WO2023224394A1 - 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기 - Google Patents

고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기 Download PDF

Info

Publication number
WO2023224394A1
WO2023224394A1 PCT/KR2023/006714 KR2023006714W WO2023224394A1 WO 2023224394 A1 WO2023224394 A1 WO 2023224394A1 KR 2023006714 W KR2023006714 W KR 2023006714W WO 2023224394 A1 WO2023224394 A1 WO 2023224394A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
impact
cylinder
shock
medical device
Prior art date
Application number
PCT/KR2023/006714
Other languages
English (en)
French (fr)
Inventor
이근덕
Original Assignee
(주)아이티시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220088290A external-priority patent/KR20230161300A/ko
Application filed by (주)아이티시 filed Critical (주)아이티시
Publication of WO2023224394A1 publication Critical patent/WO2023224394A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation

Definitions

  • Embodiments of the present invention relate to a device, and more specifically, to a bipolar type extracorporeal shock wave medical device with high-frequency and low-frequency treatment functions that provide mechanical vibration and electrical stimulation simultaneously.
  • extracorporeal shock wave medical devices can be applied to various lesions.
  • the extracorporeal shock wave medical device may include various functions to achieve maximum effect on various lesions.
  • an extracorporeal shock wave medical device generates mechanical vibration and can stimulate lesions by applying vibration to the user's body.
  • an extracorporeal shock wave medical device needs to have various functions because it must be applied to the affected areas of various users.
  • an extracorporeal shock wave medical device needs to generate deep heat in the affected part of the human body by applying a high-frequency electrical stimulation signal to the body in addition to mechanical vibration, or an extracorporeal shock wave medical device needs to apply a low-frequency electrical stimulation signal to the user's body.
  • Patent Document 1 KR 10-2010-0056851 A
  • Patent Document 2 KR 10-2010-0005766 A
  • Patent Document 3 KR 10-1123926 B1
  • Patent Document 5 KR 10-2016-0099332 A
  • Patent Document 6 KR 10-1583630 B1
  • Patent Document 7 KR 10-2010-0131367 A
  • Patent Document 8 KR 10-0792513 B1
  • Patent Document 9 KR 10-2016-0119303 A
  • Embodiments of the present invention aim to provide an extracorporeal shock wave medical device capable of applying physical shock and electric shock.
  • a bipolar contact detection unit 233 that detects whether at least one of the impact unit electrode surface 165 and the bipolar electrode 168 of the impact unit 160 in contact with the user's skin is in contact with the user's skin. It may further include ;.
  • the bipolar contact detection unit 233 may further include a control unit 100 that stops the operation of the waveform transmitter 191.
  • the bipolar contact detection unit 233 can measure the impedance between the impact unit electrode surface 165 and the bipolar electrode 168.
  • control unit 100 may cause the waveform transmitter 191 to operate when the measured impedance is within a preset range.
  • it may further include a temperature sensor unit 220 that measures at least one of the temperatures of the impact unit 160 and the bipolar electrode 168.
  • control unit 100 may stop the operation of the waveform transmitter 191 when the measured temperature exceeds a preset temperature.
  • the signal transmission unit 210 is a contact maintenance part that electrically connects the impact connection part 152 and the impact part 160 when there is a separation between the impact connection part 152 and the impact part 160. (170) can be provided.
  • the contact maintenance part 170 is a spring made of a conductive material, an extracorporeal shock wave medical device.
  • first sealing portion 181 disposed between the cylinder 141 and the impact connecting portion 152 and a second sealing portion 182 disposed between the impact connecting portion 152 and the impact portion 160. More can be provided.
  • the impact connection portion 152 includes an impact connection body 152a in which a portion of the impact portion 160 is inserted; and an inner protrusion 152b that protrudes inside the impact connection body 152a and contacts a portion of the impact part 160.
  • the extracorporeal shock wave medical device is capable of simultaneously providing electrical stimulation and physical stimulation through simple operation. Additionally, the extracorporeal shock wave medical device according to embodiments of the present invention can minimize excessive electrical stimulation caused by turning on/off electrical signals. Additionally, it is possible to prevent risks such as burns by detecting the user's condition.
  • Figure 2 is an exploded perspective view showing the extracorporeal shock wave medical device shown in Figure 1.
  • Figure 3 is a cross-sectional view taken along line III-III' in Figure 1.
  • Figure 4 is a cross-sectional view showing the connection part, impact part, and contact maintenance part shown in Figure 2.
  • Figure 5 is a cross-sectional view showing the connection part, impact part, and contact maintenance part of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • Figures 6 and 7 are cross-sectional views showing the connection part, impact part, and contact maintenance part of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • Figure 8 is a block diagram of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • Figure 9 is a block diagram of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the shock portion and the contact maintenance portion of the extracorporeal shock wave medical device according to the embodiment of FIG. 9.
  • Figure 12 is an exploded view of Figure 10.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • the term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • the term 'or' can be interpreted as a logical exclusive sum in the context, but if there is no direct description such as 'otherwise, otherwise, a logical exclusive sum', it is interpreted as a logical sum with the same meaning as 'and/or', that is, a logical sum.
  • a component When a component is said to be “connected” or “connected” to another component, it is understood that it may be directly connected to or connected to the other component, but that other components may exist in between. It should be. On the other hand, when it is mentioned that a component is “directly connected” or “directly connected” to another component, it should be understood that there are no other components in between. This is the same in the top, bottom, left, and right placement relationships. For example, when a component is said to be on top of another component, it includes not only the case where a component is directly on top of another part, but also the case where another component is interposed between them.
  • first component and the second component on the network are connected or connected means that data can be exchanged between the first component and the second component wired or wirelessly.
  • module and “part” for components used in the following description are simply given in consideration of the ease of writing this specification, and do not in themselves give any particularly important meaning or role. Accordingly, the terms “module” and “unit” may be used interchangeably.
  • the present invention encompasses all possible combinations of the embodiments shown herein.
  • the various embodiments of the present invention are different from one another but are not mutually exclusive.
  • the specific shapes, structures, functions, and characteristics described herein in one embodiment may be implemented in other embodiments.
  • components mentioned in the first and second embodiments can perform all the functions of the first and second embodiments.
  • the x-axis, y-axis, and z-axis are not limited to the three axes in the Cartesian coordinate system, but can be interpreted in a broad sense including these.
  • the x-axis, y-axis, and z-axis may be orthogonal to each other, but may also refer to different directions that are not orthogonal to each other.
  • Figure 1 is a perspective view showing an extracorporeal shock wave medical device with high-frequency and low-frequency treatment functions according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing the extracorporeal shock wave medical device shown in Figure 1.
  • Figure 3 is a cross-sectional view taken along line III-III' in Figure 1.
  • Figure 4 is a cross-sectional view showing the connection part, impact part, and contact maintenance part shown in Figure 2.
  • the extracorporeal shock wave medical device 100 with high-frequency and low-frequency treatment functions (hereinafter referred to as 'extracorporeal shock wave medical device') includes a handle portion 110, a core portion 121, and a magnet portion 122. , body part 130, cylinder 141, movement part 142, core connection part 151, impact connection part 152, impact part 160, waveform transmission part 191, contact maintenance part 170, sealing It may include a portion 180, an outer skin portion 192, and a cap portion 193.
  • the handle portion 110 may be gripped by a user. At this time, the handle portion 110 may have a space disposed therein and may be formed of an insulating material.
  • Various devices may be placed inside the handle portion 110.
  • the handle portion 110 may be connected to the cylinder 141 and a pump that supplies gas may be disposed. This pump is not limited to this, and can also be placed outside the handle portion 110 and connected to the cylinder 141 through a pipe or the like. It is also possible to include a control unit (not shown) inside the handle unit 110. It is also possible to include a waveform transmission unit 191 inside the handle unit 110. It is also possible to place a battery electrically connected to various devices inside the handle portion 110.
  • Embodiments of the present invention are not limited to the above, and it is possible for the pump, control unit, waveform transmission unit 191, battery, etc. to be placed outside the handle unit 110.
  • the pump, control unit, waveform transmission unit 191, battery, etc. will be described in detail focusing on the case where they are disposed outside the handle unit 110.
  • the core portion 121 may be disposed inside the handle portion 110. At this time, the core portion 121 may be fixed to the handle portion 110 through screws, bolts, etc.
  • the core unit 121 is electrically connected to the waveform transmission unit 191 and can transmit a high-frequency or low-frequency signal transmitted from the waveform transmission unit 191. Additionally, the core portion 121 is connected to the pump, and a flow path through which gas moves can be formed.
  • the magnet unit 122 may be disposed in the core unit 121. At this time, the magnet unit 122 may fix the position of the exercise unit 142 or arrange the position of the exercise unit 142 at a set position by supplying magnetic force or electromagnetic force to the exercise unit 142.
  • the magnet portion 122 as described above may include a permanent magnet and/or an electromagnet.
  • the body portion 130 may be connected to the handle portion 110.
  • the body portion 130 may include a main body 131 having a space therein, and a protruding connection portion 132 protruding from the main body 131.
  • the protruding connection portion 132 may be inserted into the handle portion 110 and coupled to the handle portion 110.
