WO2023226639A1 - 模块化氢液化系统 - Google Patents

模块化氢液化系统 Download PDF

Info

Publication number
WO2023226639A1
WO2023226639A1 PCT/CN2023/089597 CN2023089597W WO2023226639A1 WO 2023226639 A1 WO2023226639 A1 WO 2023226639A1 CN 2023089597 W CN2023089597 W CN 2023089597W WO 2023226639 A1 WO2023226639 A1 WO 2023226639A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
liquefaction
temperature
low
unit
Prior art date
Application number
PCT/CN2023/089597
Other languages
English (en)
French (fr)
Inventor
吴英哲
钱轶
姜伟
Original Assignee
上海司氢科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海司氢科技有限公司 filed Critical 上海司氢科技有限公司
Publication of WO2023226639A1 publication Critical patent/WO2023226639A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • F25J1/0272Multiple identical heat exchangers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • F25J2270/91External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention belongs to the technical field of cryogenic engineering equipment, and specifically relates to a modular hydrogen liquefaction system.
  • Hydrogen energy is a secondary energy source with rich sources, green, low-carbon and widely used. It is also an important chemical raw material on a huge scale. Hydrogen produced by renewable energy sources such as wind energy and solar energy, also known as “green hydrogen", is the main source of hydrogen energy in the future and can be used in transportation, civil and power production and energy storage fields. It is also expected to be used on a large scale in the chemical industry. Such as replacing coke as reducing agent and so on.
  • renewable energy sources such as wind and solar energy to produce and liquefy hydrogen
  • volatility of renewable energy power generation places special requirements on its downstream matching green hydrogen production system (water electrolysis and hydrogen liquefaction system):
  • Adjustable production capacity and quick start and stop If the green liquid hydrogen production system continues to produce stably, it must be equipped with an energy storage system with sufficient installed capacity to power it when the power is low, or directly use the power from the grid when the power is low.
  • the energy storage system required by the former is high in cost (currently still higher than that of a green hydrogen production system with the same installed capacity) and occupies a large area, which greatly increases the fixed cost.
  • Asset investment increases the cost of hydrogen; in the latter, grid electricity prices are much higher than off-grid electricity prices, resulting in a sharp increase in operating costs, and the entire system still causes large fluctuations in the power grid, making it impossible to eliminate the volatility of renewable energy through hydrogen production. Impact on the power grid. Therefore, green hydrogen production systems (including water electrolysis and hydrogen liquefaction systems) need to have adjustable production capacity and rapid start-stop functions. Select appropriate production capacity or start-stop strategies to match the fluctuating renewable energy system and achieve fully off-grid production. model.
  • the liquefaction of hydrogen is the most critical link in the green hydrogen industry chain. It has the characteristics of complex technical processes, high energy consumption, and high investment costs. Over the past few decades, many researchers have been studying how to improve the efficiency of hydrogen liquefaction. Improving the efficiency of hydrogen liquefaction can effectively reduce the operating costs of hydrogen liquefaction equipment, and can also indirectly reduce equipment investment costs.
  • existing commercial liquefaction devices generally include Brayton cycle refrigeration using helium as the working fluid and improved Claude cycle refrigeration using hydrogen as the working fluid.
  • the former is generally used for medium-sized liquefaction systems with a production capacity of less than 5 tons/day, and the latter is generally used for large-scale liquefaction systems with a production capacity of more than 5 tons/day.
  • Traditional hydrogen liquefaction systems generally include precooling systems, main refrigeration systems, liquefaction systems, and low-temperature heat exchanger groups.
  • the precooling system generally uses relatively mature technology to achieve refrigeration of about 70 to 120K, and provides precooling for the main refrigeration system and liquefaction system.
  • the main refrigeration system is equipped with a compressor and an expander, and exchanges heat with the hydrogen in the liquefaction system through a low-temperature heat exchanger group to refrigerate the hydrogen and finally form a liquid hydrogen product.
  • the compressor is used to compress the refrigeration working fluid to high pressure and provide high-pressure working fluid for the circulation pipeline of the main refrigeration system.
  • the expander is used to expand the high-pressure working fluid for refrigeration and provide cooling capacity for the liquefaction system.
  • the low-temperature heat exchanger group is equipped with multiple n-parahydrogen reactors (either isothermal continuous reactors or adiabatic step-by-step reactors) to catalyze hydrogen into equilibrium hydrogen at the current heat exchanger temperature.
  • the raw hydrogen gas provided by the hydrogen gas source sequentially passes through the n-parahydrogen reactor in the multi-stage heat exchanger, and finally enters the liquid hydrogen storage tank in liquid form and flows out from the product outlet.
  • the present invention proposes a modular hydrogen liquefaction system with adjustable production capacity, quick start and stop functions, low investment in equipment fixed assets, and can be quickly put into production. To this end, the present invention adopts the following technical solutions:
  • a modular hydrogen liquefaction system includes: one or more liquefaction modules arranged in parallel, the hydrogen inlet of the liquefaction module is connected to a hydrogen gas source, and the product outlet of the liquefaction module is connected to one or more parallel liquid hydrogen storage tanks; each Each of the liquefaction modules is an integrated structure capable of cooling, liquefying and completing normal-to-parahydrogen conversion of hydrogen, and can be started and stopped independently.
  • the hydrogen gas source and the liquid hydrogen storage tank can be set up separately, or they can be components of the present invention.
  • the modular hydrogen liquefaction system of the present invention includes a hydrogen gas source, a liquefaction module and a liquid hydrogen storage tank.
  • the hydrogen gas source, liquefaction module and liquid hydrogen storage tank are connected in sequence through pipelines,
  • the room temperature hydrogen from the hydrogen source is cooled, liquefied and completed the n-parahydrogen reaction through the liquefaction module, and then flows into the liquid hydrogen storage tank for storage.
  • the liquefaction system of the present invention includes one or more (number is k, k ⁇ 1) liquefaction modules connected in parallel.
  • the liquefaction module is a standardized skid-mounted equipment, using standard container dimensions and interfaces. Each module can operate independently to cool and liquefy a certain flow of hydrogen and complete the normal-parahydrogen reaction.
  • the liquid hydrogen product outlets of the parallel liquefaction modules are merged into a main pipe through pipelines and connected to the liquid hydrogen storage tank.
  • Standardized modules are conducive to large-scale production and greatly reduce equipment costs
  • Skid-mounted modules facilitate storage, transportation, hoisting and layout.
  • the liquefaction module includes:
  • a low-temperature liquefaction conversion unit that liquefies pre-cooled hydrogen and converts normal to parahydrogen
  • An expansion unit that depressurizes hydrogen after low-temperature liquefaction conversion, and the outlet of the expansion unit is connected to the liquid hydrogen storage tank as a product outlet;
  • a compression unit that provides refrigeration compression power to the low-temperature liquefaction conversion unit.
  • the compression unit is connected to the standard refrigeration unit in the cryogenic liquefaction conversion unit through pipelines.
  • the precooling unit includes:
  • a precooling cold source that provides a cold source for the precooling heat exchanger
  • a purifier and a precooling-stage n-parahydrogen reactor are connected to the hydrogen flow channel of the precooling heat exchanger in sequence.
  • the pre-cooling heat exchanger includes a hydrogen gas flow channel and a pre-cooling working fluid flow channel; the pre-cooling cold source provides pre-cooling cooling capacity to the hydrogen through the pre-cooling working fluid.
  • the flow channel of the pre-cooled n-parahydrogen reactor is equipped with a n-parahydrogen catalyst.
  • the interface of the hydrogen gas source, the hydrogen flow channel of the precooling heat exchanger, the purifier and the precooling stage n-parahydrogen reactor are connected through pipelines; the precooling cold source is connected to the precooling exchanger through pipelines.
  • the cold end inlet of the pre-cooling working fluid flow channel of the heater is connected.
  • the pre-cooling working fluid flows through the pre-cooling working fluid flow channel of the pre-cooling heat exchanger. It flows through the hydrogen flow channel of the pre-cooling stage heat exchanger, the purifier and The hydrogen in the pre-cooled n-parahydrogen reactor provides cooling capacity.
  • the normal-temperature hydrogen with a pressure of p supply from the hydrogen source enters and is first pre-cooled to the pre-cooling temperature T preC through the pre-cooling heat exchanger; then it passes through the purifier to remove gas and solid impurities in the raw hydrogen to prevent clogging.
  • the subsequent process flow also ensures the purity of the liquid hydrogen product; the pre-cooled and purified raw material hydrogen enters the pre-cooled n-parahydrogen reactor, and with the help of the n-parahydrogen catalyst
  • the normal parahydrogen reaction is realized under the condition of the hydrogen gas, so that the parahydrogen content in the hydrogen gas is close to the parahydrogen ratio of the equilibrium hydrogen at the precooling temperature T preC , and the hydrogen gas temperature is restored to the precooling temperature T preC .
  • the purifier is a low-temperature purification adsorber.
  • the purifier can be a single low-temperature purification adsorber, or two or more low-temperature purification adsorbers arranged in parallel.
  • the purifier includes two low-temperature purification adsorbers that are switched through valves and alternately connected to the pipeline. The two low-temperature purification adsorbers are connected in parallel to form a typical temperature swing adsorption device.
  • the low-temperature purification adsorber that is not connected to the pipeline will be purged and heated by clean inert hot gas to achieve regeneration, thereby improving the working efficiency of the hydrogen low-temperature purifier.
  • the precooling-stage n-parahydrogen reactor and the corresponding precooling heat exchanger may adopt an integrated structure or may adopt mutually independent structures.
  • the former is an isothermal continuous reactor, which essentially fills the low-temperature heat exchanger flow channel with catalyst.
  • the reactor is the heat exchanger, completing the n-parahydrogen catalytic reaction while cooling the incoming hydrogen; the latter is an adiabatic step reactor. , essentially a separate insulated container filled with catalyst.
  • the hydrogen is first cooled by the corresponding low-temperature heat exchanger and then enters the reactor for catalytic reaction.
  • the isothermal continuous reactor is more efficient and more compact in structure than the adiabatic step reactor;
  • the adiabatic step reactor is simple to process and manufacture, and both structures can be applied to the technical solution of the present invention.
  • the pre-cooling cold source can be an open low-temperature refrigeration liquid pre-cooling system or a closed low-temperature refrigeration pre-cooling system.
  • the open-type low-temperature refrigeration liquid pre-cooling system uses liquid nitrogen or liquefied natural gas as the cold source working fluid.
  • the former is particularly suitable for situations where stable and cheap liquid nitrogen is available on site. For example, if there is an air separation unit nearby, it can provide stable and cheap liquid nitrogen.
  • Liquid nitrogen resources; the latter is particularly suitable for LNG ports and other occasions where the cold energy of liquefied natural gas vaporization needs to be recovered.
