WO2023225791A1 - 摄像头的帧率调节方法、装置、电子设备及存储介质 - Google Patents

摄像头的帧率调节方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023225791A1
WO2023225791A1 PCT/CN2022/094441 CN2022094441W WO2023225791A1 WO 2023225791 A1 WO2023225791 A1 WO 2023225791A1 CN 2022094441 W CN2022094441 W CN 2022094441W WO 2023225791 A1 WO2023225791 A1 WO 2023225791A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame rate
camera
ship
obstacle
distance
Prior art date
Application number
PCT/CN2022/094441
Other languages
English (en)
French (fr)
Inventor
汤志宏
梁海欣
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to CN202280001439.9A priority Critical patent/CN115152200B/zh
Priority to PCT/CN2022/094441 priority patent/WO2023225791A1/zh
Publication of WO2023225791A1 publication Critical patent/WO2023225791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present application relates to the field of ship safety technology, and in particular to a camera frame rate adjustment method, a camera frame rate adjustment device, electronic equipment and a computer-readable storage medium.
  • Surveillance cameras can be equipped on ships to monitor the surrounding environment where the ship is sailing, thereby providing early warning for dangerous situations such as collisions.
  • This application provides a frame rate adjustment method for a camera, a frame rate adjustment device for a camera, electronic equipment, and a computer-readable storage medium to achieve adjustment of the frame rate of the camera, while ensuring the detection capability of the camera while also avoiding the Large power consumption occurs.
  • a frame rate adjustment method of a camera wherein the camera is used to collect images of the environment where the ship is located; the frame rate adjustment method includes:
  • a frame rate adjustment device for a camera is provided.
  • the camera is used to collect images of the environment where the ship is located;
  • the frame rate adjustment device includes:
  • Information acquisition module used to obtain ship detection information
  • a frame rate determination module configured to determine the target frame rate of the camera according to the ship detection information
  • An image acquisition module is used to control the camera to acquire the image at the target frame rate.
  • an electronic device including:
  • the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the method described in any embodiment of the present application. Camera frame rate adjustment method.
  • a computer-readable storage medium stores computer instructions, and the computer instructions are used to implement any of the embodiments of the present application when executed by a processor.
  • Camera frame rate adjustment method is provided.
  • the technical solution of the embodiment of the present application realizes the adjustment of the camera frame rate by obtaining ship detection information; determining the target frame rate of the camera based on the ship detection information, so that the camera can collect images through dynamically changing frame rates, thereby ensuring that the camera While improving detection capabilities, it can also avoid the situation where the camera consumes a lot of power.
  • Figure 1 is a flow chart of a camera frame rate adjustment method provided according to Embodiment 1 of the present application.
  • Figure 2 is a flow chart of a camera frame rate adjustment method provided according to Embodiment 2 of the present application.
  • Figure 3 is a flow chart of a camera frame rate adjustment method provided according to Embodiment 3 of the present application.
  • Figure 4 is a schematic structural diagram of a frame rate adjustment device for a camera provided according to Embodiment 4 of the present application;
  • FIG. 5 is a schematic structural diagram of an electronic device provided in Embodiment 5 of the present application.
  • Figure 1 is a flow chart of a camera frame rate adjustment method provided in Embodiment 1 of the present application. This embodiment can be applied to the situation of adaptive adjustment of the frame rate of a ship camera.
  • the camera is used to collect images of the environment where the ship is located.
  • the method may be executed by a frame rate adjustment device of a camera, which may be implemented in the form of hardware and/or software, and may be configured in a terminal and/or a server. As shown in Figure 1, the method includes:
  • ship detection information refers to information detected by detection equipment installed on the ship, where the detection equipment may include but is not limited to (Global Positioning System, GPS) global positioning equipment, chart navigation equipment, cameras , radar, etc.
  • GPS Global Positioning System
  • chart navigation equipment cameras , radar, etc.
  • the ship detection information includes: at least one of the ship's current position information, obstacle position information, camera footage, and the ship's sailing speed.
  • the current position information refers to the current position information of the ship.
  • the current position information may be the longitude and latitude coordinates of the ship.
  • Obstacle location information refers to the location coordinates of obstacles near the ship, where the obstacles can be other nearby ships or islands.
  • one or more detection devices can be installed on the ship, and a variety of ship detection information can be collected through the detection equipment installed on the ship.
  • obstacle location information can be obtained through chart pilot equipment; and global positioning equipment can obtain The current position information of the ship; the camera can obtain the shooting picture within the camera's field of view; the radar can obtain the ship's sailing speed.
  • the target frame rate of the camera can be determined based on the ship detection information.
  • the target frame rate refers to the frame rate of the camera shot.
  • the ship detection information is a real-time change amount, that is, the target frame rate can change according to changes in the ship detection information, realizing dynamic adjustment of the frame rate, so that the camera can collect images through dynamically changing frame rates.
  • This dynamic The adjusted frame rate can ensure the camera's detection capabilities while also avoiding high power consumption of the camera.
  • the distance between the ship and the obstacle refers to the straight-line distance between the ship and the obstacle. This distance can be obtained by calculating the current position information of the ship and the position information of obstacles.
  • the distance adjustment threshold refers to the preset judgment threshold.
  • the first camera frame rate and the second camera frame rate are the preset camera acquisition frame rates. It can be understood that when the distance between the ship and the obstacle is far, it indicates that the ship is currently in a safer environment, and smaller values can be used. Collect images at a frame rate to reduce camera power consumption. When the distance between the ship and the obstacle is close, it indicates that the ship is currently in a more dangerous environment, and a larger frame rate can be used to collect images to improve the detection capability of the camera and avoid accidents.
  • the current position information of the ship can be (X, Y)
  • the obstacle position information can be (M, N)
  • the distance between the ship and the obstacle can be Furthermore, if the distance between the ship and the obstacle is greater than the distance adjustment threshold, indicating that the distance between the ship and the obstacle is far, the first camera frame rate with a smaller frame rate can be determined as the target frame rate to reduce the power consumption of the camera. ; If the distance between the ship and the obstacle is not greater than the distance adjustment threshold, it indicates that the distance between the ship and the obstacle is relatively close, then the second camera frame rate with a larger frame rate can be determined as the target frame rate to improve the detection capability of the camera. Avoid accidents.
  • the ship detection information includes the shooting picture; determining the target frame rate of the camera according to the ship detection information includes: determining whether there are obstacles in the shooting picture; if so, determining the third camera frame rate as the target frame rate; if not, the fourth camera frame rate is determined to be the target frame rate, and the third camera frame rate is greater than the fourth camera frame rate.
