WO2023236623A1 - 电池组电压均衡方法、装置、电子设备及存储介质 - Google Patents
电池组电压均衡方法、装置、电子设备及存储介质 Download PDFInfo
- Publication number
- WO2023236623A1 WO2023236623A1 PCT/CN2023/082779 CN2023082779W WO2023236623A1 WO 2023236623 A1 WO2023236623 A1 WO 2023236623A1 CN 2023082779 W CN2023082779 W CN 2023082779W WO 2023236623 A1 WO2023236623 A1 WO 2023236623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- switch module
- difference
- switch
- bridge arm
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000007599 discharging Methods 0.000 claims abstract description 20
- 230000027311 M phase Effects 0.000 claims description 48
- 238000013507 mapping Methods 0.000 claims description 33
- 230000009471 action Effects 0.000 claims description 11
- 238000004146 energy storage Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims 1
- 238000004804 winding Methods 0.000 description 33
- 238000010586 diagram Methods 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
Definitions
- the present application relates to the field of battery technology, and specifically to a battery pack voltage equalization method, device, electronic equipment and storage medium.
- Power batteries such as lithium-ion batteries have the advantages of high power density, high cycle life and good environmental protection effect. They have become increasingly popular in many fields, especially in the field of electric transportation. For example, power batteries are used as power. sources of electric vehicles, etc. However, the charging and discharging power and charging and discharging capacity of the power battery are greatly attenuated at low temperatures. Therefore, it is usually necessary to charge and discharge the power battery to achieve self-heating of the power battery.
- the power battery may include multiple battery groups, and a switch is connected between the first ends of two adjacent battery groups. The opening and closing state of the switch can change the connection relationship between the two adjacent battery groups. In the prior art, there is often a certain voltage difference between the voltages of two battery packs of a power battery. When the voltage difference is too large, if the switch connected between two adjacent battery packs is directly closed, the two battery packs will Restoring the parallel relationship will easily cause safety accidents and damage to the circuit due to excessive voltage differences.
- the present application provides a battery pack voltage equalization method, device, electronic equipment and storage medium, which can solve the problem that there is often a certain voltage difference between the voltages of two adjacent battery packs of power batteries in the prior art.
- the voltage difference is too large, if the switch connected between two adjacent battery packs is directly closed to restore the parallel relationship between the two battery packs, it is very easy to cause safety accidents and damage to the circuit due to the excessive voltage difference. .
- a simplified summary is provided below. This summary is not intended to be an extensive review, nor is it intended to identify key/important elements or to delineate the scope of these embodiments. Its sole purpose is to present a few concepts in a simplified form as a prelude to the more detailed explanation that follows.
- a first aspect of the embodiment of the present application provides a battery pack voltage equalization method, which is applied to a charge and discharge circuit;
- the charge and discharge circuit includes a first switch module, an energy storage module, a second switch module, a first battery pack and a third Two battery packs; the method includes:
- a first switch is connected between the first end of the first battery group and the first end of the second battery group;
- the shutdown module operates to form a voltage balancing loop in the charge and discharge circuit.
- the battery pack voltage balancing method realizes the voltage balance between the first battery pack and the second battery pack, avoids the voltage difference between the first battery pack and the second battery pack being too large, and thereby avoids the first
- the potential safety hazard caused by the excessive voltage difference between the battery pack and the second battery pack avoids safety accidents due to the excessive voltage difference, and solves the following technical problems existing in the existing technology: when the voltage difference is too large , if the switch connected between two adjacent battery packs is directly closed to restore the parallel relationship between the two battery packs, it is extremely easy to cause a safety accident due to excessive voltage difference and damage the circuit.
- the first switch module and the second switch module are controlled to act according to the first voltage and the second voltage to form a voltage balancing loop in the charge and discharge circuit, include:
- the switch polarity of the first switch the first voltage and the second voltage, the first switch module and the second switch module are controlled to operate to form a voltage balance in the charge and discharge circuit. loop.
- the first switch module and the second switch module are controlled to act according to the switch polarity of the first switch, the first voltage, and the second voltage.
- a voltage balancing loop is formed in the above charging and discharging circuit, including:
- the first switch module and the second switch module are controlled to operate according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval. , forming a voltage balancing loop in the charge and discharge circuit.
- the first switch module and the second switch module are controlled according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval. action, forming a voltage balancing loop in the charge and discharge circuit, achieving voltage balance between the first battery pack and the second battery pack, preventing the voltage difference between the first battery pack and the second battery pack from being too large, and preventing the first battery pack from being too large.
- the potential safety hazard caused by the excessive voltage difference between the battery pack and the second battery pack is avoided, and safety accidents caused by the excessive voltage difference are avoided.
- the first switch module and the second switch module are controlled to act according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval.
- a voltage balancing loop is formed in the charge and discharge circuit, including:
- the first switch module and the second switch module are controlled to be turned on and off periodically until the When the absolute value of the difference between the first voltage and the second voltage belongs to the first preset interval, the first operation is performed; the lower limit of the second preset interval is equal to the first preset interval. The upper limit of the interval;
- the first operation includes controlling the first switch module and the second switch module to be turned on until a preset stable condition is reached.
- the first battery pack is realized
- the voltage balance between the first battery group and the second battery group can avoid the voltage difference between the first battery group and the second battery group being too large, and can avoid the safety hazard caused by the voltage difference between the first battery group and the second battery group being too large. , Avoid safety accidents due to excessive voltage difference.
- the first switch module and the second switch module are controlled to act according to the switch polarity of the first switch, the first voltage, and the second voltage.
- a voltage balancing loop is formed in the above charging and discharging circuit, including:
- the actions of the first switch module and the second switch module are controlled according to the difference between the first voltage and the second voltage and at least one preset interval.
- a voltage balancing loop is formed in the charging and discharging circuit.
- a voltage balancing loop is formed in the charge and discharge circuit to realize the voltage balance between the first battery pack and the second battery pack and avoid the first battery pack. If the voltage difference between the battery pack and the second battery pack is too large, safety hazards caused by the excessive voltage difference between the first battery pack and the second battery pack can be avoided, and safety accidents caused by the excessive voltage difference can be avoided.
- the first switch module and the second switch module are controlled to act according to the difference between the first voltage and the second voltage and at least one preset interval.
- a voltage balancing loop is formed in the discharge circuit, including:
- the first operation is performed; the positive direction of the polarity of the first switch is determined by the first battery. pack pointed to the second battery pack;
- the first switch module and the second switch module are controlled to be turned on and off periodically until the first After the difference between the voltage and the second voltage falls within the third preset interval, the conduction is maintained until the preset stable condition is reached;
- the first switch module and the second switch module are controlled to be turned on and off periodically until the first After the difference between the voltage and the second voltage falls within the fourth preset interval, it remains on until the preset stability condition is reached;
- the first operation includes controlling the first switch module and the second switch module to be turned on until a preset stable condition is reached.
- a voltage balancing loop is formed in the charge and discharge circuit to realize the voltage balance between the first battery pack and the second battery pack and avoid the first battery pack. If the voltage difference between the battery pack and the second battery pack is too large, safety hazards caused by the excessive voltage difference between the first battery pack and the second battery pack can be avoided, and safety accidents caused by the excessive voltage difference can be avoided.
- the first switch module includes an M-phase bridge arm circuit
- the second switch module includes an N-phase bridge arm circuit
- M and N are positive integers
- each of the bridge arm circuits of the first switch module includes A first upper bridge arm and a first lower bridge arm are connected in series
- each bridge arm circuit of the second switch module includes a second upper bridge arm and a second lower bridge arm connected in series;
- the control of the first switch module and the second switch module to periodically turn on and off includes:
- the first operation includes controlling at least one of the first upper bridge arms and at least one of the second upper bridge arms to be turned on, and controlling all of the lower bridge arms to be turned off until a preset stable condition is reached.
- a voltage balancing circuit is formed in the charging and discharging circuit to achieve voltage balancing between the first battery group and the second battery group, avoid excessive voltage difference between the first battery group and the second battery group, and prevent the first battery group and the second battery group from being too large. Potential safety hazards caused by excessive voltage differences between the second battery packs and avoid safety accidents due to excessive voltage differences.
- the preset stable condition is that the voltage difference between any two upper bridge arms that are turned on is less than or equal to a preset threshold. This preset stability condition can ensure that the voltage difference between any two conductive high-side arms is kept within a small range to avoid circuit failure caused by an excessive voltage difference between the two high-side arms.
- controlling at least one of the first upper-side arms and at least one of the second upper-side arms to be turned on and off periodically includes:
- the first number of the first upper bridge arms and the second number of the second upper bridge arms are controlled to periodically On and off, the first number and the second number correspond to the absolute value in the preset mapping relationship.
- the balance between the voltages of the first battery group and the second battery group is initially achieved, so that The absolute value of the difference between the first voltage and the second voltage belongs to the first preset interval, so as to further perform the first operation.
- a third number of the first voltages are controlled according to the difference between the first voltage and the second voltage and the preset mapping relationship.
- An upper bridge arm and a fourth number of second upper bridge arms are periodically turned on and off, and the third number and the fourth number are related to the first voltage in the preset mapping relationship. Corresponds to the difference between the second voltages.
- the first upper bridge arm is preliminarily realized.
- the balance between the voltages of the first battery group and the second battery group makes the absolute value of the difference between the first voltage and the second voltage belong to the third preset interval, so as to facilitate subsequent further balancing of the first battery group and the second battery group. Voltage.
- the first switch when the first switch has polarity, if the difference between the first voltage and the second voltage belongs to a sixth preset interval, at least one of the first upper bridges is controlled.
- the arms and at least one of the second upper bridge arms are periodically turned on and off, including:
- a fifth number of the first voltages are controlled according to the difference between the first voltage and the second voltage and the preset mapping relationship.
- An upper bridge arm and a sixth number of the second upper bridge arms are periodically turned on and off, and the fifth number and the sixth number are related to the first voltage in the preset mapping relationship. Corresponds to the difference between the second voltages.
- the first upper bridge arm is preliminarily realized.
- the balance between the voltages of the first battery group and the second battery group makes the absolute value of the difference between the first voltage and the second voltage belong to the fourth preset interval, so as to facilitate subsequent further balancing of the first battery group and the second battery group. Voltage.
- a voltage acquisition module is used to acquire the first voltage of the first battery group and the second voltage of the second battery group.
- the first end of the first battery group and the first end of the second battery group are connected with first switch;
- a control module configured to control the first switch module and the second switch module to operate according to the first voltage and the second voltage, so as to form a voltage balancing loop in the charge and discharge circuit.
- the battery pack voltage balancing device realizes the voltage balance between the first battery pack and the second battery pack, and avoids the voltage difference between the first battery pack and the second battery pack being too large, thereby avoiding the first
- the potential safety hazard caused by the excessive voltage difference between the battery pack and the second battery pack avoids safety accidents due to the excessive voltage difference, and solves the following technical problems existing in the existing technology: when the voltage difference is too large , if the switch connected between two adjacent battery packs is directly closed to restore the parallel relationship between the two battery packs, it is extremely easy to cause a safety accident due to excessive voltage difference and damage the circuit.
- a fourth aspect of the embodiments of the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement any of the above battery pack voltage balancing methods.
- the technical solution of the fifth aspect can achieve the same beneficial technical effects as the technical solution of the first aspect.
- Figure 1 shows a structural block diagram of a charging and discharging circuit in some embodiments of the present application
- FIG. 5 shows a flow chart of the steps included in step S20 in Figure 1;
- Figure 6 shows a circuit diagram of a charging and discharging circuit in other embodiments of the present application.
- Figure 7 shows a circuit diagram of a charging and discharging circuit in other embodiments of the present application.
- Figure 8 shows a structural block diagram of a battery pack voltage balancing device according to some embodiments of the present application.
- Figure 9 shows a structural block diagram of an electronic device according to some embodiments of the present application.
