WO2023226313A1 - 晶棒制造管理方法和晶棒制造管理系统 - Google Patents

晶棒制造管理方法和晶棒制造管理系统 Download PDF

Info

Publication number
WO2023226313A1
WO2023226313A1 PCT/CN2022/130551 CN2022130551W WO2023226313A1 WO 2023226313 A1 WO2023226313 A1 WO 2023226313A1 CN 2022130551 W CN2022130551 W CN 2022130551W WO 2023226313 A1 WO2023226313 A1 WO 2023226313A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crystal ingot
ingot
quality
management method
Prior art date
Application number
PCT/CN2022/130551
Other languages
English (en)
French (fr)
Inventor
孙介楠
陈曦鹏
韩聪
Original Assignee
西安奕斯伟材料科技股份有限公司
西安奕斯伟硅片技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安奕斯伟材料科技股份有限公司, 西安奕斯伟硅片技术有限公司 filed Critical 西安奕斯伟材料科技股份有限公司
Publication of WO2023226313A1 publication Critical patent/WO2023226313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present disclosure relates to the technical field of manufacturing management, specifically, to a crystal ingot manufacturing management method and a crystal ingot manufacturing management system.
  • the Czochralski method is the more mainstream single crystal silicon growth method.
  • the manufacturing of silicon wafers is generally divided into two stages, namely, pulling single crystal ingots and then cutting the ingots into small ingots that can be processed by slicing equipment; and then slicing, rounding, grinding, and polishing the ingots. , cleaning and other processes to obtain the silicon wafer.
  • the length of a 12-inch crystal ingot is usually more than 2 meters, and the quality of different positions of the crystal ingot varies due to the influence of crystal pulling process parameters.
  • the head and tail ends and some positions are abnormal due to the fluctuation of the pulling speed or other factors, resulting in a higher proportion of defects in the wafers cut from these parts of the pulled crystal ingot. These parts will be cut off
  • the process is distinguished.
  • the purpose of cutting also includes segmenting the ingot into lengths that can be processed by the slicing equipment and testing the segmented ingots. Based on the test results, the ingots are put into production and processed to match different customer needs.
  • the crystal pulling related parameters it is usually necessary to set the crystal pulling related parameters before the crystal ingot is pulled, so that the crystal ingot can be pulled based on the set crystal pulling related parameters, and the crystal ingot will be given a material number.
  • the material number currently used is relatively simple, such as a simple serial number, which cannot identify the key parameters related to crystal pulling of the ingot, resulting in easy mixing of materials.
  • An object of the present disclosure is to provide a crystal ingot manufacturing management method that can better achieve quality and yield status management of a large number of crystal ingots.
  • Another object of the present disclosure is to provide a crystal ingot manufacturing management method that can avoid material mixing.
  • a crystal ingot manufacturing management method which may include the following steps:
  • the quality level of the ingot is evaluated based on the quality parameters and the drawing process parameters corresponding to the ingot.
  • the crystal ingot manufacturing management method may further include obtaining a yield that satisfies the quality level based on the quality level and the starting position and end position where the quality level appears on the crystal ingot.
  • the plurality of crystal ingots may be obtained by cutting the crystal ingot to a fixed length.
  • the quality parameters may include: resistance, oxygen content, carbon content, minority carrier lifetime, and crystal original defect confirmation.
  • crystal pulling related parameters may include: diameter of the crystal ingot to be pulled, product type, dopant, crystal pulling furnace number, groove direction, resistance and oxygen content.
  • the crystal ingot manufacturing management method may also include updating the crystal ingot material number based on actual quality conditions obtained through testing and evaluation.
  • Another object of the present disclosure is to provide a crystal ingot manufacturing management system that can better realize quality and yield status management of a large number of crystal ingots.
  • a crystal ingot manufacturing management system which may include:
  • a test module which is used to test the thin slices obtained by cutting the drawn crystal rod into multiple crystal ingots and cutting the head and tail of each crystal ingot to determine the quality parameters of the crystal ingot;
  • An evaluation module is used to evaluate the quality level of the crystal ingot based on the quality parameters and the drawing process parameters corresponding to the crystal ingot.