  • the machine vision method can be used to detect targets in the shooting screen to determine whether there are obstacles in the shooting screen. If there are obstacles in the shooting screen, it indicates that there are obstacles near the ship, and the frame rate of the third frame can be higher.
  • the frame rate of the three cameras is determined as the target frame rate to improve the detection capability of the camera and avoid accidents; if there are no obstacles in the shot, indicating that there are no obstacles near the ship, the fourth camera frame with a smaller frame rate can be The frame rate is determined as the target frame rate to reduce the power consumption of the camera.
  • the ship detection information includes sailing speed; determining the target frame rate of the camera according to the ship detection information includes: determining whether the sailing speed is greater than the first speed threshold; if so, determining the fifth camera frame rate as the target frame rate; if not, the sixth camera frame rate is determined to be the target frame rate, and the fifth camera frame rate is greater than the sixth camera frame rate.
  • the first speed threshold refers to a preset ship sailing speed threshold.
  • the sailing speed is greater than the first speed threshold, it indicates that the ship is sailing at a faster sailing speed, then the fifth camera frame rate with a larger frame rate can be determined as the target frame rate to improve the detection capability of the camera and avoid An accident occurs; if the sailing speed is not greater than the first speed threshold, indicating that the ship is sailing at a slower sailing speed, the sixth camera frame rate with a smaller frame rate can be determined as the target frame rate to reduce the power consumption of the camera.
  • the technical solution of the embodiment of the present application realizes the adjustment of the camera frame rate by obtaining ship detection information; determining the target frame rate of the camera based on the ship detection information, so that the camera can collect images through dynamically changing frame rates, thereby ensuring that the camera While improving detection capabilities, it can also avoid the situation where the camera consumes a lot of power.
  • Figure 2 is a flow chart of a camera frame rate adjustment method provided in Embodiment 2 of the present application. This embodiment is optimized based on the above embodiment.
  • the ship detection information also includes the shooting picture.
  • the method After determining the distance between the ship and the obstacle based on the current position information of the ship and the obstacle position information, the method also includes: when the distance is not greater than the distance adjustment threshold, determine whether the distance in the shooting picture is Whether there is an obstacle; if so, the seventh camera frame rate is determined to be the target frame rate, and the seventh camera frame rate is greater than the second camera frame rate; if not, the first frame rate is determined to be the target frame rate.
  • the method includes:
  • the ship detection information includes current position information, obstacle position information and shooting images.
  • target detection processing can be performed on the photographed picture to determine whether there are obstacles in the photographed picture. If there are obstacles in the shooting picture, it means that the obstacles are close to the ship.
  • the seventh camera frame rate with a larger frame rate can be determined as the target frame rate to improve the detection capability of the camera. After the detection capability of the camera is improved, the camera will The recorded video includes more images, and the camera can record more details, which is helpful for detecting collision risks from the images in time to avoid accidents. Even after an accident, there are more images that can be used to assist in analyzing the cause of the accident; if shooting If there are no obstacles in the picture, it means that the distance between the obstacle and the ship is a safe distance.
  • the first camera frame rate with a smaller frame rate can be determined as the target frame rate to reduce the power consumption of the camera.
  • the ship detection information also includes sailing speed.
  • the method further includes: when the distance is not greater than the distance adjustment threshold, And when there are obstacles in the shooting screen, it is determined whether the sailing speed is greater than the fourth speed threshold; if so, then the twelfth camera frame rate is determined to be the target frame rate, and the twelfth camera frame rate is greater than the seventh frame rate; if not, then It is determined that the thirteenth camera frame rate is the target frame rate, and the thirteenth camera frame rate is greater than the second camera frame rate and less than the seventh frame rate.
  • the sailing speed of the ship can be judged. If the sailing speed is greater than the fourth speed threshold, it means that the ship is currently closer to the obstacle and the sailing speed is faster.
  • the twelfth camera frame rate with a larger frame rate can be determined as the target frame rate to improve the detection of the camera. ability to avoid accidents. If the sailing speed is not greater than the fourth speed threshold, it means that the ship is currently close to the obstacle, but the sailing speed is slow.
  • the thirteenth camera frame rate that is greater than the second camera frame rate and less than the seventh frame rate can be determined as The target frame rate not only ensures the detection capability of the camera, but also avoids high power consumption of the camera.
  • the technical solution of the embodiment of this application is to obtain the ship detection information, which includes the current position information, the obstacle position information and the shooting picture; the distance between the ship and the obstacle is determined based on the current position information and the obstacle position information.
  • the seventh camera frame rate is determined to be the target frame rate.
  • the seventh camera frame rate is greater than the second camera frame rate. If not, the first frame is determined.
  • the rate is the target frame rate, which realizes the dynamic adjustment of the camera frame rate, so that the camera can collect images through the dynamically changing frame rate, while ensuring the camera's detection capability, it can also avoid the occurrence of high power consumption of the camera.
  • Figure 3 is a flow chart of a camera frame rate adjustment method provided in Embodiment 3 of the present application. This embodiment is optimized based on the above embodiment.
  • the ship detection information also includes sailing speed.
  • the method further includes step S330.
  • the method includes:
  • the ship detection information includes current position information, obstacle position information and sailing speed.
  • the navigation speed can be judged. If the sailing speed is less than the second speed threshold, it means that the distance between the ship and the obstacle is far and the sailing speed is small, that is, it will take a long time for the ship to reach the obstacle.
  • a smaller eighth camera frame rate can be determined as the target. frame rate to reduce camera power consumption. If the sailing speed is not less than the second speed threshold, it means that the distance between the ship and the obstacle is far, but the sailing speed is large, that is, the ship may encounter the obstacle in a short time, and the larger ninth camera frame can be The frame rate is determined as the target frame rate, which not only ensures the camera’s detection capabilities, but also avoids excessive power consumption of the camera.
  • the sailing speed can also be judged. If the sailing speed is less than the third speed threshold, it means that the current ship is close to the obstacle and the sailing speed is low. It can be understood that although the sailing speed is small, the current distance between the ship and the obstacle is relatively close, and there is a risk of collision. Therefore, the tenth camera can be set to be greater than the first camera frame rate and less than the second camera frame rate. The frame rate is determined as the target frame rate to ensure the detection capability of the camera while also avoiding excessive power consumption of the camera.
  • the larger tenth value can be
  • the camera frame rate is determined as the target frame rate to improve the camera detection capability.
  • the ship detection information includes current position information, obstacle position information and sailing speed.
