WO2023272971A1 - 氢液化系统 - Google Patents

氢液化系统 Download PDF

Info

Publication number
WO2023272971A1
WO2023272971A1 PCT/CN2021/119904 CN2021119904W WO2023272971A1 WO 2023272971 A1 WO2023272971 A1 WO 2023272971A1 CN 2021119904 W CN2021119904 W CN 2021119904W WO 2023272971 A1 WO2023272971 A1 WO 2023272971A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
heat exchanger
low
temperature heat
inlet
Prior art date
Application number
PCT/CN2021/119904
Other languages
English (en)
French (fr)
Inventor
谢秀娟
杨少柒
周刚
薛瑞
潘薇
龚领会
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Priority to EP21947899.7A priority Critical patent/EP4365526A1/en
Publication of WO2023272971A1 publication Critical patent/WO2023272971A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the application belongs to the field of cryogenic refrigeration technology, in particular to a hydrogen liquefaction system.
  • Liquid hydrogen has a high hydrogen storage density, which can greatly improve transportation efficiency, reduce storage and transportation pressure, and improve system safety. It is the best solution for hydrogen ocean transportation and medium and long-distance flexible land transportation, and it is also the first choice for hydrogen storage in commercial hydrogen refueling stations. way, with obvious capacity scale and cost advantages.
  • the hydrogen liquefier is the main device for the production of liquid hydrogen. It is used to refrigerate and liquefy hydrogen at room temperature. It is the core technical equipment for high-tech industries such as aerospace and hydrogen energy storage and transportation.
  • the existing hydrogen liquefier usually uses helium as the cycle tool. quality, but the hydrogen liquefaction capacity of the hydrogen liquefier using this helium cycle working fluid is often insufficient, making it difficult for the hydrogen liquefier to meet the production requirement of a hydrogen liquefaction capacity of more than 5 tons per day.
  • the present invention provides a hydrogen liquefaction system capable of effectively improving the hydrogen liquefaction capacity.
  • a hydrogen liquefaction system comprising: a room temperature compressor unit, a hydrogen liquefaction unit, and a liquid hydrogen cryogenic container, the outlet of the room temperature compressor unit communicates with the first inlet of the hydrogen liquefaction unit through a high-pressure gas pipeline, and the hydrogen liquefaction unit
  • the first outlet of the liquid hydrogen cryogenic container communicates with the first inlet of the liquid hydrogen cryogenic container, the first outlet of the hydrogen liquefaction unit is used to flow out liquid hydrogen, the first outlet of the liquid hydrogen cryogenic container is connected to the first outlet of the hydrogen liquefaction unit
  • the two inlets are connected, the first outlet of the liquid hydrogen cryogenic container is used to flow out 20K saturated hydrogen, the second outlet of the hydrogen liquefaction unit is connected with the first inlet of the room temperature compressor unit through a medium-pressure gas pipeline, and the The third outlet of the hydrogen liquefaction unit communicates with the second inlet of the room temperature compressor unit through a low-pressure gas pipeline, and the high-pressure gas pipeline, the medium-pressure
  • the room temperature compressor unit provides a power source for the hydrogen liquefaction system to realize the pressurization process of hydrogen from low pressure to medium pressure and medium pressure to high pressure; the hydrogen liquefaction unit is used to cool down and liquefy the high-pressure hydrogen output by the room temperature compressor unit into Liquid hydrogen, the liquid hydrogen output from the first outlet of the hydrogen liquefaction unit can be stored in the liquid hydrogen cryogenic container through the first inlet of the liquid hydrogen cryogenic container, and 20K saturated hydrogen can be stored from the liquid hydrogen cryogenic container
  • the first outlet of the container flows into the second inlet of the hydrogen liquefaction unit, and then flows from the third outlet of the hydrogen liquefaction unit through the low-pressure gas pipeline into the second inlet of the room temperature compressor unit to complete a cycle;
  • the raw material hydrogen can enter the hydrogen liquefaction unit through the third inlet of the hydrogen liquefaction unit, and then pass through the hydrogen liquefaction unit to cool down to form liquid hydrogen, and then flow out from the fourth outlet of the hydrogen liquefaction
  • the gas management subsystem is arranged between the room temperature compressor unit and the hydrogen liquefaction unit, and the gas management subsystem includes a gas management subsystem connected in parallel with the room temperature compressor unit Pneumatic adjustment valve group.
  • the room temperature compressor unit is a single single-stage compressor or a single multi-stage compressor or two single-stage compressors connected in series or multiple single-stage compressors combined in series and parallel.
  • the hydrogen liquefaction unit includes a combination of a heat exchanger assembly and a turbo expander assembly.
  • the heat exchanger assembly is filled with an ortho-parahydrogen catalyst, or the heat exchanger assembly is connected with an ortho-parahydrogen converter.
  • the hydrogen liquefaction unit further includes a cryogenic working fluid precooling subsystem connected to the heat exchanger assembly.
  • the hydrogen liquefaction unit is a hydrogen liquefaction unit based on the Claude cycle
  • the heat exchanger assembly includes a first low-temperature heat exchanger, a second low-temperature heat exchanger, and a third low-temperature heat exchanger connected in parallel in sequence.
  • the turboexpander assembly includes a first-stage hydrogen turboexpander and a second-stage hydrogen turboexpander, the inlet of the first-stage hydrogen turboexpander is set at the third low temperature On the supply pipeline from the heat exchanger to the fourth low-temperature heat exchanger, the outlet of the first-stage hydrogen turboexpander communicates with the low-temperature working medium gas inlet of the fifth low-temperature heat exchanger, and the second The inlet of the first-stage hydrogen turboexpander communicates with the low-temperature working medium gas outlet of the fifth low-temperature heat exchanger, and the outlet of the second-stage hydrogen turboexpander is arranged between the sixth low-temperature heat exchanger and the On the return line of the second inlet of the room temperature compressor unit.
  • the hydrogen liquefaction unit is a hydrogen liquefaction unit based on the Collins cycle
  • the heat exchanger assembly includes a first low-temperature heat exchanger, a second low-temperature heat exchanger, and a third low-temperature heat exchanger connected in parallel in sequence.
  • the turboexpander assembly includes the first-stage hydrogen turboexpander and the second-stage Hydrogen turbo expander, the inlet of the first-stage hydrogen turbo-expander is set on the supply pipeline from the third low-temperature heat exchanger to the fourth low-temperature heat exchanger, and the first-stage hydrogen turbine
  • the outlet of the expander is set on the pipeline from the fifth low-temperature heat exchanger to the fourth low-temperature heat exchanger back to the second inlet of the room temperature compressor unit
  • the inlet of the second-stage hydrogen turbo expander Set on the supply pipeline from the fifth low-temperature heat exchanger to the sixth low-temperature heat exchanger
  • the outlet of the second-stage hydrogen turboexpander is set from the sixth low-temperature heat exchanger to the room temperature On the return line of the second inlet of the compressor unit.
  • it also includes a first rapid cooling pipeline and/or a second rapid cooling pipeline, the first rapid cooling pipeline is connected to the heat exchanger assembly, and the second rapid cooling pipeline A circuit is connected to the heat exchanger assembly and the liquid hydrogen cryogenic container.
  • a heater is arranged in the liquid hydrogen cryogenic container.
  • the beneficial effects produced by the embodiments of the present application are: the hydrogen liquefaction system provided by the present application, by setting the hydrogen circulation pipeline and using hydrogen as the circulating working medium, the hydrogen circulation pipeline is compared with helium as the circulation
