WO2023225978A1 - Mems器件及其制备方法、电子设备 - Google Patents

Mems器件及其制备方法、电子设备 Download PDF

Info

Publication number
WO2023225978A1
WO2023225978A1 PCT/CN2022/095434 CN2022095434W WO2023225978A1 WO 2023225978 A1 WO2023225978 A1 WO 2023225978A1 CN 2022095434 W CN2022095434 W CN 2022095434W WO 2023225978 A1 WO2023225978 A1 WO 2023225978A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
opening
mems device
openings
protruding structure
Prior art date
Application number
PCT/CN2022/095434
Other languages
English (en)
French (fr)
Inventor
郭景文
刘建兴
赵建昀
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001522.6A priority Critical patent/CN117730050A/zh
Priority to PCT/CN2022/095434 priority patent/WO2023225978A1/zh
Publication of WO2023225978A1 publication Critical patent/WO2023225978A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the invention belongs to the technical field of micro-electromechanical systems, and specifically relates to a MEMS device, a preparation method thereof, and electronic equipment.
  • MEMS Micro-Electro-Mechanical System
  • MEMS is a micro-system that integrates micro-sensors, micro-actuators, micro-mechanical structures, micro-power and micro-energy, signal processing and control circuits, high-performance electronic integrated devices, interfaces, and communications. device or system.
  • MEMS is a revolutionary new technology that is widely used in high-tech industries. It is a key technology related to the country's scientific and technological development, economic prosperity and national defense security. With the rapid development of the information age, MEMS devices with high integration, miniaturization, multi-function and low cost will bring huge economic value.
  • MEMS devices have suspended movable structures.
  • driving signals need to be applied for driving, such as electrostatic driving, electromagnetic driving, thermal driving, etc.
  • surface contact will occur during the movement of suspended structures driven by electrostatics, which can easily produce adhesion effects and lead to functional failure. Therefore, how to solve the adhesion failure of MEMS devices is a very critical issue. This problem is also a key issue that needs to be solved in current actual research projects.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provide a MEMS device, a preparation method thereof, and electronic equipment.
  • Embodiments of the present disclosure provide a MEMS device, which includes: a first dielectric substrate, a first component disposed on the first dielectric substrate, the first component and the first dielectric substrate forming an active space;
  • the first component has a first part corresponding to the active space; wherein the first part has at least one first opening, and a protruding structure is provided on a side of the first part close to the first dielectric substrate; There is no overlap between the protruding structure and the orthographic projection of the first opening on the first dielectric substrate, and the thickness of the protruding structure is less than the height of the active space.
  • the first part has a plurality of first openings, and the plurality of first openings are divided into a plurality of first opening groups arranged side by side along the first direction; the first opening in each first opening group is along the The second direction is arranged side by side; the size of each first opening located in the same first opening group is equal.
  • the first part has a plurality of first openings, and the plurality of first openings are divided into a plurality of first opening groups arranged side by side along the first direction; the first opening in each first opening group is along the The second direction is arranged side by side; the sizes of adjacently arranged first openings located in the same first opening group are equal.
  • the first part includes a plurality of nested first opening groups, the first openings in each first opening group are arranged sequentially along the circumferential direction of the first opening group, and the same first opening group Each first opening in the first opening group has the same size.
  • the first openings in the adjacent first opening groups have different sizes.
  • the second film layer includes a plurality of nested first opening groups, the first openings in each first opening group are arranged sequentially along the circumferential direction of the first opening group, and the same first opening group
  • the adjacently arranged first openings in the first opening group have different sizes.
  • the convex structure includes one or more combinations of a pyramid, a cone, a pyramid, a truncated cone.
  • the shape of the first opening includes one or more combinations of a circle, an ellipse, a polygon.
  • the protruding structure is disposed on the first dielectric substrate and has a certain distance from the first part.
  • the material of the protruding structure includes inorganic material.
  • the protruding structure is disposed on the first part and has a certain distance from the first dielectric substrate.
  • the material of the protruding structure includes organic material.
  • the first component includes a bridge deck structure and at least one connecting arm; the bridge deck structure is fixed to the first dielectric substrate through a connecting arm, and the bridge deck structure is used as the first part; the MEMS
  • the device further includes a driving electrode provided on the first dielectric substrate, and an interlayer insulating layer covering the driving electrode; the bridge structure spans the driving electrode; the bridge structure is connected to the driving electrode and covers the driving electrode. There is a certain distance between the interlayer insulating layers on the driving electrodes.
  • the first dielectric substrate has a first groove part; the first part and the first groove part form the movable space; the first component includes an elastic layer and a third elastic layer which are sequentially arranged on the first dielectric substrate. an electrode layer, a piezoelectric layer and a second electrode layer.
  • An embodiment of the present disclosure provides a method for manufacturing the above-mentioned MEMS device, which includes:
  • a first component is formed on a side of the first sacrificial layer away from the first dielectric substrate, and a first part of the first component has at least one first opening; the first component is surrounded by the first dielectric substrate. into an activity space;
  • the sacrificial layer is etched by dry etching to form a protruding structure located on the side of the first part close to the first dielectric substrate; wherein the protruding structure and the first opening are on the first side of the first part.
  • Orthographic projections on a dielectric substrate have no overlap, and the thickness of the protruding structure is less than the height of the active space.
  • An embodiment of the present disclosure provides an electronic device, which includes the above-mentioned MEMS device.
  • Figure 1 is a schematic diagram of the open state of an exemplary MEMS device as a switching device.
  • Figure 2 is a schematic diagram of the off-state of an exemplary MEMS device as a switching device.
  • FIG. 3 is a schematic diagram of the open state of an exemplary MEMS device as another switching device.
  • Figure 4 is a schematic diagram of the off-state of an exemplary MEMS device as another switching device.
  • Figure 5 is a schematic diagram of an exemplary MEMS device as a vibration device.
  • FIG. 6 is a schematic diagram of a first example of a MEMS device as a switching device implemented in the present disclosure.
  • FIG. 7 is a top view of a first example of a MEMS device as a first component of a switching device according to the embodiment of the present disclosure.
  • FIG. 8 is a manufacturing flow chart of a first example of a MEMS device as a switching device implemented in the present disclosure.
  • FIG. 9 is a cross-sectional view perpendicular to the first dielectric substrate of the protruding structure in the MEMS device according to the first example of implementation of the present disclosure.
  • FIG. 10 is a schematic diagram of a first example of a MEMS device used as a vibration device implemented in the present disclosure.
  • FIG. 11 is a top view of a MEMS device as the first component of the vibration device according to the first example of the embodiment of the present disclosure.
  • FIG. 12 is a top view of a MEMS device as the first component of the switching device according to the second example of the embodiment of the present disclosure.
  • FIG. 13 is a top view of a MEMS device as the first component of the switching device according to the third example of the embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view perpendicular to the first dielectric substrate of a protruding structure in a MEMS device according to a third example of implementation of the present disclosure.
  • FIG. 15 is a top view of a MEMS device as the first component of the vibration device according to the third example of the embodiment of the present disclosure.
  • FIG. 16 is a top view of a MEMS device as the first component of the switching device according to the fourth example of the embodiment of the present disclosure.
  • FIG. 17 is a top view of a MEMS device as the first component of the vibration device according to the fourth example of the embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a fifth example of a MEMS device as a switching device implemented in the present disclosure.
  • FIG. 19 is a flow chart for manufacturing a MEMS device as a switching device according to the fifth example implemented by the present disclosure.
  • FIG. 20 is a schematic diagram of a fifth example of a MEMS device as a vibration device implemented in the present disclosure.
  • Micro-Electro-Mechanical System also called microelectromechanical system, microsystem, micromachinery, etc.
  • MEMS Micro-Electro-Mechanical System
  • the MEMS device in the embodiment of the present disclosure can be any device based on MEMS, for example, it can be used for radio frequency RF switches, probe detection, and resonant beams. It is also applicable to the design and application of circular diaphragm 50, polygonal diaphragm 50 and other microstructures, including but not limited to accelerometers, angular velocity meters, micro microphones, microelectromechanical interference displays, microelectromechanical capacitive ultrasonic transducers, micro Mirror structures.
  • FIG. 1 is a schematic diagram of the on-state of an exemplary MEMS device as a switching device
  • Figure 2 is a schematic diagram of an exemplary MEMS device as a switching device in the off-state