  • the method also includes: obtaining obstacle related information of each obstacle within the ship detection range, and the obstacle related information includes obstacle related information. Position information, obstacle speed, and obstacle course; based on the ship detection information and each obstacle related information, it is judged whether any obstacle will enter the preset area of the ship in the future preset time period; if not, it will be preset in the future. It is assumed that within the time period, the target frame rate is not adjusted based on the obstacle position information, and/or the target frame rate is not adjusted based on the camera's captured image.
  • obstacle-related information refers to collected information associated with obstacles, which may include but is not limited to obstacle location information, obstacle speed, obstacle course, etc. Obstacles can be other ships or islands near the ship, which are not limited here.
  • the future movement trajectory of the own ship can be determined based on the heading information, sailing speed, and current position information of the own ship, and the future movement trajectory of other ships can be determined based on the heading information, sailing speed, and position information of other ships, and based on the above two
  • the motion trajectory determines whether other ships have entered the ship's preset area within a preset time period in the future.
  • the ship's preset area can be an area with the current position of the ship as the center and a preset safety distance as the radius. If so, continue to adjust the target frame rate based on the obstacle position information and/or the shooting image. If not, the target frame rate is not adjusted based on the obstacle position information and/or the shooting image to eliminate the influence of interference factors and reduce the amount of data processing to improve the efficiency of frame rate adjustment.
  • the technical solution of the embodiment of the present application obtains ship detection information, which includes current position information, obstacle position information and sailing speed; determines the distance between the ship and the obstacle based on the current position information and obstacle position information; in the distance When it is greater than the distance adjustment threshold, it is determined whether the sailing speed is less than the second speed threshold. If so, the eighth camera frame rate is determined to be the target frame rate. The eighth camera frame rate is less than the first camera frame rate. If not, the ninth camera frame rate is determined.
  • the frame rate is the target frame rate, and the ninth camera frame rate is greater than the first camera frame rate and less than the second camera frame rate; when the distance is not greater than the distance adjustment threshold, it is determined whether the sailing speed is less than the third speed threshold, and if so, determine The tenth camera frame rate is the target frame rate, and the tenth camera frame rate is greater than the first camera frame rate and less than the second camera frame rate. If not, the eleventh camera frame rate is determined to be the target frame rate, and the eleventh camera frame rate is determined to be the target frame rate.
  • the frame rate is greater than the second camera frame rate; through the above judgment process, the camera frame rate is dynamically adjusted, so that the camera collects images through the dynamically changing frame rate, thereby ensuring the camera's detection capability while also avoiding the camera's Large power consumption occurs.
  • FIG. 4 is a schematic structural diagram of a frame rate adjustment device for a camera provided in Embodiment 4 of the present application. As shown in Figure 4, the device includes:
  • Information acquisition module 410 used to acquire ship detection information
  • the frame rate determination module 420 is used to determine the target frame rate of the camera based on the ship detection information
  • the image collection module 430 is used to control the camera to collect images at a target frame rate.
  • the ship detection information includes: at least one of the ship's current position information, obstacle position information, camera footage, and the ship's sailing speed.
  • the ship detection information includes current position information and obstacle position information.
  • the frame rate determination module 420 includes:
  • a distance determination unit used to determine the distance between the ship and the obstacle based on the current position information and the obstacle position information
  • a distance judgment unit used to judge whether the distance is greater than the distance adjustment threshold; if so, determine the first camera frame rate to the target frame rate; if not, determine the second camera frame rate to the target frame rate, and the first camera frame rate is less than the first camera frame rate 2. Camera frame rate.
  • the ship detection information includes captured images
  • the frame rate determination module 420 includes:
  • the obstacle judgment unit is used to judge whether there is an obstacle in the shooting picture; if so, determine the third camera frame rate to the target frame rate; if not, determine the fourth camera frame rate to the target frame rate, and the third camera frame rate Greater than the fourth camera frame rate.
  • the ship detection information includes sailing speed
  • the frame rate determination module 420 includes:
  • a speed judgment unit used to judge whether the sailing speed is greater than the first speed threshold
  • the sixth camera frame rate is the target frame rate, and the fifth camera frame rate is greater than the sixth camera frame rate.
  • the ship detection information also includes shooting images
  • the obstacle judgment unit is also used to:
  • the seventh camera frame rate is the target frame rate, and the seventh camera frame rate is greater than the second camera frame rate
  • the ship detection information also includes sailing speed
  • the speed judgment unit is also used to:
  • the eighth camera frame rate is the target frame rate, and the eighth camera frame rate is smaller than the first camera frame rate
  • the ninth camera frame rate is the target frame rate, and the ninth camera frame rate is greater than the first camera frame rate and less than the second camera frame rate;
  • the tenth camera frame rate is the target frame rate, and the tenth camera frame rate is greater than the first camera frame rate and less than the second camera frame rate;
  • the eleventh imaging frame rate is the target frame rate, and the eleventh imaging frame rate is greater than the second imaging frame rate.
  • the ship detection information also includes sailing speed
  • the speed judgment unit is also used to:
  • the twelfth camera frame rate is the target frame rate, and the twelfth camera frame rate is greater than the seventh frame rate;
  • the thirteenth camera frame rate is the target frame rate, and the thirteenth camera frame rate is greater than the second camera frame rate and less than the seventh frame rate.
  • the ship detection information includes current position information, obstacle position information and sailing speed.
  • the information acquisition module 410 is also used to obtain obstacle related information of each obstacle within the ship detection range.
  • the obstacle related information includes obstacle position information. , obstacle speed, obstacle course.
  • the frame rate adjustment device also includes an obstacle judgment module.
  • the obstacle judgment module is used to judge whether any obstacle will enter the preset area of the ship within a preset time period in the future based on the ship detection information and each obstacle related information.
  • the frame rate determination module 420 is also configured to not adjust the target frame rate based on the obstacle location information within the future preset time period when no obstacle enters the preset area of the ship within the future preset time period, and /Or, the target frame rate is not adjusted based on the camera's captured image.
  • the camera frame rate adjustment device provided by the embodiments of the present application can execute the frame rate adjustment method of the camera provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • Terminal devices in embodiments of the present disclosure may include, but are not limited to, mobile terminals such as mobile phones, notebook computers, PADs (tablet computers), ship terminals, etc., and fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG. 5 is only an example and should not impose any limitations on the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 400 may include a processing device (eg, central processing unit, graphics processor, etc.) 401 , which may be loaded into a random access device according to a program stored in a read-only memory (ROM) 402 or from a storage device 408 .
  • the program in the memory (RAM) 403 is used to execute the frame rate adjustment method of the camera described in any of the above embodiments.
  • various programs and data required for the operation of the electronic device 400 are also stored.
  • the processing device 401, ROM 402 and RAM 403 are connected to each other via a bus 404.