  • a core connection portion 151 may be disposed on the protruding connection portion 132. At this time, the core connection portion 151 may be connected to the protruding connection portion 132 through screw coupling or the like. Additionally, the core connection portion 151 may be connected to the protruding connection portion 132 to connect the handle portion 110 and/or the core portion 121 and the body portion 130.
  • the cylinder 141 may be disposed inside the body portion 130. A space is formed inside the cylinder 141, and the moving part 142 can move linearly in this space.
  • the cylinder 141 may be connected to the core portion 121.
  • a passage hole 141b through which gas is discharged or introduced during movement of the movement unit 142 may be formed in at least a portion of the cylinder 141.
  • One or more passage holes 141b may be formed, and when a plurality of passage holes 141b are formed, they are preferably formed at a certain position in the longitudinal direction of the cylinder 141.
  • the passage hole 141b is preferably formed in the cylinder 141 in a portion adjacent to the cap portion 193 (a portion in the opposite direction to the handle 110).
  • air may flow from the outside to the inside of the cylinder 141 through the passage hole 141b.
  • air may be discharged from the inside of the cylinder 141 to the outside.
  • An inlet hole 141a through which gas supplied through the core portion 121 flows may be formed in a portion of the cylinder 141 adjacent to the handle 110.
  • the movement unit 142 is disposed inside the cylinder 141 and can move linearly in the longitudinal direction of the cylinder 141. At this time, the exercise unit 142 may move forward or backward within the cylinder 141 according to the operation of the pump. Additionally, the exercise unit 142 can move backwards inside the cylinder 141 by the magnet unit 122.
  • the movement unit 142 may be fixed by the magnet unit 122.
  • the outer surface of the exercise unit 142 may be formed to be curved.
  • at least one groove may be formed on the outer surface of the exercise unit 142.
  • the groove on the outer surface of the moving part 142 may be formed in a spiral or ring shape.
  • friction can be reduced by reducing the contact area between the moving part 142 and the cylinder 141 when the moving part 142 moves inside the cylinder 141.
  • the impact connector 152 may be connected to the body portion 130.
  • the end of the cylinder 141 may be disposed on one side of the impact connection portion 152.
  • the impact connector 152 may be connected to the end of the cylinder 141.
  • the end of the cylinder 141 may be disposed inside the impact connection portion 152.
  • Impact connection 152 is preferably made of a conductive material.
  • the shock connector 152 as described above may include a cylindrical shock connector body 152a and an inner protrusion 152b protruding into the shock connector body 152a.
  • the inner protrusion 152b may be formed in an annular shape.
  • the inner protrusion 152b may have a hole formed therein.
  • the size of the hole is smaller than the size of the cross section perpendicular to the longitudinal direction of the moving part 142, so the moving part 142 may not pass through.
  • the inner protrusion 152b may be formed of a metal material.
  • One end of the impact unit 160 may be disposed on the other side of the impact connection unit 152.
  • the impact part 160 may be arranged so that one end is inserted into the impact connection part 152.
  • the impact unit 160 may include an insertion unit 161 inserted into the impact connection unit 152, and a shock transmission unit 162 extending from the insertion unit 161 and transmitting a shock.
  • the impact portion 160 may be formed of a metal material.
  • the shock transmitting portion 162 may be formed to have a stepped end.
  • the shock transfer unit 162 may include a shock transfer unit protrusion (162a).
  • the cap portion 193 may have a bent portion 193a bent toward the inside of the cap portion 193 at an end portion so that the protrusion 162a is caught.
  • the bent portion 193a can prevent the shock transfer unit 162 and the cap portion 193 from being separated.
  • the waveform transmission unit 191 is connected to the core unit 121 and transmits a high-frequency and/or low-frequency signal to the core unit 121, or is connected to the cylinder 141 and transmits a high-frequency and/or low-frequency signal to the cylinder 141. can do.
  • the waveform transmission unit 191 will be described in detail focusing on the case where it is electrically connected to the core unit 121.
  • the waveform transmission unit 191 transmits the signal to the core unit 121, and the core unit 121 transmits the signal to the impact connection unit 152 through the cylinder 141, and the impact connection unit 152 is connected to the impact unit 160. Signals can be transmitted. Finally, the waveform transmission unit 191 may transmit a high-frequency signal and/or a low-frequency signal to the shock unit 160.
  • the contact maintenance part 170 may be disposed between the impact part 160 and the impact connection part 152, and/or between the impact connection part 152 and the cylinder 141.
  • the contact holding part 170 will be described in detail focusing on the case where it is disposed between the impact part 160 and the impact connection part 152.
  • the contact holding part 170 may be provided with a spring.
  • the contact holding portion 170 will be described by considering it as a spring.
  • One end of the contact maintenance unit 170 may be supported by the impact connection unit 152, and the other end of the contact maintenance unit 170 may be supported by the impact transmission unit 162.
  • the inner diameter of the contact holding part 170 may be larger than the outer diameter of the insertion part 161.
  • the shock transmitting part 162 and/or the shock connecting part 152 with which the contact maintaining part 170 comes into contact is provided with a protrusion that protrudes into the contact maintaining part 170 and prevents the end of the contact maintaining part 170 from moving. It can be.
  • a groove into which the end of the contact maintenance part 170 is inserted and seated may be formed in the shock transmitting part 162 and/or the shock connecting part 152 with which the contact maintaining part 170 comes into contact.
  • a magnet may be placed at the end of the contact holding portion 170 and fixed to the shock transmitting portion 162 and/or the shock connecting portion 152.
  • the contact holding portion 170 may electrically connect the shock connector 152 and the shock portion 160 by contacting the shock connector 152 and the shock portion 160, respectively. Additionally, the contact maintaining portion 170 can prevent the impact connecting portion 152 and the cylinder 141 from being separated from each other. In particular, when the exercise unit 142 strikes the impact connection part 152, the impact connection part 152 and the cylinder 141 can be prevented from falling off.
  • the sealing portion 180 includes a first sealing portion 181 disposed between the cylinder 141 and the impact connection portion 152, and a second sealing portion 182 disposed between the impact connection portion 152 and the impact portion 160. ) may be provided at least one of the following.
  • the first sealing part 181 and the second sealing part 182 as described above can combine other components. At this time, the first sealing part 181 and the second sealing part 182 not only allow a certain amount of clearance between the conveying elements that are coupled to each other, but also the vibration applied during the movement of the moving part 142 extends the length of the cylinder 141. Transmission in the direction and perpendicular direction can be reduced. In addition, the first sealing part 181 and the second sealing part 182 can reduce the time required for assembling each component when manufacturing the extracorporeal shock wave medical device 100.
  • the outer skin portion 192 is arranged to surround the outer surface of the body portion 130 and may be coupled to the handle portion 110.
  • the outer skin portion 192 may be combined with the cap portion 193.
  • the outer skin 192 may be formed of an insulating material such as rubber, silicon, etc. This outer skin 192 can prevent malfunction of the extracorporeal shock wave medical device 100 that may occur due to external static electricity, etc. Additionally, the outer skin portion 192 can prevent high-frequency signals and/or low-frequency signals generated when the extracorporeal shock wave medical device 100 operates from being transmitted to the outside of the body portion 130.
  • the cap portion 193 may be coupled to the outer skin portion 192.
  • the cap portion 193 may include an elastic material such as rubber or silicone, or may include a synthetic resin material.
  • the cap portion 193 may have a hole formed so that a portion of the impact portion 160 is exposed to the outside.
  • the cap portion 193 may further include a contact portion that contacts or combines with the impact portion 160 to contact the user's body.
  • the contact part may include a metal material.
  • the extracorporeal shock wave medical device 100 as described above can implement various functions.
  • the extracorporeal shock wave medical device 100 may operate according to a user's signal.
  • the user can input a control signal through the handle unit 110 or the input unit 111 disposed outside the handle unit 110.
  • the control signal may be a signal to deliver a physical shock to the user or to deliver a high-frequency signal and/or a low-frequency signal.
  • the input unit 111 may be formed in various shapes.
  • the input unit 111 is formed in the shape of a button, and can generate different control signals depending on the force with which the button is pressed.
  • the input unit 111 is in the form of a jog shuttle and can generate different control signals depending on rotation.
  • the input unit 111 may be formed in the form of a touch screen.
  • the input unit 111 is not limited to the above and may include any form that can input various control signals.
  • the pump may operate to supply gas to the cylinder 141.
  • gas may flow between the moving part 142 and the end of the cylinder 141, thereby increasing the pressure between the moving part 142 and the end of the cylinder 141.
  • the magnet portion 122 and/or the core portion 121 can prevent gas from leaking out of the end of the cylinder 141 by completely shielding the end of the cylinder 141.
  • the movement unit 142 By interfering with the movement of the exercise unit 142 to some extent by the attractive force caused by the magnetic force of the magnet unit 122, the movement unit 142 is moved until the pressure inside the space between the exercise unit 142 and the end of the cylinder 141 becomes a constant pressure. may not move. At this time, the moving part 142 may not move due to the magnetic force of the magnet part 122 because it contains a magnetic material.
