
  • Tag0 uses parameter 0
  • Tag1 uses parameter 1
  • the counter value may be a random number generated locally by the Tag, or a counter value obtained by modifying (decreasing/increasing) the random number.
  • Tags with different IDs use different parameters for backscattering transmission.
  • Tag ID#0 uses parameter 0
  • Tag ID#1 uses parameter 1
  • the ID is the temporary ID of the UE, the reader-writer indication ID, the item code PC, and the electronic item code EPC.
  • the reader/writer can indicate the step size of the random number adjustment in the control command.
  • the above M can be regarded as the step size of the random number adjustment. If Tag receives the control command indicated by the reader/writer, the step size of the adjustment is indicated. If the step size is M>1, then Tag determines the parameters of Tag's backscattered signal in the above manner.
  • Method b Determine the parameters of the backscattered signal based on the group ID or intra-group ID.
  • Tag can work in group mode.
  • Tag contains group ID and intra-group ID. Determine the parameters of the backscattered signal based on the group ID.
  • One implementation method is to transmit the backscatter signal for a Tag with a specific group ID, and determine the parameters of the backscatter signal according to the ID in the Tag group, such as frequency, subcarrier frequency, first level duration/first level. flat switching cycle.
  • Tag#0 uses parameter 0
  • Tag#1 uses parameter 1...
  • multiple Tags use different parameters for backscattering transmission at the same time.
  • the reader can further modify the Tag's group ID through control commands. For example, only one or more Tags with a group ID of 0 will perform backscattering transmission. After one or more Tags with a group ID of 0 transmit backscatter signals, the reader/writer can instruct the value of the group ID to be modified through a control command, such as decrementing the group ID by 1. At this time, the Tag whose group ID was 1 in the previous round now has a group ID of 0. At this time, the Tags in the regrouped group perform backscatter signal transmission (or simply backscatter transmission).
  • Another implementation method is to transmit the backscatter signal for the Tag with ID in a specific group, and determine the parameters of the backscatter signal according to the Tag group ID, such as frequency, subcarrier frequency, first level duration/first level level switching cycle.
  • Tag group #0 uses parameter 0
  • Tag group #1 uses parameter 1...
  • multiple Tags use different parameters for backscattering transmission at the same time.
  • the reader can further modify the Tag's group ID through control commands. For example, only one or more Tags with an ID of 0 in the group will perform backscattering transmission. After one or more Tags with an ID of 0 in the group undergo backscattering transmission, the reader can instruct the value of the ID in the group to be modified through a control command, for example, decrement the ID in the group by 1. At this time, the Tag with ID 1 in the previous round group has an ID of 0 at this time. At this time, Tags with ID 0 in multiple groups undergo backscattering transmission.
  • the group ID or intra-group ID of the Tag can be determined by one of the following: according to the Tag's identification (represented by A) or temporary identification (represented by B), the random number generated by the Tag (represented by C), The counter value of Tag (represented by D), the information indicated by the reader/writer;
  • Method c Determine the parameters of the backscattered signal based on a simple operation of the Tag's identification (A), or the temporary identification (B), the random number generated by the Tag (C), or the Tag's counter value (D).
  • Tag uses parameter m to transmit backscattered signals.
  • Method d Determine whether to use multiple Tags for parallel backscattering based on the process number or session number.
  • readers and writers can use multiple sessions or processes and multiple Tags to communicate.
  • a reader/writer needs to communicate with multiple Tags, for example, to perform Tag inventory (inventory).
  • Tag inventory inventory
  • the specific session number (session number), or process number (process number) can be predefined, or indicated by the reader/writer.
  • Embodiment 3 Signaling instructions
  • the relevant indication signaling is indicated by the reader/writer, and the relevant information can be indicated in the control command.
  • the control command is used to select some tags that meet the conditions or all tags to start the communication process. Or it can be used in the control command to indicate the Q value used to generate the random number, and the random number changes. While indicating these parameters, indicate the relevant parameters required by the process, such as indicating the step value M for random number adjustment. Or use these commands to instruct the Tag whether to use the above mode for backscatter communication.
  • the parameters of the backscattered signal can also be indicated by the above control command, including at least one of the following:
  • the frequency offset value is predefined or indicated by the reader/writer
  • an embodiment of the present application provides a backscatter signal transmission device applied to tags.
  • the device 1000 includes:
  • the first determination module 1001 is used to determine parameters related to backscatter signal transmission according to the first information
  • the first information includes at least one of the following:
  • the first identification includes the identification of the tag or the temporary identification of the tag;
  • a first value the first value is used to indicate the random number generated by the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the parameters of the backscattered signal include at least one of the following:
  • a third parameter is used to indicate the frequency of the backscattered signal
  • Subcarriers in this article can also be described as subcarriers.
  • the third parameter is a first frequency offset value
  • the first frequency offset value is used to indicate a frequency offset value relative to the incident carrier frequency; or, the inverse
  • the subcarrier frequency of the scattering signal is N times or 1/N times the reference subcarrier frequency; or, the first duration is K times or 1/K times the reference level duration;
  • N and K are natural numbers greater than 0.
  • one of the incident carrier frequency, the reference subcarrier frequency, the reference level duration, the first frequency offset value, the N and the K Item or items either predefined or indicated by the reader/writer.
  • the device further includes:
  • the first receiving module is configured to receive second information, where the second information is used to instruct the tag to determine parameters related to the backscatter signal transmission based on the first information, or the second information is The instruction tag determines parameters related to the backscattered signal transmission based on a specific session number or process number.
  • the first determination module 1001 is further used to:
  • the first information includes the third value and the third value is greater than 1, parameters related to the backscattered signal transmission are determined based on the first information.
  • the device further includes:
  • a first transmission module configured to transmit backscattered signals when the counter value of the tag is any one of 0 to a fourth value, where the fourth value is equal to the third value minus 1, And the third value is greater than or equal to 1.
  • the device further includes:
  • the second receiving module is configured to receive third information, where the third information is used to instruct the tag to subtract the third value from the counter value.
  • the first determination module 1001 is further used to:
  • the parameter is determined according to the group identifier of the tag; or, when the group identifier of the tag is a specific group identifier, the parameter is determined according to the group identifier of the tag.
  • the tag's group ID determines the parameters.
  • the group identifier or intra-group identifier of the tag is determined based on one of the following: the first identifier; the first value; the second value; information indicated by the reader/writer .
  • the first determination module 1001 is further used to:
  • the remainder obtained by dividing the first identifier or the first value or the second value by the fifth value is determined as the parameter; wherein the fifth value is indicated by the reader or predefined.
  • the device further includes: a third receiving module, configured to receive fourth information, where the fourth information is used to indicate at least one of the following:
  • Tags identified within a specific group carry out the transmission of backscattered signals.
  • At least one of the first information, the second information, the third information, and the fourth information is carried in the control command sent by the reader/writer;
  • control command includes at least one of the following: a selection command, a query command, a repeat query command, and an adjustment query command.
  • the device further includes:
  • a third transmission module configured to transmit the backscattered signal according to the first requirement and the parameters of the backscattered signal
  • the first requirement includes: the tag uses any parameter of the backscattered signal When transmitting backscattered signals, if the number of transmitted bits is the same, the second duration for transmitting the same number of bits is the same.
  • the subcarrier frequency of the backscattered signal when the subcarrier frequency of the backscattered signal is N times the reference subcarrier frequency, during the second duration, the subcarrier frequency of the backscattered signal is The number of level switching cycles corresponding to the carrier frequency is 1/N of the number of level switching cycles corresponding to the reference subcarrier frequency.
  • the level switching period includes: high level and low level, or low level and high level, wherein the duration of the high level and the low level The sum of the durations of the levels is the level switching period.
  • the information carried by the backscatter signal includes at least one of the following: a temporary identification of the tag, an item code, a handle of the tag, an error code, and data.
  • an embodiment of the present application provides a backscatter signal transmission device for use in a reader/writer.
  • the device 1100 includes:
  • the third determination module 1101 is used to determine parameters related to backscatter signal transmission according to the first information
  • Detection module 1102 configured to detect the backscattered signal according to the parameters
  • the first information includes at least one of the following:
  • the first identification includes the identification of the tag or the temporary identification of the tag;
  • a first value the first value is used to indicate the random number generated by the tag
  • a third value is used to indicate the step size of the counter of the tag
  • the parameters of the backscattered signal include at least one of the following:
  • a third parameter is used to indicate the frequency of the backscattered signal
  • Subcarriers in this article can also be described as subcarriers.
  • the reader/writer detects the backscattered signal based on the parameters, including:
  • the reader/writer detects the backscattered signal according to the parameter within at least one bandwidth range.
