WO2023226561A1 - 动力电池系统、电池控制方法、装置、设备及存储介质 - Google Patents

动力电池系统、电池控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023226561A1
WO2023226561A1 PCT/CN2023/082774 CN2023082774W WO2023226561A1 WO 2023226561 A1 WO2023226561 A1 WO 2023226561A1 CN 2023082774 W CN2023082774 W CN 2023082774W WO 2023226561 A1 WO2023226561 A1 WO 2023226561A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
module
switch
control
Prior art date
Application number
PCT/CN2023/082774
Other languages
English (en)
French (fr)
Inventor
黄孝键
赵元淼
张立权
但志敏
陈兴
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023226561A1 publication Critical patent/WO2023226561A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details

Definitions

  • This application belongs to the technical field of power batteries, and specifically relates to a power battery system, battery control method, device, equipment and storage medium.
  • the power battery serves as a power supply module to supply power to the drive module (usually including a motor and an inverter).
  • the drive module converts electrical energy into mechanical energy to drive the electric equipment. run.
  • embodiments of the present application propose a power battery system, battery control method, device, equipment and storage medium, which can promptly disconnect the faulty battery when some batteries fail and use the remaining non-faulty batteries to provide power.
  • a power battery system including:
  • a power supply module including at least two battery packs
  • a driving module connected to the power supply module, is used to convert the electrical energy provided by the power supply module into mechanical energy
  • a fault-tolerant module is provided between the power supply module and the driving module, and is used to control the power supply module to use a non-faulty battery pack to provide power when part of the battery pack fails.
  • the connection between the faulty battery pack and the drive module can be disconnected in time, so that the power supply module can continue to use the non-faulty battery pack to continue supplying power to the drive module.
  • the safe use of electrical equipment can still be achieved without emergency shutdown and waiting for the battery to be returned to the factory for inspection before use, thus greatly improving the user's satisfaction with the electricity experience.
  • the at least two battery packs are connected in series; when part of the battery packs fails, the fault-tolerant module controls the failed battery packs and the driving module to maintain the normal balance between the failed battery packs and the driving module.
  • the battery packs are all disconnected, and the battery pack that has not failed is controlled to be connected to the drive module.
  • the power supply module includes a first battery group and a second battery group connected in series;
  • the fault-tolerant module includes a first control circuit, a second control circuit, and a third control circuit.
  • the first control circuit The second control circuit is used to control the connection between the first battery pack and the drive module; the second control circuit is used to control the connection between the second battery pack and the drive module; the third control circuit is used to control the connection between the second battery pack and the drive module.
  • the control circuit is used to control the connection between the first battery pack and the second battery pack.
  • three control circuits are provided for the first battery pack and the second battery pack connected in series, which are respectively used to control the on-off between the first battery pack and the drive module, and the connection between the second battery pack and the drive module. On and off, and between two battery packs. In this way, when one of the battery packs fails, the three control circuits can be used to control the disconnection between the failed battery pack and the drive module, the disconnection between the two battery packs, and the disconnection between the non-faulty battery pack and the drive module. conduction between them, so that the power supply module only uses the battery pack that has not failed to fail. Moreover, the three control circuits have a clear division of labor, which helps to control the first battery pack and the second battery pack separately, and also facilitates subsequent maintenance and fault detection.
  • the first control circuit includes a first switch, the first switch is disposed between the first battery pack and the driving module; the negative electrode of the first battery pack is connected to the first battery pack.
  • the positive electrode of the second battery pack, one end of the first switch is connected to the negative electrode of the first battery pack, and the other end is connected in line with the negative electrode of the second battery pack and the first end of the drive module.
  • one end of the first switch is connected to the negative electrode of the first battery pack, and the other end of the first switch is connected in line with the negative electrode of the second battery pack and the first end of the drive module.
  • the first switch is connected in series with the first battery pack and in parallel with the second battery pack. By turning on and off the first switch, the on/off between the first battery pack and the drive module can be realized.
  • the control logic is simple and the operation is simple. convenient. And since the first switch and the second battery pack are connected in parallel, it will not affect the on/off connection between the second battery pack and the drive module, enabling the first switch to independently control the first battery pack, which is more conducive to improving the overall power battery The safety and reliability of the system.
  • the second control circuit includes a second switch, the second switch is disposed between the second battery pack and the driving module; the negative electrode of the first battery pack is connected to the first battery pack.
  • the positive electrode of the second battery pack, one end of the second switch is connected to the positive electrode of the first battery, and the other end is connected in line with the positive electrode of the second battery pack and the second end of the drive module.
  • the second switch is connected in series with the second battery pack and in parallel with the first battery pack.
  • the control logic is simple and the operation is simple. convenient.
  • the second switch is connected in parallel with the first battery pack, it will not affect the on/off connection between the first battery pack and the drive module, enabling the second switch to independently control the second battery pack, which is more conducive to improving the overall power battery The safety and reliability of the system.
  • the third control circuit includes a third switch, the third switch is disposed between the first battery pack and the second battery pack; one end of the third switch is connected to the The other end of the negative electrode of the first battery pack is connected to the positive electrode of the second battery pack.
  • the third switch between the first battery group and the second battery group, it is specially used to control the on-off between the first battery group and the second battery group.
  • the structure is simple and the operation is convenient, and the first battery can be realized. Independent control between the first battery pack and the second battery pack is more conducive to improving the safety and reliability of the overall power battery system.
  • a voltage regulating module is further included.
  • the voltage regulating module is disposed between the power supply module and the driving module, and is used to increase the voltage to all battery packs when a part of the battery pack of the power supply module fails.
  • the voltage provided by the driver module is further included.
  • the voltage regulating module includes a voltage regulating circuit and an energy storage unit.
  • a discharge circuit is formed, so that the power supply module supplies electricity to the energy storage unit.
  • the energy storage unit discharges; and, the discharge circuit is controlled to be disconnected, and the power supply module and the energy storage unit are controlled to simultaneously discharge to the driving module.
  • the power supply module, voltage regulating circuit, and energy storage unit can be first controlled to form a discharge circuit, so that the power supply module supplies energy to the energy storage unit. Discharge, the energy storage unit can store energy.
  • the discharge circuit can be controlled to be disconnected (specifically, any component or switch on the circuit can be disconnected) , and then the energy storage unit can supply power to the drive module together with the battery pack that has not failed to compensate for the voltage provided by the battery pack that has not failed to the drive module, thereby increasing the voltage provided to the drive module.
  • the voltage regulating circuit includes a two-phase bridge arm, one end of the energy storage unit is connected to the upper bridge arm and the lower bridge arm of one phase bridge arm, and the other end is connected to the upper bridge arm of the other phase bridge arm. arms and lower bridge arms.
  • the upper arm of one phase arm and the lower arm of the other phase arm of the two-phase bridge arms of the voltage regulating circuit can be controlled to be conductive, so that the power supply module, voltage regulating circuit, and energy storage
  • the unit forms a discharge circuit.
  • the two upper bridge arms (or two lower bridge arms) of the two-phase bridge arms in the voltage regulation circuit can be controlled to be turned on, so that the current provided by the power supply module can be regulated. circuit and energy storage unit, passed to the drive module.
  • the at least two battery packs are connected in parallel; when part of the battery pack fails, the fault-tolerant module controls the disconnection between the failed battery pack and the drive module, and controls the non-faulty battery pack to disconnect. There is electrical connection between the battery pack and the drive module.
  • the failed battery pack When battery packs are connected in parallel, if part of the battery pack fails, the failed battery pack will not interfere with the non-faulty battery pack. You only need to disconnect the failed battery pack from the drive module and keep it intact. The faulty battery pack is connected to the drive module, so that the faulty battery pack can no longer supply power to the drive module, while the non-faulty battery pack can supply power to the drive module.
  • the power supply module includes a third battery group and a fourth battery group connected in parallel;
  • the fault-tolerant module includes a fourth control circuit and a fifth control circuit, and the fourth control circuit is used to control the The connection between the third battery group and the driving module;
  • the fifth control circuit is used to control the connection between the fourth battery group and the driving module.
  • a fourth control circuit and a fifth control circuit are respectively provided for the parallel connection of the third battery pack and the fourth battery pack.
  • One of them is used to control the on/off connection between the third battery pack and the drive module, and the other is used to control the connection between the third battery pack and the drive module. Control the connection between the fourth battery pack and the drive module.
  • the fourth control circuit and the fifth control circuit can respectively control the disconnection between the failed battery pack and the drive module, and the conduction between the non-faulty battery pack and the drive module. So that the power supply module only uses the battery pack that has not failed to fail.
  • the fourth control circuit and the fifth control circuit have a clear division of labor, which helps to control the third battery pack and the fourth battery pack respectively, and also facilitates subsequent maintenance and fault detection.
  • the fourth control circuit includes a fourth switch, the fourth switch is disposed between the third battery pack and the driving module; one end of the fourth switch is connected to the third The positive electrode of the battery pack is connected, and the other end is connected in line with the positive electrode of the fourth battery pack and the second end of the drive module.
  • one end of the fourth switch is connected to the positive electrode of the third battery pack, and the other end of the fourth switch is connected in line with the positive electrode of the fourth battery pack and the second end of the drive module.
  • the fourth switch is connected in series with the third battery pack and in parallel with the fourth battery pack.
  • the fifth control circuit includes a fifth switch, the fifth switch is disposed between the fourth battery pack and the driving module; one end of the fifth switch is connected to the fourth The positive electrode of the battery pack is connected, and the other end is connected in line with the positive electrode of the third battery pack and the second end of the drive module.
  • the fifth switch connects one end of the fifth switch to the positive terminal of the fourth battery pack and connect the The other end is connected in line with the positive electrode of the third battery pack and the second end of the drive module.
  • the fifth switch is connected in series with the fourth battery pack and in parallel with the third battery pack. By turning on and off the fifth switch, the connection between the fourth battery pack and the drive module can be realized.
  • the control logic is simple and the operation is simple. convenient.
  • the fifth switch is connected in parallel with the third battery pack, it will not affect the on-off connection between the third battery pack and the drive module. This enables the fifth switch to independently control the fourth battery pack, which is more conducive to improving the overall power battery. The safety and reliability of the system.
  • the fault-tolerant module further includes a sixth switch.
  • the sixth switch is disposed between the power supply module and the driving module to control on-off between at least one battery pack and the driving module. . To achieve redundant control of fault-tolerant modules and further improve the safety and reliability of the power battery system.
  • the drive module includes an M-phase inverter bridge arm, an M-phase motor and a heating circuit.
  • the M-phase inverter bridge arm and the heating circuit are both connected in parallel with the power supply module.
  • Each winding of the phase motor is connected to each bridge arm of the M-phase inverter bridge arm in a one-to-one correspondence, and the neutral line of the M-phase motor is connected to the heating circuit.
  • the drive module with a heating circuit can self-heat the battery when the battery temperature is low to adapt to the lower external temperature.
  • a pre-charging module is further included.
  • the pre-charging module is disposed between the power supply module and the driving module, and is used to enable the power battery system to provide a preset high voltage to the entire vehicle. In order to realize the high-voltage process on the entire vehicle before providing operating power to the entire vehicle.
  • the precharging module includes a seventh switch, an eighth switch and a precharging resistor; the eighth switch and the precharging resistor are connected in series, and both are connected in parallel with the seventh switch.
  • the eighth switch and the precharge resistor can be controlled to be turned on first, so that a series circuit is formed between the power supply module and the capacitor, the eighth switch and the precharge resistor, and the capacitor can be charged until the The difference between the first voltage of the seven switches close to the battery side and the second voltage close to the motor side is less than the preset voltage difference.
  • This process can be understood as a capacitor storage process, so that the capacitor has a sufficient capacity, which can improve the overall circuit. stability.
  • the seventh switch is controlled to be turned on and the eighth switch is turned off, so that the power battery system provides the preset high voltage for the vehicle, that is, the high voltage for the entire vehicle is completed.
  • embodiments of the present application provide a battery control method applied to the power battery system described in the first aspect.
  • the method includes:
  • the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power.
  • At least two battery groups of the power supply module are connected in series;
  • the fault-tolerant module is used to control the power supply module to use a battery pack that has not failed to provide power, including:
  • the fault-tolerant module controls the disconnection between the failed battery pack and the drive module and the non-faulty battery pack, and controls the connection between the non-faulty battery pack and the drive module to make the power supply module Use a non-faulty battery pack for power.
  • the power supply module includes a first battery group and a second battery group connected in series;
  • the fault-tolerant module includes a first control circuit, a second control circuit, and a third control circuit;
  • the fault-tolerant module is used to control the power supply module to use a battery pack that has not failed to provide power, including:
  • the first control circuit is used to control the disconnection between the first battery pack and the driving module, and the third control circuit is used to control the first battery pack It is disconnected from the second battery pack, and the second control circuit controls the conduction between the second battery pack and the drive module, so that the power supply module uses the second battery pack to provide power.
  • the second control circuit is used to control the disconnection between the second battery pack and the driving module
  • the third control circuit is used to control the second battery pack. It is disconnected from the first battery pack, and the first control circuit controls the connection between the first battery pack and the driving module, so that the power supply module uses the first battery pack to provide power. .
  • the first control circuit includes a first switch, the first switch is disposed between the first battery pack and the driving module;
  • Controlling the disconnection or conduction between the first battery pack and the driving module through the first control circuit includes:
  • the first switch is turned off to control the disconnection between the first battery pack and the drive module
  • the first switch is closed to control conduction between the first battery pack and the drive module.
  • the second control circuit includes a second switch, the second switch is disposed between the second battery pack and the driving module;
  • Controlling the disconnection or conduction between the second battery pack and the driving module through the second control circuit includes:
  • the second switch is turned off to control the disconnection between the second battery pack and the drive module
  • the second switch is closed to control conduction between the second battery pack and the drive module.
  • the third control circuit includes a third switch, the third switch is disposed between the first battery pack and the second battery pack;
  • Controlling the disconnection between the first battery pack and the second battery pack through the third control circuit includes:
  • the third switch is turned off to control the disconnection between the first battery and the second battery pack.
  • At least two battery groups of the power supply module are connected in parallel;
  • the fault-tolerant module is used to control the power supply module to use a battery pack that has not failed to provide power, including:
  • the fault-tolerant module controls the disconnection between the failed battery pack and the drive module, and controls the connection between the non-faulty battery pack and the drive module, so that the power supply module uses the non-faulty battery pack to provide power. .
  • the power supply module includes a third battery group and a fourth battery group connected in parallel;
  • the fault-tolerant module includes a fourth control circuit and a fifth control circuit;
  • the fault-tolerant module is used to control the power supply module to use a battery pack that has not failed to provide power, including:
  • the fourth control circuit is used to control the disconnection between the third battery pack and the driving module, and the fifth control circuit is used to control the fourth battery There is a connection between the battery pack and the driving module, so that the power supply module uses the fourth battery pack to provide power;
  • the disconnection between the fourth battery pack and the driving module is controlled through the fifth control circuit, and the fourth control circuit controls the disconnection between the fourth battery pack and the driving module.
  • the three battery packs are connected to the driving module, so that the power supply module uses the third battery pack to provide power.
  • the fourth control circuit includes a fourth switch, the fourth switch is disposed between the third battery pack and the driving module;
  • Controlling the disconnection or connection between the third battery pack and the driving module through the fourth control circuit includes:
  • the fourth switch is turned off to control the disconnection between the third battery pack and the drive module
  • the fourth switch is closed to control conduction between the third battery pack and the drive module.