  • the pipeline of the working medium can produce liquid hydrogen together with the hydrogen liquefaction pipeline of the hydrogen liquefaction system, so that the hydrogen liquefaction capacity of the hydrogen liquefaction system can be greatly improved, and the output requirement of hydrogen liquefaction capacity of more than 5 tons per day can be met .
  • Fig. 1 is the structural representation of the hydrogen liquefaction system in the embodiment of the present application
  • Figure 2 is a schematic structural view of a hydrogen liquefaction system in another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a hydrogen liquefaction system in another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a hydrogen liquefaction system in another embodiment of the present application.
  • the hydrogen liquefaction system in one embodiment includes a room temperature compressor unit 1, a hydrogen liquefaction unit 200, and a liquid hydrogen cryogenic container 36, and the outlet of the room temperature compressor unit 1 passes through the high-pressure gas pipeline 7 and the first hydrogen liquefaction unit 200
  • One inlet communicates, the first outlet of the hydrogen liquefaction unit 200 communicates with the first inlet of the liquid hydrogen cryogenic container 36, the first outlet of the hydrogen liquefaction unit 200 is used to flow out liquid hydrogen, the first outlet of the liquid hydrogen cryogenic container 36 and the hydrogen liquefaction
  • the second inlet of the unit 200 is connected, the first outlet of the liquid hydrogen cryogenic container 36 is used to flow out 20K saturated hydrogen, the second outlet of the hydrogen liquefaction unit 200 is connected with the first inlet of the room temperature compressor unit 1 through the medium pressure gas pipeline 8,
  • the third outlet of the hydrogen liquefaction unit 200 communicates with the second inlet of the room temperature compressor unit 1 through the low-pressure gas pipeline 9, the third inlet of the hydrogen liquef
  • the room temperature compressor unit 1 provides the power source for the hydrogen liquefaction system to realize the pressurization process of hydrogen from low pressure to medium pressure and from medium pressure to high pressure; Cool down and liquefy into liquid hydrogen.
  • the liquid hydrogen output from the first outlet of the hydrogen liquefaction unit 200 enters the liquid hydrogen cryogenic container 36 through the first inlet of the liquid hydrogen cryogenic container 36 for storage.
  • 20K saturated hydrogen flows from the first outlet of the liquid hydrogen cryogenic container 36 into the second inlet of the hydrogen liquefaction unit 200, and then flows from the third outlet of the hydrogen liquefaction unit 200 into the second inlet of the room temperature compressor unit 1 through the low-pressure gas pipeline 9 to complete The whole cycle; at the same time, the raw material hydrogen enters the hydrogen liquefaction unit 200 from the third inlet of the hydrogen liquefaction unit 200, then passes through the hydrogen liquefaction unit 200 to cool down to form liquid hydrogen, then flows out from the fourth outlet of the hydrogen liquefaction unit 200 and passes through The second inlet of the liquid hydrogen cryogenic container 36 enters the liquid hydrogen cryogenic container 36 for storage.
  • the hydrogen liquefaction system provided by this application, by setting a hydrogen circulation pipeline and using hydrogen as a circulating working medium, the hydrogen circulation pipeline can be compared with the pipeline of helium as a circulating working medium, and can be connected with the hydrogen liquefaction pipe of the hydrogen liquefaction system
  • the hydrogen liquefaction capacity of the hydrogen liquefaction system can be greatly improved to meet the demand for a hydrogen liquefaction capacity of more than 5 tons per day.
  • the room temperature compressor unit 1 is a single single-stage compressor or a single multi-stage compressor or two single-stage compressors connected in series or multiple single-stage compressors combined in series and parallel.
  • both the single-stage compressor and the multi-stage compressor can use reciprocating piston compressors, twin-screw hydrogen compressors or centrifugal compressors.
  • the room temperature compressor unit 1 includes a first compressor 01 and a second compressor 02 connected in series. Specifically, the outlet of the first compressor 01 communicates with the inlet of the second compressor 02, the outlet of the second compressor 02 communicates with the first inlet of the hydrogen liquefaction unit 200 through the high-pressure gas pipeline 7, and the first inlet of the hydrogen liquefaction unit 200 The two outlets are connected between the first compressor 01 and the second compressor 02 through a medium-pressure gas pipeline 8 . The third outlet of the hydrogen liquefaction unit 200 communicates with the inlet of the first compressor 01 through the low-pressure gas pipeline 9 .
  • the above-mentioned hydrogen liquefaction system further includes a gas management subsystem 10.
  • the gas management subsystem 10 is arranged between the room temperature compressor unit 1 and the hydrogen liquefaction unit 200.
  • the gas management subsystem 10 includes a gas management subsystem connected in parallel with the room temperature compressor unit 1. Pneumatic adjustment valve group.
  • the gas management subsystem 10 effectively controls the opening of its own valves through the control program, thereby stabilizing the high-pressure gas pipeline 7, medium-pressure gas pipeline 8 and low-pressure gas pipeline 9 between the room temperature compressor unit 1 and the hydrogen liquefaction unit 200 hydrogen pressure.
  • the gas management subsystem 10 when the room temperature compressor unit 1 is a series combination of the first compressor 01 and the second compressor 02, the gas management subsystem 10 includes a The first pipe in parallel, the second pipe in parallel with the outlet of the first compressor 01 and the inlet of the first compressor 01, and the third pipe in parallel with the outlet of the first compressor 01 and the inlet of the second compressor 02
  • the first pipeline is provided with the first valve 2
  • the second pipeline is provided with the second valve 3
  • the third pipeline is provided with the third valve 4, the fourth valve 5 and the third valve 4 and the fourth valve 5 between the hydrogen buffer tanks 6 .
  • the gas management subsystem 10 effectively controls the opening degrees of the first valve 2, the second valve 3, the third valve 4, and the fourth valve 5 through the control program, thereby stabilizing the air flow between the room temperature compressor unit 1 and the hydrogen liquefaction unit 200.
  • the hydrogen liquefaction unit 200 includes a combination of a heat exchanger assembly and a turboexpander assembly. Specifically, the high-pressure hydrogen output from the room temperature compressor unit 1 is cooled by the heat exchange of the heat exchanger assembly, combined with the cooling and cooling of the adiabatic expansion of the turboexpander assembly to form liquid hydrogen.
  • the hydrogen liquefaction unit 200 is a hydrogen liquefaction unit based on the Claude cycle
  • the heat exchanger assembly includes a first low-temperature heat exchanger 15, a second The second low temperature heat exchanger 20, the third low temperature heat exchanger 25, the fourth low temperature heat exchanger 28, the fifth low temperature heat exchanger 29, the sixth low temperature heat exchanger 31 and the seventh low temperature heat exchanger 32, the fifth low temperature heat exchanger
  • the heat exchanger 29 is provided with a low-temperature working medium gas inlet and a low-temperature working medium gas outlet
  • the turbo-expander assembly includes a first-stage hydrogen turbo-expander 11 and a second-stage hydrogen turbo-expander 12, and the first-stage hydrogen turbo-expander
  • the inlet of the flat expander 11 is arranged on the supply pipeline from the third low-temperature heat exchanger 25 to the fourth low-temperature heat exchanger 28, and the outlet of the first-stage hydrogen turbo-expander 11 is connected to the low-temperature work
  • the inlet of the second-stage hydrogen turboexpander 12 is connected to the outlet of the low-temperature working medium gas of the fifth low-temperature heat exchanger 29, and the outlet of the second-stage hydrogen turboexpander 12 is set at the sixth low-temperature heat exchanger. On the return line from the device 31 to the second inlet of the room temperature compressor unit 1.
  • the hydrogen liquefaction unit 200 is a hydrogen liquefaction unit based on the Collins cycle