  • the third parameter is a first frequency offset value, and the first frequency offset value is used to indicate a frequency offset value relative to the incident carrier frequency;
  • the subcarrier frequency of the backscattered signal is N times or 1/N times the reference subcarrier frequency
  • the first duration is K times or 1/K times the reference level duration
  • N and K are natural numbers greater than 0.
  • one of the incident carrier frequency, the reference subcarrier frequency, the reference level duration, the first frequency offset value, the N and the K are predefined or determined by the reader/writer.
  • the device further includes:
  • a first sending module configured to send second information, the second information being used to instruct the tag to determine parameters related to the backscatter signal transmission according to the first information, or the second information being used to indicate The tag determines parameters related to the backscattered signal transmission based on a specific session number or process number.
  • the device further includes:
  • the second sending module is configured to send third information, where the third information is used to instruct the tag to subtract the third value from the counter value.
  • the group identifier or intra-group identifier of the tag is based on the following One of them is determined: the first identification; the first value; the second value; the information indicated by the reader/writer.
  • the device further includes:
  • the third sending module is used to send fourth information, where the fourth information is used to indicate at least one of the following:
  • Tags identified within a specific group carry out the transmission of backscattered signals.
  • At least one of the first information, the second information, the third information, and the fourth information is carried by a control command
  • control command includes at least one of the following: a selection command, a query command, a repeat query command, and an adjustment query command.
  • the reader/writer includes a terminal, a base station, a dedicated receiving device or a dedicated sending device.
  • the device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 7 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1200, which includes a processor 1201 and a memory 1202.
  • the memory 1202 stores programs or instructions that can be run on the processor 1201.
  • the communication device When 1200 is a terminal, when the program or instruction is executed by the processor 1201, each step of the above method embodiment in Figure 6 or Figure 7 is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, the method in Figure 6 or Figure 7 and each process of the above embodiments are implemented. , and can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface.
  • the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement various processes of the method embodiments shown in Figure 6 or Figure 7 and above, and can achieve the same technical effect. To avoid duplication, I won’t go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement what is shown in Figure 6 or Figure 7
  • a computer program/program product is stored in a storage medium
  • the computer program/program product is executed by at least one processor to implement what is shown in Figure 6 or Figure 7
  • Embodiments of the present application further provide a communication system.
  • the communication system includes a terminal and a network side device.
  • the terminal is used to perform the various processes of the above method embodiments as shown in Figure 6 and the network side device is used to perform the following.
  • the processes in Figure 7 and the above-mentioned method embodiments can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application essentially or the part that contributes to the existing technology can be embodied in the form of a computer software product.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disc, optical disk), including several instructions to cause a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请公开了一种反向散射信号传输方法、装置、通信设备及可读存储介质,该方法包括:标签根据第一信息,确定与反向散射信号传输相关的参数;其中,所述第一信息包括以下至少一项:第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;第一值,所述第一值用于指示所述标签产生的随机数;第二值,所述第二值用于指示所述标签的计数器数值;第三值,所述第三值用于指示所述标签的计数器的步长;所述标签的组标识或者组内标识;会话号或者进程号;从读写器接收到的信息。

Description

反向散射信号传输方法、装置、通信设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年05月24日在中国提交的中国专利申请No.202210571731.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种反向散射信号传输方法、装置、通信设备及可读存储介质。