  • the crystal ingot manufacturing management system may also include:
  • Display entry module which can display quality parameters, can enter and display quality levels, and can display quality grades that meet the quality level based on the quality level and the starting position and end position of the quality level appearing on the ingot. Rate.
  • the display entry module can also input and display the crystal ingot material number that represents the crystal pulling related parameters based on which the crystal ingot is drawn.
  • the quality of different positions of the crystal rod is obtained by cutting thin slices from different positions of the crystal rod and testing and evaluating them, thereby achieving accurate statistics on the quality and yield of the crystal rod, so that subsequent operations can be based on customer requirements. Accurate input and output of silicon wafers of corresponding quality. Furthermore, by developing ingot part numbers that characterize the pull-related parameters on which the ingot is drawn, the risk of mix-ups due to, for example, pulling the wrong ingot or storing it incorrectly can be avoided or at least reduced.
  • FIG. 1 is a diagram schematically illustrating how ingot material numbers are formulated according to an embodiment of the present disclosure.
  • FIG. 2 schematically shows an entry interface of the ingot manufacturing management system according to an embodiment of the present disclosure.
  • a crystal ingot manufacturing management method which includes the following steps: cutting a drawn crystal ingot into a plurality of crystal ingots and cutting the head and tail of each ingot The thin slices are tested to determine the quality parameters of the crystal ingot; and the quality level of the crystal ingot is evaluated based on the quality parameters and the drawing process parameters corresponding to the crystal ingot.
  • the drawn crystal ingot will be cut into multiple crystal ingots, and thin slices will be cut from the head and tail of each ingot, that is, the head slice and the tail slice.
  • these two slices are tested to confirm actual quality parameters. It should be noted that this test can be performed, for example, in a laboratory using specific equipment.
  • the quality parameters may include, for example, resistance, oxygen content, carbon content, minority carrier lifetime (MCLT), etch pit dislocation (Etch Pit Dislocation, EPD) confirmation, crystal original particles (Crystal Original Particles, COP) Confirm etc.
  • the quality grade of the crystal ingot can be evaluated.
  • the drawing process parameter can be, for example, the drawing speed, which can be continuously collected during the drawing process of the ingot, and the quality level can be, for example, 19nm, 40nm, 90nm, etc. Additionally, this evaluation may be made by a crystal pulling engineer or may be performed by specific equipment.
  • the quality of the different positions of the crystal rod can be obtained, and accurate statistics of the quality and yield of the crystal rod can be achieved, which is helpful for the evaluation of the crystal rod.
  • Better management of quality so that ingots of corresponding quality can be accurately input to produce silicon wafers according to customer requirements, avoiding errors and improving efficiency.
  • the crystal ingot manufacturing management method may further include obtaining a yield that satisfies the quality level based on the quality level and the starting position and end position where the quality level appears on the ingot.
  • the starting position and the end position of the quality level appearing on the crystal ingot can be determined, that is, the corresponding position of the quality level on the crystal ingot. length, and further, based on the quality level and the corresponding length, a yield satisfying the quality level can be obtained.
  • the yield satisfying the quality level is equal to the ratio of the corresponding length to the length of the ingot. It is conceivable that this process can be performed manually, but can optionally also be performed by a computing module.
  • the quality level is 19 nanometers (nm)
  • the starting position of the quality level is 0 and the end position is 35 cm (nm). cm).
  • the total length of ingot 2# is 35cm
  • the length that meets 19nm quality is calculated to be 35cm
  • the yield that meets 19nm quality is 100%, which is equal to the length that meets 19nm quality/the total length of ingot 2#.
  • the length and yield of other quality levels lower than this quality level such as the length and yield that meet the 40nm quality, are also 35cm and 100% respectively.
  • the yield parameters that meet the corresponding quality level can be further obtained, so that the quality and yield management of a large number of ingots can be more conveniently and quickly achieved, which is more conducive to the subsequent accurate input and output of silicon of corresponding quality according to customer requirements. piece.
  • the plurality of crystal ingots may be obtained by cutting the crystal rod to a fixed length. In this way, multiple crystal ingots of equal length can be obtained, which facilitates more uniform testing and evaluation of the quality of different positions of the crystal ingot, thus improving the accuracy of quality testing and evaluation.