  • the moving part 142 can escape the magnetic force of the magnet part 122 and move from one side of the cylinder 141 where the magnet part 122 is located to the other side.
  • the movement unit 142 may move linearly within the cylinder 141 along the longitudinal direction of the cylinder 141 .
  • the exercise unit 142 When the exercise unit 142 slides to the other side (forward) of the cylinder 141, the exercise unit 142 can transfer kinetic energy by striking the impact unit 160.
  • the exercise unit 142 collides with the inner protrusion 152b of the impact connection part 152, and the inner protrusion 152b applies force to the insertion part 161, so that kinetic energy can be transmitted to the shock transmission unit 162.
  • One side of the exercise unit 142 may be formed in a convex shape. In this case, one convex side of the exercise unit 142 can penetrate the hole of the inner protrusion 152b and directly hit the impact unit 160.
  • the shock wave struck at the insertion part 161, which is one side of the impact unit 160, is transmitted through the inside of the impact unit 160 to the other side of the impact unit 160, thereby delivering the shock wave to the person being treated.
  • the exercise unit 142 When the exercise unit 142 strikes the impact unit 160, it may slide to one side (reverse direction) of the cylinder 141 due to the recoil. For this purpose, it is desirable that the exercise unit 142 and the impact unit 160 have a high elastic modulus.
  • the pump may suck in gas inside the cylinder 141 or stop supplying gas into the cylinder 141 when the exercise unit 142 moves backward.
  • the pump When moving the exercise unit 142 backwards inside the cylinder 141, the pump discharges the air inside the cylinder 141 to the outside of the cylinder 141, and the magnet unit 122 provides magnetic force to the exercise unit 142.
  • the exercise unit 142 can be moved backward.
  • the magnet unit 122 fixes the position of the exercise unit 142 or moves the exercise unit 142 backward by applying magnetic force to the exercise unit 142 when the exercise unit 142 reaches a certain position inside the cylinder 141. It is also possible.
  • the movement unit 142 When the movement unit 142 moves backward and moves to one side of the cylinder 141, it may collide with the magnet unit 122 or the cover 143 and then move forward again. Alternatively, the movement unit 142 may move backwards and then change the direction of movement using gas pressure from a pump to move forward. If the gas supply is stopped or gas is sucked when the exercise unit 142 moves backward, gas can be supplied again when the exercise unit 142 moves forward.
  • the movement unit 142 When the movement unit 142 reciprocates as described above, the movement unit 142 strikes the shock connection unit 152 multiple times at regular time intervals, etc., and as a result, the shock transmission unit 162 may vibrate. These vibrations can be transmitted to the user's body through the shock transmission unit 162.
  • the user can enable the extracorporeal shock wave medical device to function as a high-frequency signal and/or low-frequency signal therapy device through the input unit.
  • the waveform transmission unit 191 transmits a high-frequency signal to the core unit 121
  • the high-frequency signal is transmitted to the user's body through at least the core unit 121, the cylinder 141, and the impact unit 160. It can be delivered.
  • a user can use electrical signals (high-frequency signals and/or low-frequency signals) and shock waves at the same time.
  • electrical signals high-frequency signals and/or low-frequency signals
  • shock waves there may be an abnormality in the electrical signal due to vibration of the impact unit 160 due to the reciprocating movement of the movement unit 142.
  • the shock connector 152 and the end of the cylinder 141 may be momentarily spaced apart, or the shock connector 152 and the shock connector 160 may be spaced apart from each other. .
  • a certain gap may occur between the shock connector 152 and the end of the cylinder 141 and/or between the shock connector 152 and the shock portion 160.
  • This gap can momentarily act as a capacitor. Capacitors that are momentarily generated may instantly generate overcurrent due to excessive concentration of charge. This overcurrent may provide excessive energy to the user through the shock unit 160, damaging the user's body or causing discomfort to the user.
  • Contact maintenance unit 170 can prevent problems caused by the above-described spacing from occurring. That is, the contact holding part 170 always electrically connects the impact connection part 152 and the end of the cylinder 141 and/or the impact connection part 152 and the impact part 160 as described above, thereby preventing the above-mentioned problem. can be solved.
  • the above problem may be the same even when the waveform transmitter 191 generates and transmits a low-frequency signal.
  • the same can be applied when the waveform transmission unit 191 mixes the high-frequency signal and the low-frequency signal and provides the mixture to the shock unit 160.
  • the extracorporeal shock wave medical device 100 can prevent physical damage or discomfort to the user due to the high-frequency signal and/or low-frequency signal even when vibration is simultaneously provided to the user.
  • Figure 5 is a cross-sectional view showing the connection part, impact part, and contact maintenance part of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • the contact maintenance unit 170 may include a first contact maintenance unit 171 and a second contact maintenance unit 172.
  • the first contact holding portion 171 may include a spring and may be disposed between the shock transmitting portion 162 and the shock connecting portion 152.
  • the second contact holding portion 172 may include a magnet disposed between the insertion portion 161 and the impact connecting portion 152. These magnets may be in the form of permanent magnets, and can prevent the inner protrusion 152b and the insertion portion 161 from falling apart when the moving part hits the inner protrusion 152b.
  • the extracorporeal shock wave medical device can deliver physical vibrations to the user and at the same time stably provide high-frequency signals and/or low-frequency signals.
  • Figure 6 is a cross-sectional view showing the connection part, impact part, and contact maintenance part of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • the extracorporeal shock wave medical device includes a handle unit (not shown), a core unit (not shown), a magnet unit (not shown), a body unit (not shown), a cylinder 141, and a movement unit (not shown). ), core connection part (not shown), impact connection part 152, impact part 160, waveform transmission part (not shown), contact maintenance part 170, sealing part (not shown), outer skin (not shown), It may include a cap (not shown) and a cover (not shown).
  • the impact unit 160 may include an insertion unit 161 and a shock transmission unit 162. At this time, a location portion 162b in the form of a groove recessed from the outer surface of the shock transmitting portion 162 may be disposed on the shock transmitting portion 162 to define the position of the first contact holding portion 171, which will be described later.
  • the contact maintenance unit 170 may include a first contact maintenance unit 171, a second contact maintenance unit 172, and a third contact maintenance unit 173.
  • the first contact holding portion 171 may include a spring and may be disposed between the shock transmitting portion 162 and the shock connecting portion 152.
  • the second contact holding part 172 may include a magnet disposed in the insertion part 161 and/or the impact connecting part 152. These magnets may be in the form of permanent magnets, and can prevent the inner protrusion 152b and the insertion portion 161 from falling apart when the moving part hits the inner protrusion 152b.
  • the third contact holding portion 173 may be provided with a magnet disposed on the cylinder 141 and/or the impact connecting portion 152. This magnet may be in the form of a permanent magnet, and can prevent the inner protrusion 152b and the end of the cylinder 141 from falling off when the moving part hits the inner protrusion 152b.
  • the extracorporeal shock wave medical device includes a handle unit (not shown), a core unit (not shown), a magnet unit (not shown), a body unit (not shown), a cylinder 141, and a movement unit (not shown). ), core connection part (not shown), impact connection part 152, impact part 160, waveform transmission part (not shown), contact maintenance part 170, sealing part (not shown), outer skin (not shown), It may include a cap (not shown) and a cover (not shown).
  • the outer skin, the cap, and the cover are the same or similar to those described in FIGS. 1 to 4, so detailed descriptions will be omitted.
  • the impact unit 160 may include an insertion unit 161 and a shock transmission unit 162.
  • the shock transmitting unit 162 has a groove-shaped or protruding groove that is introduced from the outer surface of the shock transmitting unit 162 to define the position of the first contact holding part 171, which will be described later. It is also possible for the government to be deployed.
  • the contact maintenance unit 170 may include a first contact maintenance unit 171 and a fourth contact maintenance unit 174.
  • the first contact holding portion 171 may include a spring and may be disposed between the shock transmitting portion 162 and the shock connecting portion 152.
  • each end of the fourth contact holding part 174 may include a magnet and be fixed by being attached to the outer surface of the impact part 160 and the surface of the impact connection part 152.
  • each end of the fourth contact holding part 174 may be fixed to the outer surface of the impact part 160 and the surface of the impact connection part 152 with tape or the like.
  • the impact unit 160 and the impact connection unit 152 are not only electrically connected to each other, but also prevent the impact unit 160 and the impact connection unit 152 from being separated when the exercise unit hits the inner protrusion 152b. You can.
  • the extracorporeal shock wave medical device can deliver physical vibrations to the user and at the same time stably provide high-frequency signals and/or low-frequency signals.
  • FIG 8 is a block diagram of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • Components according to the present embodiments may be omitted and replaced with descriptions of components with the same names and/or reference numerals described above.
  • the extracorporeal shock wave medical device may include a control unit 100, a pump 240, a waveform transmission unit 191, a signal transmission unit, a shock electrode surface 165, and a monopolar electrode pad 166. You can.
  • the waveform transmitter 191 may oscillate at least one of high frequency and low frequency electrical signals.
  • the waveform transmitter 191 may be provided with two or more terminals to transmit the oscillated electrical signal to the outside.