背景技术
目前的反向散射通信系统中,使用标签反向散射入射载波信号进行信号传输。由于存在大量的标签(Tag),Tag在一个随机确定的时间点进行通过反向散射信号进行信息传输。在存在大量Tag时,不同的Tag有可能在同一时刻进行反向散射信号传输,此时由于反向散射信号之间发生冲突,导致读写器接收反向散射信号的性能会下降。
发明内容
本申请实施例提供一种反向散射信号传输方法、装置、通信设备及可读存储介质,解决由于反向散射信号之间发生冲突,导致读写器接收反向散射信号的性能下降的问题。
第一方面,提供一种反向散射信号传输方法,包括:
标签根据第一信息,确定与反向散射信号传输相关的参数;
其中,所述第一信息包括以下至少一项:
第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
第一值,所述第一值用于指示所述标签产生的随机数;
第二值,所述第二值用于指示所述标签的计数器数值;
第三值,所述第三值用于指示所述标签的计数器的步长;
所述标签的组标识或者组内标识;
会话号或者进程号;
从读写器接收到的信息。
第二方面,提供一种反向散射信号传输方法,包括:
读写器根据第一信息,确定与反向散射信号传输相关的参数;
所述读写器根据所述参数进行所述反向散射信号的检测;
其中,所述第一信息包括以下至少一项:
第一标识,所述第一标识包括标签的标识或者所述标签的临时标识;
第一值,所述第一值用于指示所述标签产生的随机数;
第二值,所述第二值用于指示所述标签的计数器数值;
第三值,所述第三值用于指示所述标签的计数器的步长;
所述标签的组标识或者组内标识;
会话号或者进程号;
从读写器接收到的信息。
第三方面,提供一种反向散射信号传输装置,应用于标签,该装置包括:
第一确定模块,用于根据第一信息,确定与反向散射信号传输相关的参数;
其中,所述第一信息包括以下至少一项:
第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
第一值,所述第一值用于指示所述标签产生的随机数;
第二值,所述第二值用于指示所述标签的计数器数值;
第三值,所述第三值用于指示所述标签的计数器的步长;
所述标签的组标识或者组内标识;
会话号或者进程号;
从读写器接收到的信息。
第四方面,提供一种反向散射信号传输装置,应用于读写器,装置包括:
第三确定模块,用于根据第一信息,确定与反向散射信号传输相关的参数;
检测模块,用于根据所述参数进行所述反向散射信号的检测;
第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
第一值,所述第一值用于指示所述标签产生的随机数;
第二值,所述第二值用于指示所述标签的计数器数值;
第三值,所述第三值用于指示所述标签的计数器的步长;
所述标签的组标识或者组内标识;
会话号或者进程号;
从读写器接收到的信息。
第五方面,提供了一种通信设备,包括:处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的法的步骤。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
第九方面,提供一种通信系统,所述通信系统包括终端与网络侧设备,所述终端用于执行如第一方面所述的方法的步骤,所述网络侧设备用于执行如第二方面所述的方法的步骤。
在本申请的实施例中,标签根据第一信息确定与反向散射信号传输相关的参数,由于第一信息中包含的内容与该标签本身相关或者包含的内容是非固定的值,这样可以使得多个标签基于不同的第一信息各自产生不同的参数,从而使得多个标签可以在相同时刻采用不同的参数进行反向散射信号的传输,进而使得读写器可以在同一时刻检测出多个标签的反向散射信号,这样能够支持多个标签在相同的时刻进行反向散射传输,在标签数较多的情况下,提升了读写器和标签之间完成反向散射通信的效率。
附图说明
图1是反向散射通信的示意图之一;
图2是反向散射通信的示意图之二;
图3是读写器和Tag之间的信息传输的示意图;
图4是一种反向散射(Backscatter)应用场景的示意图;
图5a、图5b和图5c是另一种Backscatter应用场景的示意图;
图6是本申请实施例提供的一种反向散射信号传输方法的流程图之一;
图7是本申请实施例提供的一种反向散射信号传输方法的流程图之二;
图8是本申请实施例提供的一种米勒(Miller)副载波调制的示意图;
图9是本申请实施例提供的一种反向散射信号在频率上的分量的示意图;
图10是本申请实施例提供的一种反向散射信号传输装置的示意图之一;
图11是本申请实施例提供的一种反向散射信号传输装置的示意图之二;
图12是本申请实施例提供的通信设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、 时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
为了便于理解本申请实施例,下面先介绍以下技术点:
一、关于反向散射通信(Backscatter Communication,BSC):
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息。
反向散射通信设备,可以包括:
(1)传统射频识别(Radio Frequency Identification,RFID)中的反向散射通信设备,一般是一个标签(Tag),属于无源物联网(Internet of Things,IoT)设备(或者称为Passive-IoT)。
(2)半无源(semi-passive)的Tag,这类Tag的下行接收或者上行反射具备一定的放大能力;
(3)具备主动发送能力的Tag(或者称为active Tag),这类Tag可以不依赖对入射信号的反射向读写器(比如阅读器(reader))发送信息。
读写器即射频标签读写设备,是射频识别系统的两个重要组成部分(标签与读写器)之一。射频标签读写设备根据具体实现功能也有一些其他较为流行的别称,如:阅读器(Reader),查询器(Interrogator),通信器(Communicator),扫描器(Scanner),读写器(Reader and Writer),编程器(Programmer),读出装置(Reading Device),便携式读出器(Portable Readout Device),自动设备识别设备(Automatic Equipment Identification Device,AEI)等。
如图1所示,读写器和标签之间包括两个链接(link),链接1是读写器 至标签的链接,链接2是标签至读写器的链接。
一种简单的实现方式为,Tag需要发送‘1’时,Tag对入射载波信号进行反射,Tag需要发送‘0’时不进行反射。
反向散射通信设备通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制,如图2所示。
二、关于读写器和Tag之间的信息传输,如图3所示。
读写器的指令如表1所示。
表1:读写器的指令。
Tag标签的状态如表2所示。
表2:Tag标签的状态。
现在超高频(Ultra High Frequency,UHF)RFID的协议设计在盘点模式下,要求读写器发送查询指令(Query)后Tag响应回应(Reply),即产生一个16-bit的随机数给读写器。然后读写器将该序列通过ACK指令发给Tag后,Tag将相关的数据发送给读写器。
三、关于反向散射的应用场景
场景1:蜂窝反向散射的场景-没有终端辅助(Scenarios for cellular backscatter-w/o UE assisted),如图4所示。
场景2:终端辅助的蜂窝反向散射的场景(Scenarios for cellular backscatter with UE assisted),如图5a、图5b和图5c所示,图5a中终端接收标签发送的反馈信息。图5b中终端发送控制字(control word,CW)或控制信令给Tag;其中,控制信令类型包括如下至少一项:select,inventory,access。网络设备(比如基站)接收Tag的反馈信息。图5c中终端发送载波和接收Tag的反向散射信号,终端在接收Tag的反向散射信号之后,将收集的信息转发给网络设备(比如基站)。
四、关于反向散射通信系统的竞争性通信过程
在现有的反向散射通信系统中读写器在同一个时刻通常只能接收一个Tag的反向散射信号。例如在RFID的盘点流程中,读写器发送控制命令开启盘点流程时,会指示一个数值Q。Tag在本地产生一个{0,…,2^Q-1}的数值 中,随机选一个数值q。当前随机数值为0的Tag会响应读写器的控制命令,进行反向散射信号的传输。当前的随机数值不为0的Tag暂不进行反向散射信号的传输。读写器在完成和随机数值为0的Tag的通信之后,可以继续发送控制命令(例如,queryRep),例如,指示Tag对生成的随机数减1,随机数值减为0的Tag响应该控制命令,进行反向散射传输。
上述流程属于随机多址接入的流程,存在没有任何的Tag进行反向散射的可能,例如没有任何的Tag的当前的随机数为0。也存在多个Tag本地产生相同的随机数的可能,而导致在某个时刻多个Tag同时进行反向散射传输的可能,这种情况下,读写器大概率无法检测出任何Tag的反向散射信号,且不会给Tag接收到反向散射信号反馈。这种情况下,这些Tag会继续接收读写器的控制命令,等待新的反向散射传输的机会。所以,读写器在发送控制命令时,应选取合理的Q值,并可以在盘点过程中逐渐调整Q值,以降低和多个Tag通信过程中的冲突概率。当然这也意味着和多个Tag完成通信的时间拉长。
现有的方案中,如果多个Tag在同一时刻的反向散射信号传输的参数相同,导致读写器侧无法同一时刻检测出多个Tag的反向散射信号,对完成多Tag的反向散射的通信的效率产生负面影响。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种反向散射信号传输方法、装置、通信设备及可读存储介质进行详细地说明。
参见图6,本申请实施例提供一种反向散射信号传输方法,应用于标签,具体步骤包括:步骤601。
步骤601:标签根据第一信息,确定与反向散射信号传输相关的参数;
其中,所述第一信息包括以下至少一项:
(1)第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
比如,标签的标识为A,标签的临时标识为B。
