WO2023226167A1 - 一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统 - Google Patents

一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统 Download PDF

Info

Publication number
WO2023226167A1
WO2023226167A1 PCT/CN2022/104351 CN2022104351W WO2023226167A1 WO 2023226167 A1 WO2023226167 A1 WO 2023226167A1 CN 2022104351 W CN2022104351 W CN 2022104351W WO 2023226167 A1 WO2023226167 A1 WO 2023226167A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
refrigerator
cold
cold end
hot end
Prior art date
Application number
PCT/CN2022/104351
Other languages
English (en)
French (fr)
Inventor
植晓琴
韦涛
陈鑫
邱利民
王凯
包士然
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US18/023,715 priority Critical patent/US20240263871A1/en
Publication of WO2023226167A1 publication Critical patent/WO2023226167A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways

Definitions

  • the invention belongs to the field of low-temperature refrigeration technology, and in particular relates to a hydrogen and helium throttling liquefaction system that adopts direct current flow at the cold end and hot end of a regenerative refrigerator.
  • Recuperative refrigerators such as pulse tube refrigerators and GM refrigerators are currently the main refrigeration technology for small hydrogen and helium liquefaction and recondensation systems at home and abroad due to their simple structure, reliable operation, and low vibration.
  • the ratio of sensible heat from room temperature to liquefaction temperature and latent heat of gas-liquid phase change reaches more than 70 times respectively. If a single refrigerator is used to liquefy helium at normal pressure and room temperature, it means that the unit cooling capacity of the cold end can Liquefied helium needs to absorb more than 70 times the excess cold energy from the regenerator and the primary cold end in each temperature range to be enough to fully absorb sensible heat. Otherwise, high-grade cold energy will be consumed to absorb sensible heat, resulting in a reduction in liquefaction efficiency. , which puts forward higher performance requirements for current low-temperature refrigerators. Therefore, the current helium liquefaction efficiency of a single refrigerator is still at a low level.
  • the present invention provides a hydrogen and helium throttling liquefaction system that adopts DC flow at the cold end and hot end of a regenerative refrigerator, which can overcome the technical defects in the precooling and condensation process of the traditional small helium liquefier, and also utilizes the J-T
  • the deep-low temperature phase change refrigeration efficiency of the refrigerator is high.
  • a hydrogen and helium throttling liquefaction system using direct current at the cold end and hot end of a regenerative refrigerator including a regenerative refrigerator module, a hot end DC module, a cold end DC module, a throttling liquefaction module and a gas phase circulation module; Each module is interconnected to form a closed circuit for the flow of helium or hydrogen working fluid;
  • the throttling liquefaction module includes a buffer chamber, a high-pressure channel of a partition-type heat exchanger, a throttle valve and a liquid reservoir that are connected in sequence by low-temperature pipelines;
  • the gas phase circulation module includes a partition-type heat exchanger that is connected in sequence by a return pipeline.
  • the compressor transmission pipe in the regenerative refrigerator module is provided with a bypass, which is connected to the hot end DC module; the lower end of the cold end heat exchanger of the regenerator in the regenerative refrigerator module is provided with an opening. Connected to the cold end DC module;
  • the hot-end DC module leads out the high-temperature and high-pressure working fluid in the compressor transmission pipe, and introduces it into the buffer cavity after exchanging heat and cooling with the working fluid in the return pipeline;
  • the cold-end DC module will The low-temperature and high-pressure working fluid from the cold-end heat exchanger of the regenerator is led out and introduced into the buffer cavity;
  • the high-pressure and low-temperature working fluid mixed in the buffer chamber first undergoes heat exchange in the partition-type heat exchanger, and then is throttled and liquefied through the throttle valve before entering the liquid reservoir; the gas-phase working fluid in the reservoir is separated through the return pipeline and passes through the partition wall in turn.
  • the heat exchanger, heat exchange components, control valves and small compression devices recover the cold energy and re-compress it before flowing back to the low-pressure chamber side of the refrigerator compression device in the recuperative refrigerator module to complete the cycle.
  • the system of the present invention draws out low-temperature and high-pressure hydrogen or helium working fluid from the regenerative refrigerator module through a DC pipeline and a control valve, and generates a small direct current at the cold end of the regenerator of the refrigerator; it directly conducts direct current through the throttling liquefaction module. Throttling produces part of the cryogenic liquid to achieve liquefaction of hydrogen or helium. Part of the working fluid is directly extracted from the inside of the recuperative refrigerator module for liquefaction. It has the characteristics of internal pre-cooling and internal liquefaction. It eliminates the indirect heat exchange thermal resistance that exists in the traditional liquefaction mode when the gas to be liquefied flows outside the refrigerator, and finally realizes Improvement of the liquefaction performance of the entire machine.
  • the regenerative refrigerator module includes a refrigerator compression device, a compressor transmission pipe, a regenerator hot end heat exchanger, a regenerator, a regenerator cold end heat exchanger, and a regenerator connected in sequence.
  • the hot-end DC module includes a hot-end DC pipeline and a hot-end DC flow valve.
  • the hot-end DC pipeline is installed on the bypass of the compressor transmission pipe by welding.
  • the cold-end DC module includes a cold-end DC pipeline and a cold-end DC flow valve.
  • the cold-end DC pipeline is installed at the lower end opening of the cold-end heat exchanger of the regenerator by welding.
  • the structural form of the regenerative refrigerator module is coaxial, U-shaped or linear.