  • the pump 240 is connected to the cylinder 141 and can supply air to the cylinder 141.
  • the first terminal of the waveform transmitter 191 may be connected to a signal transmission unit.
  • the signal transmission unit may include at least the above-described cylinder 141, impact connection unit 152, and impact unit 160. As described above, the cylinder 141, the impact connector 152, and the impact unit 160 may be electrically connected to each other. Electrical signals may be transmitted to the user's skin through the cylinder 141, the impact connector 152, and the impact unit 160.
  • the cylinder 141 may be disposed inside the body portion 130.
  • the shock connector 152 may connect one end of the cylinder 141 and the shock portion 160.
  • the shock unit 160 may generate shock waves by the movement unit 142 that reciprocates inside the cylinder 141.
  • the generated shock waves can be transmitted to the user's skin.
  • the signal transmission unit may further include a contact maintenance part 170 that is disposed between the shock connection part 152 and the impact part 160 and electrically connects the shock connection part 152 and the impact part 160.
  • the contact maintenance portion 170 can electrically connect the shock connector 152 and the shock portion 160 when there is a separation between the shock connector 152 and the shock portion 160.
  • the contact maintenance part 170 may be provided with a spring made of a conductive material.
  • the shock unit electrode surface 165 may refer to one side of the shock unit 160 that is in contact with the user's skin.
  • the shock electrode surface 165 can function as both terminals together with the monopolar electrode pad 166 attached to the user's skin.
  • the monopolar electrode pad 166 may be a plate-shaped pad that contacts the skin at a separate location from the impact electrode surface 165. That is, the arms, legs, torso, etc. of the patient may be placed between the monopolar electrode pad 166 and the shock electrode surface 165.
  • the monopolar electrode pad 166 may be capable of deeper skin penetration than the bipolar method described later.
  • the extracorporeal shock wave medical device may further include a temperature sensor unit 220 that measures the temperature of the shock unit 160.
  • the temperature sensor unit 220 is not limited to measuring the temperature of the impact unit 160, and can measure the temperature of the impact unit electrode surface 165 or the user's skin in contact with the impact unit electrode surface 165.
  • the temperatures of the impact unit 160, the impact unit electrode surface 165, and the user's skin may be substantially equal to each other or may be proportional to a specific constant. In other words, even if the temperature sensor unit 220 measures the user's skin, it can be interpreted as substantially measuring the temperature of the impact unit 160.
  • the temperature sensor unit 220 may include various known temperature sensors. Temperature sensors may include contact-type temperature sensors that detect temperature using thermocouples or resistance, and non-contact temperature sensors that detect temperature using infrared rays, etc.
  • the control unit 100 may stop the operation of the waveform transmitter 191 when the measured temperature exceeds a preset temperature. If the temperature of the user's skin is too high, there is a risk of burns.
  • the extracorporeal shock wave medical device may further include a monopolar contact detection unit 231 that detects whether the shock unit electrode surface 165 is in contact with the user's skin.
  • the control unit 100 may stop the operation of the waveform transmission unit 191. This can prevent unnecessary power consumption.
  • the control unit 100 may stop the operation of the pump 240.
  • the monopolar contact detection unit 231 can detect whether or not there is contact based on the electrical characteristics between the impact unit electrode surface 165 and the monopolar electrode pad 166. Electrical characteristics may include resistance or impedance between the impact electrode surface 165 and the monopolar electrode pad 166. It may be desirable to detect contact based on impedance rather than resistance. This is because the impedance when the shock electrode surface 165 does not contact the user's skin is different from the impedance when the shock electrode surface 165 does not contact the user's skin because air functions as a medium.
  • the monopolar contact detection unit 231 may include a contact detection sensor 235.
  • the contact detection sensor 235 may be a variety of known sensors.
  • the contact detection sensor 235 may include a mechanical switch using a spring or the like, a resonance-type pressure sensor, a piezoelectric pressure sensor, a strain gauge-type pressure sensor, or a capacitance-type pressure sensor.
  • the temperature sensor unit 220 and/or the contact detection sensor 235 may be mounted near the impact unit electrode surface 165, for example, on the cap unit 193.
  • the extracorporeal shock wave medical device may further include an input unit 111, a communication unit 260, and a storage unit 290.
  • the user can instruct the operation of the extracorporeal shock wave medical device through the input unit 111.
  • the extracorporeal shock wave medical device can communicate with an external device through the communication unit 260.
  • the storage unit 290 can store data and programs necessary for the operation of the extracorporeal shock wave medical device.
  • FIG. 9 is a block diagram of an extracorporeal shock wave medical device according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the shock portion and the contact maintenance portion of the extracorporeal shock wave medical device according to the embodiment of FIG. 9.
  • Figure 11 is a left side view of Figure 10.
  • Figure 12 is an exploded view of Figure 10. Please refer to Figures 1 to 8. Components according to the present embodiments may be omitted and replaced with descriptions of components with the same names and/or reference numerals described above.
  • the bipolar type extracorporeal shock wave medical device includes a waveform transmission unit 191, a signal transmission unit 210, an impact unit 160, and a bipolar electrode ( 168) may be included.
  • the control unit 100 controls the overall operation of the extracorporeal shock wave medical device and can be interpreted as a microcontroller or central processing unit.
  • the waveform transmitter 191 can oscillate an electrical signal.
  • the electrical signal may be at least one of high frequency and low frequency.
  • the waveform transmitter 191 may be provided with two or more terminals to transmit the oscillated electrical signal to the outside.
  • the pump 240 is connected to the cylinder 141 and can supply air to the cylinder 141.
  • the cylinder 141 may be disposed inside the body portion 130.
  • the body portion 130 may be connected to the handle portion 110.
  • the body portion 130 may include a main body 131 having a space therein, and a protruding connection portion 132 protruding from the main body 131.
  • the handle portion 110 may be gripped by a user.
  • the handle portion 110 may have a space disposed therein and may be formed of an insulating material.
  • Various devices may be placed inside the handle portion 110.
  • the handle unit 110 may be equipped with a pump 240, a waveform transmitter 191, etc.
  • the present invention is not limited to this, and the pump 240 and the waveform transmitter 191 may be disposed outside the handle unit 110.
  • the first terminal of the waveform transmitter 191 may be connected to the signal transmitter 210.
  • the signal transmission unit 210 may include at least the above-described cylinder 141, impact connection unit 152, and impact unit 160. As described above, the cylinder 141, the impact connector 152, and the impact unit 160 may be electrically connected to each other. Electrical signals may be transmitted to the user's skin through the cylinder 141, the impact connector 152, and the impact unit 160.
  • the impact connector 152 may have a cylinder pocket 141-1 on one side connected to one end of the cylinder 141. The other side of the impact connection unit 152 may be connected to the impact unit 160.
  • the shock connector 152 may connect the cylinder 141 and the shock portion 160.
  • the shock unit 160 may generate shock waves by the movement unit 142 that reciprocates inside the cylinder 141.
  • the generated shock waves can be transmitted to the user's skin.
  • the signal transmission unit 210 may further include a contact maintenance unit 170 disposed between the impact connection unit 152 and the impact unit 160 and electrically connecting the impact connection unit 152 and the impact unit 160. there is.
  • the contact maintenance portion 170 can electrically connect the shock connector 152 and the shock portion 160 when there is a separation between the shock connector 152 and the shock portion 160.
  • the contact maintenance part 170 may be provided with a spring made of a conductive material.
  • the impact unit electrode surface 165 which is one side of the impact unit 160 in contact with the user's skin, can function as both terminals together with the bipolar electrode 168.
  • the bipolar electrode 168 may be disposed near the impact unit 160.
  • the bipolar electrode 168 may form a capacitance with the impact unit 160.
  • the bipolar electrode 168 may be a donut-shaped ring surrounding the impact unit 160, or may be a plurality of metal terminals disposed around the impact unit 160.
  • the bipolar electrode 168 may be coupled around the impact portion 160 by the cap portion 193.
  • the cap portion 193 must be made of an insulating material.
  • the cap portion 193 may be shaped so that the impact portion 160 is disposed therein and the bipolar electrode 168 is disposed therein. Referring to FIG. 12, the cap portion 193 may be fixedly connected to the impact connection portion 152 or the body portion 130 through the coupling ring 310.
  • the coupling ring 310 may be press-fitted or screw-coupled with other components.
  • the bipolar electrode 168 may be connected to the second terminal of the waveform transmitter 191 through a signal transmission cable 215.
  • the signal transmission cable 215 may be a flexible wire string.
  • the signal transmission cable 215 may be placed inside the handle portion 110, the body portion 130, etc. for aesthetics and safety of use.
  • the signal transmission cable 215 may be arranged to pass through the through hole 320 provided in the coupling ring 310 and placed inside the extracorporeal shock wave medical device.
  • the outside of the signal transmission cable 215 be surrounded by an insulator to prevent it from being disconnected from a portion of the electric circuit heading to the impact unit 160.
  • the signal transmission cable 215 is connected to the bipolar electrode 168, which is less affected by impact than the impact portion 160, and is composed of a spring like the signal transmission portion 210, that is, the contact maintenance portion 170. It's okay even if it doesn't work out.