  • the heat exchanger assembly includes a first low-temperature heat exchanger 15 and a second low-temperature heat exchanger connected in parallel in sequence 20.
  • the turboexpander assembly includes the first The first-stage hydrogen turbo-expander 11 and the second-stage hydrogen turbo-expander 12, the inlet of the first-stage hydrogen turbo-expander 11 is arranged on the supply pipeline from the third low-temperature heat exchanger 25 to the fourth low-temperature heat exchanger 28 , the outlet of the first-stage hydrogen turboexpander 11 is set on the pipeline from the fifth low-temperature heat exchanger 29 to the fourth low-temperature heat exchanger 28 that returns to the second inlet of the room temperature compressor unit 1, and the second-stage hydrogen turboexpander
  • the inlet of the machine 12 is set on the supply pipeline from the fifth low-temperature heat exchanger 29 to the sixth low-temperature heat exchanger 31, and the outlet of the second-stage hydrogen turboexpander 12 is set on the sixth low-temperature heat exchanger 31 to the room temperature compressor unit 1 on the return line of the second inlet.
  • the first low-temperature heat exchanger 15 can be an aluminum plate-fin heat exchanger. It can be understood that the second low-temperature heat exchanger 20, the third low-temperature heat exchanger 25, and the fourth low-temperature heat exchanger 28 , The fifth low-temperature heat exchanger 29 , the sixth low-temperature heat exchanger 31 and the seventh low-temperature heat exchanger 32 may also all use aluminum plate-fin heat exchangers.
  • the heat exchanger assembly is filled with an ortho-parahydrogen catalyst, or the heat exchanger assembly is connected with an ortho-parahydrogen converter. Specifically, after the raw material hydrogen is cooled by heat exchange in the heat exchanger assembly, it passes through the continuous ortho-parahydrogen conversion of the ortho-parahydrogen catalyst filled in the heat exchanger assembly or the adiabatic ortho-parahydrogen conversion of the ortho-parahydrogen converter. , to become high-purity liquid hydrogen with a parahydrogen concentration of not less than 99%.
  • the hydrogen liquefaction unit 200 is a hydrogen liquefaction unit based on the Claude cycle
  • the second low-temperature heat exchanger 20 the fourth low-temperature heat exchanger 28, and the sixth low-temperature heat exchanger
  • Both the vessel 31 and the seventh low temperature heat exchanger 32 are filled with an ortho-parahydrogen catalyst.
  • the supply pipeline from the second low temperature heat exchanger 20 to the third low temperature heat exchanger 25, the fourth low temperature The supply pipeline from the heat exchanger 28 to the fifth low-temperature heat exchanger 29, the supply pipeline from the sixth low-temperature heat exchanger 31 to the seventh low-temperature heat exchanger 32, and the supply pipeline from the seventh low-temperature heat exchanger 32 to the liquid hydrogen cryogenic container 36
  • a first ortho-parahydrogen converter 44, a second ortho-parahydrogen converter 45, a third ortho-parahydrogen converter 46 and a fourth ortho-parahydrogen converter 47 are respectively arranged on the supply pipeline of the second inlet.
  • a turbine path regulating valve 26 is provided at the front end of the inlet of the first-stage hydrogen turboexpander 11 .
  • the hydrogen liquefaction unit 200 also includes a low-temperature working fluid precooling subsystem 18 connected to the heat exchanger assembly, and the low-temperature working fluid precooling subsystem 18 is used to cool raw material hydrogen and room temperature
  • the high-pressure hydrogen output from the compressor unit 1 is pre-cooled.
  • the cryogenic working fluid can be liquid nitrogen or mixed working fluid.
  • the first inlet of the low-temperature working fluid precooling subsystem 18 is used to flow in the low-temperature working fluid, and the first outlet of the low-temperature working fluid pre-cooling subsystem 18 is connected to the low-temperature working medium inlet of the first low-temperature heat exchanger 15 connected, the low-temperature working fluid outlet of the first low-temperature heat exchanger 15 is used to flow out the low-temperature working fluid, the second outlet of the low-temperature working fluid precooling subsystem 18 communicates with the low-temperature working medium inlet of the second low-temperature heat exchanger 20, and the second The low-temperature working fluid outlet of the low-temperature heat exchanger 20 communicates with the second inlet of the low-temperature working fluid precooling subsystem 18 .
  • the hydrogen liquefaction unit 200 further includes a cold box 34, and the heat exchanger assembly and the turboexpander assembly are both arranged in the cold box 34.
  • the cold box 34 is a cryogenic container with a vacuum interlayer, and the cold box 34 can adopt linear horizontal cold box or L-shaped horizontal cold box.
  • the above-mentioned hydrogen liquefaction system further includes a first low-temperature working medium transmission pipeline 17 , and the first low-temperature working medium transmission pipeline 17 is connected to the first inlet of the low-temperature working medium precooling subsystem 18 . Further, a first regulating valve 16 is arranged on the first cryogenic working medium transmission pipeline 17 , and the first regulating valve 16 is used to control the on-off of the first low-temperature working medium transmission pipeline 17 . In one embodiment, the above-mentioned hydrogen liquefaction system further includes a second low-temperature working medium transmission line 21 , and the second low-temperature working medium transmission line 21 is connected to the low-temperature working medium outlet of the first low-temperature heat exchanger 15 .
  • the above-mentioned hydrogen liquefaction system also includes a third low-temperature working fluid transmission pipeline, and the second outlet of the low-temperature working fluid precooling subsystem 18 passes through the third low-temperature working medium transmission pipeline and the low-temperature working medium inlet of the second low-temperature heat exchanger 20
  • the second regulating valve 19 is arranged on the third low-temperature working medium transmission pipeline, and the second regulating valve 19 is used to control the on-off of the third low-temperature working medium transmission pipeline.
  • the above-mentioned hydrogen liquefaction system further includes a first liquid hydrogen low-temperature transmission pipeline 35 and a second liquid hydrogen low-temperature transmission pipeline 37, and the first outlet of the hydrogen liquefaction unit 200 passes through the first liquid hydrogen low-temperature transmission pipeline 35 and the liquid hydrogen
  • the first inlet of the cryogenic container 36 is connected, and the fourth outlet of the hydrogen liquefaction unit 200 is connected with the second inlet of the liquid hydrogen cryogenic container 36 through the second liquid hydrogen cryogenic transmission line 37 .
  • the above-mentioned hydrogen liquefaction system further includes a 20K saturated hydrogen gas return line, and the first outlet of the liquid hydrogen cryogenic container 36 communicates with the second inlet of the hydrogen liquefaction unit 200 through the 20K saturated hydrogen gas return line.
  • the above-mentioned hydrogen liquefaction system further includes a regulating valve 39, which is arranged on the 20K saturated hydrogen gas return pipeline, and the regulating valve 39 is used to control the on-off of the 20K saturated hydrogen gas return pipeline.
  • the above-mentioned hydrogen liquefaction system further includes a raw material hydrogen gas transmission pipeline 13 , and the raw material hydrogen gas transmission pipeline 13 is connected to the third inlet of the hydrogen liquefaction unit 200 . Further, the raw material hydrogen transmission pipeline 13 is provided with a raw material hydrogen transmission gas circuit switch valve 14 , and the raw material hydrogen transmission gas circuit switch valve 14 is used to control the on-off of the raw material hydrogen transmission pipeline 13 .
  • the above-mentioned hydrogen liquefaction system further includes a first throttle valve 33 and a second throttle valve 38, and the first throttle valve 33 is arranged on the first connection between the seventh cryogenic heat exchanger 32 and the liquid hydrogen cryogenic container 36.