  • the fifth control circuit includes a fifth switch, the fifth switch is disposed between the fourth battery pack and the driving module;
  • Controlling the disconnection or connection between the fourth battery pack and the driving module through the fifth control circuit includes:
  • the fifth switch is turned off to control the Disconnection between the fourth battery pack and the drive module
  • the fifth switch is closed to control conduction between the fourth battery pack and the drive module.
  • the fault-tolerant module further includes a sixth switch.
  • the sixth switch is disposed between the power supply module and the driving module to control on-off between at least one battery pack and the driving module. ;
  • the control of the power supply module through the fault-tolerant module to use a battery pack that has not failed to provide power also includes:
  • the sixth switch is turned off to control the disconnection between the failed battery pack and the driving module, so that the power supply module uses the non-faulty battery pack to provide power.
  • determining whether there is a battery pack failure includes:
  • Collect battery parameters of each battery cell in the power supply module where the battery parameters include at least one of temperature, current, voltage, and power of the battery cell;
  • determining whether there is a battery pack failure based on the battery parameters includes:
  • the battery group to which the battery cell that satisfies the preset fault condition belongs is determined as the failed battery group.
  • the power battery system further includes a voltage regulating module, which is disposed between the power supply module and the driving module;
  • the battery control method also includes:
  • the voltage provided to the driving module is increased through the voltage regulating module.
  • the voltage regulation module includes a voltage regulation circuit and an energy storage unit
  • the step of increasing the voltage provided to the driving module through the voltage regulating module includes:
  • the discharge circuit is controlled to be disconnected, and the power supply module and the energy storage unit are controlled to simultaneously discharge to the driving module.
  • the voltage regulating circuit includes a two-phase bridge arm, one end of the energy storage unit is connected to the upper bridge arm and the lower bridge arm of one phase bridge arm, and the other end is connected to the upper bridge arm of the other phase bridge arm. arms and lower bridge arms;
  • Control the power supply module, the voltage regulating circuit, and the energy storage unit to form a discharge circuit including:
  • the upper bridge arm of one phase bridge arm and the lower bridge arm of the other phase bridge arm are controlled to be conductive, so that the power supply module, the voltage regulating circuit, and the energy storage unit form a discharge circuit.
  • a battery control device including:
  • the fault determination module is used to determine whether there is a fault in the battery pack when the power supply module supplies power to the drive module;
  • the fault-tolerant control module is used to control the power supply module to use the battery pack that has not failed to provide power through the fault-tolerant module.
  • embodiments of the present application provide electrical equipment, including the power battery system of the first aspect of the claim and the battery control device described in the third aspect. .
  • embodiments of the present application provide an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, characterized in that the processor runs the The computer program is used to implement the method described in the first aspect.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, characterized in that the program is executed by a processor to implement the method described in the first aspect.
  • Figure 1 is a schematic structural diagram of a power battery system according to one or more embodiments
  • Figure 2 is a schematic structural diagram 2 of a power battery system according to one or more embodiments (batteries connected in series);
  • Figure 3 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries connected in series);
  • Figure 4 is a schematic structural diagram 4 of a power battery system according to one or more embodiments (batteries connected in series);
  • Figure 5 is a schematic structural diagram 5 of a power battery system according to one or more embodiments (with a voltage regulating module);
  • Figure 6 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries connected in parallel);
  • Figure 7 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries connected in parallel);
  • Figure 8 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries connected in parallel);
  • FIG 9 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries are connected in series and have redundant switches);
  • FIG 10 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries are connected in series and have redundant switches);
  • FIG 11 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries are connected in series and have redundant switches);
  • Figure 12 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries are connected in parallel and have redundant switches);
  • Figure 13 is a schematic structural diagram of a power battery system according to one or more embodiments (batteries are connected in parallel and have redundant switches);
  • Figure 14 is a schematic flowchart of a battery control method according to one or more embodiments.
  • Figure 15 is a schematic structural diagram of a pool control device according to one or more embodiments.
  • Figure 16 is a schematic structural diagram of an electronic device according to one or more embodiments.
  • Figure 17 is a schematic diagram of a storage medium according to one or more embodiments.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. .
  • power batteries are usually used to provide power. Specifically, the electric energy of the power battery is converted into mechanical energy through a motor, thereby driving the operation of electrical equipment.
  • Power batteries may malfunction during daily use. For example, the battery temperature is too high, the battery pressure is too high, the battery is under voltage, and the battery power is too low, etc.
  • As a power source once a power battery fails, it will have a great impact on the user's driving safety.
  • the system In order to protect the personal safety of users, in the existing technology, once the power battery fails, the system will automatically or prompt the user to make an emergency stop, and the user needs to return the battery to the factory for testing to ensure subsequent driving safety. However, this has a great impact on the car owner's travel. inconvenient.
  • power batteries especially those used in large electrical equipment such as electric vehicles and electric aircraft, usually include multiple battery packs.
  • a battery fails, usually only part of the battery pack (or part of the battery cells) fails. If part of the battery pack can fail When, the connection between the failed battery pack and the drive module is cut off, so that the power supply module only uses the non-faulty battery pack to supply power to the drive module, then the safe use of the electrical equipment can still be achieved, and there is no need to emergency stop and wait for the battery. Return to factory for inspection before use.
  • a power battery system which may include a power supply module, The driving module, and the fault-tolerant module arranged between the power supply module and the driving module, the fault-tolerant module can control the power supply module to use the non-faulty battery pack to provide power when part of the battery pack of the power supply module fails.
  • the connection between the battery pack that sent the fault and the drive module can be disconnected in time, so that the power supply module can use the battery pack that has not failed to continue to supply power to the drive module, and the use of the battery can still be achieved.
  • the safe use of electrical equipment eliminates the need to stop the battery in an emergency and wait for the battery to be returned to the factory for testing before use, thus greatly improving the user's satisfaction with the electricity experience.
  • An embodiment of the present application also provides an electrical device using the power battery system.
  • the electrical device applies the power battery system provided by the embodiment of the present application.
  • the power supply module is controlled to use The battery pack that has not failed can provide power and ensure the safe use of electrical equipment.
  • the electrical equipment can be, but is not limited to, electric cars, ships, spacecrafts, electric toys, electric tools, battery cars, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the power battery system 200 may include a power supply module 210 , a drive module 220 and a fault tolerance module 230 .
  • the power supply module 210 may include at least two battery packs.
  • the driving module 220 is connected to the power supply module 210 and is used to convert the electrical energy provided by the power supply module 210 into mechanical energy.
  • the fault tolerance module 230 is disposed between the power supply module 210 and the driving module 220, and is used to control the power supply module 210 to use the battery pack that has not failed to provide power when part of the battery pack fails.
  • the power supply module 210 may include multiple battery packs. When part of the battery packs fails, the remaining battery packs that have not failed can still provide power to the driving module 220 .
  • the plurality of battery packs may be connected in parallel or in series. Among them, parallel connection can be understood as the two positive poles of the two battery packs are connected, and the two negative poles are also connected.
  • a series connection can be understood as the connection of the positive pole of one battery pack and the negative pole of the other battery pack.
  • the battery may be a ternary power battery, a lithium iron phosphate battery, a lithium titanate battery, a lead-acid battery, etc.
  • the number of battery packs is usually greater than or equal to 2, and can be set according to actual needs.
  • the driving module 220 may include an inverter and a motor.
  • the inverter is connected to the battery, and may include an M-phase inverter bridge arm, and the M-phase inverter bridge arm is connected in parallel with the power supply module 210 .
  • the motor may include a motor with M windings, and the M windings are respectively connected to the M-phase bridge arms of the bridge arm circuit in one-to-one correspondence.
  • the M phase can be, but is not limited to, three phases, four phases, five phases, six phases, twelve phases, etc.
  • the driving module 220 may also include a heating circuit, which is connected in parallel with the power supply module 210 and used to form an alternately switching charging and discharging circuit with the power supply module 210 to heat the battery pack of the power supply module 210 .
  • the heating circuit can be connected to the neutral line of the M-phase motor, and can include at least one upper bridge arm and one lower bridge arm.
  • the upper bridge arm (or lower bridge arm) of the M-phase inverter bridge arm and the lower bridge arm (or upper bridge arm) of the heating circuit both are turned on, so that the battery, inverter, heating circuit and motor form an alternate switching circuit.
  • Charging loop and discharging loop to achieve self-heating of the battery by charging and discharging the battery pack.
  • the heating circuit may also include a two-phase bridge arm circuit and an energy storage unit disposed between the two-phase bridge arms, as shown in Figure 4, and one end of the energy storage unit is connected to the upper bridge arm and the lower bridge arm of one of the phase bridge arms. , the other end is connected to the upper bridge arm and lower bridge arm of the other phase bridge arm.
  • the upper bridge arm of one phase bridge arm and the lower bridge arm of the other phase bridge arm being conductive, the battery, the two-phase bridge arm and the energy storage unit form an alternating switching charging loop and a discharging loop. Self-heating of the battery is achieved by charging and discharging the battery pack.
  • the energy storage unit is usually an inductance component, and the specific structure and quantity thereof are not specifically limited in this embodiment.
  • the fault-tolerant module 230 may be an integral structure, or may include multiple components that work independently. This embodiment does not specifically limit its specific structure, as long as the connection between the battery pack that sends the fault and the drive module 220 can be disconnected, And it suffices to connect the non-faulty battery pack and the driving module 220 .
  • the connection between the faulty battery pack and the drive module 220 can be disconnected in time, so that the power supply module 210 uses the battery pack that has not failed to continue to provide power to the drive module 220. , it is still possible to achieve safe use of electrical equipment without having to emergency stop and wait for the battery to be returned to the factory for inspection before use, thus greatly improving the user's satisfaction with the electricity experience.
  • At least two battery groups are connected in series; when part of the battery group fails, the fault tolerance module 230 controls the faulty battery group to disconnect from the driving module 220 and the non-faulty battery group, and Control the connection between the battery pack that has not failed and the drive module 220 .
  • the power supply module 210 may include a first battery group B1 and a second battery group B2 connected in series.
  • the fault-tolerant module 230 includes a first control circuit, a second control circuit and a third control circuit.
  • the first control circuit is used to control the on/off connection between the first battery pack B1 and the driving module 220;
  • the second control circuit is used to control the second The connection between the battery pack B2 and the driving module 220;
  • the third control circuit is used to control the connection between the first battery pack B1 and the second battery pack B2.
  • three control circuits are provided for the first battery group B1 and the second battery group B2 connected in series, which are respectively used to control the on/off between the first battery group B1 and the drive module 220, and the control between the second battery group B2 and the driving module 220.
  • the three control circuits can be used to control the disconnection between the failed battery pack and the drive module 220, the disconnection between the two battery packs, and the disconnection between the non-faulty battery pack and the drive module. 220 are connected, so that the power supply module 210 only uses the battery pack that has not failed to fail.
  • the three control circuits have a clear division of labor, which helps to control the first battery pack B1 and the second battery pack B2 respectively, and also facilitates subsequent maintenance and fault detection.
  • this embodiment does not limit whether the three control circuits are connected to each other, as long as the above control functions can be realized.
  • the first control circuit may include a first switch K1 , and the first switch K1 is disposed between the first battery pack B1 and the driving module 220 .
  • the negative electrode of the first battery group B1 is connected to the positive electrode of the second battery group B2
  • one end of the first switch K1 is connected to the negative electrode of the first battery group B1
  • the other end is connected to the negative electrode of the second battery group B2 and the driving module 220.
  • the first end is connected in line.
  • one end of the first switch K1 is connected to the negative electrode of the first battery group B1, and the other end of the first switch K1 is connected in line with the negative electrode of the second battery group B2 and the first end of the driving module 220.
  • the first switch K1 is connected in series with the first battery pack B1 and in parallel with the second battery pack B2. By turning on and off the first switch K1, the connection between the first battery pack B1 and the drive module 220 can be realized. , the control logic is simple and easy to operate.
  • first switch K1 and the second battery group B2 are connected in parallel, it will not affect the connection between the second battery group B2 and the drive module 220, and the first switch K1 can independently control the first battery group B1, and more It is beneficial to improve the safety and reliability performance of the overall power battery system 200 .
  • the second control circuit may include a second switch K2, which is disposed between the second battery pack B2 and the driving module 220; when the negative electrode of the first battery pack B1 is connected to the positive electrode of the second battery pack B2, the second switch K2 One end of the second switch K2 is connected to the positive electrode of the first battery, and the other end is connected to the second The positive electrode of the battery pack B2 and the second terminal of the driving module 220 are connected in a common line.
  • a second switch K2 which is disposed between the second battery pack B2 and the driving module 220; when the negative electrode of the first battery pack B1 is connected to the positive electrode of the second battery pack B2, the second switch K2 One end of the second switch K2 is connected to the positive electrode of the first battery, and the other end is connected to the second The positive electrode of the battery pack B2 and the second terminal of the driving module 220 are connected in a common line.
  • the second switch K2 Similar to the setting principle of the first switch K1, by setting the second switch K2, one end of the second switch K2 is connected to the positive electrode of the second battery group B2, and the other end is connected to the positive electrode of the first battery group B1 and the third terminal of the drive module 220. Two ends are connected in a common line.
  • the second switch K2 is connected in series with the second battery pack B2 and in parallel with the first battery pack B1. By turning on and off the second switch K2, the connection between the second battery pack B2 and the drive module 220 can be realized. , the control logic is simple and easy to operate.
  • the second switch K2 since the second switch K2 is connected in parallel with the first battery group B1, it will not affect the connection between the first battery group B1 and the drive module 220, and the second switch K2 can independently control the second battery group B2, and more It is beneficial to improve the safety and reliability performance of the overall power battery system 200 .
  • the third control circuit may include a third switch K3.
  • the third switch K3 is disposed between the first battery group B1 and the second battery group B2. One end of the third switch K3 is connected to the negative electrode of the first battery group B1, and the other end is connected to the negative electrode of the first battery group B1.
  • the positive electrode of battery pack B2. In this way, by setting the third switch K3 between the first battery group B1 and the second battery group B2, it is specially used to control the on-off between the first battery group B1 and the second battery group B2. It has a simple structure and is easy to operate. Independent control between the first battery pack B1 and the second battery pack B2 can be achieved, which is more conducive to improving the safety and reliability of the overall power battery system 200 .
  • the voltage provided by the power supply module 210 to the driving module 220 may be lower.
  • this implementation provides The power battery system 200 is also provided with a voltage regulating module.
  • the voltage regulating module is arranged between the power supply module 210 and the drive module 220 and is used to increase the voltage provided to the drive module 220 when part of the battery pack of the power supply module 210 fails to meet the high voltage demand of the entire vehicle and further improve the efficiency of the vehicle. Driving safety.
  • the voltage regulating module may include a voltage regulating circuit and an energy storage unit.
  • a discharge loop is formed, so that the power supply module 210 discharges to the energy storage unit; and, the discharge circuit is controlled to be disconnected,
  • the power supply module 210 and the energy storage unit are controlled to discharge to the driving module 220 at the same time.
  • the power supply module 210, the voltage regulating circuit, and the energy storage unit are first controlled to form a discharge circuit, so that the power supply module 210 supplies energy to the storage unit.
  • the energy unit discharges, and the energy storage unit can store energy.
  • the discharge circuit can be controlled to be disconnected (specifically, any component or switch on the circuit can be disconnected) , then the energy storage unit can supply power to the driving module 220 together with the battery pack that has not failed to compensate for the voltage provided by the battery pack that has not failed to the driving module 220, thereby increasing the voltage provided to the driving module 220.