  • the closed low-temperature refrigeration pre-cooling system is a turbine Brayton cycle refrigeration system, a self-cascading mixed working fluid cycle refrigeration system or a recuperative refrigeration system, which is suitable for low-cost electricity or low-temperature liquids such as liquid nitrogen and liquefied natural gas that are not easily available on site. Scenes.
  • the pre-cooling cold source is provided by the following pre-cooling circulation system:
  • a turbine compressor that compresses precooled working fluid to high pressure
  • a water cooler that cools the high-pressure gas output from the turbine compressor
  • a low-temperature turbine expander that expands and cools the working fluid output from the pre-cooled working fluid inflow channel of the pre-cooling heat exchanger
  • the precooling heat exchanger is provided with a hydrogen flow channel, a precooling working medium inflow channel, and a precooling working medium return flow channel; wherein the inlet of the precooling working medium inflow channel is connected to the outlet of the water cooler, and the precooling The outlet of the working medium inflow channel is connected to the inlet of the low-temperature turbine expander, the inlet of the pre-cooled working medium return flow channel is connected to the outlet of the low-temperature turbine expander, and the outlet of the pre-cooled working medium return flow channel is connected to the inlet of the turbine compressor.
  • the turbine compressor recovers the expansion work generated by the low-temperature turbo-expander through a connecting shaft connected between it and the low-temperature turbo-expander.
  • the liquefaction module further includes a vacuum insulated cold box and an insulated radiation screen.
  • the insulated radiation screen, pre-cooling unit (low-temperature part), expansion unit and low-temperature part of the low-temperature liquefaction conversion unit (including the cold finger of the standard refrigeration unit and the n-parahydrogen reactor) are installed in a vacuum insulated cold box.
  • the interior of the cold box is evacuated to reduce convection and thermal leakage from the environment.
  • the lowest temperature parts of the expansion unit and the low-temperature liquefaction conversion unit are arranged in the insulated radiation screen.
  • the insulated radiation screen is made of a thin metal shell with good thermal conductivity. The surface is polished to have a high reflectivity.
  • the pre-cooling cold source It is connected to the pre-cooling cold source through thermal connection and is cooled by the pre-cooled working fluid to the pre-cooling temperature.
  • Cold temperature T preC the insulated radiation shield surrounds the lowest temperature (cold head) part of the expansion unit and cryogenic cooling sub-module, further reducing the radiation heat leakage from room temperature to the above components.
  • the insulating radiant screen is thermally connected to the pre-cooling unit.
  • the liquid hydrogen transmission pipeline connecting the liquefaction module and the liquid hydrogen storage tank is a double-layer vacuum insulated pipeline.
  • the low-temperature liquefaction conversion unit is composed of one or more low-temperature liquefaction groups arranged in parallel.
  • Each low-temperature liquefaction group is composed of one or more low-temperature cooling sub-modules arranged in series.
  • Each low-temperature cooling sub-module includes a standard Refrigeration unit and n-parahydrogen reactor thermally connected to the cold end of a standard refrigeration unit.
  • the hydrogen flow channels of the n-parahydrogen reactors are connected in series according to the hydrogen flow direction, and the cold head temperature of the standard refrigeration unit or the temperature of the n-parahydrogen reactor is sequentially reduced.
  • the low-temperature liquefaction conversion unit includes one or more (the number is m, m ⁇ 1) low-temperature liquefaction groups.
  • the low-temperature liquefaction group includes one or more low-temperature cooling sub-modules (number is n, n ⁇ 1) arranged in series.
  • the low-temperature cooling sub-modules each include a standard refrigeration unit and a n-parahydrogen reactor.
  • the n-parahydrogen reaction The device is installed at the cold end of the standard refrigeration unit, including the refrigerant flow channel and the hydrogen flow channel.
  • the refrigeration working fluid of the standard refrigeration unit flows directly in the refrigeration working fluid channel of the n-parahydrogen reactor, providing the cooling capacity required for hydrogen cooling and n-parahydrogen reaction;
  • the hydrogen flow channel of the n-parahydrogen reactor is arranged with N-parahydrogen catalyst, used to catalyze n-parahydrogen reactions.
  • the hydrogen flow channel inlets and outlets of the n-parahydrogen reactors of the multiple (n) low-temperature cooling sub-modules are connected in series, and the n standard refrigeration units work at successively decreasing temperatures T c,1 >T c,2 >...>T c,n-1 >T c,n .
  • low-temperature hydrogen from the precooling unit with a temperature of T preC and a parahydrogen content close to the parahydrogen ratio of the equilibrium hydrogen at the precooling temperature T preC passes through n positive and negative hydrogen gases connected in series in sequence in each low-temperature liquefaction group.
  • the hydrogen is gradually cooled in the hydrogen flow channels of n n-parahydrogen reactors, and with the help of the n-parahydrogen catalyst, the gradual n-parahydrogen reaction is realized, reaching the pre-throttle temperature T preExp and the pressure is p preExp , the parahydrogen content reaches more than 95%.
  • the series connection of multiple low-temperature cooling sub-modules can reduce the heat exchange temperature difference between the refrigerant working fluid and hydrogen in each n-parahydrogen reactor and improve the energy efficiency of the system;
  • the design of the ortho-parahydrogen reactor shortens the heat exchange path between the refrigerant fluid and hydrogen as much as possible (there is only one heat exchange partition), reducing the heat exchange temperature difference and improving the system energy efficiency;
  • the independent standard refrigeration unit improves the stability of the system. Even if an individual refrigeration unit fails, it will only affect the liquefaction capacity and will not cause the entire system to shut down;
  • the independent standard refrigeration unit can be maintained and replaced separately, which improves the convenience of maintenance and reduces operating costs.
  • the working fluid flow channel and the hydrogen gas flow channel of the n-parahydrogen reactor are both provided with structures that enhance heat exchange, such as fins;
  • the hydrogen gas flow channel The inlet and outlet of the reactor are equipped with filter elements with appropriate pore sizes to prevent n-parahydrogen catalyst particles from entering the pipeline system;
  • the n-parahydrogen catalyst in the hydrogen flow channel of the n-parahydrogen reactor has a variety of different arrangements:
  • the normal parahydrogen catalyst completely fills the flow channel: the advantage is that the filling process is simple, ensuring sufficient catalyst and complete reaction;
  • the ortho-parahydrogen catalyst does not completely fill the flow channel:
  • the advantage is that the filling process is simple. When the hydrogen flows, the catalyst particles are lifted up in the flow channel, and full contact and heat exchange with the hydrogen can be achieved, which is conducive to full reaction;
  • the ortho-parahydrogen catalyst is filled in sections, and filter elements with appropriate pore sizes are used before and after each section of catalyst to fix it to reduce micro-particle pollution caused by catalyst particle wear and fragmentation;
  • the ortho-parahydrogen catalyst is fixed on the surface of the flow channel and the surface of the enhanced heat exchange structure with an adhesive: the advantages are small flow resistance and sufficient heat exchange.
  • the standard refrigeration unit is a recuperative refrigerator, specifically a Gifford-McMahon refrigerator, a Stirling refrigerator, a Solvang refrigerator, a GM pulse tube refrigerator or a Stirling pulse tube refrigerator. machine.
  • a recuperative refrigerator specifically a Gifford-McMahon refrigerator, a Stirling refrigerator, a Solvang refrigerator, a GM pulse tube refrigerator or a Stirling pulse tube refrigerator. machine.
  • the advantages of using a recuperative refrigerator are:
  • the recuperative refrigerator has considerable refrigeration efficiency between the liquid nitrogen temperature range and the liquid hydrogen temperature range;
  • the core components of the recuperative refrigerator have a simple structure, low manufacturing process requirements, and do not require particularly expensive materials. Therefore, they are particularly suitable for large-scale mass production, thereby significantly reducing the cost of each standard refrigeration unit;
  • the recuperative refrigerator has considerable reliability.
  • the maintenance-free operating life of the Gifford-McMahon refrigerator, Solvang refrigerator and GM pulse tube refrigerator can exceed 2 years, while the Stirling refrigerator and Stirling refrigerator
  • the maintenance-free operating life of the Lin-type buried tube refrigerator can exceed 5 years;
  • the recuperative refrigerator generally uses a piston-type expansion mechanism, so it still has a large exhaust volume during the cooling process, and the cooling capacity is also very considerable, making it naturally have the characteristics of rapid cooling, making it easier to realize the system Quick start and stop.
  • the expansion unit can be one. After the hydrogen pipelines from m parallel low-temperature liquefaction groups are merged, they are connected to the inlet of the expansion unit, and the outlet of the expansion unit is connected to the liquid hydrogen product outlet; in this case, a common unit is set for the m parallel low-temperature liquefaction groups.
  • the design of the expansion unit has the advantage of low cost;
  • each expansion unit is connected to hydrogen pipelines from m parallel low-temperature liquefaction groups respectively.
  • the pipelines at the outlet of all expansion units are merged and connected to the liquid hydrogen product outlet; this kind of
  • the design of setting up separate expansion units for each low-temperature liquefaction group improves system reliability.
  • Individual control of expansion units also enables system capacity adjustment and independent maintenance of each module.
  • the expansion unit is a capillary tube, a throttle valve or an expander.
  • the expansion unit is an adjustable throttle valve with a cut-off function.
  • the expansion unit is a plurality of throttle valves arranged in parallel, and each throttle valve is connected to multiple low-temperature liquefaction groups of the corresponding low-temperature liquefaction conversion unit.
  • liquid hydrogen storage tanks connected to the product outlet of the liquefaction module are multiple (number j, j ⁇ 2) liquid hydrogen storage tanks connected in parallel.
  • the liquid hydrogen product main pipe from the liquefaction system is divided into j pipelines, which are connected to each liquid hydrogen storage tank through cryogenic valves.
  • the liquid hydrogen produced by the liquefaction module is stored in each storage tank in turn.
  • the liquid hydrogen in the full liquid hydrogen storage tank can be transferred to liquid hydrogen tank trucks/ships for further transportation to liquid hydrogen end customers.
  • the liquid hydrogen storage tank undergoing transfer operation can be disconnected from the liquefaction system by closing the cryogenic valve.
  • the liquid hydrogen produced by the liquefaction system can still be stored in other liquid hydrogen storage tanks, ensuring liquid hydrogen production. and storage continuity.
  • the liquid hydrogen storage tank is a tank container.
  • the tank container filled with liquid hydrogen can be transferred to the liquid hydrogen terminal customer by a container trailer/ship, and a new empty tank container is placed in the transported tank container, and the connection to the liquefaction module.
  • the use of standardized tank containers eliminates the process of transferring liquid hydrogen from fixed liquid hydrogen storage tanks to liquid hydrogen tank trucks/ships, reducing flash evaporation losses in the process; for large-scale applications, a large number of standardized tank containers are used with container trailers /Ship has a cost advantage over the combination of semi-customized fixed storage tanks and liquid hydrogen tank trucks/ships.