  • An input/output (I/O) interface 405 is also connected to bus 404.
  • the following devices may be connected to the I/O interface 405: input devices 406 including, for example, a touch screen, touch pad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speakers, vibration An output device 407 such as a computer; a storage device 408 including a magnetic tape, a hard disk, etc.; and a communication device 409.
  • the communication device 409 may allow the electronic device 400 to communicate wirelessly or wiredly with other devices to exchange data.
  • FIG. 5 illustrates electronic device 400 with various means, it should be understood that implementation or availability of all illustrated means is not required. More or fewer means may alternatively be implemented or provided.
  • the electronic device provided by the embodiments of the present disclosure and the frame rate adjustment method of the camera provided by the above embodiments belong to the same application concept.
  • Technical details that are not described in detail in this embodiment can be referred to the above embodiments, and this embodiment is different from the above embodiments. Have the same beneficial effects.
  • Embodiments of the present disclosure provide a computer storage medium on which a computer program is stored.
  • the program is executed by a processor, the frame rate adjustment method of a camera provided in any of the above embodiments is implemented.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wire, optical cable, RF (radio frequency), etc., or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请公开了一种摄像头的帧率调节方法、装置、电子设备及存储介质。摄像头用于采集船舶所处环境的影像;帧率调节方法包括:获取船舶检测信息;根据船舶检测信息确定摄像头的目标帧率;控制摄像头以目标帧率采集影像。

Description

摄像头的帧率调节方法、装置、电子设备及存储介质 技术领域
本申请涉及船舶安全技术领域,尤其涉及一种摄像头的帧率调节方法、摄像头的帧率调节装置、电子设备及计算机可读存储介质。
背景技术
随着新能源的发展,依靠电力驱动的船只大量投入使用。船只上可以配备监控摄像头,以对船只航行位置的周围环境进行监测,从而为碰撞等危险情况提供预警。
然而,相关技术中的监控摄像头的图像采集方式存在功耗高的问题。
发明内容
本申请提供了一种摄像头的帧率调节方法、摄像头的帧率调节装置、电子设备及计算机可读存储介质,以实现对摄像头帧率的调节,在保证摄像头检测能力的同时,也可以避免摄像头功耗较大的情况发生。
根据本申请的一方面,提供了一种摄像头的帧率调节方法,其中,所述摄像头用于采集船舶所处环境的影像;所述帧率调节方法包括:
获取船舶检测信息;
根据所述船舶检测信息确定所述摄像头的目标帧率;
控制所述摄像头以所述目标帧率采集所述影像。
根据本申请的另一方面,提供了一种摄像头的帧率调节装置,所述摄像头用于采集船舶所处环境的影像;所述帧率调节装置包括:
信息获取模块,用于获取船舶检测信息;
帧率确定模块,用于根据所述船舶检测信息确定所述摄像头的目标帧率;
影像采集模块,用于控制所述摄像头以所述目标帧率采集所述影像。
根据本申请的另一方面,提供了一种电子设备,所述电子设备包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算 机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任一实施例所述的摄像头的帧率调节方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的摄像头的帧率调节方法。
本申请实施例的技术方案,通过获取船舶检测信息;根据船舶检测信息确定摄像头的目标帧率,实现了摄像头帧率的调节,以使摄像头通过动态变化的帧率进行影像采集,实现在保证摄像头检测能力的同时,也可以避免摄像头功耗较大的情况发生。
附图说明
图1是根据本申请实施例一提供的一种摄像头的帧率调节方法的流程图;
图2是根据本申请实施例二提供的一种摄像头的帧率调节方法的流程图;
图3是根据本申请实施例三提供的一种摄像头的帧率调节方法的流程图;
图4是根据本申请实施例四提供的一种摄像头的帧率调节装置的结构示意图;
图5是实现本申请实施例五提供的一种电子设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1为本申请实施例一提供的一种摄像头的帧率调节方法的流程图,本 实施例可适用于船舶摄像头帧率自适应调节的情况,摄像头用于采集船舶所处环境的影像,该方法可以由摄像头的帧率调节装置来执行,该摄像头的帧率调节装置可以采用硬件和/或软件的形式实现,该摄像头的帧率调节装置可配置于终端和/或服务器中。如图1所示,该方法包括:
S110、获取船舶检测信息。
S120、根据船舶检测信息确定摄像头的目标帧率。
S130、控制摄像头以目标帧率采集影像。
在本实施例中,船舶检测信息指的是通过船舶上设置的检测设备检测得到的信息,其中,检测设备可以包括但不限于(Global Positioning System,GPS)全球定位设备、海图引航设备、摄像头、雷达等。