- Figure 10 shows a schematic diagram of a computer-readable storage medium according to some embodiments of the present application.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- multiple refers to more than two (including two).
- multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
- Power batteries have the advantages of high power, high energy density, and good environmental protection effect, and have been widely used in new energy vehicles, consumer electronics, energy storage systems and other technical fields. Power batteries can be used in, but are not limited to, vehicles, ships, aircraft and other electrical devices.
- Electric vehicles powered by power batteries have the advantages of good environmental protection, low noise, low cost, and can effectively promote energy conservation and emission reduction. They have huge market application prospects and are conducive to sustainable economic development.
- the inventor of this application found that in the prior art, there is often a certain voltage difference between the voltages of two adjacent battery packs, especially after the power battery has completed self-heating. When the two battery packs are restored to a parallel relationship, it is very easy to cause safety accidents due to excessive voltage differences and damage to the circuit. For example, switch K1 may be damaged by instantaneous overcurrent.
- the voltage difference between the two battery packs is too large, the circulating current value after direct parallel connection may exceed the maximum allowable value of the battery pack at the current temperature, causing lithium deposition and damage to the battery pack.
- embodiments of the present application provide a battery pack voltage balancing method.
- the first switch is polarized or non-polar according to the first voltage.
- the second voltage after executing the corresponding voltage balancing strategy, closing the first switch, achieving voltage balance between the first battery group and the second battery group, and avoiding the collision between the first battery group and the second battery group.
- the voltage difference is too large, thereby avoiding potential safety hazards caused by the excessive voltage difference between the first battery pack and the second battery pack, avoiding safety accidents due to the excessive voltage difference, and solving the following problems existing in the existing technology Technical problem:
- the voltage difference is too large
- the switch connected between two adjacent battery packs is directly closed to restore the parallel relationship between the two battery packs, it is extremely easy to cause a safety accident due to excessive voltage difference and damage the circuit.
- Embodiments of the present application provide a battery pack voltage equalization method, which is applied to a charge and discharge circuit; the charge and discharge circuit includes a first switch module, an energy storage module, a second switch module, a first battery pack, and a second battery pack.
- the power supply module may be, for example, the power supply module 1 in the charge and discharge circuit as shown in FIG. 1 .
- the charge and discharge circuit includes a power supply module 1, a first switch module 2, an energy storage module 3 and a second switch module 4.
- the power supply module 1 includes a first battery pack and a second battery pack.
- the first battery pack A switch is connected between the first end of the battery pack and the first end of the second battery pack, and the switch can be a non-polar relay or a polarized relay.
- each battery group can include multiple battery packs connected in parallel, and the specific number of battery packs included in each battery group can be set according to actual needs.
- the first switch module includes an M-phase bridge arm circuit
- the second switch module includes an N-phase bridge arm circuit
- M and N are positive integers
- each bridge arm circuit of the first switch module includes a series-connected first An upper bridge arm and a first lower bridge arm
- each bridge arm circuit of the second switch module includes a second upper bridge arm and a second lower bridge arm connected in series.
- N can be equal to M, and the values of M and N can be set according to actual needs.
- a first switch K1 is connected between the first end of the first battery pack 11 and the first end of the second battery pack 12 (the first switch K1 is not shown in FIG. 1 , FIG. 1
- the dotted line in the power supply module 1 indicates that the connection relationship is variable).
- the first switch K1 may be a non-polar relay or a polarized relay.
- the second switch module 4 includes a series-connected second upper bridge arm 401 and a second lower bridge arm 402; the first switch module 2 includes an M-phase bridge arm circuit, M is a positive integer, and each phase bridge arm circuit includes a series-connected upper bridge arm.
- Each battery pack may be a collection of multiple battery modules or a battery module including multiple cells.
- the first switch module 2 can be implemented by an inverter and includes M-phase bridge arm circuits, where M is a positive integer; each phase bridge arm circuit includes a first upper bridge arm and a first lower bridge arm.
- M the M-phase bridge arm circuit includes M first upper bridge arms and M first lower bridge arms, and the M first upper bridge arms and M first lower bridge arms are connected in a one-to-one correspondence.
- the energy storage module 3 may include an M-phase motor, and the M-phase motor may be an M-phase winding motor with M-phase windings.
- the M-phase bridge arm circuit of the first switch module 2 can be a three-phase bridge arm circuit, including a bridge arm circuit 21, a bridge arm circuit 22 and a bridge arm circuit 23; corresponding to the first switch module 2, the M-phase motor It is a three-phase winding motor, including three-phase windings, namely winding A1, winding B1 and winding C1.
- the bridge arm circuit 21 includes a first upper bridge arm 211 and a first lower bridge arm 212 connected in series.
- the first upper bridge arm 211 includes a parallel transistor V1 and a freewheeling diode D1.
- the first lower bridge arm 212 includes a parallel connected triode V4 and a freewheeling diode D1.
- the bridge arm circuit 22 includes a first upper bridge arm 221 and a first lower bridge arm 222 connected in series.
- the first upper bridge arm 221 includes a parallel triode V2 and a freewheeling diode D2.
- the first lower bridge arm 222 includes Transistor V5 and freewheeling diode D5 are connected in parallel;
- the bridge arm circuit 23 includes a first upper bridge arm 231 and a first lower bridge arm 232 connected in series.
- the first upper bridge arm 231 includes a parallel connected transistor V3 and freewheeling diode D3.
- the lower bridge arm 232 includes a parallel transistor V6 and a freewheeling diode D6.
- N is 1, and the second switch module 4 includes a bridge arm circuit, which includes The second upper bridge arm 401 and the second lower bridge arm 402 are connected in series.
- the structure of the second upper bridge arm 401 and the second lower bridge arm 402 may be a parallel triode and a freewheeling diode, or may only include a switch.
- the structure of the second upper bridge arm 401 is a parallel-connected triode V7 and a freewheeling diode D7
- the second lower bridge arm 402 is a structure of a parallel-connected triode V8 and a freewheeling diode D8.
- the second battery pack 12 is connected in parallel with the M-phase bridge arm included in the first switch module 2, wherein the first end of the second battery pack 12 and the upper bridge arm of the M-phase bridge arm are connected in line; M The upper and lower bridge arm connection points of the phase bridge arms are respectively connected to the M-phase windings of the M-phase motor in a one-to-one correspondence; the upper and lower bridge arm connection points of the second switch module 4 are connected to the neutral point of the M-phase motor.
- the upper and lower bridge arm connection points of the second switch module 4 can be directly connected to the neutral point of the M-phase motor through wires, or they can be connected between the upper and lower bridge arm connection points of the second switch module 4 and the neutral point of the M-phase motor.
- the second energy storage element may include at least one inductor L1, or may include an inductor and a capacitor connected in series.
- the inductance of the inductor L1 is adapted to the charging and discharging performance and rapid heating conditions requirements of the power supply module, and its minimum inductance is 0H (that is, equivalent to a DC wire).
- the first end of the first battery pack 11 is connected in line with the second upper bridge arm 401 of the second switch module 4; the second end of the first battery pack 11 is connected to the second end of the second battery pack 12 and the M-phase bridge arm.
- the second lower bridge arm 402 of the second switch module 4 is connected in a common line.
- the energy storage module 3 includes a first M-phase motor and a second M-phase motor, M is a positive integer, and the neutral point of the first M-phase motor is the same as the neutral point of the second M-phase motor.
- the second upper bridge arm includes at least one of the M upper bridge arms of the second M-phase bridge arm circuit.
- the second upper bridge arm includes the M upper bridge arms of the second M-phase bridge arm circuit.
- Three upper bridge arms are described as an example;
- the second lower bridge arm includes at least one lower bridge arm among the M lower bridge arms of the second M-phase bridge arm circuit.
- the second lower bridge arm includes the second M
- the M lower bridge arms of the phase bridge arm circuit are taken as an example for description;
- Figure 3 shows the circuit structure of a charge and discharge circuit including dual motors.
- the M-phase winding connection point of the first M-phase motor is connected to the M-phase winding connection point of the second M-phase motor.
- the first M-phase motor and the second M-phase motor may both be three-phase winding motors.
- the first M-phase motor includes winding A1, winding B1 and winding C1; the second M-phase motor includes winding A'1, winding B'1 and Winding C'1.
- the common connection point of windings A1, B1 and C1 is connected to the common connection point of windings A’1, B’1 and C’1.
- the upper and lower bridge arm connection points of the M-phase bridge arm circuit included in the first switch module 2 are respectively connected to the M-phase windings of the first M-phase motor in a one-to-one correspondence.
- the M-phase bridge arm circuit in the first switch module 2 includes a bridge arm circuit 21 , a bridge arm circuit 22 and a bridge arm circuit 23 .
- the connection point of the first upper bridge arm 211 and the first lower bridge arm 212 of the bridge arm circuit 21 is connected to one end of the winding A1, and the connection point of the first upper bridge arm 221 and the first lower bridge arm 222 of the bridge arm circuit 22 is connected to One end of the winding B1 is connected to one end of the winding C1.
- the connection point between the first upper arm 231 and the first lower arm 232 of the bridge arm circuit 23 is connected to one end of the winding C1.
- the second switch module 4 also includes an M-phase bridge arm circuit, and the upper and lower bridge arm connection points of the M-phase bridge arm circuit are respectively connected to the M-phase windings of the second M-phase motor in a one-to-one correspondence.
- the second switch module 4 includes a bridge arm circuit 41 , a bridge arm circuit 42 and a bridge arm circuit 43 .
- the second of the bridge arm circuit 41 The connection point of the upper bridge arm 411 and the second lower bridge arm 412 is connected to one end of the winding A'1, and the connection point of the second upper bridge arm 421 and the second lower bridge arm 422 of the bridge arm circuit 42 is connected to the end of the winding B'1.
- connection point of the second upper bridge arm 431 and the second lower bridge arm 432 of the bridge arm circuit 43 is connected to one end of the winding C'1, the other end of the winding A'1, the other end of the winding B'1, the winding The other end of C'1, the other end of winding A1, the other end of winding B1 and the other end of winding C1 are connected to a common connection point.
- the battery pack voltage balancing method of this embodiment includes steps S10 and S20.
- a first switch is connected between the first terminal of the first battery group and the first terminal of the second battery group.
- the first voltage of the first battery group and the second voltage of the second battery group can be detected and obtained through a voltage detection device such as a voltage sensor.
- the method of this embodiment achieves voltage balance between the first battery group and the second battery group, and avoids the voltage difference between the first battery group and the second battery group being too large. Potential safety hazards caused by excessive voltage differences between them, and avoid safety accidents due to excessive voltage differences.
- step S20 may include: controlling the first switch module and the second switch module to operate according to the switch polarity of the first switch, the first voltage, and the second voltage to form a voltage balancing loop in the charge and discharge circuit.
- step S20 includes: if the first switch has no polarity, controlling the first switch module and the second switch module to operate according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval. , forming a voltage balancing loop in the charge and discharge circuit. In view of the situation that the switch between the first battery pack and the second battery pack has no polarity, the first switch module and the second switch module are controlled according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval.
- the first switch module and the second switch module are controlled to act according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval to form a voltage balance in the charge and discharge circuit.
- circuit including:
- control the A switch module and a second switch module are periodically turned on and off until the absolute value of the difference between the first voltage and the second voltage belongs to the first preset interval, the first operation is performed;
- the limit value is equal to the upper limit of the first preset interval;
- the first operation includes controlling the first switch module and the second switch module to be turned on until a preset stable condition is reached.
- the first operation includes controlling all the first lower bridge arms and all the second lower bridge arms to turn off and controlling at least one first upper bridge arm and at least one second upper bridge arm to turn on until a preset stable condition is reached.
- the first switch is closed.
- the first voltage balancing strategy is executed and the first voltage balancing strategy is closed.