  • a part of the signal transmission cable 215 is composed of (or provided with) a spring capable of transmitting an electric signal to the outer peripheral surface of the contact holding portion 170.
  • one side of the spring is a bipolar electrode.
  • the other side at 168 may be fixed to one side of the body portion 130.
  • the impact unit 160 and the bipolar electrode 168 are used, although it is narrower than the monopolar method, intensive skin penetration of electrical energy may be possible, and since only a narrow area is treated, it may be safer from risks such as burns. there is. Additionally, in the case of the bipolar method, there is no inconvenience in having the operator attach the monopolar electrode pad 166 to the body of the subject.
  • the extracorporeal shock wave medical device may further include a temperature sensor unit 220 that measures at least one of the temperature of the shock unit 160 and the bipolar electrode 168.
  • the temperature sensor unit 220 is not limited to measuring the temperature of the impact unit 160, and can measure the temperature of the impact unit electrode surface 165 or the user's skin in contact with the impact unit electrode surface 165.
  • the temperatures of the impact unit 160, the impact unit electrode surface 165, and the user's skin may be substantially equal to each other or may be proportional to a specific constant. In other words, even if the temperature sensor unit 220 measures the user's skin, it can be interpreted as substantially measuring the temperature of the impact unit 160. Or the reverse can also be applied.
  • the temperature sensor unit 220 may include various known temperature sensors. Temperature sensors may include contact-type temperature sensors that detect temperature using thermocouples or resistance, and non-contact temperature sensors that detect temperature using infrared rays, etc.
  • the control unit 100 may stop the operation of the waveform transmitter 191 when the measured temperature exceeds a preset temperature. If the temperature of the user's skin is too high, there is a risk of burns.
  • the extracorporeal shock wave medical device includes a bipolar contact detection unit 233 that detects whether at least one of the shock electrode surface 165 and the bipolar electrode 168 is in contact with the user's skin. It may further include.
  • the bipolar electrode 168 is referred to as the impact electrode surface 165 throughout the specification, the bipolar electrode 168 can be interpreted as a surface in contact with the skin of the recipient, such as the impact electrode surface 165. .
  • the control unit 100 may stop the operation of the waveform transmitter 191. This can prevent unnecessary power consumption.
  • the control unit 100 may stop the operation of the pump 240.
  • the bipolar contact detection unit 233 can measure electrostatic capacity (capacitance) between the impact unit electrode surface 165 and the bipolar electrode 168. If the measured capacitance is higher than the preset capacitance, the control unit 100 may determine that at least one of the impact unit electrode surface 165 and the bipolar electrode 168 is in contact with the skin. The control unit 100 may cause the waveform transmitter 191 to operate when the measured capacitance is higher than the preset capacitance.
  • the bipolar contact detection unit 233 may include a contact detection sensor 235.
  • the contact detection sensor 235 may be a variety of known sensors.
  • the contact detection sensor 235 may include a mechanical switch using a spring or the like, a resonance-type pressure sensor, a piezoelectric pressure sensor, a strain gauge-type pressure sensor, or a capacitance-type pressure sensor.
  • the temperature sensor unit 220 and/or the contact detection sensor 235 may be mounted near the impact unit electrode surface 165, for example, on the cap unit 193.
  • the extracorporeal shock wave medical device may further include an input unit 111, a communication unit 260, and a storage unit 290.
  • the user can instruct the operation of the extracorporeal shock wave medical device through the input unit 111.
  • the extracorporeal shock wave medical device can communicate with an external device through the communication unit 260.
  • the storage unit 290 can store data and programs necessary for the operation of the extracorporeal shock wave medical device.
  • the present invention can be implemented in hardware or software.
  • Implementation The present invention can also be implemented as computer-readable code on a computer-readable recording medium. That is, it can be implemented in the form of a recording medium containing instructions executable by a computer.
  • Computer-readable media includes all types of media storing data that can be read by a computer system.
  • Computer-readable media may include computer storage media and communication storage media.
  • Computer storage media includes all storable media implemented as any method or technology for storing information such as computer-readable instructions, data structures, program modules, and other data, including volatile/non-volatile/hybrid memory. It is not limited to whether it is a separate type or a non-separable type.
  • Communication storage media includes modulated data signals or transmission mechanisms such as carrier waves, any information delivery medium, etc. And functional programs, codes, and code segments for implementing the present invention can be easily deduced by programmers in the technical field to which the present invention pertains.
  • control unit 110 handle unit
  • Cylinder pocket 141a Inlet hole

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Rehabilitation Therapy (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

본 발명은 고주파 및 저주파 치료 기능이 부가되어 기계적 진동과 전기자극을 동시에 제공하는 바이폴라형 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기로서, 바디부 내부에 배치되는 실린더; 상기 실린더 내부를 왕복 운동하는 운동부; 상기 실린더의 끝단과 연결되는 충격 연결부; 상기 충격 연결부와 연결되며, 상기 운동부가 충돌하는 충격부; 상기 실린더 및 충격 연결부를 통해 상기 충격부와 전기적으로 연결되어 상기 충격부로 전기 신호를 송출하는 파형송출부; 상기 파형송출부 중 제1 단자와 연결되고, 상기 충격 연결부와 상기 충격부 사이에 배치되어 상기 충격 연결부와 상기 충격부를 전기적으로 연결하는 신호 전달부; 및 신호 전달 케이블을 통해 상기 파형송출부의 제2 단자와 연결되고, 상기 충격부의 인근에 배치되는 바이폴라용 전극을 포함할 수 있다.

Description

고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기
본 발명의 실시예들은 장치에 관한 것으로서, 더 상세하게는 고주파 및 저주파 치료 기능이 부가되어 기계적 진동과 전기자극을 동시에 제공하는 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기에 관한 것이다.
일반적으로 체외 충격파 의료기는 다양한 병변에 적용될 수 있다. 이때, 체외 충격파 의료기는 다양한 병변에 최대의 효과를 내기 위하여 다양한 기능을 포함할 수 있다. 예를 들면, 체외 충격파 의료기는 기계적 진동을 발생시켜 사용자의 신체에 진동을 가함으로써 병변에 자극을 줄 수 있다.
그러나 상기와 같은 체외 충격파 의료기는 다양한 사용자의 환부에 적용하여야 하므로 다양한 기능을 가질 필요가 있다. 예를 들면, 체외 충격파 의료기는 기계적 진동 이외에 고주파 전기자극신호를 신체에 가함으로써 인체의 환부에 심부열을 발생시키거나 체외 충격파 의료기는 저주파 전기자극신호를 사용자의 신체에 가할 필요가 있다.
이러한 문제를 해결하기 위해서 두가지 기능을 동시에 구현할 수 있는 체외 충격파 의료기를 개발할 필요가 있다.
<선행기술문헌>
(특허문헌 1) KR 10-2010-0056851 A
(특허문헌 2) KR 10-2010-0005766 A
(특허문헌 3) KR 10-1123926 B1
(특허문헌 4) JP 2009-247893 A
(특허문헌 5) KR 10-2016-0099332 A
(특허문헌 6) KR 10-1583630 B1
(특허문헌 7) KR 10-2010-0131367 A
(특허문헌 8) KR 10-0792513 B1
(특허문헌 9) KR 10-2016-0119303 A
본 발명의 실시예들은 물리적 충격과 전기적 충격을 가할 수 있는 체외 충격파 의료기를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기는 바디부(130) 내부에 배치되는 실린더(141); 상기 실린더(141) 내부를 왕복 운동하는 운동부(142); 상기 실린더(141)의 끝단과 연결되는 충격 연결부(152); 상기 충격 연결부(152)와 연결되며, 상기 운동부(142)가 충돌하는 충격부(160); 상기 실린더(141) 및 충격 연결부(152)를 통해 상기 충격부(160)와 전기적으로 연결되어 상기 충격부(160)로 고주파 및 저주파 중 적어도 하나의 전기 신호를 송출하는 파형송출부(191); 상기 파형송출부(191) 중 제1 단자와 연결되고, 상기 충격 연결부(152)와 상기 충격부(160) 사이에 배치되어 상기 충격 연결부(152)와 상기 충격부(160)를 전기적으로 연결하는 신호 전달부(210); 및 신호 전달 케이블(215)을 통해 상기 파형송출부(191)의 제2 단자와 연결되고, 상기 충격부(160)의 인근에 배치되는 바이폴라용 전극(168)을 포함할 수 있다.
또한, 상기 충격부(160)의 사용자의 피부에 접하는 충격부 전극면(165)과 상기 바이폴라용 전극(168) 중 적어도 어느 하나가 사용자 피부에 접촉하는 지 감지하는 바이폴라용 접촉 감지부(233);를 더 포함할 수 있다.
또한, 상기 바이폴라용 접촉 감지부(233)에서 접촉을 감지하지 않으면, 상기 파형송출부(191)의 작동을 중지시키는 제어부(100)를 더 포함할 수 있다.
또한, 상기 바이폴라용 접촉 감지부(233)는 상기 충격부 전극면(165)과 상기 바이폴라용 전극(168) 사이의 임피던스를 측정할 수 있다.