以第一标识为标签的临时标识(Identifier,ID)为例,标签ID#0使用参数0,标签ID#1使用参数1,…,标签ID#m使用参数m进行反向散射传输,0=<m<=M-1。标签可以根据ID值进行预设运算,确定反向散射信号的参数, 例如,如果mod(ID,M)=m,则使用参数m进行反向散射信号的传输,M为读写器指示的或者预定义的。
(2)第一值,所述第一值用于指示所述标签产生的随机数;
比如,标签产生的随机数为C。
(3)第二值,所述第二值用于指示所述标签的计数器数值;
比如,标签产生的计数器数值为D,标签的计数器的初始数值可以是该标签生成的随机数。
当前计数器的数值为0,1,…M-1的标签可以同时进行反向散射信号的传输,计数器数值不同的标签使用不同的参数进行反向散射传输。标签0使用参数0,标签1使用参数1,…,标签m使用参数m进行反向散射信号的传输,0=<m<=M-1,M为读写器指示的或者预定义的。
(4)第三值,所述第三值用于指示所述标签的计数器的步长;
比如,标签产生的计数器的步长为E。
(5)所述标签的组标识(ID)或者组内标识;
这样,标签可以以分组的模式进行反向散射信号传输,标签可以包括组标识和组内标识。
(6)会话号(session number)或者进程号(process number);
这样,读写器可以使用多个会话或进程和多个标签进行反向散射通信。
(7)从读写器接收到的信息。
比如,读写器指示标签在特定的频率上进行反向散射信号的传输,可以理解的是,不限定读卡器指示的信息的具体内容。
在本申请实施例中,由于标签用于产生与反向散射信号传输相关的参数的第一信息中包含的内容与该标签本身相关或者包含的内容是非固定的值,这样可以使得多个标签基于不同的第一信息各自产生不同的参数,从而使得多个标签可以在相同时刻采用不同的参数进行反向散射信号的传输。
在本申请的一种实施方式中,与反向散射信号传输相关的参数用于指示标签进行反向散射信号传输的频率信息,这样可以确保多个标签采用频分复用的方式进行反向散射信号的参数。
可选地,所述参数包括以下至少一项:
(1)第一参数,所述第一参数用于指示进行反向散射信号的传输;
比如,第一参数为1比特的指示信息,该1比特的指示信息的值为“1”,指示进行反向散射信号的传输。
(2)第二参数,所述第二参数用于指示不进行反向散射信号的传输;
比如,第一参数为1比特的指示信息,该1比特的指示信息的值为“0”,指示不进行反向散射信号的传输。
(3)第三参数,所述第三参数用于指示所述反向散射信号的频率;
比如,标签0在频率0上进行反向散射信号的传输,标签1在频率1上进行反向散射信号的传输;标签2在频率2上进行反向散射信号的传输,这样多个标签可以在相同时刻的不同频率上进行反向散射的传输,通过频分复用的方式进行反向散射信号的传输降低冲突。
可选地,所述第三参数为第一频率偏移值,所述第一频率偏移值用于指示相对于入射载波频率的频率偏移值,其中,所述入射载波频率或所述第一频率偏移值可以是预定义的,或者是读写器指示的。
(4)所述反向散射信号的副载波(subcarrier)频率;
本文中的副载波也可以描述为子载波。
比如,标签0在副载波0上进行反向散射信号的传输;标签1在副载波1上进行反向散射信号的传输;标签2在副载波2上进行反向散射信号的传输,这样多个标签可以在相同时刻的不同副载波上进行反向散射的传输。
可选地,所述反向散射信号的副载波频率可以是参考副载波频率的N倍或者1/N倍,其中,N为大于0的自然数,所述参考副载波频率、所述N可以是预定义的,或者是读写器指示的。
(5)所述反向散射信号的第一持续时间或者第一电平切换周期。
比如,标签0进行反向散射信号的传输的第一持续时间或者第一电平切换周期为X,标签1进行反向散射信号的传输的第一持续时间或者第一电平切换周期为Y,标签2进行反向散射信号的传输的第一持续时间或者第一电平切换周期为Z,其中X,Y,Z不同,进而反向散射信号的频率不同,这样多个标签可以在相同时刻采用不同的第一持续时间或者第一电平切换周期进行反向散射的传输,避免冲突。
可选地,所述第一持续时间是基准电平持续时间的K倍或者1/K倍,其中,K为大于0的自然数,基准电平持续时间和K可以是预定义的,或者是读写器指示的。
在本申请的一种实施方式中,所述方法还包括:所述标签接收第二信息,所述第二信息用于指示所述标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
比如,标签从读写器接收第二信息,这样读写器可以显式指示的方式指示标签在相同时刻采用不同的参数进行反向散射信号的传输,或者读写器可以直接指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
在本申请的一种实施方式中,标签根据第一信息,确定反向散射信号的参数,包括:
在所述第一信息中包括所述第三值,且所述第三值大于1的情况下,所述标签根据第一信息,确定与所述反向散射信号传输相关的参数。
比如,如果标签的计数器的步长为E,且E>1,则标签根据第一信息,确定与所述反向散射信号传输相关的参数。可以理解的是,读写器可以指示标签在该标签的计数器的步长E>1的情况下,该标签可以根据第一信息,确定与所述反向散射信号传输相关的参数。
在本申请的一种实施方式中,所述方法还包括:
在所述标签的计数器数值为0至第四值中的任意一个的情况下,所述标签进行反向散射信号的传输,所述第四值等于所述第三值减1,且所述第三值大于或等于1。
这样,计数器数值为0……E-1的标签可以同时进行反向散射信号的传输,尽量避免没有标签进行反向散射信号的传输,而在有多个标签可以进行反向散射信号的传输时,该多个标签又可以通过不同的参数进行反向散射信号的传输,降低冲突的概率。
在本申请的一种实施方式中,所述方法还包括:
所述标签接收第三信息,所述第三信息用于指示所述标签将计数器数值 减去所述第三值,比如读写器可以通过控制命令指示标签将计数器数值减去步长。
在本申请的一种实施方式中,所述标签根据第一信息,确定与反向散射信号传输相关的参数包括以下之一:
(1)在所述标签的组标识为特定组标识的情况下,所述标签根据所述标签的组内标识确定所述参数;
比如,标签根据所述标签的组内标识确定例如频率,副载波频率,第一电平持续时间/第一电平切换周期等参数。
(2)在所述标签的组内标识为特定组内标识的情况下,所述标签根据所述标签的组标识确定所述参数。
比如,标签根据所述标签的组标识确定例如频率,副载波频率,第一电平持续时间/第一电平切换周期等参数。在本申请的一种实施方式中,所述标签的组标识或者组内标识根据以下之一确定:所述第一标识;所述第一值;所述第二值;所述读写器指示的信息。
在本申请的一种实施方式中,所述标签根据所述标签的组标识或者组内标识确定所述参数,包括:
所述标签将所述第一标识(A或B)或者第一值(C)或者第二值(D)除以第五值得到的余数,确定为所述参数;
其中,所述第五值是读写器指示的或者预定义的。
即,标签根据m=mod(A/B/C/D,M)的数值确定所述参数;M为读写器指示的或者预定义的,标签根据参数m进行反向散射信号的传输。
在本申请的一种实施方式中,所述方法还包括:
所述标签接收第四信息,所述第四信息用于指示以下至少一项:
(1)修改所述标签的组标识;
(2)特定的组标识的标签进行反向散射信号的传输;
(3)修改所述标签的组内标识;
(4)特定的组内标识的标签进行反向散射信号的传输。
在本申请的一种实施方式中,所述第一信息、所述第二信息、所述第三信息、所述第四信息中的至少一项携带在读写器发送的控制命令中;
其中,所述控制命令包括以下至少一项:选取命令,查询命令、重复查询命令、调节查询命令。
在本申请的一种实施方式中,所述方法还包括:
所述标签根据第一要求和所述反向散射信号的参数进行反向散射信号的传输;
其中,所述第一要求包括:所述标签使用任一所述反向散射信号的参数进行反向散射信号的传输时,如果传输的比特数相同,则传输相同比特数的第二持续时间相同。
在本申请的一种实施方式中,在所述反向散射信号的副载波频率是参考副载波频率的N倍的情况下,在所述第二持续时间内,所述反向散射传输的副载波频率对应的电平切换周期数为参考副载波频率对应的电平切换周期数的1/N。
在本申请的一种实施方式中,所述电平切换周期内依次包括:高电平和低电平,或者,低电平和高电平,其中,所述高电平的持续时间和所述低电平的持续时间之和为所述电平切换周期。
在本申请的一种实施方式中,所述反向散射信号承载的信息包括以下至少一项:所述标签的临时标识,物品编码,所述标签的句柄,错误编码,数据。
在本申请的实施例中,标签根据第一信息确定与反向散射信号传输相关的参数,由于第一信息中包含的内容与该标签本身相关或者包含的内容是非固定的值,这样可以使得多个标签基于不同的第一信息各自产生不同的参数,从而使得多个标签可以在相同时刻采用不同的参数进行反向散射信号的传输,进而使得读写器可以在同一时刻检测出多个标签的反向散射信号,这样能够支持多个标签在相同的时刻进行反向散射传输,在标签数较多的情况下,提升了读写器和标签之间完成反向散射通信的效率。
参见图7,本申请实施例提供一种反向散射信号传输方法,应用于读写器,具体步骤包括:步骤701和步骤702。
步骤701:读写器根据第一信息,确定与反向散射信号传输相关的参数;
步骤702:所述读写器根据所述参数进行所述反向散射信号的检测;
其中,所述第一信息包括以下至少一项:
(1)第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
(2)第一值,所述第一值用于指示所述标签产生的随机数;
(3)第二值,所述第二值用于指示所述标签的计数器数值;
(4)第三值,所述第三值用于指示所述标签的计数器的步长;
(5)所述标签的组标识或者组内标识;
(6)会话号(session number)或者进程号(process number);
(7)从读写器接收到的信息;
在本申请的一种实施方式中,所述参数包括以下至少一项:
(1)第一参数,所述第一参数用于指示进行反向散射信号的传输;
(2)第二参数,所述第二参数用于指示不进行反向散射信号的传输;
(3)第三参数,所述第三参数用于指示所述反向散射信号的频率;
(4)所述反向散射信号的副载波(subcarrier)频率;
本文中的副载波也可以描述为子载波。
(5)所述反向散射信号的第一持续时间或者第一电平切换周期。
在本申请的一种实施方式中,所述读写器根据所述参数进行所述反向散射信号的检测,包括:
所述读写器在至少一个带宽范围内,根据所述参数进行所述反向散射信号的检测。
在本申请的一种实施方式中,所述第三参数为第一频率偏移值,所述第一频率偏移值用于指示相对于入射载波频率的频率偏移值;
或者,
所述反向散射信号的副载波频率是参考副载波频率的N倍或者1/N倍;
或者,
所述第一持续时间是基准电平持续时间的K倍或者1/K倍;
其中,N、K为大于0的自然数。