  • a flash steam return pipeline is led from the top of the liquid hydrogen storage tank to connect one or several liquefaction modules therein. That is, a flash steam return pipe is provided on the top of the liquid hydrogen storage tank, and the flash steam return pipe is connected to the hydrogen pipelines in one or more liquefaction modules.
  • the flash steam return pipeline is connected to a low-temperature pressure compressor, and then connected to the pipeline between the first and second cryogenic cooling sub-modules from the last (the last first and second according to the hydrogen flow direction) in one or several cryogenic liquefaction groups.
  • the flash hydrogen is compressed to high pressure by a cryogenic compressor, it merges with the incoming raw material hydrogen and enters the last cryogenic cooling sub-module to be cooled and liquefied.
  • the flash steam return line is connected to the low-pressure inlet of an ejector, and the high-pressure inlet of the ejector is connected to the second to last (last) one from one or more cryogenic liquefaction groups.
  • the raw hydrogen pipelines of the n-parahydrogen reactors in each cryogenic cooling sub-module are connected, and the outlet of the ejector is connected to the n-parahydrogen reactor in the last cryogenic cooling sub-module in the cryogenic liquefaction group.
  • the ejector uses a large-flow and high-pressure raw hydrogen flow as the mainstream, and pumps a small-flow and low-pressure flash hydrogen.
  • the two streams of hydrogen are mixed in the ejector, and then enter the last cryogenic cooling sub-module to be cooled and liquefied.
  • ejector has no moving parts, low cost and high reliability.
  • the compression unit is a compressor unit composed of multiple compressors, and the multiple compressors provide refrigeration compression power to the low-temperature liquefaction conversion unit;
  • the compressor unit includes m*n independent compression units, and each compression unit is independently connected to each standard refrigeration unit.
  • each standard refrigeration unit can be easily started and stopped independently. Small compression units are more conducive to large-scale mass production and reduce costs.
  • the cold end of the standard refrigeration unit is provided with a hydrogen pipeline and a refrigerant pipeline.
  • Part or all of the hydrogen pipeline is equipped with a n-parahydrogen catalyst. This part or all of the hydrogen pipeline simultaneously constitutes the n-parahydrogen reactor.
  • the beneficial effects of the present invention are as follows: a large number of refrigeration units are connected in series or parallel to form modules at different levels to realize the liquefaction of hydrogen, and can effectively utilize standard refrigeration units for large-scale production. benefits and significantly reduce equipment costs. By controlling the number of open modules and refrigeration units at different levels, the present invention can also realize a wide range of liquid hydrogen production capacity adjustment. In addition, using a recuperative refrigerator as a standard refrigeration unit can achieve rapid cooling and instant shutdown, so the system has the advantage of quick start and stop. The above advantages make the present invention particularly suitable for producing green liquid hydrogen in conjunction with renewable energy sources.
  • Figure 1 is a schematic diagram of the first embodiment of the modular hydrogen liquefaction system of the present invention.
  • Figure 2 is a schematic diagram of the first embodiment of the liquefaction system in the modular hydrogen liquefaction system of the present invention.
  • Figure 3 is a schematic diagram of the second embodiment of the liquefaction system in the modular hydrogen liquefaction system of the present invention.
  • Figure 4 is a schematic diagram of the second embodiment of the modular hydrogen liquefaction system of the present invention.
  • Figure 5 is a schematic diagram of the first embodiment of the liquefaction system in the second embodiment of the modular hydrogen liquefaction system of the present invention.
  • Figure 6 is a schematic diagram of the second embodiment of the liquefaction system in the second embodiment of the modular hydrogen liquefaction system of the present invention.
  • Pre-cooling heat exchanger 212a/b. Primary/secondary level Pre-cooling heat exchanger; 213. Purifier; 213a/b. Low-temperature purification adsorber; 214. Pre-cooling stage n-parahydrogen reactor; 215. Adiabatic radiation screen cooling heat exchanger; 221. Low-temperature cooling sub-module; 222. Standard refrigeration unit; 223. Parahydrogen reactor; 231. Throttle valve; 251. Compressor unit; 252. High pressure gas supply pipeline; 253. Low pressure return gas pipeline.
  • the modular hydrogen liquefaction system includes hydrogen gas source 1, liquefaction system 2 and liquid Hydrogen storage tank group 3.
  • the hydrogen gas source 1, the liquefaction system 2 and the liquid hydrogen storage tank group 3 are connected in sequence through pipelines.
  • the liquefaction system 2 includes one or more (k ⁇ 1) liquefaction modules (2.1-2.k) connected in parallel.
  • Liquefaction modules 2.1 ⁇ 2.k are standardized skid-mounted equipment, which integrate pre-cooling, liquefaction and conversion functional components, intermediate pipelines, control valves, etc. into a whole. They adopt standard container dimensions and each module can operate independently. Cool and liquefy a certain flow of hydrogen to complete the n-parahydrogen reaction.
  • the liquid hydrogen storage tank group 3 includes two or more (j ⁇ 2) liquid hydrogen storage tanks 3.1-3.j connected in parallel; the liquid hydrogen storage tanks 3.1-3.j are tank containers.
  • the liquid hydrogen product outlets 24 of each liquefaction module 2.1-2.k in the liquefaction system 2 are aggregated into a liquid hydrogen product main pipe through pipelines, and then divided into j pipelines, which are respectively connected to each liquid hydrogen storage tank 3.1-3. j.
  • the pipeline between the liquefaction system 2 and the liquid hydrogen storage tanks 3.1 ⁇ 3.j is a double-layer vacuum insulated low-temperature liquid hydrogen pipeline.
  • the raw hydrogen from hydrogen source 1 has a temperature of normal temperature T amb (263 ⁇ 313K), a pressure of p supply (10 ⁇ 26bar), and a parahydrogen content of about 25%.
  • the raw material hydrogen is divided into k paths, enters each liquefaction module 2.1 ⁇ 2.k in the liquefaction system 2, is cooled, liquefied and completes the n-parahydrogen reaction, and flows into the liquid hydrogen storage tank 3.1 ⁇ 3.j for storage.
  • the pressure of the product liquid hydrogen flowing out from the liquefaction module 2.1 ⁇ 2.k is p store (1 ⁇ 6bar), the temperature is T product , and the parahydrogen content is ⁇ 95%.
  • the product liquid hydrogen is a supercooled liquid, that is, the temperature of the product liquid hydrogen is less than the hydrogen saturation temperature under its pressure (T product ⁇ T sat (p store )).
  • T product ⁇ T sat (p store ) the temperature of the product liquid hydrogen is less than the hydrogen saturation temperature under its pressure
  • the product liquid hydrogen fills each liquid hydrogen storage tank 3.1 ⁇ 3.j in turn.
  • Tank containers filled with liquid hydrogen are transported by container trucks to liquid hydrogen terminal customers. New empty tanks are placed in the departing tank containers and connected to the liquefaction system.
  • the liquid hydrogen production capacity of the entire modular hydrogen liquefaction system can be adjusted within a wide range by starting different numbers of liquefaction modules. Since each liquefaction module is an independently operating unit, the overall energy efficiency of the system will not be affected by capacity adjustment. Too big of a change.
  • the liquefaction module in the modular hydrogen liquefaction system includes a pre-cooling unit 21, a low-temperature liquefaction conversion unit 22, an expansion unit 23, a liquid hydrogen product outlet 24 and a compression unit 25;
  • the pre-cooling unit 21 includes a pre-cooling unit Source 211, precooling heat exchanger 212, purifier 213 and precooling-stage n-parahydrogen reactor 214;
  • precooling-stage n-parahydrogen reactor 214 is filled with n-parahydrogen catalyst;
  • precooling heat exchanger 212 is provided with a hydrogen flow channel for hydrogen gas to pass through and a pre-cooling working fluid flow channel for pre-cooling working fluid to pass;
  • the low-temperature liquefaction conversion unit 22 includes one or more (m ⁇ 1) independent low-temperature liquefaction groups 22.1 ⁇ 22.m composition; each cryogenic liquefaction group includes one or more (n ⁇ 1) independent cryogenic cooling sub-modules 221 connected in series; the cryogenic cooling sub-
  • the hydrogen gas source 1, the hydrogen flow channel of the pre-cooling heat exchanger 212, the purifier 213 and the pre-cooled normal-parahydrogen reactor 214 are connected in sequence through pipelines or directly sealed and docked through interfaces; the pre-cooling cold source is connected through pipelines It is connected to the cold end inlet of the precooling working fluid flow channel of the precooling heat exchanger.
  • the precooling working fluid flows through the precooling working fluid flow channel of the precooling heat exchanger, which is the hydrogen flow channel flowing through the precooling stage heat exchanger.
  • purifier and pre-cooled n-parahydrogen reactor provide cooling capacity;
  • the outlet pipeline of the pre-cooled n-parahydrogen reactor 214 is divided into m lines, and m low-temperature liquefaction groups 22.1 ⁇ 22.m are connected in parallel; each In the low-temperature liquefaction group, n n-parahydrogen reactors 223 are connected in series through pipelines; each n-parahydrogen reactor 223 is connected to the cold end of the standard refrigeration unit 222, and the refrigeration working fluid in the standard refrigeration unit 222 passes through the n-parahydrogen reactor 223.
  • the refrigerant flow channel of the hydrogen reactor 223 is used to provide cooling capacity; the outlet pipelines of m parallel low-temperature liquefaction groups are connected to the expansion unit 23, and the outlet of the expansion unit 23 is connected to the liquid hydrogen product outlet 24; the compression unit 25 is connected to m*n standard refrigeration units 222 through air supply pipelines, and is used to drive the standard refrigeration units 222 to provide low-temperature refrigeration.
  • the raw hydrogen from hydrogen source 1 has a temperature of normal temperature T amb (263 ⁇ 313K), a pressure of p supply (10 ⁇ 26bar), and a parahydrogen content of about 25%. It first enters the hydrogen flow channel of the pre-cooling heat exchanger 212 , is precooled to the precooling temperature T preC . Depending on the different forms of precooling cold source and precooling working fluid, the precooling temperature ranges from 60 to 150K.
  • the precooled hydrogen then enters the purifier 213 to remove water, CO 2 , N 2 and other residual impurity gases and solid particles, and then enters the precooled normal-parahydrogen reactor 214, with the help of the normal-parahydrogen catalyst in the reactor
  • the n-parahydrogen reaction is completed and cooled again to the precooling temperature T preC .
  • the amount of catalyst in the precooling stage n-parahydrogen reactor 214 should be sufficient to ensure that the hydrogen leaving the precooling unit 21 is as close as possible to the equilibrium hydrogen (that is, the parahydrogen content is as close as possible to the equilibrium hydrogen parahydrogen at the precooling temperature T preC content).
  • the hydrogen leaving the precooling unit 21 is divided into m paths and enters the parallel m low-temperature liquefaction groups 22.1-22.m respectively.
  • the n standard refrigeration units 222 in each cryogenic liquefaction group work at successively decreasing temperatures T c,1 >T c,2 >...>T c,n-1 >T c,n , and the hydrogen gas passes through the n series-connected units in sequence.
  • n-parahydrogen reactor 223; each n-parahydrogen reactor 223 is connected to the cold end of the standard refrigeration unit 222.
  • the cooling capacity generated by the standard refrigeration unit 222 passes through the refrigerant flow of its refrigerant in the n-parahydrogen reactor 223.
  • the process in which the pressure of the hydrogen gas in the expansion unit 23 is reduced to p product may undergo isentropic expansion, isenthalpic expansion, or mediate expansion. Due to the changeable process between the two, the temperature of hydrogen may decrease (close to isentropic expansion) or increase (close to isentropic expansion).
  • the temperature of the hydrogen leaving the expansion unit 23 is T product , and it is still a supercooled liquid with a certain degree of subcooling. This ensures that the liquid hydrogen remains liquid during the transfer to the liquid hydrogen storage tanks 3.1 to 3.j; after expansion, The supercooled liquid hydrogen product is finally transported to the downstream pipeline through the liquid hydrogen product outlet and finally stored in the liquid hydrogen storage tank.