또한, 상기 제어부(100)는 상기 측정된 임피던스가 기설정된 범위인 경우에 상기 파형송출부(191)가 작동되도록 할 수 있다.
또한, 상기 충격부(160) 및 상기 바이폴라용 전극(168)의 온도 중 적어도 하나를 측정하는 온도 센서부(220)를 더 포함할 수 있다.
또한, 상기 제어부(100)는 상기 측정된 온도가 기 설정된 온도를 초과하면, 상기 파형송출부(191)의 작동을 중지시킬 수 있다.
또한, 상기 신호 전달부(210)는 상기 충격 연결부(152)와 상기 충격부(160)에 이격이 있는 경우, 상기 충격 연결부(152)와 상기 충격부(160)를 전기적으로 연결하는 접촉유지부(170)를 구비할 수 있다.
또한, 상기 접촉유지부(170)는 전도성 물질인 스프링인, 체외 충격파 의료기.
또한, 상기 실린더(141)와 충격 연결부(152) 사이에 배치되는 제1 실링부(181) 및 상기 충격 연결부(152)와 상기 충격부(160) 사이에 배치되는 제2 실링부(182)를 더 구비할 수 있다.
또한, 상기 충격 연결부(152)는, 상기 충격부(160)의 일부가 내부에 삽입된 충격 연결부 몸체(152a); 및 상기 충격 연결부 몸체(152a) 내부에 돌출되며, 상기 충격부(160)의 일부에 접촉하는 내측 돌기부(152b);를 구비할 수 있다.
본 발명의 실시예들에 관한 체외 충격파 의료기는 간단한 구통하여 전기적 자극과 물리적 자극을 동시에 제공하는 것이 가능하다. 또한, 본 발명의 실시예들에 관한 체외 충격파 의료기는 전기적 신호의 온/오프에 따른 과도한 전기적 자극이 발생하는 것을 최소화할 수 있다. 또한, 사용자의 상태를 감지하여 화상 등의 위험을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 체외 충격파 의료기를 보여주는 사시도이다.
도 2는 도 1에 도시된 체외 충격파 의료기를 보여주는 분해사시도이다.
도 3은 도 1의 Ⅲ-Ⅲ′선을 따라 취한 단면도이다.
도 4는 도 2에 도시된 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 체외 충격파 의료기의 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 6 및 도 7은 본 발명의 각기 또 다른 실시예에 따른 체외 충격파 의료기의 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 8은 본 발명의 다른 실시예에 따른 체외 충격파 의료기의 블록 구성도이다.
도 9는본 발명의 다른 실시예에 따른 체외 충격파 의료기의 블록 구성도이다.
도 10은 도 9의 실시예에 따른 체외 충격파 의료기의 충격부 및 접촉유지부를 보여주는 단면도이다.
도 11은 도 10의 좌측면도이다.
도 12는 도 10의 분해도이다.
이하, 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. '또는' 용어는 전후 문맥상 논리적 배타합으로 해석될 수 있으나, '그렇지 않으면, 아니면, 논리적 배타합' 등의 직접적인 묘사가 없으면, '및/또는'과 같은 의미, 즉, 논리합으로 해석한다.
또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 이는 상하좌우의 배치 관계에서도 동일하다. 예를 들어, 어떤 구성요소가 다른 구성요소 위에 있다고 할 때, 어떤 구성요가 다른 부분의 바로 위에 있는 경우 뿐만 아니라 그 중간에 또 다른 구성요소가 개재되어 있는 경우도 포함한다.
또한 네트워크 상의 제1 구성요소와 제2 구성요소가 연결되어 있거나 접속되어 있다는 것은, 유선 또는 무선으로 제1 구성요소와 제2 구성요소 사이에 데이터를 주고 받을 수 있음을 의미한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
이와 같은 구성요소들은 실제 응용에서 구현될 때 필요에 따라 2 이상의 구성요소가 하나의 구성요소로 합쳐지거나, 혹은 하나의 구성요소가 2 이상의 구성요소로 세분되어 구성될 수 있다. 도면 전체를 통하여 동일하거나 유사한 구성요소에 대해서는 동일한 도면 부호를 부여하였고, 동일한 도면 부호를 가지는 구성요소에 대한 자세한 설명은 전술한 구성요소에 대한 설명으로 대체되어 생략될 수 있다.
또한, 본 발명은 본 명세서에 표시된 실시예들의 모든 가능한 조합들을 망라한다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적이지 않다. 본 명세서에 기술된 특정 형상, 구조, 기능, 및 특성의 일 실시예는 다른 실시예로 구현될 수 있다. 예를 들어, 제1 및 제2 실시예에서 언급되는 구성요소는 제1 및 제2 실시예의 모든 기능을 수행할 수 있다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다.
도 1은 본 발명의 일 실시예에 따른 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기를 보여주는 사시도이다. 도 2는 도 1에 도시된 체외 충격파 의료기를 보여주는 분해사시도이다. 도 3은 도 1의 Ⅲ-Ⅲ′선을 따라 취한 단면도이다. 도 4는 도 2에 도시된 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 1 내지 도 4를 참고하면, 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기(100)(이하, '체외 충격파 의료기')는 손잡이부(110), 코어부(121), 자석부(122), 바디부(130), 실린더(141), 운동부(142), 코어 연결부(151), 충격 연결부(152), 충격부(160), 파형송출부(191), 접촉유지부(170), 실링부(180), 외피부(192) 및 캡부(193)를 포함할 수 있다.
손잡이부(110)는 사용자가 파지 가능할 수 있다. 이때, 손잡이부(110)는 내부에 공간이 배치될 수 있으며, 절연물질로 형성될 수 있다. 손잡이부(110) 내부에는 다양한 장치가 배치될 수 있다. 예를 들면, 손잡이부(110)는 실린더(141)에 연결되어 기체를 공급하는 펌프가 배치될 수 있다. 이러한 펌프는 이에 한정되지 않으며, 손잡이부(110) 외부에 배치되어 배관 등을 통하여 실린더(141)와 연결되는 것도 가능하다. 손잡이부(110) 내부에는 제어부(미도시)를 포함하는 것도 가능하다. 손잡이부(110) 내부에는 파형송출부(191)를 포함하는 것도 가능하다. 손잡이부(110) 내부에는 다양한 장치들과 전기적으로 연결되는 베터리가 배치되는 것도 가능하다.
본 발명의 실시예들은 상기에 한정되는 것은 아니며, 펌프, 제어부, 파형송출부(191), 베터리 등이 손잡이부(110) 외부에 배치되는 것도 가능하다. 이하에서는 설명의 편의를 위하여 펌프, 제어부, 파형송출부(191), 베터리 등은 손잡이부(110) 외부에 배치되는 경우를 중심으로 상세히 설명하기로 한다.
코어부(121)는 손잡이부(110) 내부에 배치될 수 있다. 이때, 코어부(121)는 손잡이부(110)에 나사, 볼트 등을 통하여 고정될 수 있다. 코어부(121)는 파형송출부(191)와 전기적으로 연결되어 파형송출부(191)에서 송출되는 고주파 또는 저주파 신호를 전달할 수 있다. 또한, 코어부(121)는 펌프와 연결되며, 기체가 이동하는 유로가 형성될 수 있다.
자석부(122)는 코어부(121)에 배치될 수 있다. 이때, 자석부(122)는 운동부(142)에 자기력 또는 전자기력을 공급함으로써 운동부(142)의 위치를 고정하거나 운동부(142)의 위치를 설정된 위치에 배치할 수 있다. 상기와 같은 자석부(122)는 영구자석 및/또는 전자석을 포함할 수 있다.
바디부(130)는 손잡이부(110)에 연결될 수 있다.
바디부(130)는 내부에 공간을 구비한 메인바디(131), 및 메인바디(131)로부터 돌출되는 돌출연결부(132)를 구비할 수 있다.
돌출연결부(132)는 손잡이부(110)에 삽입되어 손잡이부(110)와 결합할 수 있다.
돌출연결부(132)에는 코어 연결부(151)가 배치될 수 있다. 이때, 코어 연결부(151)는 돌출연결부(132)와 나사 결합 등을 통하여 연결될 수 있다. 또한, 코어 연결부(151)는 돌출연결부(132)와 연결되어 손잡이부(110) 및/또는 코어부(121)와 바디부(130)를 연결할 수 있다.
실린더(141)는 바디부(130) 내부에 배치될 수 있다. 실린더(141)는 내부에 공간이 형성되며, 이러한 공간에는 운동부(142)가 선형 운동할 수 있다. 실린더(141)는 코어부(121)와 연결될 수 있다.
실린더(141)의 적어도 일부분에 운동부(142)의 운동 시 기체가 배출되거나 유입되는 통과홀(141b)이 형성될 수 있다.
통과홀(141b)은 하나 이상 형성될 수 있으며, 복수 개 형성되는 경우 실린더(141)의 길이 방향으로 일정한 위치에 형성되는 것이 바람직하다.