在本申请的一种实施方式中,所述入射载波频率、所述参考副载波频率、所述基准电平持续时间、所述第一频率偏移值、所述N和所述K中的一项或 多项,是预定义的,或者是所述读写器确定的。
在本申请的一种实施方式中,所述方法还包括:
所述读写器发送第二信息,所述第二信息用于指示标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
在本申请的一种实施方式中,所述方法还包括:
所述读写器发送第三信息,所述第三信息用于指示所述标签将计数器数值减去所述第三值。
在本申请的一种实施方式中,所述标签的组标识或者组内标识根据以下之一确定:所述第一标识;所述第一值;所述第二值;所述读写器指示的信息。
在本申请的一种实施方式中,所述方法还包括:所述读写器发送第四信息,所述第四信息用于指示以下至少一项:
(1)修改所述标签的组标识;
(2)特定的组标识的标签进行反向散射信号的传输;
(3)修改所述标签的组内标识;
(4)特定的组内标识的标签进行反向散射信号的传输。
在本申请的一种实施方式中,所述第一信息、所述第二信息、所述第三信息、第四信息中的至少一项通过控制命令携带;
其中,所述控制命令包括以下至少一项:选取命令,查询命令、重复查询命令、调节查询命令。
在本申请的一种实施方式中,所述读写器包括以下至少一项:终端,基站,专用的接收设备,专用的发送设备。
在本申请的实施例中,读写器根据第一信息,确定与反向散射信号传输相关的参数,由于第一信息中包含的内容与标签本身相关或者包含的内容是非固定的值,这样可以使得多个标签可以在相同时刻采用不同的参数进行反向散射信号的传输,进而使得读写器可以根据该参数在同一时刻检测出多个标签的反向散射信号,这样能够支持多个标签在相同的时刻进行反向散射传输,在标签数较多的情况下,提升了读写器和标签之间完成反向散射通信的 效率。
本申请的实施例适用场景包括:Tag与基站直接通信,以及UE辅助Tag与基站之间的通信。
下面结合实施例一和实施例二介绍本申请的实施方式。
实施例一:不同的Tag使用不同的反向散射信号的参数。
Tag在接收到读写器的控制命令后,可以使用不同的参数进行反向散射信号的发送,即读写器可以指示标签是否采用第一信息,确定反向散射信号的参数。
不同的Tag使用不同的反向散射信号的参数,具体方式如下:
方式1:在特定的频率上进行反向散射信号的传输。
比如,Tag0在频率0上进行反向散射信号的传输;Tag1在频率1上进行反向散射信号的传输;Tag2在频率2上进行反向散射信号的传输,这样多个不同的Tag可以在相同时刻的不同频率上进行反向散射信号的传输。
可选的,Tag通过本地振荡器产生不同的频率的反向散射信号;或者Tag通过改变电路中的器件,或者器件的参数,生成不同频率的反向散射信号。可选的,该器件可以为电容。
方式2:使用不同的副载波(或子载波)对反向散射信号承载的信息进行调制。
现有的反向散射通信系统,反向散射信号通常采用副载波调制的对有用信号进行调制并反向散射传输,一种实现方式如下:
每比特信息通过多个周期的电平切换进行调制,每一个周期T的电平的切换包括至少两个电平,例如,高电平和低电平两个电平对应于标签的不同反射系数,副载波的频率为Fs=1/T。图8中给出的是一种米勒(Miller)副载波调制的方式。
在副载波调制信号的基础上,使用副载波对入射的频率为Fc的载波进行反射,这样反向散射的信号就被调制在了Fc+Fs和/或Fc-Fs的副载波上。
比如,Tag0在副载波0上进行反向散射信号的传输;Tag1在副载波1上进行反向散射信号的传输;Tag2在副载波2上进行反向散射信号的传输;多个Tag可以在相同时刻的不同副载波上进行反向散射的传输。即Tag0经过副 载波调制之后的信号在Fc+Fs0和/或Fc-Fs0;Tag1经过副载波调制之后的信号在Fc+Fs1和/或Fc-Fs1;Tag2经过副载波调制之后的信号在Fc+Fs2和/或Fc-Fs2;
Tag支持不同的副载波频率进行反向散射传输,对于不同的副载波频率,电平的第一持续时间(或第一电平切换周期)不同,但是使用任意反向散射信号的参数进行反向散射信号的传输时,需要保证传输的相同bit数的第二持续时间相同。
如图8所示,采用Miller副载波调制方式的情况下,采用不同副载波频率调制的情况下,信息码元0/1调制后的信号持续时间相同。例如,Tag#0使用640kHz的副载波频率,Tag#1使用的副载波频率为320kHz,那么Tag#0的电平切换周期、电频持续时间,是Tag#1的1/2。为了保证Tag#0,Tag#1传输相同信息比特数的第二持续时间相同。在一个信息比特的调制信号的持续时间内,Tag#1的切换周期数M也应该是Tag#0的1/2,例如,Tag#0采用Miller 4(切换次数M=4)的调制方式对信号进行调制,Tag#1则采用Miller 2(M=2)的调制方式对信号进行调制,以保证采用不同参数进行反向散射传输的情况下,相同信息比特数的反向散射传输的第二持续时间相同,以保证不同参数进行反向散射传输时的性能接近。
与现有技术的不同是,在RFID中,Miller 4,相比于Miller 2,一个信息比特调制后的传输持续时间(第二持续时间)变长,此时电平切换周期(或第一持续时间)是相同的。这样Miller 4相比于Miller 2有更好的传输性能。本实施例中,电平切换周期(第一持续时间)不同,一个信息比特调制后的传输持续时间(第二持续时间)相同。
除了使用Miller副载波(或者称为Miller码副载波)的方式进行调制,在反向散射通信系统中,还可以采用曼彻斯特(Manchester)码,FM0(即双相空间编码(Bi-Phase Space Coding))码副载波调制的方式,将反向散射的信息调整到副载波频率。
方式3:使用不同的信号电平的持续时间对反向散射信号承载的信息进行调制。
方式3和方式2相似,通过修改一个高/低电平的持续时间,改变了T, 从而改变反向散射信号的频率。
上述反向散射信号的参数可以是预定义的,或者reader指示的。
方式4:在特定的频率上进行反向散射信号的传输。
一种实现方式中,Tag本地可以产生一个或者多个频率的发射信号,不依赖于载波的信号进行反射。这种类型的Tag可以直接根据读写器的控制命令,指示的规则,或者预定义的规则,在特定的频率上进行反向散射信号的传输。
下面介绍实施例一中读写器侧的接收反向散射信号的实现方式。
上述方式1、方式2和方式3中,Tag在载波信号的基础上可以把信号进行双边带的调制,即在载波频率的高频方向和/或低频方向分别产生一个频率分量。或者采用单边带调制,例如使用方式4的方法,只在载波频率的高频或者低频方向产生频率分量。该高于或低于载波频率的频率分量中包含反向散射的调制的信息。读写器可以使用滤波器滤出特定频率分量,从而检测出反向散射信号传输的信息。
读写器可以通过滤波器可以将不同频率的信号取出进行解调,获得不同Tag通过反向散射传输信号,反向散射信号在频率上的分量,如图9所示。
实施例二:确定反向散射参数的规则
在现有的反向散射通信系统中,读写器在同一个时刻通常只能接收一个Tag的反向散射信号。例如在RFID的盘点流程中,读写器发送控制命令开启盘点流程时,会指示一个数值Q。Tag在本地产生一个{0,…,2^Q-1}的数值中,随机选一个数值q。当前随机数值为0的Tag会响应reader的控制命令,进行反向散射信号的传输。当前的随机数值不为0的Tag暂不进行反向散射信号的传输。读写器在完成和随机数值为0的Tag的通信之后,可以继续发送控制命令(例如,queryRep),例如,指示Tag对生成的随机数减1,随机数值减为0的Tag响应该控制命令,进行反向散射信号的传输。
上述流程属于随机多址接入的流程,存在多个Tag本地产生相同的随机数的可能,而导致在某个时刻多个Tag同时进行反向散射传输的可能,这种情况下,读写器大概率无法检测出任何Tag的反向散射信号,且不会给Tag接收到反向散射信号反馈。这种情况下,这些Tag会继续接收读写器的控制 命令,等待新的反向散射传输的机会。所以,读写器在发送控制命令时,应选取合理的Q值,并可以在盘点过程中逐渐调整Q值,以降低和多个Tag通信过程中的冲突概率。当让这也意味着和多个Tag完成通信的时间拉长。
现有的方案设计中,如果多个Tag在同一时刻的反向散射信号传输的参数相同,导致读写器侧无法同一时刻检测出多个Tag的反向散射信号,对完成多Tag的反向散射的通信的效率产生负面影响。
基于实施例一的反向散射信号的发送方法,可以在同一时刻使用不同的参数进行反向散射信号的传输。这样可以提升多Tag通信流程的效率。例如,通过硬件的方式实现入射信号的频率搬移,或者通过不同的副载波调制/电平持续时间的实现不同的Tag的反向散射信号在不同目标频率上。
Tag确定不同反向散射信号的参数的方式包括,根据Tag的计数器数值确定反向散射信号的参数(或者确定进行反向散射传输的参数),比如:
方式a:基于步长确定反向散射信号的参数。
当前计数器的数值为0,1,…M-1的Tag可以同时进行反向散射传输,计数器数值不同的Tag使用不同的参数进行反向散射传输。Tag0使用参数0,Tag1使用参数1,…,Tag m使用参数m进行反向散射传输,0=<m<=M-1。所述计数器数值可以为Tag本地生成的随机数,或者该随机数的修改(递减/递增)获得的计数器数值。
或者,不同ID的Tag使用不同的参数进行反向散射传输,Tag ID#0使用参数0,Tag ID#1使用参数1,…,Tag ID#m使用参数m进行反向散射传输,0=<m<=M-1。所述ID为UE的临时ID,读写器指示ID,物品编码PC,电子物品编码EPC。Tag可以根据ID值的进行一定的运算后的输出,确定反向散射信号的参数,例如,如果mod(ID,M)=m,则使用参数m进行反向散射的传输。
上述实现方式下,读写器可以在控制命令中指示随机数调整的步长,例如,可以将上述M视为随机数调整的步长,Tag如果接收到读写器指示的控制命令指示调整的步长M>1,则Tag按照上述方式确定Tag的进行反向散射信号的参数。
方式b:基于组ID或者组内ID确定反向散射信号的参数。
Tag可以以分组的模式进行工作,Tag包含组ID、组内ID。根据组内ID确定反向散射信号的参数。
一种实现方式为,为特定组ID的Tag进行反向散射信号的传输,根据Tag组内ID确定反向散射信号的参数,例如频率,副载波频率,第一电平持续时间/第一电平切换周期。
例如,Tag#0采用参数0,Tag#1采用参数1……,多个Tag采用不同的参数同时进行反向散射传输。读写器可以进一步通过控制命令修改Tag的组ID,例如,组ID为0的一个或多个Tag才会进行反向散射传输。当组ID为0的一个或多个Tag进行了反向散射信号的传输之后,读写器可以通过控制命令指示修改组ID的数值,例如组ID减1。此时,上一轮组ID为1的Tag,此时的组ID为0,此时改组内的Tag进行反向散射信号的传输(或者简称为反向散射传输)。