  • the MEMS device includes a first dielectric substrate 10, a driving electrode 30 disposed on the first dielectric substrate 10, an interlayer insulating layer 40 covering the driving electrode 30, and a first insulating layer disposed above the interlayer insulating layer 40.
  • the first component 100 is a membrane bridge 20.
  • the membrane bridge 20 includes a bridge deck structure 21 and connecting arms 22 connected to both ends of the bridge deck structure 21.
  • the bridge deck structure 21 of the membrane bridge 20 spans the driving moving electrode and has a certain distance from the interlayer insulating layer 40 above the driving electrode 30 . That is, the membrane bridge 20 and the first dielectric substrate 10 form an active space.
  • the bridge deck structure 21 of the membrane bridge 20 will move toward the driving electrode 30 side under the action of electrostatic force, thereby realizing the off-state of the switch.
  • the membrane bridge 20 will return to the initial position, and at this time the switch is in the open state.
  • Figures 1 and 2 show a MEMS switch with a double-arm fixed beam structure.
  • the MEMS switch can also include only one connecting arm 22, that is, the MEMS switch has a cantilever beam structure.
  • Figure 3 shows a A schematic diagram of the on-state of an exemplary MEMS device as another switching device;
  • Figure 4 is a schematic diagram of the off-state of an exemplary MEMS device as another switching device; As shown in Figures 3 and 4, the operation of this switch The principle is the same as the above-mentioned MEMS switch with a double-arm fixed beam structure, so it will not be described again here.
  • FIG. 5 is a schematic diagram of an exemplary MEMS device as a vibration device; as shown in Figure 5, the MEMS device includes a first dielectric substrate 10.
  • the first dielectric substrate 10 has a first groove portion.
  • the first component 100 is disposed at one time.
  • the first component 100 includes an elastic layer 51 , a first electrode layer 52 , a piezoelectric layer 53 , and a second electrode layer 54 arranged in sequence. By applying a voltage to the first electrode layer 52 and the second electrode layer 54, the first component 100 is vibrated at the position of the first groove portion.
  • the bottom surface of the dielectric substrate 10 moves in the direction, the problem of adhesion to the film layer on the first dielectric substrate 10 is likely to occur.
  • embodiments of the present disclosure provide a new type of MEMS device and a preparation method thereof.
  • Embodiments of the present disclosure provide a MEMS device and a method for manufacturing the MEMS device.
  • the MEMS device includes a first dielectric substrate 10 and a first component 100 disposed on the first dielectric substrate 10.
  • the first component 100 and the first dielectric substrate 10 form an movable space; the first component 100 has a structure corresponding to the movable space.
  • the orthographic projection on the substrate 10 has no overlap, and the thickness of the protruding structure 60 is less than the height of the active space.
  • the above-mentioned protruding structure 60 is located on a side of the first part of the first component 100 close to the first dielectric substrate 10 .
  • the protruding structure 60 may be located on the first component 100 and is connected to the first part of the first component 100 . Some direct contact.
  • the protruding structures 60 may also be located on the first dielectric substrate 10 . In this case, the protruding structure 60 may be located on the first dielectric substrate 10 and in direct contact with the first dielectric substrate 10 .
  • the first component 100 since the first component 100 is provided with a protruding structure 60 on a side close to the first dielectric substrate 10, the first component 100 moves in the direction of the first dielectric substrate 10, and the protruding structure 60 60 can effectively prevent the first component 100 from adhering to the film layer on the first dielectric substrate 10 after being pulled down.
  • the first opening 23 is formed on the first component 100, the first component 100 can be used as a mask to perform dry etching on the sacrificial layer 600 to form a layer located on the first component 100 close to the first dielectric substrate 10.
  • the raised structure 60 on the side. Forming the protruding structure 60 in this way has a simple process, and using the first component 100 as a mask can also save costs.
  • the MEMS device in the embodiment of the present disclosure can be obtained by forming the protruding structure 60 and forming the first opening 23 on the first component 100 based on any of the devices in FIGS. 1-3 mentioned above.
  • the MEMS devices in the embodiments of the present disclosure can also be used in probe detection and resonant beams. It is also applicable to the design and application of circular diaphragm 50, polygonal diaphragm 50 and other microstructures, including but not limited to accelerometers, angular velocity meters, micro microphones, microelectromechanical interference displays, microelectromechanical capacitive ultrasonic transducers, micro Mirror structures.
  • the MEMS device is a switching device including a double-arm fixed beam and a device including a circular diaphragm 50 structure as an example.
  • this does not constitute a limitation on the protection scope of the embodiments of the present disclosure. limit.
  • the shape and size of the first opening 23 on the second film layer will determine the shape of the protruding structure 60 to form the protruding structure 60
  • the material selected for the structure determines the location where the protruding structure 60 is formed.
  • Figure 6 is a schematic diagram of a MEMS device as a switching device according to the first example of the present disclosure
  • Figure 7 is a top view of the first component 100 of the first component 100 of the MEMS device as a switching device according to the first example of the present disclosure.
  • the MEMS device is a MEMS switch, in which the first component 100 serves as the membrane bridge 20.
  • the first part of the first component 100 is used as the deck structure 21 of the membrane bridge 20.
  • the outline of the deck structure 21 of the membrane bridge 20 is rectangular, the first opening 23 on the bridge deck structure 21 is circular, and the first The number of openings 23 is multiple, and the plurality of first openings 23 are divided into a plurality of first opening groups 230 arranged side by side along the first direction, and the plurality of first openings 23 in each first opening group 230 have the same size.
  • the first openings 23 on the second film layer are arranged in an array, and the size of each first opening 23 is equal.
  • the protruding structure 60 is formed on the first dielectric substrate 10 .
  • the cross section of the protruding structure 60 perpendicular to the first dielectric substrate 10 is an isosceles triangle.
  • FIG 8 is a flow chart for preparing a MEMS device as a switching device according to the first example of the present disclosure; as shown in Figure 8, the following steps can be used to prepare the above MEMS device:
  • a pattern including the driving electrode 30 may be formed through a patterning process.
  • the material of the sacrificial layer 600 is an inorganic material, such as silicon nitride.
  • the arrangement of the first openings 23 adopts the arrangement shown in FIG. 7 .
  • step S15 may specifically include using reactive ion etching (RIE) to reasonably control the gas atmosphere (lateral etching intensity), pressure, power (etching rate), etching time, etc., to modify the membrane bridge 20
  • RIE reactive ion etching
  • the lower sacrificial layer 600 is etched under precise control to form the protruding structure 60 on the first dielectric substrate 10 .
  • FIG. 9 is a cross-sectional view of the protruding structure 60 perpendicular to the first dielectric substrate 10 in the MEMS device of the first example implemented in the present disclosure; as shown in FIG. 9 , since the sacrificial layer 600 uses inorganic materials and dry The sacrificial layer 600 is subjected to an etching process through the first opening 23. At this time, the etching rate is anisotropic and the first openings 23 are evenly distributed. Therefore, the formed protruding structure 60 has an equal cross-section perpendicular to the first dielectric substrate 10. Waist triangle.
  • the protruding structure 60 can be formed above the first dielectric substrate 10 through this process flow.
  • the protruding structure 60 can effectively reduce the distance between the bridge structure 21 of the MEMS device and the film layer on the first dielectric substrate 10 or the first dielectric substrate 10 .
  • the contact area of the dielectric substrate 10 prevents the bridge deck structure 21 from adhering to the film layer on the first dielectric substrate 10 or the first dielectric substrate 10 .
  • the angle ⁇ between the bottom surfaces is closely related to the size and material selection of the first opening 23.
  • Figure 10 is a schematic diagram of a first example of a MEMS device used as a vibration device in the implementation of the present disclosure; as shown in Figure 10, when the MEMS device is used in a vibration device, at this time, the first component 100 is used as a vibration device.
  • Membrane 50 A first groove is formed on the first dielectric substrate 10 , and the position of the first component 100 corresponding to the first groove is used as the first part of the first component 100 .
  • the first component 100 includes an elastic layer 51 , a first electrode layer 52 , a piezoelectric layer 53 , and a second electrode layer 54 that are sequentially arranged in a direction away from the first dielectric substrate 10 .
  • Figure 11 is a top view of the first component 100 of the MEMS device as a vibration device according to the first example of the embodiment of the present disclosure; as shown in Figure 11, when the outline of the first component 100 is circular, the first opening 23 is It is circular, and the circular first openings 23 are evenly arranged.
  • the protrusion structure 60 formed by etching the sacrificial layer 600 through the first opening 23 is the same as the above-mentioned protrusion structure 60 and is located in the first groove portion of the first dielectric substrate 10 .
  • selecting an appropriate first opening 23 to prepare a protruding structure 60 of a corresponding size can effectively reduce the failure caused by adhesion in the preparation process of the diaphragm 50, and can also improve the performance of the diaphragm 50 under working conditions. Adhesion failure caused by abnormal displacement caused by nonlinear excitation is of great significance.
  • Figure 12 is a top view of the first component 100 of the MEMS device as a switching device in the second example of the embodiment of the present disclosure; as shown in Figure 12, the MEMS device is a MEMS switch.