통과홀(141b)은 캡부(193)와 인접한 부분(손잡이(110)와 반대 방향 부분)의 실린더(141)에 형성되는 것이 바람직하다. 운동부(142)가 실린더(141) 내부에서 후진(손잡이(110) 방향) 시, 통과홀(141b)를 통해, 실린더(141) 외부에서 내부로 공기가 유입될 수 있다. 운동부(142)가 실린더(141) 내부에서 전진 시 실린더(141) 내부에서 외부로 공기가 배출될 수 있다.
실린더(141)의 손잡이(110)와 인접한 부분에, 코어부(121)를 통하여 공급되는 기체가 유입되는 유입홀(141a)이 형성될 수 있다.
운동부(142)는 실린더(141) 내부에 배치되어 실린더(141)의 길이 방향으로 선형 운동할 수 있다. 이때, 운동부(142)는 상기 펌프의 작동에 따라 실린더(141) 내부에서 전진하거나 후진할 수 있다. 또한, 운동부(142)는 자석부(122)에 의해 실린더(141) 내부에서 후진할 수 있다.
체외 충격파 의료기가 작동 중이 아닐 때, 운동부(142)는 자석부(122)에 의해 고정될 수 있다.
운동부(142)의 외면은 굴곡지게 형성될 수 있다. 예를 들면, 운동부(142)의 외면에는 적어도 하나 이상의 홈이 형성될 수 있다. 이러한 경우 운동부(142)의 외면의 홈은 나선형으로 형성되거나 고리형으로 형성될 수 있다. 특히 상기와 같은 경우 운동부(142)는 실린더(141) 내부를 운동할 때 운동부(142)와 실린더(141) 사이의 접촉 면적을 저감시킴으로써 마찰을 줄일 수 있다.
충격 연결부(152)는 바디부(130)와 연결될 수 있다. 충격 연결부(152)의 일측에 실린더(141)의 끝단이 배치될 수 있다. 충격 연결부(152)는 실린더(141)의 끝단과 연결될 수 있다. 충격 연결부(152) 내부에 실린더(141)의 끝단이 배치될 수 있다. 충격 연결부(152)는 전도성 물질인 것이 바람직하다.
상기와 같은 충격 연결부(152)는 원기둥 형태의 충격 연결부 몸체(152a) 및 충격 연결부 몸체(152a) 내부로 돌출되는 내측 돌기부(152b)를 구비할 수 있다.
내측 돌기부(152b)는 환형으로 형성될 수 있다.
내측 돌기부(152b)는 내부에 홀이 형성될 수 있다. 이러한 경우 홀의 크기는 운동부(142)의 길이 방향과 수직한 단면의 크기보다 작게 형성됨으로서 운동부(142)가 통과하지 못할 수 있다.
내측 돌기부(152b)는 금속 재질로 형성될 수 있다.
충격부(160)는 일단이 충격 연결부(152)의 타측에 배치될 수 있다. 충격부(160)는 일단이 충격 연결부(152) 내부에 삽입되도록 배치될 수 있다.
충격부(160)는 충격 연결부(152) 내부에 삽입되는 삽입부(161), 및 삽입부(161)로부터 연장되며, 충격을 전달하는 충격전달부(162)를 구비할 수 있다.
충격부(160)는 금속 재질로 형성될 수 있다.
충격전달부(162)는 끝단이 단차지게 형성될 수 있다. 충격전달부(162)는 충격전달부 돌기(162a)를 구비할 수 있다.
캡부(193)는 돌기(162a)가 걸리도록 끝단 부분에 캡부(193)의 내측으로 절곡되는 절곡부(193a)를 구비할 수 있다. 충격전달부(162)가 진동하는 경우, 절곡부(193a)는 충격전달부(162)와 캡부(193)의 분리를 방지할 수 있다.
파형송출부(191)는 코어부(121)와 연결되어 코어부(121)로 고주파 및/또는 저주파 신호를 송출하거나 실린더(141)와 연결되어 실린더(141)로 고주파 및/또는 저주파 신호를 송출할 수 있다. 이하에서는 설명의 편의를 위하여 파형송출부(191)는 코어부(121)와 전기적으로 연결되는 경우를 중심으로 상세히 설명하기로 한다.
파형송출부(191)는 코어부(121)로 신호를 전송하고, 코어부(121)는 실린더(141)를 통하여 충격 연결부(152)로 전달하며, 충격 연결부(152)는 충격부(160)로 신호를 전달할 수 있다. 최종적으로, 파형송출부(191)는 고주파 신호 및/또는 저주파 신호를 충격부(160)로 송출할 수 있다.
접촉유지부(170)는 충격부(160)와 충격 연결부(152) 사이, 및/또는 충격 연결부(152)와 실린더(141) 사이에 배치될 수 있다. 이하에서는 설명의 편의를 위하여 접촉유지부(170)는 충격부(160)와 충격 연결부(152) 사이에 배치되는 경우를 중심으로 상세히 설명하기로 한다.
접촉유지부(170)는 스프링을 구비할 수 있다. 이하, 접촉유지부(170)를 스프링으로 보고 설명한다.
접촉유지부(170)는 충격부(160)의 적어도 일부를 감싸도록 배치될 수 있다. 이러한 경우 충격부(160)는 접촉유지부(170)의 압축 시 접촉유지부(170)의 압축 방향을 가이드할 뿐만 아니라 접촉유지부(170)가 휘어지는 것을 방지할 수 있다.
접촉유지부(170)의 일단은 충격 연결부(152)에 의해 지지되고, 접촉유지부(170)의 타단은 충격전달부(162)에 의해 지지될 수 있다. 접촉유지부(170)의 내경은 삽입부(161)의 외경보다 클 수 있다.
접촉유지부(170)가 접촉하는 충격전달부(162) 및/또는 충격 연결부(152)에는 접촉유지부(170) 내부로 돌출되어 접촉유지부(170)의 끝단이 움직이는 것을 방지하는 돌기가 구비될 수 있다. 다른 실시예로서 접촉유지부(170)가 접촉하는 충격전달부(162) 및/또는 충격 연결부(152)에는 접촉유지부(170)의 끝단이 삽입되어 안착하는 홈이 형성되는 것도 가능하다. 또 다른 실시예로써 접촉유지부(170)의 끝단에는 자석이 배치되어 충격전달부(162) 및/또는 충격 연결부(152)에 고정시키는 것도 가능하다.
접촉유지부(170)는 충격 연결부(152)와 충격부(160)에 각각 접촉함으로써 충격 연결부(152)와 충격부(160)를 전기적으로 연결할 수 있다. 또한, 접촉유지부(170)는 충격 연결부(152)와 실린더(141)가 서로 이격되는 것을 방지할 수 있다. 특히 운동부(142)가 충격 연결부(152)를 가격하는 경우 충격 연결부(152)와 실린더(141)가 서로 떨어지는 것을 방지할 수 있다.
실링부(180)는 다양한 구성 사이에 배치되어 외부로 기체가 이동하거나 내부로 기체가 이동하는 것을 방지할 수 있다. 이때, 실링부(180)는 고무, 실리콘 등과 같은 탄성 재질로 형성될 수 있다.
실링부(180)는 실린더(141)와 충격 연결부(152) 사이에 배치되는 제1 실링부(181), 및 충격 연결부(152)와 충격부(160) 사이에 배치되는 제2 실링부(182) 중 적어도 하나를 구비할 수 있다.
충격 연결부(152)의 내면에는 제1 실링부(181)가 삽입되어 안착하는 홈이 형성될 수 있다. 충격 연결부(152)의 내면 및/또는 충격부(160)의 외면에는 제2 실링부(182)가 삽입되어 안착하는 홈이 형성될 수 있다.
상기와 같은 제1 실링부(181) 및 제2 실링부(182)는 다른 구성요소를 결합시킬 수 있다. 이때, 제1 실링부(181) 및 제2 실링부(182)는 서로 결합하는 구송요소 사이의 유격을 어느 정도 허용할 뿐만 아니라 운동부(142)의 운동 시 가해지는 진동이 실린더(141)의 길이 방향과 수직 방향으로 전달되는 것을 저감시킬 수 있다. 뿐만 아니라 제1 실링부(181) 및 제2 실링부(182)는 체외 충격파 의료기(100)의 제조 시 각 구성요소 사이의 조립에 필요한 시간을 절감시킬 수 있다.
외피부(192)는 바디부(130)의 외면을 감싸도록 배치되며 손잡이부(110)와 결합할 수 있다. 외피부(192)는 캡부(193)와 결합할 수 있다.
외피부(192)는 고무, 실리콘 등과 같은 절연재질로 형성될 수 있다. 이러한 외피부(192)는 외부에서 발생하는 정전기 등으로 인하여 발생할 수 있는 체외 충격파 의료기(100)의 오작동을 방지할 수 있다. 또한, 외피부(192)는 체외 충격파 의료기(100)의 작동 시 발생하는 고주파 신호 및/또는 저주파 신호가 바디부(130) 외부로 전달되는 것을 방지할 수 있다.
캡부(193)는 외피부(192)와 결합할 수 있다. 캡부(193)는 고무, 실리콘 등과 같은 탄성재질을 포함하거나 합성수지 재질을 포함할 수 있다.