  • the first throttle valve 33 is used for adiabatically throttling the high-pressure hydrogen delivered by the seventh low-temperature heat exchanger 32 to form liquid hydrogen.
  • the second throttle valve 38 is arranged on the supply line from the seventh low temperature heat exchanger 32 to the second inlet of the liquid hydrogen cryogenic container 36, and the second throttle valve 38 is used for the raw material hydrogen transmitted to the seventh low temperature heat exchanger 32 Adiabatic throttling is performed to form liquid hydrogen.
  • the above-mentioned hydrogen liquefaction system further includes a first rapid cooling pipeline 41, and the first rapid cooling pipeline 41 is connected to the heat exchanger assembly to accelerate the cooling rate of the heat exchanger assembly.
  • the inlet of the first rapid cooling pipeline 41 is set on the supply pipelines of the sixth low temperature heat exchanger 31 to the seventh low temperature heat exchanger 32, and the outlet of the first fast cooling pipeline 41 is set on the liquid hydrogen cryogenic container 36 On the return line from the first outlet to the seventh low temperature heat exchanger 32.
  • the above-mentioned hydrogen liquefaction system also includes a second rapid cooling pipeline 43, and the second rapid cooling pipeline 43 is connected to the heat exchanger assembly and the liquid hydrogen cryogenic container 36 to speed up the heat exchanger assembly and the liquid hydrogen.
  • the cooling rate of the cryogenic container 36 Specifically, the inlet of the second rapid cooling pipeline 43 is connected to the second outlet of the liquid hydrogen cryogenic container 36, and the outlet of the second rapid cooling pipeline 43 is connected to the third low temperature heat exchanger 25 to the first low temperature heat exchanger 15 is returned to the pipeline of the third inlet of the room temperature compressor unit 1.
  • the above-mentioned hydrogen liquefaction system further includes a first rapid cooling pipeline regulating valve 40 and a second rapid cooling pipeline regulating valve 42, and the first rapid cooling pipeline regulating valve 40 is arranged on the first rapid cooling pipeline 41
  • the first rapid cooling pipeline regulating valve 40 is used to control the on-off of the first rapid cooling pipeline 41
  • the second rapid cooling pipeline regulating valve 42 is arranged on the second rapid cooling pipeline 43
  • the second rapid cooling pipeline The channel regulating valve 42 is used to control the on-off of the second rapid cooling pipeline 43 .
  • the above-mentioned hydrogen liquefaction system further includes a first adsorber 22 and a second adsorber 23, and the first adsorber 22 and the second adsorber 23 are arranged in parallel between the second low-temperature heat exchanger 20 and the third low-temperature heat exchanger.
  • the first adsorber 22 and the second adsorber 23 are used to remove impurities in the hydrogen raw material.
  • the first adsorber 22 and the second adsorber 23 can realize online regeneration and mutual switching work.
  • the second adsorber 23 can be regenerated online.
  • the first adsorber 22 cannot continue to adsorb impurities
  • the second adsorber 23 is switched to work, the first adsorber 22 can be regenerated online.
  • the above-mentioned hydrogen liquefaction system further includes a third adsorber 24, and the third adsorber 24 is arranged on the supply pipeline from the first low-temperature heat exchanger 15 to the second low-temperature heat exchanger 20.
  • the third adsorber 24 Used to remove impurities in high-pressure hydrogen.
  • the liquid hydrogen cryogenic container 36 can be a vertical, horizontal or spherical liquid hydrogen storage tank.
  • a heater is arranged in the liquid hydrogen cryogenic container 36, and the heater can treat the liquid hydrogen The liquid hydrogen stored in the cryogenic container 36 is heated to realize the conversion of the liquid hydrogen to 20K saturated hydrogen gas, so as to effectively control the reflux of the 20K saturated hydrogen gas.
  • the above-mentioned hydrogen liquefaction system also includes a gas-liquid separator, and the gas-liquid separator is arranged on the supply pipeline from the first outlet of the hydrogen liquefaction unit 200 to the first inlet of the liquid hydrogen cryogenic container 36, so that the gas-liquid separator separates
  • the liquefied hydrogen can be further transported to the liquid hydrogen cryogenic container 36, while the unliquefied hydrogen separated by the gas-liquid separator can be returned to the hydrogen liquefaction unit 200 for further cooling and liquefaction, avoiding the possibility of gas-liquid mixing in the hydrogen liquefaction unit 200 , effectively improve the heat transfer efficiency.
  • the gas-liquid separator is arranged on the supply pipeline from the seventh cryogenic heat exchanger 32 to the first inlet of the liquid hydrogen cryogenic container 36 .
  • the room temperature compressor unit 1 provides the power source for the hydrogen liquefaction system to realize the pressurization process of hydrogen from low pressure to medium pressure and from medium pressure to high pressure; the gas management subsystem 10 effectively controls the first valve 2, the second valve 3, the second The openings of the three valves 4 and the fourth valve 5 stabilize the hydrogen pressure of the high-pressure gas pipeline 7 , the medium-pressure gas pipeline 8 and the low-pressure gas pipeline 9 between the room temperature compressor unit 1 and the hydrogen liquefaction unit 200 .
  • the low-temperature working fluid precooling subsystem 18 When the purity of hydrogen in the hydrogen liquefaction system meets the requirements, the low-temperature working fluid precooling subsystem 18 is turned on, and the raw material hydrogen and the high-pressure hydrogen output by the room temperature compressor unit 1 are precooled and cooled through the low-temperature working fluid precooling subsystem 18, When the outlet temperature of the high-pressure gas pipeline 7 of the first low-temperature heat exchanger 15 reaches the temperature of the low-temperature working medium, the primary precooling of the raw material hydrogen and high-pressure hydrogen is completed.
  • the first rapid cooling pipeline regulating valve 40 and the second rapid cooling pipeline regulating valve 42 are opened to conduct the first rapid cooling pipeline 41 and the second rapid cooling pipeline 43, thereby To speed up the cooling rate of each heat exchanger and the liquid hydrogen cryogenic container 36 included in the heat exchanger assembly.
  • the raw material hydrogen passes through the first low-temperature heat exchanger 15, the second low-temperature heat exchanger 20, the third low-temperature heat exchanger 25, the fourth low-temperature heat exchanger 28, the fifth low-temperature heat exchanger 29, the sixth low-temperature heat exchanger
  • the low-temperature heat exchanger 31 and the seventh low-temperature heat exchanger 32 are heat-exchanged and cooled, and are throttled and cooled by the second throttle valve 38, and through the continuous ortho-parahydrogen conversion of the ortho-parahydrogen catalyst filled in the corresponding heat exchanger or Afterwards, the adiabatic ortho-parahydrogen conversion of the ortho-parahydrogen converters at all levels finally becomes high-purity liquid hydrogen with a parahydrogen concentration of not less than 99%, and then enters the liquid hydrogen cryogenic container 36 for storage through the second liquid hydrogen low-temperature transmission pipeline 37 .
  • the hydrogen liquefaction system provided by this application adopts the combination of Crowder cycle or Collins cycle with low-temperature working fluid precooling and continuous or adiabatic conversion hydrogen liquefaction cycle of ortho-parahydrogen, and adopts rapid cooling tube at the same time Road, the advantages of this application are:
  • the hydrogen circulation pipeline can produce liquid hydrogen together with the hydrogen liquefaction pipeline of the hydrogen liquefaction system compared with the pipeline in which helium is used as the circulating working fluid , so that the hydrogen liquefaction capacity of the hydrogen liquefaction system can be greatly improved to meet the output requirement of a hydrogen liquefaction capacity of more than 5 tons per day;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种氢液化系统,其中室温压缩机组(1)通过高压气体管路(7)将高压氢气输出至氢液化单元(200),在氢液化单元(200)降温液化后的液氢输出至液氢低温容器(36)的第一入口,20K的饱和氢气从液氢低温容器(36)的第一出口流出,经低压气体管路(9)依次被输送至氢液化单元(200)的第三出口和室温压缩机组(1)的低压入口,氢液化单元(200)的第二出口经中压气体管路(8)连接室温压缩机组(1)的中压入口,原料氢气也流入氢液化单元(200)后被降温成液氢,从氢液化单元(200)的第四出口流入液氢低温容器(36)。