  • This example is different from the first example.
  • the structures of the examples are roughly the same, and the only difference is that the shape of the first opening 23 is square, and the arrangement of the first openings 23 is the same as the first example.
  • the material of the sacrificial layer 600 forming the protruding structure 60 is also made of inorganic materials. Since the shape of the first opening 23 changes compared to the first example, the raised structure 60 formed at this time will also change.
  • the shape of the formed protruding structure 60 is a cone or a truncated cone.
  • the shape of the formed protruding structure 60 is a pyramid with angular side walls.
  • the shape of the first opening 23 can also be a polygon such as a triangle or a hexagon.
  • the protruding structure 60 formed by the sacrificial layer 600 can be correspondingly used: a cone, a triangular pyramid, a quadrangular pyramid, a polygonal pyramid, and a variety of truncated cones, pyramids, etc. Taiwan etc. I won’t list them all here.
  • Figure 13 is a top view of the first component 100 of the MEMS device as a switching device in the third example of the embodiment of the present disclosure; as shown in Figure 13, the MEMS device is a MEMS switch.
  • This example is different from the first example.
  • the structures of the examples are roughly the same. The difference is that the sizes of adjacent first openings 23 in the same first opening group 230 are different, that is, the adjacent circular first openings 23 in the first opening group 230 have different radii. . Since the adjacent first openings 23 in the same first opening group 230 have different sizes, the shape of the protruding structure 60 formed by etching the sacrificial layer 600 located under the membrane bridge 20 through the first opening 23 is the same as It's different in the first example.
  • the cross-section of the protruding structure 60 formed by dry etching perpendicular to the first dielectric substrate 10 is an isosceles triangle.
  • the sizes of the adjacent first openings 23 are different. Therefore, although the cross section of the protruding structure 60 formed by dry etching perpendicular to the first dielectric substrate 10 is also a triangle, the waist of this triangle is not of equal length.
  • Figure 14 is a cross-sectional view of the protruding structure 60 perpendicular to the first dielectric substrate 10 in the MEMS device of the third example of the present disclosure; as shown in Figure 14, specifically, when the first opening 23 is small, the bottom The lateral etching is weaker than that of the relatively large first opening 23 , so the slope angle ⁇ is larger where the first opening 23 is smaller, so that the protruding structure 60 is perpendicular to a of the cross-section of the first dielectric substrate 10 , the relative relationship between the lengths of side b changes, achieving different structural changes.
  • the size distribution of the first opening 23 can be controlled to control the position of the protruding structure 60 , especially the position of the supporting point (vertex) of the protruding structure 60 .
  • Figure 15 is a top view of the first component 100 of a MEMS device used as a vibration device according to the third example of the embodiment of the present disclosure; as shown in Figure 15, when the MEMS device is used in a vibration device, at this time, the first The assembly 100 serves as a diaphragm 50, which is similar to the diaphragm 50 in the first example, except that the adjacently arranged first openings 23 have different sizes.
  • the first opening 23 is divided into a plurality of nested first opening groups 230.
  • the first openings 23 in the first opening group 230 are arranged along its circumferential direction, and the sizes of adjacent first openings 23 are different. wait.
  • one first opening 23 may also be provided in the area defined by the first group of openings whose center points toward the edge.
  • the cross section of the protruding structure 60 formed by dry etching perpendicular to the first dielectric substrate 10 is also a triangle, the waist of this triangle is not equal in length. . That is, the protruding structure 60 has the same shape as the protruding structure 60 in the above-mentioned MEMS switch.
  • Figure 16 is a top view of the first component 100 of a MEMS device as a switching device according to the fourth example of the embodiment of the present disclosure; as shown in Figure 16, the MEMS device is a MEMS switch.
  • This example is different from the third example.
  • the structures of the two examples are roughly the same, and the only difference is that the first openings 23 in the same first opening group 230 have the same size, while the first openings 23 in adjacent first opening groups 230 have different sizes. That is to say, the above-mentioned first opening 23 of the bridge deck structure 21 has a non-uniform opening design.
  • the cross section of the protruding structure 60 formed by dry etching perpendicular to the first dielectric substrate 10 is also a triangle, the waist of this triangle is not of equal length. That is, the formed part of the protruding structure 60 is the same as that in the third example.
  • Figure 17 is a top view of the first component 100 of a MEMS device as a vibration device according to the fourth example of the embodiment of the present disclosure; as shown in Figure 17, when the MEMS device is used in a vibration device, at this time, the first The assembly 100 is used as a diaphragm 50, which is similar to the diaphragm 50 in the first example, except that the adjacently arranged first openings 23 have different sizes.
  • the first opening 23 is divided into a plurality of first opening groups 230 that are nested.
  • the first openings 23 in the first opening group 230 are arranged along its circumferential direction, and the first openings in the same first opening group 230 23 have the same size, and the first openings 23 in the adjacent first opening groups 230 have different sizes.
  • one first opening 23 may also be provided in the area defined by the first group of openings whose center points toward the edge.
  • the waist of this triangle is not equal in length. . That is, the protruding structure 60 has the same shape as the protruding structure 60 in the above-mentioned MEMS switch.
  • Figure 18 is a schematic diagram of a MEMS device as a switching device in the fifth example of the present disclosure; as shown in Figure 18, the structure of this example is roughly the same as that of the first example, and the only difference lies in the formation of protrusions.
  • the sacrificial layer 600 of the structure 60 is made of organic material.
  • the protruding structure 60 formed by processing the sacrificial layer 600 through the first opening 23 is located on the side of the bridge deck structure 21 close to the first dielectric substrate 10 and is in contact with the bridge deck structure. 21 contacts.
  • the preparation method of the MEMS device with this structure is described below.
  • Figure 19 is a flow chart for preparing a fifth example of a MEMS device as a switching device implemented in the present disclosure; as shown in Figure 19, the method includes:
  • a pattern including the driving electrode 30 may be formed through a patterning process.
  • the material of the sacrificial layer 600 is an organic material, such as resin material (Resin, PR, OC, etc.).
  • the arrangement of the first openings 23 adopts the arrangement shown in FIG. 7 .
  • step S25 may specifically include using reactive ion etching (RIE) to reasonably control the gas atmosphere (lateral etching intensity), pressure, power (etching rate), etching time, etc., to modify the membrane bridge 20
  • RIE reactive ion etching
  • the lower sacrificial layer 600 is etched under precise control to form the protruding structure 60 located on the bridge structure 21 .
  • the sacrificial layer 600 is made of organic materials, and a dry etching process is used to etch the sacrificial layer 600 through the first openings 23, the etching rate is anisotropic, and the first openings 23 are evenly distributed, so the raised structure is formed
  • the cross section 60 perpendicular to the first dielectric substrate 10 is an isosceles triangle.
  • Figure 20 is a schematic diagram of a fifth example of a MEMS device used as a vibration device implemented in the present disclosure; as shown in Figure 20, when the MEMS device is used in a vibration device, the protruding structure 60 and the first type Compared with the vibration device in the example, the sacrificial layer 600 forming the protruding structure 60 is made of organic material, and the protruding structure 60 is provided on the diaphragm 50.
  • the sacrificial layer 600 forming the protruding structure 60 is made of organic material, and the protruding structure 60 is provided on the diaphragm 50.
  • the other structures are the same, so the description will not be repeated here.
  • the sixth example The structure of this example is roughly the same as that of the fifth example. The only difference is that the first opening 23 on the membrane bridge 20 is a non-uniform first opening 23 .
  • the arrangement of the first openings 23 is the same as the arrangement in the third or fourth example.
  • the isomorphic first opening 23 dry-etches the sacrificial layer 600 to form a raised structure 60 located on the bridge deck structure 21 , and the raised structure 60 is two triangles with different waist lengths.
  • the size distribution of the first opening 23 can be controlled to control the position of the protruding structure 60 , especially the position of the supporting point (vertex) of the protruding structure 60 .
  • the protrusion structure 60 is compared with the vibration device in the third and fourth examples.
  • the sacrificial layer 600 forming the protrusion structure 60 is made of organic materials.
  • the protrusion structure 60 It is arranged on the diaphragm 50, and the other structures are the same, so the description will not be repeated here.
  • An embodiment of the present disclosure also provides an electronic device, which includes the above-mentioned MEMS device.
  • the electronic equipment includes, but is not limited to, phase shifters, accelerometers, angular velocity meters, micro-microphones, micro-electro-mechanical interference displays, micro-electro-mechanical capacitive ultrasonic transducers, micro-mirrors, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS器件,包括:第一介质基板(10),设置在第一介质基板(10)上的第一组件(100),第一组件(100)与第一介质基板(10)围成一活动空间;第一组件(100)具有与活动空间对应的第一部分;其中,第一部分具有至少一个第一开口(23),且在第一部分靠近第一介质基板(10)的一侧设置有凸起结构(60);凸起结构(60)与第一开口(23)在第一介质基板(10)上的正投影无重叠,且凸起结构(60)的厚度小于活动空间的高度。MEMS器件通过设置凸起结构,能够有效避免膜层发生粘附失效问题。还提供了一种MEMS器件制备方法以及一种电子设备。