另一种实现方式为,为特定组内ID的Tag进行反向散射信号的传输,根据Tag组ID确定反向散射信号的参数,例如频率,副载波频率,第一电平持续时间/第一电平切换周期。
例如,Tag组(Tag group)#0采用参数0,Tag goup#1采用参数1……,多个Tag采用不同的参数同时进行反向散射传输。读写器可以进一步通过控制命令修改Tag的组内ID,例如,组内ID为0的一个或多个Tag才会进行反向散射传输。当组ID内为0的一个或多个Tag进行了反向散射传输之后,读写器可以通过控制命令指示修改组内ID的数值,例如,组内ID减1。此时,上一轮组内ID为1的Tag,此时的组内ID为0,此时多个组内的ID为0的Tag进行反向散射传输。
本实施例中的Tag的组ID或组内ID可以为以下其中之一确定:根据Tag的标识(用A表示)或者临时标识(用B表示),Tag产生的随机数(用C表示),Tag的计数器数值(用D表示),读写器指示的信息;
方式c:根据Tag的标识(A),或者临时标识(B),Tag产生的随机数(C)或Tag的计数器数值(D)的简单运算确定反向散射信号的参数。
比如,根据m=mod(A/B/C/D,M)的数值确定反向散射信号的参数;M为读写器指示的或者预定义的。Tag采用参数m进行反向散射信号的传输。
方式d:基于进程号或者session号确定是否采用多个Tag并行反向散射的工作方式。
出于不同的目的,读写器可以使用多个会话或进程和多个Tag进行通信。
例如,读写器需要和多个Tag进行通信,比如,进行Tag的盘点(inventory)。对于特定会话(session),或者特定进程(process)的通信,使用上述方式进行反向散射传输。该特定的会话号(session number),或者进程号(process number)可以是预定义的,或者读写器指示的。
实施例三:信令指示
可选地,相关的指示信令,由读写器指示,可以在控制命令中指示相关的信息,所述控制命令用于选取部分满足条件的Tag或者所有Tag开启通信流程。或者可以在控制命令用于指示用于生成随机数的Q值,随机数改变。在指示这些参数的同时,指示该流程需要的相关参数,例如指示随机数调整的步长值M。或者使用这些命令指示Tag是否采用上述模式进行反向散射通信。
可选地,反向散射信号的参数也可以由上述控制命令指示,包括以下至少其中之一:
a)相对入射载波信号进行不同的频率偏移值,频率偏移值为预定义的或者读写器指示;
b)相对于基准副载波频率的N倍或者1/N;
c)相对于基准电平持续时间的K倍或者1/K。
参见图10,本申请的实施例提供一种反向散射信号传输装置,应用于标签,该装置1000包括:
第一确定模块1001,用于根据第一信息,确定与反向散射信号传输相关的参数;
其中,所述第一信息包括以下至少一项:
(1)第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
(2)第一值,所述第一值用于指示所述标签产生的随机数;
(3)第二值,所述第二值用于指示所述标签的计数器数值;
(4)第三值,所述第三值用于指示所述标签的计数器的步长;
(5)所述标签的组标识或者组内标识;
(6)会话号(session number)或者进程号(process number);
(7)从读写器接收到的信息;
其中,所述反向散射信号的参数包括以下至少一项:
(1)反向散射信号的参数,所述反向散射信号的参数用于指示进行反向散射信号的传输;
(2)第二参数,所述第二参数用于指示不进行反向散射信号的传输;
(3)第三参数,所述第三参数用于指示所述反向散射信号的频率;
(4)所述反向散射信号的副载波(subcarrier)频率;
本文中的副载波也可以描述为子载波。
(5)所述反向散射信号的第一持续时间或者第一电平切换周期。
在本申请的一种实施方式中,所述第三参数为第一频率偏移值,所述第一频率偏移值用于指示相对于入射载波频率的频率偏移值;或者,所述反向散射信号的副载波频率是参考副载波频率的N倍或者1/N倍;或者,所述第一持续时间是基准电平持续时间的K倍或者1/K倍;
其中,N、K为大于0的自然数。
在本申请的一种实施方式中,所述入射载波频率、所述参考副载波频率、所述基准电平持续时间、所述第一频率偏移值、所述N和所述K中的一项或多项,是预定义的,或者是读写器指示的。
在本申请的一种实施方式中,所述装置还包括:
第一接收模块,用于接收第二信息,所述第二信息用于指示所述标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
在本申请的一种实施方式中,第一确定模块1001进一步用于:
在所述第一信息中包括所述第三值,且所述第三值大于1的情况下,根据第一信息,确定与所述反向散射信号传输相关的参数。
在本申请的一种实施方式中,所述装置还包括:
第一传输模块,用于在所述标签的计数器数值为0至第四值中的任意一个的情况下,进行反向散射信号的传输,所述第四值等于所述第三值减1,且所述第三值大于或等于1。
在本申请的一种实施方式中,所述装置还包括:
第二接收模块,用于接收第三信息,所述第三信息用于指示所述标签将计数器数值减去所述第三值。
在本申请的一种实施方式中,第一确定模块1001进一步用于:
在所述标签的组标识为特定组标识的情况下,根据所述标签的组内标识确定所述参数;或者,在所述标签的组内标识为特定组内标识的情况下,根据所述标签的组标识确定所述参数。
在本申请的一种实施方式中,所述标签的组标识或者组内标识根据以下之一确定:所述第一标识;所述第一值;所述第二值;读写器指示的信息。
在本申请的一种实施方式中,第一确定模块1001进一步用于:
将所述第一标识或者第一值或者第二值除以第五值得到的余数,确定为所述参数;其中,所述第五值是读写器指示的或者预定义的。
在本申请的一种实施方式中,装置还包括:第三接收模块,用于接收第四信息,所述第四信息用于指示以下至少一项:
修改所述标签的组标识;
特定的组标识的标签进行反向散射信号的传输;
修改所述标签的组内标识;
特定的组内标识的标签进行反向散射信号的传输。
在本申请的一种实施方式中,所述第一信息、所述第二信息、所述第三信息、所述第四信息中的至少一项携带在读写器发送的控制命令中;
其中,所述控制命令包括以下至少一项:选取命令,查询命令、重复查询命令、调节查询命令。
在本申请的一种实施方式中,所述装置还包括:
第三传输模块,用于根据第一要求和所述反向散射信号的参数进行反向散射信号的传输;
其中,所述第一要求包括:所述标签使用任一所述反向散射信号的参数 进行反向散射信号的传输时,如果传输的比特数相同,则传输相同比特数的第二持续时间相同。
在本申请的一种实施方式中,在所述反向散射信号的副载波频率是参考副载波频率的N倍的情况下,在所述第二持续时间内,所述反向散射传输的副载波频率对应的电平切换周期数为参考副载波频率对应的电平切换周期数的1/N。
在本申请的一种实施方式中,所述电平切换周期内依次包括:高电平和低电平,或者,低电平和高电平,其中,所述高电平的持续时间和所述低电平的持续时间之和为所述电平切换周期。
在本申请的一种实施方式中,所述反向散射信号承载的信息包括以下至少一项:所述标签的临时标识,物品编码,所述标签的句柄,错误编码,数据。
参见图11,本申请实施例提供一种反向散射信号传输装置,应用于读写器,装置1100包括:
第三确定模块1101,用于根据第一信息,确定与反向散射信号传输相关的参数;
检测模块1102,用于根据所述参数进行所述反向散射信号的检测;
其中,所述第一信息包括以下至少一项:
(1)第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
(2)第一值,所述第一值用于指示所述标签产生的随机数;
(3)第二值,所述第二值用于指示所述标签的计数器数值;
(4)第三值,所述第三值用于指示所述标签的计数器的步长;
(5)所述标签的组标识或者组内标识;
(6)会话号(session number)或者进程号(process number);
(7)从读写器接收到的信息。
在本申请的一种实施方式中,所述反向散射信号的参数包括以下至少一项:
(1)反向散射信号的参数,所述反向散射信号的参数用于指示进行反向 散射信号的传输;
(2)第二参数,所述第二参数用于指示不进行反向散射信号的传输;
(3)第三参数,所述第三参数用于指示所述反向散射信号的频率;
(4)所述反向散射信号的副载波(subcarrier)频率;
本文中的副载波也可以描述为子载波。
(5)所述反向散射信号的第一持续时间或者第一电平切换周期。
在本申请的一种实施方式中,所述读写器根据所述参数进行所述反向散射信号的检测,包括:
所述读写器在至少一个带宽范围内,根据所述参数进行所述反向散射信号的检测。
在本申请的一种实施方式中,所述第三参数为第一频率偏移值,所述第一频率偏移值用于指示相对于入射载波频率的频率偏移值;
或者,
所述反向散射信号的副载波频率是参考副载波频率的N倍或者1/N倍;
或者,
所述第一持续时间是基准电平持续时间的K倍或者1/K倍;
其中,N、K为大于0的自然数。
在本申请的一种实施方式中,所述入射载波频率、所述参考副载波频率、所述基准电平持续时间、所述第一频率偏移值、所述N和所述K中的一项或多项,是预定义的,或者是所述读写器确定的。
在本申请的一种实施方式中,所述装置还包括:
第一发送模块,用于发送第二信息,所述第二信息用于指示标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
在本申请的一种实施方式中,所述装置还包括:
第二发送模块,用于发送第三信息,所述第三信息用于指示所述标签将计数器数值减去所述第三值。
在本申请的一种实施方式中,所述标签的组标识或者组内标识根据以下 之一确定:所述第一标识;所述第一值;所述第二值;所述读写器指示的信息。
在本申请的一种实施方式中,所述装置还包括:
第三发送模块,用于发送第四信息,所述第四信息用于指示以下至少一项:
修改所述标签的组标识;
特定的组标识的标签进行反向散射信号的传输;
修改所述标签的组内标识;
特定的组内标识的标签进行反向散射信号的传输。
在本申请的一种实施方式中,所述第一信息、所述第二信息、所述第三信息、所述第四信息中的至少一项通过控制命令携带;
其中,所述控制命令包括以下至少一项:选取命令,查询命令、重复查询命令、调节查询命令。
在本申请的一种实施方式中,所述读写器包括终端,基站,专用的接收设备或者专用的发送设备。
