WO2023226503A1 - 移相器及通信设备 - Google Patents

移相器及通信设备 Download PDF

Info

Publication number
WO2023226503A1
WO2023226503A1 PCT/CN2023/079092 CN2023079092W WO2023226503A1 WO 2023226503 A1 WO2023226503 A1 WO 2023226503A1 CN 2023079092 W CN2023079092 W CN 2023079092W WO 2023226503 A1 WO2023226503 A1 WO 2023226503A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
phase shifter
reflective load
reflective
electrode
Prior art date
Application number
PCT/CN2023/079092
Other languages
English (en)
French (fr)
Inventor
胡仪迪
王晓华
吴涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023226503A1 publication Critical patent/WO2023226503A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present application relates to the field of communication technology, and in particular to a phase shifter and communication equipment.
  • phase shifter is a device used to adjust the phase of signals in the field of communications.
  • Phase shifters commonly used in the related art are generally reflective phase shifters, which can shift the phase of the signal by reflecting the signal.
  • the reflective phase shifter in the related art can only produce a fixed phase shift in the signal, that is, the phase shift amount of the reflective phase shifter is fixed, and its use flexibility is poor.
  • the present application provides a phase shifter and communication equipment, which can solve the technical problem of poor use flexibility of phase shifters in related technologies.
  • a phase shifter in a first aspect, includes: a microstrip line bridge, a first reflective load, a second reflective load and a feed structure.
  • the microstrip line bridge has an input end, a through end, a coupling end and an output end. The input end is used to receive input signals, the through end is connected to the first reflective load, the coupling end is connected to the second reflective load, and the output end is used to output signals.
  • At least one of the first reflective load and the second reflective load is a target reflective load, the material of the target reflective load includes vanadium dioxide, and the target reflective load is connected to the feed structure.
  • the feed structure is used to apply voltage to the target reflective load to adjust the reflection coefficient of the target reflective load.
  • the feed structure can adjust the reflection coefficient of the target reflective load by applying voltage to the target reflective load. Based on this, the solution provided by this application can realize flexible adjustment of the phase shift amount of the phase shifter, thereby effectively improving the flexibility of use of the phase shifter.
  • the target reflective load may include: a first metal layer, a vanadium dioxide film and a second metal layer.
  • the first metal layer is connected to the microstrip line bridge and laminated with the vanadium dioxide film.
  • the second metal layer is connected to the feed structure and laminated with the vanadium dioxide film.
  • the feed structure can be used to apply voltage to the second metal layer.
  • the shape of the vanadium dioxide film may be rectangular or circular. Since the manufacturing process of rectangular or circular films is simple and the manufacturing precision is high, using rectangular or circular vanadium dioxide films to form the target reflection load can be achieved without increasing the complexity and manufacturing process of the phase shifter. Under the premise of reducing cost, it is ensured that the phase shifter has high manufacturing precision and good performance.
  • both the first metal layer and the second metal layer may at least partially cover the vanadium dioxide film. This ensures that the voltage applied to the metal layer can effectively change the electrical parameters (such as relative dielectric constant) of the vanadium dioxide film, thereby effectively adjusting the phase shift amount of the phase shifter.
  • At least one of the input end, through end, coupling end and output end of the microstrip line bridge may be a coupling structure.
  • the coupling structure includes: a first microstrip line and a second microstrip line arranged at intervals, the first microstrip line and the second microstrip line portion overlapping.
  • the first microstrip line and the second microstrip line may be parallel to each other.
  • the phase shifter can have a wider operating frequency band, lower loss, and can achieve large range and high Precision phase shifting.
  • both the input end and the output end of the microstrip line bridge can be coupled structures.
  • both the through end and the coupling end of the microstrip line bridge can be coupled structures. This ensures that the microstrip line bridge has better broadband characteristics.
  • the first reflective load and the second reflective load may both be target reflective loads.
  • the feed structure can load voltages to the first reflective load and the second reflective load respectively, and adjust the reflection coefficients of the two reflective loads respectively, thereby effectively improving the flexibility of adjusting the phase shift amount of the phase shifter. .
  • the vanadium dioxide films in the first reflective load and the second reflective load have the same size and the same shape. Since the two reflective loads have the same structure, the manufacturing process of the phase shifter can be effectively simplified, the manufacturing cost is reduced, and the manufacturing efficiency is improved.
  • the feed structure may include a feed electrode and a ground electrode. Both the feed electrode and the ground electrode are connected to the target reflective load.
  • the feed electrode is used to load a voltage to the target reflective load (eg, the second metal layer in the target reflective load) to form a voltage difference on the target reflective load.
  • This voltage difference can cause the vanadium dioxide material in the target reflective load to undergo a phase change, thereby changing the reflection coefficient of the target reflective load.
  • the feed electrode may include a first feed sub-electrode and a second feed sub-electrode.
  • the first feed sub-electrode is connected to the first reflective load and is used to load a first voltage to the first reflective load;
  • the second feed sub-electrode is connected to the second reflective load and is used to load a second voltage to the second reflective load.
  • the first voltage and the second voltage may be the same or different. Since the feed electrode can include two independent feed sub-electrodes, and the two feed sub-electrodes are respectively connected to a reflective load, the reflection coefficient of each reflective load can be independently adjusted, thereby effectively improving the phase shift. Volume adjustment flexibility.
  • the ground electrode may include a first ground sub-electrode and a second ground sub-electrode.
  • the first ground sub-electrode is connected to the first reflective load
  • the second ground sub-electrode is connected to the second reflective load.
  • the feed structure may further include: fan-shaped branches; the fan-shaped branches may be connected between the feed electrode and the target reflective load.
  • the target reflective load will not only receive the input signal (i.e., radio frequency signal) transmitted by the microstrip line bridge, but also receive the voltage signal loaded by the feed structure.
  • the input signal i.e., radio frequency signal
  • the target reflective load By arranging fan-shaped branches between the feed electrode and the target reflection load, the crosstalk between the radio frequency signal and the voltage signal can be effectively reduced.
  • the fan-shaped branch may include: two fan-shaped sub-branches.
  • the two fan-shaped sub-branches correspond to the two reflective loads one-to-one, and each sector-shaped sub-branch is used to reduce signal crosstalk in a corresponding reflective load.
  • the first reflective load and the second reflective load are symmetrically arranged with the target axis as the symmetry axis; the two sector-shaped sub-branches are also symmetrically arranged with the target axis as the symmetry axis.
  • the first reflective load and the second reflective load may both be rectangular structures, and the target axis may be parallel to the long side direction of the rectangular structure.
  • phase shifter By designing both the reflective load and the sector-shaped branches in the phase shifter into symmetrical structures, the assembly of the phase shifter can be facilitated and the preparation efficiency of the phase shifter can be improved.
  • a phase shifter in a second aspect, includes: a microstrip line bridge, a first reflective load and a second reflective load.
  • the microstrip line bridge has an input end, a through end, a coupling end and an output end. This input terminal is used to receive the input signal No., the through end is connected to the first reflective load, the coupling end is connected to the second reflective load, and the output end is used to output signals.
  • at least one of the input end, through end, coupling end and output end is a coupling structure.
  • the coupling structure includes: first microstrip lines and second microstrip lines arranged at intervals, and the first microstrip lines and the second microstrip lines partially overlap.
  • the phase shifter can have a wider operating frequency band, lower loss, and can achieve Large range and high precision phase shifting.
  • a microstrip line bridge In a third aspect, a microstrip line bridge is provided.
  • the microstrip line bridge has an input end, a through end, a coupling end, and an output end, and at least one of the input end, the through end, the coupling end, and the output end.
  • the coupling structure includes: a first microstrip line and a second microstrip line arranged at intervals, and the first microstrip line and the second microstrip line partially overlap.
  • the microstrip line bridge Since at least one of the input end, through end, coupling end and output end of the microstrip line bridge is a coupling structure, its operating frequency band is wider and its loss is lower.
  • the microstrip line bridge can be applied to other signal processing devices in addition to the phase shifter provided in the above aspects.
  • it can also be used in mixers, filters or attenuators.
  • a communication device in a fourth aspect, includes: a radio frequency circuit, an antenna, and a phase shifter provided in any of the above aspects.
  • the phase shifter is used to perform phase shifting processing on the radio frequency signal transmitted by the radio frequency circuit, and is used to perform phase shifting processing on the radio frequency signal received by the antenna.
  • this application provides a phase shifter and communication equipment.
  • at least one of the first reflective load and the second reflective load in the phase shifter is a target reflective load
  • the material of the target reflective load includes vanadium dioxide. Since the feed structure in the phase shifter can apply voltage to the target reflective load, it can cause the vanadium dioxide to undergo a phase change, thereby adjusting the reflection coefficient of the target reflective load. As a result, the phase shift amount of the phase shifter can be flexibly adjusted, thereby effectively improving the flexibility of use of the phase shifter.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a phase shifter provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another phase shifter provided by an embodiment of the present application.
  • Figure 5 is a cross-sectional view of a target reflective load provided by an embodiment of the present application.
  • Figure 6 is a top view of another target reflective load provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another phase shifter provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of yet another phase shifter provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a microstrip line bridge provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a coupling structure provided by an embodiment of the present application.
  • Figure 11 is an equivalent circuit diagram of a phase shifter provided by an embodiment of the present application.
  • Figure 12 is an impedance circle diagram of a load arm of a microstrip line bridge provided by an embodiment of the present application.
  • Figure 13 is an impedance circle diagram of the load arm of another microstrip line bridge provided by the embodiment of the present application.
  • Figure 14 is a full-wave simulation diagram of a phase shifter provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram showing the change of the phase shift amount with voltage of a phase shifter provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of yet another phase shifter provided by an embodiment of the present application.
  • radio frequency front-end module its control method, and communication equipment provided by the embodiments of the present application will be introduced in detail below with reference to the accompanying drawings.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include a base station (BS) 100 and a core network (core) device 200.
  • the terminal 000 can access the network through the base station 100 and the core network equipment 200.
  • the terminal 000 may also be called user equipment (UE), which may be a mobile phone, a computer, a wearable device, a vehicle-mounted device or a smart home device, etc.
  • UE user equipment
  • the terminal 000 may be a smartphone, virtual reality (VR) glasses, a holographic projection device or an intelligent robot, etc.
  • VR virtual reality
  • the base station 100 may be an access device in a mobile communication system, which may be a Node B (NodeB, NB) or an evolved NodeB (evolved NodeB, eNB), etc.
  • the base station 100 may be an access point (AP) in a wireless local area network (WLAN).
  • the core network device 200 may be a network device such as a router or a switch.
  • the communication system may be a sixth generation (6-generation, 6G) mobile communication system, and the 6G mobile communication system may adopt terahertz (THz) communication technology.
  • 6G sixth generation
  • THz terahertz
  • FIG 2 is a schematic structural diagram of a radio frequency front-end system in a communication device provided by an embodiment of the present application.
  • the communication device may be the base station 100 or the terminal 000 in the system shown in Figure 1 .
  • the radio frequency front-end system may include: phase shifter 01, switch 02, excitation power amplifier 03, final power amplifier 04, first coupler 05, second coupler 06, antenna 07, limiter 08, filter 09.