  • the regenerative refrigerator module is a GM refrigerator, a GM pulse tube refrigerator, a Stirling refrigerator, a Stirling pulse tube refrigerator, or a VM refrigerator.
  • the regenerative refrigerator module has a single-stage, two-stage or multi-stage coupling structure, wherein the two-stage or multi-stage coupling structure is a thermal coupling structure or a gas coupling structure.
  • the refrigerator compression device is a linear compressor or a valved GM compressor, and the corresponding low-pressure chamber sides of the two are respectively the linear compressor back-pressure chamber and the GM compressor low-pressure chamber.
  • the refrigerator compression device is a linear compressor or a valved GM compressor, and the corresponding low-pressure chamber sides of the two are respectively the linear compressor back-pressure chamber and the GM compressor low-pressure chamber.
  • the present invention has the following beneficial effects:
  • the structure of the present invention is simple and reliable.
  • the process of drawing direct current from the cold end and hot end of the regenerative refrigerator and introducing it from the back pressure chamber of the compressor has no special structural requirements for other components of the refrigerator.
  • Using the helium working fluid inside the refrigerator as the source of liquefied helium replaces the heat exchange mode between the working fluid to be liquefied at room temperature and the cylinder wall of the refrigerator, avoiding the defect of low pre-cooling heat exchange efficiency.
  • the liquefaction module uses throttling direct liquefaction. Compared with the cooling capacity of the refrigerator for condensation, the helium film condensation heat exchange process is eliminated, and the liquefaction efficiency is higher. Combining these two major advantages, the liquefaction performance of the system is improved.
  • This device is also suitable for the hydrogen liquefaction process and can improve the hydrogen liquefaction rate.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic diagram of some state points in the heat exchange assembly in the embodiment of the present invention.
  • Figure 3 is a schematic diagram of each state point in the throttling liquefaction module in the embodiment of the present invention.
  • 1-refrigerator compression device 2-compressor transmission pipe; 3-regenerator hot end heat exchanger; 4-regenerator; 5-regenerator cold end heat exchanger; 6-regenerator and expansion mechanism transmission pipe; 7-expansion device cold end heat exchanger; 8-expansion device; 9-expansion device hot end heat exchanger; 10-hot end DC pipeline; 11-hot end DC flow valve; 12-cold end end DC pipeline; 13-cold end DC flow valve; 14-buffer chamber; 15-partition wall heat exchanger; 16-throttle valve; 17-liquid reservoir; 18-return pipeline; 19-heat exchange components; 20 -Control valve; 21-Small compression device.
  • a hydrogen and helium throttling liquefaction system using cold end and hot end DC of a regenerative refrigerator includes a regenerative refrigerator module, a hot end DC module, a cold end DC module, and a throttling liquefaction system. module and gas phase circulation module.
  • the recuperative refrigerator module includes a refrigerator compression device 1, a compressor transmission pipe 2, a regenerator hot end heat exchanger 3, a regenerator 4, a regenerator cold end heat exchanger 5, and a regenerator connected in sequence.
  • a refrigerator compression device 1, a compressor transmission pipe 2, a regenerator hot end heat exchanger 3, a regenerator 4, a regenerator cold end heat exchanger 5, and a regenerator connected in sequence.
  • expansion mechanism transmission pipe 6 expansion device cold end heat exchanger 7, expansion device 8 and expansion device hot end heat exchanger 9.
  • the throttling liquefaction module includes a buffer chamber 14, a high-pressure channel of a partition-type heat exchanger 15, a throttle valve 16 and a liquid reservoir 17 that are connected in sequence through a low-temperature pipeline; the gas phase circulation module includes a partition-type heat exchanger that is connected in sequence by a return pipeline 18. Heater 15 low-pressure channel, heat exchange component 19 low-pressure channel, control valve 20 and small compression device 21.
  • the hot-end DC module includes a hot-end DC pipeline 10 and a hot-end DC flow valve 11.
  • the hot-end DC pipeline 10 is installed on the bypass of the compressor transmission pipe 2 by welding.
  • the cold-side DC module includes a cold-side DC pipeline 12 and a cold-side DC flow valve 13.
  • the cold-side DC pipeline 12 is installed at the lower end opening of the cold-side heat exchanger 5 of the regenerator by welding.
  • the hot-end DC module draws out the high-temperature and high-pressure working fluid in the compressor transmission pipe 2, exchanges heat with the working fluid in the return pipeline 18 and is cooled in the heat exchange assembly 19, and then introduces it into the buffer chamber 14; the cold-end DC module will return the working fluid to the buffer chamber 14.
  • the low-temperature and high-pressure working fluid from the heat exchanger 5 at the cold end of the heater is led out and introduced into the buffer chamber 14;
  • the high-pressure and low-temperature working fluid mixed in the buffer chamber 14 first undergoes heat exchange through the partition heat exchanger 15, and then is throttled and liquefied through the throttle valve 16 before entering the liquid reservoir 17; the gas phase working fluid in the liquid reservoir 17 passes through the return pipeline 18 is separated, and passes through the partition heat exchanger 15, the heat exchange component 19, the control valve 20 and the small compression device 21 to recover the cold energy and re-compress it before flowing back to the low-pressure chamber of the refrigerator compression device 1 in the recuperative refrigerator module. side to complete the cycle.
  • the refrigerant gas flows alternately in the recuperative refrigerator module to perform a regenerative refrigeration cycle.
  • the pre-cooling of the refrigerant in the refrigerator directly participates in refrigeration, resulting in more complete heat exchange and high temperature controllability.
  • the throttle valve 16 is connected to the end of the high-pressure pipeline of the dividing wall heat exchanger 15, and the refrigerant is throttled, expanded, cooled, and liquefied.
