WO2023225962A1 - 一种测距方法及相关装置 - Google Patents

一种测距方法及相关装置 Download PDF

Info

Publication number
WO2023225962A1
WO2023225962A1 PCT/CN2022/095359 CN2022095359W WO2023225962A1 WO 2023225962 A1 WO2023225962 A1 WO 2023225962A1 CN 2022095359 W CN2022095359 W CN 2022095359W WO 2023225962 A1 WO2023225962 A1 WO 2023225962A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
frequency point
frequency
measurement frame
measurement result
Prior art date
Application number
PCT/CN2022/095359
Other languages
English (en)
French (fr)
Inventor
高磊
李德建
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/095359 priority Critical patent/WO2023225962A1/zh
Publication of WO2023225962A1 publication Critical patent/WO2023225962A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Definitions

  • the present application relates to the field of communication technology, and in particular, to a ranging method and related devices.
  • Using communication equipment to transmit ranging signals to achieve ranging is an important means to solve the problem of ranging and positioning.
  • the accuracy of ranging is closely related to the bandwidth covered by the ranging signal that can be coherently combined. The wider the bandwidth covered by the ranging signal, the higher the ranging accuracy.
  • each transmission occupies a narrow bandwidth, and during multiple transmissions, it communicates by frequency hopping within a larger bandwidth range. .
  • Embodiments of the present application provide a ranging method and related devices, which can reduce ranging errors and improve ranging accuracy.
  • embodiments of the present application provide a ranging method, which method includes:
  • the first device sends a first measurement frame to the second device at the first frequency point, and receives the second measurement frame sent by the second device at the first frequency point;
  • the first device sends a third measurement frame to the second device at a second frequency point, and receives a fourth measurement frame sent by the second device at the second frequency point; wherein, the first device The second frequency point is different from the first frequency point;
  • the first device obtains a first measurement result according to the second measurement frame
  • the first device obtains a third measurement result according to the fourth measurement frame
  • the first device sends the first measurement result and the third measurement result to the third device, and the first measurement result and the third measurement result are used for ranging.
  • a ranging method is provided.
  • a first device and a second device interact with measurement frames on at least two frequency points.
  • the first device sends a second device to the second device on the first frequency point.
  • a measurement frame and receiving a second measurement frame from the second device sending a third measurement frame to the second device at the second frequency point and receiving a fourth measurement frame from the second device, wherein the second frequency point and the second measurement frame are The frequency points are different, and the first measurement frame and the third measurement frame are used by the second device to obtain the second measurement result and the fourth measurement result respectively.
  • the first device obtains the first measurement result according to the received second measurement frame, obtains the third measurement result according to the received fourth measurement frame, and sends the first measurement result and the third measurement result to the third device.
  • the computing device that calculates the distance measurement result calculates the distance measurement result based on the first measurement result, the second measurement result, the third measurement result, and the fourth measurement result.
  • the third device may be the second device or other devices other than the second device, which is not limited in this application.
  • the third device is a computing device, used to calculate ranging results; or, the third device is a forwarding device, used to forward the first measurement result and the third measurement result to the computing device. This application does not limit this.
  • the first device and the second device will generate random initial phases when switching from the first frequency point to the second frequency point, which results in the first measurement result and the third measurement result not being directly coherently combined, and the second measurement result and the fourth measurement result.
  • the results cannot be directly merged coherently.
  • the first measurement result and the second measurement result are combined to obtain a joint measurement result at the first frequency point.
  • the joint measurement result at the first frequency point is not affected by the initial phase of the first device and the second device at the first frequency point; combined with the third
  • the measurement result and the fourth measurement result obtain a joint measurement result at the second frequency point, and the joint measurement result at the second frequency point is not affected by the initial phase of the first device and the second device at the second frequency point.
  • the joint measurement results of the first frequency point and the joint measurement results of the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • the measurement results of a single frequency point can be used.
  • the wider frame bandwidth is used to calculate the ranging results, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the first frequency point and the second frequency point are two adjacent ones in the order of use time.
  • frequency point that is, the first device and the second device first perform measurement frame interaction on the first frequency point, and then perform measurement frame interaction on the second frequency point, and in the time between these two measurement frame interactions, No measurement frame interaction is performed on frequency points other than the first frequency point and the second frequency point.
  • the use here refers to the interaction of the first device and the second device in the measurement frame.
  • the first frequency point and the second frequency point are adjacent in the order of use time. This does not exclude the interaction between the two measurement frames.
  • the first device and the second device interact with non-measurement frames at other frequency points, for example, the exchange of frames used to transmit business data, measurement results, signaling, etc. but not used for ranging measurement; neither here nor It is excluded that during the time between the two measurement frame interactions, other devices other than the first device and the second device interact with frames of any type at any frequency point.
  • the first frequency point is obtained from the first frequency point set
  • the second frequency point is obtained from the second frequency point set.
  • the difference between the first frequency point set and the second frequency point set is that the first frequency point set includes the first frequency point. point, the second frequency point set does not include the first frequency point, which can be understood as the second frequency point set is a frequency point set obtained by excluding the first frequency point from the first frequency point set.
  • the first frequency point and the second frequency point are two frequency points adjacent in time sequence, it is possible to avoid reusing the same frequency point during the measurement and shorten the measurement time of ranging. If there is relative motion between the first device and the second device, shortening the measurement time of ranging can reduce the change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results and improving Ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the ranging measurement time can reduce the device clock frequency drift during the measurement. range, suppressing the impact of clock drift on ranging results and improving ranging accuracy.
  • the method further includes:
  • the first device determines the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed
  • the first device determines the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • a possible specific implementation method for determining the first frequency point and the second frequency point is provided.
  • the used frequency point is determined in a pseudo-random manner according to the random seed in the corresponding frequency point set.
  • Frequency point, the first random seed used to determine the first frequency point and the second random seed used to determine the second frequency point may be the same random seed, or they may be different random seeds.
  • frequency points are determined in a pseudo-random manner based on random seeds, so that the determined frequency points are random, reducing the probability of mutual interference caused by using the same time-frequency resources when sharing spectrum with other devices, and improving ranging performance. .
  • the method further includes:
  • the first device generates and sends the first random seed and/or the second random seed
  • the first device receives the first random seed and/or the second random seed.
  • first device generates and sends the first random seed to the second device. and/or the second random seed
  • the first device generates and sends the first random seed and/or the second random seed to other devices, and the other devices forward the first random seed and/or the second random seed to The second device
  • the first device receives the first random seed and/or the second random seed from the second device
  • the first device receives the first random seed and/or the second random seed from other devices, in Before that, the first random seed and/or the second random seed of the other device are generated by the second device and sent to the other device; 5.
  • the other device generates the first random seed and/or the second random seed and sends them to the other device.
  • First device and second device use the same first random seed when selecting the first frequency point, and use the same second random seed when selecting the second frequency point. Therefore, the first device and the second device The device will select the same first frequency point and the same second frequency point to avoid frequency selection errors.
  • the first measurement result includes phase information or in-phase component quadrature component IQ information of the single-frequency sine wave signal contained in the second measurement frame at the first moment, or the second
  • the single-frequency sine wave signal contained in the measurement frame extends the phase information or IQ information of the signal at the first moment according to the single-frequency sine wave model.
  • the first device measures the second measurement frame and obtains the first measurement result, where the first measurement result includes the second measurement frame.
  • the phase information or the in-phase component quadrature component IQ information of the single-frequency sine wave contained in the measurement frame at the first moment, or the first measurement result includes the single-frequency sine wave contained in the second measurement frame and the continuation signal according to the single-frequency sine wave model.
  • Phase information or in-phase component quadrature component IQ information at the first moment Ranging based on phase information or IQ information containing phase information can achieve higher ranging accuracy than traditional amplitude-based ranging methods.
  • the method further includes:
  • the first device determines a first timing offset value, the first timing offset value represents a timing offset of the first device relative to the second measurement frame;
  • the first device determines the first time based on the first timing deviation value.
  • the first device determines the first timing deviation value, and determines the first moment according to the first timing deviation value, wherein, The first timing offset value represents the timing offset of the first device relative to the second measurement frame.
  • the time corresponding to the phase information or IQ information is corrected based on the measured timing deviation, which can suppress the impact of the difference in timing and frequency between the clocks of the first device and the second device on the ranging results, and improve the ranging results. Accuracy.
  • a possible specific implementation method for determining the first moment is provided.
  • the first moment needs to satisfy t0+t1/2, where t0 represents the reference time and t1 represents the first timing deviation value.
  • the second device also uses a similar method to determine the second time. Then the difference between the real time corresponding to the first time of the first device clock and the real time corresponding to the second time of the second device clock is mainly due to the first timing deviation.
  • the value is related to the measurement error of the second timing deviation value, and has nothing to do with the timing deviation between the clocks of the first device and the second device.
  • the joint measurement result of the first frequency point obtained by combining the first measurement result and the second measurement result is not affected by the second timing deviation value.
  • the impact of the timing deviation between the clocks of the first device and the second device is suppressed, thereby suppressing the impact of the timing deviation between the clocks of the first device and the second device on the ranging results, and improving the ranging accuracy.
  • determining the first timing offset value includes:
  • the first device determines the first timing offset value by measuring the signal in the second measurement frame.
  • the first device determines the first timing offset value by measuring the signal in the second measurement frame, or , the first device may also determine the first timing offset value by measuring other signals sent by the second device, and the other signals may include signals in other measurement frames or signals in other non-measurement frames.
  • the timing deviation can be corrected, the difference in timing and frequency between the clocks of the first device and the second device can be reduced, and the impact on the measurement results of the measurement frame can be reduced, thereby reducing the ranging results. error to improve ranging accuracy.
  • the method further includes:
  • the first device receives a first message, and/or sends the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the first device receives the first message and/or sends the first message, and determines the reference time through the information indicated by the first message.
  • the reference time is a time predefined for the first device (and the second device) configuration or protocol.
  • the first device and the second device use the same agreed reference time to determine the measurement time, which can suppress the impact of the timing and frequency difference between the clocks of the first device and the second device on the measurement results of the measurement frame, thereby reducing Error in ranging results and improve ranging accuracy.
  • the method further includes:
  • the first device receives the second message, and/or sends the second message, where the second message is used to indicate a reference value; or, the reference value is a preconfigured or predefined value;
  • the reference time is determined according to the reference value and a first frequency deviation value, wherein the first frequency deviation value represents the frequency deviation of the first device relative to the second measurement frame.
  • the first device receives the second message and/or sends the second message, and the first device receives the second message and/or sends the second message according to the first frequency deviation value and the second message.
  • the indicated reference value determines a reference time, wherein the first frequency deviation value represents the frequency deviation of the first device relative to the second measurement frame.
  • the first device and the second device use the same reference value, and the first device determines the reference time based on the frequency deviation and the reference value to correct the change in the reference time caused by the timing deviation caused by the frequency deviation.
  • the influence of the timing and frequency difference between the clocks of the first device and the second device on the measurement results of the measurement frame can be suppressed, thereby reducing the error of the ranging results and improving the ranging accuracy.
  • the reference times corresponding to different frequency points are the same or different, and/or the reference values corresponding to different frequency points are the same or different.
  • the reference times used by different antenna combinations at the same frequency point are the same or different, and/or the same frequency Different antenna combinations of points use the same or different reference values.
  • the different antenna combinations include but are not limited to: antenna combination one (transmitting antenna 1 of the first device and receiving antenna 2 of the second device), and/or antenna combination two (receiving antenna 1 of the first device and receiving antenna 2 of the second device) Transmitting antenna 2), etc., the embodiment of the present application does not limit this.
  • the first measurement frame does not contain measurement result data or service data.
  • the first measurement frame can be shortened or the time length of the signal used for measurement in the first measurement frame can be increased, such as the length of a single-frequency sine wave signal.
  • shortening the measurement frame length can thereby shorten the interval for transmitting a single-frequency sine wave signal between the first device and the second device and the total measurement time of ranging.
  • the error in ranging results caused by the clock frequency offset between the first device and the second device is related to the interval between the transmission of single-frequency sine wave signals between the first device and the second device. Under the same frequency offset , the larger the interval, the greater the error.
  • Shortening the interval for transmitting a single-frequency sine wave signal between the first device and the second device can suppress the impact of the clock frequency offset between the first device and the second device on the ranging results. . If there is relative motion between the first device and the second device, shortening the total measurement time of ranging can reduce the amount of change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results. Improve ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the total measurement time of ranging can reduce the device clock frequency during the measurement.
  • the drift range suppresses the impact of clock drift on ranging results and improves ranging accuracy.
  • Increasing the time length of the signal used for measurement in the first measurement frame can improve the accuracy of the second device in obtaining the second measurement result through the first measurement frame, thereby improving the ranging accuracy.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the first sequence through the first constellation diagram. It is obtained through modulation that the first sequence is a sequence composed of N bits, and the value of N corresponds to the modulation mode of the first constellation diagram.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and among the at least two symbols, Each symbol is modulated according to the first sequence and through the first constellation diagram.
  • the first sequence is a sequence composed of N bits, and the value of N corresponds to the modulation mode of the first constellation diagram.
  • the N value corresponding to the modulation mode of binary phase shift keying BPSK is 1, and the value of N corresponding to the modulation mode of binary phase shift keying BPSK is 1.
  • the N value corresponding to the QPSK modulation method is 2, and the N value corresponding to the eight-phase phase shift keying 8PSK modulation method is 3.
  • the single-frequency sine wave signal in the first measurement frame adopts the same modulation method as other signals, avoiding additional implementation complexity and additional time overhead caused by modulation method switching, so as to shorten the first measurement frame. Or increase the time length of the signal used for measurement in the first measurement frame, such as the length of a single-frequency sine wave signal. Among them, shortening the measurement frame length can thereby shorten the interval for transmitting a single-frequency sine wave signal between the first device and the second device and the total measurement time of ranging.
  • the error in ranging results caused by the clock frequency offset between the first device and the second device is related to the interval between the transmission of single-frequency sine wave signals between the first device and the second device.
  • Shortening the interval for transmitting a single-frequency sine wave signal between the first device and the second device can suppress the impact of the clock frequency offset between the first device and the second device on the ranging results. . If there is relative motion between the first device and the second device, shortening the total measurement time of ranging can reduce the amount of change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results. Improve ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the total measurement time of ranging can reduce the device clock frequency during the measurement.
  • the drift range suppresses the impact of clock drift on ranging results and improves ranging accuracy.
  • Increasing the time length of the signal used for measurement in the first measurement frame can improve the accuracy of the second device in obtaining the second measurement result through the first measurement frame, thereby improving the ranging accuracy.
  • the first symbol is obtained according to the first sequence and modulated by the first constellation diagram
  • the first symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the first symbol contained in the first measurement frame is the same as the first symbol contained in the single-frequency sine wave signal in the first measurement frame. At least two symbols are the same and are also obtained according to the first sequence and modulated through the first constellation diagram.
  • the first symbol includes a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or the first symbol located after the single-frequency sine wave signal in the first measurement frame. symbol.
  • the single-frequency sine wave signal and the adjacent symbols on both sides of its boundary have the same mapping sequence and the same constellation diagram, which can avoid sudden changes in the measurement frame at the boundary, thereby suppressing signal distortion caused by the boundary. , improve the accuracy of the measurement results of the measurement frame, thereby improving the ranging accuracy.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the first bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the second symbol is obtained according to the first bit and modulated by the GFSK;
  • the second symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and among the at least two symbols, Each symbol is modulated based on the first bit through Gaussian frequency shift keying GFSK.
  • the second symbol included in the first measurement frame is the same as the at least two symbols included in the single-frequency sine wave signal in the first measurement frame, which is also obtained based on the first bit and modulated by Gaussian frequency shift keying GFSK.
  • the second symbol includes a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or the first symbol located after the single-frequency sine wave signal in the first measurement frame. symbol.
  • the single-frequency sine wave signal and the adjacent symbols on both sides of its boundary have the same mapped bits and the same modulation method, which can avoid sudden changes in the measurement frame at the boundary, thereby suppressing signal distortion caused by the boundary. , improve the accuracy of the measurement results of the measurement frame, thereby improving the ranging accuracy.
  • the method further includes:
  • the first device receives a ranging result, and the ranging result includes distance information between the first device and the second device.
  • the first device receives the ranging result, which may be the ranging result sent by the third device, wherein the third device may
  • the second device is used to calculate the distance measurement result based on the received first measurement result and send it to the first device. It can also be another device with the ability to perform calculation distance measurement and send the calculated distance measurement result to The first device, the ranging result includes distance information between the first device and the second device.
  • embodiments of the present application provide a ranging method, which method includes:
  • the second device receives the first measurement frame sent by the first device at the first frequency point, and sends the second measurement frame to the first device at the first frequency point;
  • the second device receives the third measurement frame sent by the first device at the second frequency point, and sends the fourth measurement frame to the first device at the second frequency point; wherein, the third measurement frame is sent by the first device at the second frequency point.
  • the second frequency point is different from the first frequency point;
  • the second device obtains a second measurement result according to the first measurement frame
  • the second device obtains a fourth measurement result according to the third measurement frame
  • the second device receives a first measurement result and a third measurement result from a fourth device.
  • the first measurement result is the measurement result of the second measurement frame by the first device.
  • the third measurement result is the measurement result of the fourth measurement frame by the first device;
  • the second device determines the distance between the first device and the second device based on the first measurement result, the second measurement result, the third measurement result, and the fourth measurement result. .
  • a ranging method is provided.
  • a first device and a second device interact with measurement frames on at least two frequency points.
  • the second device receives a message sent by the first device on the first frequency point.
  • the first measurement frame and the second measurement frame are sent to the first device, the third measurement frame sent by the first device is received at the second frequency point and the fourth measurement frame is sent to the first device, where the second frequency point and the first measurement frame are The frequency points are different, and the second measurement frame and the fourth measurement frame are used by the first device to obtain the first measurement result and the third measurement result respectively.
  • the second device obtains the second measurement result according to the received first measurement frame, obtains the fourth measurement result according to the received third measurement frame, and receives the first measurement result and the third measurement result from the fourth device.
  • the second device calculates a distance measurement result based on the first measurement result, the second measurement result, the third measurement result, and the fourth measurement result, and determines the distance between the first device and the second device.
  • the fourth device may be the first device or other devices other than the first device, which is not limited in this application.
  • the fourth device is a first device, used to obtain the first measurement result and the third measurement result, and send them to the second device or the forwarding device; or, the fourth device is a forwarding device, used to forward the first measurement result and the third measurement result.
  • the measurement results are given to the second device, which is not limited by this application.
  • the first device and the second device will generate random initial phases when switching from the first frequency point to the second frequency point, which results in the first measurement result and the third measurement result not being directly coherently combined, and the second measurement result and the fourth measurement result.
  • the results cannot be directly merged coherently.
  • the first measurement result and the second measurement result are combined to obtain a joint measurement result at the first frequency point.
  • the joint measurement result at the first frequency point is not affected by the initial phase of the first device and the second device at the first frequency point; combined with the third
  • the measurement result and the fourth measurement result obtain a joint measurement result at the second frequency point, and the joint measurement result at the second frequency point is not affected by the initial phase of the first device and the second device at the second frequency point.
  • the joint measurement results of the first frequency point and the joint measurement results of the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • the measurement results of a single frequency point can be used.
  • the wider frame bandwidth is used to calculate the ranging results, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the first frequency point and the second frequency point are two adjacent ones in the order of use time.
  • frequency point that is, the first device and the second device first perform measurement frame interaction on the first frequency point, and then perform measurement frame interaction on the second frequency point, and in the time between these two measurement frame interactions, No measurement frame interaction is performed on frequency points other than the first frequency point and the second frequency point.
  • the use here refers to the interaction of the first device and the second device in the measurement frame.
  • the first frequency point and the second frequency point are adjacent in the order of use time. This does not exclude the interaction between the two measurement frames.
  • the first device and the second device interact with non-measurement frames at other frequency points, for example, the exchange of frames used to transmit business data, measurement results, signaling, etc. but not used for ranging measurement; neither here nor It is excluded that during the time between the two measurement frame interactions, other devices other than the first device and the second device interact with frames of any type at any frequency point.
  • the first frequency point is obtained from the first frequency point set
  • the second frequency point is obtained from the second frequency point set.
  • the difference between the first frequency point set and the second frequency point set is that the first frequency point set includes the first frequency point. point, the second frequency point set does not include the first frequency point, which can be understood as the second frequency point set is a frequency point set obtained by excluding the first frequency point from the first frequency point set.
  • the first frequency point and the second frequency point are two frequency points adjacent in time sequence, it is possible to avoid reusing the same frequency point during the measurement and shorten the measurement time of ranging. If there is relative motion between the first device and the second device, shortening the measurement time of ranging can reduce the change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results and improving Ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the ranging measurement time can reduce the device clock frequency drift during the measurement. range, suppressing the impact of clock drift on ranging results and improving ranging accuracy.
  • the method further includes:
  • the second device determines the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed
  • the second device determines the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • a possible specific implementation method for determining the first frequency point and the second frequency point is provided.
  • the used frequency point is determined in a pseudo-random manner according to the random seed in the corresponding frequency point set.
  • Frequency point, the first random seed used to determine the first frequency point and the second random seed used to determine the second frequency point may be the same random seed, or they may be different random seeds.
  • frequency points are determined in a pseudo-random manner based on random seeds, so that the determined frequency points are random, reducing the probability of mutual interference caused by using the same time-frequency resources when sharing spectrum with other devices, and improving ranging performance. .
  • the method further includes:
  • the second device generates and sends the first random seed and/or the second random seed
  • the second device receives the first random seed and/or the second random seed.
  • the second device generates and sends the first random seed to the first device. and/or the second random seed; 2.
  • the second device generates and sends the first random seed and/or the second random seed to other devices, and the other device forwards the first random seed and/or the second random seed to The first device; 3.
  • the second device can also receive the first random seed and/or the second random seed from the first device; 4.
  • the second device receives the first random seed and/or the second random seed from other devices. , before that, the first random seed and/or the second random seed of the other device are generated by the first device and sent to the other device; 5.
  • the other device generates the first random seed and/or the second random seed, and Sent to the first device and the second device.
  • the first device and the second device use the same first random seed when selecting the first frequency point, and use the same second random seed when selecting the second frequency point. Therefore, the first device and the second device The device will select the same first frequency point and the same second frequency point to avoid frequency selection errors.
  • the method further includes:
  • the second device obtains a second measurement result according to the first measurement frame; wherein the second measurement result includes phase information or in-phase information of the single-frequency sine wave signal contained in the first measurement frame at the second moment.
  • the second device measures the first measurement frame and obtains the second measurement result, where the second measurement result includes the first
  • the method further includes:
  • the second device determines a second timing offset value, the second timing offset value represents the timing offset of the second device relative to the first measurement frame;
  • the second device determines the second time based on the second timing deviation value.
  • the second device determines the second timing deviation value, and determines the second time according to the second timing deviation value, wherein, The second timing offset value represents the timing offset of the second device relative to the first measurement frame.
  • the time corresponding to the phase information or IQ information is corrected based on the measured timing deviation, which can suppress the impact of the difference in timing and frequency between the clocks of the first device and the second device on the ranging results, and improve the ranging results. Accuracy.
  • a possible specific implementation method for determining the second time is provided.
  • the second time needs to satisfy t0+t2/2, where t0 represents the reference time and t2 represents the second timing deviation value.
  • the first device also uses a similar method to determine the first time. Then the difference between the real time corresponding to the first time of the first device clock and the real time corresponding to the second time of the second device clock is mainly due to the first timing deviation.
  • the value is related to the measurement error of the second timing deviation value, and has nothing to do with the timing deviation between the clocks of the first device and the second device.
  • the joint measurement result of the first frequency point obtained by combining the first measurement result and the second measurement result is not affected by the second timing deviation value.
  • the impact of the timing deviation between the clocks of the first device and the second device is suppressed, thereby suppressing the impact of the timing deviation between the clocks of the first device and the second device on the ranging results, and improving the ranging accuracy.
  • determining the second timing offset value includes:
  • the second device determines the second timing offset value by measuring the signal in the first measurement frame.
  • the second device determines the second timing offset value by measuring the signal in the first measurement frame, or , the second device may also determine the second timing offset value by measuring other signals sent by the first device, and the other signals may include signals in other measurement frames or signals in other non-measurement frames.
  • the timing deviation can be corrected, the difference in timing and frequency between the clocks of the first device and the second device can be reduced, and the impact on the measurement results of the measurement frame can be reduced, thereby reducing the ranging results. error to improve ranging accuracy.
  • the method further includes:
  • the second device sends a first message, and/or receives the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the second device receives the first message and/or sends the first message, and determines the reference time through the information indicated by the first message.
  • the reference time is a time predefined for the second device (and the first device) configuration or protocol.
  • the first device and the second device use the same agreed reference time to determine the measurement time, which can suppress the impact of the timing and frequency difference between the clocks of the first device and the second device on the measurement results of the measurement frame, thereby reducing Error in ranging results and improve ranging accuracy.
  • the method further includes:
  • the second device sends a second message, and/or receives the second message, where the second message is used to indicate a reference value; or, the reference value is a preconfigured or predefined value;
  • the reference time is determined according to the reference value and a second frequency deviation value, wherein the second frequency deviation value represents the frequency deviation of the second device relative to the first measurement frame.
  • the second device receives the second message and/or sends the second message, and the second device receives the second message and/or sends the second message according to the second frequency deviation value and the second message.
  • the indicated reference value determines a reference time, wherein the second frequency offset value represents the frequency offset of the second device relative to the first measurement frame.
  • the first device and the second device use the same agreed reference value, and the second device determines the reference time based on the frequency deviation and the reference value, so as to correct the change in the timing deviation caused by the frequency deviation over time to the reference time.
  • the influence of the timing and frequency difference between the clocks of the first device and the second device on the measurement results of the measurement frame can be suppressed, thereby reducing the error of the ranging results and improving the ranging accuracy.
  • the reference times corresponding to different frequency points are the same or different, and/or the reference values corresponding to different frequency points are the same or different.
  • the reference times used by different antenna combinations at the same frequency point are the same or different, and/or the same frequency Different antenna combinations of points use the same or different reference values.
  • the different antenna combinations include but are not limited to: antenna combination one (transmitting antenna 1 of the first device and receiving antenna 2 of the second device), and/or antenna combination two (receiving antenna 1 of the first device and receiving antenna 2 of the second device) Transmitting antenna 2), etc., the embodiment of the present application does not limit this.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the second sequence through the second constellation diagram. It is obtained through modulation that the second sequence is a sequence composed of M bits, and the value of M corresponds to the modulation mode of the second constellation diagram.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and the second measurement frame contains at least two symbols.
  • Each symbol is modulated according to the second sequence and through the second constellation diagram.
  • the second sequence is a sequence composed of M bits, and the value of M corresponds to the modulation mode of the second constellation diagram.
  • the M value corresponding to the modulation mode of binary phase shift keying BPSK is 1, and the value of M corresponding to the modulation mode of binary phase shift keying BPSK is 1.
  • the M value corresponding to the QPSK modulation method is 2, and the M value corresponding to the eight-phase phase shift keying 8PSK modulation method is 3.
  • the single-frequency sine wave signal in the second measurement frame adopts the same modulation method as other signals, avoiding additional implementation complexity and additional time overhead caused by modulation method switching, so as to shorten the second measurement frame. Or increase the time length of the signal used for measurement in the second measurement frame, such as the length of a single-frequency sine wave signal. Among them, shortening the measurement frame length can thereby shorten the interval for transmitting a single-frequency sine wave signal between the first device and the second device and the total measurement time of ranging.
  • the error in ranging results caused by the clock frequency offset between the first device and the second device is related to the interval between the transmission of single-frequency sine wave signals between the first device and the second device.
  • Shortening the interval for transmitting a single-frequency sine wave signal between the first device and the second device can suppress the impact of the clock frequency offset between the first device and the second device on the ranging results. . If there is relative motion between the first device and the second device, shortening the total measurement time of ranging can reduce the amount of change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results. Improve ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the total measurement time of ranging can reduce the device clock frequency during the measurement.
  • the drift range suppresses the impact of clock drift on ranging results and improves ranging accuracy.
  • Increasing the time length of the signal used for measurement in the second measurement frame can improve the accuracy of the second device in obtaining the second measurement result through the first measurement frame, thereby improving the ranging accuracy.
  • the third symbol is obtained according to the second sequence and modulated by the second constellation diagram
  • the third symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the third symbol contained in the second measurement frame is the same as the third symbol contained in the single-frequency sine wave signal in the second measurement frame. At least two symbols are the same, which are also obtained according to the second sequence and modulated by the second constellation diagram.
  • the third symbol includes a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or the first symbol located after the single-frequency sine wave signal in the second measurement frame. symbol.
  • the single-frequency sine wave signal and the adjacent symbols on both sides of its boundary have the same mapping sequence and the same constellation diagram, which can avoid sudden changes in the measurement frame at the boundary, thereby suppressing signal distortion caused by the boundary. , improve the accuracy of the measurement results of the measurement frame, thereby improving the ranging accuracy.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the second bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the fourth symbol is obtained according to the second bit and modulated by the GFSK;
  • the fourth symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and the second measurement frame contains at least two symbols. Each symbol is modulated by Gaussian frequency shift keying (GFSK) based on the second bit.
  • GFSK Gaussian frequency shift keying
  • the fourth symbol included in the second measurement frame is the same as the at least two symbols included in the single-frequency sine wave signal in the second measurement frame, which is also obtained based on the second bit and through Gaussian frequency shift keying GFSK modulation.
  • the fourth symbol includes a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or the first symbol located after the single-frequency sine wave signal in the second measurement frame. symbol.
  • the single-frequency sine wave signal and the adjacent symbols on both sides of its boundary have the same mapped bits and the same modulation method, which can avoid sudden changes in the measurement frame at the boundary, thereby suppressing signal distortion caused by the boundary. , improve the accuracy of the measurement results of the measurement frame, thereby improving the ranging accuracy.
  • the method further includes:
  • the second device sends a ranging result, where the ranging result includes distance information between the first device and the second device.
  • the second device After the second device calculates and measures the distance based on the received first measurement result and obtains the distance measurement result, it sends the distance measurement result, which may be to a fourth device, where the fourth device may be the first device.
  • the device is used to measure the received second measurement frame, obtain the first measurement result, and send it to the second device. It may also be other devices that do not have the ability to perform calculation ranging.
  • the ranging result includes the first device. distance information to the second device.
  • embodiments of the present application provide a communication device, which includes a module or unit for executing the method as described in any one of the first aspect or the second aspect.
  • the communication device includes:
  • a transceiver unit configured to send a first measurement frame to a second device on a first frequency point, and receive a second measurement frame sent by the second device on the first frequency point;
  • the transceiver unit is further configured to send a third measurement frame to the second device at a second frequency point, and receive a fourth measurement frame sent by the second device at the second frequency point; wherein, The second frequency point is different from the first frequency point;
  • a processing unit configured to obtain a first measurement result according to the second measurement frame
  • the processing unit is also configured to obtain a third measurement result according to the fourth measurement frame;
  • the transceiver unit is further configured to send the first measurement result and the third measurement result to a third device, where the first measurement result and the third measurement result are used for ranging.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the processing unit is further configured to determine the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed
  • the processing unit is further configured to determine the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • the processing unit is also configured to generate and send the first random seed and/or the second random seed through the transceiver unit;
  • the transceiver unit is also configured to receive the first random seed and/or the second random seed.
  • the first measurement result includes phase information or in-phase component quadrature component IQ information of the single-frequency sine wave signal contained in the second measurement frame at the first moment, or the second
  • the single-frequency sine wave signal contained in the measurement frame extends the phase information or IQ information of the signal at the first moment according to the single-frequency sine wave model.
  • the processing unit is also configured to determine a first timing offset value, where the first timing offset value represents the timing offset of the communication device relative to the second measurement frame;
  • the processing unit is further configured to determine the first time according to the first timing deviation value.
  • the processing unit is specifically configured to determine the first timing offset value by measuring the signal in the second measurement frame.
  • the transceiver unit is also configured to receive a first message, and/or send the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the transceiver unit is also configured to receive a second message, and/or send the second message, where the second message is used to indicate a reference value; or, the reference value For pre-configured or pre-defined values;
  • the processing unit is further configured to determine the reference time according to the reference value and a first frequency deviation value, wherein the first frequency deviation value represents the frequency of the communication device relative to the second measurement frame. deviation.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the first sequence through the first constellation diagram. It is obtained through modulation that the first sequence is a sequence composed of N bits, and the value of N corresponds to the modulation mode of the first constellation diagram.
  • the first symbol is obtained according to the first sequence and modulated by the first constellation diagram
  • the first symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the first bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the second symbol is obtained according to the first bit and modulated by the GFSK;
  • the second symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the transceiver unit is also configured to receive ranging results, where the ranging results include distance information between the communication device and the second device.
  • the communication device includes:
  • a transceiver unit configured to receive a first measurement frame sent by a first device on a first frequency point, and send a second measurement frame to the first device on the first frequency point;
  • the transceiver unit is further configured to receive the third measurement frame sent by the first device at the second frequency point, and send the fourth measurement frame to the first device at the second frequency point; wherein, The second frequency point is different from the first frequency point;
  • a processing unit configured to obtain a second measurement result according to the first measurement frame
  • the processing unit is also configured to obtain a fourth measurement result according to the third measurement frame
  • the transceiver unit is also configured to receive the first measurement result and the third measurement result from the fourth device, where the first measurement result is the measurement result of the second measurement frame by the first device, so The third measurement result is the measurement result of the fourth measurement frame by the first device;
  • the processing unit is further configured to determine, based on the first measurement result, the second measurement result, the third measurement result, and the fourth measurement result, between the first device and the communication device. distance.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the processing unit is further configured to determine the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed
  • the processing unit is further configured to determine the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • the processing unit is also configured to generate and send the first random seed and/or the second random seed through the transceiver unit;
  • the transceiver unit is also configured to receive the first random seed and/or the second random seed.
  • the processing unit is further configured to obtain a second measurement result according to the first measurement frame; wherein the second measurement result includes a single frequency contained in the first measurement frame.