  • the attenuator 11 may be an electronically controlled attenuator.
  • the phase shifter 01 is connected to the radio frequency circuit (not shown in Figure 2) and the switch 02 in the communication device respectively.
  • the switch 02 conducts the phase shifter 01 and the excitation power amplifier 03.
  • the phase shifter 01 can phase shift the radio frequency signal transmitted by the radio frequency circuit to be sent, and transmit the phase-shifted radio frequency signal to the excitation power amplifier 03 .
  • the excitation power amplifier 03 and the final power amplifier 04 can amplify the power of the radio frequency signal in sequence.
  • the amplified radio frequency signal can be transmitted to the antenna 07 through the first coupler 05 and the second coupler 06 and radiated by the antenna 07 .
  • the switch 02 conducts the phase shifter 01 and the attenuator 11 .
  • the radio frequency signal received by the antenna 07 is sequentially limited by the limiter 08, filtered by the filter 09, amplified by the LNA 10, attenuated by the attenuator 11 and then transmitted to the phase shifter 01.
  • the phase shifter 01 can then phase-shift the received radio frequency signal and transmit the phase-shifted radio frequency signal to the radio frequency circuit.
  • the communication device may further include a wave controller 12, which is used to control the beams of received and transmitted radio frequency signals.
  • Phase shifters in the related art generally include switching phase shifters, load line phase shifters, reflective phase shifters, high and low pass phase shifters, and vector modulation phase shifters.
  • the switching phase shifter has a relatively simple structure and low insertion loss, but it cannot realize the function of dynamic phase shifting, and has the disadvantages of narrow operating frequency band and large in-band phase shifting error.
  • Load-type phase shifters usually include multiple cascaded phase-shifting units, which have a complex structure and high cost, and are difficult to achieve large-scale phase shifting.
  • Reflective phase shifters generally include a bridge and a reflective load. They have a simple structure and can achieve a wide range of phase shifts. However, reflective phase shifters usually only provide a fixed phase shift amount and cannot achieve dynamic phase shifts.
  • High-pass and low-pass phase shifters have high phase shifting accuracy, but they have shortcomings such as narrow operating frequency band, large insertion loss, high cost and complex structure.
  • the vector modulation phase shifter has high phase shifting accuracy and small insertion loss, but its structure is complex and the cost is high.
  • phase shifter which is a reflective phase shifter.
  • the phase shifter has a relatively simple structure, low cost, and can realize dynamic phase shifting.
  • the phase shifter provided by the embodiment of the present application includes: a microstrip line bridge 10 , a first reflective load 20 , a second reflective load 30 and a feed structure 40 .
  • the microstrip line bridge 10 is a bridge formed by a microstrip line, which is also called a coupler. It has an input terminal P1, a through terminal P2, a coupling terminal P3 and an output terminal P4.
  • the input terminal P1 is used to receive input signals
  • the through terminal P2 is connected to the first reflective load 20
  • the coupling terminal P3 is connected to the second reflective load 30
  • the output terminal P4 is used to output signals.
  • the output terminal P4 is also called an isolation terminal.
  • At least one of the first reflective load 20 and the second reflective load 30 is a target reflective load
  • the material of the target reflective load includes vanadium dioxide (VO 2 )
  • the target reflective load is connected to the feed structure 40 .
  • the feed structure 40 is used to apply voltage to the target reflective load connected to the feed structure 40 to adjust the reflection coefficient of the target reflective load.
  • both the first reflective load 20 and the second reflective load 30 are target reflective loads, and the feed structure 40 can load voltages to the first reflective load 20 and the second reflective load 30 respectively.
  • the feed structure 40 is only connected to the first reflective load 20 and not to the second reflective load. 30 connections.
  • the working principle of the microstrip line bridge 10 is as follows: after receiving the input signal through its input terminal P1, the microstrip line bridge 10 can divide the power of the signal into equal parts and then transmit it to the through terminal P2 and the coupling terminal P3 respectively. Among them, the signal transmitted to the through end P2 is reflected by the first reflective load 20, and the signal transmitted to the coupling end P3 is reflected by the second reflective load 30, and the phase of the signal reflected by each reflective load is consistent with the reflection coefficient of the reflective load. Related. The two reflected signals are combined at the output terminal P4 to generate an output signal, and the phase of the output signal is related to the reflection coefficients of the two reflective loads.
  • vanadium dioxide is a phase change material, which has thermally induced phase change (relaxation time in microseconds), electrically induced phase change (relaxation time in nanoseconds), photoinduced phase change and Characteristics of stress-induced phase changes.
  • the conductivity of vanadium dioxide during phase change can change significantly by several orders of magnitude. For example, the conductivity during phase change can change from 10 Siemens/m to 10 5 Siemens/m.
  • the phase shifter provided in the embodiment of the present application utilizes the electrical phase change characteristics of vanadium dioxide.
  • the vanadium dioxide material can undergo a phase change, thereby changing the relative dielectric constant, electron mobility and other electrical parameters of the vanadium dioxide material. Changes in the above electrical parameters can change the reflection coefficient of the target reflection load, thereby adjusting the phase shift amount of the phase shifter.
  • the phase shift amount of the phase shifter refers to the relative phase difference between the output signal of the phase shifter in different control states and the output signal in the reference state.
  • the reference state may be a state when no voltage is applied to the target reflective load, or may be a state when a certain reference voltage is applied.
  • embodiments of the present application provide a phase shifter.
  • At least one of the first reflective load and the second reflective load in the phase shifter is a target reflective load, and the material of the target reflective load includes vanadium dioxide. Since the feed structure in the phase shifter applies voltage to the target reflective load, it can cause the vanadium dioxide in the target reflective load to undergo a phase change, thereby adjusting the reflection coefficient of the target reflective load. As a result, the phase shift amount of the phase shifter can be dynamically adjusted, thereby effectively improving the flexibility of use of the phase shifter.
  • the vanadium dioxide material since the vanadium dioxide material has the advantages of easy preparation and low cost, it can ensure that the manufacturing process and structure of the phase shifter are relatively simple and the cost is low.
  • the target reflection load in the phase shifter may include: a first metal layer 0a, a vanadium dioxide film 0b, and a second metal layer 0c.
  • the first metal layer 0a is connected to the microstrip line bridge 10
  • the second metal layer 0c is connected to the feed structure 40.
  • FIG. 5 is a cross-sectional view of a target reflective load provided by an embodiment of the present application
  • FIG. 6 is a top view of a target reflective load provided by an embodiment of the present application.
  • the first metal layer 0a is also laminated with the vanadium dioxide film 0b
  • the second metal layer 0c is also laminated with the vanadium dioxide film 0b.
  • the feed structure 40 can be used to apply voltage to the second metal layer 0c to adjust electrical parameters such as the relative dielectric constant and electron mobility of the vanadium dioxide film 0b, thereby adjusting the reflection coefficient of the target reflection load.
  • the relative dielectric constant of the vanadium dioxide film 0b is 500 and the electron mobility is 10 Siemens/m.
  • the voltage applied by the feed structure 40 to the second metal layer 0c is 2V
  • the relative dielectric constant of the vanadium dioxide film 0b is 10000
  • the electron mobility is 1 ⁇ 10 5 Siemens/m.
  • the phase shifter provided in the embodiment of the present application can use a vanadium dioxide material in the form of a film to form a target reflection load. It can be understood that the vanadium dioxide material in the target reflective load can also be in other forms, for example, it can also be in a gaseous state.
  • both the first metal layer 0a and the second metal layer 0c may be rectangular.
  • the first metal layer 0a has two ends arranged along the length direction (or width direction), one end of the two ends is connected to the microstrip line bridge 10, and the other end is laminated with the vanadium dioxide film 0b.
  • the second metal layer 0c also has two ends arranged along the length direction (or width direction), one end of the two ends is connected to the feed structure 40, and the other end is stacked with the vanadium dioxide film 0b.
  • the phase shifter provided by the embodiment of the present application may also include a substrate, the microstrip line bridge 10 , the first reflective load 20 , the second reflective load 30 and the feed structure 40 are formed on the base substrate.
  • the substrate may be a sapphire (Al 2 O 3 ) substrate with a relative dielectric constant of 9.8, and its thickness may be 127 micrometers (um).
  • the base substrate may be a quartz substrate with a relative dielectric constant of 3.9, and its thickness may be 100um.
  • both the first metal layer 0a and the second metal layer 0c may at least partially cover the vanadium dioxide film 0b.
  • the first metal layer 0a and the second metal layer 0c are both at least partially located on the side of the vanadium dioxide film 0b away from the base substrate. This ensures that the voltage applied to the metal layer can effectively adjust the electrical parameters of the vanadium dioxide film 0b, thereby effectively adjusting the phase shift amount of the phase shifter.
  • first metal layer 0a and the second metal layer 0c can both be located on the side of the vanadium dioxide film 0b close to the base substrate.
  • at least part of one of the first metal layer 0a and the second metal layer 0c is located on the side of the vanadium dioxide film 0b away from the base substrate, and the other metal layer is located on the side of the vanadium dioxide film 0b close to the base substrate. side.
  • the shape of the vanadium dioxide film 0b may be a rectangle.
  • the shape of the vanadium dioxide film 0b may be circular. Since the manufacturing process of rectangular films and circular films is simple and the manufacturing precision is high, using rectangular or circular vanadium dioxide films 0b to form the target reflection load can be achieved without increasing the complexity and complexity of the phase shifter manufacturing process. Under the premise of reducing manufacturing cost, it is ensured that the phase shifter has high manufacturing precision and good performance.
  • the width of the second metal layer 0c may be greater than or equal to the width of the vanadium dioxide film 0b. If the second metal layer 0c and the vanadium dioxide film 0b are both circular, the diameter of the second metal layer 0c may be greater than or equal to the diameter of the vanadium dioxide film 0b. This ensures that the second metal layer 0c can effectively contact the vanadium dioxide film 0b, thereby ensuring that the voltage provided by the feed structure 40 can be effectively loaded onto the vanadium dioxide film 0b.
  • the thickness of the first metal layer 0a and the second metal layer 0c may be 0.2um.
  • the width of the rectangular vanadium dioxide film 0b can be 25um, the width of the rectangular second metal layer 0c can be 200um, and the length can be 250um.
  • the vanadium dioxide film 0b, the first metal layer 0a and the second metal layer 0c can also be in other shapes besides rectangular and circular, for example, they can also be rhombus, pentagon, or hexagon. shape or ellipse, etc.
  • the embodiments of the present application do not limit the shape of the above-mentioned film layer.
  • both the first reflective load 20 and the second reflective load 30 may be target reflective loads. That is, the materials of the first reflective load 20 and the second reflective load 30 both include vanadium dioxide, and both are connected to the feed structure 40 . Therefore, the feed structure 40 can apply voltages to the first reflective load 20 and the second reflective load 30 respectively, and adjust the reflection coefficients of the two reflective loads respectively, thereby effectively improving the accuracy of the phase shift amount of the phase shifter. Adjust flexibility.
  • the first reflective load 20 The size and shape of the vanadium dioxide film 0b in the second reflective load 30 may be the same.