  • the liquid working fluid produced after liquefaction can be evaporated by absorbing the heat load of the object to be cooled to utilize the cold energy, or it can be produced as a low-temperature liquid product and used for high-pressure air supplementation in the compressor compression device of the refrigerator.
  • the gas-phase working fluid in the liquid reservoir 17 is separated through the return pipeline 18, and flows through the heat exchange component 19 of the hot-end DC pipeline and the return pipeline.
  • the surplus cooling capacity in each temperature zone of the returned gas-phase working fluid is fully recovered for preliminary cooling.
  • DC working fluid at the hot end lowering its temperature.
  • it is recompressed to a certain pressure by the small compression device 21 and then introduced into the back pressure chamber of the refrigerator compression device and re-enters the refrigerator system to complete the working fluid cycle.
  • the low-temperature and high-pressure working fluid is led out from the cold-side heat exchanger of the regenerator through the cold-end DC module and introduced into the buffer chamber of the throttling liquefaction module.
  • the high-temperature and high-pressure working fluid is introduced through the hot-side DC module. It is led from the transmission pipe of the refrigerator and cooled by heat exchange with the return pipeline and then introduced into the buffer chamber of the throttling liquefaction module.
  • the high-pressure and low-temperature working fluid mixed with the two DC streams is throttled and liquefied through the throttle valve to absorb the low-temperature heat.
  • the gas phase is preheated through the gas phase circulation module to recover cold energy and cool the working fluid in the hot-end DC pipeline.
  • the return working fluid gas is then compressed and pressurized, and finally flows back to the low-pressure side of the compressor compression device. , complete the cycle.
  • the liquefaction efficiency is limited by the heat exchange efficiency of the pre-cooling of the excess cold capacity of the regenerator and the cold capacity near the saturation temperature.
  • the helium pre-cooling The cooling efficiency is higher, and the liquefaction rate is not directly limited by the cooling capacity of the refrigerator.
  • the pre-cooling process of the traditional liquefaction system uses a coil heat exchanger wrapped around the cylinder wall of the refrigerator or uses helium natural convection to allow the gas to be liquefied to pass through the cylinder wall of the refrigerator to exchange heat with the internal refrigerant.
  • the heat exchange area is related to the heat recovery.
  • the excess cold capacity that can be extracted by the chiller is limited, and extracting too much cold capacity from the regenerator will affect the performance of the refrigerator.
  • there is an air gap for heat transfer between the regenerator and the cylinder wall which affects the heat transfer rate.
  • Existing experimental and numerical studies have shown that the COP of the recuperative refrigerator module can be improved by introducing DC flow.
  • the mass flow that contacts the outer wall of the regenerator for heat exchange is different from the direct current (DC flow) inside the regenerator.
  • the principles of thermodynamics are the same. Therefore, in the present invention, the mass flow of the traditional small helium liquefier that is in contact with the regenerator cylinder wall for heat exchange is replaced by the direct flow inside the regenerator, and the refrigeration process is led out from the cold end of the regenerator cold end of the heat exchanger.
  • the mass thus forms a direct current inside the refrigerator, and at the same time, the cold energy in the low-temperature and low-pressure working fluid that needs to be returned is recovered to pre-cool the hot-end DC working fluid.
  • the temperature is controllable, eliminating the heat exchange efficiency of the pre-cooling process in the traditional liquefier. low question.
  • the DC flow rate derived from the cold end and hot end of the regenerative refrigerator can be calculated based on the throttling liquefaction amount or cooling capacity demand of helium and the pre-cooling heat transfer of the DC working fluid at the hot end, and can then be calculated through each DC flow valve. control.
  • the total DC flow rate drawn from the refrigerator is the sum of cold-side DC and hot-side DC:
  • thermodynamics The first law of thermodynamics is applied to the heat exchanger part of the hot end DC pipeline and the recuperation pipeline:
  • h is the specific enthalpy of each point.
  • h a -h c is the enthalpy difference of high-pressure working fluid passing through the heat exchanger
  • h b -h d the enthalpy difference of low-pressure working fluid passing through the heat exchanger.
  • h l is the specific enthalpy of the liquid
  • h x is the specific enthalpy of the direct current drawn from the cold end
  • h y is the specific enthalpy of the reflux gas phase.
  • Q 0 is the cooling capacity. According to the status of each point, it can be obtained:
  • the liquefaction rate (equivalent cooling capacity) of the liquefaction system proposed by the present invention is no longer limited by the cooling capacity of the recuperative refrigerator near the saturation temperature.
  • the calculated liquefaction rate y is approximately 0.5758kg/s.
  • the total DC flow rate drawn from the refrigerator is required. It is about 0.085g/s, which is less than 1% of the actual flow amplitude of the refrigerator. According to existing literature research, its impact on the performance of the refrigerator can be ignored, and most of the DC is the hot-end DC drawn from the compressor outlet. It is only necessary to increase the mass flow rate at the compressor outlet without any impact on the performance of the refrigerator.
  • the liquefaction rate generated after throttling can reach 33L/day. Adjusting the working conditions according to demand can continue to achieve a huge increase in the liquefaction rate, which is far greater than the maximum unit cooling capacity liquefaction rate that can be achieved by existing traditional small helium liquefier products. (10-12L/day). Therefore, the present invention can achieve a huge improvement in the liquefaction rate of the liquefaction system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,属于低温制冷技术领域,包括回热式制冷机模块、热端直流模块、冷端直流模块、节流液化模块、气相循环模块;各模块相互连通,形成工质流动闭合回路;回热式制冷机冷端和热端通过直流管路(10,12)和直流流量阀(11,13)引出直流;热端直流制冷工质通过与回流低温工质换热降温后与冷端直流工质混合进入节流液化模块进行节流液化产生液体工质;液体工质输出冷量进行制冷后通过气相循环模块进入压缩装置背压腔,完成循环。结构简单,安装便利,换热效率与系统综合液化效率高。