  • the phase information or the in-phase component quadrature component IQ information of the sine wave signal at the second moment, or the single-frequency sine wave signal contained in the first measurement frame extends the phase of the signal at the second moment according to the single-frequency sine wave model. information or IQ information, and the second measurement result is used for ranging.
  • the processing unit is also configured to determine a second timing offset value, where the second timing offset value represents the timing offset of the communication device relative to the first measurement frame;
  • the processing unit is further configured to determine the second time according to the second timing deviation value.
  • the processing unit is specifically configured to determine the second timing offset value by measuring the signal in the first measurement frame.
  • the transceiver unit is also configured to send a first message, and/or receive the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the transceiver unit is also configured to send a second message, and/or receive the second message, where the second message is used to indicate a reference value; or, the reference value For pre-configured or pre-defined values;
  • the processing unit is further configured to determine the reference time according to the reference value and a second frequency offset value, wherein the second frequency offset value represents the frequency of the communication device relative to the first measurement frame. deviation.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the second sequence through the second constellation diagram. It is obtained through modulation that the second sequence is a sequence composed of M bits, and the value of M corresponds to the modulation mode of the second constellation diagram.
  • the third symbol is obtained according to the second sequence and modulated by the second constellation diagram
  • the third symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the second bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the fourth symbol is obtained according to the second bit and modulated by the GFSK;
  • the fourth symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the transceiver unit is further configured to send a ranging result, where the ranging result includes distance information between the first device and the second device.
  • an embodiment of the present application provides a communication device, including a processor.
  • the processor is coupled to a memory and may be used to execute instructions in the memory to implement any one of the above first to second aspects and the method of any possible implementation.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • embodiments of the present application provide a communication device, including: a logic circuit and a communication interface.
  • the communication interface is used to receive information or send information;
  • the logic circuit is used to receive information or send information through the communication interface, so that the communication device performs any one of the first to second aspects and any of the above.
  • embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium being used to store a computer program (also called a code, or an instruction); when the computer program is run on a computer
  • a computer program also called a code, or an instruction
  • inventions of the present application provide a computer program product.
  • the computer program product includes: a computer program (which can also be called a code, or an instruction); when the computer program is run, it causes the computer to execute the above-mentioned first step.
  • a computer program which can also be called a code, or an instruction
  • embodiments of the present application provide a chip.
  • the chip includes a processor.
  • the processor is configured to execute instructions. When the processor executes the instructions, the chip performs any of the above first to second aspects. Methods of one aspect and any of the possible embodiments.
  • the chip also includes a communication interface, which is used to receive signals or send signals.
  • embodiments of the present application provide a vehicle terminal, which includes at least one communication device as described in the third aspect, or a communication device as described in the fourth aspect, or a communication device as described in the fifth aspect. , or the chip described in the eighth aspect.
  • embodiments of the present application provide a system that includes a vehicle terminal and at least one communication device as described in the third aspect, or a communication device as described in the fourth aspect, or a communication device as described in the fifth aspect. device, or the chip according to the eighth aspect.
  • the above method is related to sending information and/or
  • the process of receiving information can be understood as the process of outputting information by the processor, and/or the process of receiving input information by the processor.
  • the processor may output the information to the transceiver (or communication interface, or transmitting module) for transmission by the transceiver. After the information is output by the processor, it may also need to undergo other processing before it reaches the transceiver.
  • the transceiver or communication interface, or sending module
  • the transceiver receives the information and inputs it into the processor.
  • the information may need to undergo other processing before being input to the processor.
  • the sending information mentioned in the foregoing method can be understood as processor output information.
  • receiving information can be understood as the processor receiving input information.
  • the above-mentioned processor may be a dedicated processor.
  • the processor that performs these methods may also be a processor that performs these methods by executing computer instructions in a memory, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • ROM read-only memory
  • the above-mentioned at least one memory is located outside the device.
  • the above-mentioned at least one memory is located within the device.
  • part of the at least one memory is located within the device, and another part of the memory is located outside the device.
  • processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the joint measurement results based on the first frequency point and the joint measurement results based on the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • the ratio can be used when calculating the ranging results.
  • the measurement frame bandwidth of a single frequency point is larger and the ranging results are calculated, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • Figure 1 is a schematic diagram of a bilateral measurement provided by an embodiment of the present application.
  • Figure 2 is an architectural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a ranging method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of another ranging method provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of another ranging method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a frequency hopping algorithm provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a bilateral measurement provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • Those skilled in the art can understand explicitly and implicitly that in the various embodiments of the present application, if there are no special instructions and logical conflicts, the terminology and/or descriptions between the various embodiments are consistent, and can By referencing each other, technical features in different embodiments can be combined to form new embodiments based on their inherent logical relationships.
  • At least one (item) refers to one or more
  • plural refers to two or more
  • at least two (items) refers to two or three and three or more
  • "and/or” is used to describe the relationship between associated objects, indicating that there can be three relationships.
  • a and/or B can mean: only A exists, only B exists, and A exists at the same time. and B, where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • Frequency point the center frequency of the transmitted signal.
  • a device with frequency hopping function can use the same or different frequencies during two different signal transmission processes.
  • the way to indicate the frequency point can be an absolute frequency or a number that represents the absolute frequency.
  • Using communication equipment to transmit ranging signals to achieve ranging is an important means to solve the problem of ranging and positioning.
  • the accuracy of ranging is closely related to the bandwidth covered by the ranging signal that can be coherently combined. The wider the bandwidth covered by the ranging signal, the higher the ranging accuracy.
  • frequency hopping for ranging, a single transmission occupies a smaller bandwidth. However, if only a single transmission is used for ranging, the ranging accuracy cannot meet the demand.
  • the frequency hopping communication method can expand the bandwidth of the ranging signal coverage. However, every time the frequency is jumped, the device clock will generate a random phase, resulting in the ranging signals received by the device at different frequencies being unable to be directly coherently combined.
  • the random phase of the device clock caused by frequency hopping can be eliminated through bilateral measurement, so that ranging signals at different frequencies can be coherently combined to obtain higher ranging accuracy.
  • Figure 1 is a schematic diagram of a possible bilateral measurement provided by an embodiment of the present application.
  • bilateral measurement refers to the first device sending a first measurement frame at each frequency hopping frequency point.
  • the first measurement frame includes a single-frequency sine wave signal
  • the second device receives the first measurement frame.
  • the single-frequency sine wave signal in the signal extends the IQ value (or amplitude, phase information) of the signal at the second moment according to the single-frequency sine wave model.
  • the IQ value can also be calculated through algorithms such as parameter estimation, instead of single-frequency sine wave signal. Frequency sine wave signal is extended.
  • the second device sends a second measurement frame
  • the second measurement frame includes a single-frequency sine wave signal
  • the first device receives the second measurement frame, and measures the frequency of the single-frequency sine wave signal in the second measurement frame at the first
  • the IQ value (or amplitude, phase information) at the time, or the IQ value (or amplitude, phase information) of the single-frequency sine wave signal in the second measurement frame at the first time according to the single-frequency sine wave model extension signal in actual processing, the IQ value can also be calculated through algorithms such as parameter estimation without extending the single-frequency sine wave signal.
  • the two measurement values are obtained by a certain device (first device, second device or other device) (for example, through wired and/or wireless communication)
  • the two measurement values are combined (for example, simply multiplied) , to obtain the reference value of the frequency hopping frequency point, and the reference values of multiple frequency hopping frequency points can be coherently combined for ranging, and the distance information between the first device and the second device is obtained.
  • embodiments of the present application provide a communication architecture for ranging, and accordingly propose a new communication architecture based on this architecture.
  • the ranging method based on the joint measurement results of the first frequency point and the joint measurement results of the second frequency point, is not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • a ratio of a single frequency can be used to calculate the ranging results.
  • the point measurement frame bandwidth has a larger bandwidth to calculate the ranging results, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the method provided by this application can be applied to various communication systems, for example, it can be an Internet of things (IoT) system, a narrowband Internet of things (NB-IoT) system, a long term evolution (long term evolution) , LTE) system, short-distance wireless communication network system, such as SparkLink communication network system, it can also be the fifth-generation (5th-generation, 5G) communication system, and new communication systems emerging in future communication development (such as 6G) etc.
  • IoT Internet of things
  • NB-IoT narrowband Internet of things
  • LTE long term evolution
  • SparkLink short-distance wireless communication network system
  • 5G fifth-generation
  • 6G new communication systems emerging in future communication development
  • the technical solution provided by this application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), and device-to-device (D2D). ) network, machine to machine (M2M) network, Internet of things (IoT) network or other networks.
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called vehicle-to-everything (V2X, X can represent anything).
  • the V2X can include: vehicle-to-vehicle (V2V) communication, Vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) communication, or vehicle to network (V2N) communication, etc.
  • a node may include a handheld terminal, a vehicle, a vehicle-mounted device, or a network side device, a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a wireless communication device, a user agent, or
  • An independent device such as a user device may also be a component (such as a chip or integrated circuit) included in the independent device.
  • Nodes can be any possible intelligent terminal equipment (such as mobile phones), intelligent transportation equipment (such as vehicles, drones, etc.), intelligent manufacturing equipment, smart home equipment (such as large screens, speakers, etc.), etc.
  • the nodes in the embodiments of this application can be used in a variety of application scenarios, such as the following application scenarios: mobile internet (MI), industrial control (industrial control), self-driving (self-driving), transportation safety (transportation safety) ), Internet of things (IoT), smart city (smart city), or smart home (smart home), etc.
  • MI mobile internet
  • industrial control industrial control
  • self-driving self-driving
  • transportation safety transportation safety
  • IoT Internet of things
  • smart city smart city
  • smart home smart home
  • the names of devices with similar communication capabilities may not be called nodes, and this application does not limit this.
  • nodes can communicate through D2D technology, M2M technology or V2X technology.
  • Figure 2 is a schematic architectural diagram of a possible communication system provided by an embodiment of the present application.
  • the communication system may include at least one first node (eg, base station) and at least one second node (eg, UE).
  • first node eg, base station
  • second node eg, UE
  • the first node may be a master device, specifically, it may be a next generation node B (next generation node B, gNB), a next generation evolved base station (next generation evolved nodeB, ng-eNB), or a short-range wireless communication network system.
  • Nodes for example, master nodes or G nodes in the Starlight communication network system), or access network equipment in future 6G communications, etc.
  • the main device can be any device with wireless transceiver function.
  • the main device can be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless LAN (wireless fidelity, WiFi) system.
  • the main device may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the main device can be a wearable device or a vehicle-mounted device, etc.
  • the main device can also be a small station, a transmission reception point (TRP) (or it can also be called a transmission point), etc.
  • the second node may be a terminal device, which may also be called user equipment (UE), terminal, etc.
  • Terminal equipment is a device with wireless transceiver functions that can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on water, such as on ships; it can also be deployed in the air, such as on On board an airplane, balloon or satellite, etc.
  • the terminal device can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device may also be a node in a short-distance wireless communication network system (for example, a slave node or a T node in a starlight communication network system), a terminal device in a future 6G network, or a terminal device in a future evolved PLMN. Terminal equipment, etc.
  • the terminal equipment shown in this application may not only include vehicles in the Internet of Vehicles (such as complete vehicles), but may also include vehicle-mounted equipment or vehicle-mounted terminals in the Internet of Vehicles, etc. This application will not apply to the terminal equipment when it is applied to the Internet of Vehicles.
  • the specific form is not limited.
  • Figure 2 exemplarily shows one base station and six UEs, as well as communication links between each communication device.
  • the communication system may include multiple base stations, and the coverage of each base station may include other numbers of UEs, such as more or less UEs, etc., which is not limited in this application.
  • the communication links between the above communication devices may include various types of connection media, including wired links (such as optical fibers), wireless links, or a combination of wired links and wireless links.
  • connection media include wired links (such as optical fibers), wireless links, or a combination of wired links and wireless links.
  • wired links such as optical fibers
  • wireless links such as a combination of wired links and wireless links.
  • short-range connection technologies include SparkLink, 802.11b/g, blue tooth, Zigbee, radio frequency identification (RFID), ultra-wideband, UWB) technology, or wireless short-range communication system (such as vehicle-mounted wireless short-range communication system), etc.
  • Each of the above communication devices can be configured with multiple antennas.
  • the multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • the embodiments of the present application do not limit the specific structure of each communication device.
  • the communication system may also include other network entities such as a network controller and a mobility management entity, and the embodiments of the present application are not limited thereto.
  • this application proposes a new ranging method based on the architecture of the above communication system.
  • the ranging method provided by this application will be described in detail below with reference to Figures 3 to 8.
  • FIG. 3 is a schematic flowchart of a ranging method provided by an embodiment of the present application.
  • the ranging method includes but is not limited to the following steps:
  • S301 The first device sends the first measurement frame to the second device at the first frequency point.
  • the second device receives the first measurement frame sent by the first device at the first frequency point.
  • S302 The second device sends a second measurement frame to the first device at the first frequency point.
  • the first device receives the second measurement frame sent by the second device at the first frequency point.
  • S303 The first device sends the third measurement frame to the second device at the second frequency point.
  • the second device receives the third measurement frame sent by the first device at the second frequency point.
  • S304 The second device sends the fourth measurement frame to the first device at the second frequency point.
  • the first device receives the fourth measurement frame sent by the second device at the second frequency point.
  • the above steps S301 to S304 can be understood as the first device and the second device interacting with measurement frames on at least two frequency points during the measurement process.
  • the first device sends the first device to the second device on the first frequency point. Measure the frame, and receive the second measurement frame sent by the second device at the first frequency point; the first device sends the third measurement frame to the second device at the second frequency point, and receive the second measurement frame at the second frequency point.
  • the fourth measurement frame sent by the device; wherein the second frequency point is different from the first frequency point, the first measurement frame and the third measurement frame are respectively used by the second device to obtain the second measurement result and the fourth measurement result.
  • the second measurement The frame and the fourth measurement frame are respectively used by the first device to obtain the first measurement result and the third measurement result.
  • the first device (and/or the second device) in the embodiment of the present application is a device equipped with a processor that can be used to execute computer execution instructions. It may be a terminal device (such as a vehicle-mounted terminal), etc., or it may be a network Equipment (such as serving base station), etc., specifically can be the second node (such as any device among UE1 to UE6) in the above-mentioned Figure 2, or can be the first node in the above-mentioned Figure 2, used to execute the embodiment of the present application.
  • the distance measurement method in the method is used to reduce the error of distance measurement and improve the accuracy of distance measurement.
  • the first frequency point and the second frequency point can be determined by including but not limited to the following methods:
  • the first frequency point is obtained from the first frequency point set
  • the second frequency point is obtained from the second frequency point set.
  • the difference between the first frequency point set and the second frequency point set is that the first frequency point set includes the first frequency point, and the second frequency point set does not include the first frequency point. It can be understood that the second frequency point set is a frequency point set obtained by excluding the first frequency point from the first frequency point set.
  • first frequency point and the second frequency point are two frequency points that are adjacent in the order of use time, where the adjacent frequency points in the order of use time can be understood as follows:
  • the first device and the second device first perform measurement frame interaction on the first frequency point, and then perform measurement frame interaction on the second frequency point, and during the time between the two measurement frame interactions, there is no measurement frame interaction on the first frequency point.
  • Measurement frame interaction is performed on frequency points other than the second frequency point. It should be understood that the use here refers to the interaction of the first device and the second device in the measurement frame.
  • the first frequency point and the second frequency point are adjacent in the order of use time. This does not exclude the interaction between the two measurement frames.
  • the first device and the second device interact with non-measurement frames at other frequency points, for example, the exchange of frames used to transmit business data, measurement results, signaling, etc. but not used for ranging measurement; neither here nor It is excluded that during the time between the two measurement frame interactions, other devices other than the first device and the second device interact with frames of any type at any frequency point.
  • the first frequency point and the second frequency point are two frequency points adjacent in time sequence, it is possible to avoid reusing the same frequency point during the measurement and shorten the measurement time of ranging. If there is relative motion between the first device and the second device, shortening the measurement time of ranging can reduce the change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results and improving Ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the ranging measurement time can reduce the device clock frequency drift during the measurement. range, suppressing the impact of clock drift on ranging results and improving ranging accuracy.
  • the frequency points used can be determined in a pseudo-random manner in the corresponding frequency point set according to the random seed.
  • the first frequency point is determined in a pseudo-random manner in the first frequency point set according to the first random seed
  • the second frequency point is determined in a pseudo-random manner in the second frequency point set according to the second random seed.
  • the first random seed used to determine the first frequency point and the second random seed used to determine the second frequency point may be the same random seed, or they may be different random seeds.
  • frequency points are determined in a pseudo-random manner based on random seeds, so that the determined frequency points are random, which can reduce the probability of mutual interference caused by using the same time-frequency resources when sharing spectrum with other devices, and improve ranging. performance.
  • the first device can obtain the random seed required to determine the frequency point in one of multiple ways.
  • Method 1 The first device generates and/or sends the first random seed and/or the second random seed to the second device; Method 2. The first device generates and sends the first random seed and/or to other devices. The second random seed, the other device forwards the first random seed and/or the second random seed to the second device; Method 3. The first device receives the first random seed and/or the second random seed from the second device ; Mode 4. The first device receives the first random seed and/or the second random seed from other devices. Before that, the first random seed and/or the second random seed of the other device are generated and sent by the second device. To the other device; Method 5. The other device generates the first random seed and/or the second random seed and sends them to the first device.
  • the second device can also obtain the random seeds required to determine the frequency point in one of multiple ways.
  • Method 1 The second device generates and/or sends the first random seed and/or the second random seed to the first device; Method 2.
  • the second device generates and sends the first random seed and/or to other devices.
  • the second random seed the other device forwards the first random seed and/or the second random seed to the first device;
  • Method 3. The second device receives the first random seed and/or the second random seed from the first device. ;
  • Mode 4. The second device receives the first random seed and/or the second random seed from the other device. Before that, the first random seed and/or the second random seed of the other device are generated and sent by the first device.
  • Method 5. The other device generates the first random seed and/or the second random seed and sends them to the second device.
  • the first device and the second device use the same first random seed when selecting the first frequency point, and use the same second random seed when selecting the second frequency point. Therefore, the first device and the second device The device will select the same first frequency point and the same second frequency point to avoid frequency selection errors.
  • S305 The first device obtains the first measurement result according to the second measurement frame.
  • S306 The first device obtains the third measurement result according to the fourth measurement frame.
  • the first device measures the second measurement frame and obtains the first measurement result.
  • the first measurement result includes the phase information or in-phase component quadrature component IQ information of the single-frequency sine wave contained in the second measurement frame at the first moment, or the first measurement result includes the single-frequency sine wave contained in the second measurement frame.
  • the phase information or the in-phase component and the orthogonal component IQ information of the signal at the first moment are extended.
  • the IQ information can also be calculated through algorithms such as parameter estimation without extending the single-frequency sine wave signal. .
  • ranging based on phase information or IQ information containing phase information can achieve higher ranging accuracy than traditional amplitude-based ranging methods.
  • the above-mentioned first moment needs to be determined. Determining the first moment can be achieved by including but not limited to the following methods:
  • the first device determines a first timing deviation value and determines the first time based on the first timing deviation value.
  • the first timing offset value represents the timing offset of the first device relative to the second measurement frame.
  • the time corresponding to the phase information or IQ information is corrected based on the measured timing deviation, which can suppress the impact of the difference in timing and frequency between the clocks of the first device and the second device on the ranging results, and improve the ranging results. Accuracy.
  • the first device determines the first timing offset value by measuring the signal in the second measurement frame.
  • the first device may also determine the first timing offset value by measuring other signals sent by the second device.
  • the other signals may include signals in other measurement frames or signals in other non-measurement frames.
  • the timing deviation can be corrected, the difference in timing and frequency between the clocks of the first device and the second device can be reduced, and the impact on the measurement results of the measurement frame can be reduced, thereby reducing the ranging results. error to improve ranging accuracy.
  • t0 represents the reference time
  • t1 represents the above-mentioned first timing deviation value
  • T1 represents the above-mentioned first time
  • the first time is determined through the embodiment of the present application.
  • the second device also uses a similar method to determine the second time. Then the real time corresponding to the first time of the first device clock and the second time of the second device clock The difference in real time is mainly related to the measurement error of the first timing deviation value and the second timing deviation value, and has nothing to do with the timing deviation between the clocks of the first device and the second device. Combining the first measurement result and the second measurement result, the third measurement result is obtained.
  • the joint measurement result at one frequency point is not affected by the timing deviation between the clocks of the first device and the second device, thereby suppressing the impact of the timing deviation between the clocks of the first device and the second device on the ranging results and improving the ranging accuracy.
  • the reference time can be obtained by including but not limited to the following methods:
  • Method 1 The first device receives the first message and/or sends the first message, and determines the reference time based on the information indicated by the first message.
  • Method 2 The first device receives the second message and/or sends the second message, and determines the reference time according to the first frequency offset value and the reference value indicated by the second message.
  • the first frequency deviation value represents the frequency deviation of the first device relative to the second measurement frame.
  • the reference time is a pre-configured or pre-defined time. Specifically, it can be a time pre-configured by the first device, a time pre-configured by other devices, or a time stipulated in the protocol. This is the case in the embodiment of this application. No restrictions.
  • the reference value is a preconfigured or predefined value. Specifically, it can be a reference value preconfigured by the first device, a reference value preconfigured by other devices, or a reference value stipulated in the protocol. This application implements There is no restriction on this.
  • the first device determines the reference time according to the first frequency deviation value and a preconfigured or predefined reference value.
  • t0 represents the reference time
  • t2 represents the second timing deviation value, that is, represents the timing deviation of the second device relative to the first measurement frame
  • T2 represents the second time
  • the second moment is used to obtain the second measurement result based on the first measurement frame.
  • the second measurement result includes the phase information or the in-phase component quadrature component IQ information of the single-frequency sine wave included in the first measurement frame at the second moment, or the second measurement result includes the single-frequency sine wave included in the first measurement frame.
  • the IQ information can also be calculated through algorithms such as parameter estimation without extending the single-frequency sine wave signal. .
  • the first device and the second device use the same reference value, and the first device determines the reference time based on the frequency deviation and the reference value to correct the change in the reference time caused by the timing deviation caused by the frequency deviation.
  • the influence of the timing and frequency difference between the clocks of the first device and the second device on the measurement results of the measurement frame can be suppressed, thereby reducing the error of the ranging results and improving the ranging accuracy.
  • the reference times corresponding to different frequency points are the same or different, and/or the reference values corresponding to different frequency points are the same or different.
  • the reference time used when using different antenna combinations to interact with each other at the same frequency point is The same or different, and/or, when using different antenna combinations at the same frequency point for measurement frame interaction, the reference values used are the same or different.
  • the first device uses antenna 1 and the second device uses antenna 2 for measurement frame interaction.
  • the antenna 1 of the first device and the antenna 2 of the second device are an antenna combination;
  • the first device uses transmitting antenna 3
  • the measurement frame is sent, and the receiving antenna 4 is used to receive the measurement frame.
  • the second device uses the transmitting antenna 5 to send the measurement frame, and the receiving antenna 6 is used to receive the measurement frame.
  • the transmitting antenna 3 and the receiving antenna 4 of the first device, and the second device The transmitting antenna 5 and the receiving antenna 6 are an antenna combination; etc., the embodiment of the present application does not limit this.
  • S307 The first device sends the first measurement result and the third measurement result to the third device.
  • the third device receives the first measurement result and the third measurement result sent by the first device.
  • the first measurement result and the third measurement result can be used to calculate the distance information between the first device and the second device.
  • the first device receives the ranging result.
  • the third device may be a second device, configured to measure the second measurement result based on the received first measurement result and the third measurement result, as well as the second measurement result obtained by its own measurement. and the fourth measurement result.
  • the ranging result is calculated and sent to the first device. It may also be another device capable of performing calculated ranging.
  • the calculated ranging result is sent to the first device.
  • the ranging result includes Distance information between the first device and the second device.
  • the third device in the embodiment of the present application is a device equipped with a processor that can be used to execute computer execution instructions, and can be a terminal device (such as a vehicle-mounted terminal), etc., or a network device (such as a service base station), etc.
  • a terminal device such as a vehicle-mounted terminal
  • a network device such as a service base station
  • it can be the second node in the above-mentioned Figure 2 (such as any device among UE1 to UE6), or it can be the first node in the above-mentioned Figure 2, used to execute the ranging method in the embodiment of the present application to achieve Reduce the error of ranging and improve the accuracy of ranging.
  • the third device in the embodiment of the present application may be a second device or other devices. Different situations of the third device are described below:
  • the third device and the second device are the same device, it is equivalent to the first device obtaining the first measurement result based on the second measurement frame sent by the second device at the first frequency point, and sending the first measurement result to the second device (i.e. The third device) sends the first measurement result.
  • the first device obtains the third measurement result based on the fourth measurement frame sent by the second device at the second frequency point, and sends the third measurement result to the second device (ie, the third device). Measurement results.
  • the second device receives the first measurement result and the third measurement result sent by the first device, and the first measurement result and the third measurement result are used by the second device to perform ranging calculation.
  • the second device ie, the third device obtains the ranging result based on the received first measurement result, third measurement result, and/or other measurement results.
  • the ranging results include distance information between the first device and the second device, and the other measurement results may include second measurements obtained by the second device according to the first measurement frame sent by the first device at the first frequency point.
  • the fourth measurement result obtained by the second device based on the third measurement frame sent by the first device on the second frequency point may also include measurements obtained by the second device based on the measurement frame sent by the first device on other frequency points.
  • the result may also include measurement results obtained by the first device based on measurement frames sent by the second device at other frequency points, which is not limited in this embodiment of the present application.
  • the second device ie, the third device
  • the second device sends the ranging result to the first device.
  • the second device is a device that has the ability to measure signal frames and perform calculation ranging. It can calculate the measurement results based on the measurement results obtained by measuring the signal frame itself and receiving the measurement results sent by the first device. distance to obtain the distance information between the first device and the second device.
  • the first device is a device that has the ability to measure signal frames but does not have the ability to perform calculation ranging. It can measure the signal frame to obtain the measurement results and send them to the second device. It needs to rely on the second device to perform calculation ranging to obtain Distance information between the first device and the second device.
  • the third device and the second device are different devices, it is equivalent to the first device obtaining the first measurement result based on the second measurement frame sent by the second device at the first frequency point, and sending the first measurement result to the third device.
  • the first device obtains the third measurement result according to the fourth measurement frame sent by the second device at the second frequency point, and sends the third measurement result to the third device.
  • the third device receives the first measurement result and the third measurement result sent by the first device, and the first measurement result and the third measurement result are used by the third device to perform ranging calculation.
  • the third device obtains the ranging result based on the received first measurement result, third measurement result, and/or other measurement results.
  • the ranging results include distance information between the first device and the second device, and the other measurement results may include second measurements obtained by the second device according to the first measurement frame sent by the first device at the first frequency point.
  • the fourth measurement result obtained by the second device based on the third measurement frame sent by the first device on the second frequency point may also include measurements obtained by the second device based on the measurement frame sent by the first device on other frequency points.
  • the result may also include measurement results obtained by the first device based on measurement frames sent by the second device at other frequency points, which is not limited in this embodiment of the present application.
  • the third device sends the ranging result to the first device and/or the second device.
  • the third device is different from the second device.
  • the third device is a device capable of performing computational ranging.
  • the third device does not participate in the signal frame interaction and signal frame measurement between the first device and the second device.
  • the third device can calculate the measurement results based on receiving the measurement results sent by the first device and/or receiving the measurement results sent by the second device. distance, obtain the distance information between the first device and the second device, and send it to the first device and/or the second device.
  • the first device is a device that has the ability to measure signal frames but does not have the ability to perform calculation ranging. It can measure the signal frame to obtain the measurement results and send them to the third device. It needs to rely on the third device to perform calculation ranging to obtain Distance information between the first device and the second device.
  • the second device is a device that has the ability to measure signal frames but does not have the ability to perform calculation ranging. It can measure the signal frame to obtain the measurement results and send them to the third device. It needs to rely on the third device to perform calculation ranging to obtain Distance information between the first device and the second device.
  • the first measurement result and the second measurement result are combined to obtain the joint measurement result of the first frequency point.
  • the joint measurement result of the first frequency point is not affected by the initial interaction between the first device and the second device at the first frequency point. phase influence; combining the third measurement result and the fourth measurement result to obtain the joint measurement result at the second frequency point, the joint measurement result at the second frequency point is not affected by the initial phase of the first device and the second device at the second frequency point. . Therefore, the joint measurement results of the first frequency point and the joint measurement results of the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • the measurement results of a single frequency point can be used. The wider frame bandwidth is used to calculate the ranging results, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the embodiment of the present application separates the measurement process (such as the above-mentioned steps S301 to S304) and the measurement result interaction process (such as the above-mentioned steps S305 to S307), which can shorten the measurement time and reduce the friction between the first device and the second device during the measurement.
  • the change in relative position between the two devices can obtain more accurate ranging results, improve ranging accuracy, and more flexibly support a variety of different communication architectures for ranging.
  • the measurement frames sent and received by the first device and the second device during the measurement interaction process can be implemented by including but not limited to the following methods (for convenience of explanation, the first measurement frame is used as an example for explanation below):
  • Method 1 The single-frequency sine wave signal contained in the first measurement frame contains at least two symbols, and each of the at least two symbols is modulated according to the first sequence and through the first constellation diagram.
  • the first sequence is a sequence composed of N bits, and the value of N corresponds to the modulation mode of the first constellation diagram.
  • the N value corresponding to the modulation method of binary phase shift keying (BPSK) is 1; the N value corresponding to the modulation method of quadrature phase shift keying (QPSK) is 2; The N value corresponding to the modulation method of 8 phase shift keying (8PSK) is 3.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 8PSK 8 phase shift keying
  • the first symbol included in the first measurement frame is the same as the at least two symbols included in the single-frequency sine wave signal in the first measurement frame, which is also obtained based on the first sequence and modulated by the first constellation diagram.
  • the first symbol includes a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or the first symbol located after the single-frequency sine wave signal in the first measurement frame. symbol.
  • Method 2 The single-frequency sine wave signal contained in the first measurement frame contains at least two symbols, and each of the at least two symbols is obtained by Gaussian frequency shift keying GFSK modulation based on the first bit.
  • the second symbol included in the first measurement frame is the same as the at least two symbols included in the single-frequency sine wave signal in the first measurement frame, and is also obtained based on the first bit and through Gaussian frequency shift keying GFSK modulation.
  • the second symbol includes a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or the first symbol located after the single-frequency sine wave signal in the first measurement frame. symbol.
  • the single-frequency sine wave signal in the first measurement frame adopts the same modulation method as other signals, avoiding additional implementation complexity and additional time overhead caused by modulation method switching, so as to shorten the first measurement frame. Or increase the time length of the signal used for measurement in the first measurement frame, such as the length of a single-frequency sine wave signal. Among them, shortening the measurement frame length can thereby shorten the interval for transmitting a single-frequency sine wave signal between the first device and the second device and the total measurement time of ranging.
  • the error in ranging results caused by the clock frequency offset between the first device and the second device is related to the interval between the transmission of single-frequency sine wave signals between the first device and the second device.
  • Shortening the interval for transmitting a single-frequency sine wave signal between the first device and the second device can suppress the impact of the clock frequency offset between the first device and the second device on the ranging results. . If there is relative motion between the first device and the second device, shortening the total measurement time of ranging can reduce the amount of change in the relative position between the first device and the second device during the measurement, thereby obtaining more accurate ranging results. Improve ranging accuracy. Moreover, for the first device and the second device, due to the non-ideality of the clock, the device clock frequency will drift over time. The longer the measurement time, the more serious the drift. Shortening the total measurement time of ranging can reduce the device clock frequency during the measurement.
  • the drift range suppresses the impact of clock drift on ranging results and improves ranging accuracy.
  • Increasing the time length of the signal used for measurement in the first measurement frame can improve the accuracy of the second measurement result obtained by the second device through the first measurement frame, thereby improving the ranging accuracy.
  • the single-frequency sine wave signal and the adjacent symbols on both sides of its boundary have the same mapped bits and the same modulation method, which can avoid sudden changes in the measurement frame at the boundary, thereby suppressing the error caused by the boundary.
  • Signal distortion improves the accuracy of measurement frame measurement results, thereby improving ranging accuracy.
  • FIG. 4 is a schematic flowchart of another ranging method provided by an embodiment of the present application.
  • the ranging method includes but is not limited to the following steps:
  • S401 The first device sends the first measurement frame to the second device at the first frequency point.
  • the second device receives the first measurement frame sent by the first device at the first frequency point.
  • S402 The second device sends a second measurement frame to the first device at the first frequency point.
  • the first device receives the second measurement frame sent by the second device at the first frequency point.
  • S403 The first device sends the third measurement frame to the second device at the second frequency point.
  • the second device receives the third measurement frame sent by the first device at the second frequency point.
  • S404 The second device sends the fourth measurement frame to the first device at the second frequency point.
  • the first device receives the fourth measurement frame sent by the second device at the second frequency point.
  • the above steps S401 to S404 can be understood as the first device and the second device interacting with measurement frames on at least two frequency points during the measurement process.
  • the first device sends the first device to the second device on the first frequency point. Measure the frame, and receive the second measurement frame sent by the second device at the first frequency point; the first device sends the third measurement frame to the second device at the second frequency point, and receive the second measurement frame at the second frequency point.
  • the fourth measurement frame sent by the device; wherein the second frequency point is different from the first frequency point, the first measurement frame and the third measurement frame are respectively used by the second device to obtain the second measurement result and the fourth measurement result.
  • the second measurement The frame and the fourth measurement frame are respectively used by the first device to obtain the first measurement result and the third measurement result.
  • the first device (and/or the second device) in the embodiment of the present application is a device equipped with a processor that can be used to execute computer execution instructions. It may be a terminal device (such as a vehicle-mounted terminal), etc., or it may be a network Equipment (such as serving base station), etc., specifically can be the second node (such as any device among UE1 to UE6) in the above-mentioned Figure 2, or can be the first node in the above-mentioned Figure 2, used to execute the embodiment of the present application.
  • the distance measurement method in the method is used to reduce the error of distance measurement and improve the accuracy of distance measurement.
  • the method used to determine the first frequency point and the second frequency point may refer to the relevant description of the above steps S301 to S304, which will not be described again here.
  • S405 The second device obtains the second measurement result according to the first measurement frame.
  • S406 The second device obtains the fourth measurement result according to the third measurement frame.
  • Steps S405 and S406 are similar to the above-mentioned steps S305 and S306.
  • For the execution process please refer to the relevant description above and will not be described again here.
  • S407 The second device receives the first measurement result and the third measurement result from the fourth device, and accordingly, the fourth device sends the first measurement result and the third measurement result to the second device.
  • the first measurement result includes the phase information or in-phase component quadrature component IQ information of the single-frequency sine wave contained in the second measurement frame at the first moment, or the first measurement result includes the single-frequency sine wave contained in the second measurement frame.
  • the phase information or the in-phase component and the orthogonal component IQ information of the signal at the first moment are extended.