  • the first metal layer 0a in the first reflective load 20 and the second reflective load 30 may have the same size and the same shape.
  • the second metal layer 0c in the first reflective load 20 and the second reflective load 30 may have the same size and the same shape.
  • the manufacturing process of the phase shifter can be effectively simplified, the manufacturing cost is reduced, and the manufacturing efficiency is improved.
  • the structure of the other reflective load may be the same as the target reflective load.
  • the other reflective load may not include vanadium dioxide material.
  • the other reflective load may include at least one device among a microstrip line, a resistor, a capacitor, and an inductor, and the other reflective load may achieve total reflection of the signal.
  • the feed structure 40 in the phase shifter may include a feed electrode 401 and a ground electrode 402 .
  • the feed electrode 401 is connected to the target reflective load
  • the ground electrode 402 is also connected to the target reflective load.
  • the feed electrode 401 is connected to the second metal layer 0c in the target reflective load
  • the ground electrode 402 is connected to the first metal layer 0a in the target reflective load.
  • the feed electrode 401 may be a sheet electrode.
  • the sheet electrode can be connected to the first reflective load 20 and the second reflective load 30 respectively.
  • the feed electrode 401 can load the first reflective load 20 and the second reflective load 30 with the same voltage.
  • the sheet electrode can be rectangular, its width can be 300um, and its length can be 400um.
  • the sheet electrode can also be in other shapes, such as circular shape, which is not limited in the embodiments of the present application.
  • the feed electrode 401 may include a first feed sub-electrode 401 a and a second feed sub-electrode 401 b that are independent of each other.
  • the first feed sub-electrode 401a is connected to the first reflective load 20 and is used to load the first voltage to the first reflective load 20 .
  • the second feed sub-electrode 401b is connected to the second reflective load 30 and is used to load the second voltage to the second reflective load 30 .
  • the first voltage and the second voltage may be the same or different. Since the feed electrode 401 includes two mutually independent feed sub-electrodes, and the two feed sub-electrodes are respectively connected to a reflective load, the reflection coefficient of each reflective load can be independently adjusted, thereby effectively improving the phase shift. Volume adjustment flexibility.
  • the shapes of the two feed sub-electrodes may both be rectangular, or may be circular or other shapes.
  • the ground electrode 402 may include a first ground sub-electrode 402a and a second ground sub-electrode 402b. Among them, the first ground sub-electrode 402a is connected to the first reflective load 20, and the second ground sub-electrode 402b is connected to the second reflective load 30.
  • the first ground sub-electrode 402a is connected to the first metal layer 0a in the first reflective load 20, and the second ground sub-electrode 402b is connected to the first metal layer 0a in the second reflective load 30.
  • Both of the two ground sub-electrodes can be rectangular, and their width can be 200um.
  • ground electrode 402 can also be a sheet electrode, and the sheet electrode can be connected to the first reflective load 20 and the second reflective load 30 respectively.
  • the feed structure 40 may also include: fan-shaped branches 403 .
  • the fan-shaped branch 403 is connected between the feed electrode 401 and the target reflective load.
  • the target reflective load will not only receive the input signal (ie, radio frequency signal) transmitted by the microstrip line bridge 10, but also receive the voltage signal loaded by the feed structure 40.
  • the fan-shaped branches 403 between the feed electrode 401 and the target reflective load, the crosstalk between the radio frequency signal and the voltage signal can be effectively reduced.
  • the fan-shaped branch 403 may include: two fan-shaped sub-branches 403a and 403b.
  • the fan-shaped sub-branches 403a correspond to the first reflective load 20 and are used to reduce the crosstalk between the radio frequency signal and the voltage signal in the first reflective load 20.
  • the sector-shaped sub-branches 403b correspond to the second reflective load 30 and are used to reduce the crosstalk between the radio frequency signal and the voltage signal in the second reflective load 30 .
  • the radius of each fan-shaped sub-branch can be 260um.
  • the first reflective load 20 and the second reflective load 30 can be symmetrically arranged with the target axis X as the symmetry axis.
  • the two fan-shaped sub-branches 403a and 403b can also be symmetrically arranged with the target axis X as the symmetry axis. If both the first reflective load 20 and the second reflective load 30 are rectangular structures, the target axis X may be parallel to the long side direction of the rectangular structure.
  • the two feed sub-electrodes 401 a and 401 b in the feed electrode 401 can also be arranged symmetrically with the target axis X as the symmetry axis.
  • the two ground sub-electrodes 402a and 402b in the ground electrode 402 can also be symmetrically arranged with the target axis X as the symmetry axis.
  • the microstrip line bridge 10 may be an axially symmetrical figure with the target axis X being the axis of symmetry.
  • the assembly of the phase shifter can be facilitated and the preparation efficiency of the phase shifter can be improved.
  • the materials of the microstrip line bridge 10 , the feed structure 40 and the metal layer in the target reflection load can all be metal materials.
  • the metal material may be gold, silver, aluminum or alloy.
  • the first metal layer 0 a in the target reflective load and one terminal of the microstrip line bridge 10 to which it is connected may have an integrated structure.
  • the first metal layer 0a in the first reflective load 20 and the through-end P2 have an integrated structure
  • the first metal layer 0a and the coupling end P3 in the second reflective load 30 have an integrated structure.
  • the integrated structure may be rectangular, the width of the rectangle may be equal to the width of the vanadium dioxide film, and the length of the rectangle may be 140um.
  • the feed structure 40 in the phase shifter can be connected to the target reflective load through metal traces.
  • the material of the metal trace and the material of the feed structure 40 may be the same.
  • the material of the metal trace may be gold, silver, aluminum or alloy.
  • the width of the above metal traces can be 25um.
  • FIG. 9 is a schematic structural diagram of a microstrip line bridge 10 provided by an embodiment of the present application.
  • at least one of the input terminal P1 , the through terminal P2 , the coupling terminal P3 and the output terminal P4 of the microstrip line bridge 10 is a coupling structure.
  • the input terminal P1 and the output terminal P4 of the microstrip line bridge 10 shown in Figure 9 are both coupled structures.
  • the coupling structure includes: a first microstrip line P01 and a second microstrip line P02 arranged at intervals, and the first microstrip line P01 and the second microstrip line P02 partially overlap to achieve this Mutual coupling of the first microstrip line P01 and the second microstrip line P02.
  • the partial overlap of the first microstrip line P01 and the second microstrip line P02 may mean that the two microstrip lines partially overlap in the orthographic projection of the reference plane.
  • the reference plane is a plane perpendicular to the substrate of the phase shifter and parallel to the first microstrip line P01. Referring to FIG. 9 , the partial overlap of the first microstrip line P01 and the second microstrip line P02 can also be understood as: the two microstrip lines have an overlapping section P0, and the overlapping section P0 can achieve signal coupling.
  • the first microstrip line P01 and the second microstrip line P02 may be parallel to each other.
  • the distance between the first microstrip line P01 and the second microstrip line P02 can be less than ⁇ /10, where ⁇ corresponds to the center frequency point f 0 of the coupling structure. wavelength.
  • both the input terminal P1 and the output terminal P4 of the microstrip line bridge 10 may be coupled structures.
  • both the through terminal P2 and the coupling terminal P3 of the microstrip line bridge 10 can have this coupling structure.
  • the coupling structure may also include a third microstrip line P03 arranged at intervals from the second microstrip line P02.
  • the third microstrip line P03 and the second microstrip line P02 also partially overlap. That is, the third microstrip line P03 and the second microstrip line P02 also have overlapping sections.
  • the coupling structure may include a plurality of microstrip lines arranged at intervals, wherein each two adjacent microstrip lines are partially overlap to ensure effective coupling of signals.
  • every two adjacent microstrip lines in the coupling structure can be arranged in parallel.
  • the operating frequency band of the phase shifter can be made wider.
  • the following is an analysis of the principle that the coupling structure can enable the phase shifter to have broadband characteristics.
  • the impedance Y 1 of branch 1 and the impedance Y 2 of branch 2 of the microstrip line bridge 10 satisfy: And the electrical length ⁇ of branch 1 and branch 2 are both 90°. Wherein, the width of branch 1 and branch 2 can both be 25um, and the length can be 180um. If the microstrip line bridge 10 is in an impedance matching state, then the equivalent impedance Z 0 at the connection between any end (taking the input end P1 in Figure 9 as an example) and the branch can satisfy:
  • j in the above formula (1) is an imaginary unit.
  • the two ends of the second microstrip line P02 in the coupling structure can respectively constitute port 1 and port 2 of the coupling structure, and the two ends of the first microstrip line P01 can respectively constitute port 3 and port 4 of the coupling structure.
  • port 1 is used to receive input signals
  • port 3 couples the input signals to various branches in the microstrip line bridge 10 .
  • the impedance matching matrix of port 1 and port 3 can be expressed as:
  • V 1 is the voltage at port 1
  • V 3 is the voltage at port 3.
  • I 1 is the current at port 1 and I 3 is the current at port 3.
  • Zo oe is the even mode impedance of the coupling structure
  • Zo oo is the odd mode impedance of the coupling structure
  • is the electrical length from port 1 to port 4 of the coupling structure.
  • the embodiment of the present application takes as an example that the electrical length is equal to the electrical length ⁇ of branch 1 and branch 2.
  • the impedance Z in of the coupling structure can be expressed as:
  • Z 11 is the element in row 1 and column 1 of the impedance matching matrix shown in formula (2)
  • Z 13 is the element in row 1 and column 2 of the impedance matching matrix shown in formula (2)
  • Z 31 is the element in row 2 and column 1 of the impedance matching matrix shown in formula (2)
  • Z 33 is the element in row 2 and column 2 of the impedance matching matrix shown in formula (2). That is,
  • the microstrip line bridge Compared with the traditional microstrip line bridge without coupling structure, which only has a single matching condition, that is, only has one center frequency point, the microstrip line bridge provided by the embodiment of the present application has a wider operating frequency band and realizes phase shifting. Broadband characteristics of the device.
  • the relationship between the phase shift amount of the phase shifter and the reflection coefficients of the two reflective loads will be described below.
  • the microstrip line bridge 10 in the phase shifter is an ideal 3dB bridge
  • the power of the input signal received by the input terminal P1 of the microstrip line bridge 10 can be transferred between the through terminal P2 and the coupling terminal P3.
  • the reflection coefficients of the two reflective loads can be adjusted.
  • the process of adjusting the loading voltage can be equivalent to: switching the reflective load (which can also be called the reflective section) connected to the through terminal P2 and the coupling terminal P3.
  • the through terminal P2 and the coupling terminal P3 serve as reflection ports and can reflect the input power of the input terminal P1 to the output terminal.
  • v 2 is the voltage at the through terminal P2
  • v 3 is the voltage at the coupling terminal P3.
  • phase shift amount of the phase shifter can be determined satisfy:
  • the reflection coefficients ⁇ 1 and ⁇ 2 can be complex numbers with amplitude components and phase components expressed in polar coordinates. arg represents the argument of a complex number. Considering that the maximum phase shift is 180°, the difference between the short-circuit surfaces of the load arm of the through end P2 of the microstrip line bridge 10 and the coupling end P3 can be a quarter wavelength.