可选的,船舶检测信息包括:船舶的当前位置信息、障碍物位置信息、摄像头的拍摄画面和船舶的航行速度中的至少一种。
其中,当前位置信息指的是船舶当前所处的位置信息,例如,当前位置信息可以为船舶的经纬度坐标。障碍物位置信息指的是船舶附近的障碍物的位置坐标,其中,障碍物可以是附近的其他船只或岛屿等。
示例性的,船舶上可以设置一个或多个检测设备,通过船舶上设置的检测设备可以采集多种船舶检测信息,例如,通过海图引航设备可以获取障碍物位置信息;通过全球定位设备可以获取船舶的当前位置信息;通过摄像头可以获取摄像头视野范围内的拍摄画面;通过雷达可以获取船舶的航行速度。
进一步的,在获取船舶检测信息之后,可以根据船舶检测信息确定摄像头的目标帧率。
其中,目标帧率指的是摄像头拍摄画面的帧率。可以理解的是,船舶检测信息为实时变化量,即目标帧率可以根据船舶检测信息的变化而变化,实现了帧率的动态调节,以使摄像头通过动态变化的帧率进行影像采集,该动态调节的帧率可以在保证摄像头检测能力的同时,也可以避免摄像头功耗较大的情况发生。
在上述各实施例的基础上,船舶的检测信息包括当前位置信息及障碍物位置信息,根据船舶检测信息确定摄像头的目标帧率,包括:基于当前位置信息和所述障碍物位置信息确定船舶与障碍物的距离;判断距离是否大于距离调节阈值;若是,则确定第一摄像帧率为目标帧率;若否,则确定第二摄像帧率为目标帧率,第一摄像帧率小于第二摄像帧率。
其中,船舶与障碍物的距离指的是本船舶与障碍物的直线距离。该距离 可以通过船舶的当前位置信息和障碍物位置信息运算得到。距离调节阈值指的是预先设置的判断阈值。第一摄像帧率与第二摄像帧率为预先设置的摄像头的采集帧率,可以理解的是,当船舶与障碍物的距离较远时,表明船舶当前处于较安全的环境,可以采用较小的帧率采集影像,以降低摄像头的功耗。当船舶与障碍物的距离较近时,表明船舶当前处于较危险的环境,可以采用较大的帧率采集影像,以提升摄像头的检测能力,避免事故发生。
示例性的,船舶的当前位置信息可以为(X,Y),障碍物位置信息可以为(M,N),船舶与障碍物的距离可以为
Figure PCTCN2022094441-appb-000001
进一步的,若船舶与障碍物的距离大于距离调节阈值,表明船舶与障碍物的距离较远,则可以将帧率较小的第一摄像帧率确定为目标帧率,以降低摄像头的功耗;若船舶与障碍物的距离不大于距离调节阈值,表明船舶与障碍物的距离较近,则可以将帧率较大的第二摄像帧率确定为目标帧率,以提升摄像头的检测能力,避免事故发生。
在上述各实施例的基础上,船舶检测信息包括拍摄画面;根据船舶检测信息确定摄像头的目标帧率,包括:判断拍摄画面中是否存在障碍物;若是,则确定第三摄像帧率为目标帧率;若否,则确定第四摄像帧率为目标帧率,第三摄像帧率大于第四摄像帧率。
具体的,可以通过机器视觉方法对拍摄画面进行目标检测,判断出拍摄画面中是否存在障碍物,若拍摄画面中存在障碍物,表明船舶附近已经存在障碍物,则可以将帧率较大的第三摄像帧率确定为目标帧率,以提升摄像头的检测能力,避免事故发生;若拍摄画面中不存在障碍物,表明船舶附近不存在障碍物,则可以将帧率较小的第四摄像帧率确定为目标帧率,以降低摄像头的功耗。
在上述各实施例的基础上,船舶检测信息包括航行速度;根据船舶检测信息确定摄像头的目标帧率,包括:判断航行速度是否大于第一航速阈值;若是,则确定第五摄像帧率为目标帧率;若否,则确定第六摄像帧率为目标帧率,第五摄像帧率大于第六摄像帧率。
其中,第一航速阈值指的是预先设定的船舶航行速度阈值。
具体的,若航行速度大于第一航速阈值,表明船舶以较快的航行速度进行航行,则可以将帧率较大的第五摄像帧率确定为目标帧率,以提升摄像头的检测能力,避免事故发生;若航行速度不大于第一航速阈值,表明船舶以较慢的航行速度进行航行,则可以将帧率较小的第六摄像帧率确定为目标帧率,以降低摄像头的功耗。
本申请实施例的技术方案,通过获取船舶检测信息;根据船舶检测信息确定摄像头的目标帧率,实现了摄像头帧率的调节,以使摄像头通过动态变化的帧率进行影像采集,实现在保证摄像头检测能力的同时,也可以避免摄像头功耗较大的情况发生。
实施例二
图2为本申请实施例二提供的一种摄像头的帧率调节方法的流程图,本实施例在上述实施例的基础上进行了优化。可选的,船舶检测信息还包括拍摄画面,在基于船舶的当前位置信息和障碍物位置信息确定船舶与障碍物的距离之后,方法还包括:在距离不大于距离调节阈值时,判断拍摄画面中是否存在障碍物;若是,则确定第七摄像帧率为目标帧率,第七摄像帧率大于第二摄像帧率;若否,则确定第一帧率为目标帧率。
如图2所示,该方法包括:
S210、获取船舶检测信息,船舶的检测信息包括当前位置信息、障碍物位置信息和拍摄画面。
S220、基于当前位置信息和障碍物位置信息确定船舶与障碍物的距离。
S230、在距离不大于距离调节阈值时,判断拍摄画面中是否存在障碍物,若是,则确定第七摄像帧率为目标帧率,第七摄像帧率大于第二摄像帧率,若否,则确定第一帧率为目标帧率。
S240、控制摄像头以目标帧率采集影像。
具体的,在船舶与障碍物的距离不大于距离调节阈值的情况下,可以对拍摄画面进行目标检测处理,判断拍摄画面中是否存在障碍物。若拍摄画面中存在障碍物,则表明障碍物与船舶较近,可以将帧率更大的第七摄像帧率确定为目标帧率,以提升摄像头的检测能力,摄像头检测能力提升后,摄像头所记录的视频包括更多画面,摄像头可以记录更多细节,有利于及时从画面中检测到碰撞风险以避免事故发生,即使发生事故后,也有更多的画面可以用来协助分析事故原因;若拍摄画面中不存在障碍物,则表明障碍物与船舶的距离为安全距离,可以将帧率较小的第一摄像帧率确定为目标帧率,以降低摄像头的功耗。
在上述各实施例的基础上,船舶检测信息还包括航行速度,在基于船舶的当前位置信息和障碍物位置信息确定船舶与障碍物的距离之后,方法还包括:在距离不大于距离调节阈值,且拍摄画面中存在障碍物时,判断航行速度是否大于第四航速阈值;若是,则确定第十二摄像帧率为目标帧率,第十 二摄像帧率大于第七帧率;若否,则确定第十三摄像帧率为目标帧率,第十三摄像帧率大于第二摄像帧率且小于第七帧率。
具体的,在距离不大于距离调节阈值,且拍摄画面中存在障碍物的情况下,可以对船舶的航行速度进行判断。若航行速度大于第四航速阈值,则表明船舶当前与障碍物距离较近,且航行速度较快,可以将帧率更大的第十二摄像帧率确定为目标帧率,以提升摄像头的检测能力,避免事故发生。若航行速度不大于第四航速阈值,则表明船舶当前与障碍物距离较近,但航行速度较慢,可以将大于第二摄像帧率且小于第七帧率的第十三摄像帧率确定为目标帧率,在保障摄像头的检测能力的同时,也避免摄像头的功耗较大的情况发生。
本申请实施例的技术方案,通过获取船舶检测信息,船舶的检测信息包括当前位置信息、障碍物位置信息和拍摄画面;基于当前位置信息和障碍物位置信息确定船舶与障碍物的距离,在距离不大于距离调节阈值时,判断拍摄画面中是否存在障碍物,若是,则确定第七摄像帧率为目标帧率,第七摄像帧率大于第二摄像帧率,若否,则确定第一帧率为目标帧率,实现了摄像头帧率的动态调节,以使摄像头通过动态变化的帧率进行影像采集,在保证摄像头检测能力的同时,也可以避免摄像头的功耗较大的情况发生。
实施例三
图3为本申请实施例三提供的一种摄像头的帧率调节方法的流程图,本实施例在上述实施例的基础上进行了优化。可选的,船舶检测信息还包括航行速度,在基于船舶的当前位置信息和障碍物位置信息确定船舶与障碍物的距离之后,方法还包括步骤S330。