  • the voltage regulating module can refer to the heating circuit shown in Figure 4, that is, the voltage regulating circuit can include two Phase bridge arm, one end of the energy storage unit is connected to the upper bridge arm and lower bridge arm of one phase bridge arm, and the other end is connected to the upper bridge arm and lower bridge arm of the other phase bridge arm.
  • the upper arm of one phase arm and the lower arm of the other phase arm of the two-phase bridge arms of the voltage regulating circuit can be controlled to be conductive, so that the power supply module 210, the voltage regulating circuit, and the storage
  • the energy unit forms a discharge circuit.
  • the two upper bridge arms (or the two lower bridge arms) of the two-phase bridge arms in the voltage regulation circuit can be controlled to be conductive, so that the current provided by the power supply module 210 can pass through
  • the voltage regulating circuit and energy storage unit are transferred to the driving module 220.
  • the energy stored in the energy storage unit is limited. After discharging for a period of time, it needs to store energy again. After the energy storage is completed, it is discharged again, and so on.
  • the heating module shown in Figure 4 can be directly used as a voltage regulation module to simplify the overall structure and make the voltage regulation process more convenient.
  • the energy storage process can refer to the discharge process of the battery during the heating process.
  • the energy storage unit and the compensated driving voltage of the energy storage unit can be adjusted by controlling the conduction ratio of the voltage regulating module, so that when different numbers of battery packs fail, the power supply module 210 can still provide a relatively stable driving voltage. .
  • the voltage boosting function of the voltage regulating module is usually used, but the module also has a voltage reducing function, and those skilled in the art can set it as needed.
  • the energy storage unit and the motor form a loop and perform the energy storage process, which may reduce the pressure of the drive module 220 .
  • the arrangement of the voltage regulating module is only one implementation mode of this embodiment, and this embodiment is not limited thereto, as long as the voltage provided to the driving module 220 can be increased.
  • the fault tolerance module 230 controls the disconnection between the failed battery pack and the drive module 220 , and controls the connection between the non-faulty battery pack and the drive module 220 .
  • the failed battery pack When the battery packs are connected in parallel, if some of the battery packs fail, the failed battery pack will not interfere with the non-faulty battery packs. You only need to disconnect the failed battery pack from the drive module 220 and maintain the connection. There is a connection between the non-faulty battery pack and the drive module 220 , so that the failed battery pack can no longer provide power to the drive module 220 , while the non-faulty battery pack can provide power to the drive module 220 .
  • the power supply module 210 may include a third battery group B3 and a fourth battery group B4 connected in parallel.
  • the fault-tolerant module 230 may include a fourth control circuit and a fifth control circuit.
  • the fourth control circuit is used to control the connection between the third battery group B3 and the driving module 220; the fifth control circuit is used to control the connection between the fourth battery group B4 and the driving module 220. Switching between drive modules 220.
  • a fourth control circuit and a fifth control circuit are respectively provided for the parallel connection of the third battery group B3 and the fourth battery group B4, one of which is used to control the connection between the third battery group B3 and the driving module 220. The other one is used to control the connection between the fourth battery pack B4 and the driving module 220 .
  • the fourth control circuit and the fifth control circuit can be used to The circuits respectively control the disconnection between the failed battery pack and the drive module 220, and the conduction between the non-faulty battery pack and the drive module 220, so that the power supply module 210 only uses the non-faulty battery pack for failure.
  • the fourth control circuit and the fifth control circuit have a clear division of labor, which helps to control the third battery pack B3 and the fourth battery pack B4 respectively, and also facilitates subsequent maintenance and fault detection.
  • the fourth control circuit may include a fourth switch K4, and the fourth switch K4 is disposed between the third battery pack B3 and the driving module 220.
  • One end of the fourth switch K4 is connected to the positive electrode of the third battery group B3, and the other end is connected in line with the positive electrode of the fourth battery group B4 and the second end of the driving module 220.
  • one end of the fourth switch K4 is connected to the positive electrode of the third battery group B3, and the other end of the fourth switch K4 is connected in line with the positive electrode of the fourth battery group B4 and the second end of the driving module 220.
  • the fourth switch K4 is connected in series with the third battery group B3 and in parallel with the fourth battery group B4.
  • the control logic is simple and easy to operate.
  • the fourth switch K4 since the fourth switch K4 is connected in parallel with the fourth battery group B4, it will not affect the connection between the fourth battery group B4 and the drive module 220, and the independent control of the third battery group B3 by the fourth switch K4 is realized. It is beneficial to improve the safety and reliability performance of the overall power battery system 200 .
  • the fifth control circuit may include a fifth switch K5, which is disposed between the fourth battery pack B4 and the driving module 220; one end of the fifth switch K5 is connected to the positive electrode of the fourth battery pack B4, and the other end is connected to the third battery pack B4.
  • the positive electrode of the battery pack B3 and the second terminal of the driving module 220 are connected in a common line.
  • one end of the fifth switch K5 is connected to the positive electrode of the fourth battery group B4, and the other end of the fifth switch K5 is connected to the positive electrode of the third battery group B3 and the second terminal of the drive module 220.
  • the terminals are connected in a common line.
  • the fifth switch K5 is connected in series with the fourth battery group B4 and in parallel with the third battery group B3. By turning on and off the fifth switch K5, the connection between the fourth battery group B4 and the drive module 220 can be realized. , the control logic is simple and easy to operate.
  • the fifth switch K5 is connected in parallel with the third battery group B3, it will not affect the connection between the third battery group B3 and the drive module 220, and the independent control of the fourth battery group B4 by the fifth switch K5 is realized. It is beneficial to improve the safety and reliability performance of the overall power battery system 200 .
  • the fault-tolerant module 230 may further include a sixth switch, which is disposed between the power supply module 210 and the drive module 220 to control the on/off connection between at least one battery pack and the drive module 220 to achieve Redundant control of the fault-tolerant module 230 further improves this power Safety and reliability performance of the battery system 200.
  • the sixth switch may include, but is not limited to, the redundant switches K61, K62, K63 and K64 shown in FIGS. 9-13.
  • the positive poles of the two battery groups are connected to the driving module 220 through different wires, and are respectively provided between each battery group and the driving module 220.
  • a redundant switch that is, a switch K61 is provided on the connection line between the first battery pack B1 and the drive module 220, and a switch K62 is provided on the connection line between the second battery pack B2 and the drive module 220. And by turning on and off the switch K61 and the switch K62, the first battery group B1 and the second battery group B2 can be redundantly controlled.
  • the switch K61 can be used to control the connection between the first battery pack B1 and the drive module 220
  • the switch K62 can be used to control the connection between the second battery pack B2 and the drive module 220.
  • On and off. This is to ensure that when the first battery group B1 (or the second battery group B2) fails, it can be disconnected from the drive module 220 and maintain the connection between the second battery group B2 (or the first battery group B1) and the drive module 220. conduction between.
  • the first switch K1 and the second switch K2 can be controlled to be opened, and the third switch K3, the switch K61 and the switch K62 can be controlled to be closed, so that the first switch K1 and the second switch K2 are controlled to be closed.
  • the battery pack B1 and the second battery pack B2 are connected in series to jointly supply power to the driving module 220 .
  • the third switch K3 is turned off, and at least one of the first switch K1 and the switch K61 is turned off, so that the first battery pack B1 is disconnected from the drive module 220. .
  • the second switch K2 and the switch K62 are closed to make the second battery pack B2 and the driving module 220 conductive. If the second battery pack B2 fails, the third switch K3 is turned off, and at least one of the second switch K2 and the switch K62 is turned off to disconnect the second battery pack B2 from the drive module 220 . And the first switch K1 and the switch K61 are closed to make the first battery pack B1 and the driving module 220 conductive.
  • the positive poles of the two battery groups are connected to the driving module 220 through the same wire, and a redundant switch K61 can be provided on the wire. Then the redundant switch K61 can simultaneously control the connection between the first battery group B1 and the second battery group B2 and the driving module 220 .
  • the redundant switch K61 can be used as a normally closed switch. When the first switch K1 or the second switch K2 fails, it can be used as an emergency switch to disconnect the entire circuit. If the first battery pack B1 or the second battery pack B2 fails, the same switch connected in series will be controlled.
  • the specific control process can refer to the control process of the structure shown in Figure 9, which will not be described again here.
  • the positive poles of the two battery groups are connected to the driving module 220 through different wires, and the two wires are connected through the switch K21 or disconnect, and set between the second battery pack B2 and the drive module 220 Set switch K22, and set redundant switch K61 on the connection line between the first battery pack B1 and the drive module 220.
  • the first switch K1 can be controlled to open, and the switch K61 can be controlled to open, and the third switch K3, the switch K21 and the switch K22 can be controlled to close, so that the third switch K3 can be closed.
  • a battery group B1 and a second battery group B2 are connected in series to jointly supply power to the driving module 220 .
  • the first switch K1, the switch K21 and the switch K22 can also be controlled to be turned off, and the third switch K3 and the switch K61 can be controlled to be turned on.
  • the first battery group B1 and the second battery group B2 are connected in series to jointly supply power to the driving module 220 .
  • the third switch K3 and the switch K21 are disconnected, and at least one of the first switch K1 and the switch K61 is disconnected, so that the first battery pack B1 is connected to the drive module. 220 disconnected. And close the switch K22 to make the second battery pack B2 and the driving module 220 conductive. Alternatively, closing the switch K21 and the switch K61 can also cause conduction between the second battery pack B2 and the drive module 220 (transmission through the energy storage unit). If a fault occurs in the second battery pack B2, the third switch K3, the switch K21 and the switch K22 are all turned off to disconnect the second battery pack B2 from the driving module 220. And both the first switch K1 and the switch K61 are closed, so that the first battery pack B1 and the driving module 220 are connected.
  • Figure 12 shows a setting method of the redundant switch K63 of the third battery group B3
  • Figure 13 shows a setting method of the redundant switch K64 of the fourth battery group B4.
  • the switch K63 can jointly control the connection between the third battery pack B3 and the driving module 220 together with the fourth switch K4.
  • the switch 64 can jointly control the connection between the fourth battery pack B4 and the driving module 220 together with the fifth switch K5.
  • the switch K63 can be disconnected from any one of the fourth switches K4, and both the switch K64 and the fifth switch K5 can be closed.
  • the switch K64 can be disconnected from any one of the fifth switches K5, and both the switch K63 and the fourth switch K4 can be closed.
  • the above-mentioned settings of the first switch K1, the second switch K2, the third switch K3, the fourth switch K4, the fifth switch K5 and the sixth switch are just a few examples of implementations listed in this embodiment.
  • the example is not limited to this, as long as the above control functions for the two battery packs can be realized.
  • this embodiment is not limited to the connection between the negative electrode of the first battery group B1 and the positive electrode of the second battery group B2.
  • the positive electrode of the first battery group B1 and the negative electrode of the second battery group B2 may also be connected.
  • the power battery system 200 may further include a precharge module.
  • the precharge module is disposed between the power supply module 210 and the drive module 220 to enable the power battery system 200 to provide a preset high voltage to the entire vehicle. Before providing operating power to the entire vehicle, the high voltage on the entire vehicle must be achieved first. process.
  • the voltage value of the pre-charged high voltage can be slightly lower than the voltage value when the entire vehicle is running, and can be set according to the actual situation, which is not specifically limited in this embodiment.
  • the precharge module may include a seventh switch K7, an eighth switch K8, and a precharge resistor R1; the eighth switch K8 and the precharge resistor R1 are connected in series, and both are connected in parallel with the seventh switch K7.
  • the eighth switch K8 and the precharge resistor R1 can be controlled to be turned on first, so that a series circuit is formed between the power supply module 210 and the capacitor, the eighth switch K8 and the precharge resistor R1, and the capacitor can be charged.
  • This process can be understood as a capacitor storage process, so that the capacitor has sufficient capacity, which can improve the stability of the overall circuit.
  • a precharge resistor R1 in this loop which can prevent the loop from short-circuiting and causing damage to the capacitor.
  • the seventh switch K7 is controlled to be turned on and the eighth switch K8 is turned off, so that the power battery system 200 provides the preset high voltage for the vehicle, that is, the high voltage of the entire vehicle is completed.
  • this embodiment is not limited to arranging the precharge module at the negative pole of the battery pack as shown in Figures 9 to 13. It can also be set at the positive pole of the battery pack, or the redundant switch K61 can be directly used as The eighth switch K8 only needs to be able to realize the precharging process.
  • the first switch K1, the second switch K2, the third switch K3, the fourth switch K4, the fifth switch K5, the sixth switch, the seventh switch K7 and the eighth switch K8 can all be relays, MOS tubes or IGBTs. Pipes, etc., this embodiment does not specifically limit their specific structure and quantity, as long as the above control function can be realized by turning on and off the switch.
  • this embodiment also provides a battery control method, which can be applied to the power battery system of any of the above embodiments. As shown in Figure 14, the method may include:
  • Step S1 When the power supply module supplies power to the drive module, it is determined whether there is a battery pack failure.
  • This method can be applied to the vehicle domain controller or the battery management system. This embodiment does not specifically limit this, as long as the battery control method can be implemented. To facilitate understanding, the battery management system will be used as an example for detailed description below.
  • determining whether there is a battery pack failure may include the following processing: collecting battery parameters of each battery cell in the power supply module.
  • the battery parameters may include at least one of the temperature, current, voltage, and power of the battery cell. kind; based on the battery parameters, determine whether there is a battery pack failure.
  • the battery management system can collect the temperature, current, voltage, power and other parameters of each battery cell in the power supply module in real time, and then At least one of the parameters is used to determine whether the battery pack is faulty. When one of the parameters is abnormal, it is determined that the battery cell is faulty, and the battery pack where the battery cell is located is also faulty. When determining whether the battery pack is faulty, this method can directly obtain the parameters collected in real time by the battery management system for direct judgment, thereby improving the efficiency of the battery control method.
  • determining whether there is a battery pack failure based on the battery parameters may include the following processing: determining whether there is a battery cell whose battery parameters meet the preset failure conditions; if so, then the battery cells that meet the preset failure conditions belong to The battery pack is determined to be the failed battery pack.
  • the above fault conditions may include but are not limited to battery temperature being too high or too low, battery current being too large or too small, battery voltage being too high or undervoltage, battery power being too low, etc. As long as one of these conditions is met, the battery pack can be determined to have failed. . In this way, detecting multiple battery parameters and determining whether the battery has failed based on each battery parameter and preset fault conditions can improve the accuracy of fault detection.
  • Step S2 if yes, the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power.
  • At least two battery packs of the power supply module are connected in series;
  • the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power, which can include:
  • the fault-tolerant module controls the disconnection between the failed battery pack and the drive module and the non-faulty battery pack, and controls the continuity between the non-faulty battery pack and the drive module, so that the power supply module uses the non-faulty battery group for power supply.
  • the power supply module may include a first battery group B1 and a second battery group B2 connected in series;
  • the fault-tolerant module may include a first control circuit, a second control circuit, and a third control circuit;
  • the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power, which can include:
  • the first control circuit controls the disconnection between the first battery group B1 and the drive module
  • the third control circuit controls the disconnection between the first battery group B1 and the second battery group B2.
  • the second control circuit controls the conduction between the second battery pack B2 and the drive module through the second control circuit, so that the power supply module uses the second battery pack B2 to provide power
  • the second control circuit is used to control the disconnection between the second battery group B2 and the driving module
  • the third control circuit is used to control the disconnection between the second battery group B2 and the first battery group B1. , and controls the conduction between the first battery pack B1 and the drive module through the first control circuit, so that the power supply module uses the first battery pack B1 to provide power.