  • the load arm of the through end P2 may refer to the first reflective load 20
  • the load arm of the coupling end P3 may refer to the second reflective load 30 .
  • the embodiment of the present application also simulates the impedance circle diagram of the load arm of the microstrip line bridge 10 .
  • the simulation parameters used in the embodiments of this application are as follows: the substrate uses a sapphire substrate with a relative dielectric constant of 9.8 and a thickness of 127um; the shape of the vanadium dioxide films in the two reflective loads is both rectangular and the length is 350um , the width is 20um; the center frequency point of the coupling structure in the microstrip line bridge 10 is 150 gigahertz (GHz).
  • the embodiment of the present application simulates the impedance circle diagrams of the load arms of the microstrip line bridge 10 in two states.
  • state 1 the voltage applied to both reflective loads in the phase shifter is 0V.
  • the relative dielectric constant of the vanadium dioxide film is 500
  • the electron mobility is 10 Siemens/m
  • the impedance circle diagram of the load arm of the through end P2 of the microstrip line bridge 10 the impedance of the load arm of the coupling end P3
  • the voltage applied to the two reflective loads in the phase shifter is both 2V.
  • the relative dielectric constant of the vanadium dioxide film is 10000
  • the electron mobility is 1 ⁇ 10 5 Siemens/m
  • the impedance circle diagram of the load arm of the through end P2 of the microstrip line bridge 10 for the impedance circle diagram of the load arm, please refer to Figure 13. Comparing Figure 12 and Figure 13, it can be seen that in the two states, the changes in the short path surface of the load arm of the through end P2 and the short path surface of the load arm of the coupling end P3 are both about a quarter of a wavelength, so the phase shift The theoretical shift of the device in the above two states The phase state (that is, the theoretical phase shift amount) is 180°.
  • the required phase shift amount of the phase shifter can be determined based on the requirements of the phase shifter application scenario.
  • the physical size of the vanadium dioxide film can be reasonably designed so that the impedance of the load arm of the through end P2 and coupling end P3 of the microstrip line bridge 10 can match the phase shift amount.
  • Figure 14 is a schematic diagram of a full-wave simulation of a phase shifter provided by an embodiment of the present application.
  • Figure 14 shows the S parameters and the phase shift amount when the phase shifter is in state 1 (ie, the loaded voltage is 0V) and state 2 (ie, the loaded voltage is 2V) respectively.
  • the horizontal axis in Figure 14 represents frequency in GHz; the vertical axis on the left represents the S parameter in dB; the vertical axis on the right represents phase in degrees.
  • the S parameters include return loss S 11 and insertion loss S 21 .
  • the return loss S 11 and the insertion loss S 21 in the frequency band from 115 GHz to 180 GHz are both better than -10 dB under different states, and the insertion loss S 21 is better than -5 dB.
  • Figure 14 also shows the phase shift amount of the phase shifter at different frequency points.
  • the phase shift amount can be equal to the difference between the phase of S 21 in state 1 and the phase of S 21 in state 2. value.
  • the error interval of the phase shift amount of the phase shifter relative to 180° is approximately [-5°, 8°]. It can be seen that the phase shift accuracy of this phase shifter is relatively high.
  • phase shifter provided by the embodiment of the present application can be applied to the field of THz communication technology. Moreover, the phase shifter not only has the advantages of simple structure, small insertion loss and wide operating frequency, but can also achieve large-range phase shifting and high-precision phase shifting.
  • FIG. 15 is a schematic diagram showing the change of the phase shift amount with voltage of a phase shifter provided by an embodiment of the present application.
  • Figure 15 is a simulation based on the example of a rectangular vanadium dioxide film in a phase shifter with a length of 200um and a width of 25um.
  • Figure 15 shows the phase shift amount of the phase shifter in the frequency band from 120GHz to 170GHz when the loaded voltage is +0.5V, +1.0V, +1.5V and +2.0V, and the phase shift amount is The state in which the target reflective load is not loaded with voltage is calculated from the reference state. It can be seen from Figure 15 that when the voltage applied to the two reflective loads in the phase shifter changes, the phase shift amount of the phase shifter will also change accordingly. Therefore, the solution provided by the embodiments of the present application can achieve continuous adjustment of the phase shift amount through continuous adjustment of the voltage. That is to say, the phase shifter provided by the embodiment of the present application has the characteristics of continuous phase change.
  • embodiments of the present application provide a phase shifter.
  • At least one of the first reflective load and the second reflective load in the phase shifter is a target reflective load, and the material of the target reflective load includes vanadium dioxide. Since the feed structure in the phase shifter can apply voltage to the target reflective load, it can cause the vanadium dioxide in the target reflective load to undergo a phase change, thereby adjusting the reflection coefficient of the target reflective load. As a result, the phase shift amount of the phase shifter can be continuously and dynamically adjusted, thereby effectively improving the flexibility of use of the phase shifter.
  • the vanadium dioxide material has the advantages of easy preparation and low cost, it can ensure that the manufacturing process and structure of the phase shifter are relatively simple and the manufacturing cost is low. And because at least one end of the microstrip line bridge in the phase shifter adopts a coupling structure, the phase shifter can have a wider operating frequency band, lower loss, and can achieve large-range and high-precision phase shifting.