  • the crystal ingot manufacturing management method may further include formulating a crystal ingot material number used to characterize the crystal pulling related parameters based on which the crystal ingot is pulled.
  • the ingot material number is just a simple serial number, which cannot well display the key parameters related to the ingot pulling.
  • the crystal ingot material number is formulated to characterize the crystal pulling related parameters based on which the crystal ingot is pulled. As a result, engineers can identify key parameters related to crystal pulling based on the ingot material number, thereby avoiding or at least reducing the risk of material mixing caused by, for example, pulling the wrong ingot or storing it incorrectly.
  • the ingot material number can be determined before the ingot is drawn. In this way, the ingot material number can be used to draw the crystal according to the relevant parameters and be quickly identified during the material transfer process after the drawing is completed, thus avoiding possible confusion during and after the drawing is completed. .
  • the ingot material number can also be determined during or after the ingot drawing process is completed.
  • the ingot material number can be composed of symbols representing parameters related to crystal pulling.
  • the crystal pulling related parameters may include: diameter of the crystal rod to be pulled, product type, dopant, crystal pulling furnace number, groove direction, resistance, oxygen content, etc.
  • Figure 1 Specifically, in Figure 1:
  • P polished wafer
  • E epitaxial wafer
  • EPI epitaxial Wafer
  • B represents boron
  • N represents nitrogen, and so on;
  • Figure 2 shows the ingot material number produced in this way.
  • the ingot manufacturing management method may further include updating the ingot material number based on the actual quality obtained through the above-mentioned testing and evaluation.
  • the original ingot material number will be replaced with a new ingot material number that reflects the actual quality; but if it is the same, the original ingot material number will be replaced.
  • the ingot material number will not be updated. As a result, the actual quality situation can be more accurately reflected, so that the wafer factory can make more accurate and faster investment.
  • This disclosure also proposes a crystal ingot manufacturing management system, which may include:
  • a test module which is used to test the thin slices obtained by cutting the drawn crystal ingot into multiple crystal ingots and cutting the head and tail of each crystal ingot to determine the quality parameters of the crystal ingot;
  • An evaluation module is used to evaluate the quality level of the crystal ingot based on the quality parameters and the drawing process parameters corresponding to the crystal ingot.
  • the test module may be specific equipment used to perform the above-mentioned tests, and the evaluation module may be specific equipment used to perform the above-mentioned evaluations. It is conceivable that the evaluation module may also be a crystal pulling engineer or a combination of the two.
  • the crystal ingot manufacturing management system may also include a display entry module that can display quality parameters, enter and display quality grades, and display the starting position and end position that appear on the crystal ingot based on the quality grade and quality grade. The yield achieved meeting this quality level.
  • the display entry module may be an entry interface.
  • the input interface includes multiple columns indicating the ingot number, ingot length, quality parameters (shown as measured resistance values and oxygen content values in Figure 2), ingot quality, and quality and yield summary.
  • the data carrying actual quality parameters obtained in the test module (which can be the ingot number, ingot length and quality parameters in Figure 2) can be uploaded and brought out in the input interface to be displayed by the input interface.
  • the quality level obtained in the evaluation module and the start position and end position that meet the quality level can be entered into the entry interface and displayed by the entry interface.
  • the quality and yield summary part can be automatically calculated and displayed by the system. The calculation can be completed in the evaluation module or in the input display module.