  • the first control circuit may include a first switch disposed between the first battery pack B1 and the driving module;
  • the first control circuit controls the disconnection or connection between the first battery pack B1 and the driving module, Can include:
  • the first switch is turned off to control the disconnection between the first battery pack B1 and the drive module;
  • the first switch is closed to control the conduction between the first battery pack B1 and the drive module.
  • the second control circuit may include a second switch disposed between the second battery pack B2 and the driving module;
  • Controlling the disconnection or conduction between the second battery pack B2 and the driving module through the second control circuit may include:
  • the second switch is turned off to control the disconnection between the second battery pack B2 and the drive module;
  • the second switch is closed to control the conduction between the second battery pack B2 and the drive module.
  • the third control circuit may include a third switch, and the third switch is disposed between the first battery group B1 and the second battery group B2;
  • Controlling the disconnection between the first battery pack B1 and the second battery pack B2 through the third control circuit may include:
  • the third switch is turned off to control the disconnection between the first battery and the second battery group B2.
  • At least two battery packs of the power supply module are connected in parallel;
  • the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power, which can include:
  • the fault-tolerant module controls the disconnection between the failed battery pack and the drive module, and controls the connection between the non-faulty battery pack and the drive module, so that the power supply module uses the non-faulty battery pack for power supply.
  • the power supply module may include a third battery group and a fourth battery group connected in parallel;
  • the fault-tolerant module may include a fourth control circuit and a fifth control circuit;
  • the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power, which can include:
  • the power supply module uses the fourth battery group for power supply
  • the fifth control circuit is used to control the disconnection between the fourth battery pack and the drive module, and the fourth control circuit is used to control the conduction between the third battery pack and the drive module, so that The power supply module uses the third battery pack for power supply.
  • the fourth control circuit may include a fourth switch disposed between the third battery pack and the driving module;
  • Controlling the disconnection or connection between the third battery pack and the drive module through the fourth control circuit may include:
  • the fourth switch is turned off to control the disconnection between the third battery pack and the drive module
  • the fourth switch is closed to control conduction between the third battery pack and the drive module.
  • the fifth control circuit may include a fifth switch, and the fifth switch is disposed between the fourth battery pack and the driving module;
  • Controlling the disconnection or conduction between the fourth battery pack and the drive module through the fifth control circuit may include:
  • the fifth switch is turned off to control the disconnection between the fourth battery pack and the drive module
  • the fifth switch is closed to control conduction between the fourth battery pack and the drive module.
  • the fault-tolerant module may further include a sixth switch.
  • the sixth switch is disposed between the power supply module and the driving module to control on-off between at least one battery pack and the driving module;
  • the fault-tolerant module is used to control the power supply module to use the battery pack that has not failed to provide power, which can also include:
  • the power battery system may further include a voltage regulating module, which is disposed between the power supply module and the driving module;
  • Battery control methods can also include:
  • the voltage provided to the drive module is increased through the voltage regulating module.
  • the voltage regulation module may include a voltage regulation circuit and an energy storage unit
  • Increasing the voltage provided to the driving module through the voltage regulating module can include:
  • the discharge circuit is controlled to be disconnected, and the power supply module and the energy storage unit are controlled to discharge to the drive module at the same time.
  • the voltage regulating circuit may include a two-phase bridge arm.
  • One end of the energy storage unit is connected to the upper bridge arm and the lower bridge arm of one of the phase bridge arms, and the other end is connected to the upper bridge arm and the lower bridge arm of the other phase bridge arm.
  • bridge arm One end of the energy storage unit is connected to the upper bridge arm and the lower bridge arm of one of the phase bridge arms, and the other end is connected to the upper bridge arm and the lower bridge arm of the other phase bridge arm.
  • the control power supply module, voltage regulation circuit, and energy storage unit form a discharge loop, which can include:
  • the upper bridge arm of one phase bridge arm and the lower bridge arm of the other phase bridge arm are controlled to be conductive, so that the power supply module, voltage regulating circuit, and energy storage unit form a discharge loop.
  • the battery control method provided in this embodiment uses the fault-tolerant module to promptly disconnect the faulty battery pack from the drive module when some batteries fail, so that the power supply module uses the non-faulty battery pack to continue supplying power to the drive module. , it is still possible to achieve safe use of electrical equipment without having to emergency stop and wait for the battery to be returned to the factory for inspection before use, thus greatly improving the user's satisfaction with the electricity experience.
  • this embodiment is based on the same concept as the above-mentioned power battery system.
  • the various implementations and beneficial effects of the above-mentioned power battery system are also applicable to the battery control method provided in this embodiment, and will not be described again here.
  • this embodiment also provides a battery control device for executing the above battery control method.
  • the battery control device may include:
  • the fault determination module is used to determine whether there is a fault in the battery pack when the power supply module supplies power to the drive module;
  • the fault-tolerant control module is used to control the power supply module through the fault-tolerant module to use the battery pack that has not failed to provide power.
  • the battery control device may be a vehicle domain controller or a battery management system, or other specially configured control device.
  • This embodiment does not specifically limit its specific structure, as long as the above control method can be implemented.
  • this embodiment is based on the same concept as the above-mentioned power battery system.
  • the various implementations and beneficial effects of the above-mentioned power battery system are also applicable to the battery control device provided in this embodiment, and will not be described again here.
  • this embodiment also provides an electrical equipment, which may include the power battery system of any of the above embodiments and the above-mentioned battery control device.
  • the electrical equipment may be an electric vehicle, an electric toy, a ship, a spacecraft, etc. having a power battery, a motor and a motor inverter.
  • this embodiment is based on the same concept as the above-mentioned power battery system.
  • the various implementations and beneficial effects of the above-mentioned power battery system are also applicable to the electrical equipment provided in this embodiment, and will not be described again here.
  • FIG. 16 shows a schematic diagram of an electrical device provided by some embodiments of the present application.
  • the electrical device 40 may include: a processor 400, a memory 401, a bus 402 and a communication interface 403.
  • the processor 400, the communication interface 403 and the memory 401 are connected through the bus 402; the memory 401 stores information that can be processed
  • the computer program runs on the processor 400.