  • FIG. 16 is a schematic structural diagram of yet another phase shifter provided by an embodiment of the present application.
  • the phase shifter includes: a microstrip line bridge 10 , a first reflective load 20 and a second reflective load 30 .
  • the microstrip line bridge 10 has an input terminal P1, a through terminal P2, a coupling terminal P3 and an output terminal P4.
  • the input terminal P1 is used to receive input signals
  • the through terminal P2 is connected to the first reflective load 20
  • the coupling terminal P3 is connected to the second reflective load 30
  • the output terminal P4 is used to output signals.
  • the output terminal P4 is also called an isolation terminal.
  • At least one of the input terminal P1, the through terminal P2, the coupling terminal P3 and the output terminal P4 is a coupling structure.
  • FIG. 16 takes the input terminal P1 and the output terminal P4 as a coupling structure as an example for illustration.
  • the coupling structure includes: The first microstrip line P01 and the second microstrip line P02 are arranged in alternate rows. The first microstrip line P01 and the second microstrip line P02 partially overlap.
  • the phase shifter can have a wider operating frequency band, lower loss, and can Achieve large-range and high-precision phase shifting.
  • both the input terminal P1 and the output terminal P4 of the microstrip line bridge 10 may be coupled structures.
  • both the through terminal P2 and the coupling terminal P3 of the microstrip line bridge 10 can have this coupling structure.
  • first reflective load 20 and the second reflective load 30 in the phase shifter shown in FIG. 16 can be the same as the structure of the target reflective load in the above embodiment.
  • first reflective load 20 and the second reflective load 30 may include at least one device selected from a microstrip line, a resistor, a capacitor, and an inductor.
  • the microstrip line bridge 10 has an input terminal P1, a through terminal P2, a coupling terminal P3 and an output terminal P4. Furthermore, at least one of the input terminal P1, the through terminal P2, the coupling terminal P3 and the output terminal P4 is a coupling structure.
  • the coupling structure includes: a first microstrip line P01 and a second microstrip line P02 arranged at intervals.
  • the first microstrip line P01 and the second microstrip line P02 partially overlap.
  • the microstrip line bridge provided in the embodiment of the present application can also be applied to other types of signal processing devices.
  • the microstrip line bridge can also be used in mixers, filters or attenuators. Since the microstrip line bridge has a wider operating frequency band, the signal processing device using the microstrip line bridge can also have a wider operating frequency band.
  • the signal processing device can be applied in the THz field.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" in this article generally indicates that the related objects are an "or" relationship.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本申请提供了一种移相器及通信设备,属于通信技术领域。本申请提供的方案中,移相器中第一反射负载和第二反射负载中的至少一个为目标反射负载,该目标反射负载的材料包括二氧化钒。由于移相器中的馈电结构能够向该目标反射负载加载电压,因此能够使目标反射负载中的二氧化钒发生相变,进而调节该目标反射负载的反射系数。由此,能够实现对移相器的相移量的灵活调节,从而有效提高了移相器的使用灵活性。

Description

移相器及通信设备
本申请要求于2022年5月27日提交的申请号为202210592021.1、发明名称为“移相器及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种移相器及通信设备。
背景技术
移相器是通信领域中一种用于调节信号的相位的器件。相关技术中常用的移相器一般为反射式移相器,该反射式移相器能够通过反射信号的方式,以使得信号的相位产生偏移。
但是,相关技术中的反射式移相器仅能使信号产生固定的相位偏移,即反射式移相器的相移量是固定的,其使用灵活性较差。
发明内容
本申请提供了一种移相器及通信设备,可以解决相关技术中的移相器的使用灵活性较差的技术问题。
第一方面,提供了一种移相器,该移相器包括:微带线电桥、第一反射负载、第二反射负载以及馈电结构。其中,微带线电桥具有输入端、直通端、耦合端和输出端。该输入端用于接收输入信号,直通端与第一反射负载连接,耦合端与第二反射负载连接,输出端用于输出信号。第一反射负载和第二反射负载中的至少一个为目标反射负载,该目标反射负载的材料包括二氧化钒,且该目标反射负载与馈电结构连接。馈电结构用于向目标反射负载加载电压,以调节该目标反射负载的反射系数。
由于目标反射负载的材料包括二氧化钒,而二氧化钒具有电致相变的特性,因此馈电结构通过向目标反射负载加载电压,能够调节该目标反射负载的反射系数。基于此,本申请提供的方案能够实现对移相器的相移量的灵活调节,进而有效提高了移相器的使用灵活性。
可选地,该目标反射负载可以包括:第一金属层、二氧化钒薄膜和第二金属层。其中,第一金属层与微带线电桥连接,且与二氧化钒薄膜层叠。第二金属层与馈电结构连接,且与二氧化钒薄膜层叠。该馈电结构可以用于向第二金属层加载电压。
由于二氧化钒薄膜的制造工艺较为简单,且成本较低,因此采用薄膜形态的二氧化钒材料来形成目标反射负载,可以有效降低移相器的制造工艺的复杂度和制造成本。
可选地,该二氧化钒薄膜的形状可以为矩形或圆形。由于矩形薄膜或圆形薄膜的制造工艺简单,且制造精度较高,因此采用矩形或圆形的二氧化钒薄膜来形成目标反射负载,可以在不增加移相器的制造工艺的复杂度和制造成本的前提下,确保该移相器的制造精度较高,性能较好。
可选地,该第一金属层和第二金属层可以均至少部分覆盖二氧化钒薄膜。由此,可以确保加载至金属层的电压能够有效改变二氧化钒薄膜的电参数(例如相对介电常数),进而实现对移相器的相移量的有效调节。
可选地,该微带线电桥的输入端、直通端、耦合端和输出端中的至少一端可以为耦合结构。该耦合结构包括:间隔排布的第一微带线和第二微带线,该第一微带线和第二微带线部 分重叠。该第一微带线和第二微带线可以相互平行。
通过将微带线电桥的输入端、直通端、耦合端和输出端中的至少一端设计为耦合结构,可以使得移相器的工作频带较宽,损耗较低,且能够实现大范围和高精度的移相。
可选地,该微带线电桥的输入端和输出端均可以为耦合结构。或者,该微带线电桥的直通端和耦合端可以均为耦合结构。由此可以确保该微带线电桥的宽带特性较好。
可选地,该第一反射负载和第二反射负载可以均为目标反射负载。相应的,馈电结构能够分别向第一反射负载和第二反射负载加载电压,并分别调节该两个反射负载的反射系数,由此有效提高了对移相器的相移量的调节灵活性。
可选地,该第一反射负载和第二反射负载中的二氧化钒薄膜的尺寸相同,且形状相同。由于两个反射负载的结构相同,因此可以有效简化移相器的制造工艺,降低制造成本,并提高制造效率。
可选地,该馈电结构可以包括馈电电极和接地电极。该馈电电极和接地电极均与目标反射负载连接。
该馈电电极用于向目标反射负载(例如目标反射负载中的第二金属层)加载电压,以在目标反射负载上形成电压差。该电压差能够使目标反射负载中的二氧化钒材料发生相变,进而使目标反射负载的反射系数发生变化。
可选地,该馈电电极可以包括第一馈电子电极和第二馈电子电极。其中,第一馈电子电极与第一反射负载连接,并用于向第一反射负载加载第一电压;第二馈电子电极与第二反射负载连接,并用于向第二反射负载加载第二电压。
其中,该第一电压和第二电压可以相同,也可以不同。由于馈电电极可以包括两个相互独立的馈电子电极,且该两个馈电子电极分别与一个反射负载连接,因此可以实现对每个反射负载的反射系数的独立调节,从而有效提高了相移量的调节灵活性。
可选地,该接地电极可以包括第一接地子电极和第二接地子电极。其中,第一接地子电极与第一反射负载连接,第二接地子电极与第二反射负载连接。
通过设置两个接地子电极,可以便于在衬底基板上布线,以实现接地子电极与反射负载的连接。
可选地,该馈电结构还可以包括:扇形枝节;该扇形枝节可以连接在馈电电极与目标反射负载之间。
在移相器工作过程中,目标反射负载不仅会接收到微带线电桥传输的输入信号(即射频信号),还会接收到馈电结构加载的电压信号。通过在馈电电极与目标反射负载之间设置扇形枝节,可以有效降低该射频信号与电压信号之间的串扰。
可选地,该扇形枝节可以包括:两个扇形子枝节。该两个扇形子枝节与两个反射负载一一对应,每个扇形子枝节用于降低对应的一个反射负载中的信号串扰。
可选地,该第一反射负载和第二反射负载以目标轴为对称轴对称排布;该两个扇形子枝节也以该目标轴为对称轴对称排布。其中,该第一反射负载和第二反射负载可以均为矩形结构,该目标轴可以平行于该矩形结构的长边方向。
通过将移相器中的反射负载和扇形枝节均设计为对称结构,可以便于移相器的装配,提高移相器的制备效率。
第二方面,提供了一种移相器,该移相器包括:微带线电桥、第一反射负载和第二反射负载。其中,微带线电桥具有输入端、直通端、耦合端和输出端。该输入端用于接收输入信 号,直通端与第一反射负载连接,耦合端与第二反射负载连接,输出端用于输出信号。其中,该输入端、直通端、耦合端和输出端中的至少一端为耦合结构。该耦合结构包括:间隔排布的第一微带线和第二微带线,该第一微带线和第二微带线部分重叠。
由于移相器中微带线电桥的输入端、直通端、耦合端和输出端中的至少一端为耦合结构,因此可以使得该移相器的工作频带较宽,损耗较低,且能够实现大范围和高精度的移相。