  • the display entry module can also enter and display the ingot material number that represents the crystal pulling related parameters based on which the ingot is drawn.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Chemical & Material Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Organic Chemistry (AREA)
  • Educational Administration (AREA)
  • Metallurgy (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Materials Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本公开提供了一种晶棒制造管理方法,其包括以下步骤:对通过将拉制的晶棒切割成多个晶锭并对每个晶锭的头尾进行切取而获得的薄片进行测试,以确定晶锭的品质参数;以及基于品质参数和晶锭所对应的拉制工艺参数评估晶锭的品质等级。本公开还涉及一种晶棒制造管理系统。

Description

晶棒制造管理方法和晶棒制造管理系统
相关申请的交叉引用
本申请主张在2022年05月26日在中国提交的中国专利申请号No.202210586175.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及制造管理技术领域,具体地,涉及晶棒制造管理方法和晶棒制造管理系统。
背景技术
目前,直拉法是比较主流的单晶硅生长方法。硅片的制造总体上分为两个阶段,即,单晶晶棒拉制,并然后将晶棒切割成切片设备可以处理的小段晶锭;以及之后将晶锭切片、圆边、研磨、抛光、清洗等工序后得到硅片。
在晶棒拉制中,12寸晶棒的长度通常在2米以上,而晶棒不同位置由于拉晶工艺参数等的影响,品质存在差异。对于晶棒,头、尾两端和部分位置由于拉速波动或其它因素影响出现异常,导致所拉制的晶棒的这些部位切割出的晶圆出现瑕疵的比例较高,这些部位会经过切断工艺进行区分,切断的目的还包括将晶棒分段成切片设备可以处理的长度并对分段后的晶锭进行测试,根据测试结果,进行投产加工,以匹配不同的客户需求。但是,随着客户需求的多样化,对不同晶棒及晶锭的品质管理提出了更高的要求。且随着产能的不断增加,无法方便快捷地实现大量晶棒的品质和良率状况管理,导致晶圆厂投入晶锭容易出错。
此外,通常需要在晶棒拉制之前设定好拉晶相关参数,以使得可以基于所设定的拉晶相关参数拉制晶棒,并会给予该晶棒一物料号。但目前使用的物料号比较单一,例如只是简单的序列号,无法通过其识别出该晶棒拉晶相关关键参数,导致容易出现混料。
因此,需要提供一种能够更好地实现大量晶棒的品质和良率状况管理以及能够避免混料的晶棒制造管理方法和晶棒制造管理系统。
发明内容
本部分提供了本公开的总体概要,而不是对本公开的全部范围或所有特征的全面公开。
本公开的一个目的在于提供一种能够更好地实现大量晶棒的品质和良率状况管理的晶棒制造管理方法。
本公开的另一目的在于提供一种能够避免混料的晶棒制造管理方法。
为了实现上述目的中的一个或多个,提供了一种晶棒制造管理方法,其可以包括以下步骤:
对通过将拉制的晶棒切割成多个晶锭并对每个晶锭的头尾进行切取而获得的薄片进行测试,以确定晶锭的品质参数;以及
基于品质参数和晶锭所对应的拉制工艺参数评估晶锭的品质等级。
在上述晶棒制造管理方法中,该晶棒制造管理方法还可以包括基于品质等级和品质等级出现在晶锭上的起始位置和结束位置来获得满足该品质等级的良率。
在上述晶棒制造管理方法中,所述多个晶锭可以是通过将晶棒以固定长度切割而获得的。
在上述晶棒制造管理方法中,品质参数可以包括:电阻、氧含量、碳含量、少数载流子寿命、晶体原生缺陷确认。
在上述晶棒制造管理方法中,该晶棒制造管理方法还可以包括制定用于表征拉制晶棒所依据的拉晶相关参数的晶棒料号。
在上述晶棒制造管理方法中,拉晶相关参数可以包括:要拉制的晶棒的直径、产品类型、掺杂物、拉晶炉编号、凹槽方向、电阻和氧含量。
在上述晶棒制造管理方法中,该晶棒制造管理方法还可以包括根据通过测试和评估获得的实际品质情况对晶棒料号进行更新。
本公开的另一目的在于提供一种能够更好地实现大量晶棒的品质和良率状况管理的晶棒制造管理系统。