Description

氢液化系统 技术领域
本申请属于低温制冷技术领域,特别涉及一种氢液化系统。
背景技术
液氢储氢密度高,可大幅度提高运输效率、降低储运压力和提高系统安全性,是氢远洋运输及中长距离灵活陆路运输的最佳方案,也是商业化加氢站的首选储氢方式,具有明显的能力规模和成本优势。
氢液化器是液氢生产的主要装置,用于将常温氢气制冷液化为液体,是航空航天、氢能储运等高技术产业的核心技术设备,现有的氢液化器通常采用氦作为循环工质,但采用此氦循环工质的氢液化器的氢液化能力往往不足,致使该氢液化器难以满足5吨/天以上的氢液化能力的产量要求。
发明内容
基于此,本发明提供一种能够有效提升氢液化能力的氢液化系统。
一种氢液化系统,包括:室温压缩机组、氢液化单元及液氢低温容器,所述室温压缩机组的出口通过高压气体管路和所述氢液化单元的第一入口连通,所述氢液化单元的第一出口和所述液氢低温容器的第一入口连通,所述氢液化单元的第一出口用于流出液氢,所述液氢低温容器的第一出口和所述氢液化单元的第二入口连通,所述液氢低温容器的第一出口用于流出20K饱和氢气,所述氢液化单元的第二出口通过中压气体管路和所述室温压缩机组的第一入口连通,所述氢液化单元的第三出口通过低压气体管路和所述室温压缩机组的 第二入口连通,所述高压气体管路、所述中压气体管路及所述低压气体管路均贯穿于所述氢液化单元,所述氢液化单元的第三入口用于流入原料氢气,所述氢液化单元的第四出口和所述液氢低温容器的第二入口连通,所述氢液化单元的第四出口用于流出液氢;
所述室温压缩机组为氢液化系统提供动力源,实现氢气从低压到中压、中压到高压的增压过程;所述氢液化单元用于将所述室温压缩机组输出的高压氢气降温液化成液氢,从所述氢液化单元的第一出口输出的液氢能够经所述液氢低温容器的第一入口进入到所述液氢低温容器内储存,20K饱和氢气能够从所述液氢低温容器的第一出口流入所述氢液化单元的第二入口,然后从所述氢液化单元的第三出口通过所述低压气体管路流入所述室温压缩机组的第二入口,完成整个一个循环;原料氢气能够由所述氢液化单元的第三入口进入所述氢液化单元,然后经过所述氢液化单元冷却降温形成液氢,然后从所述氢液化单元的第四出口流出并经由所述液氢低温容器的第二入口进入到所述液氢低温容器内储存。
在其中一个实施例中,还包括气体管理子系统,所述气体管理子系统设置在所述室温压缩机组和所述氢液化单元之间,所述气体管理子系统包括与所述室温压缩机组并联的气动调节阀门组。
在其中一个实施例中,所述室温压缩机组为单台单级压缩机或单台多级压缩机或串联的两台单级压缩机或串并联组合的多台单级压缩机。
在其中一个实施例中,所述氢液化单元包括换热器组件和透平膨胀机组件的组合。
在其中一个实施例中,所述换热器组件内填充有正仲氢催化剂,或所述换热器组件连接有正仲氢转化器。
在其中一个实施例中,所述氢液化单元还包括与所述换热器组件连接的低温工质预冷子系统。
在其中一个实施例中,所述氢液化单元为基于克劳德循环的氢液化单元,所述换热器组件包括依次并联的第一低温换热器、第二低温换热器、第三低温换热器、第四低温换热器、第五低温换热器、第六低温换热器及第七低温换热器,所述第五低温换热器上设置有低温工质气体进口和低温工质气体出口,所述透平膨胀机组件包括第一级氢透平膨胀机和第二级氢透平膨胀机,所述第一级氢透平膨胀机的入口设置于所述第三低温换热器至所述第四低温换热器的供给管路上,所述第一级氢透平膨胀机的出口与所述第五低温换热器的低温工质气体进口连通,所述第二级氢透平膨胀机的入口与所述第五低温换热器的低温工质气体出口连通,所述第二级氢透平膨胀机的出口设置于所述第六低温换热器至所述室温压缩机组的第二入口的回流管路上。
在其中一个实施例中,所述氢液化单元为基于柯林斯循环的氢液化单元,所述换热器组件包括依次并联的第一低温换热器、第二低温换热器、第三低温换热器、第四低温换热器、第五低温换热器、第六低温换热器及第七低温换热器,所述透平膨胀机组件包括第一级氢透平膨胀机和第二级氢透平膨胀机,所述第一级氢透平膨胀机的入口设置于所述第三低温换热器至所述第四低温换热器的供给管路上,所述第一级氢透平膨胀机的出口设置于所述第五低温换热器至所述第四低温换热器回流至所述室温压缩机组的第二入口的管路上,所述第二级氢透平膨胀机的入口设置于所述第五低温换热器至所述第六低温换热器的供给管路上,所述第二级氢透平膨胀机的出口设置于所述第六低温换热器至所述室温压缩机组的第二入口的回流管路上。
在其中一个实施例中,还包括第一快速降温管路和/或第二快速降温管路,所述第一快速降温管路连接在所述换热器组件上,所述第二快速降温管路连接在所述换热器组件和所述液氢低温容器上。
在其中一个实施例中,所述液氢低温容器内设置有加热器。
相对于现有技术,本申请实施例产生的有益效果在于:本申请提供的氢液化系统,通过设置氢气循环管路并采用氢气作为循环工质,该氢气循环管路相 较于氦气作为循环工质的管路,能够与该氢液化系统的氢气液化管路一并产生液氢,从而可以大幅度地提升该氢液化系统的氢液化能力,满足5吨/天以上氢液化能力的产量要求。
附图说明
图1为本申请实施例中的氢液化系统的结构示意图;
图2为本申请另一实施例中的氢液化系统的结构示意图;
图3为本申请另一实施例中的氢液化系统的结构示意图;
图4为本申请另一实施例中的氢液化系统的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1所示,一实施例中的氢液化系统包括室温压缩机组1、氢液化单元200及液氢低温容器36,室温压缩机组1的出口通过高压气体管路7和氢液化 单元200的第一入口连通,氢液化单元200的第一出口和液氢低温容器36的第一入口连通,氢液化单元200的第一出口用于流出液氢,液氢低温容器36的第一出口和氢液化单元200的第二入口连通,液氢低温容器36的第一出口用于流出20K饱和氢气,氢液化单元200的第二出口通过中压气体管路8和室温压缩机组1的第一入口连通,氢液化单元200的第三出口通过低压气体管路9和室温压缩机组1的第二入口连通,氢液化单元200的第三入口用于流入原料氢气,氢液化单元200的第四出口和液氢低温容器36的第二入口连通,氢液化单元200的第四出口用于流出液氢。
本申请提供的氢液化系统,室温压缩机组1为氢液化系统提供动力源,实现氢气从低压到中压、中压到高压的增压过程;氢液化单元200将室温压缩机组1输出的高压氢气降温液化成液氢,从氢液化单元200的第一出口输出的液氢经液氢低温容器36的第一入口进入到液氢低温容器36内储存。20K饱和氢气从液氢低温容器36的第一出口流入氢液化单元200的第二入口,然后从氢液化单元200的第三出口通过低压气体管路9流入室温压缩机组1的第二入口,完成整个一个循环;与此同时,原料氢气由氢液化单元200的第三入口进入氢液化单元200,然后经过氢液化单元200冷却降温形成液氢,然后从氢液化单元200的第四出口流出并经由液氢低温容器36的第二入口进入到液氢低温容器36内储存。
本申请提供的氢液化系统,通过设置氢气循环管路并采用氢气作为循环工质,该氢气循环管路相较于氦气作为循环工质的管路,能够与该氢液化系统的氢气液化管路一并产生液氢,从而可以大幅度地提升该氢液化系统的氢液化能力,满足5吨/天以上氢液化能力的使用需求。
在一实施例中,室温压缩机组1为单台单级压缩机或单台多级压缩机或串 联的两台单级压缩机或串并联组合的多台单级压缩机。具体地,该单级压缩机和多级压缩机均可以采用往复式活塞压缩机、双螺杆氢压缩机或离心式压缩机。
如图1所示,在一具体实施例中,室温压缩机组1包括串联的第一压缩机01和第二压缩机02。具体地,第一压缩机01的出口和第二压缩机02的入口连通,第二压缩机02的出口通过高压气体管路7和氢液化单元200的第一入口连通,氢液化单元200的第二出口通过中压气体管路8连接在第一压缩机01和第二压缩机02之间。氢液化单元200的第三出口通过低压气体管路9和第一压缩机01的入口连通。
在一实施例中,上述氢液化系统还包括气体管理子系统10,气体管理子系统10设置在室温压缩机组1和氢液化单元200之间,气体管理子系统10包括与室温压缩机组1并联的气动调节阀门组。气体管理子系统10通过控制程序有效控制自身的各阀门的开度,从而稳定室温压缩机组1和氢液化单元200之间的高压气体管路7、中压气体管路8和低压气体管路9的氢气压力。
如图1所示,当室温压缩机组1为第一压缩机01和第二压缩机02串联的组合时,气体管理子系统10包括与第一压缩机01的出口和第二压缩机02的入口并联的第一管路,与第一压缩机01出口和第一压缩机01入口并联的第二管路,以及与第一压缩机01的出口和第二压缩机02的入口并联的第三管路,第一管路上设有第一阀门2,第二管路上设有第二阀门3,第三管路上设有第三阀门4、第四阀门5以及设于第三阀门4和第四阀门5之间的氢气缓冲储罐6。
具体地,气体管理子系统10通过控制程序有效控制第一阀门2、第二阀门3、第三阀门4及第四阀门5的开度,从而稳定室温压缩机组1和氢液化单 元200之间的高压气体管路7、中压气体管路8和低压气体管路9的氢气压力。