  • the standard refrigeration unit 222 included in the low-temperature liquefaction conversion unit 22 in the modular hydrogen liquefaction system is a recuperative refrigerator, which can be a Gifford-McMahon refrigerator, a Stirling refrigerator, a Solven refrigerator, or a GM-type refrigerator. Tube refrigerator or Stirling type pulse tube refrigerator.
  • the compression unit 25 is connected to all standard refrigeration units 222 through gas supply pipelines, and is used to drive the recuperative refrigerator to work, provide cooling capacity for the n-parahydrogen reactor 223, and realize hydrogen cooling and n-parahydrogen reaction.
  • each compressor has an independent compression function, or it can be a large single compressor.
  • An integrated compressor unit or multiple independent compressors are preferred, which can be easily controlled and ensure overall energy efficiency.
  • the integrated compressor unit can be used to shut down the corresponding compressor unit without affecting the energy efficiency of the entire compression unit.
  • a pre-cooling cold source 211 adopts a transparent Brayton cycle refrigeration system
  • the standard refrigeration unit 222 uses a Gifford-McMahon refrigerator
  • the compression unit 25 uses multiple independent compressor units
  • the expansion unit 23 uses multiple parallel throttle control valves as expansion elements
  • the difference from implementation case 2 is:
  • the precooling heat exchanger 212 is a two-stage precooling structure connected in series, including a primary precooling heat exchanger 212a and a secondary precooling heat exchanger 212b.
  • the low-temperature adsorption purifier 213 is composed of two parallel low-temperature adsorption purifiers 213a and 213b.
  • the precooling system 21 uses a nitrogen turbine Brayton refrigeration cycle as the precooling source 211, including a drive motor 2111, a turbine compressor 2112, a water cooler 2113, a low-temperature turbine expander 2114, and connections.
  • the outlet of the working medium return flow channel and the low-pressure inlet of the turbine compressor 2112 are connected in sequence to form a loop.
  • the turbine compressor 2112 and the low-temperature turbine expander 2114 are mechanically coupled through a connecting shaft 2115, and a driving motor 2111 is provided on the connecting shaft 2115.
  • the working principle of the precooling cold source 211 using the turbine Brayton cycle refrigeration system is as follows: the precooled working fluid is compressed to a high pressure through the turbine compressor 2112, and the compression heat generated by the compression is taken away by the water cooler 2113 and cooled to At around room temperature, the pre-cooled working fluid after compression and cooling enters the primary pre-cooling heat exchanger 212a and the secondary pre-cooling heat exchanger 212b successively, and is cooled by the refluxed cold working fluid to about 100-120K; then the pre-cooling process The fluid enters the low-temperature turbine expander 2114 for expansion and refrigeration.
  • the temperature of the pre-cooled fluid can eventually drop to about 80-100K; the low-temperature and low-pressure pre-cooled fluid returns to the adiabatic radiation screen for cooling and heat exchange.
  • the device 215, the secondary precooling heat exchanger 212b and the primary precooling heat exchanger 212a enter the incoming high-pressure working fluid and raw material hydrogen. It is precooled, rewarmed to about room temperature, leaves the primary precooling heat exchanger 212a, and finally returns to the low-pressure inlet of the turbine compressor 2112.
  • the driving motor 2111 provides the main driving force to drive the turbine compressor 2112.
  • the expansion work of the low-temperature turbine expander 2114 is recovered through the connecting shaft 2115 to provide auxiliary driving force for the turbine compressor 2112.
  • the hydrogen gas source 1 is connected to the hydrogen flow channel inlet of the hot end of the first-level pre-cooling heat exchanger 212a.
  • the incoming raw material hydrogen passes through the first-level pre-cooling heat exchanger in sequence.
  • the hydrogen flow channels of the heat exchanger 212a and the secondary precooling heat exchanger 212b are then connected to the parallel low-temperature adsorption purifiers 213a and 213b.
  • the low-temperature adsorption purifiers 213a and 213b here form a typical temperature swing adsorption device.
  • the two adsorbers are switched through valves and alternately connected to the pipeline.
  • the adsorbers not connected to the pipeline will be purged and purged by clean inert hot gas. Heating achieves regeneration.
  • the low-temperature purification adsorbers 213a and 213b are connected in parallel through pipelines and connected to the inlet of the hot end of the secondary precooling heat exchanger 212b, and enter the precooling-stage n-parahydrogen reactor 214 located in the secondary precooling heat exchanger 212b.
  • the pre-cooled n-parahydrogen reactor 214 is an isothermal reactor coupled in the secondary pre-cooled heat exchanger 212b, that is, the catalyst particles are filled in the heat exchange channel of the heat exchanger, while exchanging heat. Realize normal parahydrogen catalytic reaction.
  • This isothermal reactor has higher reaction efficiency and lower irreversible losses.
  • the cold end of the standard refrigeration unit 222 of the Gifford-McMahon refrigerator is connected to the normal parahydrogen reactor 223.
  • the refrigerant fluid expands at the cold end and alternately flows through the normal parahydrogen reactor.
  • the refrigerant working fluid channel in the parahydrogen reactor 223 provides the hydrogen gas flowing through the hydrogen gas flow channel of the n-parahydrogen reactor 223 with the cooling capacity required for cooling and n-parahydrogen reaction.
  • the hydrogen is gradually cooled and the n-parahydrogen reaction is completed; after passing through n n-parahydrogen reactors 223 in series, the hydrogen reaches the pre-throttle temperature T preExp and the parahydrogen content reaches more than 95%.
  • the compression unit 25 is composed of m*n independently operating compressor units 251.
  • Each compressor unit 251 is connected to the Gifford-McMahon of each standard refrigeration unit 222 through a high-pressure air supply pipe 252 and a low-pressure return pipe 253. Refrigerator connection for drive Gifford-McMahon refrigerator working.
  • the design of the independent compressor unit 251 can realize large-scale batch production, thereby reducing the cost of the compression unit; in addition, the independently operating compressor unit 251 can realize the independent start and stop of each standard refrigeration unit 222, so that the system can operate on a larger scale. The working conditions can be adjusted within a wide range and the reliability is also higher.
  • the expansion unit 23 includes m independent adjustable throttle valves 231 with cut-off functions.
  • the hydrogen from the last n-parahydrogen reactor 223 in the m parallel low-temperature liquefaction groups 22.1-22.m is connected to m independent throttle valves 231 respectively;
  • the m throttled hydrogens merge into one, Connected to liquid hydrogen product interface 24.
  • this implementation case also uses a vacuum insulated cold box 26 and an insulated radiation screen 27 as system insulation.
  • the insulated radiation screen 27 , the precooling unit 21 , the expansion unit 23 and the cryogenic part of the cryogenic cooling submodule (including the cold fingers of the standard refrigeration unit and the n-parahydrogen reactor) are installed in a vacuum adiabatic cold box 26 .
  • the interior of the vacuum insulated cold box 26 is evacuated to reduce convection and heat conduction leakage from the environment.
  • the insulated radiation screen 27 is made of a thin metal shell with good thermal conductivity. The surface is polished to have a high reflectivity.
  • the insulated radiation shield surrounds the lowest temperature parts of the expansion unit and the cryogenic cooling sub-module, further reducing the radiation heat leakage from room temperature to the above components.
  • a modular hydrogen liquefaction system uses a return gas pipeline to recover flash hydrogen for re-liquefaction.
  • the liquid hydrogen storage tank group 3 is transferred (filling liquid hydrogen from a fixed storage tank into a liquid hydrogen tanker/ship and other transportation vehicles), replacing a tank container, or storing it for a long time, part of the liquid hydrogen will vaporize, causing the liquid hydrogen storage
  • the increase in tank pressure may eventually cause the safety relief system to operate, resulting in the waste of hydrogen emissions.
  • the return gas pipeline is used to recover the flash hydrogen in the liquid hydrogen storage tank that has generated excessive pressure due to the flash hydrogen to one of the liquefaction modules in the liquefaction system 2 (any of the liquefaction modules 2.1 to 2.k a) for reliquefaction.
  • the difference from implementation case 2 is that it also includes a flash steam return pipeline 28 and a return control valve 32 . Flash steam return pipeline from each It is led out from the top of each liquid hydrogen storage tank and passes through a return control valve 32. Then j flash steam return lines from each liquid hydrogen storage tank are merged into one and connected to one of the liquefaction modules in the liquefaction system 2.
  • the working principle of this implementation case is as follows: when the pressure of the liquid hydrogen storage tank is higher than the set value p reV,high,set , the low-temperature valve 31 is closed, the return air control valve 32 is opened, and the liquid hydrogen storage tank The flashed hydrogen in the tank returns to the liquefaction module 2.1 through the flash steam return line 28.
  • the flashed hydrogen returned to the liquefaction module 2.1 is reliquefied, and its working principle will be described in detail in implementation cases 5 and 6.
  • the pressure in the tank gradually decreases.
  • the low temperature valve 31 opens, the return gas control valve 32 closes, and the liquid hydrogen storage tank stops returning. gas and continue to receive liquid hydrogen product from liquefaction system 2.
  • FIG. 5 a more detailed diagram of the liquefaction system 2 in a modular hydrogen liquefaction system that uses a return gas pipeline to recover flashed hydrogen for re-liquefaction.
  • this implementation case also includes a flash steam return pipeline 28 and an ejector 291.
  • the flash steam return pipeline 28 is connected to the low-pressure inlet of the ejector 291, and the high-pressure inlet of the ejector 291 is connected to any module from the low-temperature liquefaction group 22.1 (of course it can also be any module in the low-temperature liquefaction group 22.2 ⁇ 22.m ) is connected to the hydrogen flow channel outlet of the n-parahydrogen reactor 223 in the penultimate cryogenic cooling sub-module 221 (1.n-1), and the outlet of the ejector 291 is connected to the last cryogenic cooling in the cryogenic liquefaction group 22.1
  • the hydrogen flow channel inlet of the n-parahydrogen reactor 223 in sub-module 221(1.n) is connected.
  • the ejector uses a large-flow and high-pressure raw hydrogen flow as the main stream to pump small-flow and low-pressure flash hydrogen.
  • the two streams of hydrogen are mixed in the ejector, and then enter the last n-parahydrogen reactor 223 to be cooled and liquefied.
  • FIG. 6 a detailed illustration of another technical solution of liquefaction system 2 in a modular hydrogen liquefaction system that uses a return gas pipeline to recover flashed hydrogen for re-liquefaction.
  • this embodiment uses a cryogenic compressor 292 to replace the ejector 291 .
  • the flash steam return pipeline 28 is connected to the low-pressure inlet of the cryogenic compressor 292, and the high-pressure outlet of the cryogenic compressor 292 is connected to the positive outlet of the penultimate cryogenic cooling sub-module 221 (1.n-1) in the cryogenic liquefaction group 22.1.
  • the hydrogen flow channel outlet of the parahydrogen reactor 223 is connected.
  • the raw material hydrogen and the compressed flash hydrogen are merged, they enter the n-parahydrogen reaction in the last low-temperature cooling sub-module 221 (1.n) in the low-temperature liquefaction group 22.1.
  • the hydrogen flow channel of the reactor 223 is cooled and liquefied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种模块化氢液化系统,包括:一个或多个并联设置的液化模块(2.1-2.k),液化模块(2.1-2.k)的氢气入口与氢气气源(1)连接,液化模块(2.1-2.k)的产品出口与一个或者多个并联的液氢储罐(3.1-3.j)相连;每个液化模块(2.1-2.k)均为具有氢气冷却、液化并完成正仲氢转化,且能够独立启停的集成结构。