  • the IQ information can also be calculated through algorithms such as parameter estimation without extending the single-frequency sine wave signal. .
  • ranging based on phase information or IQ information containing phase information can achieve higher ranging accuracy than traditional amplitude-based ranging methods.
  • the second measurement result includes the phase information or the in-phase component quadrature component IQ information of the single-frequency sine wave contained in the first measurement frame at the second moment, or the second measurement result includes the single-frequency sine wave contained in the first measurement frame.
  • the wave extends the phase information of the signal at the second moment or the IQ information of the in-phase component and the orthogonal component according to the single-frequency sine wave model.
  • the IQ information can also be calculated through algorithms such as parameter estimation without delaying the single-frequency sine wave signal. Extension.
  • the above-mentioned second time needs to be determined.
  • the method of determining the second time please refer to the relevant description of the above-mentioned step S305, which will not be described again here.
  • the first device and the second device use the same reference value, and the first device determines the reference time based on the frequency deviation and the reference value to correct the change in the reference time caused by the timing deviation caused by the frequency deviation.
  • the influence of the timing and frequency difference between the clocks of the first device and the second device on the measurement results of the measurement frame can be suppressed, thereby reducing the error of the ranging results and improving the ranging accuracy.
  • the second device determines the distance between the first device and the second device based on the first measurement result, the second measurement result, the third measurement result and the fourth measurement result.
  • the second device sends the ranging result.
  • the ranging result may be sent to a fourth device, where the fourth device may be a first device, configured to obtain the first measurement result and the third measurement result based on the received second measurement frame and fourth measurement frame. , and sent to the second device for the second device to calculate ranging; the fourth device can also be another device capable of performing calculation ranging, and sends the calculated ranging result to the second device.
  • the result includes distance information between the first device and the second device.
  • the fourth device in the embodiment of the present application is a device equipped with a processor that can be used to execute computer execution instructions, and can be a terminal device (such as a vehicle-mounted terminal), etc., or a network device (such as a service base station), etc.
  • a terminal device such as a vehicle-mounted terminal
  • a network device such as a service base station
  • it can be the second node in the above-mentioned Figure 2 (such as any device among UE1 to UE6), or it can be the first node in the above-mentioned Figure 2, used to execute the ranging method in the embodiment of the present application to achieve Reduce the error of ranging and improve the accuracy of ranging.
  • the fourth device in the embodiment of the present application may be the first device or other devices. Different situations of the fourth device are described below:
  • the fourth device and the first device are the same device, it is equivalent to the first device (that is, the fourth device) obtaining the first measurement result based on the second measurement frame sent by the second device at the first frequency point, and Send the first measurement result to the second device.
  • the first device i.e., the fourth device
  • Measurement results i.e., the second device receives the first measurement result and the third measurement result sent by the first device, and the first measurement result and the third measurement result are used by the second device to perform ranging calculation.
  • the second device obtains the ranging result based on the received first measurement result, third measurement result, and/or other measurement results.
  • the ranging results include distance information between the first device and the second device, and the other measurement results may include second measurements obtained by the second device according to the first measurement frame sent by the first device at the first frequency point.
  • the fourth measurement result obtained by the second device based on the third measurement frame sent by the first device on the second frequency point may also include measurements obtained by the second device based on the measurement frame sent by the first device on other frequency points.
  • the result may also include measurement results obtained by the first device based on measurement frames sent by the second device at other frequency points, which is not limited in this embodiment of the present application.
  • the second device sends the ranging result to the first device (ie, the fourth device).
  • the second device is a device with signal frame measurement capabilities and the ability to perform calculation ranging. It can measure the measurement results obtained by measuring the signal frame according to itself and receive the measurement results sent by the first device (ie, the fourth device). The measurement result is calculated, and the distance information between the first device and the second device is obtained.
  • the first device i.e., the fourth device
  • the first device is a device that has the ability to measure signal frames but does not have the ability to perform calculation ranging. It can measure the signal frames to obtain measurement results and send them to the second device, which depends on the second device. Calculated ranging is performed to obtain distance information between the first device and the second device.
  • the fourth device and the first device are different devices, it is equivalent to the first device obtaining the first measurement result based on the second measurement frame sent by the second device at the first frequency point, and sending the first measurement result to the fourth device.
  • the first device obtains the third measurement result based on the fourth measurement frame sent by the second device at the second frequency point, and sends the third measurement result to the fourth device.
  • the fourth device receives the first measurement result and the third measurement result sent by the first device, and forwards the first measurement result and the third measurement result to the second device.
  • the first measurement result and the third measurement result are expressed as Perform ranging calculation on the second device.
  • the second device obtains the ranging result based on the received first measurement result, third measurement result, and/or other measurement results.
  • the ranging results include distance information between the first device and the second device, and the other measurement results may include second measurements obtained by the second device according to the first measurement frame sent by the first device at the first frequency point.
  • the fourth measurement result obtained by the second device based on the third measurement frame sent by the first device on the second frequency point may also include measurements obtained by the second device based on the measurement frame sent by the first device on other frequency points.
  • the result may also include measurement results obtained by the first device based on measurement frames sent by the second device at other frequency points, which is not limited in this embodiment of the present application.
  • the second device after obtaining the ranging result, the second device sends the ranging result to the fourth device and/or the first device.
  • the fourth device is different from the first device.
  • the fourth device is a device that does not have the ability to perform calculation ranging.
  • the fourth device does not participate in signal frame interaction and signal frame measurement between the first device and the second device.
  • the fourth device can receive the measurement results sent by the first device and /or receive measurement results sent by other devices and forward the measurement results to the second device.
  • the first device is a device that has the ability to measure signal frames but does not have the ability to perform calculation ranging. It can measure the signal frames to obtain measurement results and send them to the fourth device.
  • the measurement results need to be forwarded to the second device through the fourth device.
  • the device relies on the second device to perform calculation ranging to obtain distance information between the first device and the second device.
  • the second device is a device capable of measuring signal frames and capable of performing calculation ranging. It can measure the signal frame to obtain measurement results, and receive measurement results sent by the fourth device and/or measurements obtained by the second device. As a result, ranging is calculated, distance information between the first device and the second device is obtained, and the distance information is sent to the fourth device and/or the first device.
  • the first measurement result and the second measurement result are combined to obtain the joint measurement result of the first frequency point.
  • the joint measurement result of the first frequency point is not affected by the initial interaction between the first device and the second device at the first frequency point. phase influence; combining the third measurement result and the fourth measurement result to obtain the joint measurement result at the second frequency point, the joint measurement result at the second frequency point is not affected by the initial phase of the first device and the second device at the second frequency point. . Therefore, the joint measurement results of the first frequency point and the joint measurement results of the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • the measurement results of a single frequency point can be used. The wider frame bandwidth is used to calculate the ranging results, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the embodiment of the present application separates the measurement process (such as the above-mentioned steps S401 to S404) and the measurement result interaction process (such as the above-mentioned steps S405 to S408), which can shorten the measurement time and reduce the friction between the first device and the second device during the measurement.
  • the change in relative position between the two devices can obtain more accurate ranging results, improve ranging accuracy, and more flexibly support a variety of different communication architectures for ranging.
  • the measurement frames sent and received by the first device and the second device during the measurement interaction process (such as the first measurement frame, the second measurement frame, the third measurement frame, and the fourth measurement frame) , for the method of obtaining, please refer to the relevant description of step S307 above, and will not be described again here.
  • steps S401 to S404 in the embodiment of the present application are similar to steps S301 to S304 in the above-mentioned Figure 3, and steps S405 to S408 in the embodiment of the present application are modifications or supplements of steps S305 to S307 in the above-mentioned Figure 3.
  • FIG. 5 is a schematic flowchart of yet another ranging method provided by an embodiment of the present application.
  • This ranging method is applied in the field of communication technology.
  • the ranging method includes but is not limited to the following steps:
  • S501 The first device and the second device interactively measure frames on at least two frequency points and measure to obtain measurement results.
  • the first device and the second device interact with measurement frames at at least two frequency points during the measurement process, that is, the first device sends the first measurement frame to the second device at the first frequency point, and the first device transmits the first measurement frame to the second device at the first frequency point.
  • the first measurement frame and the third measurement frame are respectively used by the second device to obtain the second measurement result and the fourth measurement result, and the second measurement frame and the fourth measurement frame
  • the first device is respectively used to obtain the first measurement result and the third measurement result.
  • the first device (and/or the second device) in the embodiment of the present application is a device equipped with a processor that can be used to execute computer execution instructions. It may be a terminal device (such as a vehicle-mounted terminal), etc., or it may be a network Equipment (such as serving base station), etc., specifically can be the second node (such as any device among UE1 to UE6) in the above-mentioned Figure 2, or can be the first node in the above-mentioned Figure 2, used to execute the embodiment of the present application.
  • the distance measurement method in the method is used to reduce the error of distance measurement and improve the accuracy of distance measurement.
  • the method used to determine the first frequency point and the second frequency point may refer to the relevant description of the above steps S301 to S304, which will not be described again here.
  • the first device in order to obtain the measurement result, the first device needs to determine the measurement time.
  • the method of determining the measurement time please refer to the relevant description of step S305 above, which will not be described again here.
  • the second device in order to obtain the measurement result, the second device needs to determine the measurement time.
  • the method of determining the measurement time please refer to the relevant description of step S305 above, which will not be described again here.
  • step S305 for the relationship that needs to be satisfied between the measurement time determined by the first device and the measurement time determined by the second device, please refer to the relevant description of step S305 above, which will not be described again here.
  • S502 The first device reports the measurement results of each frequency point to the G node.
  • S503 The second device reports the measurement results of each frequency point to the G node.
  • the above-mentioned G node can also be called a master node, a management node or a control node.
  • the G node and the T node are two types of nodes that are distinguished in terms of logical functions.
  • the T node can also be called a slave node or terminal.
  • the G node manages the T node, has the function of allocating resources, and is responsible for allocating resources to the T node; the T node obeys the scheduling of the G node and uses the resources allocated by the G node for communication, ranging, etc.
  • the nodes can be various devices.
  • the G node is a mobile phone and the T node is a headset. The mobile phone and the headset establish a communication connection to realize data interaction.
  • the mobile phone manages the headset.
  • the mobile phone has the function of allocating resources and can allocate resources to the headset.
  • G node is a positioning server
  • T node is a positioning base station and positioning tag
  • the positioning server manages the positioning base station and positioning tags, and allocates resources for interactive measurement frames to the positioning base station and positioning tags.
  • the G node calculates the ranging results based on the measurement results of each frequency point reported by the first device and the measurement results of each frequency point reported by the second device.
  • the ranging result includes distance information between the first device and the second device.
  • the G node in the embodiment of the present application is a device equipped with a processor that can be used to execute computer execution instructions. It can be a terminal device (such as a vehicle-mounted terminal), etc., or a network device (such as a service base station), etc. Specifically It can be the second node in the above-mentioned Figure 2 (such as any device among UE1 to UE6), or it can be the first node in the above-mentioned Figure 2 (such as the base station), used to perform the ranging method in the embodiment of the present application. , in order to reduce the error of ranging and improve the accuracy of ranging.
  • the G node is different from the first device and the second device.
  • G nodes are devices capable of performing computational ranging.
  • the G node does not participate in the signal frame interaction and signal frame measurement between the first device and the second device.
  • the G node can calculate ranging based on receiving the measurement results sent by the first device and/or receiving the measurement results sent by the second device, Obtain distance information between the first device and the second device.
  • S505 The G node delivers the ranging result to the first device.
  • S506 The G node delivers the ranging result to the second device.
  • the first device and the second device interact with measurement frames on at least two frequency points during the measurement process, and the at least two frequency points are different.
  • the joint measurement results based on each frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined.
  • a bandwidth larger than the measurement frame bandwidth of a single frequency point can be used to calculate the ranging results. In this way, more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the embodiment of the present application separates the measurement process (such as the above-mentioned step S501) and the measurement result interaction process (such as the above-mentioned steps S502 to S503), which can shorten the measurement time and reduce the relative distance between the first device and the second device during the measurement. Position changes can be used to obtain more accurate ranging results, improve ranging accuracy, and more flexibly support a variety of different communication architectures for ranging.
  • the method of obtaining the measurement frames sent and received by the first device and the second device during the measurement interaction process can be referred to the relevant description of the above step S307, which will not be described again here.
  • step S501 in the embodiment of the present application is similar to steps S301 to S304 in the above-mentioned Figure 3 and steps S401 to S404 in the above-mentioned Figure 4.
  • Steps S502 to S506 in the embodiment of the present application are the same as those in the above-mentioned Figure 3.
  • Figure 6 is a schematic flow chart of a frequency hopping algorithm provided by an embodiment of the present application. Specifically, it can be understood as a modification or supplement of the content of "the implementation adopted to determine the first frequency point and the second frequency point" in the above-mentioned Figures 3 to 5.
  • a first random seed is generated, or a first random seed sent by another device is received, and based on the first random seed, the first frequency point set (ie, the above-mentioned available frequency point frequency hopping list) is pseudo-randomly Determine the first frequency point and output the first frequency point as the frequency hopping frequency point.
  • the first frequency point set ie, the above-mentioned available frequency point frequency hopping list
  • the second frequency point is determined in a pseudo-random manner, and the second frequency point is output as the next frequency hopping frequency point.
  • the first random seed used to determine the first frequency point and the second random seed used to determine the second frequency point may be the same random seed, or they may be different random seeds.
  • frequency points are determined in a pseudo-random manner based on random seeds, so that the determined frequency points are random, which can reduce the probability of mutual interference caused by using the same time-frequency resources when sharing spectrum with other devices, and improve ranging. performance.
  • the first device and the second device use the same first random seed when selecting the first frequency point, and use the same second random seed when selecting the second frequency point. Therefore, the first device and the second device will select The same first frequency point and the same second frequency point to avoid frequency selection errors.
  • FIG. 7 is a schematic diagram of a bilateral measurement provided by an embodiment of the present application. Specifically, it can be understood as a modification or supplement of the content of "the implementation adopted to determine the measurement time (the first time and/or the second time)" in the above-mentioned FIGS. 3 to 5 .
  • the first device sends a first measurement frame to the second device at time t 1.
  • the second device receives the first measurement frame sent by the first device at time t′ 1 .
  • the second device measures the first measurement frame and determines the phase or IQ value at the first moment.
  • the second device sends a second measurement frame to the first device at time t 2 .
  • the first device receives the second measurement frame sent by the second device at time t′ 2 .
  • the first device measures the second measurement frame and determines the phase or IQ value at the second moment.
  • embodiments of the present application provide a method for the first device to measure the second The relationship that needs to be satisfied between the measurement time of the second measurement frame (the first time) and the measurement time of the second device measuring the first measurement frame (the second time).
  • first moment ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0, ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1] ⁇ [0,1]
  • the first device uses t 0 +(t′ 2 -t 2 )/2 as the second moment.
  • the second moment on the ideal clock corresponds to:
  • the second device uses t 0 +(t′ 1 -t 1 )/2 as the first moment.
  • the first moment on the ideal clock corresponds to:
  • the first moment is equal to the second moment, that is, the measurement moments of the first device and the second device are the same, thus avoiding ranging caused by different measurement moments of the two devices. error.
  • time t 1 of the second device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • Time t 1 of the first device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • Time t′ 1 of the second device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • Time t 0 of the second device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • Time t 0 of the first device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • Time t2 of the second device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • Time t2 of the first device clock corresponds to the real time (i.e. the ideal clock time in Figure 7)
  • Time t′ 2 of the first device clock corresponds to the real time (i.e., the ideal clock time in Figure 7)
  • the following are three methods of correcting the reference time based on the frequency offset so that the first time is approximately equal to the second time:
  • the first node performs additional corrections to the reference time.
  • the reference time reference value. (recorded as formula 1);
  • f, t 0 , t 1 , and t 2 are all configurations (configuration includes: receiving the corresponding configuration message, determining the parameters yourself and sending the configuration message to configure another node.
  • the node that generates the parameters can be the first node, the second node or other nodes), preconfigured or protocol-specified values, f 2 - f 1 is the first node determining the second device relative to the first device by measuring the signal sent by the second device (which may be a measurement frame or other signal) frequency deviation.
  • the second node performs additional corrections to the reference time.
  • the reference time reference value. (recorded as formula 2);
  • f 1 -f 2 is the frequency offset of the first device relative to the second device determined by the second node by measuring the signal sent by the first device (which may be a measurement frame or other signal).
  • the first node performs additional corrections to the reference time.
  • the reference time reference value. (recorded as formula 3);
  • the second node performs additional corrections to the reference time.
  • the reference time reference value. (recorded as formula 4);
  • f 2 -f 1 is the frequency offset of the second device relative to the first device determined by the first node by measuring the signal sent by the second device (which can be a measurement frame or other signal), f 1 -f 2 is the second node The frequency offset of the first device relative to the second device is determined by measuring a signal sent by the first device (which may be a measurement frame or other signal).
  • t 1 in Formula 1, Formula 2, Formula 3, and Formula 4 can be replaced by t1′, and t2 can be replaced by t2′.
  • the above t1′ represents the moment when the first timing deviation value t1 is determined, that is, the first device measures the signal in the second measurement frame at time t1′, or measures other signals sent by the second device.
  • Other signals can Including signals in other measurement frames or signals in other non-measurement frames, the first timing offset value t1 is determined.
  • the above t2′ represents the time when the second timing offset value t2 is determined, that is, the second device measures the signal in the first measurement frame at time t2′, or measures other signals sent by the first device.
  • the other signals may include other The signal in the measurement frame or the signal in other non-measurement frames is used to determine the second timing offset value t2.
  • the first time is determined based on the timing deviation of the first device relative to the second measurement frame
  • the second time is determined based on the timing deviation of the second device relative to the first measurement frame.
  • the timing deviation can be corrected and the second time can be reduced.
  • the difference in timing and frequency between the clocks of one device and the second device, and the first device and the second device use the same agreed reference time to determine the measurement time, can suppress the difference in timing and frequency between the clocks of the first device and the second device The difference affects the measurement results of the measurement frame, thereby reducing the error of the ranging results and improving the ranging accuracy.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 80 may include a transceiver unit 801 and a processing unit 802 .
  • the transceiver unit 801 and the processing unit 802 may be software, hardware, or a combination of software and hardware.
  • the transceiver unit 801 can implement a sending function and/or a receiving function, and the transceiver unit 801 can also be described as a communication unit.
  • the transceiver unit 801 may also be a unit that integrates an acquisition unit and a sending unit, where the acquisition unit is used to implement the receiving function and the sending unit is used to implement the sending function.
  • the transceiver unit 801 can be used to receive information sent by other devices, and can also be used to send information to other devices.
  • the communication device 80 may correspond to the first device in the method embodiment shown in FIG. 3.
  • the communication device 80 may be the first device or a chip in the first device.
  • the communication device 80 may include units for performing operations performed by the first device in the method embodiment shown in FIG. 3 , and each unit in the communication device 80 is configured to implement the method shown in FIG. 3 . Operations performed by the first device in the embodiment. Among them, the descriptions of each unit are as follows:
  • the transceiver unit 801 is configured to send a first measurement frame to a second device on a first frequency point, and receive a second measurement frame sent by the second device on the first frequency point;
  • the transceiver unit 801 is further configured to send a third measurement frame to the second device at a second frequency point, and receive a fourth measurement frame sent by the second device at the second frequency point; wherein , the second frequency point is different from the first frequency point;
  • the processing unit 802 is configured to obtain the first measurement result according to the second measurement frame
  • the processing unit 802 is also configured to obtain a third measurement result according to the fourth measurement frame;
  • the transceiver unit 801 is also configured to send the first measurement result and the third measurement result to a third device, where the first measurement result and the third measurement result are used for ranging.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the processing unit 802 is further configured to determine the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed;
  • the processing unit 802 is further configured to determine the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • the processing unit 802 is also configured to generate and send the first random seed and/or the second random seed through the transceiver unit 801;
  • the transceiver unit 801 is also configured to receive the first random seed and/or the second random seed.
  • the first measurement result includes phase information or in-phase component quadrature component IQ information of the single-frequency sine wave signal contained in the second measurement frame at the first moment, or the second
  • the single-frequency sine wave signal contained in the measurement frame extends the phase information or IQ information of the signal at the first moment according to the single-frequency sine wave model.
  • the processing unit 802 is also used to determine a first timing offset value, where the first timing offset value represents the timing offset of the communication device relative to the second measurement frame;
  • the processing unit 802 is also configured to determine the first time according to the first timing deviation value.
  • the processing unit 802 is specifically configured to determine the first timing offset value by measuring the signal in the second measurement frame.
  • the transceiver unit 801 is also configured to receive a first message, and/or send the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the transceiver unit 801 is also configured to receive a second message, and/or send the second message, where the second message is used to indicate a reference value; or, the reference The value is a preconfigured or predefined value;
  • the processing unit 802 is also configured to determine the reference time according to the reference value and a first frequency offset value, where the first frequency offset value represents the time of the communication device relative to the second measurement frame. frequency deviation.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the first sequence through the first constellation diagram. It is obtained through modulation that the first sequence is a sequence composed of N bits, and the value of N corresponds to the modulation mode of the first constellation diagram.
  • the first symbol is obtained according to the first sequence and modulated by the first constellation diagram
  • the first symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the first bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the second symbol is obtained according to the first bit and modulated by the GFSK;
  • the second symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the transceiver unit 801 is also configured to receive ranging results, where the ranging results include distance information between the communication device and the second device.
  • the communication device 80 may correspond to the second device in the method embodiment shown in FIG. 4, for example, the communication device 80 may be the second device, or may be the second device in the second device. chip.
  • the communication device 80 may include units for performing operations performed by the second device in the method embodiment shown in FIG. 4 , and each unit in the communication device 80 is configured to implement the method shown in FIG. 4 . Operations performed by the second device in the embodiment. Among them, the descriptions of each unit are as follows:
  • Transceiver unit 801 configured to receive the first measurement frame sent by the first device on the first frequency point, and send the second measurement frame to the first device on the first frequency point;
  • the transceiver unit 801 is further configured to receive the third measurement frame sent by the first device at the second frequency point, and send the fourth measurement frame to the first device at the second frequency point; wherein , the second frequency point is different from the first frequency point;
  • the processing unit 802 is configured to obtain a second measurement result according to the first measurement frame
  • the processing unit 802 is also configured to obtain a fourth measurement result according to the third measurement frame;
  • the transceiver unit 801 is also configured to receive a first measurement result from a fourth device, where the first measurement result is a measurement result of the second measurement frame by the first device;
  • the processing unit 802 is further configured to determine the relationship between the first device and the communication device based on the first measurement result, the second measurement result, the third measurement result, and the fourth measurement result. distance between.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the processing unit 802 is further configured to determine the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed;
  • the processing unit 802 is further configured to determine the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • the processing unit 802 is also configured to generate and send the first random seed and/or the second random seed through the transceiver unit 801;
  • the transceiver unit 801 is also configured to receive the first random seed and/or the second random seed.
  • the processing unit 802 is further configured to obtain a second measurement result according to the first measurement frame; wherein the second measurement result includes a single value contained in the first measurement frame.
  • the phase information or the IQ information of the in-phase component and the quadrature component of the frequency sine wave signal at the second moment, or the single-frequency sine wave signal contained in the first measurement frame extends the signal at the second moment according to the single-frequency sine wave model. Phase information or IQ information, the second measurement result is used for ranging.
  • the processing unit 802 is also configured to determine a second timing offset value, where the second timing offset value represents the timing offset of the communication device relative to the first measurement frame;
  • the processing unit 802 is also configured to determine the second time according to the second timing deviation value.
  • the processing unit 802 is specifically configured to determine the second timing offset value by measuring the signal in the first measurement frame.
  • the transceiver unit 801 is also configured to send a first message, and/or receive the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the transceiver unit 801 is also configured to send a second message, and/or receive the second message, where the second message is used to indicate a reference value; or, the reference The value is a preconfigured or predefined value;
  • the processing unit 802 is further configured to determine the reference time according to the reference value and a second frequency offset value, where the second frequency offset value represents the frequency of the communication device relative to the first measurement frame. frequency deviation.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the second sequence through the second constellation diagram. It is obtained through modulation that the second sequence is a sequence composed of M bits, and the value of M corresponds to the modulation mode of the second constellation diagram.
  • the third symbol is obtained according to the second sequence and modulated by the second constellation diagram
  • the third symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the second bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the fourth symbol is obtained according to the second bit and modulated by the GFSK;
  • the fourth symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the transceiver unit 801 is further configured to send a ranging result, where the ranging result includes distance information between the first device and the second device.
  • each unit in the device shown in Figure 8 can be separately or entirely combined into one or several additional units, or one (some) of the units can be further divided into more functional units. It is composed of multiple small units, which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above units are divided based on logical functions. In practical applications, the function of one unit can also be realized by multiple units, or the functions of multiple units can be realized by one unit. In other embodiments of the present application, the device may also include other units. In practical applications, these functions may also be implemented with the assistance of other units, and may be implemented by multiple units in cooperation.
  • each unit may also refer to the corresponding descriptions of the method embodiments shown in FIG. 3, FIG. 4, and FIG. 5.
  • the joint measurement result based on the first frequency point and the joint measurement result based on the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined to calculate ranging.
  • the ranging results can be calculated using a bandwidth larger than the measurement frame bandwidth of a single frequency point, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 90 shown in FIG. 9 is only an example.
  • the communication device in the embodiment of the present application may also include other components, or components with similar functions to the components in FIG. 9 , or is not intended to include the components in FIG. 9 All parts.
  • the communication device 90 includes a communication interface 901 and at least one processor 902 .
  • the communication device 90 may correspond to any network element or device among the first device, the second device, the third device, the fourth device or the G node.
  • the communication interface 901 is used to send and receive signals, and at least one processor 902 executes program instructions, so that the communication device 90 implements the corresponding process of the method executed by the corresponding device in the above method embodiment.
  • the communication device 90 may correspond to the first device in the method embodiment shown in Figure 3.
  • the communication device 90 may be the first device or a chip in the first device.
  • the communication device 90 may include components for performing the operations performed by the first device in the above method embodiment, and each component in the communication device 90 is respectively used to implement the operations performed by the first device in the above method embodiment. operate. The details can be as follows:
  • the first device sends a first measurement frame to the second device at the first frequency point, and receives the second measurement frame sent by the second device at the first frequency point;
  • the first device sends a third measurement frame to the second device at a second frequency point, and receives a fourth measurement frame sent by the second device at the second frequency point; wherein, the first device The second frequency point is different from the first frequency point;
  • the first device obtains a first measurement result according to the second measurement frame
  • the first device obtains a third measurement result according to the fourth measurement frame
  • the first device sends the first measurement result and the third measurement result to the third device, and the first measurement result and the third measurement result are used for ranging.
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the method further includes:
  • the first device determines the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed
  • the first device determines the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • the method further includes:
  • the first device generates and sends the first random seed and/or the second random seed
  • the first device receives the first random seed and/or the second random seed.
  • the first measurement result includes phase information or in-phase component quadrature component IQ information of the single-frequency sine wave signal contained in the second measurement frame at the first moment, or the second
  • the single-frequency sine wave signal contained in the measurement frame extends the phase information or IQ information of the signal at the first moment according to the single-frequency sine wave model.
  • the method further includes:
  • the first device determines a first timing offset value, the first timing offset value represents a timing offset of the first device relative to the second measurement frame;
  • the first device determines the first time based on the first timing deviation value.
  • determining the first timing offset value includes:
  • the first device determines the first timing offset value by measuring the signal in the second measurement frame.
  • the method further includes:
  • the first device receives a first message, and/or sends the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the method further includes:
  • the first device receives the second message, and/or sends the second message, where the second message is used to indicate a reference value; or, the reference value is a preconfigured or predefined value;
  • the reference time is determined according to the reference value and a first frequency deviation value, wherein the first frequency deviation value represents the frequency deviation of the first device relative to the second measurement frame.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the first sequence through the first constellation diagram. It is obtained through modulation that the first sequence is a sequence composed of N bits, and the value of N corresponds to the modulation mode of the first constellation diagram.
  • the first symbol is obtained according to the first sequence and modulated by the first constellation diagram
  • the first symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the first measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the first bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the second symbol is obtained according to the first bit and modulated by the GFSK;
  • the second symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the first measurement frame, and/or a symbol located in the first measurement frame The first symbol after a single frequency sine wave signal.
  • the method further includes:
  • the first device receives a ranging result, and the ranging result includes distance information between the first device and the second device.
  • the communication device 90 may correspond to the second device in the method embodiment shown in FIG. 4, for example, the communication device 90 may be the second device, or may be a second device in the second device. chip.
  • the communication device 90 may include components for performing the operations performed by the second device in the above method embodiment, and each component in the communication device 90 is respectively used to implement the operations performed by the second device in the above method embodiment. operate. The details can be as follows:
  • the second device receives the first measurement frame sent by the first device at the first frequency point, and sends the second measurement frame to the first device at the first frequency point;
  • the second device receives the third measurement frame sent by the first device at the second frequency point, and sends the fourth measurement frame to the first device at the second frequency point; wherein, the third measurement frame is sent by the first device at the second frequency point.
  • the second frequency point is different from the first frequency point;
  • the second device obtains a second measurement result according to the first measurement frame
  • the second device obtains a fourth measurement result according to the third measurement frame
  • the second device receives a first measurement result and a third measurement result from a fourth device.
  • the first measurement result is the measurement result of the second measurement frame by the first device.
  • the third measurement result is the measurement result of the fourth measurement frame by the first device;
  • the second device determines the distance between the first device and the second device based on the first measurement result, the second measurement result, the third measurement result, and the fourth measurement result. .
  • the first frequency point and the second frequency point are adjacent frequency points in the order of usage time
  • the first frequency point belongs to a first frequency point set
  • the third frequency point belongs to a second frequency point set
  • the first frequency point set is composed of the first frequency point and the second frequency point set.
  • the method further includes:
  • the second device determines the first frequency point in the first frequency point set in a pseudo-random manner according to a first random seed
  • the second device determines the second frequency point in the second frequency point set in a pseudo-random manner according to a second random seed.
  • the method further includes:
  • the second device generates and sends the first random seed and/or the second random seed
  • the second device receives the first random seed and/or the second random seed.
  • the method further includes:
  • the second device obtains a second measurement result according to the first measurement frame; wherein the second measurement result includes phase information or in-phase information of the single-frequency sine wave signal contained in the first measurement frame at the second moment.
  • the method further includes:
  • the second device determines a second timing offset value, the second timing offset value represents the timing offset of the second device relative to the first measurement frame;
  • the second device determines the second time based on the second timing deviation value.
  • determining the second timing offset value includes:
  • the second device determines the second timing offset value by measuring the signal in the first measurement frame.
  • the method further includes:
  • the second device sends a first message, and/or receives the first message, where the first message is used to indicate the reference time;
  • the reference time is a preconfigured or predefined time.
  • the method further includes:
  • the second device sends a second message, and/or receives the second message, where the second message is used to indicate a reference value; or, the reference value is a preconfigured or predefined value;
  • the reference time is determined according to the reference value and a second frequency deviation value, wherein the second frequency deviation value represents the frequency deviation of the second device relative to the first measurement frame.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each symbol of the at least two symbols is generated according to the second sequence through the second constellation diagram. It is obtained through modulation that the second sequence is a sequence composed of M bits, and the value of M corresponds to the modulation mode of the second constellation diagram.
  • the third symbol is obtained according to the second sequence and modulated by the second constellation diagram
  • the third symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the single-frequency sine wave signal contained in the second measurement frame includes at least two symbols, and each of the at least two symbols is generated based on the second bit through a Gaussian frequency shift key. Obtained by controlling GFSK modulation;
  • the fourth symbol is obtained according to the second bit and modulated by the GFSK;
  • the fourth symbol includes: a symbol located before and adjacent to the single-frequency sine wave signal in the second measurement frame, and/or a symbol located in the second measurement frame The first symbol after a single frequency sine wave signal.
  • the method further includes:
  • the second device sends a ranging result, where the ranging result includes distance information between the first device and the second device.
  • the joint measurement result based on the first frequency point and the joint measurement result based on the second frequency point are not affected by the random initial phase caused by the device switching frequency points, and can be coherently combined to calculate ranging.
  • the ranging results can be calculated using a bandwidth larger than the measurement frame bandwidth of a single frequency point, so that more accurate ranging results can be obtained and the ranging accuracy can be improved.
  • the communication device may be a chip or a chip system
  • the communication device may be a chip or a chip system
  • the chip 100 includes a processor 1001 and an interface 1002.
  • the number of processors 1001 may be one or more, and the number of interfaces 1002 may be multiple. It should be noted that the corresponding functions of the processor 1001 and the interface 1002 can be realized through hardware design, software design, or a combination of software and hardware, which are not limited here.
  • the chip 100 may also include a memory 1003, which is used to store necessary program instructions and data.
  • the processor 1001 may be used to call the communication method provided by one or more embodiments of the application from the memory 1003 to one or more of the first device, the second device, the third device, the fourth device or the G node. implement a program for a device or network element, and execute the instructions contained in the program.
  • the interface 1002 may be used to output execution results of the processor 1001. In this application, the interface 1002 may be specifically used to output various messages or information from the processor 1001.
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory in the embodiment of the present application is used to provide storage space, and data such as operating systems and computer programs can be stored in the storage space.
  • Memory includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or portable Read-only memory (compact disc read-only memory, CD-ROM).
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the embodiment of the present application also provides a computer program product.
  • the above-mentioned computer program product includes a computer program.
  • the above-mentioned computer program is run on a processor, the above-mentioned Figures 3, 4 and 4 can be realized. The method shown in 5.
  • the embodiment of the present application provides a vehicle terminal, which includes at least one communication device 80 or communication device 90 or chip 100 as described above.
  • Embodiments of the present application also provide a system, which includes a vehicle terminal and at least one communication device 80 or communication device 90 or chip 100 as described above, for executing the corresponding steps in any of the embodiments of FIG. 3, FIG. 4, and FIG. 5. The steps the device performs.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the above method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), a general processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • SoC system on chip
  • SoC system on chip
  • It can be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit, MCU).
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • the units in each of the above device embodiments correspond completely to the electronic equipment in the method embodiments, and the corresponding modules or units perform corresponding steps.
  • the communication unit transmits the steps of receiving or sending in the method embodiments, except for sending.
  • other steps besides receiving may be performed by the processing unit (processor).
  • the processing unit processor
  • the electronic device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. The embodiments of the present application can also perform other operations or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种测距方法及相关装置,涉及通信技术领域。该测距方法包括:第一设备在第一频点上向第二设备发送第一测量帧(S301),在第一频点上接收第二设备发送的第二测量帧(S302);第一设备在第二频点上向第二设备发送第三测量帧(S303),在第二频点上接收第二设备发送的第四测量帧(S304);其中,第二频点与第一频点不同;第一设备根据第二测量帧,获取第一测量结果(S305);第一设备根据第四测量帧,获取第三测量结果(S306);第一设备向第三设备发送第一测量结果和第三测量结果(S307)。该方法基于第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,提高测距精度。

