WO2023226379A1 - 混流风机及风管机 - Google Patents

混流风机及风管机 Download PDF

Info

Publication number
WO2023226379A1
WO2023226379A1 PCT/CN2022/138397 CN2022138397W WO2023226379A1 WO 2023226379 A1 WO2023226379 A1 WO 2023226379A1 CN 2022138397 W CN2022138397 W CN 2022138397W WO 2023226379 A1 WO2023226379 A1 WO 2023226379A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
flow fan
volute
mixed
guide vane
Prior art date
Application number
PCT/CN2022/138397
Other languages
English (en)
French (fr)
Inventor
谭建明
丁绍军
夏凯
池晓龙
张一帆
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023226379A1 publication Critical patent/WO2023226379A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/002Details, component parts, or accessories especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans

Definitions

  • the present disclosure relates to the technical field of air treatment equipment, in particular to a mixed-flow fan and an air duct fan.
  • the duct machine is a type of air conditioner.
  • some duct machines use the method of emitting cold air from the top and hot air from the bottom. This can achieve waterfall cooling and carpet-type heating.
  • the air outlet of the air duct fan is reversible.
  • cross-flow fans and centrifugal fans are usually used.
  • the wind direction cannot be reversible after reversal. Therefore, , you can only install at least two fans, one responsible for forward air discharge and one responsible for reverse air discharge. In this way, not only will the structure of the air duct machine be larger, but the cost will be higher.
  • the fan In order to reduce costs, the fan needs to be smaller, and the mixed-flow fan is a fan between the axial flow fan and the centrifugal fan.
  • the impeller of the mixed-flow fan allows the air to move both centrifugally and axially, and the airflow movement in the volute is mixed. It combines two forms of motion, axial flow and centrifugal flow, so it is called "mixed flow”.
  • the mixed-flow fan can not only make the volume smaller, but also ensure the direction and pressure of the air flow.
  • Embodiments of the present disclosure provide a mixed-flow fan and an air duct machine to solve the problem of low energy efficiency of mixed-flow fans in related technologies.
  • a mixed-flow fan including:
  • Impeller the impeller is arranged in the volute
  • the inner shell is arranged between the impeller and the air outlet, and an annular air duct is formed between the outer surface of the inner shell and the inner surface of the volute;
  • the width of the annular air duct gradually increases.
  • the annular air duct has a first end and a second end, the second end is connected to the air outlet, and the ratio range of the width a of the first end and the width b of the second end is 0.68 ⁇ a/b ⁇ 0.88.
  • the mixed flow fan further includes a rear guide vane structure, and the rear guide vane structure is disposed in the annular air duct.
  • the rear guide vane structure includes a plurality of guide vanes, the first edges of the guide vanes face the outer surface of the inner shell, and the second edges of the guide vanes face the inner surface of the volute.
  • At least one guide vane is provided with a swing shaft, the axis of the swing shaft has an included angle with the axis of the impeller, and the guide vane with the swing shaft can swing with the axis of the swing shaft as the axis.
  • the included angle is 90°.
  • silencer teeth are provided on the rear guide vane structure.
  • protrusions and/or recesses are provided on the rear guide vane structure; and/or protrusions and/or recesses are provided on the outer surface of the inner shell.
  • the outer surface of the volute is a curved surface.
  • the volute is a truncated sphere, and the maximum diameter of the volute is equal to the diameter of the truncated sphere.
  • the volute has an air inlet and an air outlet respectively located at two end surfaces of the truncated sphere.
  • Another aspect of the present disclosure provides an air duct fan, including the above-mentioned mixed flow fan.