Description

模块化氢液化系统 技术领域
本发明属于低温工程装备技术领域,具体涉及一种模块化氢液化系统。
背景技术
近年来,为了助力实现碳达峰、碳中和,深入推进能源生产和消费革命,构建清洁低碳、安全高效的社会体系,氢能是当前能源问题和实现“双碳”战略目标的长期解决方案之一。氢能是一种来源丰富、绿色低碳、应用广泛的二次能源,同时也是规模巨大的重要化工原料。采用风能、太阳能等可再生能源生产的氢气,又称之为“绿氢”,是未来氢能的主要来源,可用于交通、民用以及电力生产储能领域,也有望在化工领域大规模使用,如替代焦炭作为还原剂等等。
为了实现氢气在终端的合理价格,使其具有经济性,从而实现大规模市场推广,如何安全有效地储存和运输是关键的技术挑战。高压常温储氢是目前应用最为广泛、技术最为成熟的储氢技术,但是其储运密度低,全产业链成本高,根据当前的技术发展态势判断,其无法适应规模化,也难以实现经济性。基于材料的储氢技术,包括物理吸附、化学吸附以及有机物合成等,仍然处于较低的技术成熟度水平,且不具备规模化经济效应,也存在有全产业链能耗高、设备材料成本高、系统复杂、产品纯度等问题,因此也不具备规模化应用的可能性。低温液化氢气的储运方式得益于深冷、绝热及真空技术的日益成熟,更高的存储密度和更低的运行压力,减少了单位质量输运的能耗和空间成本,有望成为氢气长距离运输和大规模存储的有效方式,是能够实现终端氢气售价具有经济性的唯一技术路线。
采用风能、太阳能等可再生能源生产氢气并液化,是未来绿氢生产的重要模式。然而,可再生能源发电的波动性,对其下游匹配的绿氢生产系统(水电解和氢液化系统)提出了特殊的要求:
1.产能可调和快速启停:绿色液氢生产系统如果连续稳定生产,则必须配备足够装机容量的储能系统在电力低谷时为其供电,或者在电力低谷时直接利用来自电网的电能。但是,前者所需配备的储能系统成本高(目前仍然高于同等装机容量的绿氢生产系统)、占地大,极大地增加了固定 资产投资,使得氢气成本增加;后者,电网电价远高于离网电价,造成运营成本陡增,且整个系统仍然对电网造成较大的波动冲击,无法通过氢气生产来消弭可再生能源波动性对电网的冲击。因此,绿氢生产系统(包括水电解和氢液化系统)需要有产能可调和快速启停的功能,选择合适的产能或开停机策略,来匹配波动的可再生能源系统,实现全离网的生产模式。
2.更低的固定资产投资:具有产能可调和快速启停功能的绿色液氢生产系统匹配可再生能源,其设备利用率也相应降低,使得绿色液氢生产系统的固定资产投资在氢气的成本组成中比例增加,成为影响氢气成本最为主要的因素。因此更低的绿色液氢生产系统的固定资产投资,是绿氢生产模式具有市场竞争力的必要条件。
氢气的液化是绿氢产业链中最关键的环节,具有技术工艺复杂、能耗占比高、投资成本高的特点。过去的几十年,许多研究者都在研究如何提高氢液化的效率。提高氢液化的效率可以有效地减小氢液化设备运营的成本,也能间接地降低设备投资成本。根据主制冷系统采用的工质以及热力学循环的不同,现有的商业化液化装置一般为采用氦气为工质的布雷顿循环制冷和采用氢气作为工质的改进克劳德循环制冷。前者一般用于产能低于5吨/天的中型液化系统,后者一般用于大于5吨/天的大型液化系统。
传统的氢液化系统一般都包括预冷系统、主制冷系统、液化系统、低温换热器组。预冷系统一般采用较为成熟的工艺实现70~120K左右的制冷,为主制冷系统和液化系统提供预冷。主制冷系统设置压缩机和膨胀机,并通过低温换热器组与液化系统中的氢气进行换热,对氢气制冷,使其最终形成液氢产品。其中,压缩机用于对制冷工质压缩行程高压,为主制冷系统的循环管路提供高压工质,膨胀机用于将高压工质膨胀制冷,为液化系统提供冷量。低温换热器组中,配备多个正仲氢反应器(既可采用等温连续反应器,也可以采用绝热分步反应器),以将氢气催化为当前换热器温度下的平衡态氢气。由氢气气源提供的原料氢气依次通过多级换热器内的正仲氢反应器,最后以液态的形式进入液氢储罐并由产品出口流出。
传统的氢液化技术显然无法满足离网可再生能源绿色液氢生产所需的两个条件:
传统氢液化技术采用大型的压缩机、透平膨胀机以及换热器,降温过 程中流量较小,透平膨胀机远偏离正常工况,循环流量较小,对应制冷量也较小,因此其启动(降温)和关停需要很长的时间(一般需要6~18小时);而为了保护压缩机、膨胀机等动设备,启停流程非常繁复。采用变频压缩机,或者选择关停数台并联压缩机中的几台,可以一定程度上调节氢液化系统的产能,但是调节范围比较有限,且单位能效下降明显。
传统氢液化装置的核心部件,如压缩机、换热器、透平膨胀机等,均是数量少的大型定制部件,供货周期和价格均居高不下。作为典型的化工工程项目,设备和工程均需定制设计,项目从合同谈判、方案设计、工程土建到最后的调试运行,需要漫长的项目工程周期(24~36个月),非标产品和定制化的工程也必然造成高昂的固定资产投资。
发明内容
本发明从离网可再生能源绿色液氢生产模式的需求出发,提出了一种具有产能可调、快速启停功能,设备固定资产投资低,且能够快速投产的模块化氢液化系统。为此,本发明采用以下技术方案:
一种模块化氢液化系统,包括:一个或多个并联设置的液化模块,液化模块的氢气入口与氢气气源连接,液化模块的产品出口与一个或多个并联的液氢储罐相连;每个所述液化模块均为具有氢气冷却、液化并完成正仲氢转化,且能够独立启停的集成结构。
氢气气源、液氢储罐可以单独设置,也可以是本发明的组成部分。当作为本发明的组成部分时,本发明的模块化氢液化系统,包括氢气气源、液化模块和液氢储罐,所述氢气气源、液化模块和液氢储罐通过管路依次连接,来自氢气气源的室温氢气通过液化模块被冷却、液化并完成正仲氢反应,流入液氢储罐进行存储。
本发明所述液化系统包括一个或多个(数量为k,k≥1)并联的液化模块。所述液化模块是标准化的撬装设备,采用标准集装箱外形尺寸和接口,每个模块能够独立运行,将一定流量的氢气冷却、液化并完成正仲氢反应。并联的液化模块的液氢产品出口通过管路汇成一路总管,与液氢储罐相连接。这样的设计具有如下优点:
1.多个模块并联实现更大的氢液化产能;
2.独立运行其中一个或数个模块,可以实现产能的大范围调节,且不影响系统能效;
3.用户可以灵活方便的实现系统产能的扩大或缩小,从而降低投资的风险;
4.标准化模块有利于规模化生产,极大地降低设备成本;
5.降低了系统安装的复杂度,缩减了工程成本和周期;
6.撬装化模块便于库存、运输、吊装和布置。
作为优选,所述液化模块包括:
对氢气进行预冷冷却的预冷单元;
对预冷后氢气进行液化和正仲氢转化的低温液化转换单元;
对低温液化转换后的氢进行降压的膨胀单元,膨胀单元的出口作为产品出口与所述液氢储罐相连;
对低温液化转换单元提供制冷压缩功的压缩单元。
所述压缩单元通过管路与低温液化转换单元中的标准制冷单元相连接。
作为优选,所述预冷单元包括:
预冷换热器;
对预冷换热器提供冷源的预冷冷源;
依次与预冷换热器氢气流道相连的纯化器和预冷级正仲氢反应器。
所述预冷换热器包括氢气流道和预冷工质流道;预冷冷源通过预冷工质对氢气提供预冷冷量。所述预冷级正仲氢反应器的流道中装有正仲氢催化剂。实际连接时,所述氢气气源的接口、预冷换热器氢气流道、纯化器和预冷级正仲氢反应器通过管路相连;所述预冷冷源通过管路与预冷换热器的预冷工质流道冷端入口相连接,预冷工质流经预冷换热器的预冷工质流道,为流经预冷级换热器氢气流道、纯化器和预冷级正仲氢反应器的氢气提供冷量。实际运行时,来自氢气气源的压力为psupply的常温氢气进入首先通过预冷换热器预冷至预冷温度TpreC;然后经过纯化器中除去原料氢气中的气体和固体杂质,防止堵塞后续工艺流程,也确保液氢产品的纯度;预冷纯化后的原料氢气进入预冷级正仲氢反应器,在正仲氢催化剂的帮助 下实现正仲氢反应,使得氢气中的仲氢含量接近预冷温度TpreC下平衡氢的仲氢比例,并使得氢气温度恢复至预冷温度TpreC
作为优选,所述纯化器为低温纯化吸附器。所述纯化器可以是一个单独的低温纯化吸附器,也可以是两个或多个并联设置的低温纯化吸附器。作为进一步优选,所述纯化器包括两个通过阀门进行切换,交替接入管路的低温纯化吸附器,两个低温纯化吸附器并联组成一个典型的变温吸附装置,当其中一个低温纯化吸附器接入管路时,未接入管路的低温纯化吸附器将被洁净惰性热气体进行吹扫和加热实现再生,提高氢气低温纯化器的工作效率。
所述预冷级正仲氢反应器和对应的预冷换热器,可以采用集成的结构,也可以采用相互独立的结构。前者属于等温连续反应器,本质上是在低温换热器流道中填充催化剂,反应器即是换热器,即完成正仲氢催化反应同时实现入流氢气的冷却;后者是绝热分步反应器,本质上是一个单独的绝热容器中填充了催化剂,氢气首先通过对应的低温换热器冷却后进入该反应器进行催化反应,温度有所上升,然后再次通过后续的低温换热器进行冷却;等温连续反应器比绝热分步反应器效率更高,结构更紧凑;绝热分步反应器则加工制造简单,两种结构均可应用于本发明的技术方案中。
根据氢液化系统所在现场的不同条件,所述预冷冷源可以为开式低温冷冻液体预冷系统或者闭式低温制冷预冷系统。所述开式低温冷冻液体预冷系统采用液氮或者液化天然气作为冷源工质,前者特别适用于现场可获得稳定、廉价的液氮的情况,如附近有空分装置能够提供稳定和廉价的液氮资源;后者特别适合液化天然气港口等需要回收液化天然气汽化冷能的场合。所述闭式低温制冷预冷系统为透平布雷顿循环制冷系统、自复叠混合工质循环制冷系统或者回热式制冷系统,适合电价便宜或者现场不易获得液氮、液化天然气等低温液体的场景。
作为一种具体的优选方案,所述预冷冷源由如下预冷循环系统提供:
将预冷工质压缩至高压的透平压缩机;
驱动透平压缩机工作的驱动电机;
对透平压缩机输出的高压气体进行冷却的水冷器;
对预冷换热器的预冷工质入流流道输出的工质进行膨胀制冷的低温透平膨胀机;
所述预冷换热器内设有氢气流道、预冷工质入流流道、预冷工质回流流道;其中预冷工质入流流道的入口与所述水冷器出口相连,预冷工质入流流道的出口与低温透平膨胀机入口相连,预冷工质回流流道入口与低温透平膨胀机的出口相连,预冷工质回流流道出口与透平压缩机入口相连。
作为进一步优选,所述述透平压缩机通过连接在其与低温透平膨胀机之间的连接轴回收低温透平膨胀机产生的膨胀功。
作为优选,所述液化模块还包括真空绝热冷箱和绝热辐射屏。所述绝热辐射屏、预冷单元(低温部分)、膨胀单元以及低温液化转换单元的低温部分(包括标准制冷单元的冷指和正仲氢反应器)安装在真空绝热冷箱中,所述真空绝热冷箱内部被抽成真空,减少来自环境的对流和导热漏热。所述膨胀单元、低温液化转换单元的最低温部分设置在所述绝热辐射屏中。所述绝热辐射屏由导热良好的金属薄壳制成,表面进行抛光处理使得其具有很高的反射率,并通过热连接的方式与预冷冷源相连接,被预冷工质冷却至预冷温度TpreC;绝热辐射屏包围住所述膨胀单元和低温冷却子模块的最低温(冷头)部分,进一步降低从室温传递到上述部件上的辐射漏热。
作为优选,所述绝热辐射屏与预冷单元热连接。
作为优选,连接液化模块和液氢储罐的液氢传输管路是双层真空绝热管路。
作为优选,所述低温液化转换单元由一个或多个并联设置的低温液化组组成,每个低温液化组由一个或多个串联设置的低温冷却子模块组成,每个低温冷却子模块均包括标准制冷单元以及与标准制冷单元冷端热连接的正仲氢反应器。
作为进一步优选,针对每一个低温液化组,按照氢气流向,正仲氢反应器的氢气流道依次串联,且标准制冷单元的冷头温度或正仲氢反应器的温度依次降低。
进一步讲,本发明中,所述低温液化转换单元包括一个或者多个(数量为m,m≥1)低温液化组,采用多个低温液化组时,多个低温液化组 相互并联连接。来自预冷单元的原料氢气分为m路,分别与各个低温液化组相连。所述低温液化组包括一个或多个串联设置的(数量为n,n≥1)低温冷却子模块,所述低温冷却子模块均包括标准制冷单元和正仲氢反应器,所述正仲氢反应器安装在标准制冷单元的冷端,包括制冷工质流道和氢气流道。所述标准制冷单元的制冷工质直接在正仲氢反应器的制冷工质流道内流动,提供氢气冷却和正仲氢反应所需的冷量;所述正仲氢反应器的氢气流道内布置有正仲氢催化剂,用于催化正仲氢反应。