Description

一种测距方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种测距方法及相关装置。
背景技术
采用通信设备传输测距信号的方式实现测距,是解决测距定位问题的重要手段。其中,测距的精度与能够相干合并的测距信号覆盖的带宽紧密相关,测距信号覆盖的带宽越宽,测距精度越高。
目前,有一类通信设备考虑成本、功耗、抗干扰等因素,采用跳频的方式通信,即采用每次传输占用较窄带宽,多次传输时在较大的带宽范围内跳频的方式通信。
使用上述测距方式进行测距,难以获得较高的精度。由于跳频会导致设备时钟产生随机初始相位,不同频点传输的测距信号不能直接相干合并,难以实现较高的测距精度。并且考虑成本、功耗等因素,通信设备的时钟精度一般较低,设备时钟的定时、频率的非理想性,也会导致测距精度降低。如何抑制定时偏移、频率偏移、频率随时间漂移等设备时钟非理想性对测距的结果的影响,也是当前研究的重要问题。
总之,如何使用通信设备实现测距,提高测距精度,成为亟待解决的问题。
发明内容
本申请实施例提供了一种测距方法及相关装置,可以降低测距的误差,提高测距的精度。
第一方面,本申请实施例提供了一种测距方法,该方法包括:
第一设备在第一频点上向第二设备发送第一测量帧,以及在所述第一频点上接收所述第二设备发送的第二测量帧;
所述第一设备在第二频点上向所述第二设备发送第三测量帧,以及在所述第二频点上接收所述第二设备发送的第四测量帧;其中,所述第二频点与所述第一频点不同;
所述第一设备根据所述第二测量帧,获取第一测量结果;
所述第一设备根据所述第四测量帧,获取第三测量结果;
所述第一设备向第三设备发送所述第一测量结果和所述第三测量结果,所述第一测量结果和所述第三测量结果用于测距。
本申请实施例中,提供了一种测距方法,第一设备与第二设备在至少两个频点上进行测量帧的交互,如第一设备在第一频点上向第二设备发送第一测量帧并接收来自第二设备的第二测量帧,在第二频点上向第二设备发送第三测量帧并接收来自第二设备的第四测量帧,其中,第二频点和第一频点不同,第一测量帧和第三测量帧分别用于第二设备获取第二测量结果和第四测量结果。第一设备根据接收到的第二测量帧获取第一测量结果,根据接收到的第四测量帧获取第三测量结果,并向第三设备发送该第一测量结果和第三测量结果。计算测距结果的计算设备根据第一测量结果、第二测量结果、第三测量结果、第四测量结果计算测距结果。第三设备可以是第二设备,也可以是除第二设备之外的其他设备,本申请对此不做限制。第三设备是计算设备,用于计算测距结果;或者,第三设备是转发设备,用于转发第一 测量结果、第三测量结果给计算设备,本申请对此不做限制。第一设备和第二设备在从第一频点切换到第二频点时会产生随机初相,这导致第一测量结果和第三测量结果不能直接相干合并,第二测量结果和第四测量结果不能直接相干合并。结合第一测量结果和第二测量结果得到第一频点的联合测量结果,第一频点的联合测量结果不受第一设备和第二设备在第一频点的初相影响;结合第三测量结果和第四测量结果得到第二频点的联合测量结果,第二频点的联合测量结果也不受第一设备和第二设备在第二频点的初相影响。因此,第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在本申请实施例中,提供了一种获取第一频点和第二频点的可能的具体实施方式,具体为,第一频点和第二频点为在使用时间顺序上相邻的两个频点,即第一设备和第二设备先在第一频点上进行测量帧交互,再在第二频点上进行测量帧交互,并且在这两次测量帧交互之间的时间里,没有在第一频点和第二频点以外的其它频点上进行测量帧交互。应理解,这里的使用指的是第一设备和第二设备交互测量帧,第一频点和第二频点在使用时间顺序上相邻,并不排除在上述两次测量帧交互之间的时间里,第一设备和第二设备在其它频点上进行非测量帧的交互,例如交互用于传输业务数据、测量结果、信令等但不用于测距测量的帧的情况;这里也不排除在上述两次测量帧交互之间的时间里,第一设备和第二设备以外的其它设备在任意频点交互任意类型的帧的情况。在第一频点集合中获取第一频点,再在第二频点集合中获取第二频点,第一频点集合和第二频点集合的区别在于第一频点集合包括第一频点,第二频点集合不包括第一频点,可以理解为,第二频点集合是从第一频点集合中剔除第一频点后得到的频点集合。通过本申请实施例,基于第一频点和第二频点是使用时间顺序相邻的两个频点,可以避免在测量期间重复使用相同频点,缩短测距的测量时间。如果第一设备和第二设备之间存在相对运动,缩短测距的测量时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第一设备根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述第一设备根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在本申请实施例中,提供了一种确定第一频点和第二频点的可能的具体实施方式,具体为,根据随机种子在相应的频点集合中以伪随机的方式确定所使用的频点,确定第一频点所使用的第一随机种子和确定第二频点所使用的第二随机种子可以是相同的随机种子,也可以是不同的随机种子。通过本申请实施例,基于随机种子以伪随机的方式确定频点,使得确定的频点具有随机性,降低与其他设备共享频谱时使用相同的时频资源导致互相干扰的概率,提升测距性能。
在一种可能的实施方式中,所述方法还包括:
所述第一设备生成并发送所述第一随机种子和/或所述第二随机种子;
或者,
所述第一设备接收所述第一随机种子和/或所述第二随机种子。
在本申请实施例中,提供了几种获取第一随机种子和/或第二随机种子的可能的具体实施方式,具体为:1.第一设备自己生成并向第二设备发送第一随机种子和/或第二随机种子;2.第一设备自己生成并向其它设备发送第一随机种子和/或第二随机种子,该其它设备再把第一随机种子和/或第二随机种子转发给第二设备;3.第一设备接收来自第二设备的第一随机种子和/或第二随机种子;4.第一设备接收来自其它设备的第一随机种子和/或第二随机种子,在此之前,该其它设备的第一随机种子和/或第二随机种子由第二设备生成并发送给该其它设备;5.其它设备生成第一随机种子和/或第二随机种子,并发送给第一设备和第二设备。使用上述任一方式,第一设备和第二设备在选择第一频点时使用相同的第一随机种子,在选择第二频点时使用相同的第二随机种子,因此第一设备和第二设备会选出相同的第一频点和相同的第二频点,避免频点选择错误。
在一种可能的实施方式中,所述第一测量结果包括所述第二测量帧包含的单频正弦波信号在第一时刻的相位信息或同相分量正交分量IQ信息,或者所述第二测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第一时刻的相位信息或IQ信息。
在本申请实施例中,提供了一种获取第一测量结果的可能的具体实施方式,具体为,第一设备测量第二测量帧,获取第一测量结果,其中,第一测量结果包括第二测量帧包含的单频正弦波在第一时刻的相位信息或同相分量正交分量IQ信息,或者,第一测量结果包括第二测量帧包含的单频正弦波按照单频正弦波模型延拓信号在第一时刻的相位信息或同相分量正交分量IQ信息。基于相位信息或包含相位信息的IQ信息测距,可以获得比传统的基于幅值的测距方法更高的测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第一设备确定第一定时偏差值,所述第一定时偏差值表征所述第一设备相对于所述第二测量帧的定时偏差;
所述第一设备根据所述第一定时偏差值,确定所述第一时刻。
在本申请实施例中,提供了一种确定第一时刻的可能的具体实施方式,具体为,第一设备确定第一定时偏差值,并根据该第一定时偏差值确定第一时刻,其中,第一定时偏差值表征第一设备相对于第二测量帧的定时偏差。通过本申请实施例,根据测量到的定时偏差,修正相位信息或IQ信息对应的时刻,可以抑制第一设备与第二设备时钟之间定时和频率的差异对测距结果的影响,提高测距精度。
在一种可能的实施方式中,所述第一时刻满足:T1=t0+t1/2;其中,所述t0表征参考时刻,所述t1表征所述第一定时偏差值,所述T1表征所述第一时刻。
在本申请实施例中,提供了一种确定第一时刻的可能的具体实施方式,具体为,第一时刻需满足t0+t1/2,其中,t0表征参考时刻,t1表征第一定时偏差值。相应的,第二设备也采用类似的方法确定第二时刻,则第一设备时钟的第一时刻对应的真实时间与第二设备时钟的第二时刻对应的真实时间的差异主要与第一定时偏差值和第二定时偏差值的测量误差有关,而与第一设备与第二设备时钟之间定时偏差无关,结合第一测量结果和第二测量结果得到第一频点的联合测量结果不受第一设备与第二设备时钟之间定时偏差影响,从而抑制了第一设备与第二设备时钟之间定时偏差对测距结果的影响,提高测距精度。
在一种可能的实施方式中,所述确定第一定时偏差值,包括:
所述第一设备通过对所述第二测量帧中的信号进行测量,确定所述第一定时偏差值。
在本申请实施例中,提供了一种确定第一定时偏差值的可能的具体实施方式,具体为,第一设备通过对第二测量帧中的信号进行测量,确定第一定时偏差值,或者,第一设备还可以通过对第二设备发送的其他信号进行测量,其他信号可以包括其他测量帧中的信号或其他非测量帧中的信号,确定第一定时偏差值。通过本申请实施例确定的第一定时偏差值,可以修正定时偏差,减小第一设备与第二设备时钟之间定时和频率的差异,降低对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第一设备接收第一消息,和/或,发送所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在本申请实施例中,提供了几种确定参考时刻的可能的具体实施方式,具体为,第一设备接收第一消息和/或发送第一消息,通过第一消息所指示的信息确定参考时刻,或者,参考时刻为预先为第一设备(和第二设备)配置或协议预先定义的时刻。通过本申请实施例,第一设备和第二设备使用约定相同的参考时刻来确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第一设备接收第二消息,和/或,发送所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
根据所述参考值和第一频率偏差值,确定所述参考时刻,其中,所述第一频率偏差值表征所述第一设备相对于所述第二测量帧的频率偏差。
在本申请实施例中,提供了几种确定参考时刻的可能的具体实施方式,具体为,第一设备接收第二消息和/或发送第二消息,根据第一频率偏差值和第二消息所指示的参考值确定参考时刻,其中,第一频率偏差值表征第一设备相对于第二测量帧的频率偏差。通过本申请实施例,第一设备和第二设备使用约定相同的参考值,并且第一设备根据频率偏差和参考值确定参考时刻,以修正频率偏差导致的定时偏差随时间的变化对参考时刻的影响,进而通过参考时刻确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,不同频点对应的参考时刻相同或不同,和/或,不同频点对应的参考值相同或不同。
在一种可能的实施方式中,在第一设备和/或第二设备使用多天线的情况下,同一个频点的不同天线组合所使用的参考时刻相同或不同,和/或,同一个频点的不同天线组合所使用的参考值相同或不同。
其中,不同天线组合包括但不限于:天线组合一(第一设备的发送天线1和第二设备的接收天线2),和/或,天线组合二(第一设备的接收天线1和第二设备的发送天线2),等等,本申请实施例对此不作限制。
在一种可能的实施方式中,第一测量帧中不包含测量结果数据,也不包含业务数据。
通过本申请实施例,可以缩短第一测量帧或增加第一测量帧中用于测量的信号的时间长 度,例如单频正弦波信号的长度。其中,缩短测量帧长度,进而可以缩短第一设备与第二设备之间传输单频正弦波信号的间隔和测距的总测量时间。考虑时钟的非理想性,第一设备和第二设备间的时钟频率偏移导致的测距结果误差与第一设备和第二设备之间传输单频正弦波信号的间隔有关,相同频偏下,该间隔越大,误差越大,缩短第一设备与第二设备之间传输单频正弦波信号的间隔,可以抑制第一设备和第二设备间的时钟频率偏移对测距结果的影响。如果第一设备和第二设备之间存在相对运动,缩短测距的测量总时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量总时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。增加第一测量帧中用于测量的信号的时间长度,可以提高第二设备通过第一测量帧获得第二测量结果的精度,进而提高测距精度。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一序列,通过第一星座图调制得到,所述第一序列为N个比特组成的序列,所述N的值与所述第一星座图的调制方式对应。
在本申请实施例中,提供了一种获取第一测量帧的可能的具体实施方式,具体为,第一测量帧包含的单频正弦波信号包含至少两个符号,这至少两个符号中的每个符号都是根据第一序列,通过第一星座图调制得到。其中,第一序列为N个比特组成的序列,N的值与第一星座图的调制方式对应,例如,二进制相移键控BPSK的调制方式对应的N值为1,四相相移键控QPSK的调制方式对应的N值为2,八相相移键控8PSK的调制方式对应的N值为3。本申请实施例中第一测量帧中的单频正弦波信号与其他信号采用相同的调制方式,避免了调制方式切换带来的额外的实现复杂度和额外的时间开销,以缩短第一测量帧或增加第一测量帧中用于测量的信号的时间长度,例如单频正弦波信号的长度。其中,缩短测量帧长度,进而可以缩短第一设备与第二设备之间传输单频正弦波信号的间隔和测距的总测量时间。考虑时钟的非理想性,第一设备和第二设备间的时钟频率偏移导致的测距结果误差与第一设备和第二设备之间传输单频正弦波信号的间隔有关,相同频偏下,该间隔越大,误差越大,缩短第一设备与第二设备之间传输单频正弦波信号的间隔,可以抑制第一设备和第二设备间的时钟频率偏移对测距结果的影响。如果第一设备和第二设备之间存在相对运动,缩短测距的测量总时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量总时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。增加第一测量帧中用于测量的信号的时间长度,可以提高第二设备通过第一测量帧获得第二测量结果的精度,进而提高测距精度。
在一种可能的实施方式中,第一符号是根据所述第一序列,并通过所述第一星座图调制得到;
其中,所述第一符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在本申请实施例中,提供了一种获取第一测量帧的可能的具体实施方式,具体为,第一测量帧包含的第一符号,同第一测量帧中的单频正弦波信号包含的至少两个符号一样,也是根据第一序列,并通过第一星座图调制得到。其中,第一符号包括第一测量帧中位于单频正弦波信号之前且与单频正弦波信号相邻的一个符号,和/或第一测量帧中位于单频正弦波信号 之后的第一个符号。通过本申请实施例,单频正弦波信号和其边界两侧相邻的符号,映射的序列相同,采用的星座图相同,可以避免测量帧在该边界发生突变,从而抑制该边界导致的信号畸变,提高测量帧测量结果的精度,从而提高测距准确性。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一比特,通过高斯频移键控GFSK调制得到;
第二符号是根据所述第一比特,并通过所述GFSK调制得到;
其中,所述第二符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在本申请实施例中,提供了一种获取第一测量帧的可能的具体实施方式,具体为,第一测量帧包含的单频正弦波信号包含至少两个符号,这至少两个符号中的每个符号都是根据第一比特,通过高斯频移键控GFSK调制得到。第一测量帧包含的第二符号,同第一测量帧中的单频正弦波信号包含的至少两个符号一样,也是根据第一比特,并通过高斯频移键控GFSK调制得到。其中,第二符号包括第一测量帧中位于单频正弦波信号之前且与单频正弦波信号相邻的一个符号,和/或第一测量帧中位于单频正弦波信号之后的第一个符号。通过本申请实施例,单频正弦波信号和其边界两侧相邻的符号,映射的比特相同,采用的调制方式相同,可以避免测量帧在该边界发生突变,从而抑制该边界导致的信号畸变,提高测量帧测量结果的精度,从而提高测距准确性。
在一种可能的实施方式中,所述方法还包括:
所述第一设备接收测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
在本申请实施例中,提供了一种测距的可能的具体实施方式,具体为,第一设备接收测距结果,可以是接收第三设备发送的测距结果,其中,该第三设备可以是第二设备,用于根据接收到的第一测量结果计算得到测距结果,并发送给第一设备,也可以是其他具备执行计算测距能力的设备,将计算得到的测距结果发送给第一设备,该测距结果包括第一设备与第二设备之间的距离信息。
第二方面,本申请实施例提供了一种测距方法,该方法包括:
第二设备在第一频点上接收第一设备发送的第一测量帧,以及在所述第一频点上向所述第一设备发送第二测量帧;
所述第二设备在第二频点上接收所述第一设备发送的第三测量帧,以及在所述第二频点上向所述第一设备发送第四测量帧;其中,所述第二频点与所述第一频点不同;
所述第二设备根据所述第一测量帧,获取第二测量结果;
所述第二设备根据所述第三测量帧,获取第四测量结果;
所述第二设备接收来自第四设备的第一测量结果和第三测量结果,所述第一测量结果为所述第一设备对所述第二测量帧的测量结果,所述第三测量结果为所述第一设备对所述第四测量帧的测量结果;
所述第二设备根据所述第一测量结果、所述第二测量结果、所述第三测量结果和所述第四测量结果,确定所述第一设备和所述第二设备之间的距离。
本申请实施例中,提供了一种测距方法,第一设备与第二设备在至少两个频点上进行测量帧的交互,如第二设备在第一频点上接收第一设备发送的第一测量帧并向第一设备发送第二测量帧,在第二频点上接收第一设备发送的第三测量帧并向第一设备发送第四测量帧,其 中,第二频点和第一频点不同,第二测量帧和第四测量帧分别用于第一设备获取第一测量结果和第三测量结果。第二设备根据接收到的第一测量帧获取第二测量结果,根据接收到的第三测量帧获取第四测量结果,并接收来自第四设备的第一测量结果和第三测量结果。第二设备根据第一测量结果、第二测量结果、第三测量结果、第四测量结果计算测距结果,确定第一设备和第二设备之间的距离。第四设备可以是第一设备,也可以是除第一设备之外的其他设备,本申请对此不做限制。第四设备是第一设备,用于获取第一测量结果和第三测量结果,并发送给第二设备或转发设备;或者,第四设备是转发设备,用于转发第一测量结果和第三测量结果给第二设备,本申请对此不做限制。第一设备和第二设备在从第一频点切换到第二频点时会产生随机初相,这导致第一测量结果和第三测量结果不能直接相干合并,第二测量结果和第四测量结果不能直接相干合并。结合第一测量结果和第二测量结果得到第一频点的联合测量结果,第一频点的联合测量结果不受第一设备和第二设备在第一频点的初相影响;结合第三测量结果和第四测量结果得到第二频点的联合测量结果,第二频点的联合测量结果也不受第一设备和第二设备在第二频点的初相影响。因此,第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在本申请实施例中,提供了一种获取第一频点和第二频点的可能的具体实施方式,具体为,第一频点和第二频点为在使用时间顺序上相邻的两个频点,即第一设备和第二设备先在第一频点上进行测量帧交互,再在第二频点上进行测量帧交互,并且在这两次测量帧交互之间的时间里,没有在第一频点和第二频点以外的其它频点上进行测量帧交互。应理解,这里的使用指的是第一设备和第二设备交互测量帧,第一频点和第二频点在使用时间顺序上相邻,并不排除在上述两次测量帧交互之间的时间里,第一设备和第二设备在其它频点上进行非测量帧的交互,例如交互用于传输业务数据、测量结果、信令等但不用于测距测量的帧的情况;这里也不排除在上述两次测量帧交互之间的时间里,第一设备和第二设备以外的其它设备在任意频点交互任意类型的帧的情况。在第一频点集合中获取第一频点,再在第二频点集合中获取第二频点,第一频点集合和第二频点集合的区别在于第一频点集合包括第一频点,第二频点集合不包括第一频点,可以理解为,第二频点集合是从第一频点集合中剔除第一频点后得到的频点集合。通过本申请实施例,基于第一频点和第二频点是使用时间顺序相邻的两个频点,可以避免在测量期间重复使用相同频点,缩短测距的测量时间。如果第一设备和第二设备之间存在相对运动,缩短测距的测量时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第二设备根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述第二设备根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频 点。
在本申请实施例中,提供了一种确定第一频点和第二频点的可能的具体实施方式,具体为,根据随机种子在相应的频点集合中以伪随机的方式确定所使用的频点,确定第一频点所使用的第一随机种子和确定第二频点所使用的第二随机种子可以是相同的随机种子,也可以是不同的随机种子。通过本申请实施例,基于随机种子以伪随机的方式确定频点,使得确定的频点具有随机性,降低与其他设备共享频谱时使用相同的时频资源导致互相干扰的概率,提升测距性能。
在一种可能的实施方式中,所述方法还包括:
所述第二设备生成并发送所述第一随机种子和/或所述第二随机种子;
或者,
所述第二设备接收所述第一随机种子和/或所述第二随机种子。
在本申请实施例中,提供了几种获取第一随机种子和/或第二随机种子的可能的具体实施方式,具体为:1.第二设备自己生成并向第一设备发送第一随机种子和/或第二随机种子;2.第二设备自己生成并向其它设备发送第一随机种子和/或第二随机种子,该其它设备再把第一随机种子和/或第二随机种子转发给第一设备;3.第二设备也可以接收来自第一设备的第一随机种子和/或第二随机种子;4.第二设备接收来自其它设备的第一随机种子和/或第二随机种子,在此之前,该其它设备的第一随机种子和/或第二随机种子由第一设备生成并发送给该其它设备;5.其它设备生成第一随机种子和/或第二随机种子,并发送给第一设备和第二设备。使用上述任一方式,第一设备和第二设备在选择第一频点时使用相同的第一随机种子,在选择第二频点时使用相同的第二随机种子,因此第一设备和第二设备会选出相同的第一频点和相同的第二频点,避免频点选择错误。
在一种可能的实施方式中,所述方法还包括:
所述第二设备根据所述第一测量帧,获取第二测量结果;其中,所述第二测量结果包括所述第一测量帧包含的单频正弦波信号在第二时刻的相位信息或同相分量正交分量IQ信息,或者所述第一测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第二时刻的相位信息或IQ信息,所述第二测量结果用于测距。
在本申请实施例中,提供了一种获取第二测量结果的可能的具体实施方式,具体为,第二设备测量第一测量帧,获取第二测量结果,其中,第二测量结果包括第一测量帧包含的单频正弦波在第二时刻的相位信息或同相分量正交分量IQ信息,或者,第二测量结果包括第一测量帧包含的单频正弦波按照单频正弦波模型延拓信号在第二时刻的相位信息或同相分量正交分量IQ信息。基于相位信息或包含相位信息的IQ信息测距,可以获得比传统的基于幅值的测距方法更高的测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第二设备确定第二定时偏差值,所述第二定时偏差值表征所述第二设备相对于所述第一测量帧的定时偏差;
所述第二设备根据所述第二定时偏差值,确定所述第二时刻。
在本申请实施例中,提供了一种确定第二时刻的可能的具体实施方式,具体为,第二设备确定第二定时偏差值,并根据该第二定时偏差值确定第二时刻,其中,第二定时偏差值表征第二设备相对于第一测量帧的定时偏差。通过本申请实施例,根据测量到的定时偏差,修正相位信息或IQ信息对应的时刻,可以抑制第一设备与第二设备时钟之间定时和频率的差异对测距结果的影响,提高测距精度。
在一种可能的实施方式中,所述第二时刻满足:T2=t0+t2/2;其中,所述t0表征参考时刻,所述t2表征所述第二定时偏差值,所述T2表征所述第二时刻。
在本申请实施例中,提供了一种确定第二时刻的可能的具体实施方式,具体为,第二时刻需满足t0+t2/2,其中,t0表征参考时刻,t2表征第二定时偏差值。相应的,第一设备也采用类似的方法确定第一时刻,则第一设备时钟的第一时刻对应的真实时间与第二设备时钟的第二时刻对应的真实时间的差异主要与第一定时偏差值和第二定时偏差值的测量误差有关,而与第一设备与第二设备时钟之间定时偏差无关,结合第一测量结果和第二测量结果得到第一频点的联合测量结果不受第一设备与第二设备时钟之间定时偏差影响,从而抑制了第一设备与第二设备时钟之间定时偏差对测距结果的影响,提高测距精度。
在一种可能的实施方式中,所述确定第二定时偏差值,包括:
所述第二设备通过对所述第一测量帧中的信号进行测量,确定所述第二定时偏差值。
在本申请实施例中,提供了一种确定第二定时偏差值的可能的具体实施方式,具体为,第二设备通过对第一测量帧中的信号进行测量,确定第二定时偏差值,或者,第二设备还可以通过对第一设备发送的其他信号进行测量,其他信号可以包括其他测量帧中的信号或其他非测量帧中的信号,确定第二定时偏差值。通过本申请实施例确定的第二定时偏差值,可以修正定时偏差,减小第一设备与第二设备时钟之间定时和频率的差异,降低对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第二设备发送第一消息,和/或,接收所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在本申请实施例中,提供了一种确定参考时刻的可能的具体实施方式,具体为,第二设备接收第一消息和/或发送第一消息,通过第一消息所指示的信息确定参考时刻,或者,参考时刻为预先为第二设备(和第一设备)配置或协议预先定义的时刻。通过本申请实施例,第一设备和第二设备使用约定相同的参考时刻来确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,所述方法还包括:
所述第二设备发送第二消息,和/或,接收所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
根据所述参考值和第二频率偏差值,确定所述参考时刻,其中,所述第二频率偏差值表征所述第二设备相对于所述第一测量帧的频率偏差。
在本申请实施例中,提供了几种确定参考时刻的可能的具体实施方式,具体为,第二设备接收第二消息和/或发送第二消息,根据第二频率偏差值和第二消息所指示的参考值确定参考时刻,其中,第二频率偏差值表征第二设备相对于第一测量帧的频率偏差。通过本申请实施例,第一设备和第二设备使用约定相同的参考值,并且第二设备根据频率偏差和参考值确定参考时刻,以修正频率偏差导致的定时偏差随时间的变化对参考时刻的影响,进而通过参考时刻确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,不同频点对应的参考时刻相同或不同,和/或,不同频点对应 的参考值相同或不同。
在一种可能的实施方式中,在第一设备和/或第二设备使用多天线的情况下,同一个频点的不同天线组合所使用的参考时刻相同或不同,和/或,同一个频点的不同天线组合所使用的参考值相同或不同。
其中,不同天线组合包括但不限于:天线组合一(第一设备的发送天线1和第二设备的接收天线2),和/或,天线组合二(第一设备的接收天线1和第二设备的发送天线2),等等,本申请实施例对此不作限制。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二序列,通过第二星座图调制得到,所述第二序列为M个比特组成的序列,所述M的值与所述第二星座图的调制方式对应。
在本申请实施例中,提供了一种获取第二测量帧的可能的具体实施方式,具体为,第二测量帧包含的单频正弦波信号包含至少两个符号,这至少两个符号中的每个符号都是根据第二序列,通过第二星座图调制得到。其中,第二序列为M个比特组成的序列,M的值与第二星座图的调制方式对应,例如,二进制相移键控BPSK的调制方式对应的M值为1,四相相移键控QPSK的调制方式对应的M值为2,八相相移键控8PSK的调制方式对应的M值为3。本申请实施例中第二测量帧中的单频正弦波信号与其他信号采用相同的调制方式,避免了调制方式切换带来的额外的实现复杂度和额外的时间开销,以缩短第二测量帧或增加第二测量帧中用于测量的信号的时间长度,例如单频正弦波信号的长度。其中,缩短测量帧长度,进而可以缩短第一设备与第二设备之间传输单频正弦波信号的间隔和测距的总测量时间。考虑时钟的非理想性,第一设备和第二设备间的时钟频率偏移导致的测距结果误差与第一设备和第二设备之间传输单频正弦波信号的间隔有关,相同频偏下,该间隔越大,误差越大,缩短第一设备与第二设备之间传输单频正弦波信号的间隔,可以抑制第一设备和第二设备间的时钟频率偏移对测距结果的影响。如果第一设备和第二设备之间存在相对运动,缩短测距的测量总时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量总时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。增加第二测量帧中用于测量的信号的时间长度,可以提高第二设备通过第一测量帧获得第二测量结果的精度,进而提高测距精度。
在一种可能的实施方式中,第三符号是根据所述第二序列,并通过所述第二星座图调制得到;
其中,所述第三符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在本申请实施例中,提供了一种获取第二测量帧的可能的具体实施方式,具体为,第二测量帧包含的第三符号,同第二测量帧中的单频正弦波信号包含的至少两个符号一样,也是根据第二序列,并通过第二星座图调制得到。其中,第三符号包括第二测量帧中位于单频正弦波信号之前且与单频正弦波信号相邻的一个符号,和/或第二测量帧中位于单频正弦波信号之后的第一个符号。通过本申请实施例,单频正弦波信号和其边界两侧相邻的符号,映射的序列相同,采用的星座图相同,可以避免测量帧在该边界发生突变,从而抑制该边界导致的信号畸变,提高测量帧测量结果的精度,从而提高测距准确性。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号, 所述至少两个符号中的每个符号是根据第二比特,通过高斯频移键控GFSK调制得到;
第四符号是根据所述第二比特,并通过所述GFSK调制得到;
其中,所述第四符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在本申请实施例中,提供了一种获取第二测量帧的可能的具体实施方式,具体为,第二测量帧包含的单频正弦波信号包含至少两个符号,这至少两个符号中的每个符号都是根据第二比特,通过高斯频移键控GFSK调制得到。相对于目前测量帧沿用现有技术中的“前导序列+同步序列+数据+单频正弦波”的帧结构设计,通过本申请实施例获取的第二测量帧,不包含测量结果数据或业务数据,可以缩短第一设备与第二设备之间传输单频正弦波信号的间隔或增加测量使用的单频正弦波长度,从而降低第一设备与第二设备时钟之间定时和频率差异导致的测量帧测量结果误差,从而降低测距结果的误差,提高测距准确性。并且,第二测量帧包含的第四符号,同第二测量帧中的单频正弦波信号包含的至少两个符号一样,也是根据第二比特,并通过高斯频移键控GFSK调制得到。其中,第四符号包括第二测量帧中位于单频正弦波信号之前且与单频正弦波信号相邻的一个符号,和/或第二测量帧中位于单频正弦波信号之后的第一个符号。通过本申请实施例,单频正弦波信号和其边界两侧相邻的符号,映射的比特相同,采用的调制方式相同,可以避免测量帧在该边界发生突变,从而抑制该边界导致的信号畸变,提高测量帧测量结果的精度,从而提高测距准确性。
在一种可能的实施方式中,所述方法还包括:
所述第二设备发送测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
在本申请实施例中,提供了一种测距的可能的具体实施方式,具体为,
第二设备根据接收到的第一测量结果进行计算测距得到测距结果后,将该测距结果发送出去,可以是向第四设备发送测距结果,其中,该第四设备可以是第一设备,用于对接收到的第二测量帧进行测量,得到第一测量结果,并发送给第二设备,也可以是其他不具备执行计算测距能力的设备,该测距结果包括第一设备与第二设备之间的距离信息。
第三方面,本申请实施例提供了一种通信装置,该装置包括用于执行如第一方面或者如第二方面中任一项所述方法的模块或单元。
在一种可能的设计中,该通信装置包括:
收发单元,用于在第一频点上向第二设备发送第一测量帧,以及在所述第一频点上接收所述第二设备发送的第二测量帧;
所述收发单元,还用于在第二频点上向所述第二设备发送第三测量帧,以及在所述第二频点上接收所述第二设备发送的第四测量帧;其中,所述第二频点与所述第一频点不同;
处理单元,用于根据所述第二测量帧,获取第一测量结果;
所述处理单元,还用于根据所述第四测量帧,获取第三测量结果;
所述收发单元,还用于向第三设备发送所述第一测量结果和所述第三测量结果,所述第一测量结果和所述第三测量结果用于测距。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在一种可能的实施方式中,所述处理单元,还用于根据第一随机种子在所述第一频点集 合中以伪随机的方式确定所述第一频点;
所述处理单元,还用于根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在一种可能的实施方式中,所述处理单元,还用于生成并通过所述收发单元发送所述第一随机种子和/或所述第二随机种子;
或者,
所述收发单元,还用于接收所述第一随机种子和/或所述第二随机种子。
在一种可能的实施方式中,所述第一测量结果包括所述第二测量帧包含的单频正弦波信号在第一时刻的相位信息或同相分量正交分量IQ信息,或者所述第二测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第一时刻的相位信息或IQ信息。
在一种可能的实施方式中,所述处理单元,还用于确定第一定时偏差值,所述第一定时偏差值表征所述通信装置相对于所述第二测量帧的定时偏差;
所述处理单元,还用于根据所述第一定时偏差值,确定所述第一时刻。
在一种可能的实施方式中,所述第一时刻满足:T1=t0+t1/2;其中,所述t0表征参考时刻,所述t1表征所述第一定时偏差值,所述T1表征所述第一时刻。
在一种可能的实施方式中,所述处理单元,具体用于通过对所述第二测量帧中的信号进行测量,确定所述第一定时偏差值。
在一种可能的实施方式中,所述收发单元,还用于接收第一消息,和/或,发送所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在一种可能的实施方式中,所述收发单元,还用于接收第二消息,和/或,发送所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
所述处理单元,还用于根据所述参考值和第一频率偏差值,确定所述参考时刻,其中,所述第一频率偏差值表征所述通信装置相对于所述第二测量帧的频率偏差。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一序列,通过第一星座图调制得到,所述第一序列为N个比特组成的序列,所述N的值与所述第一星座图的调制方式对应。
在一种可能的实施方式中,第一符号是根据所述第一序列,并通过所述第一星座图调制得到;
其中,所述第一符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一比特,通过高斯频移键控GFSK调制得到;
第二符号是根据所述第一比特,并通过所述GFSK调制得到;
其中,所述第二符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述收发单元,还用于接收测距结果,所述测距结果包括所述通信装置和所述第二设备之间的距离信息。
关于第三方面以及任一项可能的实施方式所带来的技术效果,可参考对应于第一方面以及相应的实施方式的技术效果的介绍。
在另一种可能的设计中,该通信装置包括:
收发单元,用于在第一频点上接收第一设备发送的第一测量帧,以及在所述第一频点上向所述第一设备发送第二测量帧;
所述收发单元,还用于在第二频点上接收所述第一设备发送的第三测量帧,以及在所述第二频点上向所述第一设备发送第四测量帧;其中,所述第二频点与所述第一频点不同;
处理单元,用于根据所述第一测量帧,获取第二测量结果;
所述处理单元,还用于根据所述第三测量帧,获取第四测量结果;
所述收发单元,还用于接收来自第四设备的第一测量结果和所述第三测量结果,所述第一测量结果为所述第一设备对所述第二测量帧的测量结果,所述第三测量结果为所述第一设备对所述第四测量帧的测量结果;
所述处理单元,还用于根据所述第一测量结果、所述第二测量结果、所述第三测量结果和所述第四测量结果,确定所述第一设备和所述通信装置之间的距离。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在一种可能的实施方式中,所述处理单元,还用于根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述处理单元,还用于根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在一种可能的实施方式中,所述处理单元,还用于生成并通过所述收发单元发送所述第一随机种子和/或所述第二随机种子;
或者,
所述收发单元,还用于接收所述第一随机种子和/或所述第二随机种子。
在一种可能的实施方式中,所述处理单元,还用于根据所述第一测量帧,获取第二测量结果;其中,所述第二测量结果包括所述第一测量帧包含的单频正弦波信号在第二时刻的相位信息或同相分量正交分量IQ信息,或者所述第一测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第二时刻的相位信息或IQ信息,所述第二测量结果用于测距。