  • the processor 400 runs the computer program, it executes the battery control method provided by any of the foregoing embodiments of the embodiments of this application.
  • the memory 401 may include high-speed random access memory (RAM: Random Access Memory), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the communication connection between the device network element and at least one other network element is realized through at least one communication interface 403 (which can be wired or wireless), and the Internet, wide area network, local network, metropolitan area network, etc. can be used.
  • the bus 402 may be an ISA bus, a PCI bus, an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the memory 401 is used to store the program, and the processor 400 executes the program after receiving the execution instruction.
  • the power battery system disclosed in any of the embodiments of the present application can be applied to the processor 400 or implemented by the processor 400 .
  • the processor 400 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 400 .
  • the above-mentioned processor 400 can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 401.
  • the processor 400 reads the information in the memory 401 and completes the steps of the above method in combination with its hardware.
  • the electronic device provided by the embodiments of the present application and the battery control method provided by the embodiments of the present application are based on the same inventive concept, and have the same beneficial effects as the methods adopted, operated or implemented.
  • the embodiment of the present application also provides a computer-readable storage medium corresponding to the power battery system provided by the previous embodiment. Please refer to Figure 17.
  • the computer-readable storage medium shown is an optical disk 30, and a computer program is stored thereon. (i.e. program product), a computer program is processed When running, the battery control method provided by any of the foregoing embodiments will be executed.
  • examples of computer-readable storage media may also include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), and other types of random access memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other optical and magnetic storage media will not be described in detail here.
  • the computer-readable storage medium provided by the above embodiments of the present application is based on the same inventive concept as the battery control method provided by the embodiments of the present application, and has the same beneficial effects as the methods adopted, run or implemented by the applications stored therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种动力电池系统、电池控制方法、装置、设备及存储介质,该动力电池系统包括:供电模块,包括至少两个电池组;驱动模块,与供电模块连接,用于将供电模块提供的电能转化为机械能;容错模块,设置于供电模块和驱动模块之间,用于在部分电池组发生故障时,控制供电模块采用未发生故障的电池组进行供电。本申请能够在部分电池故障时,及时断开故障电池,采用剩余未故障电池供电。

Description

动力电池系统、电池控制方法、装置、设备及存储介质
本申请要求优先权,在先申请的申请号为:202210590948.1,名称为: 动力电池系统、电池控制方法、装置、设备及存储介质,优先权日为: 2022-05-27。
技术领域
本申请属于动力电池技术领域,具体涉及一种动力电池系统、电池控制方法、装置、设备及存储介质。
背景技术
目前,电动汽车、电动飞机等电动设备中通常具有动力电池和电机,动力电池作为供电模块,为驱动模块(通常包括电机和逆变器)供电,驱动模块将电能转换为机械能,从而驱动电动设备运行。
其中,动力电池作为动力源,在日常使用中遇到意外故障时,通常需要紧急停车,并将电池返厂检测,以确保行车安全,这对车主出行造成了极大不便。
需要说明的是,上述的陈述仅用于提供与本申请有关的背景技术信息,而不必然的构成现有技术。
发明内容
鉴于上述问题,本申请实施例提出一种动力电池系统、电池控制方法、装置、设备及存储介质,能够在部分电池故障时,及时断开故障电池,采用剩余未故障电池供电。
第一方面,本申请实施例提供了一种动力电池系统,包括:
供电模块,包括至少两个电池组;
驱动模块,与所述供电模块连接,用于将所述供电模块提供的电能转化为机械能;
容错模块,设置于所述供电模块和所述驱动模块之间,用于在部分电池组发生故障时,控制所述供电模块采用未发生故障的电池组进行供电。
在第一方面的实施例中,通过设置容错模块,可以在部分电池故障时,及时断开发送故障的电池组与驱动模块之间的连接,使供电模块采用未发生故障的电池组继续向驱动模块供电,仍然可以实现用电设备的安全使用,不必紧急停车,等待电池返厂检测再行使用,从而极大提高了用户的用电体验满意度。
在一些实施例中,所述至少两个电池组均串联连接;在部分电池组发生故障时,所述容错模块控制发生故障的电池组与所述驱动模块和未发生故障 的电池组之间均断开,并控制未发生故障的电池组与所述驱动模块之间导通。
当电池组串联时,若部分电池组发生故障,为了避免发生故障的电池组对未发生故障的电池组造成干扰,不仅需要断开发生故障的电池组与驱动模块之间的连接,还需要断开发生故障的电池组与未发生故障的电池组之间的连接。并保持未发生故障的电池组与驱动模块之间导通,以使未发生故障的电池组能够向驱动模块供电。
在一些实施例中,所述供电模块包括串联连接的第一电池组和第二电池组;所述容错模块包括第一控制电路、第二控制电路及第三控制电路,所述第一控制电路用于控制所述第一电池组与所述驱动模块之间的通断;所述第二控制电路用于控制所述第二电池组与所述驱动模块之间的通断;所述第三控制电路用于控制所述第一电池组和所述第二电池组之间的通断。
本实施例针对串联的第一电池组和第二电池组,设置了三个控制电路,分别用于控制第一电池组与驱动模块之间的通断、第二电池组与驱动模块之间的通断,以及两个电池组之间的通断。如此,当其中一个电池组故障时,可通过该三个控制电路分别控制发生故障的电池组与驱动模块之间断开、两个电池组之间断开,以及未发生故障的电池组与驱动模块之间导通,以使供电模块仅采用未发生故障的电池组进行故障。且该三个控制电路,分工明确,有助于对第一电池组和第二电池组进行分别控制,也便于后续维修和故障检测。
在一些实施例中,所述第一控制电路包括第一开关,所述第一开关设置于所述第一电池组与所述驱动模块之间;所述第一电池组的负极连接所述第二电池组的正极,所述第一开关的一端连接所述第一电池组的负极,另一端与所述第二电池组的负极及所述驱动模块的第一端共线连接。
如此,通过在第一电池组的负极连接第一开关的一端,并将第一开关的另一端与第二电池组的负极及驱动模块的第一端共线连接。使得第一开关与第一电池组串联连接,且与第二电池组并联连接,通过第一开关的通断,便可实现第一电池组与驱动模块之间的通断,控制逻辑简单,操作方便。且由于第一开关与第二电池组并联,不会影响第二电池组与驱动模块之间的通断,实现第一开关对第一电池组之间的独立控制,更有利于提高整体动力电池系统的安全可靠性能。
在一些实施例中,所述第二控制电路包括第二开关,所述第二开关设置于所述第二电池组与所述驱动模块之间;所述第一电池组的负极连接所述第二电池组的正极,所述第二开关的一端连接所述第一电池的正极,另一端与所述第二电池组的正极、所述驱动模块的第二端共线连接。
如此,通过设置第二开关,并将第二开关的一端连接第二电池组的正 极,另一端与第一电池组的正极及驱动模块的第二端共线连接。使得第二开关与第二电池组串联连接,且与第一电池组并联连接,通过第二开关的通断,便可实现第二电池组与驱动模块之间的通断,控制逻辑简单,操作方便。且由于第二开关与第一电池组并联,不会影响第一电池组与驱动模块之间的通断,实现第二开关对第二电池组之间的独立控制,更有利于提高整体动力电池系统的安全可靠性能。
在一些实施例中,所述第三控制电路包括第三开关,所述第三开关设置于所述第一电池组和所述第二电池组之间;所述第三开关的一端连接所述第一电池组的负极,另一端连接所述第二电池组的正极。
如此,通过在第一电池组和第二电池组之间设置第三开关,专门用于控制第一电池组和第二电池组之间的通断,结构简单,操作方便,能够实现第一电池组和第二电池组之间的独立控制,更有利于提高整体动力电池系统的安全可靠性能。
在一些实施例中,还包括调压模块,所述调压模块设置于所述供电模块和所述驱动模块之间,用于在所述供电模块的部分电池组发生故障时,增大向所述驱动模块提供的电压。以满足整车的高压需求,进一步提高行车安全。
在一些实施例中,所述调压模块包括调压电路和储能单元,通过控制所述供电模块、所述调压电路、所述储能单元构成放电回路,使所述供电模块向所述储能单元放电;以及,控制所述放电回路断开,控制所述供电模块及所述储能单元同时向所述驱动模块放电。
本实施例通过设置包括调压电路和储能单元的调压模块,可以在部分电池组发生故障时,先控制供电模块、调压电路、储能单元构成放电回路,使供电模块向储能单元放电,储能单元则可以储存能量。当储能单元的储能达到一定值(可根据实际情况设定,本实施例对此不做具体限定)时,可控制该放电回路断开(具体可断开任意元件或电路上的开关),然后储能单元可与未发生故障的电池组共同向驱动模块供电,以对未发生故障的电池组向驱动模块提供的电压进行补偿,从而增大向驱动模块提供的电压。
在一些实施例中,所述调压电路包括两相桥臂,所述储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂。
在上述形成放电回路时,可控制调压电路的两相桥臂中一相桥臂的上桥臂和另一相桥臂的下桥臂均导通,使供电模块、调压电路、储能单元构成放电回路。在储能完成后,向驱动模块放电时,可控制调压电路中两相桥臂的两个上桥臂(或两个下桥臂)均导通,使供电模块提供的电流可以经过调压电路和储能单元,传递至驱动模块。
在一些实施例中,所述至少两个电池组均并联连接;在部分电池组发生故障时,所述容错模块控制发生故障的电池组与所述驱动模块之间断开,并控制未发生故障的电池组与所述驱动模块之间导通。
当电池组并联时,若部分电池组发生故障,发生故障的电池组对未发生故障的电池组不会造成干扰,仅需要断开发生故障的电池组与驱动模块之间的连接,并保持未发生故障的电池组与驱动模块之间导通,使发生故障的电池组不能再向驱动模块供电,而未发生故障的电池组能够向驱动模块供电。
在一些实施例中,所述供电模块包括并联连接的第三电池组和第四电池组;所述容错模块包括第四控制电路和第五控制电路,所述第四控制电路用于控制所述第三电池组与所述驱动模块之间的通断;所述第五控制电路用于控制所述第四电池组与所述驱动模块之间的通断。
本实施例针对并联第三电池组和第四电池组,分别设置了第四控制电路和第五控制电路,其中一个用于控制第三电池组与驱动模块之间的通断,另一个用于控制第四电池组与驱动模块之间的通断。如此,当其中一个电池组故障时,可通过第四控制电路和第五控制电路分别控制发生故障的电池组与驱动模块之间断开,以及未发生故障的电池组与驱动模块之间导通,以使供电模块仅采用未发生故障的电池组进行故障。且第四控制电路和第五控制电路,分工明确,有助于对第三电池组和第四电池组进行分别控制,也便于后续维修和故障检测。
在一些实施例中,所述第四控制电路包括第四开关,所述第四开关设置于所述第三电池组与所述驱动模块之间;所述第四开关的一端与所述第三电池组的正极连接,另一端与所述第四电池组的正极及所述驱动模块的第二端共线连接。
如此,通过在第三电池组的正极连接第四开关的一端,并将第四开关的另一端与第四电池组的正极及驱动模块的第二端共线连接。使得第四开关与第三电池组串联连接,且与第四电池组并联连接,通过第四开关的通断,便可实现第三电池组与驱动模块之间的通断,控制逻辑简单,操作方便。且由于第四开关与第四电池组并联,不会影响第四电池组与驱动模块之间的通断,实现第四开关对第三电池组之间的独立控制,更有利于提高整体动力电池系统的安全可靠性能。
在一些实施例中,所述第五控制电路包括第五开关,所述第五开关设置于所述第四电池组与所述驱动模块之间;所述第五开关的一端与所述第四电池组的正极连接,另一端与所述第三电池组的正极及所述驱动模块的第二端共线连接。
如此,通过在第四电池组的正极连接第五开关的一端,并将第五开关的 另一端与第三电池组的正极及驱动模块的第二端共线连接。使得第五开关与第四电池组串联连接,且与第三电池组并联连接,通过第五开关的通断,便可实现第四电池组与驱动模块之间的通断,控制逻辑简单,操作方便。且由于第五开关与第三电池组并联,不会影响第三电池组与驱动模块之间的通断,实现第五开关对第四电池组之间的独立控制,更有利于提高整体动力电池系统的安全可靠性能。
在一些实施例中,所述容错模块还包括第六开关,所述第六开关设置于所述供电模块和所述驱动模块之间,控制至少一个电池组与所述驱动模块之间的通断。以实现容错模块的冗余控制,进一步提高该动力电池系统的安全可靠性能。
在一些实施例中,所述驱动模块包括M相逆变桥臂、M相电机及加热电路,所述M相逆变桥臂和所述加热电路均与所述供电模块并联连接,所述M相电机的各项绕组分别与所述M相逆变桥臂的各项桥臂一一对应连接,所述M相电机的中性线与所述加热电路连接。该具有加热电路的驱动模块,可以在电池温度较低时,进行电池自加热,以适应更低的外界温度。
在一些实施例中,还包括预充模块,所述预充模块设置于所述供电模块和所述驱动模块之间,用于使所述动力电池系统向整车提供预设高压。以在向整车提供运行动力之前,先实现整车上高压过程。
在一些实施例中,所述预充模块包括第七开关、第八开关及预充电阻;所述第八开关和所述预充电阻串联连接,且均与所述第七开关并联连接。
在向整车上高压时,可先控制第八开关及预充电阻均导通,使供电模块和电容及第八开关和预充电阻之间形成串联的回路,可以对电容蓄电,直至第七开关靠近电池侧的第一电压,与靠近电机侧的第二电压之间的差值小于预设电压差,该过程可理解为电容蓄电过程,使得电容具有一足够容量,可以提高整体电路的稳定性。且该回路中具有预充电阻,可防止回路短路,对电容造成损害。然后再控制第七开关导通及第八开关断开,使动力电池系统为车辆提供预设高压,即完成整车上高压。
第二方面,本申请实施例提供了一种电池控制方法,应用于第一方面所述的动力电池系统,所述方法包括:
在供电模块向驱动模块供电过程中,确定是否存在电池组发生故障;
若是,则通过容错模块控制所述供电模块采用未发生故障的电池组进行供电。
在一些实施例中,所述供电模块的至少两个电池组均串联连接;
所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
通过容错模块控制发生故障的电池组与所述驱动模块和未发生故障的电池组之间均断开,并控制未发生故障的电池组与所述驱动模块之间导通,使所述供电模块采用未发生故障的电池组进行供电。
在一些实施例中,所述供电模块包括串联连接的第一电池组和第二电池组;所述容错模块包括第一控制电路、第二控制电路及第三控制电路;
所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
在所述第一电池组发生故障的情况下,通过所述第一控制电路控制所述第一电池组与所述驱动模块之间断开,通过所述第三控制电路控制所述第一电池组和所述第二电池组之间断开,并通过所述第二控制电路控制所述第二电池组与所述驱动模块之间导通,使所述供电模块采用所述第二电池组进行供电;
在所述第二电池组发生故障的情况下,通过所述第二控制电路控制所述第二电池组与所述驱动模块之间断开,通过所述第三控制电路控制所述第二电池组和所述第一电池组之间断开,并通过所述第一控制电路控制所述第一电池组与所述驱动模块之间导通,使所述供电模块采用所述第一电池组进行供电。
在一些实施例中,所述第一控制电路包括第一开关,所述第一开关设置于所述第一电池组与所述驱动模块之间;
所述通过第一控制电路控制所述第一电池组与所述驱动模块之间断开或者导通,包括:
在所述第一电池组发生故障的情况下,将所述第一开关断开,控制所述第一电池组与所述驱动模块之间断开;
在所述第二电池组发生故障的情况下,将所述第一开关闭合,控制所述第一电池组与所述驱动模块之间导通。
在一些实施例中,所述第二控制电路包括第二开关,所述第二开关设置于所述第二电池组与所述驱动模块之间;
所述通过第二控制电路控制所述第二电池组与所述驱动模块之间断开或者导通,包括:
在所述第二电池组发生故障的情况下,将所述第二开关断开,控制所述第二电池组与所述驱动模块之间断开;
在所述第一电池组发生故障的情况下,将所述第二开关闭合,控制所述第二电池组与所述驱动模块之间导通。
在一些实施例中,所述第三控制电路包括第三开关,所述第三开关设置于所述第一电池组和所述第二电池组之间;
通过所述第三控制电路控制所述第一电池组和所述第二电池组之间断开,包括:
在所述第一电池组或者所述第二电池组发生故障的情况下,将所述第三开关断开,控制所述第一电池和所述第二电池组之间断开。
在一些实施例中,所述供电模块的至少两个电池组均并联连接;
所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
通过容错模块控制发生故障的电池组与所述驱动模块之间断开,并控制未发生故障的电池组与所述驱动模块之间导通,使所述供电模块采用未发生故障的电池组进行供电。
在一些实施例中,所述供电模块包括并联连接的第三电池组和第四电池组;所述容错模块包括第四控制电路和第五控制电路;
所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
在所述第三电池组发生故障的情况下,通过所述第四控制电路控制所述第三电池组与所述驱动模块之间断开,并通过所述第五控制电路控制所述第四电池组与所述驱动模块之间导通,使所述供电模块采用所述第四电池组进行供电;
在所述第四电池组发生故障的情况下,通过所述第五控制电路控制所述第四电池组与所述驱动模块之间的断开,并通过所述第四控制电路控制所述第三电池组与所述驱动模块之间导通,使所述供电模块采用所述第三电池组进行供电。
在一些实施例中,所述第四控制电路包括第四开关,所述第四开关设置于所述第三电池组与所述驱动模块之间;
通过所述第四控制电路控制所述第三电池组与所述驱动模块之间的断开或者导通,包括:
在所述第三电池组发生故障的情况下,将所述第四开关断开,控制所述第三电池组与所述驱动模块之间的断开;
在所述第四电池组发生故障的情况下,将所述第四开关闭合,控制所述第三电池组与所述驱动模块之间的导通。
在一些实施例中,所述第五控制电路包括第五开关,所述第五开关设置于所述第四电池组与所述驱动模块之间;
通过所述第五控制电路控制所述第四电池组与所述驱动模块之间的断开或者导通,包括:
在所述第四电池组发生故障的情况下,将所述第五开关断开,控制所述 第四电池组与所述驱动模块之间的断开;
在所述第三电池组发生故障的情况下,将所述第五开关闭合,控制所述第四电池组与所述驱动模块之间的导通。
在一些实施例中,所述容错模块还包括第六开关,所述第六开关设置于所述供电模块和所述驱动模块之间,控制至少一个电池组与所述驱动模块之间的通断;
所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,还包括:
将所述第六开关断开,控制发生故障的电池组与所述驱动模块之间断开,使所述供电模块采用未发生故障的电池组进行供电。
在一些实施例中,所述确定是否存在电池组发生故障,包括:
采集所述供电模块中各电池单体的电池参数,所述电池参数包括电池单体的温度、电流、电压、电量中的至少一种;
根据所述电池参数,确定是否存在电池组发生故障。
在一些实施例中,根据所述电池参数,确定是否存在电池组发生故障,包括:
确定是否存在电池参数满足预设故障条件的电池单体;
若是,则将满足预设故障条件的电池单体所属的电池组确定为发生故障的电池组。
在一些实施例中,所述动力电池系统还包括调压模块,所述调压模块设置于所述供电模块和所述驱动模块之间;
所述电池控制方法还包括:
通过所述调压模块增大向所述驱动模块提供的电压。
在一些实施例中,所述调压模块包括调压电路和储能单元;
所述通过所述调压模块增大向所述驱动模块提供的电压,包括:
控制所述供电模块、所述调压电路、所述储能单元构成放电回路,使所述供电模块向所述储能单元进行放电;
控制所述放电回路断开,控制所述供电模块及所述储能单元同时向所述驱动模块放电。
在一些实施例中,所述调压电路包括两相桥臂,所述储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂;
控制所述供电模块、所述调压电路、所述储能单元构成放电回路,包括:
控制两相桥臂中一相桥臂的上桥臂和另一相桥臂的下桥臂均导通,使所述供电模块、所述调压电路、所述储能单元构成放电回路。
第三方面,本申请实施例提供了一种电池控制装置,包括:
故障确定模块,用于在供电模块向驱动模块供电过程中,确定是否存在电池组发生故障;
容错控制模块,用于若是,则通过容错模块控制所述供电模块采用未发生故障的电池组进行供电。
第四方面,本申请实施例提供了一种用电设备,包括权利要求第一方面的动力电池系统,及第三方面所述的电池控制装置。。
第五方面,本申请实施例提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序以实现上述第一方面所述的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行实现上述第一方面所述的方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为根据一个或多个实施例的动力电池系统的结构示意图一;
图2为根据一个或多个实施例的动力电池系统的结构示意图二(电池串联);
图3为根据一个或多个实施例的动力电池系统的结构示意图三(电池串联);
图4为根据一个或多个实施例的动力电池系统的结构示意图四(电池串联);
图5为根据一个或多个实施例的动力电池系统的结构示意图五(设置调压模块);
图6为根据一个或多个实施例的动力电池系统的结构示意图六(电池并联);
图7为根据一个或多个实施例的动力电池系统的结构示意图七(电池并联);
图8为根据一个或多个实施例的动力电池系统的结构示意图八(电池并联);
图9为根据一个或多个实施例的动力电池系统的结构示意图九(电池串联,且具有冗余开关);
图10为根据一个或多个实施例的动力电池系统的结构示意图十(电池串联,且具有冗余开关);
图11为根据一个或多个实施例的动力电池系统的结构示意图十一(电池串联,且具有冗余开关);
图12为根据一个或多个实施例的动力电池系统的结构示意图十二(电池并联,且具有冗余开关);
图13为根据一个或多个实施例的动力电池系统的结构示意图十三(电池并联,且具有冗余开关);
图14为根据一个或多个实施例的电池控制方法的流程示意图;
图15为根据一个或多个实施例的池控制装置的结构示意图;
图16为根据一个或多个实施例的电子设备的结构示意图;
图17为根据一个或多个实施例的存储介质的示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。在电动交通供给、军事装备、航空航天等领域中,通常通过动力电池来提供动力,具体是通过电机将动力电池的电能转换为机械能,从而驱动用电设备运行。
动力电池在日常使用过程中,可能会发生故障。例如,电池温度过高、电池压力过大、欠压,以及电池电量过低,等等。而动力电池作为动力源,一旦发生故障,将对用户的行车安全造成很大影响。为了保障用户的人身安全,现有技术中,一旦动力电池故障,系统会自动或者提示用户紧急停车,且用户需要将电池返厂检测,以确保后续行车安全,但这对车主出行造成了极大不便。
但是,动力电池,尤其是应用于电动汽车、电动飞机等大型用电设备的动力电池,通常包括多个电池组。而当电池发生故障时,通常只是部分电池组(或者部分电池单体)发生故障。如果可以在部分电池组发生故障 时,切断该发生故障的电池组与驱动模块之间的连接,使供电模块仅采用未发生故障的电池组向驱动模块供电,则仍然可以实现用电设备的安全使用,不必紧急停车,等待电池返厂检测再行使用。
基于以上考虑,为了解决部分电池故障时,也必须紧急停车,并将电池返厂检测,对车主出行造成极大不便的问题,本申请实施例设计了一种动力电池系统,可以包括供电模块、驱动模块,以及设置于供电模块和驱动模块之间的容错模块,该容错模块可以在供电模块的部分电池组发生故障时,控制所述供电模块采用未发生故障的电池组进行供电。
如此,通过设置容错模块,可以在部分电池故障时,及时断开发送故障的电池组与驱动模块之间的连接,使供电模块采用未发生故障的电池组继续向驱动模块供电,仍然可以实现用电设备的安全使用,不必紧急停车,等待电池返厂检测再行使用,从而极大提高了用户的用电体验满意度。
本申请实施例还提供一种应用该动力电池系统的用电设备,该用电设备应用本申请实施例提供的动力电池系统,在供电模块的部分电池组发生故障时,控制所述供电模块采用未发生故障的电池组进行供电,可以实现用电设备的安全使用。
该用电设备可以为但不限于电动汽车、轮船、航天器、电动玩具、电动工具、电瓶车等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
请参照图1,图1为本申请一些实施例提供的动力电池系统200的结构示意图。如图1所示,该动力电池系统200,可以包括供电模块210、驱动模块220及容错模块230,其中,供电模块210可以包括至少两个电池组。驱动模块220与供电模块210连接,用于将供电模块210提供的电能转化为机械能。容错模块230设置于供电模块210和驱动模块220之间,用于在部分电池组发生故障时,控制供电模块210采用未发生故障的电池组进行供电。
供电模块210可以包括多个电池组,当部分电池组发生故障后,剩余未发生故障的电池组仍可向驱动模块220供电。具体地,该多个电池组可以并联连接,也可以串联连接。其中,并联连接可以理解为两个电池组的两个正极相连,两个负极也相连。串联连接可以理解为两个电池组中一个电池组的正极和另一个电池组的负极连接。
可以理解的是,本实施例对电池组的数量和种类不做具体限定,例如,该电池可以为三元动力电池、磷酸铁锂电池、钛酸锂电池、铅酸蓄电池等。 电池组的数量通常大于等于2,具体可根据实际需要进行设定。
如图2所示,驱动模块220可包括逆变器和电机。其中,逆变器与电池连接,其可包括M相逆变桥臂,且M相逆变桥臂与供电模块210并联连接。电机可包括具有M个绕组的电机,M个绕组分别与桥臂电路的M相桥臂一一对应连接。其中,M相可以但不限于为三相、四相、五相、六相、十二相等。
该驱动模块220还可以包括加热电路,该加热电路与供电模块210并联连接,用于与供电模块210形成交替切换的充放电电路,以对供电模块210的电池组进行加热。
如图2或图3所示,加热电路可以与M相电机的中性线连接,可至少包括一个上桥臂和一个下桥臂。通过M相逆变桥臂的上桥臂(或下桥臂),以及加热电路的下桥臂(或上桥臂)均导通,使电池、逆变器、加热电路及电机形成交替切换的充电回路和放电回路,以通过对电池组进行充放电来实现电池的自加热。
加热电路也可以包括两相桥臂电路和设置于两相桥臂之间的储能单元,如图4所示,且储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂。通过两相桥臂中一相桥臂的上桥臂和另一相桥臂的下桥臂均导通,使电池、两相桥臂及储能单元形成交替切换的充电回路和放电回路,以通过对电池组进行充放电来实现电池的自加热。
其中,储能单元通常为电感元件,本实施例对其具体结构和数量不做具体限定。
容错模块230可以为一整体结构,也可以包括独立工作的多个构成部分,本实施例对其具体结构不做具体限定,只要能够断开发送故障的电池组与驱动模块220之间的连接,并使未发生故障的电池组与驱动模块220之间导通即可。
本实施例通过设置容错模块230,可以在部分电池故障时,及时断开发送故障的电池组与驱动模块220之间的连接,使供电模块210采用未发生故障的电池组继续向驱动模块220供电,仍然可以实现用电设备的安全使用,不必紧急停车,等待电池返厂检测再行使用,从而极大提高了用户的用电体验满意度。
在一些实施方式中,至少两个电池组均串联连接;在部分电池组发生故障时,容错模块230控制发生故障的电池组与驱动模块220和未发生故障的电池组之间均断开,并控制未发生故障的电池组与驱动模块220之间导通。
当电池组串联时,若部分电池组发生故障,为了避免发生故障的电池组对未发生故障的电池组造成干扰,不仅需要断开发生故障的电池组与驱动模块220之间的连接,还需要断开发生故障的电池组与未发生故障的电池组之间的连接。并保持未发生故障的电池组与驱动模块220之间导通,以使未发生故障的电池组能够向驱动模块220供电。
具体地,供电模块210可以包括串联连接的第一电池组B1和第二电池组B2。容错模块230包括第一控制电路、第二控制电路及第三控制电路,第一控制电路用于控制第一电池组B1与驱动模块220之间的通断;第二控制电路用于控制第二电池组B2与驱动模块220之间的通断;第三控制电路用于控制第一电池组B1和第二电池组B2之间的通断。
本实施例针对串联的第一电池组B1和第二电池组B2,设置了三个控制电路,分别用于控制第一电池组B1与驱动模块220之间的通断、第二电池组B2与驱动模块220之间的通断,以及两个电池组之间的通断。如此,当其中一个电池组故障时,可通过该三个控制电路分别控制发生故障的电池组与驱动模块220之间断开、两个电池组之间断开,以及未发生故障的电池组与驱动模块220之间导通,以使供电模块210仅采用未发生故障的电池组进行故障。且该三个控制电路,分工明确,有助于对第一电池组B1和第二电池组B2进行分别控制,也便于后续维修和故障检测。
需要说明的是,本实施例对三个控制电路彼此之间是否连接不做限定,只要能够实现上述控制功能即可。
如图2-图4所示,第一控制电路可包括第一开关K1,第一开关K1设置于第一电池组B1与驱动模块220之间。在第一电池组B1的负极连接第二电池组B2的正极的情况下,第一开关K1的一端连接第一电池组B1的负极,另一端与第二电池组B2的负极及驱动模块220的第一端共线连接。
如此,通过在第一电池组B1的负极连接第一开关K1的一端,并将第一开关K1的另一端与第二电池组B2的负极及驱动模块220的第一端共线连接。使得第一开关K1与第一电池组B1串联连接,且与第二电池组B2并联连接,通过第一开关K1的通断,便可实现第一电池组B1与驱动模块220之间的通断,控制逻辑简单,操作方便。且由于第一开关K1与第二电池组B2并联,不会影响第二电池组B2与驱动模块220之间的通断,实现第一开关K1对第一电池组B1之间的独立控制,更有利于提高整体动力电池系统200的安全可靠性能。
第二控制电路可以包括第二开关K2,第二开关K2设置于第二电池组B2与驱动模块220之间;在第一电池组B1的负极连接第二电池组B2的正极的情况下,第二开关K2的一端连接第一电池的正极,另一端与第二 电池组B2的正极、驱动模块220的第二端共线连接。
与第一开关K1的设置原理类似,通过设置第二开关K2,并将第二开关K2的一端连接第二电池组B2的正极,另一端与第一电池组B1的正极及驱动模块220的第二端共线连接。使得第二开关K2与第二电池组B2串联连接,且与第一电池组B1并联连接,通过第二开关K2的通断,便可实现第二电池组B2与驱动模块220之间的通断,控制逻辑简单,操作方便。且由于第二开关K2与第一电池组B1并联,不会影响第一电池组B1与驱动模块220之间的通断,实现第二开关K2对第二电池组B2之间的独立控制,更有利于提高整体动力电池系统200的安全可靠性能。
第三控制电路可以包括第三开关K3,第三开关K3设置于第一电池组B1和第二电池组B2之间;第三开关K3的一端连接第一电池组B1的负极,另一端连接第二电池组B2的正极。如此,通过在第一电池组B1和第二电池组B2之间设置第三开关K3,专门用于控制第一电池组B1和第二电池组B2之间的通断,结构简单,操作方便,能够实现第一电池组B1和第二电池组B2之间的独立控制,更有利于提高整体动力电池系统200的安全可靠性能。
鉴于电池组串联时,采用剩余未发生故障的电池组进行供电,由于电池组数量减小,可能会导致供电模块210向驱动模块220提供的电压较低,如图5所示,本实施提供的动力电池系统200还设置调压模块。该调压模块设置于供电模块210和驱动模块220之间,用于在供电模块210的部分电池组发生故障时,增大向驱动模块220提供的电压,以满足整车的高压需求,进一步提高行车安全。
其中,调压模块可包括调压电路和储能单元,通过控制供电模块210、调压电路、储能单元构成放电回路,使供电模块210向储能单元放电;以及,控制放电回路断开,控制供电模块210及储能单元同时向驱动模块220放电。
本实施例通过设置包括调压电路和储能单元的调压模块,可以在部分电池组发生故障时,先控制供电模块210、调压电路、储能单元构成放电回路,使供电模块210向储能单元放电,储能单元则可以储存能量。当储能单元的储能达到一定值(可根据实际情况设定,本实施例对此不做具体限定)时,可控制该放电回路断开(具体可断开任意元件或电路上的开关),然后储能单元可与未发生故障的电池组共同向驱动模块220供电,以对未发生故障的电池组向驱动模块220提供的电压进行补偿,从而增大向驱动模块220提供的电压。
具体地,调压模块可参考图4所示的加热电路,即调压电路可包括两 相桥臂,储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂。
在上述形成放电回路时,可控制调压电路的两相桥臂中一相桥臂的上桥臂和另一相桥臂的下桥臂均导通,使供电模块210、调压电路、储能单元构成放电回路。在储能完成后,向驱动模块220放电时,可控制调压电路中两相桥臂的两个上桥臂(或两个下桥臂)均导通,使供电模块210提供的电流可以经过调压电路和储能单元,传递至驱动模块220。
可以理解的是,储能单元所储能量有限,在放电一段时间后,需要再次进行储能,储能完成后再进行放电,如此循环往复进行。
在一些实施方式中,可直接将图4所示的加热模块用作调压模块,以简化整体结构,使调压过程更为方便,其储能过程可参考加热过程中电池的放电过程。具体可通过控制调压模块的导通比例,来调整储能单元的储能和其补偿的驱动电压大小,以实现不同数量的电池组发生故障时,供电模块210仍能够提供较稳定的驱动电压。
需要说明的是,本实施例中通常仅应用调压模块的升压功能,但该模块同样具有降压功能,本领域技术人员可根据需要进行设定。例如储能单元和电机形成回路,进行储能过程,则可能会降低驱动模块220的压力。另外,该调压模块的设置只是本实施例的一种实施方式,本实施例并不以此为限,只要能够增大向驱动模块220提供的电压即可。
在另一些实施方式中,至少两个电池组均并联连接。在部分电池组发生故障时,容错模块230控制发生故障的电池组与驱动模块220之间断开,并控制未发生故障的电池组与驱动模块220之间导通。
当电池组并联时,若部分电池组发生故障,发生故障的电池组对未发生故障的电池组不会造成干扰,仅需要断开发生故障的电池组与驱动模块220之间的连接,并保持未发生故障的电池组与驱动模块220之间导通,使发生故障的电池组不能再向驱动模块220供电,而未发生故障的电池组能够向驱动模块220供电。
如图6-图8所示,供电模块210可包括并联连接的第三电池组B3和第四电池组B4。容错模块230可包括第四控制电路和第五控制电路,第四控制电路用于控制第三电池组B3与驱动模块220之间的通断;第五控制电路用于控制第四电池组B4与驱动模块220之间的通断。
本实施例针对并联第三电池组B3和第四电池组B4,分别设置了第四控制电路和第五控制电路,其中一个用于控制第三电池组B3与驱动模块220之间的通断,另一个用于控制第四电池组B4与驱动模块220之间的通断。如此,当其中一个电池组故障时,可通过第四控制电路和第五控制电 路分别控制发生故障的电池组与驱动模块220之间断开,以及未发生故障的电池组与驱动模块220之间导通,以使供电模块210仅采用未发生故障的电池组进行故障。且第四控制电路和第五控制电路,分工明确,有助于对第三电池组B3和第四电池组B4进行分别控制,也便于后续维修和故障检测。
如图6-图8所示,第四控制电路可包括第四开关K4,第四开关K4设置于第三电池组B3与驱动模块220之间。第四开关K4的一端与第三电池组B3的正极连接,另一端与第四电池组B4的正极及驱动模块220的第二端共线连接。