Description

一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统 技术领域
本发明属于低温制冷技术领域,尤其是涉及一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统。
背景技术
脉管制冷机和GM制冷机等回热式制冷机因其结构简单、运行可靠、振动低等优势,是当前国内外小型氢、氦液化与再冷凝系统的主要制冷技术。
以氦气为例。1989年,日本三菱集团等人用Gd xEr 1-xRh化合物作为三级回热器填料研制了最低无负荷温度可达到3.3K、冷量20mW@4.2K的三级GM制冷机,并首次在不使用JT级的情况下实现了氦液化。1997年德国吉森大学G.Thummes、王超等人改进了一台两级脉管低温制冷机,首次使用了利用制冷机的回热器对氦气进行预冷的方式。目前,使用单台制冷机的氦液化的发展主要归功于制冷机性能的提升以及对制冷机回热器富余冷量的发现与利用。利用回热器壁面的富余冷量将氦气在到达冷凝器之前逐渐预冷,极大地减小了显热对饱和温度下制冷量的消耗。但是对于氦气和氦气,室温至液化温度的显热与气液相变潜热的比值分别达到70余倍,如果以单台制冷机液化常压室温氦气,意味着冷端单位冷量可以液化的氦气需要从回热器及一级冷端各温度区间吸收70余倍的富余冷量才足以完全吸收显热,否则将耗费高品位冷量用于吸收显热从而造成液化效率的降低,这对于目前的低温制冷机提出了更高的性能要 求。因此,目前单台制冷机的氦液化效率仍处于较低水平,以1W@4.2K制冷量的脉管制冷机为例,其理论液化量为33L/day,而实际BOG再冷凝仅为18L/day,室温液化则更少为10-12L/day,仅为理想液化量的30%-60%,能耗高达11-19kW·h/L。单机液化量低下导致许多场合需要多台制冷机联合运行才能满足所需氢、氦液化量,造成成本高、能耗高、系统运行复杂等问题。因此,充分利用制冷机的现有冷量进一步提高单机氢、氦的液化能力,是当前小型氢、氦液化器发展的主要方向,而提高液化量的关键在于充分利用回热器富余冷量减小待液化气体过热度的同时强化冷凝器处的膜状冷凝传热。
现有的将待液化气体通过盘管式换热器、自然对流换热或环形翅片换热器在回热器管壁外侧预冷的模式,其均属于非接触式换热,换热热阻较大。此外,饱和氦气和氢气在制冷机冷端的膜状冷凝理论的不完善导致氢、氦冷凝器的设计存在偏差,使得回热式制冷机液化氢气、氦气的效率较低,单位体积的液化成本较高。而根本原因均在于间接预冷和间接冷凝液化方式存在较大的传热损失。
发明内容
本发明提供了一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,能够克服上述传统小型氦液化器预冷与冷凝过程存在的技术缺陷,同时也利用了J-T制冷机深低温相变制冷效率高的优势。
一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,包括回热式制冷机模块、热端直流模块、冷端直流模块、节流液化模块和气相循环模块;各模块相互连通,形成氦气或氢气工质流动闭合回路;
所述的节流液化模块包括通过低温管路依次连通的缓冲腔、间壁式换热器高压通道、节流阀和储液器;所述的气相循环模块包括由回流管路依 次连通的间壁式换热器低压通道、换热组件低压通道、控制阀和小型压缩装置;
所述回热式制冷机模块中的压缩机传输管上设有旁通,与热端直流模块连接;所述回热式制冷机模块中的回热器冷端换热器下端设有开口,与冷端直流模块连接;
所述的热端直流模块将压缩机传输管内的高温高压工质引出,与回流管路内的工质在换热组件内换热冷却后引入至缓冲腔内;所述的冷端直流模块将回热器冷端换热器的低温高压工质引出,并引入至缓冲腔内;
缓冲腔内混合的高压低温工质先经过间壁式换热器换热,再通过节流阀进行节流液化后进入储液器;储液器内气相工质通过回流管路分离,依次经过间壁式换热器、换热组件、控制阀和小型压缩装置回收冷量并再压缩后再回流至回热式制冷机模块中制冷机压缩装置的低压腔侧,完成循环。
本发明的系统通过直流管路和控制阀从回热式制冷机模块中引出低温高压氢气或氦气工质,在制冷机回热器的冷端产生小股直流;通过节流液化模块进行直接节流产生部分低温液体,实现氢或氦的液化。直接从回热式制冷机模块内部提出部分工质进行液化,具有内预冷、内液化的特点,消除了传统液化模式中待液化气体在制冷机外部流动存在的间接换热热阻,最终实现整机液化性能的提升。
进一步地,所述的回热式制冷机模块包括依次连接的制冷机压缩装置、压缩机传输管、回热器热端换热器、回热器、回热器冷端换热器、回热器与膨胀机构传输管、膨胀装置冷端换热器、膨胀装置和膨胀装置热端换热器。