- the switch realizes the voltage balance between the first battery group and the second battery group, avoids the voltage difference between the first battery group and the second battery group being too large, and can avoid the voltage difference between the first battery group and the second battery group. Potential safety hazards caused by excessive voltage differences, and avoid safety accidents caused by excessive voltage differences.
- the preset stability condition may be that the voltage difference between any two upper bridge arms that are turned on is less than or equal to the preset threshold. This preset stability condition can ensure that the voltage difference between any two conductive high-side arms is kept within a small range to avoid circuit failure caused by an excessive voltage difference between the two high-side arms.
- the first preset interval can be set to (Uset1, Uset2], the second preset interval is (Uset2, + ⁇ ), the first voltage is represented by U1, and the second voltage is represented by for U2.
- This control method can include:
- the first operation includes: controlling the first lower bridge arm 212 , the first lower bridge arm 222 , the first lower bridge arm 232 and the second lower bridge arm 402 to turn off, and controlling the first upper bridge arm 211 and the first upper bridge arm 402 to turn off.
- 221 is connected to at least one of the first upper arm 231 and the second upper arm 401 until the first switch is closed when the preset stable condition is reached.
- the preset stability condition may be that the voltage difference between any two conductive upper arms among the first upper arm 211, the first upper arm 221, the first upper arm 231 and the second upper arm 401 is less than or equal to
- the preset threshold can be, for example, 10V, 11V or 12V. The specific value can be set according to actual needs.
- the first number of first upper bridge arms and the second number of second upper bridge arms are controlled to be turned on and off periodically.
- the number and the second number correspond to the absolute value of the difference between the first voltage and the second voltage in the preset mapping relationship.
- the number of the first upper bridge arms that are turned on and the number of the second upper bridge arms that are turned on are set based on the absolute value of the voltage difference.
- the difference between the first voltage and the second voltage When the absolute value of is relatively small, it means that the voltage difference between the two battery packs is not large, and the currents of the two battery packs passing through the first upper bridge arm and the second upper bridge arm are relatively small.
- the current value can be determined by the voltage Calculate the difference/internal resistance) to set the number of high-side arms that need to be turned on.
- the calculated current is 20A
- the current carrying current value of the first upper arm 211 is 40A
- One and the second upper bridge arm 401 are sufficient.
- the maximum current value may be 100A
- the current carrying current value of each first upper bridge arm is 40A
- the first preset interval can be set to (Uset1, Uset2], the second preset interval is (Uset2, + ⁇ ), the first voltage is represented by U1, and the second voltage is represented by for U2.
- This control method can include:
- the first operation includes: controlling the first lower bridge arm 212 , the first lower bridge arm 222 , the first lower bridge arm 232 and the second lower bridge arm 402 to turn off, and controlling the first upper bridge arm 211 and the first upper bridge arm 402 to turn off. 221 and at least one of the first upper bridge arm 231, and at least one of the second upper bridge arm 411, the second upper bridge arm 421 and the second upper bridge arm 431.
- the first switch is turned on until the preset stable condition is reached.
- the preset stable condition may be that the first upper bridge arm 211 , the first upper bridge arm 221 , the first upper bridge arm 231 , the second upper bridge arm 411 , the second upper bridge arm 421 and the second upper bridge arm 431 are conductive.
- the voltage difference between any two upper bridge arms is less than or equal to the preset threshold.
- the preset threshold can be, for example, 10V, 11V or 12V. The specific value can be set according to actual needs.
- controlling at least one first upper arm and at least one second upper arm to periodically turn on and off includes:
- the first number of first upper bridge arms and the second number of second upper bridge arms are controlled to be turned on and off periodically.
- the number and the second number correspond to the absolute value of the difference between the first voltage and the second voltage in the preset mapping relationship.
- the number of the first upper bridge arms that are turned on and the number of the second upper bridge arms that are turned on are set based on the absolute value of the voltage difference.
- the difference between the first voltage and the second voltage When the absolute value of is relatively small, it means that the voltage difference between the two battery packs is not large, and the currents of the two battery packs passing through the first upper bridge arm and the second upper bridge arm are relatively small.
- the current value can be determined by the voltage Calculate the difference/internal resistance) to set the number of high-side arms that need to be turned on.
- the calculated current is 20A
- the current carrying current value of the first upper arm 211 is 40A
- One and one of the second upper bridge arm 411, the second upper bridge arm 421 and the second upper bridge arm 431 are sufficient.
- the maximum current value may be 100A
- the current carrying current values of each first high-side arm and each second high-side arm are equal to is 40A
- step S20 includes: if the first switch has polarity, controlling the actions of the first switch module and the second switch module according to the difference between the first voltage and the second voltage and at least one preset interval.
- a voltage balancing loop is formed in the charging and discharging circuit. For the situation where the switch between the first battery pack and the second battery pack has polarity, the first switch module and the second switch module are controlled according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval.
- a voltage balancing loop is formed in the charging and discharging circuit, realizing voltage balancing between the first battery group and the second battery group, preventing the voltage difference between the first battery group and the second battery group from being too large, and preventing the second battery group from being too large. Potential safety hazards caused by excessive voltage differences between the first battery pack and the second battery pack, and avoid safety accidents due to excessive voltage differences.
- the first switch module includes an M-phase bridge arm circuit
- the second switch module includes an N-phase bridge arm circuit. path, M and N are positive integers
- each bridge arm circuit of the first switch module includes a first upper bridge arm and a first lower bridge arm connected in series
- each bridge arm circuit of the second switch module includes a second upper bridge arm connected in series.
- the first switch module and the second switch module are controlled to operate to form a voltage balancing loop in the charge and discharge circuit, including:
- the first operation includes controlling the first switch module and the second switch module to be turned on until a preset stable condition is reached.
- the preset stable condition may be, for example, that the voltage difference between any two upper bridge arms that are turned on is less than or equal to the preset threshold.
- This preset stability condition can ensure that the voltage difference between any two conductive high-side arms is kept within a small range to avoid circuit failure caused by an excessive voltage difference between the two high-side arms.
- the first switch has polarity
- the difference between the first voltage and the second voltage belongs to the sixth preset interval
- at least one first upper arm and at least one second upper arm period are controlled. Continuously turn on and off, including:
- control method may include:
- the positive polarity direction of the first switch is from the first battery pack to the second battery pack;
- U1-U2 ⁇ (- ⁇ ,-Uset2) that is, U1-U2 ⁇ -Uset2
- the upper arm and the second upper arm 401 are periodically turned on and off until the difference between the first voltage and the second voltage belongs to the fourth preset interval and remain on until the preset stable condition is reached.
- the first operation includes: controlling the first lower bridge arm 212 , the first lower bridge arm 222 , the first lower bridge arm 232 and the second lower bridge arm 402 to turn off, and controlling the first upper bridge arm 211 and the first upper bridge arm 402 to turn off.
- the preset stability condition may be that the voltage difference between any two conductive upper arms among the first upper arm 211, the first upper arm 221, the first upper arm 231 and the second upper arm 401 is less than or equal to
- the preset threshold can be, for example, 10V, 11V or 12V. The specific value can be set according to actual needs.
- control method may include:
- the positive polarity direction of the first switch is from the first battery pack to the second battery pack;
- the first operation includes: controlling the first lower bridge arm 212 , the first lower bridge arm 222 , the first lower bridge arm 232 and the second lower bridge arm 402 to turn off, and controlling the first upper bridge arm 211 and the first upper bridge arm 402 to turn off. 221. At least one of the first upper bridge arm 231 and at least one of the second upper bridge arm 411, the second upper bridge arm 421 and the second upper bridge arm 431 are conducted until the first upper bridge arm is closed when the preset stable condition is reached. switch.
- the preset stable condition may be that the first upper bridge arm 211 , the first upper bridge arm 221 , the first upper bridge arm 231 , the second upper bridge arm 411 , the second upper bridge arm 421 and the second upper bridge arm 431 are conductive.
- the voltage difference between any two upper bridge arms is less than or equal to the preset threshold.
- the preset threshold can be, for example, 10V, 11V or 12V. The specific value can be set according to actual needs.
- a first switch K1 is connected between the first end of the first battery pack 11 and the first end of the second battery pack 12; The two ends are connected in line with the second end of the first battery pack 11, the second end of the first switch module 2, and the second end of the second switch module 4; the first battery pack 11 is connected to the second battery pack 12
- a first switch K1 (the first switch K1 is not shown in Figure 1, the dotted line in the power supply module 1 in Figure 1 indicates that the connection relationship is variable)
- the first switch K1 is provided between the first end of the second battery pack 12 and the second Between the first terminals of a battery pack 11; the opening and closing state of the first switch K1 can change the connection relationship between the first battery pack 11 and the second battery pack 12.
- a second switch K2 is provided between the upper and lower bridge arm connection points of the second switch module 4 and the neutral point of the M-phase motor.
- the transistor can be an Insulated Gate Bipolar Transistor (IGBT), a metal-oxide semiconductor field-effect transistor (MOS), or other electronic components with switching functions. , no restriction is made here.
- IGBT Insulated Gate Bipolar Transistor
- MOS metal-oxide semiconductor field-effect transistor
- the battery pack voltage balancing method of the embodiment of the present application can avoid overcurrent damage to the switch connected between the first battery pack and the second battery pack, and can also avoid direct parallel connection due to excessive voltage difference between two adjacent battery packs.
- the subsequent circulating current value exceeds the maximum allowable value of the battery pack at the current temperature, causing lithium deposition and damage to the battery pack.
- the first switch K1 After completing the battery pack voltage balancing method and achieving voltage balance between the first battery pack and the second battery pack, the first switch K1 can be closed.
- the seventh preset interval can be set to [0, Uset1], and the eighth preset interval can be set to [0, Uset1); when the first switch K1 is a non-polar switch, if
- the battery pack voltage balancing device includes:
- a voltage acquisition module configured to acquire the first voltage of the first battery group and the second voltage of the second battery group, with a first switch connected between the first end of the first battery group and the first end of the second battery group;
- the control module is used to control the first switch module and the second switch module to operate according to the first voltage and the second voltage to form a voltage balance loop in the charge and discharge circuit.
- the current flows from the positive electrode of one of the battery packs to The positive terminal of the other battery pack.
- control module is further configured to control the first switch module and the second switch module to perform actions according to the switch polarity of the first switch, the first voltage, and the second voltage to form a voltage balancing loop in the charge and discharge circuit. , the current in the voltage balancing circuit flows from the positive pole of one battery pack to the positive pole of the other battery pack.
- control module is further specifically configured to control the first switch module and the second switch module according to the absolute value of the difference between the first voltage and the second voltage and at least one preset interval if the first switch has no polarity. Action is performed to form a voltage equalization loop in the charge and discharge circuit.
- control module controls the first switch module and the second switch module to perform actions based on the absolute value of the difference between the first voltage and the second voltage and at least one preset interval, forming a state in the charge and discharge circuit.
- Voltage balancing circuit including:
- the first switch module and the second switch module are controlled to be turned on and off periodically until the difference between the first voltage and the second voltage
- the first operation includes controlling the first switch module and the second switch module to be turned on until a preset stable condition is reached.
- the first switch module includes an M-phase bridge arm circuit
- the second switch module includes an N-phase bridge arm circuit
- M and N are positive integers
- each bridge arm circuit of the first switch module includes a series-connected first An upper bridge arm and a first lower bridge arm
- each bridge arm circuit of the second switch module includes a second upper bridge arm and a second lower bridge arm connected in series;
- the first switch module and the second switch module are controlled to operate to form a voltage balancing loop in the charge and discharge circuit, including:
- Controlling the first switch module and the second switch module to periodically turn on and off includes: controlling at least one first upper bridge arm and at least one second upper bridge arm to periodically turn on and off;
- the first operation includes controlling at least one first high-side arm and at least one second high-side arm to be turned on until a preset stable condition is reached.