Description

MEMS器件及其制备方法、电子设备 技术领域
本发明属于微机电系统技术领域,具体涉及一种MEMS器件及其制备方法、电子设备。
背景技术
微机电系统(MEMS,Micro-Electro-Mechanical System)是集微传感器、微执行器、微机械结构、微电源微能源、信号处理和控制电路、高性能电子集成器件、接口、通信等于一体的微型器件或系统。MEMS是一项革命性的新技术,广泛应用于高新技术产业,是一项关系到国家的科技发展、经济繁荣和国防安全的关键技术。随着信息时代迅速发展,具备高集成、小型化、多功能以及低成本的MEMS器件将会带来巨大的经济价值。
但是大多数MEMS器件都具备悬空可动结构,在具体工作中需要施加多种驱动信号来进行驱动,例如静电驱动、电磁驱动、热驱动等等。尤其是依靠静电驱动的悬空结构运动过程中会发生表面接触,容易产生粘附效应,导致功能失效。所以对如何解决MEMS器件粘附失效是一个非常关键的问题。这一问题也是目前实际在研项目中重点要解决攻克的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种MEMS器件及其制备方法、电子设备。
本公开实施例提供一种MEMS器件,其包括:第一介质基板,设置在第一介质基板上的第一组件,所述第一组件与所述第一介质基板围成一活动空间;所述第一组件具有与所述活动空间对应的第一部分;其中,所述第一部分具有至少一个第一开口,且在所述第一部分靠近所述第一介质基板的一侧设置有凸起结构;所述凸起结构与所述第一开口在所述第一介质基板上的正投影无重叠,且所述凸起结构的厚度小于所述活动空间的高度。
其中,所述第一部分具有多个第一开口,多个所述第一开口划分为沿第一方向并排设置的多个第一开口组;每个所述第一开口组中的第一开口沿第 二方向并排设置;位于同一所述第一开口组内的各个第一开口的尺寸相等。
其中,所述第一部分具有多个第一开口,多个所述第一开口划分为沿第一方向并排设置的多个第一开口组;每个所述第一开口组中的第一开口沿第二方向并排设置;位于同一所述第一开口组内的相邻设置的第一开口的尺寸相等。
其中,所述第一部分包括多个嵌套设置第一开口组,每个所述第一开口组内的所述第一开口沿所述第一开口组的周向依次排布,且同一所述第一开口组内的各个所述第一开口的尺寸相等。
其中,相邻设置的所述第一开口组内的所述第一开口的尺寸不等。
其中,所述第二膜层包括多个嵌套设置第一开口组,每个所述第一开口组内的第一开口沿所述第一开口组的周向依次排布,且同一所述第一开口组内的相邻设置的所述第一开口的尺寸不等。
其中,所述凸起结构包括棱锥、圆锥、棱台、圆台中的一种或者多种组合。
其中,第一开口的形状包括圆形、椭圆形、多边形中的一种或者多种组合。
其中,所述凸起结构设置在第一介质基板上,且与所述第一部分之间具有一定的距离。
其中,所述凸起结构的材料包括无机材料。
其中,所述凸起结构设置在所述第一部分上,且与所述第一介质基板之间具有一定的距离。
其中,所述凸起结构的材料包括有机材料。
其中,所述第一组件包括桥面结构和至少一个连接臂;所述桥面结构通过连接臂与所述第一介质基板相固定,所述桥面结构用作所述第一部分;所述MEMS器件还包括设置在设置在第一介质基板上的驱动电极,以及覆盖搜书驱动电极的层间绝缘层;所述所述桥面结构横跨所述驱动电极;所述桥 面结构与覆盖在所述驱动电极上的层间绝缘层之间具有一定的距离。
其中,所述第一介质基板具有第一槽部;所述第一部分与第一槽部形成所述活动空间;所述第一组件包括依次设置在所述第一介质基板上的弹性层、第一电极层、压电层和第二电极层。
本公开实施例提供一种上述的MEMS器件的制备方法,其包括:
在第一介质基板的一侧形成牺牲层;
在所述第一牺牲层背离所述第一介质基板的一侧形成第一组件,所述第一组件的第一部分具有至少一个第一开口;所述第一组件与所述第一介质基板围成活动空间;
采用干法刻蚀对牺牲层进行刻蚀,形成位于所述第一部分靠近所述第一介质基板的一侧的凸起结构;其中,所述凸起结构与所述第一开口在所述第一介质基板上的正投影无重叠,且所述凸起结构的厚度小于所述活动空间的高度。
本公开实施例提供一种电子设备,其包括上述的MEMS器件。
附图说明
图1为一种示例性的MEMS器件作为一种开关器件的开态示意图。
图2为一种示例性的MEMS器件作为一种开关器件的关态示意图。
图3为一种示例性的MEMS器件作为另一种开关器件的开态示意图。
图4为一种示例性的MEMS器件作为另一种开关器件的关态示意图。
图5为一种示例性的MEMS器件作为振动器件的示意图。
图6为本公开实施的第一种示例的MEMS器件作为开关器件的示意图。
图7为本公开实施例的第一种示例的MEMS器件作为开关器件的第一组件的俯视图。
图8为本公开实施的第一种示例的MEMS器件作为开关器件的制备流程图。
图9为本公开实施的第一种示例的MEMS器件中的凸起结构垂直于第一介质基板的截面图。
图10为本公开实施的第一种示例的MEMS器件作为振动器件的示意图。
图11为本公开实施例的第一种示例的MEMS器件作为振动器件的第一组件的俯视图。
图12为本公开实施例的第二种示例的MEMS器件作为开关器件的第一组件的俯视图。
图13为本公开实施例的第三种示例的MEMS器件作为开关器件的第一组件的俯视图。
图14为本公开实施的第三种示例的MEMS器件中的凸起结构垂直于第一介质基板的截面图。
图15为本公开实施例的第三种示例的MEMS器件作为振动器件的第一组件的俯视图。
图16为本公开实施例的第四种示例的MEMS器件作为开关器件的第一组件的俯视图。
图17为本公开实施例的第四种示例的MEMS器件作为振动器件的第一组件的俯视图。
图18为本公开实施的第五种示例的MEMS器件作为开关器件的示意图。
图19为本公开实施的第五种示例的MEMS器件作为开关器件的制备流程图。
图20为本公开实施的第五种示例的MEMS器件作为振动器件的示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具 体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
微机电系统(MEMS,Micro-Electro-Mechanical System),也叫做微电子机械系统、微系统、微机械等,指尺寸在几毫米乃至更小的高科技装置。本公开实施例中的MEMS器件可以为以MEMS为基础任何器件,例如:可以用于射频RF开关、探针探测、谐振梁。同样适用于圆形振膜50、多边形振膜50等其它微结构的设计与应用,包括但不限于加速计、角速度计、微型麦克风、微机电干涉显示、微机电电容式超声换能器、微镜等结构。
MEMS器件可用作开关器件,图1为一种示例性的MEMS器件作为一种开关器件的开态示意图;图2为一种示例性的MEMS器件作为一种开关器件的关态示意图;如图1和2所示,该MEMS器件包括第一介质基板10,设置第一介质基板10上的驱动电极30,覆盖驱动电极30的层间绝缘层40,设置在层间绝缘层40上方的第一组件100。该第一组件100为膜桥20,该膜桥20包括桥面结构21和连接在桥面结构21两端连接臂22。膜桥20的桥面结构21横跨驱动动电极,与驱动电极30上方的层间绝缘层40之间具有一定的距离。也即膜桥20和第一介质基板10围成一活动空间。当给驱动电极30和膜桥20施加一定的电压时,膜桥20的桥面结构21将会在静电力作用下,向驱动电极30侧运动,从而实现开关的关态。当将驱动电极30和膜桥20上的电压撤掉,膜桥20将恢复到初始位置,此时开关开态。