所述多个(n)低温冷却子模块的正仲氢反应器的氢气流道进出口以串联的形式依次连接,n个标准制冷单元工作在依次递减的温度Tc,1>Tc,2>…>Tc,n-1>Tc,n。实际运行时,来自预冷单元,温度为TpreC,仲氢含量接近预冷温度TpreC下平衡氢的仲氢比例的低温氢气,在每个低温液化组中,依次经过串联连接的n个正仲氢反应器,氢气在n个正仲氢反应器的氢气流道中被逐步冷却,且在正仲氢催化剂的帮助下实现逐步的正仲氢反应,达到节流前温度TpreExp,压力为ppreExp,仲氢含量达到95%以上。上述设计有如下优点:
1.采用数量众多的标准化低温冷却子模块,有利于大批量标准化生产和安装,可极大地降低设备成本;
2.独立运行并联的低温液化组中的其中一个或数个,可以实现产能的大范围调节,且不影响系统能效;
3.多个低温冷却子模块串联可以降低每个正仲氢反应器中制冷工质和氢气的换热温差,提高系统能效;
4.正仲氢反应器的设计使得制冷工质和氢气之间的换热路径尽可能的缩短(仅隔一道换热间壁),减小了换热温差,提高了系统能效;
5.独立的标准制冷单元提高了系统的稳定性,即使有个别制冷单元失效,仅会影响液化产能,而不至于造成整个系统停机;
6.独立的标准制冷单元可单独进行维护和更换,提升了维护的便捷性,降低了运营成本。
作为优选,为了提升正仲氢反应器中的换热效率,所述正仲氢反应器的工质流道和氢气流道内均设有强化换热的结构,如翅片;所述氢气流道 的进口和出口安装有合适孔隙尺寸的滤芯,用于防止正仲氢催化剂颗粒进入管路系统;所述正仲氢反应器的氢气流道内的正仲氢催化剂有多种不同的布置形式:
1.正仲氢催化剂完全充满流道:优点是填充工艺简单,保证催化剂充足,反应完全;
2.正仲氢催化剂不完全充满流道:优点是填充工艺简单,氢气流动时使得催化剂颗粒在流道内扬起,和氢气能够实现充分的接触和换热,有利于充分反应;
3.正仲氢催化剂分段填充,每段催化剂前后采用合适孔隙尺寸的滤芯进行固定,减少催化剂颗粒磨损和碎裂产生的微颗粒污染;
4.正仲氢催化剂用粘合剂固定在流道表面和强化换热结构表面:优点是流阻小,换热充分。
作为优选,所述标准制冷单元为回热式制冷机,具体可以是Gifford-McMahon制冷机、斯特林制冷机、索尔文制冷机、GM型脉管制冷机或者斯特林型脉管制冷机。采用回热式制冷机的优点有:
1.回热式制冷机在液氮温区至液氢温区之间具有比较可观的制冷效率;
2.回热式制冷机的核心部件结构简单,制造工艺要求不高,无需特别昂贵的材料,因此特别适合大规模批量生产,从而大幅降低每个标准制冷单元的成本;
3.回热式制冷机具有相当的可靠性,Gifford-McMahon制冷机、索尔文制冷机和GM型脉管制冷机的无维护运行寿命可超过2年,而斯特林制冷机和斯特林型埋管制冷机的无维护运行寿命可超过5年;
4.回热式制冷机一般采用活塞式的膨胀机构,因此在降温过程中仍然具有很大的排气量,制冷量也非常可观,使得其天然地具有快速降温的特性,更容易实现系统的快速启停。
所述膨胀单元可以为一个,来自m个并联低温液化组的氢气管路汇合后,与膨胀单元入口相连,膨胀单元出口与液氢产品出口相连;这种为m个并联低温液化组设置一个公用的膨胀单元的设计具有成本低的优势;
作为优选,所述膨胀单元为m个,每个膨胀单元入口和来自m个并联低温液化组的氢气管路分别相连,所有膨胀单元出口的管路汇合后与液氢产品出口相连接;这种为每个低温液化组单独设置膨胀单元的设计,提高了系统可靠性,单独控制膨胀单元还可以实现系统产能调节和每个模组的独立维护。
所述膨胀单元是毛细管、节流阀或者膨胀机。作为优选,所述膨胀单元是具备截止功能的可调节节流阀。
作为一种具体的优选方案,所述膨胀单元为并联设置的多个节流阀,每个节流阀分别与对应的低温液化转换单元的多个低温液化组连接。
作为优选,与液化模块的产品出口相连的是多个(数量为j,j≥2)并联的液氢储罐。来自液化系统的液氢产品总管,分为j路管路,分别通过低温阀门与各个液氢储罐相连接。液化模块生产的液氢依次存储到各个储罐中,存满的液氢储罐可以将其中的液氢转注至液氢槽车/船,进一步运运往液氢终端客户。采用这样的设计,可以通过关闭低温阀门的办法,将正在进行转注操作的液氢储罐与液化系统断开,液化系统生产的液氢仍然能够存储到其他液氢储罐中,确保液氢生产和存储的连续性。
作为进一步优选,所述液氢储罐是罐式集装箱,存满液氢的罐式集装箱可由集装箱拖车/船转运往液氢终端客户,运离的罐式集装箱位放置新的空罐箱,连接到液化模块。采用标准化的罐式集装箱,取消了从固定式液氢储罐往液氢槽车/船转注的过程,减少了流程的闪蒸损失;对于规模化的应用,大量标准化的罐式集装箱配合集装箱拖车/船较半定制化的固定式储罐配合液氢槽车/船的组合具有成本优势。
液氢储罐转注、罐式集装箱更换或者长时间存储时,部分液氢会汽化,使得液氢储罐压力升高,最终可能引出安全泄放系统动作,造成氢气的排放浪费。为了将液氢储罐中的闪蒸氢气重新液化,作为优选,从液氢储罐顶部引出闪蒸汽回气管路连接其中的一个或几个液化模块。即所述液氢储罐顶部设有闪蒸汽回气管,该闪蒸汽回气管其中一个或多个液化模块中的氢气管路相连。
作为一种优化方案,在液化模块中,闪蒸汽回气管路连接一个低温压 缩机,然后连接到一个或几个低温液化组中倒数(按照氢气流向的最后第一和第二个)第一和第二个低温冷却子模块之间的管路。闪蒸氢气经过低温压缩机压缩至高压后,与来流的原料氢气汇合,进入最后一个低温冷却子模块被冷却并液化。
或者,作为另外一种优化方案,在液化模块中,闪蒸汽回气管路连接一个引射器的低压入口,引射器的高压入口与来自一个或多个低温液化组中倒数(最后)第二个低温冷却子模块中的正仲氢反应器的原料氢气管路相连,引射器的出口与低温液化组中的最后一个低温冷却子模块中的正仲氢反应器相连接。引射器利用大流量高压的原料氢气流作为主流,泵吸小流量低压的闪蒸氢气,两股氢气在引射器中混合,然后进入最后一个低温冷却子模块被冷却并液化。相比较低温压缩机,引射器无运动部件,成本低,可靠性高。
所述压缩单元为由多个压缩机组成的压缩机组,多个压缩机分别对低温液化转换单元提供制冷压缩功;
作为优选,所述压缩机单元包括m*n个独立的压缩单元,每个压缩单元单独与各个标准制冷单元相连接。采用这种技术方案,可以轻易地实现每个标准制冷单元的单独启停,小型压缩单元更利于大规模批量生产,降低成本。
作为优选,所述标准制冷单元冷端内设有氢气管路和冷工质管路,所述氢气管路内一部分或全部装有正仲氢催化剂,该一部分或全部氢气管路同时构成所述的正仲氢反应器。
与现有技术相比,本发明的有益效果为:通过串联、并联标准化生产的,数量众多的制冷单元,构成不同层面的模块,来实现氢气的液化,能够有效的利用标准制冷单元规模化生产的效益,大幅度降低设备成本。通过控制开启不同层级模块和制冷单元的数量,本发明还能够实现大范围内的液氢产能调节。此外,利用回热式制冷机作为标准制冷单元,可以实现快速的降温和即时停机,是的系统具有快速启停的优点。上述优点使得本发明特别适用于和可再生能源匹配生产绿色液氢。
附图说明
图1为本发明的模块化氢液化系统的第一种实施方式示意图。
图2为本发明的模块化氢液化系统中的液化系统的第一种实施方式示意图。
图3为本发明的模块化氢液化系统中的液化系统的第二种实施方式示意图。
图4为本发明的模块化氢液化系统的第二种实施方式示意图。
图5为本发明的模块化氢液化系统的第二种实施方式中液化系统的第一种实施方式示意图。
图6为本发明的模块化氢液化系统的第二种实施方式中液化系统的第二种实施方式示意图。
其中附图标记与部件名称的对应关系为:
1.氢气气源;2.液化系统;2.1.~2.k.液化模块;3.液氢储罐;3.1~3.j.
液氢储罐;
21.预冷单元;22.低温液化转换单元低温液化组;22.1.~22.m.低温
液化组;23.膨胀单元;24.液氢产品出口;25.压缩单元;26.真空绝热冷箱;27.绝热辐射屏;28.闪蒸汽回气管路;31.低温阀门;32.回气控制阀;211预冷冷源;212.预冷换热器;212a/b.一级/二级预冷换热器;213.纯化器;213a/b.低温纯化吸附器;214.预冷级正仲氢反应器;215.绝热辐射屏冷却换热器;221.低温冷却子模块;222.标准制冷单元;223.正仲氢反应器;231.节流阀;251.压缩机组;252.高压供气管路;253.低压回气管路。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清晰,下面结合本发明实施例的附图,对本发明实施例的进行进一步详细描述,但是所描述的实施例是本发明的部分实施例,不是全部。基于本发明的实施例,本领域的技术人员非创造性劳动的其他实施例都属于本发明保护的范围。
实施案例1:
如图1所示,模块化氢液化系统,包括氢气气源1、液化系统2和液 氢储罐组3。氢气气源1、液化系统2和液氢储罐组3通过管路依次连接。
其中,液化系统2包括一个或多个(k≥1)并联的液化模块(2.1~2.k)。液化模块2.1~2.k是标准化的撬装设备,即将具有预冷、液化和转化功能部件、中间管道、控制阀等集成在一个整体上,采用标准集装箱外形尺寸,每个模块能够独立运行,将一定流量的氢气冷却、液化并完成正仲氢反应。液氢储罐组3包括两个或两个以上(j≥2)并联的液氢储罐3.1~3.j;液氢储罐3.1~3.j是罐式集装箱。
液化系统2中各个液化模块2.1~2.k的液氢产品出口24通过管路汇总成一路液氢产品总管,然后再分为j路管路,分别连接到各个液氢储罐3.1~3.j。液化系统2和液氢储罐3.1~3.j之间的管路为双层真空绝热的低温液氢管路。
采用本实施例实现氢气液化的工作原理如下:
来自氢气气源1的原料氢气,温度为常温Tamb(263~313K),压力为psupply(10~26bar),仲氢含量约为25%。原料氢气被分为k路,分别进入液化系统2中的各个液化模块2.1~2.k,被冷却、液化并完成正仲氢反应,流入液氢储罐3.1~3.j进行存储。从液化模块2.1~2.k中流出的产品液氢压力为pstore(1~6bar),温度为Tproduct,仲氢含量≥95%。所述产品液氢为过冷液体,即产品液氢温度小于其压力下的氢气饱和温度(Tproduct<Tsat(pstore))。通过控制低温阀门31的开关,产品液氢依次注满各个液氢储罐3.1~3.j。存满液氢的罐式集装箱由集装箱车转运往液氢终端客户,运离的罐式集装箱位放置新的空罐,连接到液化系统。
整个模块化氢液化系统的液氢产能可以通过启动不同数量的液化模块在很大的范围内调节,由于每个液化模块都是独立运行的单位,因此系统的整体能效不会因为产能调节而有太大的变化。
实施案例2:
如图2所示,模块化氢液化系统中的液化模块,包括预冷单元21、低温液化转换单元22、膨胀单元23、液氢产品出口24和压缩单元25;预冷单元21包括预冷冷源211、预冷换热器212、纯化器213和预冷级正仲氢反应器214;预冷级正仲氢反应器214填充有正仲氢催化剂;预冷换热器 212中设有供氢气通过的氢气流道和供预冷工质通过的预冷工质流道;低温液化转换单元22包括一个或者多个(m≥1)并联的独立的低温液化组22.1~22.m构成;每个低温液化组包括一个或多个(n≥1)串联的独立的低温冷却子模块221;低温冷却子模块221包括标准制冷单元222和正仲氢反应器223;正仲氢反应器223包括制冷工质流道和氢气流道,氢气流道内设有正仲氢催化剂。
氢气气源1、预冷换热器212的氢气流道、纯化器213和预冷级正仲氢反应器214通过管路依次相连或者通过接口直接密封对接;所述预冷冷源通过管路与预冷换热器的预冷工质流道冷端入口相连接,预冷工质流经预冷换热器的预冷工质流道,为流经预冷级换热器氢气流道、纯化器和预冷级正仲氢反应器的氢气提供冷量;预冷级正仲氢反应器214出口管路分为m路,并联连接m个低温液化组22.1~22.m;每一个低温液化组中,n个正仲氢反应器223通过管路依次串联连接;每个正仲氢反应器223与标准制冷单元222的冷端连接,标准制冷单元222中的制冷工质通过正仲氢反应器223的制冷工质流道,用于提供冷量;m个并联的低温液化组的出口管路连接到膨胀单元23,膨胀单元23的出口与液氢产品出口24相连接;压缩单元25通过供气管线与m*n个标准制冷单元222相连接,用于驱动标准制冷单元222提供低温制冷。