  • the mixed-flow fan and air duct machine provided by the present disclosure gradually increase the width of the annular flow channel to adjust the static pressure and airflow velocity of the impeller's air outlet, thereby effectively improving the air outlet effect of the mixed-flow fan.
  • the mixed-flow fan When used When inside the air duct machine, it can ensure that the optimal heat exchange effect can be achieved in the waterfall cooling and rapid heating modes of the air duct machine.
  • the rear guide vane structure also expands as the width of the annular flow channel increases. Ensure the adjustment effect of the rear guide vane structure on the air outlet of the impeller.
  • Figure 1 is a schematic structural diagram of a mixed-flow fan according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of an annular air duct and a guide vane according to an embodiment of the present disclosure
  • Figure 3 is a perspective view of an annular air duct and a guide vane according to an embodiment of the present disclosure
  • the racemic section of the blade structure can guide the high-speed rotating airflow from the radial direction to the horizontal direction, and the sudden pressure release will convert part of the dynamic pressure of the airflow into static pressure to support the subsequent flow of the fan.
  • the racemic section can direct the rotating airflow to the horizontal direction, it still carries huge tangential velocities, and these velocity components are not conducive to subsequent flow.
  • the function of the rear guide vane structure is to convert the tangential velocity of the airflow into more horizontal velocity, and again convert the huge dynamic pressure into static pressure to improve the pressure carrying capacity of the fan.
  • the energy efficiency of fans is improved by adjusting the structure of the impeller.
  • a mixed-flow fan includes: a volute 1, with an air outlet 12 provided on the volute 1; and an impeller 2, which is provided on Inside the volute 1; the inner shell 4 is arranged between the impeller 2 and the air outlet 12.
  • An annular air duct 13 is formed between the outer surface of the inner shell 4 and the inner surface of the volute 1; along the impeller 2 to the air outlet In the direction of 12, the width of the annular air duct 13 gradually increases. Utilizing the gradually increasing width of the annular air duct 13, the tangential velocity component of the gas entering the annular air duct 13 gradually decreases and the static pressure gradually increases, thereby effectively improving the pressure carrying capacity of the fan.
  • the annular air duct 13 has a first end 131 and a second end 132.
  • the second end 132 is connected with the air outlet 12, and the width a of the first end 131 and the width b of the second end 132 are The ratio range is 0.68 ⁇ a/b ⁇ 0.88.
  • a simulation test is performed on the mixed-flow fan of this example, and the numerical value of a/b is adjusted for simulation.
  • the simulation results are as follows:
  • Impeller pressure head Pa
  • Diffusion loss Pa 0.62 2200 478 100.1 62.3 0.68 2200 496 114.6 48.1 0.80 2200 510 126.8 36.2 0.88 2200 493 113.4 44.8 0.92 2200 472 108.3 58.6
  • a/b When the value of a/b is too large, it means that the value of a is too large and the value of b is too small. At this time, the expansion capacity of the annular air duct 13 is insufficient and it is difficult to effectively carry pressure, so the pressure carrying capacity decreases. At the same time, due to the value of b If it is too small, the flow resistance flowing through the annular air duct 13 will increase, which will lead to an increase in expansion loss, which is also not conducive to the improvement of the performance of the unit. When the value of a/b is in the appropriate range (0.68 ⁇ a/b ⁇ 0.88), the pressure carrying capacity of the annular air duct 13 is in the optimal range, and the fan expansion loss can be effectively controlled, thereby obtaining better fan performance. .
  • the mixed flow fan further includes a rear guide vane structure, and the rear guide vane structure is disposed in the annular air duct 13 .