如图3所示,该方法包括:
S310、获取船舶检测信息,船舶的检测信息包括当前位置信息、障碍物位置信息和航行速度。
S320、基于当前位置信息和障碍物位置信息确定船舶与障碍物的距离。
S330、在距离大于距离调节阈值时,判断航行速度是否小于第二航速阈值,若是,则确定第八摄像帧率为目标帧率,第八摄像帧率小于第一摄像帧率,若否,则确定第九摄像帧率为目标帧率,第九摄像帧率大于第一摄像帧率,且小于第二摄像帧率;在距离不大于距离调节阈值时,判断航行速度是否小于第三航速阈值,若是,则确定第十摄像帧率为目标帧率,第十摄像帧率大于第一摄像帧率,且小于第二摄像帧率,若否,则确定第十一摄像帧率 为目标帧率,第十一摄像帧率大于第二摄像帧率。
S340、控制摄像头以目标帧率采集影像。
具体的,在距离大于距离调节阈值的情况下,可以对航行速度进行判断。若航行速度小于第二航速阈值,则表明船舶与障碍物的距离较远,且航行速度较小,即船舶到障碍物还需要较长时间,可以将更小的第八摄像帧率确定为目标帧率,以降低摄像头的功耗。若航行速度不小于第二航速阈值,则表明船舶与障碍物的距离较远,但航行速度较大,即船舶可能在较短的时间内与障碍物相遇,可以将较大的第九摄像帧率确定为目标帧率,在保证摄像头检测能力的同时,也避免摄像头的功耗过大。同理,在距离不大于距离调节阈值的情况下,也可以对航行速度进行判断,若航行速度小于第三航速阈值,则表明当前船舶与障碍物距离较近,且航行速度较小。可以理解的是,虽然航行速度较小,但当前船舶与障碍物距离较近,存在发生相撞的风险,因此,可以将大于第一摄像帧率,且小于第二摄像帧率的第十摄像帧率确定为目标帧率,以在保证摄像头检测能力的同时,也避免摄像头的功耗过大。若航行速度不小于第三航速阈值,则表明当前船舶与障碍物距离较近,且航行速度较大,即船舶很有可能在较短的时间内与障碍物相遇,可以将较大的第十一摄像帧率确定为目标帧率,以提升摄像头检测能力。
在上述各实施例的基础上,船舶检测信息包括当前位置信息、障碍物位置信息及航行速度,方法还包括:获取船舶检测范围内各障碍物的障碍物关联信息,障碍物关联信息包括障碍物位置信息、障碍物航速、障碍物航向;基于船舶检测信息及各障碍物关联信息判断在未来预设时间段内是否存在任一障碍物进入船舶的预设区域内;若否,则在未来预设时间段内,不基于障碍物位置信息调节目标帧率,和/或,不基于摄像头的拍摄画面调节目标帧率。
其中,障碍物关联信息指的是与障碍物相关联的采集信息,可以包括但不限于障碍物位置信息、障碍物航速、障碍物航向等。障碍物可以是本船舶附近的其他船舶或岛屿等,在此不做限定。
示例性的,可以基于本船舶的航向信息、航行速度、当前位置信息确定本船未来的运动轨迹,基于其他船舶的航向信息、航行速度、位置信息确定其他船舶未来的运动轨迹,并根据上述两个运动轨迹判断其他船舶在未来预设时间段内是否进入船舶的预设区域内,该船舶的预设区域可以是以本船舶的当前位置为圆心,以预设安全距离为半径的区域。若是,则继续根据障碍物位置信息和/或拍摄画面调节目标帧率。若否,则不根据障碍物位置信息和/或拍摄画面调节目标帧率,以剔除干扰因素的影响,并减少数据处理量,以提高帧率调节的效率。
本申请实施例的技术方案,通过获取船舶检测信息,船舶的检测信息包括当前位置信息、障碍物位置信息和航行速度;基于当前位置信息和障碍物位置信息确定船舶与障碍物的距离;在距离大于距离调节阈值时,判断航行速度是否小于第二航速阈值,若是,则确定第八摄像帧率为目标帧率,第八摄像帧率小于第一摄像帧率,若否,则确定第九摄像帧率为目标帧率,第九摄像帧率大于第一摄像帧率,且小于第二摄像帧率;在距离不大于距离调节阈值时,判断航行速度是否小于第三航速阈值,若是,则确定第十摄像帧率为目标帧率,第十摄像帧率大于第一摄像帧率,且小于第二摄像帧率,若否,则确定第十一摄像帧率为目标帧率,第十一摄像帧率大于第二摄像帧率;通过上述判断过程,实现了摄像头帧率的动态调节,以使摄像头通过动态变化的帧率进行影像采集,实现在保证摄像头检测能力的同时,也可以避免摄像头的功耗较大的情况发生。
实施例四
图4为本申请实施例四提供的一种摄像头的帧率调节装置的结构示意图。如图4所示,该装置包括:
信息获取模块410,用于获取船舶检测信息;
帧率确定模块420,用于根据船舶检测信息确定摄像头的目标帧率;
影像采集模块430,用于控制摄像头以目标帧率采集影像。
可选的,船舶检测信息包括:船舶的当前位置信息、障碍物位置信息、摄像头的拍摄画面和船舶的航行速度中的至少一种。
可选的,船舶的检测信息包括当前位置信息及障碍物位置信息,帧率确定模块420,包括:
距离确定单元,用于基于当前位置信息和障碍物位置信息确定船舶与障碍物的距离;
距离判断单元,用于判断距离是否大于距离调节阈值;若是,则确定第一摄像帧率为目标帧率;若否,则确定第二摄像帧率为目标帧率,第一摄像帧率小于第二摄像帧率。
可选的,船舶检测信息包括拍摄画面,帧率确定模块420,包括:
障碍物判断单元,用于判断拍摄画面中是否存在障碍物;若是,则确定第三摄像帧率为目标帧率;若否,则确定第四摄像帧率为目标帧率,第三摄像帧率大于第四摄像帧率。
可选的,船舶检测信息包括航行速度,帧率确定模块420,包括:
速度判断单元,用于判断航行速度是否大于第一航速阈值;
若是,则确定第五摄像帧率为目标帧率;
若否,则确定第六摄像帧率为目标帧率,第五摄像帧率大于第六摄像帧率。
可选的,船舶检测信息还包括拍摄画面,障碍物判断单元还用于:
在距离不大于距离调节阈值时,判断拍摄画面中是否存在障碍物;
若是,则确定第七摄像帧率为目标帧率,第七摄像帧率大于第二摄像帧率;
若否,则确定第一帧率为目标帧率。
可选的,船舶检测信息还包括航行速度,速度判断单元还用于:
在距离大于距离调节阈值时,判断航行速度是否小于第二航速阈值;
若是,则确定第八摄像帧率为目标帧率,第八摄像帧率小于第一摄像帧率;
若否,则确定第九摄像帧率为目标帧率,第九摄像帧率大于第一摄像帧率,且小于第二摄像帧率;
在距离不大于距离调节阈值时,判断航行速度是否小于第三航速阈值;
若是,则确定第十摄像帧率为目标帧率,第十摄像帧率大于第一摄像帧率,且小于第二摄像帧率;
若否,则确定第十一摄像帧率为目标帧率,第十一摄像帧率大于第二摄像帧率。
可选的,船舶检测信息还包括航行速度,速度判断单元还用于:
在距离不大于距离调节阈值,且拍摄画面中存在障碍物时,判断航行速度是否大于第四航速阈值;
若是,则确定第十二摄像帧率为目标帧率,第十二摄像帧率大于第七帧率;
若否,则确定第十三摄像帧率为目标帧率,第十三摄像帧率大于第二摄像帧率且小于第七帧率。
可选的,船舶检测信息包括当前位置信息、障碍物位置信息及航行速度,信息获取模块410还用于获取船舶检测范围内各障碍物的障碍物关联信息, 障碍物关联信息包括障碍物位置信息、障碍物航速、障碍物航向。帧率调节装置还包括障碍物判断模块。障碍物判断模块用于基于船舶检测信息及各障碍物关联信息判断在未来预设时间段内是否存在任一障碍物进入船舶的预设区域内。帧率确定模块420还用于在未来预设时间段内不存在任一障碍物进入船舶的预设区域内时,在未来预设时间段内,不基于障碍物位置信息调节目标帧率,和/或,不基于摄像头的拍摄画面调节目标帧率。
本申请实施例所提供的摄像头的帧率调节装置可执行本申请任意实施例所提供的摄像头的帧率调节方法,具备执行方法相应的功能模块和有益效果。