在一种可能的实施方式中,所述处理单元,还用于确定第二定时偏差值,所述第二定时偏差值表征所述通信装置相对于所述第一测量帧的定时偏差;
所述处理单元,还用于根据所述第二定时偏差值,确定所述第二时刻。
在一种可能的实施方式中,所述第二时刻满足:T2=t0+t2/2;其中,所述t0表征参考时刻,所述t2表征所述第二定时偏差值,所述T2表征所述第二时刻。
在一种可能的实施方式中,所述处理单元,具体用于通过对所述第一测量帧中的信号进行测量,确定所述第二定时偏差值。
在一种可能的实施方式中,所述收发单元,还用于发送第一消息,和/或,接收所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在一种可能的实施方式中,所述收发单元,还用于发送第二消息,和/或,接收所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
所述处理单元,还用于根据所述参考值和第二频率偏差值,确定所述参考时刻,其中, 所述第二频率偏差值表征所述通信装置相对于所述第一测量帧的频率偏差。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二序列,通过第二星座图调制得到,所述第二序列为M个比特组成的序列,所述M的值与所述第二星座图的调制方式对应。
在一种可能的实施方式中,第三符号是根据所述第二序列,并通过所述第二星座图调制得到;
其中,所述第三符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二比特,通过高斯频移键控GFSK调制得到;
第四符号是根据所述第二比特,并通过所述GFSK调制得到;
其中,所述第四符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述收发单元,还用于发送测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
关于第三方面以及任一项可能的实施方式所带来的技术效果,可参考对应于第二方面以及相应的实施方式的技术效果的介绍。
第四方面,本申请实施例提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请实施例提供了一种通信装置,包括:逻辑电路和通信接口。所述通信接口,用于接收信息或者发送信息;所述逻辑电路,用于通过所述通信接口接收信息或者发送信息,使得所述通信装置执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序(也可以称为代码,或指令);当所述计算机程序在计算机上运行时,使得上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法被实现。
第七方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令);当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
第八方面,本申请实施例提供一种芯片,该芯片包括处理器,所述处理器用于执行指令,当该处理器执行所述指令时,使得该芯片执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。可选的,该芯片还包括通信接口,所述通信接口用于接收信号或发送信号。
第九方面,本申请实施例提供一种车端,所述车端包括至少一个如第三方面所述的通信装置,或第四方面所述的通信装置,或第五方面所述的通信装置,或第八方面所述的芯片。
第十方面,本申请实施例提供一种系统,所述系统包括车端以及至少一个如第三方面所述的通信装置,或第四方面所述的通信装置,或第五方面所述的通信装置,或第八方面所述的芯片。
此外,在执行上述第一方面以及任一项可能的实施方式所述的方法,或第二方面以及任 一项可能的实施方式所述的方法的过程中,上述方法中有关发送信息和/或接收信息等的过程,可以理解为由处理器输出信息的过程,和/或,处理器接收输入的信息的过程。在输出信息时,处理器可以将信息输出给收发器(或者通信接口、或发送模块),以便由收发器进行发射。信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的信息时,收发器(或者通信接口、或发送模块)接收信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送信息可以理解为处理器输出信息。又例如,接收信息可以理解为处理器接收输入的信息。
可选的,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作。
可选的,在执行上述第一方面以及任一项可能的实施方式所述的方法,或第二方面以及任一项可能的实施方式所述的方法的过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是通过执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实施方式中,上述至少一个存储器位于装置之外。
在又一种可能的实施方式中,上述至少一个存储器位于装置之内。
在又一种可能的实施方式之中,上述至少一个存储器的部分存储器位于装置之内,另一部分存储器位于装置之外。
本申请中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可以被集成在一起。
本申请实施例中,基于第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种双边测量的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的一种测距方法的流程示意图;
图4为本申请实施例提供的另一种测距方法的流程示意图;
图5为本申请实施例提供的又一种测距方法的流程示意图;
图6为本申请实施例提供的一种跳频算法的流程示意图;
图7为本申请实施例提供的一种双边测量的示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,各个实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请提供了一种测距方法,为了更清楚地描述本申请的方案,下面先介绍一些与测距相关的知识。
频点:传输信号的中心频率。具有跳频功能的设备在两次不同的传输信号过程中,可以使用相同或不同的频点。指示频点的方式可以是绝对频率,也可以是表征该绝对频率的编号。
采用通信设备传输测距信号的方式实现测距,是解决测距定位问题的重要手段。其中,测距的精度与能够相干合并的测距信号覆盖的带宽紧密相关,测距信号覆盖的带宽越宽,测距精度越高。
采用跳频的方式测距,单次传输占用的带宽较小,但是,仅使用单次传输进行测距,测距精度无法满足需求。通过跳频的通信方式可以扩大测距信号覆盖的带宽,然而每次跳频,设备时钟都会产生随机相位,导致设备接收的不同频点的测距信号无法直接相干合并。
为解决上述跳频所产生的随机相位问题,可以通过双边测量的方式消除跳频导致的设备时钟随机相位,使不同频点的测距信号可以相干合并,以获得更高的测距精度。
具体的双边测量过程可以参阅图1,图1为本申请实施例提供的一种可能的双边测量的示意图。
如图1所示,双边测量指的是在各个跳频频点上,先由第一设备发送第一测量帧,该第 一测量帧包括单频正弦波信号,第二设备接收该第一测量帧,并测量该第一测量帧中的单频正弦波信号在第二时刻的同相分量正交分量(in-phase and quadraturephase,IQ)值(或幅值、相位信息),或该第一测量帧中的单频正弦波信号按照单频正弦波模型延拓信号在第二时刻的IQ值(或幅值、相位信息),实际处理中还可以通过参数估计等算法计算得到IQ值,而不对单频正弦波信号进行延拓。再由第二设备发送第二测量帧,该第二测量帧包括单频正弦波信号,第一设备接收该第二测量帧,并测量该第二测量帧中的单频正弦波信号在第一时刻的IQ值(或幅值、相位信息),或该第二测量帧中的单频正弦波信号按照单频正弦波模型延拓信号在第一时刻的IQ值(或幅值、相位信息),实际处理中还可以通过参数估计等算法计算得到IQ值,而不对单频正弦波信号进行延拓。由某个设备(第一设备、第二设备或其他设备)(例如通过有线和/或无线通信的方式)获得这两个测量值后,合并(例如,简单的相乘)这两个测量值,获得该跳频频点的参考值,多个跳频频点的参考值可以相干合并用于测距,得到第一设备和第二设备之间的距离信息。
然而,在实际测量中,由于不同设备的时钟之间存在定时、频率的差异,这些差异会导致测距的误差。并且,在实际测量中,设备间往往存在相对运动,测量期间设备间相对位置的变化也会导致测距的误差。
针对上述测距方法存在的测距误差较大,测距的精度有待提高的技术问题,本申请实施例提供了一种用于测距的通信架构,并基于该架构相应提出了一种新的测距方法,基于第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请提供的方法可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统、短距无线通信网络系统,例如星闪(SparkLink)通信网络系统,也可以是第五代(5th-generation,5G)通信系统,以及未来通信发展中出现的新的通信系统(如6G)等。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车与任何事物(vehicle-to-everything,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
在上述各类通信系统中,具备通信能力的设备可以称为节点,也可以称为通信节点。例如,节点可以包括手持终端、车辆、车载设备、或网络侧设备、用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、无线通信设备、用户代理或用户装置等独立设备,也可以是包含在独立设备中的部件(例如芯片或集成电路)。节点可以为任一可能的智能终端设备(如手机)、智能运输设备(如车辆、无人机等)、智能制造设备、智能家居设备(例如大屏、音箱等)等。
本申请实施例中的节点可以应用于多种应用场景中,例如以下应用场景:移动互联网 (mobile internet,MI)、工业控制(industrial control)、无人驾驶(self driving)、运输安全(transportation safety)、物联网(internet of things,IoT)、智慧城市(smart city)、或智慧家庭(smart home)等。
在某些应用场景、或某些网络类型中,具备类似通信能力的设备的名称也可能不称为节点,本申请对此不作限制。
示例性的,下文示出的图2中,节点与节点之间便可以通过D2D技术、M2M技术或V2X技术通信等。
请参阅图2,图2是本申请实施例提供的一种可能的通信系统的架构示意图。
如图2所示,该通信系统可以包括至少一个第一节点(例如基站)以及至少一个第二节点(例如UE)。
对于第一节点和第二节点的介绍分别如下所示:
示例性的,第一节点可以是主设备,具体可以是下一代节点B(next generation node B,gNB)、下一代演进型基站(next generation evolved nodeB,ng-eNB)、短距无线通信网络系统中的节点(例如,星闪通信网络系统中的主节点或G节点)、或者未来6G通信中的接入网设备等。主设备可以是任意一种具有无线收发功能的设备。该主设备可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。该主设备可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。该主设备可以是可穿戴设备或车载设备等。该主设备还可以是小站,传输接收节点(transmission reception point,TRP)(或也可以称为传输点)等。
示例性的,第二节点可以是终端设备,该终端设备也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可以是短距无线通信网络系统中的节点(例如,星闪通信网络系统中的从节点或T节点)、未来6G网络中的终端设备、或者未来演进的PLMN中的终端设备等。
可理解,本申请示出的终端设备不仅可以包括车联网中的车(如整车)、而且还可以包括车联网中的车载设备或车载终端等,本申请对于该终端设备应用于车联网时的具体形态不作限定。
应理解,图2示例性地示出了一个基站和六个UE,以及各通信设备之间的通信链路。可选地,该通信系统可以包括多个基站,并且每个基站的覆盖范围内可以包括其它数量的UE,例如更多或更少的UE等,本申请对此不做限定。
可选的,上述各个通信设备之间的通信链路,可以包括各种类型的连接介质,包括有线链路(例如光纤)、无线链路、或者有线链路和无线链路的组合等。例如可以为近距离连接技术包括星闪(SparkLink)、802.11b/g、蓝牙(blue tooth)、紫蜂(Zigbee)、无线射频识别技术(radio frequency identification,RFID)、超宽带(ultra-wideband,UWB)技术、或无线短距通信系统(例如车载无线短距通信系统)等。
上述各个通信设备,如图2中的基站、UE1至UE6,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线等,本申请实施例对于各个通信设备的具体结构不作限定。可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
可理解,图2所示的通信架构示意图仅为示例,对于其他形式的通信架构示意图可以参考相关标准或协议等,这里不再一一详述。
可理解,本申请提供的测距方法不仅可以应用于如图2所示的通信系统,还可以用于其他形式的通信系统。下文示出的各个实施例可以适用于图2所示的通信系统,对此,下文不再赘述。
相应的,本申请基于上述通信系统的架构提出了新的测距方法,下面将结合图3至图8对本申请提供的测距方法进行详细说明。
请参阅图3,图3为本申请实施例提供的一种测距方法的流程示意图。该测距方法包括但不限于如下步骤:
S301:第一设备在第一频点上向第二设备发送第一测量帧,相应的,第二设备在第一频点上接收第一设备发送的第一测量帧。
S302:第二设备在第一频点上向第一设备发送第二测量帧,相应的,第一设备在第一频点上接收第二设备发送的第二测量帧。
S303:第一设备在第二频点上向第二设备发送第三测量帧,相应的,第二设备在第二频点上接收第一设备发送的第三测量帧。
S304:第二设备在第二频点上向第一设备发送第四测量帧,相应的,第一设备在第二频点上接收第二设备发送的第四测量帧。
可理解,上述步骤S301、S302、S303以及S304的执行顺序,本申请实施例对此不作限制,以符合实际的场景交互为准。
上述步骤S301至S304可以理解为,第一设备与第二设备在测量过程中在至少两个频点上进行测量帧的交互,如第一设备在第一频点上向第二设备发送第一测量帧,以及在第一频点上接收第二设备发送的第二测量帧;第一设备在第二频点上向第二设备发送第三测量帧,以及在第二频点上接收第二设备发送的第四测量帧;其中,第二频点与第一频点不同,第一测量帧和第三测量帧分别用于第二设备获取第二测量结果和第四测量结果,第二测量帧和第四测量帧分别用于第一设备获取第一测量结果和第三测量结果。
可理解,本申请实施例中的第一设备(和/或第二设备)为搭载了可用于执行计算机执行指令的处理器的设备,可以是终端设备(如车载终端)等,也可以是网络设备(如服务基站)等,具体可以是上述图2中的第二节点(如UE1至UE6中的任一设备),也可以是上述图2中的第一节点,用于执行本申请实施例中的测距方法,以实现降低测距的误差,提高测距的精度。
在一种可能的实施例中,可以通过包括但不限于以下方式确定第一频点和第二频点:
在第一频点集合中获取第一频点,再在第二频点集合中获取第二频点。
其中,第一频点集合和第二频点集合的区别在于第一频点集合包括第一频点,第二频点集合不包括第一频点。可以理解为,第二频点集合是从第一频点集合中剔除第一频点后得到的频点集合。
并且,第一频点和第二频点为在使用时间顺序上相邻的两个频点,其中,使用时间顺序 上相邻,可以是以下理解:
第一设备和第二设备先在第一频点上进行测量帧交互,再在第二频点上进行测量帧交互,并且在这两次测量帧交互之间的时间里,没有在第一频点和第二频点以外的其它频点上进行测量帧交互。应理解,这里的使用指的是第一设备和第二设备交互测量帧,第一频点和第二频点在使用时间顺序上相邻,并不排除在上述两次测量帧交互之间的时间里,第一设备和第二设备在其它频点上进行非测量帧的交互,例如交互用于传输业务数据、测量结果、信令等但不用于测距测量的帧的情况;这里也不排除在上述两次测量帧交互之间的时间里,第一设备和第二设备以外的其它设备在任意频点交互任意类型的帧的情况。
通过本申请实施例,基于第一频点和第二频点是使用时间顺序相邻的两个频点,可以避免在测量期间重复使用相同频点,缩短测距的测量时间。如果第一设备和第二设备之间存在相对运动,缩短测距的测量时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。
可选的,可以根据随机种子在相应的频点集合中以伪随机的方式确定所使用的频点。
示例性的,根据第一随机种子在第一频点集合中以伪随机的方式确定第一频点,根据第二随机种子在第二频点集合中以伪随机的方式确定第二频点。
其中,确定第一频点所使用的第一随机种子和确定第二频点所使用的第二随机种子可以是相同的随机种子,也可以是不同的随机种子。
通过本申请实施例,基于随机种子以伪随机的方式确定频点,使得确定的频点具有随机性,可以降低与其他设备共享频谱时使用相同的时频资源导致互相干扰的概率,提升测距性能。
可选的,第一设备可以通过多种方式中的一种获取确定频点所需的随机种子。
示例性的:方式1.第一设备自己生成并向第二设备发送第一随机种子和/或第二随机种子;方式2.第一设备自己生成并向其他设备发送第一随机种子和/或第二随机种子,该其他设备再把第一随机种子和/或第二随机种子转发给第二设备;方式3.第一设备接收来自第二设备的第一随机种子和/或第二随机种子;方式4.第一设备接收来自其它设备的第一随机种子和/或第二随机种子,在此之前,该其它设备的第一随机种子和/或第二随机种子由第二设备生成并发送给该其它设备;方式5.其它设备生成第一随机种子和/或第二随机种子,并发送给第一设备。
相应的,第二设备也可以通过多种方式中的一种获取确定频点所需的随机种子。
示例性的:方式1.第二设备自己生成并向第一设备发送第一随机种子和/或第二随机种子;方式2.第二设备自己生成并向其他设备发送第一随机种子和/或第二随机种子,该其他设备再把第一随机种子和/或第二随机种子转发给第一设备;方式3.第二设备接收来自第一设备的第一随机种子和/或第二随机种子;方式4.第二设备接收来自其它设备的第一随机种子和/或第二随机种子,在此之前,该其它设备的第一随机种子和/或第二随机种子由第一设备生成并发送给该其它设备;方式5.其它设备生成第一随机种子和/或第二随机种子,并发送给第二设备。
通过本申请实施例,第一设备和第二设备在选择第一频点时使用相同的第一随机种子,在选择第二频点时使用相同的第二随机种子,因此第一设备和第二设备会选出相同的第一频点和相同的第二频点,避免频点选择错误。
S305:第一设备根据第二测量帧,获取第一测量结果。
S306:第一设备根据第四测量帧,获取第三测量结果。
由于上述步骤S305与S306相似,下文将以S305为例进行说明,S306的执行过程可参阅S3065,此处不再赘述。
第一设备测量第二测量帧,得到第一测量结果。
其中,第一测量结果包括第二测量帧包含的单频正弦波在第一时刻的相位信息或同相分量正交分量IQ信息,或者,第一测量结果包括第二测量帧包含的单频正弦波按照单频正弦波模型延拓信号在第一时刻的相位信息或同相分量正交分量IQ信息,实际处理中还可以通过参数估计等算法计算得到IQ信息,而不对单频正弦波信号进行延拓。
通过本申请实施例,基于相位信息或包含相位信息的IQ信息测距,可以获得比传统的基于幅值的测距方法更高的测距精度。
在一种可能的实施方式中,为获取第一测量结果,需确定上述第一时刻,确定第一时刻可以通过包括但不限于以下方式实现:
第一设备确定第一定时偏差值,并根据该第一定时偏差值确定第一时刻。
其中,第一定时偏差值表征第一设备相对于第二测量帧的定时偏差。
通过本申请实施例,根据测量到的定时偏差,修正相位信息或IQ信息对应的时刻,可以抑制第一设备与第二设备时钟之间定时和频率的差异对测距结果的影响,提高测距精度。
可选的,第一设备通过对第二测量帧中的信号进行测量,确定第一定时偏差值。
可选的,第一设备还可以通过对第二设备发送的其他信号进行测量,其他信号可以包括其他测量帧中的信号或其他非测量帧中的信号,确定第一定时偏差值。
通过本申请实施例确定的第一定时偏差值,可以修正定时偏差,减小第一设备与第二设备时钟之间定时和频率的差异,降低对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
示例性的,上述第一时刻满足T1=t0+t1/2。
其中,t0表征参考时刻,t1表征上述第一定时偏差值,T1表征上述第一时刻。
通过本申请实施例确定第一时刻,相应的,第二设备也采用类似的方法确定第二时刻,则第一设备时钟的第一时刻对应的真实时间与第二设备时钟的第二时刻对应的真实时间的差异主要与第一定时偏差值和第二定时偏差值的测量误差有关,而与第一设备与第二设备时钟之间定时偏差无关,结合第一测量结果和第二测量结果得到第一频点的联合测量结果不受第一设备与第二设备时钟之间定时偏差影响,从而抑制了第一设备与第二设备时钟之间定时偏差对测距结果的影响,提高测距精度。
可选的,参考时刻可以通过包括但不限于以下方式获取:
方式一:第一设备接收第一消息和/或发送第一消息,通过第一消息所指示的信息确定参考时刻。
方式二:第一设备接收第二消息和/或发送第二消息,根据第一频率偏差值和第二消息所指示的参考值确定参考时刻。其中,第一频率偏差值表征第一设备相对于第二测量帧的频率偏差。
方式三:参考时刻为预先配置或预先定义的时刻,具体的,可以是第一设备预先配置的时刻,也可以是其他设备预先配置的时刻,或者是协议规定的时刻,本申请实施例对此不作限制。
方式四:参考值为预先配置或预先定义的值,具体的,可以是第一设备预先配置的参考值,也可以是其他设备预先配置的参考值,或者是协议规定的参考值,本申请实施例对此不 作限制。第一设备根据第一频率偏差值和预先配置或预先定义的参考值确定参考时刻。
相应的,第二时刻满足T2=t0+t2/2。
其中,t0表征参考时刻,t2表征第二定时偏差值,即表征第二设备相对于第一测量帧的定时偏差,T2表征第二时刻。
第二时刻用于根据第一测量帧得到第二测量结果。其中,第二测量结果包括第一测量帧包含的单频正弦波在第二时刻的相位信息或同相分量正交分量IQ信息,或者,第二测量结果包括第一测量帧包含的单频正弦波按照单频正弦波模型延拓信号在第二时刻的相位信息或同相分量正交分量IQ信息,实际处理中还可以通过参数估计等算法计算得到IQ信息,而不对单频正弦波信号进行延拓。
通过本申请实施例,第一设备和第二设备使用约定相同的参考值,并且第一设备根据频率偏差和参考值确定参考时刻,以修正频率偏差导致的定时偏差随时间的变化对参考时刻的影响,进而通过参考时刻确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
在一种可能的实施方式中,不同频点对应的参考时刻相同或不同,和/或,不同频点对应的参考值相同或不同。
在一种可能的实施方式中,在第一设备和/或第二设备使用多天线交互测量帧的情况下,在同一个频点上使用不同天线组合进行测量帧交互时,所使用的参考时刻相同或不同,和/或,在同一个频点上使用不同天线组合进行测量帧交互时,所使用的参考值相同或不同。
示例性的,第一设备使用天线1和第二设备使用天线2进行测量帧交互,此时,第一设备的天线1和第二设备的天线2为一个天线组合;第一设备使用发射天线3发送测量帧,使用接收天线4接收测量帧,第二设备使用发射天线5发送测量帧,使用接收天线6接收测量帧,此时,第一设备的发射天线3和接收天线4,以及第二设备的发射天线5和接收天线6,为一个天线组合;等等,本申请实施例对此不作限制。
S307:第一设备向第三设备发送第一测量结果和第三测量结果,相应的,第三设备接收第一设备发送的第一测量结果和第三测量结果。
其中,该第一测量结果和第三测量结果可用于计算得到第一设备和第二设备之间的距离信息。
可选的,第一设备接收测距结果。
具体可以是接收第三设备发送的测距结果,其中,该第三设备可以是第二设备,用于根据接收到的第一测量结果和第三测量结果,以及自身测量得到的第二测量结果和第四测量结果,计算得到测距结果,并发送给第一设备,也可以是其他具备执行计算测距能力的设备,将计算得到的测距结果发送给第一设备,该测距结果包括第一设备与第二设备之间的距离信息。
可理解,本申请实施例中的第三设备为搭载了可用于执行计算机执行指令的处理器的设备,可以是终端设备(如车载终端)等,也可以是网络设备(如服务基站)等,具体可以是上述图2中的第二节点(如UE1至UE6中的任一设备),也可以是上述图2中的第一节点,用于执行本申请实施例中的测距方法,以实现降低测距的误差,提高测距的精度。
可理解,本申请实施例中的第三设备可以是第二设备,也可以是其他设备,下文对第三设备的不同情况进行说明:
情况一:
当第三设备与第二设备为同一个设备时,相当于,第一设备根据第二设备在第一频点上 发送的第二测量帧,获取第一测量结果,并向第二设备(即第三设备)发送第一测量结果,第一设备根据第二设备在第二频点上发送的第四测量帧,获取第三测量结果,并向第二设备(即第三设备)发送第三测量结果。相应的,第二设备接收第一设备发送的第一测量结果和第三测量结果,该第一测量结果和第三测量结果用于第二设备进行测距计算。
可选的,第二设备(即第三设备)根据接收到的第一测量结果,第三测量结果,和/或其他测量结果,得到测距结果。
其中,该测距结果包括第一设备与第二设备之间的距离信息,该其他测量结果可以包括第二设备根据第一设备在第一频点上发送的第一测量帧获取的第二测量结果,第二设备根据第一设备在第二频点上发送的第三测量帧获取的第四测量结果,也可以包括第二设备根据第一设备在其他频点上发送的测量帧获取的测量结果,还可以包括第一设备根据第二设备在其他频点上发送的测量帧获取的测量结果,本申请实施例对此不作限定。
可选的,第二设备(即第三设备)在得到测距结果后,向第一设备发送该测距结果。
可以理解的是,在情况一中,第二设备为具备信号帧测量能力以及执行计算测距能力的设备,可以根据自身测量信号帧得到的测量结果以及接收第一设备发送的测量结果,计算测距,得到第一设备与第二设备之间的距离信息。第一设备为具备信号帧测量能力,但不具备执行计算测距能力的设备,可以对信号帧进行测量得到测量结果,并发送给第二设备,需依赖于第二设备执行计算测距以得到第一设备与第二设备之间的距离信息。
情况二:
当第三设备与第二设备为不同设备时,相当于,第一设备根据第二设备在第一频点上发送的第二测量帧,获取第一测量结果,并向第三设备发送第一测量结果,第一设备根据第二设备在第二频点上发送的第四测量帧,获取第三测量结果,并向第三设备发送第三测量结果。相应的,第三设备接收第一设备发送的第一测量结果和第三测量结果,该第一测量结果和第三测量结果用于第三设备进行测距计算。
可选的,第三设备根据接收到的第一测量结果,第三测量结果,和/或其他测量结果,得到测距结果。
其中,该测距结果包括第一设备与第二设备之间的距离信息,该其他测量结果可以包括第二设备根据第一设备在第一频点上发送的第一测量帧获取的第二测量结果,第二设备根据第一设备在第二频点上发送的第三测量帧获取的第四测量结果,也可以包括第二设备根据第一设备在其他频点上发送的测量帧获取的测量结果,还可以包括第一设备根据第二设备在其他频点上发送的测量帧获取的测量结果,本申请实施例对此不作限定。
可选的,第三设备在得到测距结果后,向第一设备和/或第二设备发送该测距结果。
可以理解的是,在情况二中,第三设备与第二设备不同,第三设备为具备执行计算测距能力的设备。第三设备不参与第一设备和第二设备之间的信号帧交互以及信号帧测量,第三设备可以根据接收第一设备发送的测量结果和/或接收第二设备发送的测量结果,计算测距,得到第一设备与第二设备之间的距离信息,并发送给第一设备和/或第二设备。第一设备为具备信号帧测量能力,但不具备执行计算测距能力的设备,可以对信号帧进行测量得到测量结果,并发送给第三设备,需依赖于第三设备执行计算测距以得到第一设备与第二设备之间的距离信息。第二设备为具备信号帧测量能力,但不具备执行计算测距能力的设备,可以对信号帧进行测量得到测量结果,并发送给第三设备,需依赖于第三设备执行计算测距以得到第一设备与第二设备之间的距离信息。
本申请实施例中,结合第一测量结果和第二测量结果得到第一频点的联合测量结果,第 一频点的联合测量结果不受第一设备和第二设备在第一频点的初相影响;结合第三测量结果和第四测量结果得到第二频点的联合测量结果,第二频点的联合测量结果也不受第一设备和第二设备在第二频点的初相影响。因此,第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
此外,本申请实施例将测量过程(如上述步骤S301至S304)和测量结果交互过程(如上述步骤S305至S307)分离,既可以缩短测量时间,减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度,又可以更灵活的支持多种不同用于测距的通信架构。
在一种可能的实施例中,上述第一设备与第二设备在测量交互过程中所收发的测量帧(如上述第一测量帧、第二测量帧、第三测量帧、第四测量帧),可以通过包括但不限于以下方式实现(为使说明方便,下文以第一测量帧为例进行说明):
方式一:第一测量帧包含的单频正弦波信号包含至少两个符号,这至少两个符号中的每个符号都是根据第一序列,通过第一星座图调制得到。
其中,第一序列为N个比特组成的序列,N的值与第一星座图的调制方式对应。
例如,二进制相移键控(binary phase shift keying,BPSK)的调制方式对应的N值为1;四相相移键控(quadrature phase shift keying,QPSK)的调制方式对应的N值为2;八相相移键控(8 phase shift keying,8PSK)的调制方式对应的N值为3。
可选的,第一测量帧包含的第一符号,同第一测量帧中的单频正弦波信号包含的至少两个符号一样,也是根据第一序列,并通过第一星座图调制得到。
其中,第一符号包括第一测量帧中位于单频正弦波信号之前且与单频正弦波信号相邻的一个符号,和/或第一测量帧中位于单频正弦波信号之后的第一个符号。
方式二:第一测量帧包含的单频正弦波信号包含至少两个符号,这至少两个符号中的每个符号都是根据第一比特,通过高斯频移键控GFSK调制得到。
并且,第一测量帧包含的第二符号,同第一测量帧中的单频正弦波信号包含的至少两个符号一样,也是根据第一比特,并通过高斯频移键控GFSK调制得到。
其中,第二符号包括第一测量帧中位于单频正弦波信号之前且与单频正弦波信号相邻的一个符号,和/或第一测量帧中位于单频正弦波信号之后的第一个符号。
本申请实施例中第一测量帧中的单频正弦波信号与其他信号采用相同的调制方式,避免了调制方式切换带来的额外的实现复杂度和额外的时间开销,以缩短第一测量帧或增加第一测量帧中用于测量的信号的时间长度,例如单频正弦波信号的长度。其中,缩短测量帧长度,进而可以缩短第一设备与第二设备之间传输单频正弦波信号的间隔和测距的总测量时间。考虑时钟的非理想性,第一设备和第二设备间的时钟频率偏移导致的测距结果误差与第一设备和第二设备之间传输单频正弦波信号的间隔有关,相同频偏下,该间隔越大,误差越大,缩短第一设备与第二设备之间传输单频正弦波信号的间隔,可以抑制第一设备和第二设备间的时钟频率偏移对测距结果的影响。如果第一设备和第二设备之间存在相对运动,缩短测距的测量总时间可以减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度。并且,对于第一设备和第二设备,由于时钟的非理想性,设备时钟频率会随时间漂移,测量时间越长,漂移越严重,缩短测距的测量总时间可以减小测量期间设备时钟频率漂移的范围,抑制时钟漂移对测距结果的影响,提高测距精度。增加第一 测量帧中用于测量的信号的时间长度,可以提高第二设备通过第一测量帧获得第二测量结果的精度,进而提高测距精度。
并且,通过本申请实施例,单频正弦波信号和其边界两侧相邻的符号,映射的比特相同,采用的调制方式相同,可以避免测量帧在该边界发生突变,从而抑制该边界导致的信号畸变,提高测量帧测量结果的精度,从而提高测距准确性。
请参阅图4,图4为本申请实施例提供的另一种测距方法的流程示意图。该测距方法包括但不限于如下步骤:
S401:第一设备在第一频点上向第二设备发送第一测量帧,相应的,第二设备在第一频点上接收第一设备发送的第一测量帧。
S402:第二设备在第一频点上向第一设备发送第二测量帧,相应的,第一设备在第一频点上接收第二设备发送的第二测量帧。
S403:第一设备在第二频点上向第二设备发送第三测量帧,相应的,第二设备在第二频点上接收第一设备发送的第三测量帧。
S404:第二设备在第二频点上向第一设备发送第四测量帧,相应的,第一设备在第二频点上接收第二设备发送的第四测量帧。
可理解,上述步骤S401、S402、S403以及S404的执行顺序,本申请实施例对此不作限制。
上述步骤S401至S404可以理解为,第一设备与第二设备在测量过程中在至少两个频点上进行测量帧的交互,如第一设备在第一频点上向第二设备发送第一测量帧,以及在第一频点上接收第二设备发送的第二测量帧;第一设备在第二频点上向第二设备发送第三测量帧,以及在第二频点上接收第二设备发送的第四测量帧;其中,第二频点与第一频点不同,第一测量帧和第三测量帧分别用于第二设备获取第二测量结果和第四测量结果,第二测量帧和第四测量帧分别用于第一设备获取第一测量结果和第三测量结果。
可理解,本申请实施例中的第一设备(和/或第二设备)为搭载了可用于执行计算机执行指令的处理器的设备,可以是终端设备(如车载终端)等,也可以是网络设备(如服务基站)等,具体可以是上述图2中的第二节点(如UE1至UE6中的任一设备),也可以是上述图2中的第一节点,用于执行本申请实施例中的测距方法,以实现降低测距的误差,提高测距的精度。
在一种可能的实施例中,确定第一频点和第二频点采用的方式可以参阅上述步骤S301至S304的相关说明,此处不再赘述。
S405:第二设备根据第一测量帧,获取第二测量结果。
S406:第二设备根据第三测量帧,获取第四测量结果。
步骤S405、S406与上述步骤S305、S306相似,其执行过程可参阅上文相关说明,此处不再赘述。
S407:第二设备接收来自第四设备的第一测量结果和第三测量结果,相应的,第四设备向第二设备发送第一测量结果和第三测量结果。
其中,第一测量结果包括第二测量帧包含的单频正弦波在第一时刻的相位信息或同相分量正交分量IQ信息,或者,第一测量结果包括第二测量帧包含的单频正弦波按照单频正弦波模型延拓信号在第一时刻的相位信息或同相分量正交分量IQ信息,实际处理中还可以通过参数估计等算法计算得到IQ信息,而不对单频正弦波信号进行延拓。
通过本申请实施例,基于相位信息或包含相位信息的IQ信息测距,可以获得比传统的基于幅值的测距方法更高的测距精度。
相应的,第二测量结果包括第一测量帧包含的单频正弦波在第二时刻的相位信息或同相分量正交分量IQ信息,或者,第二测量结果包括第一测量帧包含的单频正弦波按照单频正弦波模型延拓信号在第二时刻的相位信息或同相分量正交分量IQ信息,实际处理中还可以通过参数估计等算法计算得到IQ信息,而不对单频正弦波信号进行延拓。
在一种可能的实施例中,为获取第二测量结果,需确定上述第二时刻,确定第二时刻所采用的方式可以参阅上述步骤S305的相关说明,此处不再赘述。
通过本申请实施例,第一设备和第二设备使用约定相同的参考值,并且第一设备根据频率偏差和参考值确定参考时刻,以修正频率偏差导致的定时偏差随时间的变化对参考时刻的影响,进而通过参考时刻确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
S408:第二设备根据第一测量结果、第二测量结果、第三测量结果和第四测量结果,确定第一设备和第二设备之间的距离。
可选的,第二设备发送测距结果。
具体可以是向第四设备发送测距结果,其中,该第四设备可以是第一设备,用于根据接收到的第二测量帧和第四测量帧测量得到第一测量结果和第三测量结果,并发送给第二设备,用于第二设备计算测距;该第四设备也可以是其他具备执行计算测距能力的设备,将计算得到的测距结果发送给第二设备,该测距结果包括第一设备与第二设备之间的距离信息。
可理解,本申请实施例中的第四设备为搭载了可用于执行计算机执行指令的处理器的设备,可以是终端设备(如车载终端)等,也可以是网络设备(如服务基站)等,具体可以是上述图2中的第二节点(如UE1至UE6中的任一设备),也可以是上述图2中的第一节点,用于执行本申请实施例中的测距方法,以实现降低测距的误差,提高测距的准确性。
可理解,本申请实施例中的第四设备可以是第一设备,也可以是其他设备,下文对第四设备的不同情况进行说明:
情况一:
当第四设备与第一设备为同一个设备时,相当于,第一设备(即第四设备)根据第二设备在第一频点上发送的第二测量帧,获取第一测量结果,并向第二设备发送第一测量结果,第一设备(即第四设备)根据第二设备在第二频点上发送的第四测量帧,获取第三测量结果,并向第二设备发送第三测量结果。相应的,第二设备接收第一设备发送的第一测量结果和第三测量结果,该第一测量结果和第三测量结果用于第二设备进行测距计算。
可选的,第二设备根据接收到的第一测量结果,第三测量结果,和/或其他测量结果,得到测距结果。
其中,该测距结果包括第一设备与第二设备之间的距离信息,该其他测量结果可以包括第二设备根据第一设备在第一频点上发送的第一测量帧获取的第二测量结果,第二设备根据第一设备在第二频点上发送的第三测量帧获取的第四测量结果,也可以包括第二设备根据第一设备在其他频点上发送的测量帧获取的测量结果,还可以包括第一设备根据第二设备在其他频点上发送的测量帧获取的测量结果,本申请实施例对此不作限定。