进一步地,所述的热端直流模块包括热端直流管路和热端直流流量阀,热端直流管路通过焊接的方式安装在压缩机传输管的旁通上。
进一步地,所述的冷端直流模块包括冷端直流管路和冷端直流流量阀, 冷端直流管路通过焊接的方式安装在回热器冷端换热器的下端开口处。
可选择地,所述回热式制冷机模块的结构形式为同轴型、U型或直线型。
可选择地,所述的回热式制冷机模块为GM制冷机、GM型脉管制冷机、斯特林制冷机、斯特林型脉管制冷机或VM制冷机。
可选择地,所述的回热式制冷机模块为单级、两级或多级耦合结构,其中,两级或多级耦合结构为热耦合结构或气耦合结构。
可选择地,所述的回热式制冷机模块中,制冷机压缩装置为线性压缩机或带阀GM压缩机,两者对应的低压腔侧分别为线性压缩机背压腔和GM压缩机低压罐。
与现有技术相比,本发明具有以下有益效果:
本发明的结构简单可靠,从回热式制冷机冷端和热端引出直流并从压缩机背压腔引入的过程对制冷机其他部件没有特殊结构要求。使用制冷机内部氦气工质作为液化氦气的来源,代替了室温待液化工质与制冷机气缸壁面换热的模式,避免了预冷换热效率低的缺陷。液化模块采用了节流直接液化形式,相比于制冷机冷量进行冷凝,消除了氦气膜状冷凝换热过程,液化效率更高。综合此两大优势,提升了系统的液化性能。该装置同样适用于氢液化过程,可实现氢气液化率的提高。
附图说明
图1为本发明的整体结构示意图;
图2为本发明实施例中换热组件中部分状态点的示意图;
图3为本发明实施例中节流液化模块中各状态点的示意图。
图中:1-制冷机压缩装置;2-压缩机传输管;3-回热器热端换热器;4-回热器;5-回热器冷端换热器;6-回热器与膨胀机构传输管;7-膨胀装置冷端换热器;8-膨胀装置;9-膨胀装置热端换热器;10-热端直流管路; 11-热端直流流量阀;12-冷端直流管路;13-冷端直流流量阀;14-缓冲腔;15-间壁换热器;16-节流阀;17-储液器;18-回流管路;19-换热组件;20-控制阀;21-小型压缩装置。
具体实施方式
下面结合附图和实施例对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
如图1所示,一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,包括回热式制冷机模块、热端直流模块、冷端直流模块、节流液化模块和气相循环模块。
回热式制冷机模块包括依次连接的制冷机压缩装置1、压缩机传输管2、回热器热端换热器3、回热器4、回热器冷端换热器5、回热器与膨胀机构传输管6、膨胀装置冷端换热器7、膨胀装置8和膨胀装置热端换热器9。
节流液化模块包括通过低温管路依次连通的缓冲腔14、间壁式换热器15高压通道、节流阀16和储液器17;气相循环模块包括由回流管路18依次连通的间壁式换热器15低压通道、换热组件19低压通道、控制阀20和小型压缩装置21。
热端直流模块包括热端直流管路10和热端直流流量阀11,热端直流管路10通过焊接的方式安装在压缩机传输管2的旁通上。冷端直流模块包括冷端直流管路12和冷端直流流量阀13,冷端直流管路12通过焊接的方式安装在回热器冷端换热器5的下端开口处。
热端直流模块将压缩机传输管2内的高温高压工质引出,与回流管路18内的工质在换热组件19内换热冷却后引入至缓冲腔14内;冷端直流模块将回热器冷端换热器5的低温高压工质引出,并引入至缓冲腔14内;
缓冲腔14内混合的高压低温工质先经过间壁式换热器15换热,再通 过节流阀16进行节流液化后进入储液器17;储液器17内气相工质通过回流管路18分离,依次经过间壁式换热器15、换热组件19、控制阀20和小型压缩装置21回收冷量并再压缩后再回流至回热式制冷机模块中制冷机压缩装置1的低压腔侧,完成循环。
系统运行时,制冷工质气体在回热式制冷机模块内进行交变流动,进行回热式制冷循环。相比于气缸外的换热方式,制冷机内制冷工质预冷直接参与制冷,换热更充分,温度可控性高。
节流阀16连接在间壁式换热器15的高压管路末端,制冷工质进行节流膨胀降温液化。液化后产生的液体工质可通过吸收被冷却物热负荷蒸发以利用冷量,也可作为低温液体产品产出并于制冷机压缩装置进行高压补气。
储液器17内气相工质通过回流管路18分离,经过热端直流管路与回流管路的换热组件19流动,充分回收回流的气相工质各温区的富余冷量用以先行冷却热端直流工质,降低其温度。最终经过小型压缩装置21再压缩至一定压力后导入制冷机压缩装置背压腔重新进入制冷机系统,完成工质循环。
以氦气工质为例,通过冷端直流模块将低温高压工质从回热器冷端换热器引出并引入至节流液化模块的缓冲腔内,通过热端直流模块将高温高压工质从制冷机传输管引出并通过与回流管路换热冷却后引入至节流液化模块的缓冲腔内,将两股直流混合后的高压低温工质通过节流阀进行节流液化,吸收低温热负荷制冷并蒸发之后,气相通过气相循环模块进行预热以回收冷量并冷却热端直流管路内的工质,再将回流工质气体进行压缩增压,最终回流至制冷机压缩装置低压侧,完成循环。