需要说明的是,图1和2中给出了一种双臂固定梁结构的MEMS开关,对于MEMS开关也可以仅包括一个连接臂22,也即MEMS开关为悬臂梁结构,图3为一种示例性的MEMS器件作为另一种开关器件的开态示意图;图4为一种示例性的MEMS器件作为另一种开关器件的关态示意图;如图3和4所示,该种开关的工作原理与上述双臂固定梁结构的MEMS开关相同,故在此不再重复描述。
MEMS器件还可用作振动器件,例如该器件可以为超声换能器。图5为一种示例性的MEMS器件作为振动器件的示意图;如图5所示,该MEMS器件包括第一介质基板10,第一介质基板10具有第一槽部,在第一介质基板10上一次设置第一组件100,第一组件100包括依次设置弹性层51、第一电极层52、压电层53、第二电极层54。通过给第一电极层52和第二电极层54施加电压,以使第一组件100在第一槽部的位置发生振动。
发明人发现,上述给出的几种示例性的MEMS器件,第一组件100均在一定的条件下产生靠近或者远离第一介质基板10底面的位移,因此,第一组件100在向靠近第一介质基板10底面的方向运动时,很有可能出现与第一介质基板10上的膜层发生粘附的问题。
针对上述问题,在本公开实施例中提供了一种新型的MEMS器件,及其制备方法。
本公开实施例提供一种MEMS器件,以及MEMS器件的制备方法。其中,MEMS器件包括第一介质基板10,设置在第一介质基板10上的第一组件100,第一组件100与第一介质基板10围成一活动空间;第一组件100具有与活动空间对应的第一部分;其中,第一部分至少一个第一开口23,且在第一部分靠近第一介质基板10的一侧设置有凸起结构60;凸起结构60与所述第一开口23在第一介质基板10上的正投影无重叠,且凸起结构60的厚度小于活动空间的高度。
其中,上述的凸起结构60位于第一组件100的第一部分靠近第一介质基板10的一侧,在一些示例中,凸起结构60可以位于第一组件100,且与 第一组件100的第一部分直接接触。在一些示例中,凸起结构60也可以位于第一介质基板10上。在该种情况下,凸起结构60可以位于第一介质基板10上,且与第一介质基板10直接接触。对于前述几种示例性的凸起结构60的具体位置,在下述描述中将会给出具体设置的理由。
在本公开实施例的MEMS器件中,由于第一组件100靠近第一介质基板10的一侧设置有凸起结构60,因此,第一组件100向第一介质基板10所在方向运动,凸起结构60可以有效的避免第一组件100在被下拉之后与第一介质基板10上的膜层发生粘附的现象。另外,由于第一组件100上形成有第一开口23,因此可以将第一组件100作为掩膜版,对牺牲层600进行干法刻蚀以形成位于第一组件100靠近第一介质基板10一侧的凸起结构60。采用这样的方式形成凸起结构60,工艺简单,且利用第一组件100作为掩膜版还可以节约成本。
本公开实施例中的MEMS器件可以以上述的图1-3中任意一种器件为基础,再形成凸起结构60,以及在第一组件100上形成第一开口23得到。当然,本公开实施例中的MEMS器件还可以在探针探测、谐振梁中应用。同样适用于圆形振膜50、多边形振膜50等其它微结构的设计与应用,包括但不限于加速计、角速度计、微型麦克风、微机电干涉显示、微机电电容式超声换能器、微镜等结构。在以下描述中仅以MEMS器件为包括双臂固定梁的开关器件,以及包括圆形振膜50结构的器件为例进行描述,但应当理解的是,这并不构成对本公开实施例保护范围的限制。
在本公开实施例中,无论是MEMS器件应用至上述任何器件的设计,其中,第二膜层上的第一开口23的形状和尺寸将会决定凸起结构60的形状,形成凸起结构60结构选用的材料则决定了凸起结构60的形成位置。具体结合示例对本公开实施例中的MEMS器件的结构和相应的制备方法进行说明。
第一个示例:图6为本公开实施的第一种示例的MEMS器件作为开关器件的示意图;图7为本公开实施例的第一种示例的MEMS器件作为开关器件的第一组件100的俯视图;如图6和7所示,MEMS器件为MEMS开 关,其中,第一组件100用作膜桥20。第一组件100的第一部分用作膜桥20的桥面结构21,该膜桥20的桥面结构21的轮廓呈矩形,该桥面结构21上的第一开口23为圆形,且第一开口23的数量为多个,且多个第一开口23划分为沿第一方向并排设置的多个第一开口组230,且每个第一开口组230内多个第一开口23尺寸相同。例如,第二膜层上第一开口23呈阵列排布,且各个第一开口23的尺寸均相等。凸起结构60形成在第一介质基板10上。而且凸起结构60垂直于第一介质基板10的截面为等腰三角形。
图8为本公开实施的第一种示例的MEMS器件作为开关器件的制备流程图;如图8所示,制备上述MEMS器件具体可以采用如下步骤:
S11、在第一介质基板10上形成驱动电极30。
具体的,在步骤S11中可以通过构图工艺形成包括驱动电极30的图形。
S12、在驱动电极30背离第一介质基板10的一侧形成层间绝缘层40。
S13、在层间绝缘层40背离形成牺牲层600。
其中,牺牲层600的材料为无机材料,例如采用氮化硅。
S14、在牺牲层600背离第一介质基板10的一侧形成膜桥20,膜桥20的桥面结构21上具有第一开口23。
其中,第一开口23的排布方式采用图7中所示的排布方式。
S15、对牺牲层600进行干法刻蚀,形成位于第一介质基板10上凸起结构60。该凸起结构60与桥面结构21之间具有一定的距离。
在一些示例中,步骤S15具体可以包括通过采用反应离子刻蚀(RIE),合理控制气体氛围(侧向刻蚀强度)、压强、功率(刻蚀速率)、刻蚀时间等,对膜桥20下方的牺牲层600进行精确控制刻蚀,形成位于第一介质基板10上的凸起结构60。
其中,图9为本公开实施的第一种示例的MEMS器件中的凸起结构60垂直于第一介质基板10的截面图;如图9所示,由于牺牲层600采用无机材料,且采用干法刻蚀工艺通过第一开口23对牺牲层600,此时刻蚀速率 各向异性,且第一开口23均匀分布,故所形成的凸起结构60在垂直于第一介质基板10的截面为等腰三角形。
综上,通过该工艺流程可以在第一介质基板10上方形成凸起结构60,该凸起结构60可以有效减小MEMS器件的桥面结构21与第一介质基板10上的膜层或者第一介质基板10的接触面积,起到防止桥面结构21与第一介质基板10上的膜层或者第一介质基板10的粘附。由于是位于同一第一开口组230内的开口的尺寸和间距相等,如图9所示,凸起结构60垂直于第一介质基板10的截面呈现为等腰三角形,也即图中的a=b,底面夹角ψ则与第一开口23大小和材料选择密切相关。
相类似的,图10为本公开实施的第一种示例的MEMS器件作为振动器件的示意图;如图10所示,当MEMS器件应用于振动器件中时,此时,第一组件100用作振膜50。第一介质基板10上形成有第一槽部,第一组件100与第一凹槽对应的位置用作第一组件100的第一部分。第一组件100包括沿背离第一介质基板10方向依次设置的弹性层51、第一电极层52、压电层53、第二电极层54。此时,第一开口23贯穿弹性层51、第一电极层52、压电层53、第二电极层54。图11为本公开实施例的第一种示例的MEMS器件作为振动器件的第一组件100的俯视图第一组件100;如图11,当第一组件100轮廓为圆形时,第一开口23为圆形,且圆形的第一开口23均匀排布。此时,通过该第一开口23对牺牲层600进行刻蚀形成的凸起结构60与上述的凸起结构60相同,且位于第一介质基板10的第一槽部内。对于积较大面积的振膜50而言,选择合适的第一开口23制备相应尺寸的凸起结构60,可以有效降低振膜50的制备工艺黏连导致的失效,同时也可以提高工作状态下非线性激励导致的位移异常引起的黏连失效,具有重要意义。