第三方面,提供了一种微带线电桥,该微带线电桥具有输入端、直通端、耦合端和输出端,且该输入端、直通端、耦合端和输出端中的至少一端为耦合结构。该耦合结构包括:间隔排布的第一微带线和第二微带线,第一微带线和第二微带线部分重叠。
由于该微带线电桥的输入端、直通端、耦合端和输出端中的至少一端为耦合结构,因此其工作频带较宽,且损耗较低。
可选地,该微带线电桥除了可以应用于上述方面提供的移相器,还可以应用于其他信号处理器件。例如,还可以应用于混频器、滤波器或衰减器中。
第四方面,提供了一种通信设备,该通信设备包括:射频电路,天线,以及如上述任一方面提供的移相器。该移相器用于对射频电路传输的射频信号进行移相处理,以及用于对天线接收到的射频信号进行移相处理。
综上所述,本申请提供了一种移相器及通信设备。本申请提供的方案中,移相器中第一反射负载和第二反射负载中的至少一个为目标反射负载,该目标反射负载的材料包括二氧化钒。由于移相器中的馈电结构能够向该目标反射负载加载电压,因此能够使二氧化钒发生相变,进而调节该目标反射负载的反射系数。由此,能够实现对移相器的相移量的灵活调节,从而有效提高了移相器的使用灵活性。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种通信设备的结构示意图;
图3是本申请实施例提供的一种移相器的结构示意图;
图4是本申请实施例提供的另一种移相器的结构示意图;
图5是本申请实施例提供的一种目标反射负载的截面图;
图6是本申请实施例提供的另一种目标反射负载的俯视图;
图7是本申请实施例提供的又一种移相器的结构示意图;
图8是本申请实施例提供的再一种移相器的结构示意图;
图9是本申请实施例提供的一种微带线电桥的结构示意图;
图10是本申请实施例提供的一种耦合结构的结构示意图;
图11是本申请实施例提供的一种移相器的等效电路图;
图12是本申请实施例提供的一种微带线电桥的负载臂的阻抗圆图;
图13是本申请实施例提供的另一种微带线电桥的负载臂的阻抗圆图;
图14是本申请实施例提供的一种移相器的全波仿真图;
图15是本申请实施例提供的一种移相器的相移量随电压变化的示意图;
图16是本申请实施例提供的再一种移相器的结构示意图。
具体实施方式
下面结合附图详细介绍本申请实施例提供的射频前端模组及其控制方法、通信设备。
图1是本申请实施例提供的一种通信系统的结构示意图。如图1所示,该通信系统可以包括基站(base station,BS)100和核心网(core)设备200。终端000可以通过基站100和核心网设备200接入网络。其中,终端000也可以称为用户设备(user equipment,UE),其可以为手机、电脑、可穿戴设备、车载设备或智能家居设备等。例如,终端000可以是智能手机、虚拟现实(virtual reality,VR)眼镜、全息投影设备或智能机器人等。
基站100可以为移动通信系统中的接入设备,其可以为节点B(NodeB,NB)或演进节点B(evolved NodeB,eNB)等。或者,该基站100可以为无线局域网(wireless local area network,WLAN)中的接入点(access point,AP)。核心网设备200可以是路由器或交换机等网络设备。
可选地,该通信系统可以是第六代(6-generation,6G)移动通信系统,且该6G移动通信系统可以采用太赫兹(THz)通信技术。
图2是本申请实施例提供的一种通信设备中射频前端系统的结构示意图。该通信设备可以是图1所示系统中的基站100或者终端000。参考图2,该射频前端系统可以包括:移相器01、开关02、激励功放03、末级功放04、第一耦合器05、第二耦合器06、天线07、限幅器08、滤波器09、低噪声放大器(low noise amplifier,LNA)10和衰减器11。其中,衰减器11可以为电控衰减器。
参考图2,移相器01分别与通信设备中的射频电路(图2中未示出)和开关02连接。在通信设备处于信号发送模式时,开关02将移相器01与激励功放03导通。此时,移相器01能够对射频电路传输的待发送的射频信号进行移相,并将移相后的射频信号传输至激励功放03。激励功放03和末级功放04能够依次对射频信号的功率进行放大。功率放大后的射频信号可以通过第一耦合器05和第二耦合器06传输至天线07,并由天线07辐射出去。
在通信设备处于信号接收模式时,开关02将移相器01与衰减器11导通。此时,天线07接收到的射频信号依次由限幅器08进行限幅,由滤波器09进行滤波,由LNA 10进行放大,并由衰减器11进行衰减后传输至移相器01。移相器01进而可以对接收到的射频信号进行移相,并将移相后的射频信号传输至射频电路。
如图2所示,该通信设备还可以包括波控器12,该波控器12用于对接收和发送的射频信号的波束进行控制。
相关技术中的移相器一般包括开关型移相器、负载线型移相器、反射式移相器、高低通型移相器和矢量调制型移相器等。其中,开关型移相器的结构较为简单,插入损耗小,但无法实现动态移相的功能,且存在工作频带窄和带内移相误差较大的缺点。负载型移相器通常包括多个级联的移相单元,其结构较为复杂,成本较高,且难以实现大范围移相。反射型移相器一般包括电桥和反射负载,其结构简单,且能够实现大范围的移相,但反射型移相器通常仅能提供固定的相移量,无法实现动态移相。高低通型移相器的移相精度较高,但存在工作频带窄,插入损耗大,成本高和结构复杂等缺点。矢量调制型移相器的移相精度较高,且插入损耗较小,但其结构复杂,成本较高。
本申请实施例提供了一种移相器,该移相器为反射式移相器。该移相器的结构较为简单,成本较低,且能够实现动态移相。如图3所示,本申请实施例提供的移相器包括:微带线电桥10、第一反射负载20、第二反射负载30以及馈电结构40。
其中,微带线电桥10是由微带线形成的电桥,也称为耦合器,其具有输入端P1、直通端P2、耦合端P3和输出端P4。该输入端P1用于接收输入信号,直通端P2与第一反射负载20连接,耦合端P3与第二反射负载30连接,输出端P4用于输出信号,该输出端P4也称为隔离端。
该第一反射负载20和第二反射负载30中的至少一个为目标反射负载,该目标反射负载的材料包括二氧化钒(vanadium dioxide,VO2),且该目标反射负载与馈电结构40连接。
该馈电结构40用于向其所连接的目标反射负载加载电压,以调节该目标反射负载的反射系数。
例如,参考图3,第一反射负载20和第二反射负载30均为目标反射负载,馈电结构40能够分别向第一反射负载20和第二反射负载30加载电压。或者,参考图4,第一反射负载20和第二反射负载30中仅第一反射负载20为目标反射负载,馈电结构40仅与该第一反射负载20连接,而不与第二反射负载30连接。
微带线电桥10的工作原理如下:微带线电桥10通过其输入端P1接收到输入信号后,能够对信号的功率进行等分后分别传输至直通端P2和耦合端P3。其中,传输至直通端P2的信号被第一反射负载20反射,传输至耦合端P3的信号被第二反射负载30反射,并且,每个反射负载反射的信号的相位与该反射负载的反射系数相关。两路反射的信号在输出端P4处结合,从而生成输出信号,且该输出信号的相位与两个反射负载的反射系数相关。
可以理解的是,二氧化钒是一种相变材料,其具有热致相变(弛豫时间为微秒级)、电致相变(弛豫时间为纳秒级)、光致相变和应力致相变的特性。并且,二氧化钒在相变时的导电率可发生几个数量级的显著变化,例如,其相变过程中的导电率可以由10西门子/米(Siemens/m)变化至105Siemens/m。
本申请实施例提供的移相器利用了二氧化钒的电致相变的特性。通过馈电结构40向具有二氧化钒材料的目标反射负载加载电压,可以使该二氧化钒材料产生相变,进而改变该二氧化钒材料的相对介电常数和电子迁移率等电参数。上述电参数的改变能够使得目标反射负载的反射系数发生变化,进而实现对移相器的相移量的调节。其中,移相器的相移量是指移相器在不同控制状态时的输出信号相对于参考状态时的输出信号的相对相位差。该参考状态可以是未向目标反射负载加载电压时的状态,或者可以是加载某一参考电压时的状态。
综上所述,本申请实施例提供了一种移相器。该移相器中第一反射负载和第二反射负载中的至少一个为目标反射负载,该目标反射负载的材料包括二氧化钒。由于移相器中的馈电结构向该目标反射负载加载电压,因此能够使目标反射负载中的二氧化钒发生相变,进而调节该目标反射负载的反射系数。由此,能够实现对移相器的相移量的动态调节,从而有效提高了移相器的使用灵活性。
并且,由于二氧化钒材料具有易制备和成本低等优点,因此可以确保该移相器的制造工艺和结构均较为简单,且成本较低。
继续参考图3,该移相器中的目标反射负载可以包括:第一金属层0a、二氧化钒薄膜0b和第二金属层0c。其中,第一金属层0a与微带线电桥10连接,第二金属层0c与馈电结构40连接。
图5是本申请实施例提供的一种目标反射负载的截面图,图6是本申请实施例提供的一种目标反射负载的俯视图。参考图5和图6可以看出,该第一金属层0a还与二氧化钒薄膜0b层叠,该第二金属层0c也与二氧化钒薄膜0b层叠。
馈电结构40可以用于向该第二金属层0c加载电压,以调节二氧化钒薄膜0b的相对介电常数和电子迁移率等电参数,进而实现对目标反射负载的反射系数的调节。
示例的,当馈电结构40加载至第二金属层0c的电压为0伏特(V)时,二氧化钒薄膜0b的相对介电常数为500,电子迁移率为10Siemens/m。当馈电结构40加载至第二金属层0c的电压为2V时,二氧化钒薄膜0b的相对介电常数为10000,电子迁移率为1×105Siemens/m。
由于二氧化钒薄膜0b的制造工艺较为简单,成本较低,因此本申请实施例提供的移相器可以采用薄膜形态的二氧化钒材料来形成目标反射负载。可以理解的是,该目标反射负载中的二氧化钒材料还可以是其他形态,例如还可以是气态。
可选地,如图3至图6所示,该第一金属层0a和第二金属层0c均可以为矩形。其中,第一金属层0a具有沿长度方向(或宽度方向)排布的两端,该两端中的一端与微带线电桥10连接,另一端与该二氧化钒薄膜0b层叠。第二金属层0c也具有沿长度方向(或宽度方向)排布的两端,该两端中的一端与馈电结构40连接,另一端与该二氧化钒薄膜0b层叠。
参考图3至图5可以看出,本申请实施例提供的移相器还可以包括衬底基板,该微带线电桥10、第一反射负载20、第二反射负载30以及馈电结构40均形成于该衬底基板上。示例的,该衬底基板可以是相对介电常数为9.8的蓝宝石(Al2O3)衬底,其厚度可以为127微米(um)。或者,该衬底基板可以是相对介电常数为3.9的石英衬底,其厚度可以为100um。
可选地,该第一金属层0a和第二金属层0c可以均至少部分覆盖在二氧化钒薄膜0b上。或者可以理解为:该第一金属层0a和第二金属层0c均至少部分位于二氧化钒薄膜0b远离衬底基板的一侧。由此,可以确保加载至金属层的电压能够实现对二氧化钒薄膜0b的电参数的有效调节,进而实现对移相器的相移量的有效调节。
可以理解的是,该第一金属层0a和第二金属层0c可以均位于二氧化钒薄膜0b靠近衬底基板的一侧。又或者,第一金属层0a和第二金属层0c中的一个金属层的至少部分位于二氧化钒薄膜0b远离衬底基板的一侧,另一个金属层位于二氧化钒薄膜0b靠近衬底基板的一侧。
在本申请实施例中,如图3和图4所示,该二氧化钒薄膜0b的形状可以为矩形。或者,该二氧化钒薄膜0b的形状可以为圆形。由于矩形薄膜和圆形薄膜的制造工艺简单,且制造精度较高,因此采用矩形或圆形的二氧化钒薄膜0b来形成目标反射负载,可以在不增加移相器的制造工艺的复杂度和制造成本的前提下,确保该移相器的制造精度较高,性能较好。
可以理解的是,若第二金属层0c和二氧化钒薄膜0b均为矩形,则该第二金属层0c的宽度可以大于或等于该二氧化钒薄膜0b的宽度。若第二金属层0c和二氧化钒薄膜0b均为圆形,则该第二金属层0c的直径可以大于或等于该二氧化钒薄膜0b的直径。由此,可以确保第二金属层0c能够与二氧化钒薄膜0b有效接触,进而确保能够将馈电结构40提供的电压有效加载至二氧化钒薄膜0b。
示例的,该第一金属层0a和第二金属层0c的厚度可以为0.2um。矩形的二氧化钒薄膜0b的宽度可以为25um,矩形的第二金属层0c的宽度可以为200um,长度可以为250um。
还可以理解的是,该二氧化钒薄膜0b、第一金属层0a和第二金属层0c还可以是除矩形和圆形之外的其他形状,例如还可以是菱形、五边形、六边形或椭圆形等,本申请实施例对上述膜层的形状不做限定。
可选地,如图3所示,该第一反射负载20和第二反射负载30均可以为目标反射负载。也即是,该第一反射负载20和第二反射负载30的材料均包括二氧化钒,且均与馈电结构40连接。由此,该馈电结构40能够分别向第一反射负载20和第二反射负载30加载电压,并分别调节该两个反射负载的反射系数,从而有效提高了对移相器的相移量的调节灵活性。
对于该第一反射负载20和第二反射负载30均为目标反射负载的场景,该第一反射负载20 和第二反射负载30中的二氧化钒薄膜0b的尺寸可以相同,且形状也可以相同。可选地,该第一反射负载20和第二反射负载30中的第一金属层0a的尺寸可以相同,且形状也可以相同。该第一反射负载20和第二反射负载30中的第二金属层0c的尺寸可以相同,且形状也可以相同。
通过使第一反射负载20和第二反射负载30的尺寸相同,且形状相同,可以有效简化移相器的制造工艺,降低制造成本,并提高制造效率。
在本申请实施例中,若该第一反射负载20和第二反射负载30中仅一个反射负载为目标反射负载,则另一个反射负载的结构可以与该目标反射负载相同。或者,该另一个反射负载也可以不包括二氧化钒材料。例如,该另一个反射负载可以包括微带线、电阻、电容和电感中的至少一种器件,且该另一个反射负载可以实现信号的全反射。
如图4所示,移相器中的馈电结构40可以包括馈电电极401和接地电极402。其中,馈电电极401与目标反射负载连接,接地电极402也与该目标反射负载连接。
示例的,参考图4可以看出,该馈电电极401与目标反射负载中的第二金属层0c连接,该接地电极402与目标反射负载中的第一金属层0a连接。