- the preset stable condition is that the voltage difference between any two conductive high-side arms is less than or equal to the preset threshold.
- controlling at least one first high-side arm and at least one second high-side arm to periodically turn on and off includes:
- the first number of first upper bridge arms and the second number of second upper bridge arms are controlled to be turned on and off periodically.
- the number and the second number correspond to absolute values in the preset mapping relationship.
- the first switch module and the second switch module are controlled to act according to the switch polarity of the first switch, the first voltage, and the second voltage, and a voltage balancing loop is formed in the charge and discharge circuit, including:
- the actions of the first switch module and the second switch module are controlled based on the difference between the first voltage and the second voltage and at least one preset interval to form a voltage balancing loop in the charge and discharge circuit.
- the first switch module and the second switch module are controlled to act according to the difference between the first voltage and the second voltage and at least one preset interval to form a voltage balancing loop in the charge and discharge circuit, including:
- the first operation is performed; the positive direction of the polarity of the first switch is from the first battery pack to the second battery pack;
- the first switch module and the second switch module are controlled to be turned on and off periodically until the difference between the first voltage and the second voltage belongs to the third preset interval. Maintain conduction after the preset interval until the preset stable condition is reached;
- the first switch module and the second switch module are controlled to be turned on and off periodically until the difference between the first voltage and the second voltage belongs to the fourth preset interval.
- the preset interval Maintain conduction until preset stable conditions are reached;
- the first operation includes controlling the first switch module and the second switch module to be turned on until a preset stable condition is reached.
- the first switch module includes an M-phase bridge arm circuit
- the second switch module includes an N-phase bridge arm circuit
- M and N are positive integers
- each bridge arm circuit of the first switch module includes a series-connected first An upper bridge arm and a first lower bridge arm
- each bridge arm circuit of the second switch module includes a second upper bridge arm and a second lower bridge arm connected in series;
- Controlling the first switch module and the second switch module to turn on and off periodically includes:
- the first operation includes controlling at least one first upper bridge arm and at least one second upper bridge arm to be turned on, and controlling all lower bridge arms to be turned off until a preset stable condition is reached.
- the preset stable condition is that the voltage difference between any two conductive high-side arms is less than or equal to the preset threshold.
- controlling at least one first upper arm and at least one second upper arm to turn on and off periodically includes: :
- the third number of first upper bridge arms and the fourth number of first upper bridge arms are controlled according to the difference between the first voltage and the second voltage and the preset mapping relationship.
- the two upper bridge arms are periodically turned on and off, and the third number and the fourth number correspond to the difference between the first voltage and the second voltage in a preset mapping relationship.
- controlling at least one first upper arm and at least one second upper arm to turn on and off periodically includes: :
- the fifth number of first upper bridge arms and the sixth number of first upper bridge arms are controlled according to the difference between the first voltage and the second voltage and the preset mapping relationship.
- the two upper bridge arms are periodically turned on and off, and the fifth number and the sixth number correspond to the difference between the first voltage and the second voltage in a preset mapping relationship.
- the battery pack voltage balancing device provided by the embodiment of the present application can achieve voltage balance between the first battery pack and the second battery pack, and avoid the voltage difference between the first battery pack and the second battery pack being too large, thereby avoiding the first
- the potential safety hazard caused by the excessive voltage difference between the battery pack and the second battery pack avoids safety accidents due to the excessive voltage difference, and solves the following technical problems existing in the existing technology: when the voltage difference is too large , if the switch connected between two adjacent battery packs is directly closed to restore the parallel relationship between the two battery packs, it is extremely easy to cause a safety accident due to excessive voltage difference and damage the circuit.
- Another embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
- the processor executes the program to implement any of the above embodiments. Control method of discharge circuit.
- the electronic device 10 may include: a processor 100, a memory 101, and a bus 102 and communication interface 103.
- the processor 100, the communication interface 103 and the memory 101 are connected through the bus 102; the memory 101 stores a computer program that can be run on the processor 100.
- the processor 100 runs the computer program, it executes any of the foregoing aspects of this application. Methods provided by the embodiments.
- the memory 101 may include high-speed random access memory (RAM: Random Access Memory), or may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
- RAM Random Access Memory
- non-volatile memory such as at least one disk memory.
- the communication connection between the system network element and at least one other network element is realized through at least one communication interface 103 (which can be wired or wireless), and the Internet, wide area network, local network, metropolitan area network, etc. can be used.
- the bus 102 may be an ISA bus, a PCI bus, an EISA bus, etc.
- the bus can be divided into address bus, data bus, control bus, etc.
- the memory 101 is used to store a program, and the processor 100 executes the program after receiving the execution instruction.
- the method disclosed in any of the embodiments of the present application can be applied to the processor 100 or implemented by the processor 100 .
- the processor 100 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 100 .
- the above-mentioned processor 100 can be a general-purpose processor, which can include a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processor, NP for short), etc.; it can also be a digital signal processor (DSP), a dedicated integrated processor Circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
- DSP digital signal processor
- ASICs dedicated integrated processor Circuits
- FPGAs off-the-shelf programmable gate arrays
- Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
- the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
- the storage medium is located in the memory 101.
- the processor 100 reads the information in the memory 101 and completes the steps of the above method in combination with its hardware.