在一实施例中,氢液化单元200包括换热器组件和透平膨胀机组件的组合。具体地,室温压缩机组1输出的高压氢气通过换热器组件的换热降温,并结合透平膨胀机组件的绝热膨胀制冷降温从而形成液氢。
如图1及图2所示,具体地,在一实施例中,氢液化单元200为基于克劳德循环的氢液化单元,换热器组件包括依次并联的第一低温换热器15、第二低温换热器20、第三低温换热器25、第四低温换热器28、第五低温换热器29、第六低温换热器31及第七低温换热器32,第五低温换热器29上设置有低温工质气体进口和低温工质气体出口,透平膨胀机组件包括第一级氢透平膨胀机11和第二级氢透平膨胀机12,第一级氢透平膨胀机11的入口设置于第三低温换热器25至第四低温换热器28的供给管路上,第一级氢透平膨胀机11的出口与第五低温换热器29的低温工质气体进口连通,第二级氢透平膨胀机12的入口与第五低温换热器29的低温工质气体出口连通,第二级氢透平膨胀机12的出口设置于第六低温换热器31至室温压缩机组1的第二入口的回流管路上。
如图3及图4所示,在一实施例中,氢液化单元200为基于柯林斯循环的氢液化单元,换热器组件包括依次并联的第一低温换热器15、第二低温换热器20、第三低温换热器25、第四低温换热器28、第五低温换热器29、第六低温换热器31及第七低温换热器32,透平膨胀机组件包括第一级氢透平膨胀机11和第二级氢透平膨胀机12,第一级氢透平膨胀机11的入口设置于第三低温换热器25至第四低温换热器28的供给管路上,第一级氢透平膨胀机11的出口设置于第五低温换热器29至第四低温换热器28回流至室温压缩机组1的第二入口的管路上,第二级氢透平膨胀机12的入口设置于第五低温换热器29至第六低温换热器31的供给管路上,第二级氢透平膨胀机12的出口设置于第六 低温换热器31至室温压缩机组1的第二入口的回流管路上。
在一实施例中,第一低温换热器15可以采用铝制板翅式换热器,可以理解,第二低温换热器20、第三低温换热器25、第四低温换热器28、第五低温换热器29、第六低温换热器31及第七低温换热器32也可以均采用铝制板翅式换热器。
在一实施例中,换热器组件内填充有正仲氢催化剂,或换热器组件连接有正仲氢转化器。具体地,原料氢气经过换热器组件的换热降温后,并通过换热器组件内填充的正仲氢催化剂的连续型正仲氢转换或通过正仲氢转化器的绝热型正仲氢转换,成为仲氢浓度不小于99%的高纯度液氢。
如图1及图2所示,具体地,当氢液化单元200为基于克劳德循环的氢液化单元时,第二低温换热器20、第四低温换热器28、第六低温换热器31及第七低温换热器32内均填充有正仲氢催化剂。
如图3及图4所示,具体地,当氢液化单元200为基于柯林斯循环的氢液化单元时,第二低温换热器20至第三低温换热器25的供给管路、第四低温换热器28至第五低温换热器29的供给管路、第六低温换热器31至第七低温换热器32的供给管路以及第七低温换热器32至液氢低温容器36的第二入口的供给管路上分别设置有第一正仲氢转化器44、第二正仲氢转化器45、第三正仲氢转化器46及第四正仲氢转化器47。
如图1所示,在一实施例中,第一级氢透平膨胀机11的入口前端设置有透平路调节阀门26。
参考图1至图4,在一实施例中,氢液化单元200还包括与换热器组件连接的低温工质预冷子系统18,低温工质预冷子系统18用于对原料氢气和室温压缩机组1输出的高压氢气进行预冷却。在一实施例中,低温工质可以采用液 氮、混合工质。
在一实施例中,低温工质预冷子系统18的第一入口用于流入低温工质,低温工质预冷子系统18的第一出口与第一低温换热器15的低温工质入口连通,第一低温换热器15的低温工质出口用于流出低温工质,低温工质预冷子系统18的第二出口与第二低温换热器20的低温工质入口连通,第二低温换热器20的低温工质出口与低温工质预冷子系统18的第二入口连通。
在一实施例中,氢液化单元200还包括冷箱34,换热器组件和透平膨胀机组件均设置在冷箱34内,具体地,冷箱34为具有真空夹层的低温容器,冷箱34可以采用直线型卧式冷箱或L型卧式冷箱。
在一实施例中,上述氢液化系统还包括第一低温工质传输管线17,第一低温工质传输管线17连接在低温工质预冷子系统18的第一入口上。进一步地,第一低温工质传输管线17上设置有第一调控阀16,第一调控阀16用于控制第一低温工质传输管线17的通断。在一实施例中,上述氢液化系统还包括第二低温工质传输管线21,第二低温工质传输管线21连接在第一低温换热器15的低温工质出口上。
进一步地,上述氢液化系统还包括第三低温工质传输管线,低温工质预冷子系统18的第二出口通过第三低温工质传输管线与第二低温换热器20的低温工质入口连通,第三低温工质传输管线上设置有第二调控阀19,第二调控阀19用于控制第三低温工质传输管线的通断。
在一实施例中,上述氢液化系统还包括第一液氢低温传输管线35和第二液氢低温传输管线37,氢液化单元200的第一出口通过第一液氢低温传输管线35和液氢低温容器36的第一入口连通,氢液化单元200的第四出口通过第二液氢低温传输管线37和液氢低温容器36的第二入口连通。
在一实施例中,上述氢液化系统还包括20K饱和氢气回气管线,液氢低温容器36的第一出口通过20K饱和氢气回气管线和氢液化单元200的第二入口连通。具体地,在一实施例中,上述氢液化系统还包括调节阀39,调节阀39设置于20K饱和氢气回气管线上,调节阀39用于控制20K饱和氢气回气管线的通断。
在一实施例中,上述氢液化系统还包括原料氢气传输管线13,原料氢气传输管线13连接在氢液化单元200的第三入口上。进一步地,原料氢气传输管线13上设置有原料氢气传输气路开关阀14,原料氢气传输气路开关阀14用于控制原料氢气传输管线13的通断。
在一实施例中,上述氢液化系统还包括第一节流阀33和第二节流阀38,第一节流阀33设置于第七低温换热器32至液氢低温容器36的第一入口的供给管路上,第一节流阀33用于对第七低温换热器32传输的高压氢气进行绝热节流以形成液氢。第二节流阀38设置于第七低温换热器32至液氢低温容器36的第二入口的供给管路上,第二节流阀38用于对第七低温换热器32传输的原料氢气进行绝热节流以形成液氢。
在一实施例中,上述氢液化系统还包括第一快速降温管路41,第一快速降温管路41连接在换热器组件上,以加快换热器组件的降温速率。具体地,第一快速降温管路41的入口设置在第六低温换热器31至第七低温换热器32的供给管路上,第一快速降温管路41的出口设置在液氢低温容器36的第一出口至第七低温换热器32的回流管路上。
在一实施例中,上述氢液化系统还包括第二快速降温管路43,第二快速降温管路43连接在换热器组件和液氢低温容器36上,以加快换热器组件和液氢低温容器36的降温速率。具体地,第二快速降温管路43的入口连接在液氢 低温容器36的第二出口上,第二快速降温管路43的出口连接在第三低温换热器25至第一低温换热器15回流至室温压缩机组1的第三入口的管路上。
在一实施例中,上述氢液化系统还包括第一快速降温管路调节阀门40和第二快速降温管路调节阀门42,第一快速降温管路调节阀门40设置于第一快速降温管路41上,第一快速降温管路调节阀门40用于控制第一快速降温管路41的通断,第二快速降温管路调节阀门42设置于第二快速降温管路43上,第二快速降温管路调节阀门42用于控制第二快速降温管路43的通断。
在一实施例中,上述氢液化系统还包括第一吸附器22和第二吸附器23,第一吸附器22和第二吸附器23并联设置于第二低温换热器20至第三低温换热器25的供给管路上,第一吸附器22和第二吸附器23用于去除原料氢气中的杂质。并且,第一吸附器22和第二吸附器23可以实现在线再生以及相互切换工作,当第一吸附器22工作时,第二吸附器23可以在线再生,当第一吸附器22无法继续吸附杂质切换至第二吸附器23工作时,第一吸附器22可以进行在线再生。
在一实施例中,上述氢液化系统还包括第三吸附器24,第三吸附器24设置于第一低温换热器15至第二低温换热器20的供给管路上,第三吸附器24用于去除高压氢气中的杂质。
在一实施例中,液氢低温容器36可以为立式、卧式或者球型液氢储罐,在一实施例中,该液氢低温容器36内设置有加热器,加热器能够对液氢低温容器36内储存的液氢进行加热,以实现对该液氢向20K饱和氢气的转化,从而以实现对该20K饱和氢气的回流量的有效控制。
进一步地,上述氢液化系统还包括气液分离器,气液分离器设置于氢液化单元200的第一出口至液氢低温容器36的第一入口的供给管路上,如此,气 液分离器分离的液氢可进一步传输至液氢低温容器36,而气液分离器分离的未液化的氢气则可回输至氢液化单元200进行进一步冷却液化,避免氢液化单元200存在气液混合的可能性,有效提高换热效率。具体地,气液分离器设置于第七低温换热器32至液氢低温容器36的第一入口的供给管路上。
上述氢液化系统的整体工作过程如下:
室温压缩机组1为氢液化系统提供动力源,实现氢气从低压到中压、中压到高压的增压过程;气体管理子系统10通过控制程序有效控制第一阀门2、第二阀门3、第三阀门4及第四阀门5的开度,从而稳定室温压缩机组1和氢液化单元200之间的高压气体管路7、中压气体管路8和低压气体管路9的氢气压力。