为了实现上述目的,提供了一种晶棒制造管理系统,其可以包括:
测试模块,该测试模块用于对通过将拉制的晶棒切割成多个晶锭并对每 个晶锭的头尾进行切取而获得的薄片进行测试,以确定晶锭的品质参数;
评估模块,该评估模块用于基于品质参数和晶锭所对应的拉制工艺参数评估晶锭的品质等级。
在上述晶棒制造管理系统中,该晶棒制造管理系统还可以包括:
显示录入模块,该显示录入模块可以显示品质参数、可以录入并显示品质等级、以及可以显示基于品质等级与该品质等级出现在晶锭上的起始位置和结束位置获得的满足该品质等级的良率。
在上述晶棒制造管理系统中,该显示录入模块还可以录入和显示表征拉制晶棒所依据的拉晶相关参数的晶棒料号。
根据本公开,通过从晶棒的不同位置切取薄片并对其进行测试和评估来获得晶棒不同位置的品质情况,由此实现对拉晶品质和良率的准确统计,以便于后续能够根据客户要求准确投入及产出相应品质的硅片。此外,通过制定用于表征拉制晶棒所依据的拉晶相关参数的晶棒料号,可以避免或至少降低因例如拉错晶棒或存放错误而导致的混料风险。
通过以下结合附图对本公开的示例性实施方式的详细说明,本公开的上述特征和优点以及其他特征和优点将更加清楚。
附图说明
图1为示意性地示出了根据本公开的实施方式的晶棒料号的制定方式的图表;以及
图2示意性地示出了根据本公开的实施方式的晶棒制造管理系统的录入界面。
具体实施方式
下面参照附图、借助于示例性实施方式对本公开进行详细描述。要注意的是,对本公开的以下详细描述仅仅是出于说明目的,而绝不是对本公开的限制。此外,在各个附图中采用相同的附图标记来表示相同的部件。
根据本公开的实施方式,提出了一种晶棒制造管理方法,其包括以下步骤:对通过将拉制的晶棒切割成多个晶锭并对每个晶锭的头尾进行切取而获 得的薄片进行测试,以确定该晶锭的品质参数;以及基于品质参数和晶锭所对应的拉制工艺参数评估晶锭的品质等级。
具体而言,在上述方法中,拉制完成的晶棒会被切割成多个晶锭,每个晶锭的头尾会被分别切取薄片,即头部薄片和尾部薄片。对于每个晶锭而言,这两个薄片会被测试,以确认实际的品质参数。需要说明的是,该测试例如可以在实验室由特定的设备执行。该品质参数例如可以包括电阻、氧含量、碳含量、少数载流子寿命(Minority Carrier Lifetime,MCLT)、蚀刻坑位错(Etch Pit Dislocation,EPD)确认、晶体原生颗粒(Crystal Originated Particles,COP)确认等。
接下来,基于所确定的实际品质参数并结合该晶锭所对应的拉制工艺参数,可以评估出该晶锭的品质等级。需要说明的是,拉制工艺参数例如可以是拉制速度,其可以在晶棒的拉制过程中持续地收集,并且品质等级例如可以为19nm、40nm、90nm等。另外,该评估可以由拉晶工程师做出或者可以由特定的设备执行。
通过上述方式,即从晶棒的不同位置切取薄片并对其进行测试和评估,可以获得晶棒不同位置的品质情况,实现对拉晶品质和良率的准确统计,从而有助于对晶棒的品质进行更好地管理,以便于后续能够根据客户要求准确投入相应品质的晶锭来生产硅片,避免出错并提升效率。
进一步地,根据本公开的实施方式的晶棒制造管理方法还可以包括基于品质等级和该品质等级出现在该晶锭上的起始位置和结束位置来获得满足该品质等级的良率。
具体而言,基于针对每个晶锭的两个薄片确定的品质等级,可以确定出该品质等级在该晶锭上出现的起始位置和结束位置,即该品质等级在该晶锭上对应的长度,进一步地,基于该品质等级和对应长度,可以获得满足该品质等级的良率,具体地,满足该品质等级的良率等于该对应长度与该晶锭的长度的比值。可以设想的是,该过程可以人工进行,但也可以可选地通过计算模块来执行。
例如,参见图2,以晶锭2#为例,其在品质等级1即品质等级为19纳米(nm)的情况下确定出的该品质等级的起始位置为0且结束位置为35 厘米(cm)。由于晶锭2#的总长度为35cm,因此计算出满足19nm品质的长度为35cm,并且满足19nm品质的良率为100%,即等于满足19nm品质的长度/晶锭2#的总长度。此外,由于满足19nm品质的长度和良率分别为35cm和100%,因此低于该品质等级的其他品质等级的长度和良率,比如满足40nm品质的长度和良率,也分别为35cm和100%。
通过上述方式,可以进一步获得满足相应品质等级的良率参数,从而能够更加方便和快捷地实现大量晶棒的品质和良率管理,更加有助于后续根据客户要求准确投入及产出相应品质的硅片。