相比于传统的使用低温制冷机的小型氦液化系统的液化效率受到回热器富余冷量预冷的换热效率以及饱和温度附近的冷量的限制,本发明设计的液化系统,氦气预冷效率更高,液化率不受制冷机冷量的直接限制。
传统液化系统的预冷过程采用缠绕在制冷机气缸壁面的盘管式换热器或者利用氦气自然对流使待液化气体通过制冷机气缸壁与内部制冷工质换热,换热面积与回热器可提取富余冷量有限,过多提取回热器冷量会对制冷机性能造成影响。特别地,对于GM制冷机,回热器与气缸壁面存在气隙传热,影响换热率。现有的实验和数值研究表明,回热式制冷机模块的COP可以通过引入直流流动得以提高,同时与回热器外壁面接触换热的质量流与回热器内的直流(DC流)的热力学原理相同。因此,在本发明中,将传统小型氦液化器的与回热器气缸壁面接触换热的质量流替代为回热器内部的直流,通过从回热器冷端换热器冷端导出制冷工质从而在制冷机内部形成直流,同时将需要回流的低温低压工质中的冷量进行回收用以预冷热端直流工质,温度可控,消除了传统液化器中预冷过程换热效率低的问题。
从回热式制冷机冷端与热端导出的直流流率可以根据氦气节流液化量或者制冷量需求、热端直流工质的预冷换热量进行计算,进而可以通过各直流流量阀进行控制。
热端直流管路与回流管路的换热组件中部分状态点如图2所示;节流液化模块中各状态点如图3所示。
从制冷机引出的总直流流率为冷端直流与热端直流的总和:
Figure PCTCN2022104351-appb-000001
其中,
Figure PCTCN2022104351-appb-000002
为从制冷机引出的总直流流率;
Figure PCTCN2022104351-appb-000003
为从传输管引出的热端直流流率;
Figure PCTCN2022104351-appb-000004
为从回热器冷端引出的冷端直流流率。
以热端直流管路与回热管路换热器部分应用热力学第一定律:
Figure PCTCN2022104351-appb-000005
其中,h为各点的比焓。
则热端直流流率与总直流流率的比值为:
Figure PCTCN2022104351-appb-000006
其中,h a-h c为高压工质通过换热器的焓差;h b-h d为低压工质通过换热器的焓差。假设间壁换热器进口与出口的各点温度接近相等,即T a=T b,T c=T d。同等温差下的焓差,高压侧高于低压侧,因此
Figure PCTCN2022104351-appb-000007
冷端直流流率与总直流流率的比值为1-i。
在液化工况下,需要从回热式制冷机引出的总直流流量与最终液化量之间为以下关系(节流液化模块中除缓冲腔以外的部分应用热力学第一定律):
Figure PCTCN2022104351-appb-000008
其中,
Figure PCTCN2022104351-appb-000009
为液项质量流率,h l为液体的比焓,h x为冷端引出的直流的比焓,h y为回流气相的比焓。
定义液体的产量或者叫液化率为
Figure PCTCN2022104351-appb-000010
重组上式得:
Figure PCTCN2022104351-appb-000011
在制冷工况下,直流流率与制冷量关系:
Figure PCTCN2022104351-appb-000012
其中,Q 0为制冷量。根据各点的状态可以求得:
Figure PCTCN2022104351-appb-000013
从上述关系式中可以看出,本发明所提出的液化系统,其液化率(等效制冷量)不再受到回热式制冷机在饱和温度附近的冷量的限制。
以一台1W@4.2K的制冷机为例,假设从制冷机引出的5K,2Mpa的直流工质节流至一个大气压工况,计算其液化率y约为0.5758kg/s。若为获取单位冷量理论最大液化率33L/day,需要从制冷机引出的总直流流 率
Figure PCTCN2022104351-appb-000014
约为0.085g/s,不足制冷机实际流量幅值的1%,根据现有文献研究,其对制冷机性能的影响可以忽略,且其中大部分直流为从压缩机出口引出的热端直流,只需要提高压缩机出口的质量流率而不会对制冷机性能产生任何影响。节流后产生的液化率可达到33L/day,根据需求调整工况可以继续实现的液化率的巨幅提升,远大于现有的传统小型氦液化器产品所能达到的最大单位冷量液化率(10-12L/day)。因此,本发明可以实现液化系统液化率的巨大提升。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,包括回热式制冷机模块、热端直流模块、冷端直流模块、节流液化模块和气相循环模块;各模块相互连通,形成氦气或氢气工质流动闭合回路;