采用本实施例实现氢气液化的工作原理如下:
来自氢气气源1的原料氢气,温度为常温Tamb(263~313K),压力为psupply(10~26bar),仲氢含量约为25%,首先进入预冷换热器212的氢气流道,被预冷至预冷温度TpreC。根据预冷冷源的不同形式和预冷工质,预冷温度在60至150K之间。被预冷的氢气随后进入纯化器213,除去水、CO2、N2等残余杂质气体及固体颗粒物,然后进入预冷级正仲反应器214,在反应器中的正仲氢催化剂的帮助下完成正仲氢反应并重新冷却至预冷温度TpreC。预冷级正仲氢反应器214中的催化剂量应当足够多,确保离开预冷单元21的氢气尽可能接近平衡态氢气(即仲氢含量尽可能接近预冷温度TpreC下的平衡氢仲氢含量)。离开预冷单元21的氢气被分为m路,分别进入并联的m个低温液化组22.1~22.m。在低温液化转换单元22中, 每个低温液化组中的n个标准制冷单元222工作在依次递减的温度Tc,1>Tc,2>…>Tc,n-1>Tc,n,氢气依次通过n个串联的正仲氢反应器223;每个正仲氢反应器223与标准制冷单元222的冷端连接,标准制冷单元222产生的冷量通过其制冷工质在正仲氢反应器223的制冷工质流道中流动传递给在氢气流道中流动的氢气;氢气在n个正仲氢反应器的氢气流道中被逐步冷却,且在正仲氢催化剂的帮助下实现逐步的正仲氢反应,达到节流前温度TpreExp,仲氢含量达到95%以上,压力为ppreExp(ppreExp=psupply–Δp,其中Δp为氢气经过预冷单元21和低温液化转换单元22的沿程压降);此时,氢气处于过冷状态。
经过低温液化转换单元22冷却至过冷态的氢气进入膨胀单元23,根据膨胀单元的不同选择,氢气在膨胀单元23中的压力降至pproduct的过程可能经历等熵膨胀、等焓膨胀或者介于两者之间的多变过程,氢气温度可能降低(接近等熵膨胀),也可能增加(接近等焓膨胀)。氢气离开膨胀单元23的温度为Tproduct,仍然为具有一定过冷度的过冷液体,这样可以确保液氢在传输到液氢储罐3.1~3.j的过程中仍然保持液态;膨胀之后,过冷液氢产品最终通过液氢产品出口,输送至下游的管路最终存储到液氢储罐中。
模块化氢液化系统中的低温液化转换单元22所包含的标准制冷单元222是回热式制冷机,具体可以是Gifford-McMahon制冷机、斯特林制冷机、索尔文制冷机、GM型脉管制冷机或者斯特林型脉管制冷机。压缩单元25通过供气管路连接所有的标准制冷单元222,用于驱动回热式制冷机工作,为正仲氢反应器223提供冷量,实现氢气的冷却和正仲氢反应。
25可以采用的集成的压缩机组或者多个独立压缩机,每个压缩机具有独立的压缩功能,也可以是大型的单个压缩机。优选集成的压缩机组或多个独立压缩机,这样可以方便控制,保证整体的能效。特别是,当需要关闭其中一个或多个低温液化组时,采用集成的压缩机组,可以关闭对应的压缩机组,不会影响整个压缩单元的能效。
实施案例3:
如图3所示,模块化氢液化系统中,一种预冷冷源211采用采用了透 平布雷顿循环制冷系统、标准制冷单元222采用Gifford-McMahon制冷机、压缩单元25采用多个独立压缩机单元、膨胀单元23采用多个并联节流控制阀作为膨胀元件、采用真空绝热冷箱26和绝热辐射屏27作为系统绝热的液化系统2更详细的示意。与实施案例2不同之处在于:
预冷换热器212为串联的二级预冷结构,包括一级预冷换热器212a和二级预冷换热器212b。低温吸附纯化器213由两个并联的低温吸附纯化器213a和低温吸附纯化器213b组成。
同时,本实施案例中,预冷系统21采用了氮气透平布雷顿制冷循环作为预冷冷源211,包括驱动电机2111、透平压缩机2112、水冷器2113、低温透平膨胀机2114、连接轴2115和绝热辐射屏冷却换热器215;上述部件连接顺序如下:透平压缩机2112高压出口、水冷器2113、一级预冷换热器212a热端的预冷工质入流流道入口、一级预冷换热器212a冷端的预冷工质入流流道出口、二级预冷换热器212b热端的预冷工质入流流道入口、二级预冷换热器212b冷端的预冷工质入流流道出口、低温透平膨胀机2114入口、低温透平膨胀机2114出口、绝热辐射屏冷却换热器215、二级预冷换热器212b冷端的预冷工质回流流道入口、二级预冷换热器212b热端的预冷工质回流流道出口、一级预冷换热器212a冷端的预冷工质回流流道入口、一级预冷换热器212a热端的预冷工质回流流道出口和透平压缩机2112低压入口依次相连形成回路。透平压缩机2112和低温透平膨胀机2114通过连接轴2115机械耦合,连接轴2115上设有驱动电机2111。
本实施案例中,采用透平布雷顿循环制冷系统的预冷冷源211工作原理如下:预冷工质经由透平压缩机2112压缩至高压,通过水冷器2113将压缩产生的压缩热带走降温至室温左右,经过压缩、冷却之后的预冷工质先后进入一级预冷换热器212a和二级预冷换热器212b,被回流的冷工质冷却至100~120K左右;随后预冷工质进入低温透平膨胀机2114进行膨胀制冷,根据工质和膨胀后压力不同,预冷工质温度最终可降至80~100K左右;低温低压的预冷工质依次返回绝热辐射屏冷却换热器215、二级预冷换热器212b和一级预冷换热器212a对入流的高压工质以及原料氢气进 行预冷,复温至室温左右离开一级预冷换热器212a,最终返回到透平压缩机2112低压入口。驱动电机2111提供主驱动力驱动透平压缩机2112,低温透平膨胀机2114的膨胀功通过连接轴2115进行回收,为透平压缩机2112提供辅助驱动力。
本实施案例对氢气的预冷工艺流程做了更为详细的描述,氢气气源1与一级预冷换热器212a热端的氢气流道入口相连,入流的原料氢气依次通过一级预冷换热器212a和二级预冷换热器212b的氢气流道,然后与并联的低温吸附纯化器213a和213b相连。这里的低温吸附纯化器213a和213b组成一个典型的变温吸附装置,两个吸附器通过阀门进行切换,交替接入管路,未接入管路的吸附器将被洁净惰性热气体进行吹扫和加热实现再生。低温纯化吸附器213a和213b并联后通过管路与二级预冷换热器212b热端的入口相连,进入位于二级预冷换热器212b中的预冷级正仲氢反应器214。在本实施例中,预冷级正仲氢反应器214是耦合在二级预冷换热器212b中的等温反应器,即将催化剂颗粒填充在换热器换热通道中,在换热的同时实现正仲氢催化反应。这种等温反应器具有较高的反应效率和较低的不可逆损失。原料氢气离开预冷级正仲氢反应器214后,分别与并联的各个低温液化组22.1~22.m的第一个正仲氢反应器223入口相连。
本实施案例中,采用Gifford-McMahon制冷机的标准制冷单元222的冷端与正仲氢反应器223连接,Gifford-McMahon制冷机运行时,其制冷工质在冷端膨胀,并交替流经正仲氢反应器223中的制冷工质流道,为流经正仲氢反应器223氢气流道的氢气提供冷却和正仲氢反应所需的冷量。每经过一个正仲氢反应器223,氢气被逐步冷却并完成正仲氢反应;经过n个串联的正仲氢反应器223之后,氢气达到节流前温度TpreExp,仲氢含量达到95%以上,压力为ppreExp(ppreExp=psupply–Δp,其中Δp为氢气经过预冷单元21和低温液化转换单元22的沿程压降);此时,氢气处于过冷状态。
本实施案例中,压缩单元25由m*n台独立运行的压缩机单元251构成,每个压缩机单元251,通过高压供气管252和低压回气管253与每个标准制冷单元222的Gifford-McMahon制冷机连接,用于驱动 Gifford-McMahon制冷机工作。独立压缩机单元251的设计可以实现规模化批量化生产,从而降低压缩单元的成本;另外,独立运行的压缩机单元251可以实现每个标准制冷单元222的独立启停,使得系统可以在更大范围进行工况调节,可靠性也更高。
本实施案例对膨胀单元23做了更为详细的描述:膨胀单元23包括m个独立的具备截止功能的可调节节流阀231。来自m个并联的低温液化组22.1~22.m中最后一个正仲氢反应器223的氢气,分别与m个独立的节流阀231相连;m路氢气在m个节流阀231中等焓节流膨胀,压力由ppreExp降低至Tproduct,温度由TpreExp略微升高至Tproduct;节流后的氢气仍然是具有一定过冷度的液体,m路节流后的氢气汇合成一路后,与液氢产品接口24相连。
为了降低环境向系统低温部分的漏热,本实施案例还采用了采用真空绝热冷箱26和绝热辐射屏27作为系统绝热。绝热辐射屏27、预冷单元21、膨胀单元23以及低温冷却子模块的低温部分(包括标准制冷单元的冷指和正仲氢反应器)安装在真空绝热冷箱26中。真空绝热冷箱26内部被抽成真空,减少来自环境的对流和导热漏热。绝热辐射屏27由导热良好的金属薄壳制成,表面进行抛光处理使得其具有很高的反射率,通过热连接的方式与绝热辐射屏冷却换热器215相连接,被冷却至预冷温度TpreC;绝热辐射屏包围住所述膨胀单元和低温冷却子模块的最低温部分,进一步降低从室温传递到上述部件上的辐射漏热。
实施案例4:
如图4所示,一种采用回气管路回收闪蒸氢气再液化的模块化氢液化系统。液氢储罐组3在转注(将液氢从固定式储罐灌注到液氢槽车/船等运输工具)、更换罐式集装箱或者长时间存储时,部分液氢会汽化,使得液氢储罐压力升高,最终可能引出安全泄放系统动作,造成氢气的排放浪费。本实施案例中,采用回气管路将因为闪蒸氢气产生过高压力的液氢储罐中的闪蒸氢气回收至液化系统2中的其中一个液化模块(液化模块2.1~2.k中的任一一个)中进行再液化。本实施案例中,与实施案例2不同之处在于:还包括了闪蒸汽回气管路28和回气控制阀32。闪蒸汽回气管路从每 个液氢储罐的顶部引出,经过一个回气控制阀32,然后j路来自各个液氢储罐的闪蒸汽回气管路汇合成一路,与液化系统2中的其中一个液化模块相连接。
以返回液化模块2.1为例,本实施案例的工作原理如下:当液氢储罐的压力高于设定值preV,high,set,低温阀门31关闭,回气控制阀32开启,液氢储罐中闪蒸氢气通过闪蒸汽回气管路28返回液化模块2.1。回流至液化模块2.1的闪蒸氢气被再液化,其工作原理将在实施案例5和6中被详细叙述。当液氢储罐中闪蒸氢气不断流出,罐内压力逐渐减小,当压力小于设定值preV,low,set,低温阀门31开启,回气控制阀32关闭,液氢储罐停止回气,继续接纳来自液化系统2的液氢产品。
实施案例5:
如图5所示,一种采用回气管路回收闪蒸氢气再液化的模块化氢液化系统中的液化系统2更详细的示意。与实施案例3不同之处在于,本实施案例还包括了闪蒸汽回气管路28和引射器291。闪蒸汽回气管路28与引射器291的低压入口相连接,引射器291的高压入口与来自低温液化组22.1(当然也可以是低温液化组22.2~22.m中任一一个模组)中倒数第二个低温冷却子模块221(1.n-1)中的正仲氢反应器223的氢气流道出口相连,引射器291的出口与低温液化组22.1中的最后一个低温冷却子模块中221(1.n)的正仲氢反应器223的氢气流道入口相连接。引射器利用大流量高压的原料氢气流作为主流,泵吸小流量低压的闪蒸氢气,两股氢气在引射器中混合,然后进入最后一个正仲氢反应器223被冷却并液化。
实施案例6:
如图6所示,一种采用回气管路回收闪蒸氢气再液化的模块化氢液化系统中的液化系统2另种技术方案的详细示意。与实施案例5不同之处在于,本实施案例用低温压缩机292替代了引射器291。闪蒸汽回气管路28与低温压缩机292的低压入口相连接,低温压缩机292的高压出口与来自低温液化组22.1中倒数第二个低温冷却子模块221(1.n-1)中的正仲氢反应器223的氢气流道出口相连,原料氢气和经压缩的闪蒸氢气汇合后,进入低温液化组22.1中的最后一个低温冷却子模块221(1.n)中的正仲氢反 应器223的氢气流道,被冷却并液化。