本申请实施例提供的装置能够实现图7方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图12所示,本申请实施例还提供一种通信设备1200,包括处理器1201和存储器1202,存储器1202上存储有可在所述处理器1201上运行的程序或指令,例如,该通信设备1200为终端时,该程序或指令被处理器1201执行时实现上述图6或图7方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现图6或图7方法及上述各个实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现图6或图7所示及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现图6或图7所示及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供一种通信系统,所述通信系统包括终端与网络侧设备,所述终端用于执行如图6及上述各个方法实施例的各个过程,所述网络侧设备用于执行如图7及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁 碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种反向散射信号传输方法,包括:
    标签根据第一信息,确定与反向散射信号传输相关的参数;
    其中,所述第一信息包括以下至少一项:
    第一标识,所述第一标识包括所述标签的标识或者所述标签的临时标识;
    第一值,所述第一值用于指示所述标签产生的随机数;
    第二值,所述第二值用于指示所述标签的计数器数值;
    第三值,所述第三值用于指示所述标签的计数器的步长;
    所述标签的组标识或者组内标识;
    会话号或者进程号;
    从读写器接收到的信息。
  2. 根据权利要求1所述的方法,其中,所述参数包括以下至少一项:
    第一参数,所述第一参数用于指示进行反向散射信号的传输;
    第二参数,所述第二参数用于指示不进行反向散射信号的传输;
    第三参数,所述第三参数用于指示所述反向散射信号的频率;
    所述反向散射信号的副载波频率;
    所述反向散射信号的第一持续时间或者第一电平切换周期。
  3. 根据权利要求2所述的方法,其中,所述第三参数为第一频率偏移值,所述第一频率偏移值用于指示相对于入射载波频率的频率偏移值;
    或者,
    所述反向散射信号的副载波频率是参考副载波频率的N倍或者1/N倍;
    或者,
    所述第一持续时间是基准电平持续时间的K倍或者1/K倍;
    其中,所述N、所述K为大于0的自然数。
  4. 根据权利要求3所述的方法,其中,所述入射载波频率、所述参考副载波频率、所述基准电平持续时间、所述第一频率偏移值、所述N和所述K中的一项或多项,是预定义的,或者是读写器指示的。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述标签接收第二信息,
    所述第二信息用于指示所述标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
  6. 根据权利要求1所述的方法,其中,标签根据第一信息,确定反向散射信号的参数,包括:
    在所述第一信息中包括所述第三值,且所述第三值大于1的情况下,所述标签根据第一信息,确定与所述反向散射信号传输相关的参数。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    在所述标签的计数器数值为0至第四值中的任意一个的情况下,所述标签进行反向散射信号的传输,所述第四值等于所述第三值减1,且所述第三值大于或等于1。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述标签接收第三信息,所述第三信息用于指示所述标签将计数器数值减去所述第三值。
  9. 根据权利要求1所述的方法,其中,所述标签根据第一信息,确定与反向散射信号传输相关的参数,包括:
    在所述标签的组标识为特定组标识的情况下,所述标签根据所述标签的组内标识确定所述参数;
    或者,
    在所述标签的组内标识为特定组内标识的情况下,所述标签根据所述标签的组标识确定所述参数。
  10. 根据权利要求1或9所述的方法,其中,所述标签的组标识或者组内标识根据以下之一确定:所述第一标识;所述第一值;所述第二值;读写器指示的信息。
  11. 根据权利要求10所述的方法,其中,所述标签根据所述标签的组标识或者组内标识确定所述参数,包括:
    所述标签将所述第一标识或者第一值或者第二值除以第五值得到的余数,确定为所述参数;
    其中,所述第五值是读写器指示的或者预定义的。
  12. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述标签接收第四信息,所述第四信息用于指示以下至少一项:
    修改所述标签的组标识;
    特定的组标识的标签进行反向散射信号的传输;
    修改所述标签的组内标识;
    特定的组内标识的标签进行反向散射信号的传输。
  13. 根据权利要求1、5、8或12所述的方法,其中,所述第一信息、所述第二信息、所述第三信息、所述第四信息中的至少一项携带在读写器发送的控制命令中;
    其中,所述控制命令包括以下至少一项:选取命令,查询命令、重复查询命令、调节查询命令。
  14. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述标签根据第一要求和所述反向散射信号的参数进行反向散射信号的传输;
    其中,所述第一要求包括:所述标签使用任一所述反向散射信号的参数进行反向散射信号的传输时,如果传输的比特数相同,则传输相同比特数的第二持续时间相同。
  15. 根据权利要求14所述的方法,其中,
    在所述反向散射信号的副载波频率是参考副载波频率的N倍的情况下,在所述第二持续时间内,所述反向散射传输的副载波频率对应的电平切换周期数为参考副载波频率对应的电平切换周期数的1/N。
  16. 根据权利要求15所述的方法,其中,所述电平切换周期内依次包括:高电平和低电平,或者,低电平和高电平,其中,所述高电平的持续时间和所述低电平的持续时间之和为所述电平切换周期。
  17. 根据权利要求1、2、3、4、5、6、7、8、9、11、12、14、15或16所述的方法,其中,所述反向散射信号承载的信息包括以下至少一项:所述标签的临时标识,物品编码,所述标签的句柄,错误编码,数据。
  18. 一种反向散射信号传输方法,包括:
    读写器根据第一信息,确定与反向散射信号传输相关的参数;
    所述读写器根据所述参数进行所述反向散射信号的检测;
    其中,所述第一信息包括以下至少一项:
    第一标识,所述第一标识包括标签的标识或者所述标签的临时标识;
    第一值,所述第一值用于指示所述标签产生的随机数;
    第二值,所述第二值用于指示所述标签的计数器数值;
    第三值,所述第三值用于指示所述标签的计数器的步长;
    所述标签的组标识或者组内标识;
    会话号或者进程号;
    从读写器接收到的信息。
  19. 根据权利要求18所述的方法,其中,所述参数包括以下至少一项:
    第一参数,所述第一参数用于指示进行反向散射信号的传输;
    第二参数,所述第二参数用于指示不进行反向散射信号的传输;
    第三参数,所述第三参数用于指示所述反向散射信号的频率;
    所述反向散射信号的副载波频率;
    所述反向散射信号的第一持续时间或者第一电平切换周期。
  20. 根据权利要求18所述的方法,其中,所述读写器根据所述参数进行所述反向散射信号的检测,包括:
    所述读写器在至少一个带宽范围内,根据所述参数进行所述反向散射信号的检测。
  21. 根据权利要求19所述的方法,其中,所述第三参数为第一频率偏移值,所述第一频率偏移值用于指示相对于入射载波频率的频率偏移值;
    或者,
    所述反向散射信号的副载波频率是参考副载波频率的N倍或者1/N倍;
    或者,
    所述第一持续时间是基准电平持续时间的K倍或者1/K倍;
    其中,所述N、所述K为大于0的自然数。
  22. 根据权利要求21所述的方法,其中,所述入射载波频率、所述参考副载波频率、所述基准电平持续时间、所述第一频率偏移值、所述N和所述 K中的一项或多项,是预定义的,或者是所述读写器确定的。
  23. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述读写器发送第二信息,所述第二信息用于指示标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
  24. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述读写器发送第三信息,所述第三信息用于指示所述标签将计数器数值减去所述第三值。
  25. 根据权利要求18所述的方法,其中,所述标签的组标识或者组内标识根据以下之一确定:所述第一标识;所述第一值;所述第二值;所述读写器指示的信息。
  26. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述读写器发送第四信息,所述第四信息用于指示以下至少一项:
    修改所述标签的组标识;
    特定的组标识的标签进行反向散射信号的传输;
    修改所述标签的组内标识;
    特定的组内标识的标签进行反向散射信号的传输。
  27. 根据权利要求18、23、24或26所述的方法,其中,所述第一信息、所述第二信息、所述第三信息、所述第四信息中的至少一项通过控制命令携带;
    其中,所述控制命令包括以下至少一项:选取命令,查询命令、重复查询命令、调节查询命令。
  28. 根据权利要求18至26任一项所述的方法,其中,所述读写器包括以下至少一项:终端,基站,专用的接收设备,专用的发送设备。
  29. 一种反向散射信号传输装置,包括:
    第一确定模块,用于根据第一信息,确定与反向散射信号传输相关的参数;
    其中,所述第一信息包括以下至少一项:
    第一标识,所述第一标识包括标签的标识或者标签的临时标识;
    第一值,所述第一值用于指示所述标签产生的随机数;
    第二值,所述第二值用于指示所述标签的计数器数值;
    第三值,所述第三值用于指示所述标签的计数器的步长;
    所述标签的组标识或者组内标识;
    会话号或者进程号;