在氢液化系统内的氢气纯度达到要求的情况下,开启低温工质预冷子系统18,通过低温工质预冷子系统18对原料氢气和室温压缩机组1输出的高压氢气进行预冷降温,当第一低温换热器15的高压气体管路7出口温度达到低温工质温度时,完成该原料氢气和高压氢气的一级预冷。
打开透平路调节阀门26,开启第一级氢透平膨胀机11和第二级氢透平膨胀机12,一级预冷后的高压氢气一部分通过高压气体管路7沿程经过第四低温换热器28、第五低温换热器29和第六低温换热器31,另一部分高压通过透平路调节阀门26进入第一级氢透平膨胀机11和第二级氢透平膨胀机12内进行膨胀制冷降温,并返回到中压气体管路8。
在氢液化单元200的降温阶段,打开第一快速降温管路调节阀门40和第二快速降温管路调节阀门42,以导通第一快速降温管路41和第二快速降温管路43,从而以加快换热器组件包含的各换热器和液氢低温容器36的降温速率。
关闭第一快速降温管路调节阀门40和第二快速降温管路调节阀门42,以 断开第一快速降温管路41和第二快速降温管路43,第七低温换热器32传输的高压氢气通过第一节流阀33节流降温产生的液氮经过第一液氢低温传输管线35进入到液氢低温容器36储存,20K饱和氢气经过20K饱和氢气回气管线且依次经过第七低温换热器32、第六低温换热器31、第五低温换热器29、第四低温换热器28、第三低温换热器25、第一低温换热器15并经由低压气体管路9回流至室温压缩机组1的第二入口(低压吸气端),完成整个一个循环。
与此同时,原料氢气依次经过第一低温换热器15、第二低温换热器20、第三低温换热器25、第四低温换热器28、第五低温换热器29、第六低温换热器31及第七低温换热器32换热降温,并通过第二节流阀38节流降温,且通过对应换热器内填充的正仲氢催化剂的连续型正仲氢转换或之后的各级正仲氢转化器的绝热型正仲氢转换,最终成为仲氢浓度不小于99%的高纯度液氢,然后通过第二液氢低温传输管线37进入到液氢低温容器36储存。
与现有技术相比,本申请提供的氢液化系统通过采用带低温工质预冷的克劳德循环或柯林斯循环和正仲氢连续或绝热转换氢液化循环相结合的形式,同时采用快速降温管路,本申请的优势在于:
1)通过设置氢气循环管路并采用氢气作为循环工质,该氢气循环管路相较于氦气作为循环工质的管路,能够与该氢液化系统的氢气液化管路一并产生液氢,从而可以大幅度地提升该氢液化系统的氢液化能力,满足5吨/天以上的氢液化能力的产量要求;
2)冷箱34内各级换热器全部为气体,并且可避免第七低温换热器32存在气液混合的可能性,有效提高换热效率;
3)设置快速降温管路,可以实现冷箱34内各级换热器和液氢低温容器36的快速降温,有效降低系统能耗,提高运行经济性;
4)回收氢气无需重新压缩,不额外增加回收氢气造成的压缩机功耗,可大幅度降低氢气液化所需能耗,降低成本,同时可以得到仲氢浓度不小于99%的高纯度液氢。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种氢液化系统,其特征在于,包括:室温压缩机组(1)、氢液化单元(200)及液氢低温容器(36),所述室温压缩机组(1)的出口通过高压气体管路(7)和所述氢液化单元(200)的第一入口连通,所述氢液化单元(200)的第一出口和所述液氢低温容器(36)的第一入口连通,所述氢液化单元(200)的第一出口用于流出液氢,所述液氢低温容器(36)的第一出口和所述氢液化单元(200)的第二入口连通,所述液氢低温容器(36)的第一出口用于流出20K饱和氢气,所述氢液化单元(200)的第二出口通过中压气体管路(8)和所述室温压缩机组(1)的第一入口连通,所述氢液化单元(200)的第三出口通过低压气体管路(9)和所述室温压缩机组(1)的第二入口连通,所述高压气体管路(7)、所述中压气体管路(8)及所述低压气体管路(9)均贯穿于所述氢液化单元(200),所述氢液化单元(200)的第三入口用于流入原料氢气,所述氢液化单元(200)的第四出口和所述液氢低温容器(36)的第二入口连通,所述氢液化单元(200)的第四出口用于流出液氢;
    所述室温压缩机组(1)为氢液化系统提供动力源,实现氢气从低压到中压、中压到高压的增压过程;所述氢液化单元(200)用于将所述室温压缩机组(1)输出的高压氢气降温液化成液氢,从所述氢液化单元(200)的第一出口输出的液氢能够经所述液氢低温容器(36)的第一入口进入到所述液氢低温容器(36)内储存,20K饱和氢气能够从所述液氢低温容器(36)的第一出口流入所述氢液化单元(200)的第二入口,然后从所述氢液化单元(200)的第三出口通过所述低压气体管路(9)流入所述室温压缩机组(1)的第二入口,完成整个一个循环;原料氢气能够由所述氢液化单元(200)的第三入口进入所述氢液化单元 (200),然后经过所述氢液化单元(200)冷却降温形成液氢,然后从所述氢液化单元(200)的第四出口流出并经由所述液氢低温容器(36)的第二入口进入到所述液氢低温容器(36)内储存。
  2. 根据权利要求1所述的氢液化系统,其特征在于,还包括气体管理子系统(10),所述气体管理子系统(10)设置在所述室温压缩机组(1)和所述氢液化单元(200)之间,所述气体管理子系统(10)包括与所述室温压缩机组(1)并联的气动调节阀门组。
  3. 根据权利要求1所述的氢液化系统,其特征在于,所述室温压缩机组(1)为单台单级压缩机或单台多级压缩机或串联的两台单级压缩机或串并联组合的多台单级压缩机。
  4. 根据权利要求1所述的氢液化系统,其特征在于,所述氢液化单元(200)包括换热器组件和透平膨胀机组件的组合。
  5. 根据权利要求4所述的氢液化系统,其特征在于,所述换热器组件内填充有正仲氢催化剂,或所述换热器组件连接有正仲氢转化器。
  6. 根据权利要求4所述的氢液化系统,其特征在于,所述氢液化单元(200)还包括与所述换热器组件连接的低温工质预冷子系统(18)。
  7. 根据权利要求4所述的氢液化系统,其特征在于,所述氢液化单元(200)为基于克劳德循环的氢液化单元,所述换热器组件包括依次并联的第一低温换热器(15)、第二低温换热器(20)、第三低温换热器(25)、第四低温换热器(28)、第五低温换热器(29)、第六低温换热器(31)及第七低温换热器(32),所述第五低温换热器(29)上设置有低温工质气体进口和低温工质气体出口,所述透平膨胀机组件包括第一级氢透平膨胀机(11)和第二级氢透平膨胀机(12),所述第一级氢透平膨胀机(11)的入口设置于所述第三低温换热器(25)至所 述第四低温换热器(28)的供给管路上,所述第一级氢透平膨胀机(11)的出口与所述第五低温换热器(29)的低温工质气体进口连通,所述第二级氢透平膨胀机(12)的入口与所述第五低温换热器(29)的低温工质气体出口连通,所述第二级氢透平膨胀机(12)的出口设置于所述第六低温换热器(31)至所述室温压缩机组(1)的第二入口的回流管路上。
  8. 根据权利要求4所述的氢液化系统,其特征在于,所述氢液化单元(200)为基于柯林斯循环的氢液化单元,所述换热器组件包括依次并联的第一低温换热器(15)、第二低温换热器(20)、第三低温换热器(25)、第四低温换热器(28)、第五低温换热器(29)、第六低温换热器(31)及第七低温换热器(32),所述透平膨胀机组件包括第一级氢透平膨胀机(11)和第二级氢透平膨胀机(12),所述第一级氢透平膨胀机(11)的入口设置于所述第三低温换热器(25)至所述第四低温换热器(28)的供给管路上,所述第一级氢透平膨胀机(11)的出口设置于所述第五低温换热器(29)至所述第四低温换热器(28)回流至所述室温压缩机组(1)的第二入口的管路上,所述第二级氢透平膨胀机(12)的入口设置于所述第五低温换热器(29)至所述第六低温换热器(31)的供给管路上,所述第二级氢透平膨胀机(12)的出口设置于所述第六低温换热器(31)至所述室温压缩机组(1)的第二入口的回流管路上。
  9. 根据权利要求7所述的氢液化系统,其特征在于,还包括第一快速降温管路(41)和/或第二快速降温管路(43),所述第一快速降温管路(41)连接在所述换热器组件上,所述第二快速降温管路(43)连接在所述换热器组件和所述液氢低温容器(36)上。
  10. 根据权利要求1所述的氢液化系统,其特征在于,所述液氢低温容器(36)内设置有加热器。
PCT/CN2021/119904 2021-07-01 2021-09-23 氢液化系统 WO2023272971A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21947899.7A EP4365526A1 (en) 2021-07-01 2021-09-23 Hydrogen liquefaction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110746401.1 2021-07-01
CN202110746401.1A CN113503692A (zh) 2021-07-01 2021-07-01 氢液化系统