第二种示例:图12为本公开实施例的第二种示例的MEMS器件作为开关器件的第一组件100的俯视图;如图12所示,该MEMS器件为MEMS开关,该示例与第一种示例的结构大致相同,区别仅在于,第一开口23的形状采用正方形,对于第一开口23的排布方式与第一种示例相同。形成凸起结构60的牺牲层600的材料同样采用无机材料。由于第一开口23的形状 相较于第一种示例发生改变,故此时所形成的凸起结构60也将发生变化。当第一开口23采用圆形时,所形成的凸起结构60的形状为圆锥或者圆台。当第一开口23采用正方形时,所形成的凸起结构60的形状则为侧壁具有棱角的棱锥。
当然,第一开口23的形状还可以采用三角形或者六边形等多边形,此时对应采用牺牲层600所形成的凸起结构60圆锥、三棱锥、四棱锥、多棱锥、以及多种圆台、棱台等。在此不再一一列举。
第三种示例:图13为本公开实施例的第三种示例的MEMS器件作为开关器件的第一组件100的俯视图;如图13所示,该MEMS器件为MEMS开关,该示例与第一种示例的结构大致相同,区别在于,位于同一第一开口组230中的相邻设置的第一开口23尺寸不同,也即第一开口组230内相邻设置的圆形第一开口23的半径不同。由于位于同一第一开口组230内相邻设置的第一开口23的尺寸不同,因此,通过第一开口23对位于膜桥20下方的牺牲层600刻蚀所形成的凸起结构60的形状与第一种示例中不同。在第一种示例中,由于第一开口23的尺寸相同,故干法刻蚀所形成的凸起结构60垂直于第一介质基板10的截面为等腰三角形,而在该示例中,由于相邻设置的第一开口23的尺寸不同,因此干法刻蚀所形成凸起结构60的垂直于第一介质基板10的截面虽然同样为三角形,但是这个三角形的腰不等长。图14为本公开实施的第三种示例的MEMS器件中的凸起结构60垂直于第一介质基板10的截面图;如图14所示,具体的,当第一开口23较小时,其下方的侧向刻蚀较相对大的第一开口23的地方弱,所以第一开口23较小的地方其坡度角ψ较大,从而使得凸起结构60垂直于第一介质基板10的截面的a、b边长度相对关系发生改变,实现不同结构变化。具体在实施过程中,可以控制第一开口23大小分布来控制凸起结构60的位置,尤其是凸起结构60支撑点(顶点)的位置。
相类似,图15为本公开实施例的第三种示例的MEMS器件作为振动器件的第一组件100的俯视图;如图15所示,当MEMS器件应用于振动器件中时,此时,第一组件100用作振膜50,与第一种示例中的振膜50相类似, 区别在于,相邻设置的第一开口23的尺寸不等。例如:第一开口23划分为嵌套设置的多个第一开口组230,第一开口组230内的第一开口23沿其周向排布,且相邻设置的第一开口23的尺寸不等。当然,可以在由中心指向边缘的第一个开口组限定的区域内也可以设置一个第一开口23。此时,由于相邻设置的第一开口23的尺寸不同,因此干法刻蚀所形成凸起结构60的垂直于第一介质基板10的截面虽然同样为三角形,但是这个三角形的腰不等长。也即该凸起结构60与上述的MEMS开关中的凸起结构60形状相同。
第四种示例:图16为本公开实施例的第四种示例的MEMS器件作为开关器件的第一组件100的俯视图;如图16所示,该MEMS器件为MEMS开关,该种示例与第三种示例的结构大致相同,区别仅在于,位于同一第一开口组230中的第一开口23的尺寸相等,相邻设置的第一开口组230中的第一开口23的尺寸不等。也即,桥面结构21上述的第一开口23为非均匀开口设计。由于相邻设置的第一开口23的尺寸不同,因此干法刻蚀所形成凸起结构60的垂直于第一介质基板10的截面虽然同样为三角形,但是这个三角形的腰不等长。也即所形成的部分凸起结构60与第三种示例中相同。
相类似,图17为本公开实施例的第四种示例的MEMS器件作为振动器件的第一组件100的俯视图;如图17所示,当MEMS器件应用于振动器件中时,此时,第一组件100用作振膜50,与第一种示例中的振膜50相类似,区别在于,相邻设置的第一开口23的尺寸不等。例如:第一开口23划分为嵌套设置的多个第一开口组230,第一开口组230内的第一开口23沿其周向排布,且同一第一开口组230内的第一开口23的尺寸相同,相邻设置的第一开口组230内的第一开口23的尺寸不等。当然,可以在由中心指向边缘的第一个开口组限定的区域内也可以设置一个第一开口23。此时,由于相邻设置的第一开口23的尺寸不同,因此干法刻蚀所形成凸起结构60的垂直于第一介质基板10的截面虽然同样为三角形,但是这个三角形的腰不等长。也即该凸起结构60与上述的MEMS开关中的凸起结构60形状相同。
第五种示例:图18为本公开实施的第五种示例的MEMS器件作为开关器件的示意图;如图18所示,该种示例与第一种示例结构大致相同,区别 仅在于,形成凸起结构60的牺牲层600选用有机材料,此时,通过第一开口23对牺牲层600进行所形成的凸起结构60位于桥面结构21靠近第一介质基板10的一侧,且与桥面结构21接触。以下对该种结构的MEMS器件的制备方法进行说明。图19为本公开实施的第五种示例的MEMS器件作为开关器件的制备流程图;如图19所示,该方法包括:
S21、在第一介质基板10上形成驱动电极30。
具体的,在步骤S21中可以通过构图工艺形成包括驱动电极30的图形。
S22、在驱动电极30背离第一介质基板10的一侧形成层间绝缘层40。
S23、在层间绝缘层40背离形成牺牲层600。
其中,牺牲层600的材料为有机材料,例如采用树脂材料(Resin、PR、OC等)。
S24、在牺牲层600背离第一介质基板10的一侧形成膜桥20,膜桥20的桥面结构21上具有第一开口23。
其中,第一开口23的排布方式采用图7中所示的排布方式。
S25、对牺牲层600进行干法刻蚀,形成位于桥面结构21上凸起结构60。该凸起结构60与第一介质基板10之间具有一定的距离。
在一些示例中,步骤S25具体可以包括通过采用反应离子刻蚀(RIE),合理控制气体氛围(侧向刻蚀强度)、压强、功率(刻蚀速率)、刻蚀时间等,对膜桥20下方的牺牲层600进行精确控制刻蚀,形成位于桥面结构21上的凸起结构60。
其中,由于牺牲层600采用有机材料,且采用干法刻蚀工艺通过第一开口23对牺牲层600,此时刻蚀速率各向异性,且第一开口23均匀分布,故所形成的凸起结构60在垂直于第一介质基板10的截面为等腰三角形。
相类似的,图20为本公开实施的第五种示例的MEMS器件作为振动器件的示意图;如图20所示,当MEMS器件应用于振动器件中时,此时凸起结构60与第一种示例中振动器件相比,形成凸起结构60的牺牲层600采用 有机材料,凸起结构60设置在振膜50上,其余结构均相同,故在此不再重复描述。
第六种示例:该种示例与第五种示例中结构大致相同,区别仅在于,膜桥20上的第一开口23为非均匀的第一开口23。例如:第一开口23的排布与第三种或者第四种示例中排布相同。此时,同构第一开口23对牺牲层600干法刻蚀,形成的凸起结构60位于桥面结构21上,且凸起结构60为两个腰长不等的三角形。具体的,当第一开口23较小时,其下方的侧向刻蚀较相对大的第一开口23的地方弱,所以第一开口23较小的地方其坡度角ψ较大,从而使得凸起结构60垂直于第一介质基板10的截面的a、b边长度相对关系发生改变,实现不同结构变化。具体在实施过程中,可以控制第一开口23大小分布来控制凸起结构60的位置,尤其是凸起结构60支撑点(顶点)的位置。
相类似的,当MEMS器件应用于振动器件中时,此时凸起结构60与第三、四种示例中振动器件相比,形成凸起结构60的牺牲层600采用有机材料,凸起结构60设置在振膜50上,其余结构均相同,故在此不再重复描述。
以上,仅给出MEMS器件一些示例性的结构和相应的制备方法。但这并不构成对本公开实施例保护范围的限制。
本公开实施例还提供一种电子设备,该电子设备包括上述的MEMS器件。该电子设备包括但不限于移相器、加速计、角速度计、微型麦克风、微机电干涉显示、微机电电容式超声换能器、微镜等。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (16)