Claims (14)

  1. 一种模块化氢液化系统,其特征在于,包括:一个或多个并联设置的液化模块,液化模块的氢气入口与氢气气源连接,液化模块的产品出口与一个或多个并联的液氢储罐相连;每个所述液化模块均为具有氢气冷却、液化并完成正仲氢转化,且能够独立启停的集成结构。
  2. 根据权利要求1所述的模块化氢液化系统,其特征在于,所述液化模块包括:
    对氢气进行预冷冷却的预冷单元;
    对预冷后氢气进行低温液化和正仲氢转化的低温液化转换单元;
    对低温液化转换后的氢进行降压的膨胀单元,膨胀单元的出口与所述液氢储罐相连;
    对低温液化转换单元提供制冷压缩功的压缩单元。
  3. 根据权利要求2所述的模块化氢液化系统,其特征在于,所述预冷单元包括:
    预冷换热器;
    对预冷换热器提供冷源的预冷冷源;
    依次与预冷换热器氢气流道相连的纯化器和预冷级正仲氢反应器。
  4. 根据权利要求3所述的模块化氢液化系统,其特征在于,所述预冷冷源由如下预冷循环系统提供:
    将预冷工质压缩至高压的透平压缩机;
    驱动透平压缩机工作的驱动电机;
    对透平压缩机输出的高压气体进行冷却的水冷器;
    对预冷换热器的预冷工质入流流道输出的工质进行膨胀制冷的低温透平膨胀机;
    所述预冷换热器内设有氢气流道、预冷工质入流流道、预冷工质回流流道;其中预冷工质入流流道的入口与所述水冷器出口相连,预冷工质入流流道的出口与低温透平膨胀机入口相连,预冷工质回流流道入口与低温透平膨胀机的出口相连,预冷工质回流流道出口与透平压缩机入口相连。
  5. 根据权利要求4所述的模块化氢液化系统,其特征在于,所述述透平压缩机通过连接在其与低温透平膨胀机之间的连接轴回收低温透平 膨胀机产生的膨胀功。
  6. 根据权利要求2所述的模块化氢液化系统,其特征在于,所述液化模块还包括真空绝热冷箱和绝热辐射屏,该绝热辐射屏与预冷单元热连接;所述膨胀单元、低温液化转换单元的最低温部分设置在所述绝热辐射屏中;所述绝热辐射屏、预冷单元的低温部分、低温液化转换单元的低温部分设置在所述真空绝热冷箱中。
  7. 根据权利要求2所述的模块化氢液化系统,其特征在于,所述低温液化转换单元由一个或多个并联设置的低温液化组组成,每个低温液化组由一个或多个串联设置的低温冷却子模块组成,每个低温冷却子模块均包括标准制冷单元以及与标准制冷单元冷端热连接的正仲氢反应器。
  8. 根据权利要求7所述的模块化氢液化系统,其特征在于,针对每一个低温液化组,按照氢气流向,正仲氢反应器的氢气流道依次串联,且标准制冷单元的冷头温度或正仲氢反应器的温度依次降低。
  9. 根据权利要求1所述的模块化氢液化系统,其特征在于,所述液氢储罐是罐式集装箱。
  10. 根据权利要求1所述的模块化氢液化系统,其特征在于,所述液氢储罐顶部设有闪蒸汽回气管,该闪蒸汽回气管与其中一个或多个液化模块中的氢气管路相连。
  11. 根据权利要求7所述的模块化氢液化系统,其特征在于,所述液氢储罐顶部设有闪蒸汽回气管,该闪蒸汽回气管与其中一个或多个液化模块中的氢气管路相连;
    还包括低温压缩机,该低温压缩机入口与所述闪蒸汽回气管相连,低温压缩机出口与一个或几个低温液化组中最后第一和第二个低温冷却子模块之间的管路相连;
    或者,还包括引射器,该引射器的低压入口与所述闪蒸汽回气管相连,引射器的高压入口与一个或几个低温液化组中倒数最后第二个低温冷却子模块的出口管路相连;引射器的出口与对应低温液化组中最后第一个低温冷却子模块的入口管路相连
  12. 根据权利要求2所述的模块化氢液化系统,其特征在于,所述压 缩单元为由多个压缩机组成的压缩机组,多个压缩机分别对低温液化转换单元提供制冷压缩功。
  13. 根据权利要求7所述的模块化氢液化系统,其特征在于,所述膨胀单元为并联设置的多个节流阀,每个节流阀分别与对应的低温液化组出口相连。
  14. 根据权利要求7所述的模块化氢液化系统,其特征在于,所述标准制冷单元冷端内设有氢气管路和冷工质管路,所述氢气管路内一部分或全部装有正仲氢催化剂,该一部分或全部氢气管路同时构成所述的正仲氢反应器。
PCT/CN2023/089597 2022-05-25 2023-04-20 模块化氢液化系统 WO2023226639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210577704.XA CN117168087A (zh) 2022-05-25 2022-05-25 模块化氢液化系统
CN202210577704.X 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226639A1 true WO2023226639A1 (zh) 2023-11-30

Family

ID=88918404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089597 WO2023226639A1 (zh) 2022-05-25 2023-04-20 模块化氢液化系统

Country Status (2)

Country Link
CN (1) CN117168087A (zh)
WO (1) WO2023226639A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906996A (zh) * 2024-03-14 2024-04-19 中太(苏州)氢能源科技有限公司 氢气透平膨胀机空气模化方法、试验台及试验方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466990A (zh) * 2006-06-12 2009-06-24 林德股份公司 用于液化氢的方法
US20170205140A1 (en) * 2016-01-20 2017-07-20 Hylium Industries, Inc. Small-Scale Hydrogen Liquefaction System Equipped with Cryocooler
CN114353432A (zh) * 2021-04-16 2022-04-15 上海司氢科技有限公司 采用磁制冷的氢液化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466990A (zh) * 2006-06-12 2009-06-24 林德股份公司 用于液化氢的方法
US20170205140A1 (en) * 2016-01-20 2017-07-20 Hylium Industries, Inc. Small-Scale Hydrogen Liquefaction System Equipped with Cryocooler
CN114353432A (zh) * 2021-04-16 2022-04-15 上海司氢科技有限公司 采用磁制冷的氢液化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906996A (zh) * 2024-03-14 2024-04-19 中太(苏州)氢能源科技有限公司 氢气透平膨胀机空气模化方法、试验台及试验方法
CN117906996B (zh) * 2024-03-14 2024-05-28 中太(苏州)氢能源科技有限公司 氢气透平膨胀机空气模化方法、试验台及试验方法

Also Published As

Publication number Publication date
CN117168087A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
CN110657633B (zh) 一种氢液化系统
CN112361712B (zh) 一种采用氦气制冷循环系统的氢气液化设备
US3511058A (en) Liquefaction of natural gas for peak demands using split-stream refrigeration
CN112361711A (zh) 一种设置有三个串联的透平膨胀机机组的氢气液化设备
EP4365526A1 (en) Hydrogen liquefaction system
CN113776275A (zh) Lng冷能预冷下的氢气液化方法
CN211601324U (zh) 一种正-仲氢转化系统
CN114034158B (zh) 一种氢气液化装置
CN102200370A (zh) 一种膨胀式可燃气体液化装置及流程
WO2023226639A1 (zh) 模块化氢液化系统
CN214095167U (zh) 一种采用氦气制冷循环系统的氢气液化设备
CN115451647B (zh) 一种集成液化空气储能系统的氢液化系统
CN114353432A (zh) 采用磁制冷的氢液化装置
CN114061264A (zh) 一种具有吸附器再生管路的氢气液化装置
CN103398545B (zh) 一种原料气多级压缩节流的生产液化天然气的系统
CN202101512U (zh) 一种膨胀式可燃气体液化装置
CN114777412B (zh) 一种具有热虹吸式氢过冷器的氢气液化装置
CN208398489U (zh) 液氮预冷装置
CN116928578A (zh) 一种低温储氢系统
CN114777411A (zh) 一种具再生管路的氢气液化装置
CN114963688B (zh) 采用低温透平压缩循环的氢液化系统
CN216204684U (zh) 基于双回路循环氢气制冷的氢气液化系统
CN108489194A (zh) 液氮预冷装置
CN106016967B (zh) 一种回热式混合工质制冷气体液化循环系统
CN211977383U (zh) 氦液化及不同温度等级氦气冷源供给装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810713

Country of ref document: EP

Kind code of ref document: A1