如此,通过在第三电池组B3的正极连接第四开关K4的一端,并将第四开关K4的另一端与第四电池组B4的正极及驱动模块220的第二端共线连接。使得第四开关K4与第三电池组B3串联连接,且与第四电池组B4并联连接,通过第四开关K4的通断,便可实现第三电池组B3与驱动模块220之间的通断,控制逻辑简单,操作方便。且由于第四开关K4与第四电池组B4并联,不会影响第四电池组B4与驱动模块220之间的通断,实现第四开关K4对第三电池组B3之间的独立控制,更有利于提高整体动力电池系统200的安全可靠性能。
第五控制电路可以包括第五开关K5,第五开关K5设置于第四电池组B4与驱动模块220之间;第五开关K5的一端与第四电池组B4的正极连接,另一端与第三电池组B3的正极及驱动模块220的第二端共线连接。
与第四开关K4的设计类似,通过在第四电池组B4的正极连接第五开关K5的一端,并将第五开关K5的另一端与第三电池组B3的正极及驱动模块220的第二端共线连接。使得第五开关K5与第四电池组B4串联连接,且与第三电池组B3并联连接,通过第五开关K5的通断,便可实现第四电池组B4与驱动模块220之间的通断,控制逻辑简单,操作方便。且由于第五开关K5与第三电池组B3并联,不会影响第三电池组B3与驱动模块220之间的通断,实现第五开关K5对第四电池组B4之间的独立控制,更有利于提高整体动力电池系统200的安全可靠性能。
可以理解的是,当供电模块210的电池组均并联连接时,即使部分电池组故障,也不会影响供电模块210向驱动模块220提供的电压大小,所以无需设置调压模块。图8所示的加热模块可仅用于电池自加热过程,及第三电池组B3的能量传递。
在另一些实施方式中,容错模块230还可包括第六开关,该第六开关设置于供电模块210和驱动模块220之间,控制至少一个电池组与驱动模块220之间的通断,以实现容错模块230的冗余控制,进一步提高该动力 电池系统200的安全可靠性能。
其中,第六开关可以但不限于包括图9-图13中的冗余开关K61、K62、K63及K64所示。
对于串联的第一电池组B1和第二电池组B2,可以如图9所示,两个电池组的正极通过不同的导线连接驱动模块220,并在各电池组与驱动模块220之间分别设置一个冗余开关,即,在第一电池组B1与驱动模块220的连接线路上设置开关K61,在第二电池组B2与驱动模块220的连接线路上设置开关K62。并可通过开关K61和开关K62的通断,对第一电池组B1和第二电池组B2进行冗余控制。以在第一开关K1或第二开关K2故障时,可以通过开关K61控制第一电池组B1与驱动模块220之间的通断,通过开关K62控制第二电池组B2与驱动模块220之间的通断。以保证能够在第一电池组B1(或第二电池组B2)故障时,将其与驱动模块220之间断开,并保持第二电池组B2(或第一电池组B1)与驱动模块220之间导通。
当第一电池组B1和第二电池组B2均正常运行时,可控制第一开关K1和第二开关K2均断开,并控制第三开关K3和开关K61及开关K62均闭合,使第一电池组B1和第二电池组B2以串联的方式,共同向驱动模块220供电。运行过程中,若第一电池组B1发生故障,则将第三开关K3断开,将第一开关K1和开关K61中的至少一个断开,使第一电池组B1与驱动模块220之间断开。并闭合第二开关K2和开关K62,使第二电池组B2与驱动模块220之间导通。若第二电池组B2发生故障,则将第三开关K3断开,将第二开关K2和开关K62中的至少一个断开,使第二电池组B2与驱动模块220之间断开。并闭合第一开关K1和开关K61,使第一电池组B1与驱动模块220之间导通。
对于串联的第一电池组B1和第二电池组B2,也可以如图10所示,两个电池组的正极通过同一根导线连接驱动模块220,可在该导线上设置一个冗余开关K61。则该冗余开关K61可同时控制第一电池组B1和第二电池组B2与驱动模块220之间的通断。在该动力电池系统200运行过程中,冗余开关K61可作为常闭开关,当第一开关K1或第二开关K2故障时,可作为紧急开关,断开整体电路。若第一电池组B1或第二电池组B2发生故障,则同个各自串联的开关进行控制,具体控制过程可参考图9所示结构的控制过程,在此不再赘述。
对于串联的第一电池组B1和第二电池组B2,还可以如图11所示,两个电池组的正极通过不同的导线连接驱动模块220,且两根导线之间通过开关K21进行连接或断开,并在第二电池组B2与驱动模块220之间设 置开关K22,在第一电池组B1与驱动模块220的连接线路上设置冗余开关K61。
当第一电池组B1和第二电池组B2均正常运行时,可控制第一开关K1断开,并控制开关K61断开,并控制第三开关K3和开关K21及开关K22均闭合,使第一电池组B1和第二电池组B2以串联的方式,共同向驱动模块220供电。或者,也可以控制第一开关K1、开关K21及开关K22均断开,并控制第三开关K3和开关K61均闭合。使第一电池组B1和第二电池组B2以串联的方式,共同向驱动模块220供电。
运行过程中,若第一电池组B1发生故障,则将第三开关K3、开关K21断开,以及将第一开关K1和开关K61中的至少一个断开,使第一电池组B1与驱动模块220之间断开。并闭合开关K22,使第二电池组B2与驱动模块220之间导通。或者闭合开关K21和开关K61,也能使第二电池组B2与驱动模块220之间导通(通过储能单元传递)。若第二电池组B2发生故障,则将第三开关K3、开关K21及开关K22均断开,使第二电池组B2与驱动模块220之间断开。并将第第一开关K1和开关K61均闭合,使第一电池组B1与驱动模块220之间导通。
对于并联的第三电池组B3和第四电池组B4,可以如图12或图13所示(图12中两个电池组均正常运行时,加热模块的两个上桥臂和两个下桥臂均断开,第三电池组B3通过开关K63所在的线路传输至驱动模块220)设置冗余开关。图12中示出了第三电池组B3的冗余开关K63的一种设置方式,图13中示出了第四电池组B4的冗余开关K64的一种设置方式。
开关K63可与第四开关K4共同控制第三电池组B3与驱动模块220之间的连接。开关64可与第五开关K5共同控制第四电池组B4与驱动模块220之间的连接。当第三电池组B3故障时,可以将开关K63可与第四开关K4中的任意一者断开,并将开关K64和第五开关K5都闭合。当第四电池组B4故障时,可以将开关K64可与第五开关K5中的任意一者断开,并将开关K63和第四开关K4都闭合。
需要说明的是,上述第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关K5及第六开关的设置,只是本实施例列举的几种实施方式,本实施例并不以此为限,只要能实现对两个电池组的上述控制功能即可。另外,本实施例也不限定第一电池组B1的负极和第二电池组B2的正极连接,也可以第一电池组B1的正极和第二电池组B2的负极连接。
在另一些实施方式中,该动力电池系统200还可包括预充模块,预充模块设置于供电模块210和驱动模块220之间,用于使动力电池系统200向整车提供预设高压。以在向整车提供运行动力之前,先实现整车上高压 过程。
该预充高压的电压值可以略低于整车运行时的电压值,具体可以根据实际情况进行设定,本实施例对其不做具体限定。
如图9-图13,预充模块可包括第七开关K7、第八开关K8及预充电阻R1;第八开关K8和预充电阻R1串联连接,且均与第七开关K7并联连接。
在向整车上高压时,可先控制第八开关K8及预充电阻R1均导通,使供电模块210和电容及第八开关K8和预充电阻R1之间形成串联的回路,可以对电容蓄电,直至第七开关K7靠近电池侧的第一电压,与靠近电机侧的第二电压之间的差值小于预设电压差,该过程可理解为电容蓄电过程,使得电容具有足够的容量,可以提高整体电路的稳定性。且该回路中具有预充电阻R1,可防止回路短路,对电容造成损害。然后再控制第七开关K7导通及第八开关K8断开,使动力电池系统200为车辆提供预设高压,即完成整车上高压。
需要说明的是,本实施例并不限于如图9-图13所示,将预充模块设置在电池组的负极,其也可以设置在电池组的正极,也可直接将冗余开关K61作为第八开关K8,只要能实现该预充过程即可。
其中,第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关K5、第六开关、第七开关K7及第八开关K8,均可以为继电器、MOS管或IGBT管等,本实施例对其具体结构和数量不做具体限定,只要能通过开关的通断,实现上述控制功能即可。
基于上述动力电池系统相同的构思,本实施例还提供一种电池控制方法,应用于上述任一实施方式的动力电池系统,如图14所示,该方法可以包括:
步骤S1,在供电模块向驱动模块供电过程中,确定是否存在电池组发生故障。
该方法可应用于整车域控制器,或者电池管理系统,本实施例对此不作具体限定,只要能实现该电池控制方法即可。下面为便于理解,以电池管理系统为例进行详细说明。
在一些实施方式中,确定是否存在电池组发生故障,可以包括以下处理:采集供电模块中各电池单体的电池参数,电池参数可包括电池单体的温度、电流、电压、电量中的至少一种;根据电池参数,确定是否存在电池组发生故障。
鉴于电池故障的表现形式多种多样,本实施例中,电池管理系统可以实时采集供电模块中各电池单体的温度、电流、电压、电量等参数,并至 少根据其中一种参数判断电池组是否故障,当其中一种参数异常则判断电池单体故障,则电池单体所在电池组也故障。本方法在确定电池组是否故障时,可直接获取电池管理系统实时采集的参数直接进行判断,从而提高该电池控制方法的效率。
具体地,根据电池参数,确定是否存在电池组发生故障,可以包括以下处理:确定是否存在电池参数满足预设故障条件的电池单体;若是,则将满足预设故障条件的电池单体所属的电池组确定为发生故障的电池组。
上述故障条件可以包括但不限于电池温度过高或过低、电池电流过大或过小,电池电压过大或欠压,电量过低等,只要满足其中一个条件,便可确定电池组发生故障。如此,检测多种电池参数,并基于各电池参数和预设故障条件,判断电池是否发生故障,可提高故障检测的准确性。
步骤S2,若是,则通过容错模块控制供电模块采用未发生故障的电池组进行供电。
在一些实施方式中,供电模块的至少两个电池组均串联连接;
通过容错模块控制供电模块采用未发生故障的电池组进行供电,可以包括:
通过容错模块控制发生故障的电池组与驱动模块和未发生故障的电池组之间均断开,并控制未发生故障的电池组与驱动模块之间导通,使供电模块采用未发生故障的电池组进行供电。
在一些实施方式中,供电模块可以包括串联连接的第一电池组B1和第二电池组B2;容错模块可以包括第一控制电路、第二控制电路及第三控制电路;
通过容错模块控制供电模块采用未发生故障的电池组进行供电,可以包括:
在第一电池组B1发生故障的情况下,通过第一控制电路控制第一电池组B1与驱动模块之间断开,通过第三控制电路控制第一电池组B1和第二电池组B2之间断开,并通过第二控制电路控制第二电池组B2与驱动模块之间导通,使供电模块采用第二电池组B2进行供电;
在第二电池组B2发生故障的情况下,通过第二控制电路控制第二电池组B2与驱动模块之间断开,通过第三控制电路控制第二电池组B2和第一电池组B1之间断开,并通过第一控制电路控制第一电池组B1与驱动模块之间导通,使供电模块采用第一电池组B1进行供电。
在一些实施方式中,第一控制电路可以包括第一开关,第一开关设置于第一电池组B1与驱动模块之间;
通过第一控制电路控制第一电池组B1与驱动模块之间断开或者导通, 可以包括:
在第一电池组B1发生故障的情况下,将第一开关断开,控制第一电池组B1与驱动模块之间断开;
在第二电池组B2发生故障的情况下,将第一开关闭合,控制第一电池组B1与驱动模块之间导通。
在一些实施方式中,第二控制电路可以包括第二开关,第二开关设置于第二电池组B2与驱动模块之间;
通过第二控制电路控制第二电池组B2与驱动模块之间断开或者导通,可以包括:
在第二电池组B2发生故障的情况下,将第二开关断开,控制第二电池组B2与驱动模块之间断开;
在第一电池组B1发生故障的情况下,将第二开关闭合,控制第二电池组B2与驱动模块之间导通。
在一些实施方式中,第三控制电路可以包括第三开关,第三开关设置于第一电池组B1和第二电池组B2之间;
通过第三控制电路控制第一电池组B1和第二电池组B2之间断开,可以包括:
在第一电池组B1或者第二电池组B2发生故障的情况下,将第三开关断开,控制第一电池和第二电池组B2之间断开。
在一些实施方式中,供电模块的至少两个电池组均并联连接;
通过容错模块控制供电模块采用未发生故障的电池组进行供电,可以包括:
通过容错模块控制发生故障的电池组与驱动模块之间断开,并控制未发生故障的电池组与驱动模块之间导通,使供电模块采用未发生故障的电池组进行供电。
在一些实施方式中,供电模块可以包括并联连接的第三电池组和第四电池组;容错模块可以包括第四控制电路和第五控制电路;
通过容错模块控制供电模块采用未发生故障的电池组进行供电,可以包括:
在第三电池组发生故障的情况下,通过控制第三电池组与驱动模块之间断开,并通过第五控制电路控制第四电池组与驱动模块之间导通,使供电模块采用第四电池组进行供电;
在第四电池组发生故障的情况下,通过第五控制电路控制第四电池组与驱动模块之间的断开,并通过第四控制电路控制第三电池组与驱动模块之间导通,使供电模块采用第三电池组进行供电。
在一些实施方式中,第四控制电路可包括第四开关,第四开关设置于第三电池组与驱动模块之间;
通过第四控制电路控制第三电池组与驱动模块之间的断开或者导通,可以包括:
在第三电池组发生故障的情况下,将第四开关断开,控制第三电池组与驱动模块之间的断开;
在第四电池组发生故障的情况下,将第四开关闭合,控制第三电池组与驱动模块之间的导通。
在一些实施方式中,第五控制电路可包括第五开关,第五开关设置于第四电池组与驱动模块之间;
通过第五控制电路控制第四电池组与驱动模块之间的断开或者导通,可以包括:
在第四电池组发生故障的情况下,将第五开关断开,控制第四电池组与驱动模块之间的断开;
在第三电池组发生故障的情况下,将第五开关闭合,控制第四电池组与驱动模块之间的导通。
在一些实施方式中,容错模块还可包括第六开关,第六开关设置于供电模块和驱动模块之间,控制至少一个电池组与驱动模块之间的通断;
通过容错模块控制供电模块采用未发生故障的电池组进行供电,还可包括:
将第六开关断开,控制发生故障的电池组与驱动模块之间断开,使供电模块采用未发生故障的电池组进行供电。
在一些实施方式中,动力电池系统还可包括调压模块,调压模块设置于供电模块和驱动模块之间;
电池控制方法还可以包括:
通过调压模块增大向驱动模块提供的电压。
在一些实施方式中,调压模块可以包括调压电路和储能单元;
通过调压模块增大向驱动模块提供的电压,可以包括:
控制供电模块、调压电路、储能单元构成放电回路,使供电模块向储能单元进行放电;
控制放电回路断开,控制供电模块及储能单元同时向驱动模块放电。
在一些实施方式中,调压电路可包括两相桥臂,储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂;
控制供电模块、调压电路、储能单元构成放电回路,可以包括:
控制两相桥臂中一相桥臂的上桥臂和另一相桥臂的下桥臂均导通,使供电模块、调压电路、储能单元构成放电回路。
本实施例提供的电池控制方法,通过容错模块,在部分电池故障时,及时断开发送故障的电池组与驱动模块之间的连接,使供电模块采用未发生故障的电池组继续向驱动模块供电,仍然可以实现用电设备的安全使用,不必紧急停车,等待电池返厂检测再行使用,从而极大提高了用户的用电体验满意度。
可以理解的是,本实施例基于上述动力电池系统相同的构思,上述动力电池系统的各种实施方式和有益效果,同样适用于本实施例提供的电池控制方法,在此不再赘述。
基于上述动力电池系统相同的构思,本实施例还提供一种电池控制装置,用于执行上述电池控制方法,如图15所示,该电池控制装置可以包括:
故障确定模块,用于在供电模块向驱动模块供电过程中,确定是否存在电池组发生故障;
容错控制模块,用于若是,则通过容错模块控制供电模块采用未发生故障的电池组进行供电。
具体地,该电池控制装置可以是整车域控制器或者电池管理系统,或者其它专门设置的控制装置,本实施例对其具体结构不做具体限定,只要能实现上述控制方法即可。
可以理解的是,本实施例基于上述动力电池系统相同的构思,上述动力电池系统的各种实施方式和有益效果,同样适用于本实施例提供的电池控制装置,在此不再赘述。
基于上述动力电池系统相同的构思,本实施例还提供一种用电设备,该用电设备可以包括上述任一实施方式的动力电池系统,及上述的电池控制装置。
具体地,该用电设备可以为可以为具有动力电池、电机及电机逆变器的电动车辆、电动玩具、船舶、航天器,等等。
可以理解的是,本实施例基于上述动力电池系统相同的构思,上述动力电池系统的各种实施方式和有益效果,同样适用于本实施例提供的用电设备,在此不再赘述。
本申请实施例还提供一种电子设备,以执行上述电池控制方法。该电子设备具体可以是整车域控制器或者电池管理系统,或者其它专门设置的 控制器等。请参考图16,其示出了本申请的一些实施方式所提供的一种用电设备的示意图。如图16所示,用电设备40可以包括:处理器400,存储器401,总线402和通信接口403,处理器400、通信接口403和存储器401通过总线402连接;存储器401中存储有可在处理器400上运行的计算机程序,处理器400运行计算机程序时执行本申请实施例前述任一实施方式所提供的电池控制方法。
其中,存储器401可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口403(可以是有线或者无线)实现该装置网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。
总线402可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。其中,存储器401用于存储程序,处理器400在接收到执行指令后,执行程序,前述本申请实施例任一实施方式揭示的动力电池系统可以应用于处理器400中,或者由处理器400实现。
处理器400可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器400中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器400可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器401,处理器400读取存储器401中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的电子设备与本申请实施例提供的电池控制方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。
本申请实施方式还提供一种与前述实施方式所提供的动力电池系统对应的计算机可读存储介质,请参考图17,其示出的计算机可读存储介质为光盘30,其上存储有计算机程序(即程序产品),计算机程序在被处理器 运行时,会执行前述任意实施方式所提供的电池控制方法。
需要说明的是,计算机可读存储介质的例子还可以包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。
本申请的上述实施例提供的计算机可读存储介质与本申请实施例提供的电池控制方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (37)

  1. 一种动力电池系统,其特征在于,包括:
    供电模块,包括至少两个电池组;
    驱动模块,与所述供电模块连接,用于将所述供电模块提供的电能转化为机械能;
    容错模块,设置于所述供电模块和所述驱动模块之间,用于在部分电池组发生故障时,控制所述供电模块采用未发生故障的电池组进行供电。
  2. 根据权利要求1所述的动力电池系统,其特征在于,所述至少两个电池组均串联连接;
    在部分电池组发生故障时,所述容错模块控制发生故障的电池组与所述驱动模块和未发生故障的电池组之间均断开,并控制未发生故障的电池组与所述驱动模块之间导通。
  3. 根据权利要求2所述的动力电池系统,其特征在于,所述供电模块包括串联连接的第一电池组和第二电池组;