可以设想的是,所述多个晶锭可以是通过将晶棒以固定长度切割而获得的。通过这种方式,可以获得长度均等的多个晶锭,便于更加均匀地对晶棒的不同位置的品质情况进行测试和评估,从而提高了品质测试和评估的准确性。
另一方面,根据本公开的实施方式的晶棒制造管理方法还可以包括制定用于表征拉制该晶棒所依据的拉晶相关参数的晶棒料号。
通常,晶棒料号仅是简单的序列号,无法很好地展示出该晶棒拉晶相关关键参数。在本实施方式中,晶棒料号被制定成能够表征出拉制晶棒时所依据的拉晶相关参数。由此,工程师可以根据晶棒料号识别出拉晶相关关键参数,从而避免或至少降低因例如拉错晶棒或存放错误而导致的混料风险。
该晶棒料号可以在晶棒拉制之前制定。这样,可以根据该晶棒料号表征出的拉晶相关参数进行拉制并在拉制完成后的转料过程中快速识别,由此,避免在拉制中及拉制完成后可能出现的混乱。
可以设想的是,该晶棒料号也可以在晶棒拉制过程中或完成之后进行制定。
在本实施方式中,例如,可参见图1和图2,可以用代表拉晶相关参数的符号来构成晶棒料号。该拉晶相关参数可以包括:要拉制的晶棒的直径、产品类型、掺杂物、拉晶炉编号、凹槽方向、电阻、氧含量等。具体地,在图1中:
对于直径,用3来表示晶棒的直径300毫米(mm);
对于产品类型,用P来表示抛光片(Polish Wafer,PW);用E来表示 外延片(Epitaxial Wafer,EPI);
对于掺杂,用B表示硼、用N表示氮、等等;
对于拉晶炉,用1-Z表示拉晶炉的编号;
对于凹槽方向,用A表示[110],用B表示[100];
对于电阻,用0-Z表示电阻大小;
对于氧含量,用0-Z表示氧含量大小;等等。
图2中示出了通过这种方式制成的晶棒料号。
根据本公开的实施方式的晶棒制造管理方法还可以包括根据通过上述测试和评估获得的实际品质情况对晶棒料号进行更新。
具体地,如果通过测试和评估获得的实际品质情况和最初的目标品质情况不同,则用反映实际品质情况的新的晶棒料号替代原有的晶棒料号;但如果相同,则原有的晶棒料号不做更新。由此,可以更准确地反映实际的品质情况,以便于晶圆厂进行更加准确快捷地投入。
本公开还提出了一种晶棒制造管理系统,该晶棒制造管理系统可以包括:
测试模块,该测试模块用于对通过将拉制的晶棒切割成多个晶锭并对每个晶锭的头尾进行切取而获得的薄片进行测试,以确定该晶锭的品质参数;
评估模块,该评估模块用于基于品质参数和晶锭所对应的拉制工艺参数评估晶锭的品质等级。
该测试模块可以是用于执行上述测试的特定设备,并且该评估模块可以是用于执行上述评估的特定设备,可以设想的是,该评估模块也可以是拉晶工程师或者二者的结合。
该晶棒制造管理系统还可以包括显示录入模块,该显示录入模块能够显示品质参数、能够录入并显示品质等级、以及能够显示基于品质等级与品质等级出现在晶锭上的起始位置和结束位置获得的满足该品质等级的良率。
示例性地,参照图2,该显示录入模块可以是录入界面。该录入界面包括指示晶锭编号、晶锭长度、品质参数(在图2中显示为电阻实测值和氧含量实测值)、晶棒品质以及品质及良率汇总的多个栏。
在测试模块中获得的承载实际品质参数的数据(在图2中可以是晶锭编号、晶锭长度和品质参数)可以被上传并在录入界面中自己带出,以由该录 入界面显示出来。在评估模块中获得的品质等级以及满足该品质等级的起始位置和结束位置可以被录入到该录入界面中并由该录入界面显示出来。品质及良率汇总部分可以是系统自动计算后显示,该计算可以在评估模块中完成或者可以在录入显示模块中完成。
可以看到,显示录入模块还能够录入和显示表征拉制晶棒所依据的拉晶相关参数的晶棒料号。
通过上述方式,可以清楚的从显示录入模块看到每个晶棒的品质及良率情况,从而有助于后续生产的准确投入。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种晶棒制造管理方法,包括以下步骤:
    对通过将拉制的晶棒切割成多个晶锭并对每个晶锭的头尾进行切取而获得的薄片进行测试,以确定所述晶锭的品质参数;以及
    基于所述品质参数和所述晶锭所对应的拉制工艺参数评估所述晶锭的品质等级。
  2. 根据权利要求1所述的晶棒制造管理方法,其中,还包括基于所述品质等级和所述品质等级出现在所述晶锭上的起始位置和结束位置来获得满足所述品质等级的良率。
  3. 根据权利要求1或2所述的晶棒制造管理方法,其中,所述多个晶锭是通过将所述晶棒以固定长度切割而获得的。
  4. 根据权利要求1或2所述的晶棒制造管理方法,其中,所述品质参数包括:电阻、氧含量、碳含量、少数载流子寿命、蚀刻坑位错确认和晶体原生颗粒确认。
  5. 根据权利要求1或2所述的晶棒制造管理方法,其中,还包括制定用于表征拉制所述晶棒所依据的拉晶相关参数的晶棒料号。