对于第一反射负载20和第二反射负载30均为目标反射负载的场景,作为一种可能的实现方式,参考图7,该馈电电极401可以为片状电极。该片状电极能够分别与第一反射负载20和第二反射负载30连接。在该实现方式中,馈电电极401能够向第一反射负载20和第二反射负载30加载相同的电压。其中,该片状电极可以呈矩形,其宽度可以为300um,长度可以为400um。当然,该片状电极也可以是其他形状,例如圆形,本申请实施例对此不做限定。
作为另一种可能的实现方式,参考图8,该馈电电极401可以包括相互独立的第一馈电子电极401a和第二馈电子电极401b。其中,第一馈电子电极401a与第一反射负载20连接,并用于向该第一反射负载20加载第一电压。第二馈电子电极401b与第二反射负载30连接,并用于向该第二反射负载30加载第二电压。
在该实现方式中,第一电压和第二电压可以相同,也可以不同。由于馈电电极401包括两个相互独立的馈电子电极,且该两个馈电子电极分别与一个反射负载连接,因此可以实现对每个反射负载的反射系数的独立调节,从而有效提高了相移量的调节灵活性。其中,该两个馈电子电极的形状可以均为矩形,或者也可以为圆形等其他形状。
对于该第一反射负载20和第二反射负载30均为目标反射负载的场景,如图7和图8所示,该接地电极402可以包括第一接地子电极402a和第二接地子电极402b。其中,第一接地子电极402a与第一反射负载20连接,第二接地子电极402b与第二反射负载30连接。
示例的,如图7和图8所示,第一接地子电极402a与第一反射负载20中的第一金属层0a连接,第二接地子电极402b与第二反射负载30中的第一金属层0a连接。该两个接地子电极均可以为矩形,其宽度可以为200um。通过设置两个接地子电极,可以便于在衬底基板上布线以实现两个反射负载与接地电极402的连接,有效降低了移相器的布线复杂度。
可以理解的是,该接地电极402也可以是一个片状电极,该片状电极能够分别与第一反射负载20和第二反射负载30连接。
可选地,如图4所示,该馈电结构40还可以包括:扇形枝节403。该扇形枝节403连接在馈电电极401与目标反射负载之间。
可以理解的是,在移相器工作过程中,目标反射负载不仅会接收到微带线电桥10传输的输入信号(即射频信号),还会接收到馈电结构40加载的电压信号。通过在馈电电极401与目标反射负载之间设置扇形枝节403,可以有效降低该射频信号与电压信号之间的串扰。
对于该第一反射负载20和第二反射负载30均为目标反射负载的场景,如图7和图8所示,该扇形枝节403可以包括:两个扇形子枝节403a和403b。其中,扇形子枝节403a与第一反射负载20对应,并用于降低该第一反射负载20中射频信号与电压信号之间的串扰。扇形子枝节403b与第二反射负载30对应,并用于降低该第二反射负载30中射频信号与电压信号之间的串扰。其中,每个扇形子枝节的半径可以为260um。
可选地,如图7和图8所示,第一反射负载20和第二反射负载30能够以目标轴X为对称轴对称排布。该两个扇形子枝节403a和403b也能够以该目标轴X为对称轴对称排布。若第一反射负载20和第二反射负载30均为矩形结构,则该目标轴X可以平行于该矩形结构的长边方向。
参考图8还可以看出,馈电电极401中的两个馈电子电极401a和401b也能够以目标轴X为对称轴对称排布。接地电极402中的两个接地子电极402a和402b也能够以目标轴X为对称轴对称排布。并且,微带线电桥10也可以是目标轴X为对称轴的轴对称图形。
通过将移相器中的反射负载、馈电结构和微带线电桥均设计为对称结构,可以便于移相器的装配,提高移相器的制备效率。
可选地,本申请实施例提供的移相器中,微带线电桥10,馈电结构40以及目标反射负载中金属层的材料均可以为金属材料。该金属材料可以是金、银、铝或者合金等。并且,参考图3和图4可以看出,该目标反射负载中的第一金属层0a与其所连接的微带线电桥10的一个端子可以为一体结构。例如,第一反射负载20中的第一金属层0a与直通端P2为一体结构,第二反射负载30中的第一金属层0a与耦合端P3为一体结构。该一体结构可以为矩形,该矩形的宽度可以等于二氧化钒薄膜的宽度,该矩形的长度可以为140um。
参考图3、图4、图7和图8可以看出,移相器中的馈电结构40可以通过金属走线与目标反射负载连接。该金属走线的材料与馈电结构40的材料可以相同。例如,该金属走线的材料可以是金、银、铝或者合金等。上述金属走线的宽度均可以为25um。
图9是本申请实施例提供的一种微带线电桥10的结构示意图。参考图9,该微带线电桥10的输入端P1、直通端P2、耦合端P3和输出端P4中的至少一端为耦合结构。例如,图9所示的微带线电桥10的输入端P1和输出端P4均为耦合结构。
如图9所示,该耦合结构包括:间隔排布的第一微带线P01和第二微带线P02,且该第一微带线P01和第二微带线P02部分重叠,以实现该第一微带线P01和第二微带线P02的相互耦合。其中,第一微带线P01和第二微带线P02部分重叠可以是指:两条微带线在参考平面的正投影部分重叠。该参考平面为垂直于移相器的衬底基板,且平行于该第一微带线P01的平面。参考图9,第一微带线P01和第二微带线P02部分重叠也可以理解为:该两个微带线具有重叠段P0,该重叠段P0能够实现信号的耦合。
可选地,该第一微带线P01和第二微带线P02可以相互平行。并且,可以理解的是,为了实现信号的有效耦合,该第一微带线P01和第二微带线P02之间的间距可以小于λ/10,λ为耦合结构的中心频点f0对应的波长。
在本申请实施例中,该微带线电桥10的输入端P1和输出端P4均可以为耦合结构。或者,该微带线电桥10的直通端P2和耦合端P3均可以为该耦合结构。
可选地,如图10所示,该耦合结构还可以包括与第二微带线P02间隔排布的第三微带线P03。该第三微带线P03与第二微带线P02也部分重叠。也即是,该第三微带线P03与第二微带线P02也具有重叠段。
可以理解的是,该耦合结构可以包括多条间隔排布的微带线,其中每相邻两条微带线均 部分重叠,以确保信号的有效耦合。可选地,耦合结构中每相邻两条微带线均可以平行设置。
由于微带线电桥10的输入端P1、直通端P2、耦合端P3和输出端P4中的至少一端为耦合结构,因此可以使得移相器的工作频带较宽。下文对耦合结构能够使移相器具有宽带特性的原理进行分析。
假设微带线电桥10为理想的3分贝(dB)电桥,则该微带线电桥10的枝节1的阻抗Y1和枝节2的阻抗Y2满足:并且该枝节1和枝节2的电长度θ均为90°。其中,该枝节1和枝节2的宽度均可以为25um,长度可以为180um。若微带线电桥10处于阻抗匹配状态,则其任一端(图9以输入端P1为例)与枝节连接处的等效阻抗Z0可以满足:
上述公式(1)中的j为虚数单位。参考图9,耦合结构中第二微带线P02的两端可以分别构成该耦合结构的端口1和端口2,第一微带线P01的两端可以分别构成该耦合结构的端口3和端口4。其中,端口1用于接收输入信号,端口3将输入信号耦合至微带线电桥10中的各个枝节。该端口1和端口3的阻抗匹配矩阵可以表示为:
上述公式(2)中,V1为端口1处的电压,V3为端口3处的电压。I1为端口1处的电流,I3为端口3处的电流。Zoe为耦合结构的偶模阻抗,Zoo为耦合结构的奇模阻抗,θ为该耦合结构的端口1到端口4的电长度。本申请实施例以该电长度与枝节1和枝节2的电长度θ相等为例进行说明。
根据微波网络理论,该耦合结构的阻抗Zin可以表示为:
其中,Z11为公式(2)所示的阻抗匹配矩阵中第1行第1列的元素,Z13为公式(2)所示的阻抗匹配矩阵中第1行第2列的元素,Z31为公式(2)所示的阻抗匹配矩阵中第2行第1列的元素,Z33为公式(2)所示的阻抗匹配矩阵中第2行第2列的元素。也即是,
当该耦合结构的阻抗与输入端P1连接枝节处的阻抗处于阻抗匹配状态时,满足如下公式:
其中,表示Zin的共轭。由于当Zin=Z0=1时,上述公式(4)成立,因此结合公式(2)和公式(3)可得:
(Zoe-Zoo)=2    公式(5);
联立上述公式(1)至公式(3),以及公式(5),并分离上述公式中的实部和虚部,可以得到如下两个匹配方程:

当θ满足:且f=f+,f-或者f0时,上述公式(6)和公式(7)成立。其中,f0为耦合结构的中心频点,f-为频率低于该中心频点f0的频点,f+为频率高于该中心频点f0的频点。由于该耦合结构的工作频点f等于f+,f-或者f0时,上述公式(6)和公式(7)所示的匹配方程均成立,因此该耦合结构具备三个匹配条件。相比于传统的无耦合结构的微带线电桥仅具有的单个匹配条件,即仅具有一个中心频点,本申请实施例提供的微带线电桥的工作频段较宽,实现了移相器的宽带特性。
下文以第一反射负载20和第二反射负载30均为目标反射负载为例,对移相器的相移量与该两个反射负载的反射系数的关系进行说明。假设移相器中的微带线电桥10为理想的3dB电桥,则参考图11,微带线电桥10的输入端P1接收到的输入信号的功率能够在直通端P2和耦合端P3处平分。通过调整向两个反射负载加载的电压,即可实现对该两个反射负载的反射系数的调整。如图11所示,该调节加载电压的过程可以等效为:切换直通端P2和耦合端P3所连接的反射负载(也可以称为反射段)。
如图11所示,当直通端P2和耦合端P3所连接的反射负载的反射系数均为Γ1时,直通端P2和耦合端P3作为反射端口可以将输入端P1的输入功率反射至输出端P4。该输出端P4处的输入电压波可以为:
V41=Γ1v2e-jθ/2+Γ1v3e-jθ/2=Γ1vie-jθ     公式(8);
其中,v2为直通端P2处的电压,v3为耦合端P3处的电压。由于在理想的3dB电桥中,v2=v3,因此上述公式(8)中采用vi表示v2和v3(即vi=v2=v3),以实现公式的简化。相应的,当直通端P2和耦合端P3所连接的反射负载的反射系数均为Γ2时,输出端P4处的输入电压波可以为:
V42=Γ2vie-jθ    公式(9);
结合公式(8)和公式(9)可得:
由此,可以确定出移相器的相移量满足:
其中,反射系数Γ1和Γ2可以是采用极坐标表示的具有幅度分量和相位分量的复数。arg表示复数的辐角。考虑到最大的相移量为180°,因此微带线电桥10的直通端P2和耦合端P3的负载臂的短路面的差值可以为四分之一波长。其中,直通端P2的负载臂可以是指第一反射负载20,耦合端P3的负载臂可以是指第二反射负载30。
本申请实施例还对微带线电桥10的负载臂的阻抗圆图进行了仿真。本申请实施例采用的仿真参数如下:衬底基板采用相对介电常数为9.8的蓝宝石衬底,且厚度为127um;两个反射负载中的二氧化钒薄膜的形状均为矩形,且长度为350um,宽度为20um;微带线电桥10中耦合结构的中心频点为150吉赫兹(GHz)。并且,本申请实施例对微带线电桥10在两种状态下的负载臂的阻抗圆图分别进行了仿真。
状态1中,加载至移相器中两个反射负载的电压均为0V。此时,二氧化钒薄膜的相对介电常数为500,电子迁移率为10Siemens/m,微带线电桥10的直通端P2的负载臂的阻抗圆图,以及耦合端P3的负载臂的阻抗圆图均可以参考图12。状态2中,加载至移相器中两个反射负载的电压均为2V。此时,二氧化钒薄膜的相对介电常数为10000,电子迁移率为1×105Siemens/m,微带线电桥10的直通端P2的负载臂的阻抗圆图,以及耦合端P3的负载臂的阻抗圆图均可以参考图13。对比图12和图13可以看出,两种状态下,直通端P2的负载臂的短路面,以及耦合端P3的负载臂的短路面的变化均约为四分之一波长,因此该移相器在上述两种状态下的理论移 相态(即理论相移量)为180°。
可以理解的是,在移相器制备过程中,可以基于移相器应用场景的需求确定该移相器所需的相移量。进而,可以通过合理设计二氧化钒薄膜的物理尺寸,以使得微带线电桥10的直通端P2和耦合端P3的负载臂的阻抗能够与相移量匹配。
图14是本申请实施例提供的一种移相器的全波仿真示意图。图14中示出了移相器分别处于状态1(即加载的电压为0V)和状态2(即加载的电压为2V)时的S参数,以及相移量。图14中的横轴表示频率,单位为GHz;左侧的纵轴表示S参数,单位为dB;右侧的纵轴表示相位的,单位为度。其中,该S参数包括回波损耗S11和插入损耗S21。参考图14可以看出,本申请实施例提供的移相器在不同状态下,在115GHz至180GHz的频带内的回波损耗S11均优于-10dB,插入损耗S21均优于-5dB。
图14中还示出了移相器在不同频点处的相移量,该相移量可以等于移相器在状态1时的S21的相位与在状态2时的S21的相位的差值。参考图14,在115GHz至180GHz的频带内,移相器的相移量相对于180°的误差区间大约为[-5°,8°]。由此可知,该移相器的移相精度较高。
基于上述分析可知,本申请实施例提供的移相器能够适用于THz通信技术领域。并且,该移相器不仅具有结构简单,插入损耗小和工作频带宽等优点,还能够实现大范围移相和高精度移相。
图15是本申请实施例提供的一种移相器的相移量随电压变化的示意图。图15是以移相器中二氧化钒薄膜为矩形,且长度为200um,宽度为25um为例进行的仿真。图15中分别示出了加载的电压为+0.5V、+1.0V、+1.5V和+2.0V时,移相器在120GHz至170GHz的频带内的相移量,且该相移量是以目标反射负载未加载电压的状态为参考状态计算的。从图15可以看出,当加载至移相器中的两个反射负载的电压发生变化时,移相器的相移量也会随之变化。由此,本申请实施例提供的方案可以通过对电压的连续调节,实现对相移量的连续调节。也即是,本申请实施例提供的移相器具备连续相变的特性。
综上所述,本申请实施例提供了一种移相器。该移相器中第一反射负载和第二反射负载中的至少一个为目标反射负载,该目标反射负载的材料包括二氧化钒。由于移相器中的馈电结构能够向该目标反射负载加载电压,因此能够使该目标反射负载中的二氧化钒发生相变,进而调节该目标反射负载的反射系数。由此,能够实现对移相器的相移量的连续且动态地调节,从而有效提高了移相器的使用灵活性。
并且,由于二氧化钒材料具有易制备和成本低等优点,因此可以确保该移相器的制造工艺和结构均较为简单,且制造成本较低。又由于该移相器中微带线电桥中的至少一端采用了耦合结构,因此可以使得该移相器的工作频带较宽,损耗较低,且能够实现大范围和高精度的移相。
图16是本申请实施例提供的再一种移相器的结构示意图。如图16所示,该移相器包括:微带线电桥10、第一反射负载20和第二反射负载30。