    所述的节流液化模块包括通过低温管路依次连通的缓冲腔(14)、间壁式换热器(15)高压通道、节流阀(16)和储液器(17);所述的气相循环模块包括由回流管路(18)依次连通的间壁式换热器(15)低压通道、换热组件(19)低压通道、控制阀(20)和小型压缩装置(21);
    所述回热式制冷机模块中的压缩机传输管(2)上设有旁通,与热端直流模块连接;所述回热式制冷机模块中的回热器冷端换热器(5)下端设有开口,与冷端直流模块连接;
    所述的热端直流模块将压缩机传输管(2)内的高温高压工质引出,与回流管路(18)内的工质在换热组件(19)内换热冷却后引入至缓冲腔(14)内;所述的冷端直流模块将回热器冷端换热器(5)的低温高压工质引出,并引入至缓冲腔(14)内;
    缓冲腔(14)内混合的高压低温工质先经过间壁式换热器(15)换热,再通过节流阀(16)进行节流液化后进入储液器(17);储液器(17)内气相工质通过回流管路(18)分离,依次经过间壁式换热器(15)、换热组件(19)、控制阀(20)和小型压缩装置(21)回收冷量并再压缩后再回流至回热式制冷机模块中制冷机压缩装置(1)的低压腔侧,完成循环。
  2. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述的回热式制冷机模块包括依次连接的制冷机压缩装置(1)、压缩机传输管(2)、回热器热端换热器(3)、 回热器(4)、回热器冷端换热器(5)、回热器与膨胀机构传输管(6)、膨胀装置冷端换热器(7)、膨胀装置(8)和膨胀装置热端换热器(9)。
  3. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述的热端直流模块包括热端直流管路(10)和热端直流流量阀(11),热端直流管路(10)通过焊接的方式安装在压缩机传输管(2)的旁通上。
  4. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述的冷端直流模块包括冷端直流管路(12)和冷端直流流量阀(13),冷端直流管路(12)通过焊接的方式安装在回热器冷端换热器(5)的下端开口处。
  5. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述回热式制冷机模块的结构形式为同轴型、U型或直线型。
  6. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述的回热式制冷机模块为GM制冷机、GM型脉管制冷机、斯特林制冷机、斯特林型脉管制冷机或VM制冷机。
  7. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述的回热式制冷机模块为单级、两级或多级耦合结构;其中,两级或多级耦合结构为热耦合结构或气耦合结构。
  8. 根据权利要求1所述的采用回热式制冷机冷端与热端直流的氢、氦节流液化系统,其特征在于,所述的回热式制冷机模块中,制冷机压缩装置(1)为线性压缩机或带阀GM压缩机,两者对应的低压腔侧分别为线性压缩机背压腔和GM压缩机低压罐。
PCT/CN2022/104351 2022-05-23 2022-07-07 一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统 WO2023226167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/023,715 US20240263871A1 (en) 2022-05-23 2022-07-07 A hydrogen or helium throttling liquefaction system using direct current flow from the cold and hot ends of the regenerative cryocoolers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210566059.1A CN114791203B (zh) 2022-05-23 2022-05-23 一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统
CN202210566059.1 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023226167A1 true WO2023226167A1 (zh) 2023-11-30