  6. 根据权利要求5所述的晶棒制造管理方法,其中,所述拉晶相关参数包括:要拉制的晶棒的直径、产品类型、掺杂物、拉晶炉编号、凹槽方向、电阻和氧含量。
  7. 根据权利要求5所述的晶棒制造管理方法,其中,还包括根据通过所述测试和所述评估获得的实际品质情况对所述晶棒料号进行更新。
  8. 一种晶棒制造管理系统,包括:
    测试模块,所述测试模块用于对通过将拉制的晶棒切割成多个晶锭并对每个晶锭的头尾进行切取而获得的薄片进行测试,以确定所述晶锭的品质参数;
    评估模块,所述评估模块用于基于所述品质参数和所述晶锭所对应的拉制工艺参数评估所述晶锭的品质等级。
  9. 根据权利要求8所述的晶棒制造管理系统,其中,还包括:
    显示录入模块,所述显示录入模块能够显示所述品质参数、能够录入并显示所述品质等级、以及能够显示基于所述品质等级与所述品质等级出现在所述晶锭上的起始位置和结束位置获得的满足所述品质等级的良率。
  10. 根据权利要求8或9所述的晶棒制造管理系统,其中,所述显示录入模块还能够录入和显示表征拉制所述晶棒所依据的拉晶相关参数的晶棒料号。
PCT/CN2022/130551 2022-05-26 2022-11-08 晶棒制造管理方法和晶棒制造管理系统 WO2023226313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210586175.XA CN114897402A (zh) 2022-05-26 2022-05-26 晶棒制造管理方法和晶棒制造管理系统
CN202210586175.X 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023226313A1 true WO2023226313A1 (zh) 2023-11-30

Family

ID=82726378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130551 WO2023226313A1 (zh) 2022-05-26 2022-11-08 晶棒制造管理方法和晶棒制造管理系统

Country Status (3)

Country Link
CN (1) CN114897402A (zh)
TW (1) TW202305193A (zh)
WO (1) WO2023226313A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114897402A (zh) * 2022-05-26 2022-08-12 西安奕斯伟材料科技有限公司 晶棒制造管理方法和晶棒制造管理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212692A (ja) * 2002-01-24 2003-07-30 Shin Etsu Handotai Co Ltd シリコン単結晶ウェーハの製造方法
US20060282229A1 (en) * 2005-06-14 2006-12-14 Kim Jin G Quality Evaluation Method for Single Crystal Ingot
CN102744796A (zh) * 2012-06-20 2012-10-24 常州天合光能有限公司 硅锭切片质量监控系统及监测方法
CN106326192A (zh) * 2016-08-30 2017-01-11 上海华力微电子有限公司 晶圆制造铸锭品质评估方法
CN109506608A (zh) * 2018-12-24 2019-03-22 西安奕斯伟硅片技术有限公司 一种晶棒的测量装置
CN111985823A (zh) * 2020-08-25 2020-11-24 东北大学 一种用于滚磨机定向仪的晶棒质量评估方法
CN113939616A (zh) * 2019-05-21 2022-01-14 硅电子股份公司 制造半导体晶片的方法
CN114897402A (zh) * 2022-05-26 2022-08-12 西安奕斯伟材料科技有限公司 晶棒制造管理方法和晶棒制造管理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212692A (ja) * 2002-01-24 2003-07-30 Shin Etsu Handotai Co Ltd シリコン単結晶ウェーハの製造方法