实施例五
下面参考图5,其示出了适于用来实现本公开实施例的电子设备(例如终端设备或服务器)400的结构示意图。本公开实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、PAD(平板电脑)、船舶终端等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图5示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图5所示,电子设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器(ROM)402中的程序或者从存储装置408加载到随机访问存储器(RAM)403中的程序以执行上述任一实施例所述的摄像头的帧率调节方法。在RAM403中,还存储有电子设备400操作所需的各种程序和数据。处理装置401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许电子设备400与其他设备进行无线或有线通信以交换数据。虽然图5示出了具有各种装置的电子设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
本公开实施例提供的电子设备与上述实施例提供的摄像头的帧率调节方法属于同一申请构思,未在本实施例中详尽描述的技术细节可参见上述实施例,并且本实施例与上述实施例具有相同的有益效果。
实施例六
本公开实施例提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所提供的摄像头的帧率调节方法。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。

Claims (12)

  1. 一种摄像头的帧率调节方法,其中,所述摄像头用于采集船舶所处环境的影像;所述帧率调节方法包括:
    获取船舶检测信息;
    根据所述船舶检测信息确定所述摄像头的目标帧率;
    控制所述摄像头以所述目标帧率采集所述影像。
  2. 根据权利要求1所述的方法,其中,所述船舶检测信息包括:所述船舶的当前位置信息、障碍物位置信息、所述摄像头的拍摄画面和所述船舶的航行速度中的至少一种。
  3. 根据权利要求2所述的方法,其中,所述船舶的检测信息包括所述当前位置信息及所述障碍物位置信息,所述根据所述船舶检测信息确定所述摄像头的目标帧率,包括:
    基于所述当前位置信息和所述障碍物位置信息确定所述船舶与障碍物的距离;
    判断所述距离是否大于距离调节阈值;
    若是,则确定第一摄像帧率为所述目标帧率;
    若否,则确定第二摄像帧率为所述目标帧率,所述第一摄像帧率小于所述第二摄像帧率。
  4. 根据权利要求2所述的方法,其中,所述船舶检测信息包括所述拍摄画面;所述根据所述船舶检测信息确定所述摄像头的目标帧率,包括:
    判断所述拍摄画面中是否存在障碍物;
    若是,则确定第三摄像帧率为所述目标帧率;
    若否,则确定第四摄像帧率为所述目标帧率,所述第三摄像帧率大于所述第四摄像帧率。
  5. 根据权利要求2所述的方法,其中,所述船舶检测信息包括所述航行速度;所述根据所述船舶检测信息确定所述摄像头的目标帧率,包括:
    判断所述航行速度是否大于第一航速阈值;
    若是,则确定第五摄像帧率为所述目标帧率;
    若否,则确定第六摄像帧率为所述目标帧率,所述第五摄像帧率大于所述第六摄像帧率。
  6. 根据权利要求3所述的方法,其中,所述船舶检测信息还包括所述拍摄 画面,在基于所述船舶的当前位置信息和障碍物位置信息确定船舶与障碍物的距离之后,所述方法还包括:
    在所述距离不大于所述距离调节阈值时,判断所述拍摄画面中是否存在障碍物;
    若是,则确定第七摄像帧率为所述目标帧率,所述第七摄像帧率大于所述第二摄像帧率;
    若否,则确定所述第一帧率为所述目标帧率。
  7. 根据权利要求3所述的方法,其中,所述船舶检测信息还包括所述航行速度,在基于所述船舶的当前位置信息和障碍物位置信息确定船舶与障碍物的距离之后,所述方法还包括:
    在所述距离大于所述距离调节阈值时,判断所述航行速度是否小于第二航速阈值;
    若是,则确定第八摄像帧率为所述目标帧率,所述第八摄像帧率小于所述第一摄像帧率;
    若否,则确定第九摄像帧率为所述目标帧率,所述第九摄像帧率大于所述第一摄像帧率,且小于所述第二摄像帧率;
    在所述距离不大于所述距离调节阈值时,判断所述航行速度是否小于第三航速阈值;
    若是,则确定第十摄像帧率为所述目标帧率,所述第十摄像帧率大于所述第一摄像帧率,且小于所述第二摄像帧率;
    若否,则确定第十一摄像帧率为所述目标帧率,所述第十一摄像帧率大于所述第二摄像帧率。
  8. 根据权利要求6所述的方法,其中,所述船舶检测信息还包括所述航行速度,在基于所述船舶的当前位置信息和障碍物位置信息确定船舶与障碍物的距离之后,所述方法还包括:
    在所述距离不大于所述距离调节阈值,且所述拍摄画面中存在所述障碍物时,判断所述航行速度是否大于第四航速阈值;
    若是,则确定第十二摄像帧率为所述目标帧率,所述第十二摄像帧率大于所述第七帧率;
    若否,则确定第十三摄像帧率为所述目标帧率,所述第十三摄像帧率大于所述第二摄像帧率且小于所述第七帧率。
  9. 根据权利要求2所述的方法,其中,所述船舶检测信息包括所述当前位置信息、所述障碍物位置信息及所述航行速度,所述方法还包括:
    获取所述船舶检测范围内各障碍物的障碍物关联信息,所述障碍物关联信息包括所述障碍物位置信息、障碍物航速、障碍物航向;
    基于所述船舶检测信息及各所述障碍物关联信息判断在未来预设时间段内是否存在任一所述障碍物进入所述船舶的预设区域内;
    若否,则在所述未来预设时间段内,不基于所述障碍物位置信息调节所述目标帧率,和/或,不基于所述摄像头的拍摄画面调节所述目标帧率。
  10. 一种摄像头的帧率调节装置,其中,所述摄像头用于采集船舶所处环境的影像;所述帧率调节装置包括:
    信息获取模块,用于获取船舶检测信息;
    帧率确定模块,用于根据所述船舶检测信息确定所述摄像头的目标帧率;
    影像采集模块,用于控制所述摄像头以所述目标帧率采集所述影像。
  11. 一种电子设备,其中,所述电子设备包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-9中任一项所述的摄像头的帧率调节方法。
  12. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-9中任一项所述的摄像头的帧率调节方法。
PCT/CN2022/094441 2022-05-23 2022-05-23 摄像头的帧率调节方法、装置、电子设备及存储介质 WO2023225791A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001439.9A CN115152200B (zh) 2022-05-23 摄像头的帧率调节方法、装置、电子设备及存储介质