  • the rear guide vane structure includes a plurality of guide vanes 33 , the first edges of the guide vanes 33 face the outer surface of the inner shell 4 , and the second edges of the guide vanes 33 face the inner surface of the volute 1 . That is to say, the shape of the guide vanes 33 only needs to be less than or equal to the width of the corresponding annular air duct 13. Through the guidance of the guide vanes 33 and the change in the width of the annular air duct 13, the static pressure of the air flow is simultaneously adjusted, thereby ultimately ensuring The air output effect of mixed flow fan.
  • At least one guide vane 33 is provided with a swing shaft 34 , the axis of the swing shaft 34 has an included angle with the axis of the impeller 2 , and the guide vane 33 with the swing shaft 34 can rotate with the swing shaft 34 The axis swings for the axis.
  • the function of the rear guide vane structure is to further guide the air outflow from the impeller 2. When the impeller 2 works at different speeds, the angle at which the gas flows out of the impeller 2 is different, that is, the angle at which the airflow enters the rear guide vane structure is different.
  • the flow angle of the airflow in the rear guide vane structure also changes, further increasing the degree of fit between the rear guide vane structure and the direction of the airflow outflowing from the impeller 2, which is beneficial to the uniform exhaust of the mixed flow fan.
  • the increase in performance ensures that the mixed-flow fan can achieve optimal air volume and optimal airflow driving performance at multiple operating speeds.
  • the rotation speed of the impeller 2 is greater, the angle at which the airflow leaves the impeller 2 is also larger, so the inclination angle of the guide vane 33 is required to be larger.
  • the rotation speed of the impeller 2 is smaller.
  • the inclination angle of the guide vane 33 is smaller.
  • the swing angle of the guide vane 33 ranges from 0° to 10°. Preferably 0° to 5°.
  • the outer surface of the inner shell 4 is provided with protrusions and/or recesses, and the protrusions and/or recesses are used to reduce the noise of the air flowing through the annular air duct, effectively reducing the noise of the mixed-flow fan. .
  • silencer teeth are provided on the rear guide vane structure. In some embodiments of the present disclosure, silencer teeth are provided at the edges of the guide vanes 33 to reduce the noise generated when the airflow passes through the rear guide vane structure.
  • the rear guide vane structure is provided with protrusions and/or dimples.
  • protrusions and/or recesses are provided on one or both sides of the guide vane 33 to reduce airflow generated when the airflow passes through the rear guide vane structure. noise.
  • the outer surface of the volute 1 is a curved surface. That is, the cross-section of the outer surface of the volute is a curved segment.
  • the volute 1 is a truncated sphere, and the maximum diameter of the volute 1 is equal to the diameter of the truncated sphere. That is to say, the volute 1 can rotate freely in a spherical space with a fixed diameter centered on the center of the truncated sphere.
  • the air duct machine can The mixed-flow fan provided in this application provides a spherical space with a fixed diameter, and the rotation of the mixed-flow fan realizes switching of the air inlet and outlet directions of the air duct machine.
  • the volute 1 is provided with an air inlet and an air outlet 12 at two end surfaces of the truncated sphere respectively.
  • Another aspect of the present disclosure provides an air duct fan, including the above-mentioned mixed flow fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种混流风机及风管机。混流风机包括蜗壳(1),蜗壳上设置有出风口(12);叶轮(2),叶轮设置于蜗壳内;内壳(4),内壳设置于叶轮和出风口之间,内壳的外表面与蜗壳的内表面之间形成环形风道(13);沿叶轮至出风口的方向,环形风道的宽度逐渐增加。该混流风机及风管机,通过环形流道的宽度逐渐增加,对叶轮的出风的静压和气流流速进行调节,从而有效的改善混流风机的出风效果,进而保证在风管机瀑布式制冷和快速制热的模式下均能够达到最优的换热效果,同时后导叶结构也随着环形流道的宽度增加而进行扩张,保证后导叶结构对叶轮的出风的调节效果。