US20060282229A1 (en) * 2005-06-14 2006-12-14 Kim Jin G Quality Evaluation Method for Single Crystal Ingot
CN102744796A (zh) * 2012-06-20 2012-10-24 常州天合光能有限公司 硅锭切片质量监控系统及监测方法
CN106326192A (zh) * 2016-08-30 2017-01-11 上海华力微电子有限公司 晶圆制造铸锭品质评估方法
CN109506608A (zh) * 2018-12-24 2019-03-22 西安奕斯伟硅片技术有限公司 一种晶棒的测量装置
CN113939616A (zh) * 2019-05-21 2022-01-14 硅电子股份公司 制造半导体晶片的方法
CN111985823A (zh) * 2020-08-25 2020-11-24 东北大学 一种用于滚磨机定向仪的晶棒质量评估方法
CN114897402A (zh) * 2022-05-26 2022-08-12 西安奕斯伟材料科技有限公司 晶棒制造管理方法和晶棒制造管理系统

Also Published As

Publication number Publication date
TW202305193A (zh) 2023-02-01
CN114897402A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
KR100700082B1 (ko) 결정 성장된 잉곳의 품질평가 방법
WO2023226313A1 (zh) 晶棒制造管理方法和晶棒制造管理系统
JP3773477B2 (ja) 結晶欠陥の検査方法
CN111912379A (zh) 晶圆被加工面加工质量及切割表面切割质量的检验方法
CN107093568B (zh) 一种晶元在线监测方法及装置
CN111624460B (zh) 一种单晶硅缺陷分布区域的检测方法
WO2020224612A1 (zh) 自动侦测并卡控晶圆上缺陷的方法和系统
CN112071765A (zh) 确定晶圆加工参数的方法和晶圆的加工方法
WO2023093042A1 (zh) 单晶硅棒的直径调整方法、装置、电子设备及存储介质
CN102809586A (zh) 多晶硅锭的质量检验方法
WO2007040002A1 (ja) 半導体ウエーハの製造方法及び半導体インゴットの切断位置決定システム
JP4428038B2 (ja) シリコン単結晶の製造システム及びシリコン単結晶の製造方法並びにシリコン単結晶
TWI689888B (zh) 決定半導體製造系統的不良設備的方法及程式產品
JP4653948B2 (ja) エピタキシャルウエーハ用シリコン単結晶の検査方法及びエピタキシャルウエーハ用シリコンウエーハの製造方法、並びにエピタキシャルウエーハの製造方法
TWI830379B (zh) 半導體試樣的評價方法、半導體試樣的評價裝置及半導體晶圓的製造方法
CN117087023B (zh) 一种双工位线切割机及其控制方法
JP2726773B2 (ja) シリコン単結晶引き上げ方法
CN112140374A (zh) 一种多晶硅棒的切割方法
WO2024021993A1 (en) Automatic decision-making for pulling
JP3984865B2 (ja) 多結晶シリコン製造方法
KR100288044B1 (ko) 에칭방법에 의한 실리콘 단결정봉의 베이컨시 형태의 결함 영역 측정방법
CN117054486A (zh) 一种检测碳化硅晶棒内部多型的方法
US20240183797A1 (en) Method for determining types of defects in monocrystalline silicon wafer
WO2022196292A1 (ja) 炭化珪素単結晶ウェーハの結晶欠陥評価方法
US11626331B2 (en) Method of evaluating silicon wafer manufacturing process and method of manufacturing silicon wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943500

Country of ref document: EP

Kind code of ref document: A1