  1. 一种MEMS器件,其包括:第一介质基板,设置在第一介质基板上的第一组件,所述第一组件与所述第一介质基板围成一活动空间;所述第一组件具有与所述活动空间对应的第一部分;其中,所述第一部分具有至少一个第一开口,且在所述第一部分靠近所述第一介质基板的一侧设置有凸起结构;所述凸起结构与所述第一开口在所述第一介质基板上的正投影无重叠,且所述凸起结构的厚度小于所述活动空间的高度。
  2. 根据权利要求1所述的MEMS器件,其中,所述第一部分具有多个第一开口,多个所述第一开口划分为沿第一方向并排设置的多个第一开口组;每个所述第一开口组中的第一开口沿第二方向并排设置;位于同一所述第一开口组内的各个第一开口的尺寸相等。
  3. 根据权利要求1所述的MEMS器件,其中,所述第一部分具有多个第一开口,多个所述第一开口划分为沿第一方向并排设置的多个第一开口组;每个所述第一开口组中的第一开口沿第二方向并排设置;位于同一所述第一开口组内的相邻设置的第一开口的尺寸不等。
  4. 根据权利要求1所述的MEMS器件,其中,所述第一部分包括多个嵌套设置第一开口组,每个所述第一开口组内的所述第一开口沿所述第一开口组的周向依次排布,且同一所述第一开口组内的各个所述第一开口的尺寸相等。
  5. 根据权利要求4所述的MEMS器件,其中,相邻设置的所述第一开口组内的所述第一开口的尺寸不等。
  6. 根据权利要求1所述的MEMS器件,其中,所述第二膜层包括多个嵌套设置第一开口组,每个所述第一开口组内的第一开口沿所述第一开口组的周向依次排布,且同一所述第一开口组内的相邻设置的所述第一开口的尺寸不等。
  7. 根据权利要求1-6中任一所述的MEMS器件,其中,所述凸起结构包括棱锥、圆锥、棱台、圆台中的一种或者多种组合。
  8. 根据权利要求1-6中任一项所述的MEMS器件,其中,第一开口的形状包括圆形、椭圆形、多边形中的一种或者多种组合。
  9. 根据权利要求1-6中任一种所述的MEMS器件,其中,所述凸起结构设置在第一介质基板上,且与所述第一部分之间具有一定的距离。
  10. 根据权利要求9中任一种所述的MEMS器件,其中,所述凸起结构的材料包括无机材料。
  11. 根据权利要求1-6中任一种所述的MEMS器件,其中,所述凸起结构设置在所述第一部分上,且与所述第一介质基板之间具有一定的距离。
  12. 根据权利要求11所述的MEMS器件,其中,所述凸起结构的材料包括有机材料。
  13. 根据权利要求1-6中任一种所述的MEMS器件,其中,所述第一组件包括桥面结构和至少一个连接臂;所述桥面结构通过连接臂与所述第一介质基板相固定,所述桥面结构用作所述第一部分;所述MEMS器件还包括设置在设置在第一介质基板上的驱动电极,以及覆盖搜书驱动电极的层间绝缘层;所述所述桥面结构横跨所述驱动电极;所述桥面结构与覆盖在所述驱动电极上的层间绝缘层之间具有一定的距离。
  14. 根据权利要求1-6中任一种所述的MEMS器件,其中,所述第一介质基板具有第一槽部;所述第一部分与第一槽部形成所述活动空间;所述第一组件包括依次设置在所述第一介质基板上的弹性层、第一电极层、压电层和第二电极层。
  15. 一种如权利要求1-14中任一项所述的MEMS器件的制备方法,其包括:
    在第一介质基板的一侧形成牺牲层;
    在所述第一牺牲层背离所述第一介质基板的一侧形成第一组件,所述第一组件的第一部分具有至少一个第一开口;所述第一组件与所述第一介质基板围成活动空间;
    采用干法刻蚀对牺牲层进行刻蚀,形成位于所述第一部分靠近所述第一 介质基板的一侧的凸起结构;其中,所述凸起结构与所述第一开口在所述第一介质基板上的正投影无重叠,且所述凸起结构的厚度小于所述活动空间的高度。
  16. 一种电子设备,其包括权利要求1-14中任一项所述的MEMS器件。
PCT/CN2022/095434 2022-05-27 2022-05-27 Mems器件及其制备方法、电子设备 WO2023225978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001522.6A CN117730050A (zh) 2022-05-27 2022-05-27 Mems器件及其制备方法、电子设备
PCT/CN2022/095434 WO2023225978A1 (zh) 2022-05-27 2022-05-27 Mems器件及其制备方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095434 WO2023225978A1 (zh) 2022-05-27 2022-05-27 Mems器件及其制备方法、电子设备