Description

混流风机及风管机
相关申请的交叉引用
本公开是以申请号为202210584125.8,申请日为2022年5月27日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空气处理设备技术领域,特别是一种混流风机及风管机。
背景技术
风管机是空调的一种,为了提高舒适性,有些风管机采用上出冷风,下出热风的方式,这样可以实现瀑布式制冷和地毯式暖风,为了实现这种出风方式,需要风管机的出风可逆,现有出风可逆的风管机中,通常采用贯流风机、离心风机,但是这种风机由于风机扇叶的设置方式的问题,反转后风向不能可逆,因此,只能在设置至少两个风机,一个负责正向出风,一个负责逆向出风,这样不仅风管机结构会更大,成本更高。
为了减小成本,需要将风机缩小,而混流风机是介于轴流风机和离心风机之间的风机,混流风机的叶轮让空气既做离心运动又做轴向运动,蜗壳内的气流运动混合了轴流与离心两种运动形式,所以叫“混流”。而且,混流风机不仅可以将体积做小,而且可以保证气流的流向和风压。
相关技术中的混流风机内部的气流流道设计不合理,导致混流风机的能效低。
发明内容
本公开实施例中提供一种混流风机以及风管机,以解决相关技术中混流风机能效低的问题。
一种混流风机,包括:
蜗壳,蜗壳上设置有出风口;
叶轮,叶轮设置于蜗壳内;
内壳,内壳设置于叶轮和出风口之间,内壳的外表面与蜗壳的内表面之间形成环形风道;
沿叶轮至出风口的方向,环形风道的宽度逐渐增加。
根据本公开的一些实施例,环形风道具有第一端和第二端,第二端与出风口连通,且第一端的宽度a和第二端的宽度b的比例范围为0.68<a/b<0.88。
根据本公开的一些实施例,混流风机还包括后导叶结构,后导叶结构设置于环形风道内。
根据本公开的一些实施例,后导叶结构包括多个导叶,导叶的第一边沿朝向内壳的外表面,导叶的第二边沿朝向蜗壳的内表面。
根据本公开的一些实施例,至少一个导叶上设置有摆动轴,摆动轴的轴线与叶轮的轴线具有夹角,且具有摆动轴的导叶能够以摆动轴的轴线为轴线进行摆动。
根据本公开的一些实施例,夹角的角度为90°。
根据本公开的一些实施例,后导叶结构上设置有消音齿。
根据本公开的一些实施例,后导叶结构上设置有凸起和/或凹坑;和/或内壳的外表面上设置有凸起和/或凹坑。
根据本公开的一些实施例,蜗壳的外表面为曲面。
根据本公开的一些实施例,蜗壳为截顶球体,蜗壳的最大直径等于截顶球体的直径。
根据本公开的一些实施例,蜗壳位于截顶球体的两个端面处分别开设有进风口和出风口。
本公开的另一方面提供一种风管机,包括上述混流风机。
本公开提供的混流风机及风管机,通过环形流道的宽度逐渐增加,对叶轮的出风的静压和气流流速进行调节,从而有效的改善混流风机的出风效果,在混流风机应用于风管机内时,能够保证在风管机瀑布式制冷和快速制热的模式下均能够达到最优的换热效果,同时后导叶结构也随着环形流道的宽度增加而进行扩张,保证后导叶结构对叶轮的出风的调节效果。
附图说明
图1为本公开提供的实施例的混流风机的结构示意图;
图2为本公开提供的实施例的环形风道及导叶的结构示意图;
图3为本公开提供的实施例的环形风道及导叶的立体图;
图中:
1、蜗壳;12、出风口;2、叶轮;4、内壳;13、环形风道;131、第一端;132、第二端;33、导叶;34、摆动轴。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。
相关技术中的混流风机,当叶轮2进行高速旋转时,会带动气流以较高的动压流出叶轮2,并在叶轮2和蜗壳1的出风口之间继续流动,最终形成混流风机的出风。在气体流出叶轮2时会存在很大的切向速度,此切向速度分量是不利于后续流动的,因此,相关技术中会在叶轮和蜗壳的排出口之间设置消旋段和后导叶结构,该消旋段可以将高速旋转的气流由径向引为水平方向,并且突然的释压会使气流的一部分动压被转化为静压,用于支持风机的后续流动。消旋段虽然能够将旋转的气流引为水平方向,但仍带有巨大的切向速度,这些速度分量均是不利于后续流动的。后导叶结构的作用便是将气流的切向的速度更多的转化为水平速度,并再次将巨大动压转化为静压,以提升风机的带压能力。相关技术中在提高风机的能效时均是采用调整叶轮的结构的方式进行提高,然而,经过申请人对于气流流动原理的研究,以及通过仿真模拟实验数据进行分析后发现,内壳与蜗壳之间所形成的环形风道的形状能够有效的改变气体的动压和静压之间的转化效率,因此合适的环形风道的宽度变化对混流风机系统性能的提升来说极为重要。