Family

ID=82463407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104351 WO2023226167A1 (zh) 2022-05-23 2022-07-07 一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统

Country Status (3)

Country Link
US (1) US20240263871A1 (zh)
CN (1) CN114791203B (zh)
WO (1) WO2023226167A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452467A (ja) * 1990-06-20 1992-02-20 Toshiba Corp 極低温冷凍機
US20120085121A1 (en) * 2010-10-08 2012-04-12 Ralph Longsworth Fast Cool Down Cryogenic Refrigerator
CN104792056A (zh) * 2015-04-22 2015-07-22 浙江大学 一种与回热式制冷机气耦合的jt节流制冷机
CN106642837A (zh) * 2016-09-28 2017-05-10 浙江大学 一种带内置式液化器的回热式制冷机
CN112097422A (zh) * 2020-08-25 2020-12-18 同济大学 一种采用直流的回热式制冷机高效液化系统
CN113803905A (zh) * 2021-07-20 2021-12-17 同济大学 一种间隙式制冷机高效预冷及液化系统
CN114322349A (zh) * 2021-12-03 2022-04-12 同济大学 耦合直流的回热式制冷机冷却的低温储存系统
CN114353366A (zh) * 2021-12-03 2022-04-15 同济大学 耦合膨胀机构和回热式制冷机的高效预冷及液化系统
CN114353432A (zh) * 2021-04-16 2022-04-15 上海司氢科技有限公司 采用磁制冷的氢液化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746211B2 (en) * 2015-08-26 2017-08-29 Emerald Energy NW, LLC Refrigeration system including micro compressor-expander thermal units
CN114087845B (zh) * 2021-11-19 2022-07-15 北京大臻科技有限公司 一种基于仲氢循环的液氢生产装置、系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452467A (ja) * 1990-06-20 1992-02-20 Toshiba Corp 極低温冷凍機
US20120085121A1 (en) * 2010-10-08 2012-04-12 Ralph Longsworth Fast Cool Down Cryogenic Refrigerator
CN104792056A (zh) * 2015-04-22 2015-07-22 浙江大学 一种与回热式制冷机气耦合的jt节流制冷机
CN106642837A (zh) * 2016-09-28 2017-05-10 浙江大学 一种带内置式液化器的回热式制冷机
CN112097422A (zh) * 2020-08-25 2020-12-18 同济大学 一种采用直流的回热式制冷机高效液化系统
CN114353432A (zh) * 2021-04-16 2022-04-15 上海司氢科技有限公司 采用磁制冷的氢液化装置
CN113803905A (zh) * 2021-07-20 2021-12-17 同济大学 一种间隙式制冷机高效预冷及液化系统
CN114322349A (zh) * 2021-12-03 2022-04-12 同济大学 耦合直流的回热式制冷机冷却的低温储存系统
CN114353366A (zh) * 2021-12-03 2022-04-15 同济大学 耦合膨胀机构和回热式制冷机的高效预冷及液化系统

Also Published As

Publication number Publication date
CN114791203B (zh) 2024-02-20
CN114791203A (zh) 2022-07-26
US20240263871A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
CN106642837B (zh) 一种带内置式液化器的回热式制冷机
WO2023272971A1 (zh) 氢液化系统
US10520225B2 (en) Refrigeration and/or liquefaction device using selective pre-cooling, and corresponding method
CN105783319B (zh) 回热式制冷机预冷的低温j‑t节流制冷机
WO2023193486A1 (zh) 一种常温液态压缩二氧化碳混合工质储能系统及方法
CN110486968B (zh) 一种基于co2工质的冷电联供系统
WO2014114264A1 (zh) 一种天然气等压液化装置
WO2014114138A1 (zh) 一种等压分离制取氧氮的空分装置
WO2022042457A1 (zh) 一种采用直流的回热式制冷机高效液化系统
CN114353366B (zh) 耦合膨胀机构和回热式制冷机的高效预冷及液化系统
WO2014114267A1 (zh) 一种天然气等压液化装置
CN113803905B (zh) 一种间隙式制冷机高效预冷及液化系统
CN104729233B (zh) 自动复叠制冷系统与脉管制冷机相结合的天然气液化系统
CN213040803U (zh) 一种采用直流的回热式制冷机高效液化系统
CN117704744A (zh) 一种分布式压降氢液化循环系统
CN209279430U (zh) 一种生产液化天然气的制冷设备
WO2023226167A1 (zh) 一种采用回热式制冷机冷端与热端直流的氢、氦节流液化系统
CN202734232U (zh) 一种高效高温热水热泵机组
CN217504027U (zh) 耦合膨胀机构和回热式制冷机的高效预冷及液化系统
CN107560226B (zh) 液氢温区预冷型直接节流jt制冷机
CN217303237U (zh) 一种间隙式制冷机高效预冷及液化系统
CN211977383U (zh) 氦液化及不同温度等级氦气冷源供给装置
CN108050722B (zh) 利用涡流管能量分离效应预冷的一次节流低温制冷系统
CN105352218B (zh) 一种基于涡流管的吸收制冷系统及工作方法
CN217330409U (zh) 一种氢液化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943358

Country of ref document: EP

Kind code of ref document: A1