- the electronic device provided by the embodiments of the present application and the method provided by the embodiments of the present application are based on the same inventive concept, and have the same beneficial effects as the methods adopted, run or implemented.
- Another embodiment of the present application provides a charging and discharging system, including a controller and a charging and discharging circuit.
- the controller is configured to execute the control method of the charging and discharging circuit in any of the above embodiments for the charging and discharging circuit.
- Another embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the control method of the charge and discharge circuit in any of the above embodiments.
- the computer-readable storage medium shown is an optical disk 20, on which a computer program (i.e., a program product) is stored.
- a computer program i.e., a program product
- the computer program When the computer program is run by a processor, it will execute any of the foregoing embodiments. method.
- examples of computer-readable storage media may also include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), and other types of random access memory.
- PRAM phase change memory
- SRAM static random access memory
- DRAM dynamic random access memory
- RAM random access memory
- ROM read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory or other optical and magnetic storage media, which will not be described one by one here.
- the computer-readable storage medium provided by the above embodiments of the present application is based on the same inventive concept as the method provided by the embodiments of the present application, and has the same beneficial effects as the methods adopted, run or implemented by the application programs stored therein.
- module is not intended to be limited to a particular physical form. Depending on the specific application, modules may be implemented as hardware, firmware, software, and/or a combination thereof. Furthermore, different modules can share common components or even be implemented by the same components. There may or may not be clear boundaries between different modules.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本申请公开了一种电池组电压均衡方法、装置、电子设备及存储介质。该方法包括:获取第一电池组的第一电压和第二电池组的第二电压,第一电池组的第一端和第二电池组的第一端之间连接有第一开关;根据第一电压与第二电压,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路。本申请实施例提供的电池组电压均衡方法,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,从而能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
Description
本申请涉及电池技术领域,具体涉及一种电池组电压均衡方法、装置、电子设备及存储介质。
动力电池例如锂离子电池等电池具有高功率密度、高循环寿命和环保效果好等优点,已经越来越普及地应用于多个领域,尤其是应用于电动交通工具领域,例如采用动力电池作为动力源的电动车辆等。然而,在低温状态下动力电池的充放电功率和充放电容量都有很大程度的衰减,因此,通常需要对动力电池进行充放电以实现动力电池自加热。动力电池可以包括多个电池组,相邻两个电池组的第一端之间连接有开关,该开关的开闭状态能够改变相邻两个电池组之间的连接关系。现有技术中,动力电池的两个电池组的电压经常会存在一定的电压差,当该电压差过大时,若直接闭合连接在相邻两个电池组之间的开关使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路。
发明内容
鉴于上述问题,本申请提供一种电池组电压均衡方法、装置、电子设备及存储介质,能够解决现有技术中的动力电池的相邻两个电池组的电压经常会存在一定的电压差,当该电压差过大时,若直接闭合连接在相邻两个电池组之间的开关使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
本申请实施例的第一方面,提供一种电池组电压均衡方法,应用于充放电电路;所述充放电电路包括第一开关模块、储能模块、第二开关模块、第一电池组和第二电池组;所述方法包括:
获取第一电池组的第一电压和第二电池组的第二电压,所述第一电池组的第一端和所述第二电池组的第一端之间连接有第一开关;
根据所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开
关模块进行动作,在所述充放电电路中形成电压均衡回路。
本申请实施例提供的电池组电压均衡方法,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,从而能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故,解决了现有技术中存在的以下技术问题:当该电压差过大时,若直接闭合连接在相邻两个电池组之间的开关使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路。
在一些实施例中,所述根据所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:
根据所述第一开关的开关极性、所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
在一些实施例中,所述根据所述第一开关的开关极性、所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:
若所述第一开关无极性,则根据所述第一电压与所述第二电压之差的绝对值以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
针对第一电池组和第二电池组之间的开关无极性的情况,根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
在一些实施例中,所述根据所述第一电压与所述第二电压之差的绝对值以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:
若所述第一电压与所述第二电压之差的绝对值属于第一预设区间,则执行第一操作;
若所述第一电压与所述第二电压之差的绝对值属于第二预设区间,则控制所述第一开关模块和所述第二开关模块周期性地导通和关断,直至所述第一电压与所述第二电压之差的绝对值属于所述第一预设区间时,执行所述第一操作;所述第二预设区间的下限值等于所述第一预设区间的上限值;
所述第一操作包括控制所述第一开关模块和所述第二开关模块导通,直至达到预设稳定条件为止。通过在充放电电路中形成电压均衡回路,实现了第一电池组
和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
在一些实施例中,所述根据所述第一开关的开关极性、所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:
若所述第一开关有极性,则根据所述第一电压与所述第二电压之差以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块动作,在所述充放电电路中形成电压均衡回路。
针对第一电池组和第二电池组之间的开关有极性的情况,在充放电电路中形成电压均衡回路,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
在一些实施例中,所述根据所述第一电压与所述第二电压之差以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:
若所述第一电压与所述第二电压之差属于第三预设区间或第四预设区间,则执行第一操作;所述第一开关的极性正方向为由所述第一电池组指向所述第二电池组;
若所述第一电压与所述第二电压之差属于第五预设区间,则控制所述第一开关模块和所述第二开关模块周期性地导通和关断,直至所述第一电压与所述第二电压之差属于所述第三预设区间后保持导通,直至达到预设稳定条件为止;
若所述第一电压与所述第二电压之差属于第六预设区间,则控制所述第一开关模块和所述第二开关模块周期性地导通和关断,直至所述第一电压与所述第二电压之差属于所述第四预设区间后保持导通,直至达到所述预设稳定条件为止;
所述第一操作包括控制所述第一开关模块和所述第二开关模块导通,直至达到预设稳定条件为止。针对第一电池组和第二电池组之间的开关有极性的情况,在充放电电路中形成电压均衡回路,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
在一些实施例中,第一开关模块包括M相桥臂电路,第二开关模块包括N相桥臂电路,M和N为正整数,所述第一开关模块的每一所述桥臂电路包括串联的第一上桥臂和第一下桥臂,所述第二开关模块的每一所述桥臂电路包括串联的第二上桥臂和第二下桥臂;
所述控制所述第一开关模块和所述第二开关模块周期性地导通和关断,包括:
控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断;
所述第一操作包括控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂导通,并控制所有下桥臂关断,直至达到预设稳定条件为止。在充放电电路中形成电压均衡回路,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
在一些实施例中,所述预设稳定条件为导通的任两上桥臂之间的电压差小于或等于预设阈值。该预设稳定条件能够确保导通的任两上桥臂之间的电压差保持在较小的范围内,避免因两上桥臂之间的电压差过大而导致产生电路故障。
在一些实施例中,在所述第一开关无极性的情况下,控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,包括:
根据所述第一电压与所述第二电压之差的绝对值以及预设映射关系,控制第一数目个所述第一上桥臂以及第二数目个所述第二上桥臂周期性地导通和关断,所述第一数目和所述第二数目在所述预设映射关系中与所述绝对值相对应。
通过控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第一预设区间,以便于进一步执行第一操作。
在一些实施例中,在所述第一开关有极性的情况下,若所述第一电压与所述第二电压之差属于第五预设区间,则控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,包括:
若所述第一电压与所述第二电压之差属于第五预设区间,则根据所述第一电压与所述第二电压之差以及预设映射关系,控制第三数目个所述第一上桥臂以及第四数目个所述第二上桥臂周期性地导通和关断,所述第三数目和所述第四数目在所述预设映射关系中与所述第一电压与所述第二电压之差相对应。
通过根据第一电压与第二电压之差以及预设映射关系,控制第三数目个第一上桥臂以及第四数目个第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第三预设区间,以便于后续进一步均衡第一电池组和第二电池组的电压。
在一些实施例中,在所述第一开关有极性的情况下,若所述第一电压与所述第二电压之差属于第六预设区间,则控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,包括:
若所述第一电压与所述第二电压之差属于第六预设区间,则根据所述第一电压与所述第二电压之差以及预设映射关系,控制第五数目个所述第一上桥臂以及第六数目个所述第二上桥臂周期性地导通和关断,所述第五数目和所述第六数目在所述预设映射关系中与所述第一电压与所述第二电压之差相对应。
通过根据第一电压与第二电压之差以及预设映射关系,控制第五数目个第一上桥臂以及第六数目个第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第四预设区间,以便于后续进一步均衡第一电池组和第二电池组的电压。
本申请实施例的第二方面,提供一种电池组电压均衡装置,应用于充放电电路;所述充放电电路包括第一开关模块、储能模块、第二开关模块、第一电池组和第二电池组;所述装置包括:
电压获取模块,用于获取第一电池组的第一电压和第二电池组的第二电压,所述第一电池组的第一端和所述第二电池组的第一端之间连接有第一开关;
控制模块,用于根据所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
本申请实施例提供的电池组电压均衡装置,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,从而能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故,解决了现有技术中存在的以下技术问题:当该电压差过大时,若直接闭合连接在相邻两个电池组之间的开关使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路。
本申请实施例的第三方面,提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现上述任一项的电池组电压均衡方法。第三方面的技术方案能够达到与第一方面的技术方案相同的有益技术效果。
本申请实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以实现上述任一项的电池组电压均衡方法。第五方面的技术方案能够达到与第一方面的技术方案相同的有益技术效果。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者,部分特征和优点可以从说明书中推知或毫无疑义地确定,或者通过实施本申请实施例了解。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施
例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一些实施方式的充放电电路的结构框图;
图2示出了本申请一些实施方式的电池组电压均衡方法的流程图;
图3示出了本申请一些实施方式的充放电电路的电路图;
图4示出了本申请另一些实施方式的充放电电路的电路图;
图5示出了图1中步骤S20所包括的步骤的流程图;
图6示出了本申请另一些实施方式的充放电电路的电路图;
图7示出了本申请另一些实施方式的充放电电路的电路图;