PCT/CN2022/094441 WO2023225791A1 (zh) 2022-05-23 2022-05-23 摄像头的帧率调节方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094441 WO2023225791A1 (zh) 2022-05-23 2022-05-23 摄像头的帧率调节方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023225791A1 true WO2023225791A1 (zh) 2023-11-30

Family

ID=83415867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094441 WO2023225791A1 (zh) 2022-05-23 2022-05-23 摄像头的帧率调节方法、装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023225791A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205386A (ja) * 2008-02-27 2009-09-10 Nikon Corp 車載カメラシステムおよびその制御方法
JP2012075007A (ja) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp 車載画像記録装置
CN106023346A (zh) * 2016-07-06 2016-10-12 福州瑞芯微电子股份有限公司 动态帧率行车记录系统及车辆速度判断装置
WO2017092098A1 (zh) * 2015-12-03 2017-06-08 北京奇虎科技有限公司 一种车载智能摄像装置及其摄像帧率的调节方法
US20180032042A1 (en) * 2016-08-01 2018-02-01 Qualcomm Incorporated System And Method Of Dynamically Controlling Parameters For Processing Sensor Output Data
JP2020061707A (ja) * 2018-10-12 2020-04-16 シャープ株式会社 移動体、及び動画像情報制御方法
US20210149392A1 (en) * 2019-11-14 2021-05-20 Sharp Kabushiki Kaisha Vehicle, remote imaging-and-controlling system, method for controlling vehicle, and non-transitory recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205386A (ja) * 2008-02-27 2009-09-10 Nikon Corp 車載カメラシステムおよびその制御方法
JP2012075007A (ja) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp 車載画像記録装置
WO2017092098A1 (zh) * 2015-12-03 2017-06-08 北京奇虎科技有限公司 一种车载智能摄像装置及其摄像帧率的调节方法
CN106023346A (zh) * 2016-07-06 2016-10-12 福州瑞芯微电子股份有限公司 动态帧率行车记录系统及车辆速度判断装置
US20180032042A1 (en) * 2016-08-01 2018-02-01 Qualcomm Incorporated System And Method Of Dynamically Controlling Parameters For Processing Sensor Output Data
JP2020061707A (ja) * 2018-10-12 2020-04-16 シャープ株式会社 移動体、及び動画像情報制御方法
US20210149392A1 (en) * 2019-11-14 2021-05-20 Sharp Kabushiki Kaisha Vehicle, remote imaging-and-controlling system, method for controlling vehicle, and non-transitory recording medium

Also Published As

Publication number Publication date
CN115152200A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US11978219B2 (en) Method and device for determining motion information of image feature point, and task performing method and device
CN110570687B (zh) Agv的控制方法、装置及存储介质
CN109581358B (zh) 障碍物的识别方法、装置及存储介质
CN112132070B (zh) 驾驶行为分析方法、装置、设备及存储介质
CN111010537B (zh) 车辆控制方法、装置、终端及存储介质
WO2021000956A1 (zh) 一种智能模型的升级方法及装置
CN112749590B (zh) 目标检测方法、装置、计算机设备和计算机可读存储介质
CN111325701B (zh) 图像处理方法、装置及存储介质
CN111179628B (zh) 自动驾驶车辆的定位方法、装置、电子设备及存储介质
WO2023225791A1 (zh) 摄像头的帧率调节方法、装置、电子设备及存储介质
CN110775056B (zh) 基于雷达探测的车辆行驶方法、装置、终端及介质
CN111538009B (zh) 雷达点的标记方法和装置
CN111444749B (zh) 路面导向标志的识别方法、装置及存储介质
CN113432620B (zh) 误差估计方法、装置、车载终端及存储介质
CN111147738A (zh) 警用车载全景慧眼系统、装置、电子设备及介质
CN115152200B (zh) 摄像头的帧率调节方法、装置、电子设备及存储介质
CN112885095B (zh) 路面信息检测方法、装置、设备及计算机可读存储介质
CN113326800B (zh) 车道线位置确定方法、装置、车载终端及存储介质
CN115950521A (zh) 振动频率检测方法及检测装置、计算机设备及存储介质
CN114789734A (zh) 感知信息补偿方法、装置、车辆、存储介质及程序
CN113706807B (zh) 发出报警信息的方法、装置、设备及存储介质
CN114598992A (zh) 信息交互方法、装置、设备及计算机可读存储介质
CN113255906A (zh) 一种自动驾驶中回归障碍物3d角度信息方法、装置、终端及存储介质
CN111563402B (zh) 车牌识别方法、装置、终端及存储介质
CN111583669A (zh) 一种超速检测方法、装置、控制设备和存储介质