Publications (1)

Publication Number Publication Date
WO2023225978A1 true WO2023225978A1 (zh) 2023-11-30

Family

ID=88918121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095434 WO2023225978A1 (zh) 2022-05-27 2022-05-27 Mems器件及其制备方法、电子设备

Country Status (2)

Country Link
CN (1) CN117730050A (zh)
WO (1) WO2023225978A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203066A (zh) * 2006-10-16 2008-06-18 雅马哈株式会社 静电压力换能器及其制造方法
CN103281661A (zh) * 2013-05-09 2013-09-04 上海集成电路研发中心有限公司 一种mems麦克风结构及其制造方法
CN103569942A (zh) * 2012-08-01 2014-02-12 台湾积体电路制造股份有限公司 用于防止在加工过程中和使用中出现粘附的混合mems凸块设计
CN104053104A (zh) * 2013-03-12 2014-09-17 北京卓锐微技术有限公司 一种硅电容麦克风及其制造方法
CN104507014A (zh) * 2014-12-26 2015-04-08 上海集成电路研发中心有限公司 一种具有褶皱型振动膜的mems麦克风及其制造方法
US20200245053A1 (en) * 2018-12-12 2020-07-30 Knowles Electronics, Llc Microelectromechanical systems vibration sensor
CN113912000A (zh) * 2021-11-10 2022-01-11 无锡韦感半导体有限公司 微机械结构及制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203066A (zh) * 2006-10-16 2008-06-18 雅马哈株式会社 静电压力换能器及其制造方法
CN103569942A (zh) * 2012-08-01 2014-02-12 台湾积体电路制造股份有限公司 用于防止在加工过程中和使用中出现粘附的混合mems凸块设计
CN104053104A (zh) * 2013-03-12 2014-09-17 北京卓锐微技术有限公司 一种硅电容麦克风及其制造方法
CN103281661A (zh) * 2013-05-09 2013-09-04 上海集成电路研发中心有限公司 一种mems麦克风结构及其制造方法
CN104507014A (zh) * 2014-12-26 2015-04-08 上海集成电路研发中心有限公司 一种具有褶皱型振动膜的mems麦克风及其制造方法
US20200245053A1 (en) * 2018-12-12 2020-07-30 Knowles Electronics, Llc Microelectromechanical systems vibration sensor
CN113912000A (zh) * 2021-11-10 2022-01-11 无锡韦感半导体有限公司 微机械结构及制作方法

Also Published As

Publication number Publication date
CN117730050A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
US10349182B2 (en) Micromechanical piezoelectric actuators for implementing large forces and deflections
JP2023029908A (ja) マイクロメカニカル音響変換器
US9728653B2 (en) MEMS device
JP3775276B2 (ja) 静電アクチュエータ
US6657832B2 (en) Mechanically assisted restoring force support for micromachined membranes
US20180085785A1 (en) High displacement ultrasonic transducer
CN109987574B (zh) 压电型微机电致动器装置和集成微机电致动器装置的设备
US8631711B2 (en) MEMS composite transducer including compliant membrane
US20070024403A1 (en) MEMS switch actuated by the electrostatic force and piezoelectric force
US8409900B2 (en) Fabricating MEMS composite transducer including compliant membrane
JP2013231983A (ja) マイクロエレクトロメカニカルシステム用マイクロミラーを製造する方法
US8513745B2 (en) MEMS switch and fabrication method
KR20170058286A (ko) 수직 전극 트랜스듀서를 위한 시스템 및 방법
JP2006159356A (ja) 圧電駆動型mems装置
US11696507B2 (en) Piezoelectric MEMS device with a suspended membrane having high mechanical shock resistance and manufacturing process thereof
CN109721022B (zh) 具有悬置隔膜的压电mems设备及其制造过程
WO2023225978A1 (zh) Mems器件及其制备方法、电子设备
US10373790B2 (en) Micro-electro-mechanical system and method for producing the same
WO2023078212A1 (zh) 静电微机电系统换能器、制造方法及电子设备
Ke et al. A wafer-scale encapsulated RF MEMS switch with a stress-reduced corrugated diaphragm
JP2006331742A (ja) 電気機械スイッチ
JP2004502146A (ja) 電子超小型部品ならびに該電子超小型部品を内蔵したセンサ及びアクチュエータ
WO2024087079A1 (zh) Mems器件及其制备方法、电子设备
JP2009238546A (ja) 微小電気機械スイッチ
EP2403799B1 (en) Mems device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001522.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943178

Country of ref document: EP

Kind code of ref document: A1