图8示出了本申请一些实施方式的电池组电压均衡装置结构框图;
图9示出了本申请一些实施方式的电子设备的结构框图;
图10示出了本申请一些实施方式的计算机可读存储介质的示意图。
本申请的目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
动力电池具有高功率、高能量密度、环保效果好等优点,已经被广泛应用于新能源车辆、消费电子、储能系统等技术领域中。动力电池能够但不限用于车辆、船舶或飞行器等用电装置中。
以电动车辆为例,以动力电池提供动力的电动车辆具有环保效果好、噪音小、成本低、能够有效促进节能减排等优点,具有巨大的市场应用前景,有利于经济的可持续发展。本申请的发明人发现,现有技术中,相邻两个电池组的电压经常会存在一定的电压差,尤其是在对动力电池完成自加热之后极容易产生电压差,若直接闭合开关K1使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路,例如开关K1可能会瞬间过流损坏。另外,若两个电池组压差过大,直接并联后的环流电流值可能会超过电池组在当前温度下的最大允许值,使电池组析锂损坏。
针对上述问题,本申请实施例提供了一种电池组电压均衡方法,通过获取第一电池组和第二电池组的电压,根据所述第一开关有极性或无极性、所述第一电压与所述第二电压,执行完相应的电压均衡策略,闭合所述第一开关,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,从而能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故,解决了现有技术中存在的以下技术问题:当该电压差过大
时,若直接闭合连接在相邻两个电池组之间的开关使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路。
本申请实施例提供了一种电池组电压均衡方法,应用于充放电电路;该充放电电路包括第一开关模块、储能模块、第二开关模块、第一电池组和第二电池组。
供电模块例如可以为如图1所示的充放电电路中的供电模块1。如图1所示,该充放电电路包括供电模块1、第一开关模块2、储能模块3和第二开关模块4,供电模块1包括第一电池组和第二电池组,第一电池组的第一端和第二电池组的第一端之间连接有开关,该开关可以为无极性继电器或有极性继电器。根据实际应用的需要,每一电池组可以包括并联的多个电池包,每一电池组中所包含的电池包的具体数目可以根据实际需要进行设定。
在一些实施方式中,第一开关模块包括M相桥臂电路,第二开关模块包括N相桥臂电路,M和N为正整数,第一开关模块的每一桥臂电路包括串联的第一上桥臂和第一下桥臂,第二开关模块的每一桥臂电路包括串联的第二上桥臂和第二下桥臂。N可以与M相等,M和N的值可以根据实际需要进行设定。
如图2所示的示例中,第一电池组11的第一端与第二电池组12的第一端之间连接有第一开关K1(图1中未示出第一开关K1,图1中供电模块1中的虚线表示连接关系可变)。第一开关K1可以为无极性继电器或有极性继电器。第二开关模块4包括串联的第二上桥臂401和第二下桥臂402;第一开关模块2包括M相桥臂电路,M为正整数,每一相桥臂电路包括串联的上桥臂和下桥臂;图2所示电路中M为3,N为1,即M相桥臂电路为三相桥臂电路,第二开关模块4包括一个桥臂电路。每个电池组可以是包括多个电池模块的集合,也可以是包括多个电芯的电池模块。
第一开关模块2可以由逆变器实现,包括M相桥臂电路,M为正整数;每一相桥臂电路包括第一上桥臂和第一下桥臂。例如,M相桥臂电路包括M个第一上桥臂以及M个第一下桥臂,M个第一上桥臂与M个第一下桥臂一一对应连接。储能模块3可以包括M相电机,M相电机可以为M相绕组电机,具有M相绕组。
具体地,第一开关模块2的M相桥臂电路可以为三相桥臂电路,包括桥臂电路21、桥臂电路22以及桥臂电路23;与第一开关模块2相对应,M相电机为三相绕组电机,包括三相绕组,即分别为绕组A1、绕组B1以及绕组C1。桥臂电路21包括串联的第一上桥臂211和第一下桥臂212,第一上桥臂211包括并联的三极管V1和续流二极管D1,第一下桥臂212包括并联的三极管V4和续流二极管D4;桥臂电路22包括串联的第一上桥臂221和第一下桥臂222,第一上桥臂221包括并联的三极管V2和续流二极管D2,第一下桥臂222包括并联的三极管V5和续流二极管D5;桥臂电路23包括串联的第一上桥臂231和第一下桥臂232,第一上桥臂231包括并联的三极管V3和续流二极管D3,第一下桥臂232包括并联的三极管V6和续流二极管D6。
在本示例中,N为1,第二开关模块4包括一个桥臂电路,该桥臂电路包括
串联的第二上桥臂401和第二下桥臂402。第二上桥臂401和第二下桥臂402的结构可以为并联的三极管和续流二极管,也可以仅包括开关。如图2所示,第二上桥臂401的结构为并联的三极管V7和续流二极管D7,第二下桥臂402的结构为并联的三极管V8和续流二极管D8。
如图2所示,第二电池组12与第一开关模块2包括的M相桥臂并联连接,其中第二电池组12的第一端、M相桥臂的上桥臂共线连接;M相桥臂的上下桥臂连接点分别与M相电机的M相绕组一一对应连接;第二开关模块4的上下桥臂连接点与M相电机的中性点连接。
第二开关模块4的上下桥臂连接点可以直接通过导线与M相电机的中性点连接,也可以在第二开关模块4的上下桥臂连接点与M相电机的中性点之间连接第二储能元件,第二储能元件可以包括至少一个电感L1,或者包括串联的电感和电容等。在一些示例中,电感L1的感量与供电模块的充放电性能和速热工况需求相适配,其最小感量为0H(即相当于直流导线)。
第一电池组11的第一端与第二开关模块4的第二上桥臂401共线连接;第一电池组11的第二端与第二电池组12的第二端、M相桥臂、第二开关模块4的第二下桥臂402共线连接。
如图3所示的示例中,储能模块3包括第一M相电机和第二M相电机,M为正整数,第一M相电机的中性点与第二M相电机的中性点相连接;第二上桥臂包括第二M相桥臂电路的M个上桥臂中的至少一个上桥臂,本实施例中以第二上桥臂包括第二M相桥臂电路的M个上桥臂为例进行描述;第二下桥臂包括第二M相桥臂电路的M个下桥臂中的至少一个下桥臂,本实施例中以第二下桥臂包括第二M相桥臂电路的M个下桥臂为例进行描述;图3示出了包含有双电机的充放电电路的电路结构。
第一M相电机的M相绕组连接点与第二M相电机的M相绕组连接点连接。第一M相电机及第二M相电机可以均为三相绕组电机,第一M相电机包括绕组A1、绕组B1以及绕组C1;第二M相电机包括绕组A’1、绕组B’1以及绕组C’1。绕组A1、B1、C1的共同连接点与绕组A’1、B’1、C’1的共同连接点连接。
第一开关模块2包括的M相桥臂电路的上下桥臂连接点分别与第一M相电机的M相绕组一一对应连接。具体地,第一开关模块2中M相桥臂电路包括桥臂电路21、桥臂电路22以及桥臂电路23。桥臂电路21的第一上桥臂211与第一下桥臂212的连接点与绕组A1的一端相连,桥臂电路22的第一上桥臂221与第一下桥臂222的连接点与绕组B1的一端相连,桥臂电路23的第一上桥臂231与第一下桥臂232的连接点与绕组C1的一端相连。
在图3所示的示例中,N=M。第二开关模块4也包括M相桥臂电路,其M相桥臂电路的上下桥臂连接点分别与第二M相电机的M相绕组一一对应连接。具体地,第二开关模块4包括桥臂电路41、桥臂电路42以及桥臂电路43。桥臂电路41的第二
上桥臂411和第二下桥臂412的连接点与绕组A’1的一端相连,桥臂电路42的第二上桥臂421与第二下桥臂422的连接点与绕组B’1的一端相连,桥臂电路43的第二上桥臂431与第二下桥臂432的连接点与绕组C’1的一端相连,绕组A’1的另一端,绕组B’1的另一端、绕组C’1的另一端、绕组A1的另一端、绕组B1的另一端以及绕组C1的另一端的共同连接点连接。
如图4所示,在一些实施方式中,本实施例的电池组电压均衡方法包括步骤S10和S20。
S10、获取第一电池组的第一电压和第二电池组的第二电压,第一电池组的第一端和第二电池组的第一端之间连接有第一开关。
具体地,可以通过电压检测装置例如电压传感器等检测获得第一电池组的第一电压以及第二电池组的第二电压。
S20、根据第一电压与第二电压,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路。
该电压均衡回路中电流由其中一个电池组的正极流向另一电池组的正极。
本实施例的方法实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,从而能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
具体地,步骤S20可以包括:根据第一开关的开关极性、第一电压与第二电压,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路。
在一些实施方式中,步骤S20包括:若第一开关无极性,则根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路。针对第一电池组与第二电池组之间的开关无极性的情况,根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组之间的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
具体地,如图5所示,根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,包括:
S201、若第一电压与第二电压之差的绝对值属于第一预设区间,则执行第一操作;
S202、若第一电压与第二电压之差的绝对值属于第二预设区间,则控制第
一开关模块和第二开关模块周期性地导通和关断,直至第一电压与第二电压之差的绝对值属于第一预设区间时,执行第一操作;第二预设区间的下限值等于第一预设区间的上限值;
第一操作包括控制第一开关模块和第二开关模块导通,直至达到预设稳定条件为止。
具体地,若第一电压与第二电压之差的绝对值属于第二预设区间,则控制所有的第一下桥臂以及所有的第二下桥臂关断并控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,直至第一电压与第二电压之差的绝对值属于第一预设区间时,执行第一操作;第二预设区间的下限值等于第一预设区间的上限值;
其中,第一操作包括控制所有的第一下桥臂以及所有的第二下桥臂关断并控制至少一个第一上桥臂以及至少一个第二上桥臂导通,直至达到预设稳定条件时闭合第一开关。针对第一电池组和第二电池组之间的开关无极性的情况,根据第一电压与第二电压之差的绝对值以及至少一个预设区间,执行完第一电压均衡策略,闭合第一开关,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
具体地,预设稳定条件可以为导通的任两上桥臂之间的电压差小于或等于预设阈值。该预设稳定条件能够确保导通的任两上桥臂之间的电压差保持在较小的范围内,避免因两上桥臂之间的电压差过大而导致产生电路故障。
在如图3所示的示例中,例如可以设定第一预设区间为(Uset1,Uset2],第二预设区间为(Uset2,+∞),第一电压表示为U1,第二电压表示为U2。
该控制方法可以包括:
1)若|U1-U2|∈(Uset1,Uset2],即Uset1<|U1-U2|≤Uset2,则执行第一操作;
2)若|U1-U2|∈(Uset2,+∞),即|U1-U2|>Uset2,则控制第一下桥臂212、第一下桥臂222、第一下桥臂232以及第二下桥臂402关断,并控制第一上桥臂211、第一上桥臂221和第一上桥臂231中的至少一个、以及第二上桥臂401周期性地导通和关断,直至|U1-U2|∈(Uset1,Uset2]时,执行第一操作。
第一操作包括:控制第一下桥臂212、第一下桥臂222、第一下桥臂232以及第二下桥臂402关断,并控制第一上桥臂211、第一上桥臂221和第一上桥臂231中的至少一个、以及第二上桥臂401导通,直至达到预设稳定条件时闭合第一开关。预设稳定条件可以为第一上桥臂211、第一上桥臂221、第一上桥臂231和第二上桥臂401中导通的任两上桥臂之间的电压差小于或等于预设阈值,预设阈值例如可以为10V、11V或12V等值,具体值可以根据实际需要进行设定。
示例性地,若第一开关无极性,控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,包括:
根据第一电压与第二电压之差的绝对值以及预设映射关系,控制第一数目个第一上桥臂以及第二数目个第二上桥臂周期性地导通和关断,第一数目和第二数目在预设映射关系中与第一电压与第二电压之差的绝对值相对应。通过控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第一预设区间,以便于进一步执行第一操作。
例如,当|U1-U2|∈(Uset1,Uset2]时,将(Uset1,Uset2]划分为(Uset1,a]、(a,b]和(b,Uset2]三个区间;预设映射关系包括:当|U1-U2|∈(Uset1,a]时,第一数目为1,第二数目为1;当|U1-U2|∈(a,b]时,第一数目为2,第二数目为1;当|U1-U2|∈(b,Uset2]时,第一数目为3,第二数目为1。
设置该预设映射关系时是根据电压差的绝对值来设定导通的第一上桥臂的数量以及导通的第二上桥臂的数量的,当第一电压与第二电压之差的绝对值相对较小时,说明两个电池组电压差不大,则两个电池组通过第一上桥臂和第二上桥臂的电流相对较小,此时可以根据电流值(可以由电压差/内阻计算出)来设定需要导通的上桥臂的数量。例如,计算出的电流是20A,而第一上桥臂211的可承载电流值为40A,则只需要闭合第一上桥臂211、第一上桥臂221和第一上桥臂231中的一个以及第二上桥臂401即可。
当第一电压与第二电压之差的绝对值相对较大时,例如此时最大电流值可能有100A,而每个第一上桥臂的可承载电流值为40A,那么很明显需要三个第一上桥臂均导通才能满足过流需求,第二上桥臂401的电流承载能力则需要大于或等于100A。
在如图4所示的示例中,例如可以设定第一预设区间为(Uset1,Uset2],第二预设区间为(Uset2,+∞),第一电压表示为U1,第二电压表示为U2。
该控制方法可以包括:
1)若|U1-U2|∈(Uset1,Uset2],即Uset1<|U1-U2|≤Uset2,则执行第一操作;
2)若|U1-U2|∈(Uset2,+∞),即|U1-U2|>Uset2,则控制第一下桥臂212、第一下桥臂222、第一下桥臂232以及第二下桥臂402关断,并控制第一上桥臂211、第一上桥臂221和第一上桥臂231中的至少一个、以及第二上桥臂411、第二上桥臂421和第二上桥臂431中的至少一个周期性地导通和关断,直至|U1-U2|∈(Uset1,Uset2]时,执行第一操作。
第一操作包括:控制第一下桥臂212、第一下桥臂222、第一下桥臂232以及第二下桥臂402关断,并控制第一上桥臂211、第一上桥臂221和第一上桥臂231中的至少一个、以及第二上桥臂411、第二上桥臂421和第二上桥臂431中的至少一个导
通,直至达到预设稳定条件时闭合第一开关。预设稳定条件可以为第一上桥臂211、第一上桥臂221、第一上桥臂231、第二上桥臂411、第二上桥臂421和第二上桥臂431中导通的任两上桥臂之间的电压差小于或等于预设阈值,预设阈值例如可以为10V、11V或12V等值,具体值可以根据实际需要进行设定。
示例性地,若第一开关无极性,控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,包括:
根据第一电压与第二电压之差的绝对值以及预设映射关系,控制第一数目个第一上桥臂以及第二数目个第二上桥臂周期性地导通和关断,第一数目和第二数目在预设映射关系中与第一电压与第二电压之差的绝对值相对应。通过控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第一预设区间,以便于进一步执行第一操作。
例如,在图4所示的示例中,当|U1-U2|∈(Uset1,Uset2]时,将(Uset1,Uset2]划分为(Uset1,a]、(a,b]和(b,Uset2]三个区间;预设映射关系包括:当|U1-U2|∈(Uset1,a]时,第一数目为1,第二数目为1;当|U1-U2|∈(a,b]时,第一数目为2,第二数目为2;当|U1-U2|∈(b,Uset2]时,第一数目为3,第二数目为3。
设置该预设映射关系时是根据电压差的绝对值来设定导通的第一上桥臂的数量以及导通的第二上桥臂的数量的,当第一电压与第二电压之差的绝对值相对较小时,说明两个电池组电压差不大,则两个电池组通过第一上桥臂和第二上桥臂的电流相对较小,此时可以根据电流值(可以由电压差/内阻计算出)来设定需要导通的上桥臂的数量。例如,计算出的电流是20A,而第一上桥臂211的可承载电流值为40A,则只需要闭合第一上桥臂211、第一上桥臂221和第一上桥臂231中的一个以及以及第二上桥臂411、第二上桥臂421和第二上桥臂431中的一个即可。
当第一电压与第二电压之差的绝对值相对较大时,例如此时最大电流值可能有100A,而每个第一上桥臂和每个第二上桥臂的可承载电流值均为40A,那么很明显需要三个第一上桥臂以及三个第二上桥臂均导通才能满足过流需求。
在一些实施方式中,步骤S20包括:若第一开关有极性,则根据第一电压与第二电压之差以及至少一个预设区间,控制第一开关模块和第二开关模块动作,在所述充放电电路中形成电压均衡回路。针对第一电池组和第二电池组之间的开关有极性的情况,根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块动作,在所述充放电电路中形成电压均衡回路,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