可选的,第二设备在得到测距结果后,向第一设备(即第四设备)发送该测距结果。
可以理解的是,在情况一中,第二设备为具备信号帧测量能力以及执行计算测距能力的设备,可以根据自身测量信号帧得到的测量结果以及接收第一设备(即第四设备)发送的测 量结果,计算测距,得到第一设备与第二设备之间的距离信息。第一设备(即第四设备)为具备信号帧测量能力,但不具备执行计算测距能力的设备,可以对信号帧进行测量得到测量结果,并发送给第二设备,需依赖于第二设备执行计算测距以得到第一设备与第二设备之间的距离信息。
情况二:
当第四设备与第一设备为不同设备时,相当于,第一设备根据第二设备在第一频点上发送的第二测量帧,获取第一测量结果,并向第四设备发送第一测量结果,第一设备根据第二设备在第二频点上发送的第四测量帧,获取第三测量结果,并向第四设备发送第三测量结果。相应的,第四设备接收第一设备发送的第一测量结果和第三测量结果,并向第二设备转发该第一测量结果和第三测量结果,该第一测量结果和第三测量结果用于第二设备进行测距计算。
可选的,第二设备根据接收到的第一测量结果,第三测量结果,和/或其他测量结果,得到测距结果。
其中,该测距结果包括第一设备与第二设备之间的距离信息,该其他测量结果可以包括第二设备根据第一设备在第一频点上发送的第一测量帧获取的第二测量结果,第二设备根据第一设备在第二频点上发送的第三测量帧获取的第四测量结果,也可以包括第二设备根据第一设备在其他频点上发送的测量帧获取的测量结果,还可以包括第一设备根据第二设备在其他频点上发送的测量帧获取的测量结果,本申请实施例对此不作限定。
可选的,第二设备在得到测距结果后,向第四设备和/或第一设备发送该测距结果。
可以理解的是,在情况二中,第四设备与第一设备不同。第四设备为不具备执行计算测距能力的设备,第四设备不参与第一设备和第二设备之间的信号帧交互以及信号帧测量,第四设备可以接收第一设备发送的测量结果和/或接收其他设备发送的测量结果,并将测量结果转发给第二设备。第一设备为具备信号帧测量能力,但不具备执行计算测距能力的设备,可以对信号帧进行测量得到测量结果,并发送给第四设备,需经由第四设备将测量结果转发给第二设备,依赖于第二设备执行计算测距以得到第一设备与第二设备之间的距离信息。第二设备为具备信号帧测量能力,且具备执行计算测距能力的设备,可以对信号帧进行测量得到测量结果,并根据接收第四设备发送的测量结果和/或第二设备测量得到的测量结果,计算测距,得到第一设备与第二设备之间的距离信息,并发送给第四设备和/或第一设备。
本申请实施例中,结合第一测量结果和第二测量结果得到第一频点的联合测量结果,第一频点的联合测量结果不受第一设备和第二设备在第一频点的初相影响;结合第三测量结果和第四测量结果得到第二频点的联合测量结果,第二频点的联合测量结果也不受第一设备和第二设备在第二频点的初相影响。因此,第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
此外,本申请实施例将测量过程(如上述步骤S401至S404)和测量结果交互过程(如上述步骤S405至S408)分离,既可以缩短测量时间,减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度,又可以更灵活的支持多种不同用于测距的通信架构。
在一种可能的实施例中,上述第一设备与第二设备在测量交互过程中所收发的测量帧(如上述第一测量帧、第二测量帧、第三测量帧、第四测量帧),获取的方式可以参阅上述步骤S307的相关说明,此处不再赘述。
应理解,本申请实施例中的步骤S401至S404与上述图3中的步骤S301至S304类似,本申请实施例中的步骤S405至S408是上述图3中的步骤S305至S307的变形或补充。
请参阅图5,图5为本申请实施例提供的又一种测距方法的流程示意图。该测距方法应用于通信技术领域,该测距方法包括但不限于如下步骤:
S501:第一设备与第二设备在至少两个频点上交互测量帧并测量,得到测量结果。
可理解,第一设备与第二设备在测量过程中在至少两个频点上进行测量帧的交互,即第一设备在第一频点上向第二设备发送第一测量帧,以及在第一频点上接收第二设备发送的第二测量帧;第一设备在第二频点上向第二设备发送第三测量帧,以及在第二频点上接收第二设备发送的第四测量帧;其中,第二频点与第一频点不同,第一测量帧和第三测量帧分别用于第二设备获取第二测量结果和第四测量结果,第二测量帧和第四测量帧分别用于第一设备获取第一测量结果和第三测量结果。
可理解,本申请实施例中的第一设备(和/或第二设备)为搭载了可用于执行计算机执行指令的处理器的设备,可以是终端设备(如车载终端)等,也可以是网络设备(如服务基站)等,具体可以是上述图2中的第二节点(如UE1至UE6中的任一设备),也可以是上述图2中的第一节点,用于执行本申请实施例中的测距方法,以实现降低测距的误差,提高测距的精度。
在一种可能的实施例中,确定第一频点和第二频点采用的方式可以参阅上述步骤S301至S304的相关说明,此处不再赘述。
在一种可能的实施例中,第一设备为获取测量结果,需确定测量时刻,确定测量时刻所采用的方式可以参阅上述步骤S305的相关说明,此处不再赘述。
在一种可能的实施例中,第二设备为获取测量结果,需确定测量时刻,确定测量时刻所采用的方式可以参阅上述步骤S305的相关说明,此处不再赘述。
在一种可能的实施例中,上述第一设备确定的测量时刻和第二设备确定的测量时刻之间需满足的关系,可以参阅上述步骤S305的相关说明,此处不再赘述。
S502:第一设备向G节点上报各频点的测量结果。
S503:第二设备向G节点上报各频点的测量结果。
可理解,上述步骤S502以及S503的执行顺序,本申请实施例对此不作限制。
上述G节点也可以称为主节点、管理节点或者控制节点,G节点和T节点是在逻辑功能上区分的两类节点,T节点也可以称为从节点或者终端。其中,G节点管理T节点,具有分配资源的功能,负责为T节点分配资源;T节点听从G节点的调度,使用G节点分配的资源进行通信、测距等。节点可以为各种装置,例如:G节点为手机,T节点为耳机,手机与耳机建立通信连接实现数据交互。手机管理耳机,手机具有分配资源的功能,可以为耳机分配资源。又如:G节点为定位服务器,T节点为定位基站和定位标签,定位服务器管理定位基站和定位标签,为定位基站和定位标签分配用于交互测量帧的资源。
S504:G节点根据第一设备上报的各频点的测量结果、第二设备上报的各频点的测量结果,计算得到测距结果。
其中,该测距结果包括第一设备与第二设备之间的距离信息。
可理解,本申请实施例中的G节点为搭载了可用于执行计算机执行指令的处理器的设备,可以是终端设备(如车载终端)等,也可以是网络设备(如服务基站)等,具体可以是上述图2中的第二节点(如UE1至UE6中的任一设备),也可以是上述图2中的第一节点(如基 站),用于执行本申请实施例中的测距方法,以实现降低测距的误差,提高测距的准确性。
可理解,G节点不同于第一设备和第二设备。
G节点为具备执行计算测距能力的设备。G节点不参与第一设备和第二设备之间的信号帧交互以及信号帧测量,G节点可以根据接收第一设备发送的测量结果和/或接收第二设备发送的测量结果,计算测距,得到第一设备与第二设备之间的距离信息。
可选的,S505:G节点向第一设备下发测距结果。
可选的,S506:G节点向第二设备下发测距结果。
可理解,上述步骤S505以及S506的执行顺序,本申请实施例对此不作限制。
本申请实施例中,第一设备与第二设备在测量过程中在至少两个频点上进行测量帧的交互,且这至少两个频点均不同。基于各个频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
此外,本申请实施例将测量过程(如上述步骤S501)和测量结果交互过程(如上述步骤S502至S503)分离,既可以缩短测量时间,减小测量期间第一设备与第二设备之间相对位置的变化量,从而获得更准确的测距结果,提高测距精度,又可以更灵活的支持多种不同用于测距的通信架构。
在一种可能的实施例中,上述第一设备与第二设备在测量交互过程中所收发的测量帧,获取的方式可以参阅上述步骤S307的相关说明,此处不再赘述。
应理解,本申请实施例中的步骤S501与上述图3中的步骤S301至S304、上述图4中的步骤S401至S404类似,本申请实施例中的步骤S502至S506,是上述图3中的步骤S305至S307的变形或补充,或上述图4中的步骤S405至S408的变形或补充。
请参阅图6,图6为本申请实施例提供的一种跳频算法的流程示意图。具体可以理解为是上述图3至图5中关于“确定第一频点和第二频点所采用的实施方式”内容的变形或补充。
如图6所示,将同步序列和时隙计数输入伪随机数生成器,得到随机数,再对随机数进行重映射,得到可用频点,执行多次上述过程,可以得到包含多个可用频点的可用频点跳频列表。可以从该可用频点跳频列表中选择频点输出,作为跳频频点。
示例性的,生成第一随机种子,或接收其他设备发送的第一随机种子,并根据该第一随机种子在第一频点集合(即上述可用频点跳频列表)中以伪随机的方式确定第一频点,输出该第一频点作为跳频频点。
生成第二随机种子,或接收其他设备发送的第二随机种子,并根据该第二随机种子在第二频点集合(即剔除了上述第一频点后的可用频点跳频列表)中以伪随机的方式确定第二频点,输出该第二频点作为下一次跳频频点。
其中,确定第一频点所使用的第一随机种子和确定第二频点所使用的第二随机种子可以是相同的随机种子,也可以是不同的随机种子。
通过本申请实施例,基于随机种子以伪随机的方式确定频点,使得确定的频点具有随机性,可以降低与其他设备共享频谱时使用相同的时频资源导致互相干扰的概率,提升测距性能。并且,第一设备和第二设备在选择第一频点时使用相同的第一随机种子,在选择第二频点时使用相同的第二随机种子,因此第一设备和第二设备会选出相同的第一频点和相同的第二频点,避免频点选择错误。
请参阅图7,图7为本申请实施例提供的一种双边测量的示意图。具体可以理解为是上述图3至图5中关于“为确定测量时刻(第一时刻和/或第二时刻)所采用的实施方式”内容的变形或补充。
如图7所示,第一设备在时刻t 1向第二设备发送第一测量帧,相应的,第二设备在时刻t′ 1接收到第一设备发送的第一测量帧。第二设备测量第一测量帧,确定第一时刻的相位或IQ值。第二设备在时刻t 2向第一设备发送第二测量帧,相应的,第一设备在时刻t′ 2接收到第二设备发送的第二测量帧。第一设备测量第二测量帧,确定第二时刻的相位或IQ值。
由图7可以看出,两个设备交互测量帧时,一个设备发送测量帧到另一个设备接收测量帧之间存在传播时延t(t可以理解为一个理想的均值),以及第一设备与第二设备时钟之间定时和频率差异,均会对测量帧测量结果产生影响,从而使得测距结果的误差较大,测距精度较低。
因此,为了抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度,本申请实施例提供了第一设备测量第二测量帧的测量时刻(第一时刻),以及第二设备测量第一测量帧的测量时刻(第二时刻)之间需满足的关系。
示例性的,第一时刻和第二时刻满足的关系具体可以如下:
第一设备采用t 0+(t′ 2-t 2)/2作为第二时刻,此时,理想时钟上第二时刻对应:
Figure PCTCN2022095359-appb-000001
第二设备采用t 0+(t′ 1-t 1)/2作为第一时刻,此时,理想时钟上第一时刻对应:
Figure PCTCN2022095359-appb-000002
由于第一时刻-第二时刻=
Figure PCTCN2022095359-appb-000003
忽略设备时钟的频偏,则:dt 0=dt 1=dt 2,第一时刻等于第二时刻,即第一设备和第二设备的测量时刻相同,从而避免两设备测量时刻不同导致的测距误差。
其中,第二设备时钟的t 1时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000004
第一设备时钟的t 1时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000005
第二设备时钟的t′ 1时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000006
第二设备时钟的t 0时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000007
第一设备时钟的t 0时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000008
第二设备时钟的t 2时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000009
第一设备时钟的t 2时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000010
第一设备时钟的t′ 2时刻对应真实时间(即图7中的理想时钟时间)
Figure PCTCN2022095359-appb-000011
另一方面,若不忽略设备时钟的频偏,则:
Figure PCTCN2022095359-appb-000012
Figure PCTCN2022095359-appb-000013
上两式相减,则等号左边为:
Figure PCTCN2022095359-appb-000014
等号右边为:
Figure PCTCN2022095359-appb-000015
因此,可以得到:
Figure PCTCN2022095359-appb-000016
类似的,可以得到:
Figure PCTCN2022095359-appb-000017
第一时刻-第二时刻
Figure PCTCN2022095359-appb-000018
示例性的,以下列举三种根据频偏修正参考时刻,使第一时刻近似等于第二时刻的方法:
方法一:
第二节点不对参考时刻进行修正,即:参考时刻=参考值t 0
第一节点对参考时刻进行额外修正,具体来说,参考时刻=参考值
Figure PCTCN2022095359-appb-000019
(记为公式一);
其中,f、t 0、t 1、t 2,都是配置(配置包括:接收相应配置消息,自己确定参数并发送配置消息配置另一个节点。产生参数的节点可以是第一节点、第二节点或其它节点)、预配置或协议规定的值,f 2-f 1为第一节点通过测量第二设备发送的信号(可以是测量帧或其他信号)从而确定的第二设备相对于第一设备的频偏。
方法二:
第一节点不对参考时刻进行修正,即:参考时刻=参考值t 0
第二节点对参考时刻进行额外修正,具体来说,参考时刻=参考值
Figure PCTCN2022095359-appb-000020
(记为公式二);
f 1-f 2为第二节点通过测量第一设备发送的信号(可以是测量帧或其他信号)从而确定的第一设备相对于第二设备的频偏。
方法三:
第一节点对参考时刻进行额外修正,具体来说,参考时刻=参考值
Figure PCTCN2022095359-appb-000021
(记为公式三);
第二节点对参考时刻进行额外修正,具体来说,参考时刻=参考值
Figure PCTCN2022095359-appb-000022
(记为公式四);
f 2-f 1为第一节点通过测量第二设备发送的信号(可以是测量帧或其他信号)从而确定的第二设备相对于第一设备的频偏,f 1-f 2为第二节点通过测量第一设备发送的信号(可以是测量帧或其他信号)从而确定的第一设备相对于第二设备的频偏。
可选的,上述各个方式中公式一、公式二、公式三、公式四中的t 1可替换为t1′,t 2可替换为t2′。
其中,上述t1′表征确定第一定时偏差值t1的时刻,即第一设备在t1′时刻对第二测量帧中的信号进行测量,或对第二设备发送的其他信号进行测量,其他信号可以包括其他测量帧中的信号或其他非测量帧中的信号,确定第一定时偏差值t1。上述t2′表征确定第二定时偏差值t2的时刻,即第二设备在t2′时刻对第一测量帧中的信号进行测量,或对第一设备发送的其他 信号进行测量,其他信号可以包括其他测量帧中的信号或其他非测量帧中的信号,确定第二定时偏差值t2。
应理解,上述第一时刻和第二时刻的关系仅作为一种可选的或者可能的实施方式,不排除还可能存在其他的第一时刻和第二时刻的关系,因此,不应以此对本申请构成限制。
通过本申请实施例,基于第一设备相对于第二测量帧的定时偏差确定第一时刻,基于第二设备相对于第一测量帧的定时偏差确定第二时刻,可以修正定时偏差,减小第一设备与第二设备时钟之间定时和频率的差异,并且,第一设备和第二设备使用约定相同的参考时刻来确定测量时刻,可以抑制第一设备与第二设备时钟之间定时和频率差异对测量帧测量结果的影响,从而降低测距结果的误差,提高测距精度。
上述详细阐述了本申请实施例的方法,下面提供用于实现本申请实施例中任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中设备所执行的各步骤的单元(或手段)。
请参阅图8,图8为本申请实施例提供的一种通信装置的结构示意图。
如图8所示,该通信装置80可以包括收发单元801以及处理单元802。收发单元801以及处理单元802可以是软件,也可以是硬件,或者是软件和硬件结合。
其中,收发单元801可以实现发送功能和/或接收功能,收发单元801也可以描述为通信单元。收发单元801还可以是集成了获取单元和发送单元的单元,其中,获取单元用于实现接收功能,发送单元用于实现发送功能。可选的,收发单元801可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。
在一种可能的设计中,该通信装置80可对应于上述图3所示的方法实施例中的第一设备,如该通信装置80可以是第一设备,也可以是第一设备中的芯片。该通信装置80可以包括用于执行上述图3所示的方法实施例中由第一设备所执行的操作的单元,并且,该通信装置80中的各单元分别为了实现上述图3所示的方法实施例中由第一设备所执行的操作。其中,各个单元的描述如下:
收发单元801,用于在第一频点上向第二设备发送第一测量帧,以及在所述第一频点上接收所述第二设备发送的第二测量帧;
所述收发单元801,还用于在第二频点上向所述第二设备发送第三测量帧,以及在所述第二频点上接收所述第二设备发送的第四测量帧;其中,所述第二频点与所述第一频点不同;
处理单元802,用于根据所述第二测量帧,获取第一测量结果;
所述处理单元802,还用于根据所述第四测量帧,获取第三测量结果;
所述收发单元801,还用于向第三设备发送所述第一测量结果和所述第三测量结果,所述第一测量结果和所述第三测量结果用于测距。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在一种可能的实施方式中,所述处理单元802,还用于根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述处理单元802,还用于根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在一种可能的实施方式中,所述处理单元802,还用于生成并通过所述收发单元801发 送所述第一随机种子和/或所述第二随机种子;
或者,
所述收发单元801,还用于接收所述第一随机种子和/或所述第二随机种子。
在一种可能的实施方式中,所述第一测量结果包括所述第二测量帧包含的单频正弦波信号在第一时刻的相位信息或同相分量正交分量IQ信息,或者所述第二测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第一时刻的相位信息或IQ信息。
在一种可能的实施方式中,所述处理单元802,还用于确定第一定时偏差值,所述第一定时偏差值表征所述通信装置相对于所述第二测量帧的定时偏差;
所述处理单元802,还用于根据所述第一定时偏差值,确定所述第一时刻。
在一种可能的实施方式中,所述第一时刻满足:T1=t0+t1/2;其中,所述t0表征参考时刻,所述t1表征所述第一定时偏差值,所述T1表征所述第一时刻。
在一种可能的实施方式中,所述处理单元802,具体用于通过对所述第二测量帧中的信号进行测量,确定所述第一定时偏差值。
在一种可能的实施方式中,所述收发单元801,还用于接收第一消息,和/或,发送所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在一种可能的实施方式中,所述收发单元801,还用于接收第二消息,和/或,发送所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
所述处理单元802,还用于根据所述参考值和第一频率偏差值,确定所述参考时刻,其中,所述第一频率偏差值表征所述通信装置相对于所述第二测量帧的频率偏差。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一序列,通过第一星座图调制得到,所述第一序列为N个比特组成的序列,所述N的值与所述第一星座图的调制方式对应。
在一种可能的实施方式中,第一符号是根据所述第一序列,并通过所述第一星座图调制得到;
其中,所述第一符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一比特,通过高斯频移键控GFSK调制得到;
第二符号是根据所述第一比特,并通过所述GFSK调制得到;
其中,所述第二符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述收发单元801,还用于接收测距结果,所述测距结果包括所述通信装置和所述第二设备之间的距离信息。
在另一种可能的设计中,该通信装置80可对应于上述图4所示的方法实施例中的第二设备,如该通信装置80可以是第二设备,也可以是第二设备中的芯片。该通信装置80可以包括用于执行上述图4所示的方法实施例中由第二设备所执行的操作的单元,并且,该通信装置80中的各单元分别为了实现上述图4所示的方法实施例中由第二设备所执行的操作。其中,各个单元的描述如下:
收发单元801,用于在第一频点上接收第一设备发送的第一测量帧,以及在所述第一频 点上向所述第一设备发送第二测量帧;
所述收发单元801,还用于在第二频点上接收所述第一设备发送的第三测量帧,以及在所述第二频点上向所述第一设备发送第四测量帧;其中,所述第二频点与所述第一频点不同;
处理单元802,用于根据所述第一测量帧,获取第二测量结果;
所述处理单元802,还用于根据所述第三测量帧,获取第四测量结果;
所述收发单元801,还用于接收来自第四设备的第一测量结果,所述第一测量结果为所述第一设备对所述第二测量帧的测量结果;
所述处理单元802,还用于根据所述第一测量结果、所述第二测量结果、所述第三测量结果和所述第四测量结果,确定所述第一设备和所述通信装置之间的距离。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在一种可能的实施方式中,所述处理单元802,还用于根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述处理单元802,还用于根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在一种可能的实施方式中,所述处理单元802,还用于生成并通过所述收发单元801发送所述第一随机种子和/或所述第二随机种子;
或者,
所述收发单元801,还用于接收所述第一随机种子和/或所述第二随机种子。
在一种可能的实施方式中,所述处理单元802,还用于根据所述第一测量帧,获取第二测量结果;其中,所述第二测量结果包括所述第一测量帧包含的单频正弦波信号在第二时刻的相位信息或同相分量正交分量IQ信息,或者所述第一测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第二时刻的相位信息或IQ信息,所述第二测量结果用于测距。
在一种可能的实施方式中,所述处理单元802,还用于确定第二定时偏差值,所述第二定时偏差值表征所述通信装置相对于所述第一测量帧的定时偏差;
所述处理单元802,还用于根据所述第二定时偏差值,确定所述第二时刻。
在一种可能的实施方式中,所述第二时刻满足:T2=t0+t2/2;其中,所述t0表征参考时刻,所述t2表征所述第二定时偏差值,所述T2表征所述第二时刻。
在一种可能的实施方式中,所述处理单元802,具体用于通过对所述第一测量帧中的信号进行测量,确定所述第二定时偏差值。
在一种可能的实施方式中,所述收发单元801,还用于发送第一消息,和/或,接收所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在一种可能的实施方式中,所述收发单元801,还用于发送第二消息,和/或,接收所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
所述处理单元802,还用于根据所述参考值和第二频率偏差值,确定所述参考时刻,其中,所述第二频率偏差值表征所述通信装置相对于所述第一测量帧的频率偏差。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二序列,通过第二星座图调制得到,所述第二序列 为M个比特组成的序列,所述M的值与所述第二星座图的调制方式对应。
在一种可能的实施方式中,第三符号是根据所述第二序列,并通过所述第二星座图调制得到;
其中,所述第三符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二比特,通过高斯频移键控GFSK调制得到;
第四符号是根据所述第二比特,并通过所述GFSK调制得到;
其中,所述第四符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述收发单元801,还用于发送测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
根据本申请实施例,图8所示的装置中的各个单元可以分别或全部合并为一个或若干个另外的单元来构成,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本申请的其它实施例中,基于设备也可以包括其它单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。
需要说明的是,各个单元的实现还可以对应参照上述图3、图4、图5所示的方法实施例的相应描述。
在图8所描述的通信装置80中,基于第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
请参阅图9,图9为本申请实施例提供的一种通信装置的结构示意图。
应理解,图9示出的通信装置90仅是示例,本申请实施例的通信装置还可包括其他部件,或者包括与图9中的各个部件的功能相似的部件,或者并非要包括图9中所有部件。
通信装置90包括通信接口901和至少一个处理器902。
该通信装置90可以对应第一设备、第二设备、第三设备、第四设备或G节点中的任一网元或设备。通信接口901用于收发信号,至少一个处理器902执行程序指令,使得通信装置90实现上述方法实施例中由对应设备所执行的方法的相应流程。
在一种可能的设计中,该通信装置90可对应于上述图3所示的方法实施例中的第一设备,如该通信装置90可以是第一设备,也可以是第一设备中的芯片。该通信装置90可以包括用于执行上述方法实施例中由第一设备所执行的操作的部件,并且,该通信装置90中的各部件分别为了实现上述方法实施例中由第一设备所执行的操作。具体可以如下所示:
第一设备在第一频点上向第二设备发送第一测量帧,以及在所述第一频点上接收所述第二设备发送的第二测量帧;
所述第一设备在第二频点上向所述第二设备发送第三测量帧,以及在所述第二频点上接收所述第二设备发送的第四测量帧;其中,所述第二频点与所述第一频点不同;
所述第一设备根据所述第二测量帧,获取第一测量结果;
所述第一设备根据所述第四测量帧,获取第三测量结果;
所述第一设备向第三设备发送所述第一测量结果和所述第三测量结果,所述第一测量结果和所述第三测量结果用于测距。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在一种可能的实施方式中,所述方法还包括:
所述第一设备根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述第一设备根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在一种可能的实施方式中,所述方法还包括:
所述第一设备生成并发送所述第一随机种子和/或所述第二随机种子;
或者,
所述第一设备接收所述第一随机种子和/或所述第二随机种子。
在一种可能的实施方式中,所述第一测量结果包括所述第二测量帧包含的单频正弦波信号在第一时刻的相位信息或同相分量正交分量IQ信息,或者所述第二测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第一时刻的相位信息或IQ信息。
在一种可能的实施方式中,所述方法还包括:
所述第一设备确定第一定时偏差值,所述第一定时偏差值表征所述第一设备相对于所述第二测量帧的定时偏差;
所述第一设备根据所述第一定时偏差值,确定所述第一时刻。
在一种可能的实施方式中,所述第一时刻满足:T1=t0+t1/2;其中,所述t0表征参考时刻,所述t1表征所述第一定时偏差值,所述T1表征所述第一时刻。
在一种可能的实施方式中,所述确定第一定时偏差值,包括:
所述第一设备通过对所述第二测量帧中的信号进行测量,确定所述第一定时偏差值。
在一种可能的实施方式中,所述方法还包括:
所述第一设备接收第一消息,和/或,发送所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在一种可能的实施方式中,所述方法还包括:
所述第一设备接收第二消息,和/或,发送所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
根据所述参考值和第一频率偏差值,确定所述参考时刻,其中,所述第一频率偏差值表征所述第一设备相对于所述第二测量帧的频率偏差。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一序列,通过第一星座图调制得到,所述第一序列为N个比特组成的序列,所述N的值与所述第一星座图的调制方式对应。
在一种可能的实施方式中,第一符号是根据所述第一序列,并通过所述第一星座图调制得到;
其中,所述第一符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一比特,通过高斯频移键控GFSK调制得到;
第二符号是根据所述第一比特,并通过所述GFSK调制得到;
其中,所述第二符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述方法还包括:
所述第一设备接收测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
在另一种可能的设计中,该通信装置90可对应于上述图4所示的方法实施例中的第二设备,如该通信装置90可以是第二设备,也可以是第二设备中的芯片。该通信装置90可以包括用于执行上述方法实施例中由第二设备所执行的操作的部件,并且,该通信装置90中的各部件分别为了实现上述方法实施例中由第二设备所执行的操作。具体可以如下所示:
第二设备在第一频点上接收第一设备发送的第一测量帧,以及在所述第一频点上向所述第一设备发送第二测量帧;
所述第二设备在第二频点上接收所述第一设备发送的第三测量帧,以及在所述第二频点上向所述第一设备发送第四测量帧;其中,所述第二频点与所述第一频点不同;
所述第二设备根据所述第一测量帧,获取第二测量结果;
所述第二设备根据所述第三测量帧,获取第四测量结果;
所述第二设备接收来自第四设备的第一测量结果和第三测量结果,所述第一测量结果为所述第一设备对所述第二测量帧的测量结果,所述第三测量结果为所述第一设备对所述第四测量帧的测量结果;
所述第二设备根据所述第一测量结果、所述第二测量结果、所述第三测量结果和所述第四测量结果,确定所述第一设备和所述第二设备之间的距离。
在一种可能的实施方式中,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
在一种可能的实施方式中,所述方法还包括:
所述第二设备根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
所述第二设备根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
在一种可能的实施方式中,所述方法还包括:
所述第二设备生成并发送所述第一随机种子和/或所述第二随机种子;
或者,
所述第二设备接收所述第一随机种子和/或所述第二随机种子。
在一种可能的实施方式中,所述方法还包括:
所述第二设备根据所述第一测量帧,获取第二测量结果;其中,所述第二测量结果包括所述第一测量帧包含的单频正弦波信号在第二时刻的相位信息或同相分量正交分量IQ信息,或者所述第一测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第二时刻的 相位信息或IQ信息,所述第二测量结果用于测距。
在一种可能的实施方式中,所述方法还包括:
所述第二设备确定第二定时偏差值,所述第二定时偏差值表征所述第二设备相对于所述第一测量帧的定时偏差;
所述第二设备根据所述第二定时偏差值,确定所述第二时刻。
在一种可能的实施方式中,所述第二时刻满足:T2=t0+t2/2;其中,所述t0表征参考时刻,所述t2表征所述第二定时偏差值,所述T2表征所述第二时刻。
在一种可能的实施方式中,所述确定第二定时偏差值,包括:
所述第二设备通过对所述第一测量帧中的信号进行测量,确定所述第二定时偏差值。
在一种可能的实施方式中,所述方法还包括:
所述第二设备发送第一消息,和/或,接收所述第一消息,所述第一消息用于指示所述参考时刻;
或者,
所述参考时刻为预先配置或者预先定义的时刻。
在一种可能的实施方式中,所述方法还包括:
所述第二设备发送第二消息,和/或,接收所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
根据所述参考值和第二频率偏差值,确定所述参考时刻,其中,所述第二频率偏差值表征所述第二设备相对于所述第一测量帧的频率偏差。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二序列,通过第二星座图调制得到,所述第二序列为M个比特组成的序列,所述M的值与所述第二星座图的调制方式对应。
在一种可能的实施方式中,第三符号是根据所述第二序列,并通过所述第二星座图调制得到;
其中,所述第三符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二比特,通过高斯频移键控GFSK调制得到;
第四符号是根据所述第二比特,并通过所述GFSK调制得到;
其中,所述第四符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
在一种可能的实施方式中,所述方法还包括:
所述第二设备发送测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
在图9所描述的通信装置90中,基于第一频点的联合测量结果和第二频点的联合测量结果不受设备切换频点导致的随机初相的影响,可以相干合并,计算测距结果时可以使用比单个频点的测量帧带宽更大的带宽计算测距结果,从而可以获得更准确的测距结果,提高测距精度。
对于通信装置可以是芯片或芯片系统的情况,可参阅图10所示的芯片的结构示意图。
如图10所示,芯片100包括处理器1001和接口1002。其中,处理器1001的数量可以 是一个或多个,接口1002的数量可以是多个。需要说明的是,处理器1001、接口1002各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
可选的,芯片100还可以包括存储器1003,存储器1003用于存储必要的程序指令和数据。
本申请中,处理器1001可用于从存储器1003中调用本申请的一个或多个实施例提供的通信方法在第一设备、第二设备、第三设备、第四设备或G节点中一个或多个设备或网元的实现程序,并执行该程序包含的指令。接口1002可用于输出处理器1001的执行结果。本申请中,接口1002可具体用于输出处理器1001的各个消息或信息。
关于本申请的一个或多个实施例提供的通信方法可参考前述图3、图4、图5所示各个实施例,这里不再赘述。
本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中的存储器用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,当上述计算机程序在一个或多个处理器上运行时,可以实现上述图3、图4、图5所示的方法。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括计算机程序,当上述计算机程序在处理器上运行时,可以实现上述图3、图4、图5所示的方法。
本申请实施例提供一种车端,该车端包括至少一个如上述通信装置80或通信装置90或芯片100。
本申请实施例还提供了一种系统,该系统包括车端以及至少一个如上述通信装置80或通信装置90或芯片100,用于执行上述图3、图4、图5任一实施例中相应设备执行的步骤。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是 任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中的单元和方法实施例中的电子设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
可以理解的,本申请实施例中,电子设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范 围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (35)