在本公开的一些实施例中,基于上述理由,如图1至图3所示,一种混流风机,包括:蜗壳1,蜗壳1上设置有出风口12;叶轮2,叶轮2设置于蜗壳1内;内壳4,内壳4设置于叶轮2和出风口12之间,内壳4的外表面与蜗壳1的内表面之间形成环形风道13;沿叶轮2至出风口12的方向,环形风道13的宽度逐渐增加。利用逐渐增加的环形风道13的宽度,使得进入环形风道13内的气体的切向速度分量逐渐减小,静压逐渐增加,从而能够有效的提升风机的带压能力。
在本公开的一些实施例中,环形风道13具有第一端131和第二端132,第二端132与出风口12连通,且第一端131的宽度a和第二端132的宽度b的比例范围为0.68<a/b<0.88。
在本公开的一些实施例中,对本例的混流风机进行仿真试验,调节a/b的数值进行仿真模拟,仿真结果如下:
a/b 转速(rpm) 计算风量(m 3/h) 叶轮压头(Pa) 扩压损失(Pa)
0.62 2200 478 100.1 62.3
0.68 2200 496 114.6 48.1
0.80 2200 510 126.8 36.2
0.88 2200 493 113.4 44.8
0.92 2200 472 108.3 58.6
从仿真结构可以得出,当a/b为0.80时,风量和叶轮压头达到最大值,扩压损失最小,当a/b增加到0.88时,风量和叶轮压头开始减小,扩压损失增加,当a/b继续增加到0.92时,风量和叶轮压头进一步减小,扩压损失继续增加,当a/b减小到0.68时,风量和叶轮压头开始减小,扩压损失增加,当a/b继续增加到0.62时,风量和叶轮压头进一步减小,扩压损失 继续增加,也即当a/b的数值偏小时,意味着a值偏小,b值偏大,此时流经环形风道13内的气流属于急剧扩压状态,反而会造成压力的急剧流失,影响风机的带压性能,同时,a值偏小,会同步影响叶轮2尺寸,导致叶轮2做功能力下降,不利于机组性能的提升。当a/b的数值偏大时,意味着a值偏大,b值偏小,此时流经环形风道13扩压能力不足,难以有效带压,因此带压能力下降,同时由于b值偏小,使得流经环形风道13的流动阻力增加,进而导致扩压损失增加,同样不利于机组性能的提升。当a/b的数值处于合适区间(0.68<a/b<0.88)时,流经环形风道13的带压能力处于最优区间,风机扩压损失能够有效控制,进而获得较优的风机性能。
在本公开的一些实施例中,混流风机还包括后导叶结构,后导叶结构设置于环形风道13内。
在本公开的一些实施例中,后导叶结构包括多个导叶33,导叶33的第一边沿朝向内壳4的外表面,导叶33的第二边沿朝向蜗壳1的内表面。也即导叶33的形状只需要小于或等于所对应的环形风道13的宽度即可,通过导叶33的导向及环形风道13的宽度变化同时对气流的静压进行调节,从而最终保证混流风机的出风效果。
在本公开的一些实施例中,至少一个导叶33上设置有摆动轴34,摆动轴34的轴线与叶轮2的轴线具有夹角,且具有摆动轴34的导叶33能够以摆动轴34的轴线为轴线进行摆动。后导叶结构的作用是对叶轮2的出风进行进一步的导向,当叶轮2在不同转速下工作时,气体流出叶轮2的角度是不同的,也即气流进入后导叶结构的角度是不同的,通过导叶33的摆动,使得气流在后导叶结构的流动角度也随之发生改变,进一步增加后导叶结构与叶轮2流出气流方向的契合程度,从而有益于混流风机的排气均匀性的增加,确保在多个工作转速下混流风机均可达到最优的风量值和最优的气流驱动性能。在本公开的一些实施例中,叶轮2的转速越大时,此时气流离开叶轮2的角度也越大,因此需要导叶33的倾角的角度越大,反之,叶轮2的转速越小,导叶33的倾角越小。