具体地,第一开关模块包括M相桥臂电路,第二开关模块包括N相桥臂电
路,M和N为正整数,第一开关模块的每一桥臂电路包括串联的第一上桥臂和第一下桥臂,第二开关模块的每一桥臂电路包括串联的第二上桥臂和第二下桥臂;
根据第一电压与第二电压之差以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,包括:
S20-2、若第一电压与第二电压之差属于第三预设区间或第四预设区间,则执行第一操作;第一开关的极性正方向为由第一电池组指向第二电池组;
S20-3、若第一电压与第二电压之差属于第五预设区间,则控制第一开关模块和第二开关模块周期性地导通和关断,直至第一电压与第二电压之差属于第三预设区间后保持导通,直至达到预设稳定条件为止;
具体地,若第一电压与第二电压之差属于第五预设区间,则控制所有的第一下桥臂以及所有的第二下桥臂关断并控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,直至第一电压与第二电压之差属于第三预设区间后保持导通,直至达到预设稳定条件时闭合第一开关;
S20-4、若第一电压与第二电压之差属于第六预设区间,则控制第一开关模块和第二开关模块周期性地导通和关断,直至第一电压与第二电压之差属于第四预设区间后保持导通,直至达到预设稳定条件为止;
第一操作包括控制第一开关模块和第二开关模块导通,直至达到预设稳定条件为止。
具体地,若第一电压与第二电压之差属于第六预设区间,则控制所有的第一下桥臂以及所有的第二下桥臂关断并控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,直至第一电压与第二电压之差属于第四预设区间后保持导通,直至达到预设稳定条件时闭合第一开关;
第一操作包括控制至少一个第一上桥臂以及至少一个第二上桥臂导通,并控制所有的第一下桥臂以及所有的第二下桥臂关断,直至达到预设稳定条件时闭合第一开关。针对第一电池组和第二电池组之间的开关有极性的情况,根据第一电压与第二电压之差的绝对值以及至少一个预设区间,执行完第二电压均衡策略,闭合第一开关,实现了第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故。
具体地,预设稳定条件例如可以为导通的任两上桥臂之间的电压差小于或等于预设阈值。该预设稳定条件能够确保导通的任两上桥臂之间的电压差保持在较小的范围内,避免因两上桥臂之间的电压差过大而导致产生电路故障。
示例性地,在第一开关有极性的情况下,若第一电压与第二电压之差属于第五预设区间,则控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和
关断,包括:
若第一电压与第二电压之差属于第五预设区间,则根据第一电压与第二电压之差以及预设映射关系,控制第三数目个第一上桥臂以及第四数目个第二上桥臂周期性地导通和关断,第三数目和第四数目在预设映射关系中与第一电压与第二电压之差相对应。通过根据第一电压与第二电压之差以及预设映射关系,控制第三数目个第一上桥臂以及第四数目个第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第三预设区间,以便于后续进一步均衡第一电池组和第二电池组的电压。
示例性地,在第一开关有极性的情况下,若第一电压与第二电压之差属于第六预设区间,则控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,包括:
若第一电压与第二电压之差属于第六预设区间,则根据第一电压与第二电压之差以及预设映射关系,控制第五数目个第一上桥臂以及第六数目个第二上桥臂周期性地导通和关断,第五数目和第六数目在预设映射关系中与第一电压与第二电压之差相对应。通过根据第一电压与第二电压之差以及预设映射关系,控制第五数目个第一上桥臂以及第六数目个第二上桥臂周期性地导通和关断,初步实现对第一电池组和第二电池组的电压之间的均衡,使第一电压与第二电压之差的绝对值属于第四预设区间,以便于后续进一步均衡第一电池组和第二电池组的电压。
在如图3和图4所示的示例中,例如可以设定第三预设区间为[-Uset2,0),第四预设区间为[Uset1,Uset2),第五预设区间为[Uset2,+∞),第六预设区间为(-∞,-Uset2),第一电压表示为U1,第二电压表示为U2。
在图3所示的示例中,该控制方法可以包括:
(1)若U1-U2∈[-Uset2,0)或U1-U2∈[Uset1,Uset2),即-Uset2≤U1-U2<0,或者Uset1≤U1-U2<Uset2,则执行第一操作;第一开关的极性正方向为由第一电池组指向第二电池组;
(2)若U1-U2∈[Uset2,+∞),即U1-U2≥Uset2,则控制所有的第一下桥臂以及所有的第二下桥臂关断,并控制至少一个第一上桥臂以及第二上桥臂401周期性地导通和关断,直至第一电压与第二电压之差属于第三预设区间后保持导通,直至达到预设稳定条件为止;
(3)若U1-U2∈(-∞,-Uset2),即U1-U2<-Uset2,则控制所有的第一下桥臂以及所有的第二下桥臂关断,并控制至少一个第一上桥臂以及第二上桥臂401周期性地导通和关断,直至第一电压与第二电压之差属于第四预设区间后保持导通,直至达到预设稳定条件为止。
第一操作包括:控制第一下桥臂212、第一下桥臂222、第一下桥臂232以及第二下桥臂402关断,并控制第一上桥臂211、第一上桥臂221和第一上桥臂231中
的至少一个、以及第二上桥臂401导通,直至达到预设稳定条件时闭合第一开关。预设稳定条件可以为第一上桥臂211、第一上桥臂221、第一上桥臂231和第二上桥臂401中导通的任两上桥臂之间的电压差小于或等于预设阈值,预设阈值例如可以为10V、11V或12V等值,具体值可以根据实际需要进行设定。
在图4所示的示例中,该控制方法可以包括:
(1)若U1-U2∈[-Uset2,0)或U1-U2∈[Uset1,Uset2),即-Uset2≤U1-U2<0,或者Uset1≤U1-U2<Uset2,则执行第一操作;第一开关的极性正方向为由第一电池组指向第二电池组;
(2)若U1-U2∈[Uset2,+∞),即U1-U2≥Uset2,则控制所有的第一下桥臂以及所有的第二下桥臂关断,并控制第一上桥臂211、第一上桥臂221、第一上桥臂231中的至少一个以及第二上桥臂411、第二上桥臂421和第二上桥臂431中的至少一个周期性地导通和关断,直至第一电压与第二电压之差属于第三预设区间后保持导通,直至达到预设稳定条件为止;
(3)若U1-U2∈(-∞,-Uset2),即U1-U2<-Uset2,则控制所有的第一下桥臂以及所有的第二下桥臂关断,并控制第一上桥臂211、第一上桥臂221、第一上桥臂231中的至少一个以及第二上桥臂411、第二上桥臂421和第二上桥臂431中的至少一个周期性地导通和关断,直至第一电压与第二电压之差属于第四预设区间后保持导通,直至达到预设稳定条件为止。
第一操作包括:控制第一下桥臂212、第一下桥臂222、第一下桥臂232以及第二下桥臂402关断,并控制第一上桥臂211、第一上桥臂221、第一上桥臂231中的至少一个以及第二上桥臂411、第二上桥臂421和第二上桥臂431中的至少一个导通,直至达到预设稳定条件时闭合第一开关。预设稳定条件可以为第一上桥臂211、第一上桥臂221、第一上桥臂231、第二上桥臂411、第二上桥臂421和第二上桥臂431中导通的任两上桥臂之间的电压差小于或等于预设阈值,预设阈值例如可以为10V、11V或12V等值,具体值可以根据实际需要进行设定。
本申请实施例的方法还可以应用于图6和图7所示的电路结构。如图6和图7所示,在一些实施方式中,第一电池组11的第一端与第二电池组12的第一端之间连接有第一开关K1;第二电池组12的第二端与第一电池组11的第二端、第一开关模块2的第二端、第二开关模块4的第二端共线连接;第一电池组11与第二电池组12之间连接有第一开关K1(图1中未示出第一开关K1,图1中供电模块1中的虚线表示连接关系可变),第一开关K1设置于第二电池组12的第一端与第一电池组11的第一端之间;第一开关K1的开闭状态能够改变第一电池组11与第二电池组12之间的连接关系。具体地,当第一开关K1闭合时,第一电池组11与第二电池组12并联连接;当第一开关K1断开时第一电池组11与第二电池组12串联连接。第二开关模块4的上下桥臂连接点与M相电机的中性点之间设置有第二开关K2。在执行上述的电池组电压均衡方法时,在控制至少一个第一上桥臂和至少一个第二上桥臂导通之前或者同时,
控制第二开关K2闭合。
本实施例中,三极管可以采用绝缘栅双极型功率管(Insulated Gate Bipolar Transistor,IGBT),也可以采用金属-氧化物半导体场效应晶体管(MOS),还可以采用其他具有开关功能的电子元器件,在此不作限制。
本申请实施例的电池组电压均衡方法,能够避免连接在第一电池组和第二电池组之间的开关过流损坏,还能够避免相邻两个电池组之间电压差过大导致直接并联后的环流电流值超过电池组在当前温度下的最大允许值而使电池组析锂损坏。
当完成该电池组电压均衡方法后,实现了第一电池组和第二电池组之间的电压均衡,即可闭合第一开关K1。另外,可以设定第七预设区间为[0,Uset1],第八预设区间为[0,Uset1);当第一开关K1为无极性开关时,若|U1-U2|∈[0,Uset1],即0≤|U1-U2|≤Uset1,表明此时第一电池组和第二电池组的电压差较小,则可以直接闭合第一开关K1;当第一开关K1为有极性开关时,若U1-U2∈[0,Uset1),即0≤U1-U2<Uset1,表明此时第一电池组和第二电池组的电压差较小,则可以直接闭合第一开关K1。
本申请的另一个实施例提供了一种电池组电压均衡装置,应用于充放电电路;该充放电电路包括第一开关模块、储能模块、第二开关模块、第一电池组和第二电池组;参考图8所示,该电池组电压均衡装置包括:
电压获取模块,用于获取第一电池组的第一电压和第二电池组的第二电压,第一电池组的第一端和第二电池组的第一端之间连接有第一开关;
控制模块,用于根据第一电压与第二电压,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,电压均衡回路中电流由其中一个电池组的正极流向另一电池组的正极。
在一些实施方式中,控制模块进一步用于根据第一开关的开关极性、第一电压与第二电压,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,电压均衡回路中电流由其中一个电池组的正极流向另一电池组的正极。
在一些实施方式中,控制模块进一步具体用于若第一开关无极性,则根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路。
在一些实施方式中,控制模块所执行的根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,包括:
若第一电压与第二电压之差的绝对值属于第一预设区间,则执行第一操作;
若第一电压与第二电压之差的绝对值属于第二预设区间,则控制第一开关模块和第二开关模块周期性地导通和关断,直至第一电压与第二电压之差的绝对值属
于第一预设区间时,执行第一操作;第二预设区间的下限值等于第一预设区间的上限值;
第一操作包括控制第一开关模块和第二开关模块导通,直至达到预设稳定条件为止。
在一些实施方式中,第一开关模块包括M相桥臂电路,第二开关模块包括N相桥臂电路,M和N为正整数,第一开关模块的每一桥臂电路包括串联的第一上桥臂和第一下桥臂,第二开关模块的每一桥臂电路包括串联的第二上桥臂和第二下桥臂;
根据第一电压与第二电压之差的绝对值以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,包括:
控制第一开关模块和第二开关模块周期性地导通和关断,包括:控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断;
第一操作包括控制至少一个第一上桥臂以及至少一个第二上桥臂导通,直至达到预设稳定条件为止。
预设稳定条件为导通的任两上桥臂之间的电压差小于或等于预设阈值。
在某些实施方式中,控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,包括:
根据第一电压与第二电压之差的绝对值以及预设映射关系,控制第一数目个第一上桥臂以及第二数目个第二上桥臂周期性地导通和关断,第一数目和第二数目在预设映射关系中与绝对值相对应。
在一些实施方式中,根据第一开关的开关极性、第一电压与第二电压,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,包括:
若第一开关有极性,则根据第一电压与第二电压之差以及至少一个预设区间,控制第一开关模块和第二开关模块动作,在充放电电路中形成电压均衡回路。
在一些实施方式中,根据第一电压与第二电压之差以及至少一个预设区间,控制第一开关模块和第二开关模块进行动作,在充放电电路中形成电压均衡回路,包括:
若第一电压与第二电压之差属于第三预设区间或第四预设区间,则执行第一操作;第一开关的极性正方向为由第一电池组指向第二电池组;
若第一电压与第二电压之差属于第五预设区间,则控制第一开关模块和第二开关模块周期性地导通和关断,直至第一电压与第二电压之差属于第三预设区间后保持导通,直至达到预设稳定条件为止;
若第一电压与第二电压之差属于第六预设区间,则控制第一开关模块和第二开关模块周期性地导通和关断,直至第一电压与第二电压之差属于第四预设区间后
保持导通,直至达到预设稳定条件为止;
第一操作包括控制第一开关模块和第二开关模块导通,直至达到预设稳定条件为止。
在一些实施方式中,第一开关模块包括M相桥臂电路,第二开关模块包括N相桥臂电路,M和N为正整数,第一开关模块的每一桥臂电路包括串联的第一上桥臂和第一下桥臂,第二开关模块的每一桥臂电路包括串联的第二上桥臂和第二下桥臂;
控制第一开关模块和第二开关模块周期性地导通和关断,包括:
控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断;
第一操作包括控制至少一个第一上桥臂以及至少一个第二上桥臂导通,并控制所有下桥臂关断,直至达到预设稳定条件为止。
预设稳定条件为导通的任两上桥臂之间的电压差小于或等于预设阈值。
在一些实施方式中,若第一电压与第二电压之差属于第五预设区间,则控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,包括:
若第一电压与第二电压之差属于第五预设区间,则根据第一电压与第二电压之差以及预设映射关系,控制第三数目个第一上桥臂以及第四数目个第二上桥臂周期性地导通和关断,第三数目和第四数目在预设映射关系中与第一电压与第二电压之差相对应。
在一些实施方式中,若第一电压与第二电压之差属于第六预设区间,则控制至少一个第一上桥臂以及至少一个第二上桥臂周期性地导通和关断,包括:
若第一电压与第二电压之差属于第六预设区间,则根据第一电压与第二电压之差以及预设映射关系,控制第五数目个第一上桥臂以及第六数目个第二上桥臂周期性地导通和关断,第五数目和第六数目在预设映射关系中与第一电压与第二电压之差相对应。
本申请实施例提供的电池组电压均衡装置,能够实现第一电池组和第二电池组之间的电压均衡,避免第一电池组和第二电池组的电压差过大,从而能够避免第一电池组和第二电池组之间的电压差过大所造成的安全隐患、避免由于电压差过大而发生安全事故,解决了现有技术中存在的以下技术问题:当该电压差过大时,若直接闭合连接在相邻两个电池组之间的开关使两个电池组恢复并联关系,则极容易产生由于电压差过大所导致的安全事故,损坏电路。
本申请的另一个实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行该程序,以实现上述任一实施方式的充放电电路的控制方法。
如图9所示,电子设备10可以包括:处理器100,存储器101,总线102
和通信接口103,处理器100、通信接口103和存储器101通过总线102连接;存储器101中存储有可在处理器100上运行的计算机程序,处理器100运行该计算机程序时执行本申请前述任一实施方式所提供的方法。
其中,存储器101可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还可以包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口103(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。
总线102可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。其中,存储器101用于存储程序,处理器100在接收到执行指令后,执行该程序,前述本申请实施例任一实施方式揭示的方法可以应用于处理器100中,或者由处理器100实现。
处理器100可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器100中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器100可以是通用处理器,可以包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器101,处理器100读取存储器101中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的电子设备与本申请实施例提供的方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。