其中,微带线电桥10具有输入端P1、直通端P2、耦合端P3和输出端P4。该输入端P1用于接收输入信号,直通端P2与第一反射负载20连接,耦合端P3与第二反射负载30连接,输出端P4用于输出信号,该输出端P4也称为隔离端。
该输入端P1、直通端P2、耦合端P3和输出端P4中的至少一端为耦合结构。例如,图16中以输入端P1和输出端P4为耦合结构为例进行示意。参考图16可以看出,该耦合结构包括:间 隔排布的第一微带线P01和第二微带线P02。该第一微带线P01和第二微带线P02部分重叠。
由于微带线电桥10的输入端P1、直通端P2、耦合端P3和输出端P4中的至少一端为耦合结构,因此可以使得该移相器的工作频带较宽,损耗较低,且能够实现大范围和高精度的移相。
可选地,如图16所示,该微带线电桥10的输入端P1和输出端P4均可以为耦合结构。或者,该微带线电桥10的直通端P2和耦合端P3均可以为该耦合结构。
可以理解的是,图16所示移相器中第一反射负载20和第二反射负载30的结构可以与上述实施例中目标反射负载的结构相同。或者,该第一反射负载20和第二反射负载30可以包括微带线、电阻、电容和电感中的至少一种器件。
本申请实施例还提供了一种微带线电桥。参考图16,该微带线电桥10具有输入端P1、直通端P2、耦合端P3和输出端P4。并且,该输入端P1、直通端P2、耦合端P3和输出端P4中的至少一端为耦合结构。
参考图16,该耦合结构包括:间隔排布的第一微带线P01和第二微带线P02。该第一微带线P01和第二微带线P02部分重叠。
可以理解的是,本申请实施例提供的微带线电桥除了可以应用于上述实施例提供的移相器,还可以应用于其他类型的信号处理器件。例如,该微带线电桥还可以应用于混频器、滤波器或衰减器中。由于该微带线电桥的工作频带较宽,因此可以使得应用该微带线电桥的信号处理器件也具有较宽的工作频带,例如可以使该信号处理器件应用于THz领域。
在本申请实施例中,术语“第一”、“第二”和“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”是指一个或多个,“多个”是指两个或两个以上。
术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种移相器,其特征在于,所述移相器包括:微带线电桥、第一反射负载、第二反射负载以及馈电结构;
    所述微带线电桥具有输入端、直通端、耦合端和输出端,所述输入端用于接收输入信号,所述直通端与所述第一反射负载连接,所述耦合端与所述第二反射负载连接,所述输出端用于输出信号;
    所述第一反射负载和所述第二反射负载中的至少一个为目标反射负载,所述目标反射负载的材料包括二氧化钒,且所述目标反射负载与所述馈电结构连接;
    所述馈电结构用于向所述目标反射负载加载电压。
  2. 根据权利要求1所述的移相器,其特征在于,所述目标反射负载包括:第一金属层、二氧化钒薄膜和第二金属层;
    所述第一金属层与所述微带线电桥连接,且所述第一金属层与所述二氧化钒薄膜层叠;
    所述第二金属层与所述馈电结构连接,且所述第二金属层与所述二氧化钒薄膜层叠;
    所述馈电结构用于向所述第二金属层加载电压。
  3. 根据权利要求2所述的移相器,其特征在于,所述二氧化钒薄膜的形状为矩形或圆形。
  4. 根据权利要求2或3所述的移相器,其特征在于,所述第一金属层和所述第二金属层均至少部分覆盖所述二氧化钒薄膜。
  5. 根据权利要求1至4任一所述的移相器,其特征在于,所述微带线电桥的所述输入端、所述直通端、所述耦合端和所述输出端中的至少一端为耦合结构;
    所述耦合结构包括:间隔排布的第一微带线和第二微带线,所述第一微带线和所述第二微带线部分重叠。
  6. 根据权利要求1至5任一所述的移相器,其特征在于,所述第一反射负载和所述第二反射负载均为所述目标反射负载。
  7. 根据权利要求6所述的移相器,其特征在于,所述第一反射负载和所述第二反射负载中的二氧化钒薄膜的尺寸相同,且形状相同。
  8. 根据权利要求6或7所述的移相器,其特征在于,所述馈电结构包括馈电电极和接地电极;
    所述馈电电极和所述接地电极均与所述目标反射负载连接。
  9. 根据权利要求8所述的移相器,其特征在于,所述馈电电极包括第一馈电子电极和第二馈电子电极;
    所述第一馈电子电极与所述第一反射负载连接,并用于向所述第一反射负载加载第一电压;
    所述第二馈电子电极与所述第二反射负载连接,并用于向所述第二反射负载加载第二电压。
  10. 根据权利要求8或9所述的移相器,其特征在于,所述接地电极包括第一接地子电极和第二接地子电极;
    所述第一接地子电极与所述第一反射负载连接,所述第二接地子电极与所述第二反射负载连接。
  11. 根据权利要求8至10任一所述的移相器,其特征在于,所述馈电结构还包括:扇形枝节;
    所述扇形枝节连接在所述馈电电极与所述目标反射负载之间。
  12. 根据权利要求11所述的移相器,其特征在于,所述扇形枝节包括:两个扇形子枝节。
  13. 根据权利要求12所述的移相器,其特征在于,所述第一反射负载和所述第二反射负载以目标轴为对称轴对称排布;
    所述两个扇形子枝节以所述目标轴为对称轴对称排布。
  14. 一种通信设备,其特征在于,所述通信设备包括:射频电路,天线,以及如权利要求1至13任一所述的移相器;
    所述移相器用于对所述射频电路传输的射频信号进行移相处理,或者用于对所述天线接收到的射频信号进行移相处理。
PCT/CN2023/079092 2022-05-27 2023-03-01 移相器及通信设备 WO2023226503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210592021.1A CN117175164A (zh) 2022-05-27 2022-05-27 移相器及通信设备
CN202210592021.1 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226503A1 true WO2023226503A1 (zh) 2023-11-30

Family

ID=88918334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079092 WO2023226503A1 (zh) 2022-05-27 2023-03-01 移相器及通信设备

Country Status (2)

Country Link
CN (1) CN117175164A (zh)
WO (1) WO2023226503A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582527A (zh) * 2008-05-12 2009-11-18 联发科技股份有限公司 反射式移相器、相位阵列接收器和相位阵列发射器
CN104104351A (zh) * 2013-04-08 2014-10-15 京信通信系统(中国)有限公司 射频信号移相电路
US9705311B1 (en) * 2009-12-15 2017-07-11 National Technology & Engineering Solutions Of Sandia, Llc Mid-infrared tunable metamaterials
CN109193083A (zh) * 2018-09-20 2019-01-11 天津大学 一种新型的可滤波移相器
CN109814283A (zh) * 2019-03-27 2019-05-28 电子科技大学 低电压驱动的常开型太赫兹超表面调制器及制备方法
CN110957987A (zh) * 2019-12-29 2020-04-03 南京米乐为微电子科技有限公司 加载扇形线反射负载的超宽带可调移相单元及移相器
CN113630092A (zh) * 2021-08-20 2021-11-09 电子科技大学 一种反射式可调预失真器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582527A (zh) * 2008-05-12 2009-11-18 联发科技股份有限公司 反射式移相器、相位阵列接收器和相位阵列发射器
US9705311B1 (en) * 2009-12-15 2017-07-11 National Technology & Engineering Solutions Of Sandia, Llc Mid-infrared tunable metamaterials
CN104104351A (zh) * 2013-04-08 2014-10-15 京信通信系统(中国)有限公司 射频信号移相电路
CN109193083A (zh) * 2018-09-20 2019-01-11 天津大学 一种新型的可滤波移相器
CN109814283A (zh) * 2019-03-27 2019-05-28 电子科技大学 低电压驱动的常开型太赫兹超表面调制器及制备方法
CN110957987A (zh) * 2019-12-29 2020-04-03 南京米乐为微电子科技有限公司 加载扇形线反射负载的超宽带可调移相单元及移相器
CN113630092A (zh) * 2021-08-20 2021-11-09 电子科技大学 一种反射式可调预失真器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CASU E. A.; VITALE W. A.; TAMAGNONE M.; LOPEZ M. MAQUEDA; OLIVA N.; KRAMMER A.; SCHULER A.; FERNANDEZ-BOLANOS M.; IONESCU A.M.: "Shunt capacitive switches based on VO2 metal insulator transition for RF phase shifter applications", 2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), IEEE, 11 September 2017 (2017-09-11), pages 232 - 235, XP033165434, DOI: 10.1109/ESSDERC.2017.8066634 *

Also Published As

Publication number Publication date
CN117175164A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US5455545A (en) Compact low-loss microwave balun
Lange Interdigitated stripline quadrature hybrid (correspondence)
KR101498335B1 (ko) 집적된 밀리미터파 위상 천이기 및 위상 천이 방법
EP1010209B1 (en) Narrow-band overcoupled directional coupler in multilayer package
US7825751B2 (en) Resonant circuit, filter circuit, and antenna device
Tang et al. Integration design of filtering antenna with load-insensitive multilayer balun filter
WO1998012769A1 (en) Thick film construct for quadrature translation of rf signals
US5303419A (en) Aperture-coupled line Magic-Tee and mixer formed therefrom
JPH04263502A (ja) 分離した送信および受信ポートを有する誘電体フレアノッチ放射器
US3678415A (en) Multiple port hybrid circuit
CN102361151B (zh) 一种非对称共面波导横跨定向耦合器
Ahn et al. Arbitrary termination impedances, arbitrary power division, and small-sized ring hybrids
US5206611A (en) N-way microwave power divider
CN111668603A (zh) 一种馈电结构和用于移相器的馈电方法
JP3857243B2 (ja) フィルタ回路
US3946339A (en) Slot line/microstrip hybrid
WO2015003381A1 (zh) 一种3×3Butler矩阵和5×6Butler矩阵
CN114614261A (zh) 一种基于mems开关的太赫兹圆极化方向图可重构天线
US5075647A (en) Planar slot coupled microwave hybrid
WO2023226503A1 (zh) 移相器及通信设备
CN109585994B (zh) 小型化双层半模基片集成波导六端口器件
JPH03117202A (ja) プレーナマジックtネットワーク装置
Kim et al. A SiGe BiCMOS concurrent K/V dual-band 16-way power divider and combiner
CN106450778B (zh) 一种宽带圆极化dra及其设计方法
Tan et al. Tunable couplers: An overview of recently developed couplers with tunable functions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810579

Country of ref document: EP

Kind code of ref document: A1