  1. 一种测距方法,其特征在于,包括:
    第一设备在第一频点上向第二设备发送第一测量帧,以及在所述第一频点上接收所述第二设备发送的第二测量帧;
    所述第一设备在第二频点上向所述第二设备发送第三测量帧,以及在所述第二频点上接收所述第二设备发送的第四测量帧;其中,所述第二频点与所述第一频点不同;
    所述第一设备根据所述第二测量帧,获取第一测量结果;
    所述第一设备根据所述第四测量帧,获取第三测量结果;
    所述第一设备向第三设备发送所述第一测量结果和所述第三测量结果,所述第一测量结果和所述第三测量结果用于测距。
  2. 根据权利要求1所述的方法,其特征在于,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
    所述第一设备根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一设备生成并发送所述第一随机种子和/或所述第二随机种子;
    或者,
    所述第一设备接收所述第一随机种子和/或所述第二随机种子。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一测量结果包括所述第二测量帧包含的单频正弦波信号在第一时刻的相位信息或同相分量正交分量IQ信息,或者所述第二测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第一时刻的相位信息或IQ信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定第一定时偏差值,所述第一定时偏差值表征所述第一设备相对于所述第二测量帧的定时偏差;
    所述第一设备根据所述第一定时偏差值,确定所述第一时刻。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时刻满足:T1=t0+t1/2;其中,所述t0表征参考时刻,所述t1表征所述第一定时偏差值,所述T1表征所述第一时刻。
  8. 根据权利要求6或7所述的方法,其特征在于,所述确定第一定时偏差值,包括:
    所述第一设备通过对所述第二测量帧中的信号进行测量,确定所述第一定时偏差值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第一消息,和/或,发送所述第一消息,所述第一消息用于指示所述参考时刻;
    或者,
    所述参考时刻为预先配置或者预先定义的时刻。
  10. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第二消息,和/或,发送所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
    根据所述参考值和第一频率偏差值,确定所述参考时刻,其中,所述第一频率偏差值表征所述第一设备相对于所述第二测量帧的频率偏差。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一序列,通过第一星座图调制得到,所述第一序列为N个比特组成的序列,所述N的值与所述第一星座图的调制方式对应。
  12. 根据权利要求11所述的方法,其特征在于,第一符号是根据所述第一序列,并通过所述第一星座图调制得到;
    其中,所述第一符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
  13. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第一比特,通过高斯频移键控GFSK调制得到;
    其中,第二符号是根据所述第一比特,并通过所述GFSK调制得到;所述第二符号包括:所述第一测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第一测量帧中位于单频正弦波信号之后的第一个符号。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
  15. 一种测距方法,其特征在于,包括:
    第二设备在第一频点上接收第一设备发送的第一测量帧,以及在所述第一频点上向所述第一设备发送第二测量帧;
    所述第二设备在第二频点上接收所述第一设备发送的第三测量帧,以及在所述第二频点上向所述第一设备发送第四测量帧;其中,所述第二频点与所述第一频点不同;
    所述第二设备根据所述第一测量帧,获取第二测量结果;
    所述第二设备根据所述第三测量帧,获取第四测量结果;
    所述第二设备接收来自第四设备的第一测量结果和第三测量结果,所述第一测量结果为所述第一设备对所述第二测量帧的测量结果,所述第三测量结果为所述第一设备对所述第四测量帧的测量结果;
    所述第二设备根据所述第一测量结果、所述第二测量结果、所述第三测量结果和所述第四测量结果,确定所述第一设备和所述第二设备之间的距离。
  16. 根据权利要求15所述的方法,其特征在于,所述第一频点和所述第二频点为在使用时间顺序上相邻的频点,所述第一频点属于第一频点集合,所述第二频点属于第二频点集合,所述第一频点集合由所述第一频点和所述第二频点集合组成。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据第一随机种子在所述第一频点集合中以伪随机的方式确定所述第一频点;
    所述第二设备根据第二随机种子在所述第二频点集合中以伪随机的方式确定所述第二频点。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第二设备生成并发送所述第一随机种子和/或所述第二随机种子;
    或者,
    所述第二设备接收所述第一随机种子和/或所述第二随机种子。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一测量帧,获取第二测量结果;其中,所述第二测量结果包括所述第一测量帧包含的单频正弦波信号在第二时刻的相位信息或同相分量正交分量IQ信息,或者所述第一测量帧包含的单频正弦波信号按照单频正弦波模型延拓信号在所述第二时刻的相位信息或IQ信息,所述第二测量结果用于测距。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第二设备确定第二定时偏差值,所述第二定时偏差值表征所述第二设备相对于所述第一测量帧的定时偏差;
    所述第二设备根据所述第二定时偏差值,确定所述第二时刻。
  21. 根据权利要求20所述的方法,其特征在于,所述第二时刻满足:T2=t0+t2/2;其中,所述t0表征参考时刻,所述t2表征所述第二定时偏差值,所述T2表征所述第二时刻。
  22. 根据权利要求20或21所述的方法,其特征在于,所述确定第二定时偏差值,包括:
    所述第二设备通过对所述第一测量帧中的信号进行测量,确定所述第二定时偏差值。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述第二设备发送第一消息,和/或,接收所述第一消息,所述第一消息用于指示所述参考时刻;
    或者,
    所述参考时刻为预先配置或者预先定义的时刻。
  24. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述第二设备发送第二消息,和/或,接收所述第二消息,所述第二消息用于指示参考值;或者,所述参考值为预先配置或预先定义的值;
    根据所述参考值和第二频率偏差值,确定所述参考时刻,其中,所述第二频率偏差值表征所述第二设备相对于所述第一测量帧的频率偏差。
  25. 根据权利要求15至24中任一项所述的方法,其特征在于,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二序列,通过第二星座图调制得到,所述第二序列为M个比特组成的序列,所述M的值与所述第二星座图的调制方式对应。
  26. 根据权利要求25所述的方法,其特征在于,第三符号是根据所述第二序列,并通过所述第二星座图调制得到;
    其中,所述第三符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
  27. 根据权利要求15至24中任一项所述的方法,其特征在于,所述第二测量帧包含的单频正弦波信号包含至少两个符号,所述至少两个符号中的每个符号是根据第二比特,通过高斯频移键控GFSK调制得到;
    其中,第四符号是根据所述第二比特,并通过所述GFSK调制得到;
    所述第四符号包括:所述第二测量帧中位于单频正弦波信号之前且与所述单频正弦波信号相邻的一个符号,和/或,所述第二测量帧中位于单频正弦波信号之后的第一个符号。
  28. 根据权利要求15至27中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备发送测距结果,所述测距结果包括所述第一设备和所述第二设备之间的距离信息。
  29. 一种通信装置,其特征在于,包括用于执行如权利要求1至14或者如权利要求15至28中任一项所述方法的模块或单元。
  30. 一种通信装置,其特征在于,包括:处理器;
    当所述处理器调用存储器中的计算机程序或指令时,使如权利要求1至14中任一项所述的方法被执行,或权利要求15至28中任一项所述的方法被执行。
  31. 一种通信装置,其特征在于,包括:逻辑电路和通信接口;
    所述通信接口,用于接收信息或者发送信息;
    所述逻辑电路,用于通过所述通信接口接收信息或者发送信息,使如权利要求1至14中任一项所述的方法被执行,或权利要求15至28中任一项所述的方法被执行。
  32. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质用于存储指令或计算机程序;当所述指令或所述计算机程序被执行时,使如权利要求1至14中任一项所述的方法被实现,或权利要求15至28中任一项所述的方法被实现。
  33. 一种计算机程序产品,其特征在于,包括:指令或计算机程序;
    所述指令或所述计算机程序被执行时,使如权利要求1至14中任一项所述的方法被实现,或权利要求15至28中任一项所述的方法被实现。
  34. 一种终端设备,其特征在于,包括如权利要求29所述的通信装置,或如权利要求30所述的通信装置,或如权利要求31所述的通信装置。
  35. 一种系统,其特征在于,包括车辆以及如权利要求29所述的通信装置,或如权利要求30所述的通信装置,或如权利要求31所述的通信装置。
PCT/CN2022/095359 2022-05-26 2022-05-26 一种测距方法及相关装置 WO2023225962A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095359 WO2023225962A1 (zh) 2022-05-26 2022-05-26 一种测距方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095359 WO2023225962A1 (zh) 2022-05-26 2022-05-26 一种测距方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023225962A1 true WO2023225962A1 (zh) 2023-11-30