在本公开的一些实施例中,导叶33的摆动角度的角度范围为0°至10°。优选0°至5°。
在本公开的一些实施例中,内壳4的外表面上设置有凸起和/或凹坑,通过凸起和/或凹坑对流经环形风道内的进行降噪,有效降低混流风机的噪音。
在本公开的一些实施例中,后导叶结构上设置有消音齿。在本公开的一些实施例中,导叶33的边沿处设置有消音齿,通过设置消音齿减少气流经过后导叶结构时产生的噪音。
在本公开的一些实施例中,后导叶结构上设置有凸起和/或凹坑。在本公开的一些实施例中,导叶33的一个侧面或两个侧面上均设置有凸起和/或凹坑,通过设置凸起和/或凹坑减少气流经过后导叶结构时产生的噪音。
在本公开的一些实施例中,蜗壳1的外表面为曲面。也即蜗壳的外表面的截面为曲线段。
在本公开的一些实施例中,蜗壳1为截顶球体,蜗壳1的最大直径等于截顶球体的直径。也即,蜗壳1可以以截顶球体的球心为中心的一个直径固定的球形空间内进行自由转动,当应用于风管机且风管机需求为上下出风时,风管机内可以为本申请提供的混流风机提供一个直径固定的球形空间,通过混流风机的转动来实现风管机进出风方向的切换。
在本公开的一些实施例中,蜗壳1位于截顶球体的两个端面处分别开设有进风口和出风口12。
本公开的另一方面提供一种风管机,包括上述混流风机。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种混流风机,包括:
    蜗壳(1),所述蜗壳(1)设置有出风口(12);
    叶轮(2),所述叶轮(2)设置于所述蜗壳(1)内;
    内壳(4),所述内壳(4)设置于所述叶轮(2)和所述出风口(12)之间,所述内壳(4)的外表面与所述蜗壳(1)的内表面之间形成环形风道(13);
    沿所述叶轮(2)至所述出风口(12)的方向,所述环形风道(13)的宽度逐渐增加。
  2. 根据权利要求1所述的混流风机,其中所述环形风道(13)具有第一端(131)和第二端(132),所述第二端(132)与所述出风口连通(12),且所述第一端(131)的宽度a和所述第二端(132)的宽度b的比例范围为0.68<a/b<0.88。
  3. 根据权利要求1或2所述的混流风机,还包括后导叶结构,所述后导叶结构设置于所述环形风道内。
  4. 根据权利要求3所述的混流风机,其中所述后导叶结构包括多个导叶(33),至少一个所述导叶(33)上设置有摆动轴,所述摆动轴的轴线相对于所述叶轮(2)的轴线是倾斜的,且具有所述摆动轴的导叶(33)能够以所述摆动轴的轴线为轴线进行摆动。
  5. 根据权利要求4所述的混流风机,其中所述摆动轴的轴线相对于所述叶轮(2)的轴线倾斜90°。
  6. 根据权利要求3-5任一项所述的混流风机,其中所述后导叶结构上设置有消音齿。
  7. 根据权利要求3-6任一项所述的混流风机,其中所述后导叶结构上设置有凸起和/或凹坑;和/或所述内壳(4)的外表面上设置有凸起和/或凹坑。
  8. 根据权利要求1-7任一项所述的混流风机,其中所述蜗壳(1)的外表面为曲面。
  9. 根据权利要求1-8任一项所述的混流风机,其中所述蜗壳(1)为截顶球体,所述蜗壳(1)的最大直径等于截顶球体的直径。
  10. 根据权利要求9所述的混流风机,其中所述蜗壳(1)位于截顶球体的两个端面处分别开设有进风口和所述出风口(12)。
  11. 一种风管机,包括权利要求1至10中任一项所述混流风机。
PCT/CN2022/138397 2022-05-27 2022-12-12 混流风机及风管机 WO2023226379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210584125.8A CN114909328A (zh) 2022-05-27 2022-05-27 混流风机及风管机
CN202210584125.8 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226379A1 true WO2023226379A1 (zh) 2023-11-30