本申请的另一个实施例提供了一种充放电系统,包括控制器以及充放电电路,该控制器用于针对该充放电电路执行上述任一实施方式的充放电电路的控制方法。
本申请的另一个实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以实现上述任一实施方式的充放电电路的控制方法。
参考图10所示,其示出的计算机可读存储介质为光盘20,其上存储有计算机程序(即程序产品),该计算机程序在被处理器运行时,会执行前述任意实施方式所提供的方法。
需要说明的是,计算机可读存储介质的例子还可以包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器
(EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。
本申请的上述实施例提供的计算机可读存储介质与本申请实施例提供的方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
需要说明的是:
术语“模块”并非意图受限于特定物理形式。取决于具体应用,模块可以实现为硬件、固件、软件和/或其组合。此外,不同的模块可以共享公共组件或甚至由相同组件实现。不同模块之间可以存在或不存在清楚的界限。
在此提供的算法和显示不与任何特定计算机、虚拟装置或者其它设备固有相关。各种通用装置也可以与基于在此的示例一起使用。根据上面的描述,构造这类装置所要求的结构是显而易见的。此外,本申请也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本申请的内容,并且上面对特定语言所做的描述是为了披露本申请的最佳实施方式。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上实施例仅表达了本申请的实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。
Claims (14)
- 一种电池电压均衡方法,其特征在于,应用于充放电电路;所述充放电电路包括第一开关模块、储能模块、第二开关模块、第一电池组和第二电池组;所述方法包括:获取第一电池组的第一电压和第二电池组的第二电压,所述第一电池组的第一端和所述第二电池组的第一端之间连接有第一开关;根据所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
- 根据权利要求1所述的方法,其特征在于,所述根据所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:根据所述第一开关的开关极性、所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
- 根据权利要求2所述的方法,其特征在于,所述根据所述第一开关的开关极性、所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:若所述第一开关无极性,则根据所述第一电压与所述第二电压之差的绝对值以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
- 根据权利要求3所述的方法,其特征在于,所述根据所述第一电压与所述第二电压之差的绝对值以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:若所述第一电压与所述第二电压之差的绝对值属于第一预设区间,则执行第一操作;若所述第一电压与所述第二电压之差的绝对值属于第二预设区间,则控制所述第 一开关模块和所述第二开关模块周期性地导通和关断,直至所述第一电压与所述第二电压之差的绝对值属于所述第一预设区间时,执行所述第一操作;所述第二预设区间的下限值等于所述第一预设区间的上限值;所述第一操作包括控制所述第一开关模块和所述第二开关模块导通,直至达到预设稳定条件为止。
- 根据权利要求2所述的方法,其特征在于,所述根据所述第一开关的开关极性、所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:若所述第一开关有极性,则根据所述第一电压与所述第二电压之差以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块动作,在所述充放电电路中形成电压均衡回路。
- 根据权利要求5所述的方法,其特征在于,所述根据所述第一电压与所述第二电压之差以及至少一个预设区间,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路,包括:若所述第一电压与所述第二电压之差属于第三预设区间或第四预设区间,则执行第一操作;所述第一开关的极性正方向为由所述第一电池组指向所述第二电池组;若所述第一电压与所述第二电压之差属于第五预设区间,则控制所述第一开关模块和所述第二开关模块周期性地导通和关断,直至所述第一电压与所述第二电压之差属于所述第三预设区间后保持导通,直至达到预设稳定条件为止;若所述第一电压与所述第二电压之差属于第六预设区间,则控制所述第一开关模块和所述第二开关模块周期性地导通和关断,直至所述第一电压与所述第二电压之差属于所述第四预设区间后保持导通,直至达到所述预设稳定条件为止;所述第一操作包括控制所述第一开关模块和所述第二开关模块导通,直至达到预设稳定条件为止。
- 根据权利要求4或6所述的方法,其特征在于,第一开关模块包括M相桥臂电路,第二开关模块包括N相桥臂电路,M和N为正整数,所述第一开关模块的每一所述桥臂电路包括串联的第一上桥臂和第一下桥臂,所述第二开关模块的每一所述桥 臂电路包括串联的第二上桥臂和第二下桥臂;所述控制所述第一开关模块和所述第二开关模块周期性地导通和关断,包括:控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断;所述第一操作包括控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂导通,并控制所有下桥臂关断,直至达到预设稳定条件为止。
- 根据权利要求7所述的方法,其特征在于,所述预设稳定条件为导通的任两上桥臂之间的电压差小于或等于预设阈值。
- 根据权利要求7所述的方法,其特征在于,在所述第一开关无极性的情况下,控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,包括:根据所述第一电压与所述第二电压之差的绝对值以及预设映射关系,控制第一数目个所述第一上桥臂以及第二数目个所述第二上桥臂周期性地导通和关断,所述第一数目和所述第二数目在所述预设映射关系中与所述绝对值相对应。
- 根据权利要求7所述的方法,其特征在于,在所述第一开关有极性的情况下,若所述第一电压与所述第二电压之差属于第五预设区间,则控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,包括:若所述第一电压与所述第二电压之差属于第五预设区间,则根据所述第一电压与所述第二电压之差以及预设映射关系,控制第三数目个所述第一上桥臂以及第四数目个所述第二上桥臂周期性地导通和关断,所述第三数目和所述第四数目在所述预设映射关系中与所述第一电压与所述第二电压之差相对应。
- 根据权利要求7所述的方法,其特征在于,在所述第一开关有极性的情况下,若所述第一电压与所述第二电压之差属于第六预设区间,则控制至少一个所述第一上桥臂以及至少一个所述第二上桥臂周期性地导通和关断,包括:若所述第一电压与所述第二电压之差属于第六预设区间,则根据所述第一电压与所述第二电压之差以及预设映射关系,控制第五数目个所述第一上桥臂以及第六数目个所述第二上桥臂周期性地导通和关断,所述第五数目和所述第六数目在所述预设映 射关系中与所述第一电压与所述第二电压之差相对应。
- 一种电池组电压均衡装置,其特征在于,应用于充放电电路;所述充放电电路包括第一开关模块、储能模块、第二开关模块、第一电池组和第二电池组;所述装置包括:电压获取模块,用于获取第一电池组的第一电压和第二电池组的第二电压,所述第一电池组的第一端和所述第二电池组的第一端之间连接有第一开关;控制模块,用于根据所述第一电压与所述第二电压,控制所述第一开关模块和所述第二开关模块进行动作,在所述充放电电路中形成电压均衡回路。
- 一种电子设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如权利要求1-11中任一所述的方法。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以实现如权利要求1-11中任一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210631538.7A CN115378066A (zh) | 2022-06-06 | 2022-06-06 | 电池组电压均衡方法、装置、电子设备及存储介质 |
CN202210631538.7 | 2022-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023236623A1 true WO2023236623A1 (zh) | 2023-12-14 |
Family
ID=84062382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/082779 WO2023236623A1 (zh) | 2022-06-06 | 2023-03-21 | 电池组电压均衡方法、装置、电子设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115378066A (zh) |
WO (1) | WO2023236623A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115378066A (zh) * | 2022-06-06 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 电池组电压均衡方法、装置、电子设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201322585A (zh) * | 2011-11-16 | 2013-06-01 | Byd Co Ltd | 一種電池的加熱電路 |
CN110077283A (zh) * | 2019-03-28 | 2019-08-02 | 清华大学 | 电动汽车控制方法 |
CN112688372A (zh) * | 2019-10-17 | 2021-04-20 | 三星Sdi株式会社 | 电池系统 |
CN114074561A (zh) * | 2020-08-20 | 2022-02-22 | 比亚迪股份有限公司 | 能量转换装置及其运行方法、电动汽车 |
CN115378066A (zh) * | 2022-06-06 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 电池组电压均衡方法、装置、电子设备及存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8452490B2 (en) * | 2009-12-14 | 2013-05-28 | Control Solutions LLC | Electronic circuit for charging and heating a battery |
CN102208820B (zh) * | 2010-03-29 | 2013-08-21 | 比亚迪股份有限公司 | 一种储能电池组并联装置及其控制方法 |
CN110116653B (zh) * | 2019-04-19 | 2024-02-09 | 清华大学 | 电动汽车驱动系统、驱动电路及电动汽车电池加热方法 |
CN112398183B (zh) * | 2019-08-15 | 2023-04-07 | 比亚迪股份有限公司 | 预充电路、能量转换装置及车辆 |
CN112467811B (zh) * | 2019-09-06 | 2023-04-07 | 华为技术有限公司 | 双电池电压均衡方法和双电池电压均衡电路 |
-
2022
- 2022-06-06 CN CN202210631538.7A patent/CN115378066A/zh active Pending
-
2023
- 2023-03-21 WO PCT/CN2023/082779 patent/WO2023236623A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201322585A (zh) * | 2011-11-16 | 2013-06-01 | Byd Co Ltd | 一種電池的加熱電路 |
CN110077283A (zh) * | 2019-03-28 | 2019-08-02 | 清华大学 | 电动汽车控制方法 |
CN112688372A (zh) * | 2019-10-17 | 2021-04-20 | 三星Sdi株式会社 | 电池系统 |
CN114074561A (zh) * | 2020-08-20 | 2022-02-22 | 比亚迪股份有限公司 | 能量转换装置及其运行方法、电动汽车 |
CN115378066A (zh) * | 2022-06-06 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 电池组电压均衡方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN115378066A (zh) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023226562A1 (zh) | 充放电电路的控制方法、装置、设备、系统及存储介质 | |
WO2023236623A1 (zh) | 电池组电压均衡方法、装置、电子设备及存储介质 | |
US10651772B2 (en) | Inverter system for vehicle and control method thereof | |
EA035682B1 (ru) | Гибридный блок питания | |
TW201937827A (zh) | 充電站及充電系統、方法、裝置 | |
CN104079052A (zh) | 电动汽车直流充电系统 | |
US20200195032A1 (en) | Charging system | |
WO2023207429A1 (zh) | 动力电池的加热方法、装置、电子设备、系统及存储介质 | |
US20210213842A1 (en) | Vehicle including fuel cell, battery-charging method for the vehicle, and recording medium having recorded therein program for executing the method | |
JP2021132517A (ja) | 切替装置、その装置を含む蓄電システム、そのシステムを含む車両、及び、切替方法 | |
JP2020005389A (ja) | 電源システム | |
WO2023207324A1 (zh) | 一种动力电池自加热方法、系统、存储介质及电子设备 | |
CN113745703B (zh) | 动力电池的加热方法和装置、车辆 | |
WO2023207428A1 (zh) | 一种电池充电控制方法、装置、设备及存储介质 | |
CN115648966A (zh) | 一种电机控制器、控制单元、电驱动系统以及电动车辆 | |
WO2023202304A1 (zh) | 充放电电路的控制方法、装置、设备、系统及存储介质 | |
US11757373B2 (en) | Power converter | |
WO2023202229A1 (zh) | 充放电电路的控制方法、装置、系统、设备及存储介质 | |
WO2022142310A1 (zh) | 驱动控制电路、驱动控制方法、线路板及空调器 | |
CN111313374A (zh) | 一种应用于电动自行车bms的电池系统欠压保护电路和方法 | |
CN108899943B (zh) | 基于电池组h桥串联结构的三相电机逆变驱动控制电路及其控制方法 | |
WO2023202293A1 (zh) | 电机控制方法、装置、用电设备及存储介质 | |
CN114374024A (zh) | 动力电池的加热控制方法、控制装置以及电动汽车 | |
CN108682911A (zh) | 用于汽车的电池组的系统 | |
WO2022183401A1 (zh) | 异步电机处理方法、装置、设备、系统以及交通工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23818791 Country of ref document: EP Kind code of ref document: A1 |