Family

ID=88918151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095359 WO2023225962A1 (zh) 2022-05-26 2022-05-26 一种测距方法及相关装置

Country Status (1)

Country Link
WO (1) WO2023225962A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182793A1 (en) * 2016-08-01 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Communication Nodes and Methods Therein for Positioning in a Wireless Communications Network
CN112051561A (zh) * 2019-06-06 2020-12-08 阿里巴巴集团控股有限公司 一种测距方法和装置
CN113551670A (zh) * 2021-07-29 2021-10-26 知微空间智能科技(苏州)有限公司 一种基于uwb的三维寻物方法和装置
WO2022000354A1 (zh) * 2020-06-30 2022-01-06 Oppo广东移动通信有限公司 用于测距的方法和终端设备
CN114063049A (zh) * 2021-11-01 2022-02-18 严海波 Uwb测距误差的分析和改进方法、系统及存储介质
WO2022057416A1 (zh) * 2020-09-15 2022-03-24 Oppo广东移动通信有限公司 定位服务方法及相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182793A1 (en) * 2016-08-01 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Communication Nodes and Methods Therein for Positioning in a Wireless Communications Network
CN112051561A (zh) * 2019-06-06 2020-12-08 阿里巴巴集团控股有限公司 一种测距方法和装置
WO2022000354A1 (zh) * 2020-06-30 2022-01-06 Oppo广东移动通信有限公司 用于测距的方法和终端设备
WO2022057416A1 (zh) * 2020-09-15 2022-03-24 Oppo广东移动通信有限公司 定位服务方法及相关装置
CN113551670A (zh) * 2021-07-29 2021-10-26 知微空间智能科技(苏州)有限公司 一种基于uwb的三维寻物方法和装置
CN114063049A (zh) * 2021-11-01 2022-02-18 严海波 Uwb测距误差的分析和改进方法、系统及存储介质

Similar Documents

Publication Publication Date Title
US9913253B2 (en) Apparatus, system and method of selecting a wireless communication channel
JP7150895B2 (ja) 通信方法及び機器
WO2018102247A2 (en) Apparatus, system and method of ranging measurement
WO2021204293A1 (zh) 定位信号处理方法及装置
TW201947975A (zh) 訊息確定方法、終端設備和網路設備
WO2021238504A1 (zh) 一种上行传输资源指示方法及装置
JP2023550243A (ja) 通信方法および通信装置
WO2023225962A1 (zh) 一种测距方法及相关装置
WO2022199346A1 (zh) 指示方法及相关产品
JP7414960B2 (ja) 通信方法及び機器
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021179328A1 (zh) 资源指示方法及通信装置
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2023198098A1 (zh) 传输信令的方法和装置
CN114363943A (zh) 用于确定传输时延的方法和电子设备
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置
WO2024032417A1 (zh) 参考信号传输方法及通信装置
WO2022237625A1 (zh) 资源配置方法、装置和系统
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2024036949A1 (zh) 信号处理方法及装置
WO2023236721A1 (zh) 传输信令的方法和装置
WO2023227041A1 (zh) 通信方法及装置
WO2023165454A1 (zh) 通信方法和装置
WO2022056856A1 (zh) 一种物理下行控制信道传输方法及装置
WO2023179430A1 (zh) 通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943162

Country of ref document: EP

Kind code of ref document: A1