    从读写器接收到的信息。
  30. 根据权利要求29所述的装置,其中,所述参数包括以下至少一项:
    第一参数,所述第一参数用于指示进行反向散射信号的传输;
    第二参数,所述第二参数用于指示不进行反向散射信号的传输;
    第三参数,所述第三参数用于指示所述反向散射信号的频率;
    所述反向散射信号的副载波频率;
    所述反向散射信号的第一持续时间或者第一电平切换周期。
  31. 根据权利要求29所述的装置,其中,所述装置还包括:
    第一接收模块,用于接收第二信息,所述第二信息用于指示所述标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
  32. 根据权利要求29所述的装置,其中,所述第一确定模块进一步用于:
    在所述标签的组标识为特定组标识的情况下,根据所述标签的组内标识确定所述参数;或者,在所述标签的组内标识为特定组内标识的情况下,根据所述标签的组标识确定所述参数。
  33. 根据权利要求29所述的装置,其中,所述装置还包括:
    第三接收模块,用于接收第四信息,所述第四信息用于指示以下至少一项:
    修改所述标签的组标识;
    特定的组标识的标签进行反向散射信号的传输;
    修改所述标签的组内标识;
    特定的组内标识的标签进行反向散射信号的传输。
  34. 一种反向散射信号传输装置,应用于读写器,包括:
    第三确定模块,用于根据第一信息,确定与反向散射信号传输相关的参数;
    检测模块,用于根据所述参数进行所述反向散射信号的检测;
    第一标识,所述第一标识包括标签的标识或者标签的临时标识;
    第一值,所述第一值用于指示所述标签产生的随机数;
    第二值,所述第二值用于指示所述标签的计数器数值;
    第三值,所述第三值用于指示所述标签的计数器的步长;
    所述标签的组标识或者组内标识;
    会话号或者进程号;
    从读写器接收到的信息。
  35. 根据权利要求34所述的装置,其中,所述参数包括以下至少一项:
    第一参数,所述第一参数用于指示进行反向散射信号的传输;
    第二参数,所述第二参数用于指示不进行反向散射信号的传输;
    第三参数,所述第三参数用于指示所述反向散射信号的频率;
    所述反向散射信号的副载波频率;
    所述反向散射信号的第一持续时间或者第一电平切换周期。
  36. 根据权利要求34所述的装置,其中,所述装置还包括:
    第一发送模块,用于发送第二信息,所述第二信息用于指示标签根据所述第一信息确定与所述反向散射信号传输相关的参数,或者,所述第二信息用于指示标签根据特定的会话号或者进程号确定与所述反向散射信号传输相关的参数。
  37. 根据权利要求34所述的装置,其中,所述装置还包括:
    第三发送模块,用于发送第四信息,所述第四信息用于指示以下至少一项:
    修改所述标签的组标识;
    特定的组标识的标签进行反向散射信号的传输;
    修改所述标签的组内标识;
    特定的组内标识的标签进行反向散射信号的传输。
  38. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在 所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至28中任一项所述的方法的步骤。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至28中任一项所述的方法的步骤。
PCT/CN2023/094718 2022-05-24 2023-05-17 反向散射信号传输方法、装置、通信设备及可读存储介质 WO2023226844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210571731.6A CN117151130A (zh) 2022-05-24 2022-05-24 反向散射信号传输方法、装置、通信设备及可读存储介质
CN202210571731.6 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023226844A1 true WO2023226844A1 (zh) 2023-11-30

Family

ID=88899402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094718 WO2023226844A1 (zh) 2022-05-24 2023-05-17 反向散射信号传输方法、装置、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN117151130A (zh)
WO (1) WO2023226844A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052279A1 (en) * 2003-08-29 2005-03-10 Raj Bridgelall RFID system with selectable backscatter parameters
CN101499119A (zh) * 2008-01-31 2009-08-05 中兴通讯股份有限公司 基于射频识别的标签识别方法、系统、及装置
CN103353597A (zh) * 2013-07-10 2013-10-16 天津大学 一种用于超高频rfid定位的相位式测距方法
CN108052855A (zh) * 2018-01-08 2018-05-18 广西大学 适用于rfid系统的新型q值防碰撞算法
CN113065365A (zh) * 2021-03-18 2021-07-02 复旦大学 一种基于反向散射技术的多副载波多址无源无线传感系统
CN113554137A (zh) * 2021-09-17 2021-10-26 江苏东大集成电路系统工程技术有限公司 标签盘存方法、读写器、存储介质及计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052279A1 (en) * 2003-08-29 2005-03-10 Raj Bridgelall RFID system with selectable backscatter parameters
CN101499119A (zh) * 2008-01-31 2009-08-05 中兴通讯股份有限公司 基于射频识别的标签识别方法、系统、及装置
CN103353597A (zh) * 2013-07-10 2013-10-16 天津大学 一种用于超高频rfid定位的相位式测距方法
CN108052855A (zh) * 2018-01-08 2018-05-18 广西大学 适用于rfid系统的新型q值防碰撞算法
CN113065365A (zh) * 2021-03-18 2021-07-02 复旦大学 一种基于反向散射技术的多副载波多址无源无线传感系统
CN113554137A (zh) * 2021-09-17 2021-10-26 江苏东大集成电路系统工程技术有限公司 标签盘存方法、读写器、存储介质及计算机设备

Also Published As

Publication number Publication date
CN117151130A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2018041001A1 (zh) 一种与射频设备通信的方法、装置及系统
US8362879B2 (en) Apparatus and method for integrated reader and tag
US7982584B2 (en) Mobile RFID reader and control method thereof
US7830262B1 (en) Adjusting communication parameters while inventorying RFID tags
US20230376704A1 (en) Method for inventorying tag and related device
CN113573409A (zh) 一种通信方法及装置
WO2021248491A1 (zh) 通信方法、设备及存储介质
EP2945298B1 (en) Communication method and apparatus for nfc device, and nfc device
WO2023236962A1 (zh) 资源分配方法、装置、通信设备、系统及存储介质
WO2023226844A1 (zh) 反向散射信号传输方法、装置、通信设备及可读存储介质
Chen A new RFID anti-collision algorithm for the EPCglobal UHF class-1 generation-2 standard
WO2023138409A1 (zh) 基于无线射频识别的通信方法及装置
WO2023040709A1 (zh) 功率控制方法、装置及系统
US20190019073A1 (en) Radio tag reading device and radio tag reading method
US9646185B2 (en) System and method for managing RFID tags
WO2023236907A1 (zh) 信息指示方法、终端、网络侧设备及可读存储介质
WO2024125400A1 (zh) 传输方法、装置、终端及网络侧设备
WO2023236868A1 (zh) 反向散射通信配置方法、装置、网络侧设备和终端
WO2024125403A1 (zh) 传输方法、装置、终端及网络侧设备
WO2024125393A1 (zh) 传输方法、装置、终端及网络侧设备
WO2023103904A1 (zh) 传输数据的方法及其装置
WO2024067519A1 (zh) 指示方法、第一设备及第二设备
WO2024199078A1 (zh) 信号传输方法、信号检测方法、装置及通信设备
WO2024149127A1 (zh) 信息获取、发送方法、装置及通信设备
WO2024125438A1 (zh) 信号传输方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810917

Country of ref document: EP

Kind code of ref document: A1