    所述容错模块包括第一控制电路、第二控制电路及第三控制电路,所述第一控制电路用于控制所述第一电池组与所述驱动模块之间的通断;所述第二控制电路用于控制所述第二电池组与所述驱动模块之间的通断;所述第三控制电路用于控制所述第一电池组和所述第二电池组之间的通断。
  4. 根据权利要求3所述的动力电池系统,其特征在于,所述第一控制电路包括第一开关,所述第一开关设置于所述第一电池组与所述驱动模块之间;
    所述第一电池组的负极连接所述第二电池组的正极,所述第一开关的一端连接所述第一电池组的负极,另一端与所述第二电池组的负极及所述驱动模块的第一端共线连接。
  5. 根据权利要求3所述的动力电池系统,其特征在于,所述第二控制电路包括第二开关,所述第二开关设置于所述第二电池组与所述驱动模块之间;
    所述第一电池组的负极连接所述第二电池组的正极,所述第二开关的一端连接所述第一电池的正极,另一端与所述第二电池组的正极、所述驱动模块的第二端共线连接。
  6. 根据权利要求3所述的动力电池系统,其特征在于,所述第三控制电路包括第三开关,所述第三开关设置于所述第一电池组和所述第二电池组之间;
    所述第三开关的一端连接所述第一电池组的负极,另一端连接所述第二电池组的正极。
  7. 根据权利要求2所述的动力电池系统,其特征在于,还包括调压模块,所述调压模块设置于所述供电模块和所述驱动模块之间,用于在所述供电模块的部分电池组发生故障时,增大向所述驱动模块提供的电压。
  8. 根据权利要求7所述的动力电池系统,其特征在于,所述调压模块包括调压电路和储能单元,通过控制所述供电模块、所述调压电路、所述储能单元构成放电回路,使所述供电模块向所述储能单元放电;以及,控制所述放电回路断开,控制所述供电模块及所述储能单元同时向所述驱动模块放电。
  9. 根据权利要求8所述的动力电池系统,其特征在于,所述调压电路包括两相桥臂,所述储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂。
  10. 根据权利要求1所述的动力电池系统,其特征在于,所述至少两个电池组均并联连接;
    在部分电池组发生故障时,所述容错模块控制发生故障的电池组与所述驱动模块之间断开,并控制未发生故障的电池组与所述驱动模块之间导通。
  11. 根据权利要求10所述的动力电池系统,其特征在于,所述供电模块包括并联连接的第三电池组和第四电池组;
    所述容错模块包括第四控制电路和第五控制电路,所述第四控制电路用于控制所述第三电池组与所述驱动模块之间的通断;所述第五控制电路用于控制所述第四电池组与所述驱动模块之间的通断。
  12. 根据权利要求11所述的动力电池系统,其特征在于,所述第四控制电路包括第四开关,所述第四开关设置于所述第三电池组与所述驱动模块之间;
    所述第四开关的一端与所述第三电池组的正极连接,另一端与所述第四电池组的正极及所述驱动模块的第二端共线连接。
  13. 根据权利要求11所述的动力电池系统,其特征在于,所述第五控制电路包括第五开关,所述第五开关设置于所述第四电池组与所述驱动模块之间;
    所述第五开关的一端与所述第四电池组的正极连接,另一端与所述第三电池组的正极及所述驱动模块的第二端共线连接。
  14. 根据权利要求1-13任一项所述的动力电池系统,其特征在于,所述容错模块还包括第六开关,所述第六开关设置于所述供电模块和所述驱动模块之间,控制至少一个电池组与所述驱动模块之间的通断。
  15. 根据权利要求1-14任一项所述的动力电池系统,其特征在于,所述驱动模块包括M相逆变桥臂、M相电机及加热电路,所述M相逆变桥臂和所述加热电路均与所述供电模块并联连接,所述M相电机的各项绕组分别与所述M相逆变桥臂的各项桥臂一一对应连接,所述M相电机的中性线与所述加热电路连接。
  16. 根据权利要求1-15任一项所述的动力电池系统,其特征在于,还包 括预充模块,所述预充模块设置于所述供电模块和所述驱动模块之间,用于使所述动力电池系统向整车提供预设高压。
  17. 根据权利要求16所述的动力电池系统,其特征在于,所述预充模块包括第七开关、第八开关及预充电阻;所述第八开关和所述预充电阻串联连接,且均与所述第七开关并联连接。
  18. 一种电池控制方法,其特征在于,应用于权利要求1-17任一项所述的动力电池系统,所述方法包括:
    在供电模块向驱动模块供电过程中,确定是否存在电池组发生故障;
    若是,则通过容错模块控制所述供电模块采用未发生故障的电池组进行供电。
  19. 根据权利要求18所述的电池控制方法,其特征在于,所述供电模块的至少两个电池组均串联连接;
    所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
    通过容错模块控制发生故障的电池组与所述驱动模块和未发生故障的电池组之间均断开,并控制未发生故障的电池组与所述驱动模块之间导通,使所述供电模块采用未发生故障的电池组进行供电。
  20. 根据权利要求19所述的电池控制方法,其特征在于,所述供电模块包括串联连接的第一电池组和第二电池组;所述容错模块包括第一控制电路、第二控制电路及第三控制电路;
    所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
    在所述第一电池组发生故障的情况下,通过所述第一控制电路控制所述第一电池组与所述驱动模块之间断开,通过所述第三控制电路控制所述第一电池组和所述第二电池组之间断开,并通过所述第二控制电路控制所述第二电池组与所述驱动模块之间导通,使所述供电模块采用所述第二电池组进行供电;
    在所述第二电池组发生故障的情况下,通过所述第二控制电路控制所述第二电池组与所述驱动模块之间断开,通过所述第三控制电路控制所述第二电池组和所述第一电池组之间断开,并通过所述第一控制电路控制所述第一电池组与所述驱动模块之间导通,使所述供电模块采用所述第一电池组进行供电。
  21. 根据权利要求20所述的电池控制方法,其特征在于,所述第一控制电路包括第一开关,所述第一开关设置于所述第一电池组与所述驱动模块之间;
    所述通过第一控制电路控制所述第一电池组与所述驱动模块之间断开或者导通,包括:
    在所述第一电池组发生故障的情况下,将所述第一开关断开,控制所述第一电池组与所述驱动模块之间断开;
    在所述第二电池组发生故障的情况下,将所述第一开关闭合,控制所述第一电池组与所述驱动模块之间导通。
  22. 根据权利要求20所述的电池控制方法,其特征在于,所述第二控制电路包括第二开关,所述第二开关设置于所述第二电池组与所述驱动模块之间;
    所述通过第二控制电路控制所述第二电池组与所述驱动模块之间断开或者导通,包括:
    在所述第二电池组发生故障的情况下,将所述第二开关断开,控制所述第二电池组与所述驱动模块之间断开;
    在所述第一电池组发生故障的情况下,将所述第二开关闭合,控制所述第二电池组与所述驱动模块之间导通。
  23. 根据权利要求20所述的电池控制方法,其特征在于,所述第三控制电路包括第三开关,所述第三开关设置于所述第一电池组和所述第二电池组之间;
    通过所述第三控制电路控制所述第一电池组和所述第二电池组之间断开,包括:
    在所述第一电池组或者所述第二电池组发生故障的情况下,将所述第三开关断开,控制所述第一电池和所述第二电池组之间断开。
  24. 根据权利要求18所述的电池控制方法,其特征在于,所述供电模块的至少两个电池组均并联连接;
    所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
    通过容错模块控制发生故障的电池组与所述驱动模块之间断开,并控制未发生故障的电池组与所述驱动模块之间导通,使所述供电模块采用未发生故障的电池组进行供电。
  25. 根据权利要求18所述的电池控制方法,其特征在于,所述供电模块包括并联连接的第三电池组和第四电池组;所述容错模块包括第四控制电路和第五控制电路;
    所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,包括:
    在所述第三电池组发生故障的情况下,通过所述第四控制电路控制所述 第三电池组与所述驱动模块之间断开,并通过所述第五控制电路控制所述第四电池组与所述驱动模块之间导通,使所述供电模块采用所述第四电池组进行供电;
    在所述第四电池组发生故障的情况下,通过所述第五控制电路控制所述第四电池组与所述驱动模块之间的断开,并通过所述第四控制电路控制所述第三电池组与所述驱动模块之间导通,使所述供电模块采用所述第三电池组进行供电。
  26. 根据权利要求25所述的电池控制方法,其特征在于,所述第四控制电路包括第四开关,所述第四开关设置于所述第三电池组与所述驱动模块之间;
    通过所述第四控制电路控制所述第三电池组与所述驱动模块之间的断开或者导通,包括:
    在所述第三电池组发生故障的情况下,将所述第四开关断开,控制所述第三电池组与所述驱动模块之间的断开;
    在所述第四电池组发生故障的情况下,将所述第四开关闭合,控制所述第三电池组与所述驱动模块之间的导通。
  27. 根据权利要求25所述的电池控制方法,其特征在于,所述第五控制电路包括第五开关,所述第五开关设置于所述第四电池组与所述驱动模块之间;
    通过所述第五控制电路控制所述第四电池组与所述驱动模块之间的断开或者导通,包括:
    在所述第四电池组发生故障的情况下,将所述第五开关断开,控制所述第四电池组与所述驱动模块之间的断开;
    在所述第三电池组发生故障的情况下,将所述第五开关闭合,控制所述第四电池组与所述驱动模块之间的导通。
  28. 根据权利要求18-27任一项所述的电池控制方法,其特征在于,所述容错模块还包括第六开关,所述第六开关设置于所述供电模块和所述驱动模块之间,控制至少一个电池组与所述驱动模块之间的通断;
    所述通过容错模块控制所述供电模块采用未发生故障的电池组进行供电,还包括:
    将所述第六开关断开,控制发生故障的电池组与所述驱动模块之间断开,使所述供电模块采用未发生故障的电池组进行供电。
  29. 根据权利要求18所述的电池控制方法,其特征在于,所述确定是否存在电池组发生故障,包括:
    采集所述供电模块中各电池单体的电池参数,所述电池参数包括电池单 体的温度、电流、电压、电量中的至少一种;
    根据所述电池参数,确定是否存在电池组发生故障。
  30. 根据权利要求29所述的电池控制方法,其特征在于,根据所述电池参数,确定是否存在电池组发生故障,包括:
    确定是否存在电池参数满足预设故障条件的电池单体;
    若是,则将满足预设故障条件的电池单体所属的电池组确定为发生故障的电池组。
  31. 根据权利要求18所述的电池控制方法,其特征在于,所述动力电池系统还包括调压模块,所述调压模块设置于所述供电模块和所述驱动模块之间;
    所述电池控制方法还包括:
    通过所述调压模块增大向所述驱动模块提供的电压。
  32. 根据权利要求31所述的电池控制方法,其特征在于,所述调压模块包括调压电路和储能单元;
    所述通过所述调压模块增大向所述驱动模块提供的电压,包括:
    控制所述供电模块、所述调压电路、所述储能单元构成放电回路,使所述供电模块向所述储能单元进行放电;
    控制所述放电回路断开,控制所述供电模块及所述储能单元同时向所述驱动模块放电。
  33. 根据权利要求32所述的电池控制方法,其特征在于,所述调压电路包括两相桥臂,所述储能单元的一端连接其中一相桥臂的上桥臂和下桥臂,另一端连接另一相桥臂的上桥臂和下桥臂;
    控制所述供电模块、所述调压电路、所述储能单元构成放电回路,包括:
    控制两相桥臂中一相桥臂的上桥臂和另一相桥臂的下桥臂均导通,使所述供电模块、所述调压电路、所述储能单元构成放电回路。
  34. 一种电池控制装置,其特征在于,包括:
    故障确定模块,用于在供电模块向驱动模块供电过程中,确定是否存在电池组发生故障;
    容错控制模块,用于若是,则通过容错模块控制所述供电模块采用未发生故障的电池组进行供电。
  35. 一种用电设备,其特征在于,包括权利要求1-17任一项所述的动力电池系统,及权利要求34所述的电池控制装置。
  36. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序以实现如权利要求18-33任一项所述的方法。
  37. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行实现如权利要求18-33中任一项所述的方法。
PCT/CN2023/082774 2022-05-27 2023-03-21 动力电池系统、电池控制方法、装置、设备及存储介质 WO2023226561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210590948.1A CN115378065A (zh) 2022-05-27 2022-05-27 动力电池系统、电池控制方法、装置、设备及存储介质
CN202210590948.1 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226561A1 true WO2023226561A1 (zh) 2023-11-30

Family

ID=84062624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082774 WO2023226561A1 (zh) 2022-05-27 2023-03-21 动力电池系统、电池控制方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115378065A (zh)
WO (1) WO2023226561A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378065A (zh) * 2022-05-27 2022-11-22 宁德时代新能源科技股份有限公司 动力电池系统、电池控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN111591140A (zh) * 2020-05-15 2020-08-28 华为技术有限公司 电池管理系统及车辆
CN113561848A (zh) * 2021-06-29 2021-10-29 东风汽车集团股份有限公司 一种电动汽车动力电池充放电控制系统及方法
DE102020211786A1 (de) * 2020-09-21 2022-03-24 Reinz-Dichtungs-Gmbh Entladevorrichtung, Fahrzeug mit einer derartigen Entladevorrichtung sowie Verfahren zum Handhaben eines Batteriemoduls
CN115378065A (zh) * 2022-05-27 2022-11-22 宁德时代新能源科技股份有限公司 动力电池系统、电池控制方法、装置、设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447591A (zh) * 2008-11-19 2009-06-03 中国电力科学研究院 一种易于维护的液流电池储能系统
CN111347937B (zh) * 2018-12-21 2021-12-07 比亚迪股份有限公司 动力电池的加热方法、电机控制电路及车辆
CN110518159B (zh) * 2019-05-22 2022-03-01 国网辽宁省电力有限公司电力科学研究院 一种用于大规模电池组的可重构多单体电池拓扑和重构算法
CN110350625A (zh) * 2019-07-28 2019-10-18 王京 一种储能系统及其控制方法
CN112398183B (zh) * 2019-08-15 2023-04-07 比亚迪股份有限公司 预充电路、能量转换装置及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN111591140A (zh) * 2020-05-15 2020-08-28 华为技术有限公司 电池管理系统及车辆
DE102020211786A1 (de) * 2020-09-21 2022-03-24 Reinz-Dichtungs-Gmbh Entladevorrichtung, Fahrzeug mit einer derartigen Entladevorrichtung sowie Verfahren zum Handhaben eines Batteriemoduls
CN113561848A (zh) * 2021-06-29 2021-10-29 东风汽车集团股份有限公司 一种电动汽车动力电池充放电控制系统及方法
CN115378065A (zh) * 2022-05-27 2022-11-22 宁德时代新能源科技股份有限公司 动力电池系统、电池控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115378065A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN110015202B (zh) 电动汽车电池加热方法
CN210985730U (zh) 一种双电源冗余系统和驾驶设备
WO2023226561A1 (zh) 动力电池系统、电池控制方法、装置、设备及存储介质
Vardwaj et al. Various methods used for battery balancing in electric vehicles: A comprehensive review
CN109066846B (zh) 一种模块化电池间均衡电路结构与方法
WO2013140709A1 (ja) バランス補正装置および蓄電システム
CN114243848A (zh) 电池系统主动均衡的充电控制方法、放电控制方法和系统
CN108482166B (zh) 一种提高新能源汽车续航里程的控制系统
CN113078714A (zh) 一种储能系统及储能系统控制方法
CN115833404A (zh) 一种储能系统、不间断电源及电池均衡的方法
WO2022160935A1 (zh) 一种车载分布式供电系统、车载供电控制方法及装置
WO2022036580A1 (zh) 一种并联电池管理方法
US11691536B2 (en) Power system for a vehicle
WO2022166491A1 (zh) 高压充电系统和高压充电系统的充电方法
WO2023202293A1 (zh) 电机控制方法、装置、用电设备及存储介质
CN211320956U (zh) 一种在线式电源的充放电电路及充放电系统
WO2023236623A1 (zh) 电池组电压均衡方法、装置、电子设备及存储介质
CN103165960B (zh) 一种用于电动车电池的加热保温系统
WO2023142086A1 (zh) 电池管理装置、系统
CN111740579B (zh) 一种启动方法及启动电路和储能变流器
CN203085712U (zh) 一种用于电动车电池的加热保温系统
CN208479208U (zh) 基于h桥串联结构的电池组充电控制电路
WO2023226907A1 (zh) 一种电源电路、车载电源系统和车辆
JP7430810B2 (ja) 加熱システム、加熱方法及び装置、電力消費機器
CN204886225U (zh) 一种控制模块化锂电池内均衡和模块之间均衡的控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810636

Country of ref document: EP

Kind code of ref document: A1