Family

ID=82769532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138397 WO2023226379A1 (zh) 2022-05-27 2022-12-12 混流风机及风管机

Country Status (2)

Country Link
CN (1) CN114909328A (zh)
WO (1) WO2023226379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117905712A (zh) * 2024-03-20 2024-04-19 绍兴智新机电科技有限公司 一种两级可变速低噪声轴流风机
CN117905712B (zh) * 2024-03-20 2024-06-04 绍兴智新机电科技有限公司 一种两级可变速低噪声轴流风机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909328A (zh) * 2022-05-27 2022-08-16 珠海格力电器股份有限公司 混流风机及风管机

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067296A (zh) * 1991-05-28 1992-12-23 莱尤克斯莫株式会社 混流型鼓风机及其叶轮检查装置
US20170321705A1 (en) * 2016-05-05 2017-11-09 Tti (Macao Commercial Offshore) Limited Mixed flow fan
CN207513872U (zh) * 2017-09-22 2018-06-19 杭州德意电器股份有限公司 一种离心风机系统
CN109404334A (zh) * 2018-12-27 2019-03-01 泛仕达机电股份有限公司 一种斜流风轮及包括该斜流风轮的低噪声斜流风机
CN210343778U (zh) * 2019-05-31 2020-04-17 顿力集团有限公司 一种房车空调用的混流风机
CN111441984A (zh) * 2020-01-20 2020-07-24 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211600830U (zh) * 2020-01-02 2020-09-29 杭州老板电器股份有限公司 混流风机和油烟机
CN112212491A (zh) * 2020-10-26 2021-01-12 珠海格力电器股份有限公司 一种蜗壳、空调室内机和空调器
CN112302995A (zh) * 2019-08-02 2021-02-02 珠海格力电器股份有限公司 风机组件及具有其的空调柜机
CN113339299A (zh) * 2021-06-17 2021-09-03 浙江理工大学 一种高速微型适用于呼吸机的三元流涡轮风机
CN113404711A (zh) * 2021-08-03 2021-09-17 广东泛仕达农牧风机有限公司 一种桶型轴流风机
CN114909328A (zh) * 2022-05-27 2022-08-16 珠海格力电器股份有限公司 混流风机及风管机
CN217421632U (zh) * 2022-05-27 2022-09-13 珠海格力电器股份有限公司 混流风机及风管机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067296A (zh) * 1991-05-28 1992-12-23 莱尤克斯莫株式会社 混流型鼓风机及其叶轮检查装置
US20170321705A1 (en) * 2016-05-05 2017-11-09 Tti (Macao Commercial Offshore) Limited Mixed flow fan
CN207513872U (zh) * 2017-09-22 2018-06-19 杭州德意电器股份有限公司 一种离心风机系统
CN109404334A (zh) * 2018-12-27 2019-03-01 泛仕达机电股份有限公司 一种斜流风轮及包括该斜流风轮的低噪声斜流风机
CN210343778U (zh) * 2019-05-31 2020-04-17 顿力集团有限公司 一种房车空调用的混流风机
CN112302995A (zh) * 2019-08-02 2021-02-02 珠海格力电器股份有限公司 风机组件及具有其的空调柜机
CN211600830U (zh) * 2020-01-02 2020-09-29 杭州老板电器股份有限公司 混流风机和油烟机
CN111441984A (zh) * 2020-01-20 2020-07-24 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN112212491A (zh) * 2020-10-26 2021-01-12 珠海格力电器股份有限公司 一种蜗壳、空调室内机和空调器
CN113339299A (zh) * 2021-06-17 2021-09-03 浙江理工大学 一种高速微型适用于呼吸机的三元流涡轮风机
CN113404711A (zh) * 2021-08-03 2021-09-17 广东泛仕达农牧风机有限公司 一种桶型轴流风机
CN114909328A (zh) * 2022-05-27 2022-08-16 珠海格力电器股份有限公司 混流风机及风管机
CN217421632U (zh) * 2022-05-27 2022-09-13 珠海格力电器股份有限公司 混流风机及风管机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117905712A (zh) * 2024-03-20 2024-04-19 绍兴智新机电科技有限公司 一种两级可变速低噪声轴流风机
CN117905712B (zh) * 2024-03-20 2024-06-04 绍兴智新机电科技有限公司 一种两级可变速低噪声轴流风机

Also Published As

Publication number Publication date
CN114909328A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023226366A1 (zh) 混流风机及风管机
JP5263198B2 (ja) 羽根車と送風機及びそれを用いた空気調和機
RU2621585C2 (ru) Охлаждающий осевой вентилятор с центростремительными направляющими лопатками статора
WO2023226379A1 (zh) 混流风机及风管机
JP5906319B2 (ja) ガスタービン
WO2023226365A1 (zh) 混流风机及风管机
CN109469643A (zh) 轴流风轮、轴流风机、空调室内机和空调室外机
CN114922852A (zh) 混流风机及风管机
CN217421632U (zh) 混流风机及风管机
WO2020147313A1 (zh) 吊顶式空调室内机
WO2023226363A1 (zh) 混流风机及风管机
CN217421627U (zh) 混流风机及风管机
WO2023226399A1 (zh) 混流风机以及风管机
JP2011179331A (ja) 送風機とその送風機を用いた空気調和機
CN114909329A (zh) 混流风机及风管机
CN217421631U (zh) 混流风机及风管机
CN217582590U (zh) 混流风机及风管机
WO2023226398A1 (zh) 混流风机及风管机
CN217761450U (zh) 混流风机以及风管机
CN217421624U (zh) 混流风机及风管机
CN114909331A (zh) 混流风机组件及风管机
CN114922848A (zh) 混流风机及风管机
CN217421625U (zh) 混流风机及风管机
CN207961047U (zh) 一种大风量低功耗的风机
CN217761449U (zh) 混流风机及风管机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943566

Country of ref document: EP

Kind code of ref document: A1