Publications (1)

Publication Number Publication Date
WO2023272971A1 true WO2023272971A1 (zh) 2023-01-05

Family

ID=78009854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119904 WO2023272971A1 (zh) 2021-07-01 2021-09-23 氢液化系统

Country Status (3)

Country Link
EP (1) EP4365526A1 (zh)
CN (1) CN113503692A (zh)
WO (1) WO2023272971A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597308A (zh) * 2022-09-24 2023-01-13 江苏捷思新能源科技有限公司(Cn) 一种低成本高效制备液氢方法
CN117906996A (zh) * 2024-03-14 2024-04-19 中太(苏州)氢能源科技有限公司 氢气透平膨胀机空气模化方法、试验台及试验方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111214A (zh) * 2022-01-25 2022-03-01 杭州制氧机集团股份有限公司 一种低温氢气液化的装置及使用方法
CN114111215A (zh) * 2022-01-25 2022-03-01 杭州制氧机集团股份有限公司 一种利用低温含氢混合气制取液氢的装置及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830651A (zh) * 2017-10-20 2018-03-23 中国科学院理化技术研究所 一种低温制冷系统
CN111472848A (zh) * 2020-05-11 2020-07-31 浙江浙能技术研究院有限公司 一种基于能源梯级利用的供热蒸汽驱动液氢制备系统
CN112361711A (zh) * 2020-10-30 2021-02-12 北京航天试验技术研究所 一种设置有三个串联的透平膨胀机机组的氢气液化设备
KR20210064902A (ko) * 2019-11-26 2021-06-03 고등기술연구원연구조합 수소 액화 시스템 및 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH344435A (de) * 1956-11-10 1960-02-15 Sulzer Ag Verfahren zum Tiefkühlen eines schwer verflüssigbaren Gases und Anlage zur Durchführung des Verfahrens
US4778497A (en) * 1987-06-02 1988-10-18 Union Carbide Corporation Process to produce liquid cryogen
JP3521360B2 (ja) * 1994-12-02 2004-04-19 日本酸素株式会社 液体水素の製造方法及び装置
CN109764637B (zh) * 2018-12-28 2020-09-25 中国科学院理化技术研究所 一种氦液化器流程装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830651A (zh) * 2017-10-20 2018-03-23 中国科学院理化技术研究所 一种低温制冷系统
KR20210064902A (ko) * 2019-11-26 2021-06-03 고등기술연구원연구조합 수소 액화 시스템 및 방법
CN111472848A (zh) * 2020-05-11 2020-07-31 浙江浙能技术研究院有限公司 一种基于能源梯级利用的供热蒸汽驱动液氢制备系统
CN112361711A (zh) * 2020-10-30 2021-02-12 北京航天试验技术研究所 一种设置有三个串联的透平膨胀机机组的氢气液化设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597308A (zh) * 2022-09-24 2023-01-13 江苏捷思新能源科技有限公司(Cn) 一种低成本高效制备液氢方法
CN117906996A (zh) * 2024-03-14 2024-04-19 中太(苏州)氢能源科技有限公司 氢气透平膨胀机空气模化方法、试验台及试验方法
CN117906996B (zh) * 2024-03-14 2024-05-28 中太(苏州)氢能源科技有限公司 氢气透平膨胀机空气模化方法、试验台及试验方法

Also Published As

Publication number Publication date
CN113503692A (zh) 2021-10-15
EP4365526A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2023272971A1 (zh) 氢液化系统
US20230067883A1 (en) Mixed refrigerant hydrogen liquefaction device and method of using same
CN113776275B (zh) Lng冷能预冷下的氢气液化方法
CN202328997U (zh) 采用单一混合工质制冷液化天然气的装置
WO2013135037A1 (zh) 采用单一混合工质制冷液化天然气的方法和装置
CN114111215A (zh) 一种利用低温含氢混合气制取液氢的装置及使用方法
CN202361751U (zh) 采用单一混合工质制冷液化天然气的装置
CN102538390B (zh) 一种天然气液化系统及其方法
CN115451647B (zh) 一种集成液化空气储能系统的氢液化系统
CN104807287A (zh) 一种小型天然气液化制冷系统及方法
CN216620451U (zh) 一种lng重整制氢和lng冷能液化氢气一体化系统
CN103398545B (zh) 一种原料气多级压缩节流的生产液化天然气的系统
CN114111214A (zh) 一种低温氢气液化的装置及使用方法
WO2023226639A1 (zh) 模块化氢液化系统
CN203310202U (zh) 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统
CN202494271U (zh) 采用单一混合工质制冷液化天然气的装置
CN110398132B (zh) 一种氦液化及不同温度等级氦气冷源供给装置
CN102620460B (zh) 带丙烯预冷的混合制冷循环系统及方法
CN202432825U (zh) 采用单一混合工质制冷液化天然气的装置
CN204693949U (zh) 一种具有氮甲烷制冷功能的分离富甲烷气装置
CN114777418B (zh) 一种冷凝法天然气bog提氦的系统
CN114777412B (zh) 一种具有热虹吸式氢过冷器的氢气液化装置
CN211977383U (zh) 氦液化及不同温度等级氦气冷源供给装置
CN114777411A (zh) 一种具再生管路的氢气液化装置
CN217330409U (zh) 一种氢液化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947899

Country of ref document: EP

Effective date: 20240201