캡부(193)는 충격부(160)의 일부가 외부로 노출되도록 홀이 형성될 수 있다. 다른 실시예로써 캡부(193)는 충격부(160)와 접촉하거나 결합하여 사용자의 신체에 접촉하는 접촉부를 더 포함하는 것도 가능하다. 이때, 상기 접촉부는 금속 재질을 포함할 수 있다.
한편, 상기와 같은 체외 충격파 의료기(100)는 다양한 기능을 구현할 수 있다. 예를 들면, 체외 충격파 의료기(100)는 사용자의 신호에 따라 작동할 수 있다. 구체체적으로 사용자는 손잡이부(110) 또는 손잡이부(110) 외부에 배치된 입력부(111)를 통하여 제어신호를 입력할 수 있다. 제어신호는 사용자에게 물리적 충격을 전달하거나 고주파 신호 및/또는 저주파 신호를 전달하라는 신호일 수 있다.
입력부(111)는 다양한 형태로 형성될 수 있다. 예를 들면, 일 실시예로써 입력부(111)는 버튼 형태로 형성되며, 버튼에 누르는 힘에 따라 서로 상이한 제어신호를 발생시킬 수 있다. 다른 실시예로써 입력부(111)는 죠그셔틀 형태로써 회전에 따라 서로 상이한 제어신호를 발생시킬 수 있다. 또 다른 실시예로서 입력부(111)는 터치스크린 형태로 형성되는 것도 가능하다. 입력부(111)는 상기에 한정되는 것은 아니며 다양한 제어신호를 입력할 수 있는 모든 형태를 포함할 수 있다.
사용자에게 물리적 충격을 전달하는 경우, 펌프가 작동하여 기체를 실린더(141)로 공급할 수 있다. 이러한 경우 운동부(142)와 실린더(141) 끝단 사이에 기체가 유입됨으로써 운동부(142)와 실린더(141) 끝단 사이의 압력이 증가할 수 있다. 이때, 자석부(122) 및/또는 코어부(121)는 실린더(141)의 끝단을 완전히 차폐함으로써 실린더(141) 끝단으로 기체가 유출되는 것을 방지할 수 있다. 이러한 경우 실린더(141) 끝단에는 별도의 커버(143)가 배치되어 실린더(141)의 끝단을 차폐시키는 것도 가능하다.
자석부(122)의 자력에 따른 인력으로 운동부(142)의 운동을 어느 정도 방해함으로써, 운동부(142)와 실린더(141) 끝단 사이의 공간 내부의 압력이 일정한 압력이 될 때까지 운동부(142)는 움직이지 않을 수 있다. 이때, 운동부(142)는 자성체를 포함함으로써 자석부(122)의 자기력에 의하여 운동하지 않을 수 있다.
이후 운동부(142)와 실린더(141) 끝단 사이의 공간 내부의 압력이 일정 압력 이상이 되면 자석부(122)가 운동부(142)에 미치는 자력보다 기체 압력에 의하여 운동부(142)를 미는 힘이 더 커질 수 있다.
기체 압력이 자력 보다 커지면, 운동부(142)는 자석부(122)의 자력을 탈출하여, 실린더(141)의 자석부(122)가 있는 일측에서 타측으로 이동할 수 있다. 운동부(142)는 실린더(141)의 내부에서 실린더(141)의 길이 방향을 따라 선형 운동할 수 있다.
운동부(142)의 속력이 높아야 운동에너지가 높아지므로, 운동부(142)의 외측과 실린더(141)의 내측은 마찰력이 작은 것이 바람직하다.
운동부(142)가 실린더(141)의 타측(전진)까지 슬라이딩되면, 운동부(142)는 충격부(160)을 가격하여 운동 에너지를 전달할 수 있다. 운동부(142)는 충격 연결부(152)의 내측 돌기부(152b)에 충돌하고, 내측 돌기부(152b)는 삽입부(161)를 가력함으로써, 운동 에너지가 충격전달부(162)에 전달될 수 있다. 운동부(142)의 일측이 볼록한 형상으로 형성될 수 있다. 이 경우, 운동부(142)의 볼록한 일측은 내측 돌기부(152b)의 홀을 관통하여, 충격부(160)에 직접 가격할 수 있다.
이하, 운동부(142)가 충격부(160)에 직접 가격하는 것으로 가정하고 설명한다.
충격부(160)의 일측인 삽입부(161)에 가격된 충격파는 충격부(160)의 내부를 통해 충격부(160)의 타측으로 전될되어, 피시술자에게 충격파를 전달할 수 있다.
운동부(142)가 충격부(160)을 가격하면, 그 반동으로 실린더(141)의 일측(후진)으로 슬라이딩될 수 있다. 이를 위해, 운동부(142) 및 충격부(160)은 탄성계수가 높은 것이 바람직하다.
운동부(142)가 더 빨리 후진되도록, 운동부(142) 후진 시 펌프는 실린더(141) 내부의 기체를 흡입하거나, 실린더(141) 내부로 기체 공급을 중지할 수 있다.
운동부(142)를 실린더(141) 내부에 후진시키는 경우 상기 펌프가 실린더(141) 내부의 공기를 실린더(141) 외부로 배출시키는 것 이외에 자석부(122)는 운동부(142)에 자기력을 제공함으로써 운동부(142)를 후진시킬 수 있다. 또한, 자석부(122)는 운동부(142)가 실린더(141) 내부에서 일정한 위치에 도달하면 자기력을 운동부(142)에 가함으로써 운동부(142)의 위치를 고정시키거나 운동부(142)를 후진시키는 것도 가능하다.
운동부(142)가 후진하여 실린더(141)의 일측으로 이동하면, 자석부(122) 또는 커버(143)에 충돌한 후 다시 전진 운동할 수 있다. 또는 운동부(142)는 후진하다가 펌프에 의한 기체 압력으로 운동 방향을 전환하여 전진 운동할 수 있다. 운동부(142) 후진 시 기체 공급이 중지되거나 기체 흡입하는 경우, 운동부(142) 전진 시 다시 기체를 공급할 수 있다.
상기와 같이 운동부(142)가 왕복 운동하는 경우 운동부(142)는 충격 연결부(152)를 일정 시간 간격 등과 같이 복수번 가격하게 되고, 이로 인하여 충격전달부(162)는 진동할 수 있다. 이러한 진동은 충격전달부(162)를 통하여 사용자의 신체에 전달될 수 있다.
사용자는 입력부를 통하여 본 체외 충격파 의료기가 고주파 신호 및/또는 저주파 신호 치료기로서 기능하도록 할 수 있다. 예를 들면, 파형송출부(191)가 고주파 신호를 코어부(121)로 전달하는 경우 고주파 신호는 적어도 코어부(121), 실린더(141), 및 충격부(160)를 통해 사용자의 신체에 전달될 수 있다.
사용자는 본 장치를 이용하여, 전기 신호(고주파 신호 및/또는 저주파 신호)와 충격파를 동시에 이용할 수 있다. 이와 같은 경우 운동부(142)의 왕복 운동에 따른 충격부(160)의 진동으로, 전기 신호에 이상이 있을 수 있다.
운동부(142)와 충격 연결부(152)의 충돌에 의해, 순간적으로 충격 연결부(152)와 실린더(141)의 끝단이 이격되거나, 충격 연결부(152)와 충격부(160)가 서로 이격될 수 있다. 이때, 충격 연결부(152)와 실린더(141)의 끝단 사이 및/또는 충격 연결부(152)와 충격부(160) 사이에는 일정한 간격이 발생할 수 있다. 이러한 간격은 순간적으로 캐패시터의 역할을 할 수 있다. 순간적으로 발생한 캐패시터는 과도한 전하의 집중으로 인하여 순간적으로 과전류가 발생할 수 있다. 이러한 과전류는 충격부(160)를 통하여 사용자에게 과도한 에너지를 제공하여 사용자의 신체를 손상시키거나 사용자에게 불쾌감을 줄 수 있다.
접촉유지부(170) 상기와 같은 간격에 따른 문제가 발생하는 것을 방지할 수 있다. 즉, 접촉유지부(170)는 상기에서 설명한 바와 같이 충격 연결부(152)와 실린더(141) 끝단 사이 및/또는 충격 연결부(152)와 충격부(160)를 전기적으로 항상 연결시킴으로써 상기와 같은 문제를 해결할 수 있다.
한편, 상기와 같은 문제는 파형송출부(191)가 저주파 신호를 발생시켜 전달시키는 경우에도 동일할 수 있다. 뿐만 아니라 파형송출부(191)가 고주파 신호와 저주파 신호를 믹스하여 충격부(160)로 제공하는 경우에도 동일하게 적용될 수 있다.
따라서 체외 충격파 의료기(100)는 고주파 신호 및/또는 저주파 신호를 사용자에게 제공함과 동시에 진동을 주는 경우에도 고주파 신호 및/또는 저주파 신호로 인한 사용자의 신체 손상 또는 불쾌감을 방지할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 체외 충격파 의료기의 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 5를 참고하면, 체외 충격파 의료기(미도시)는 손잡이부(미도시), 코어부(미도시), 자석부(미도시), 바디부(미도시), 실린더(141), 운동부(미도시), 코어 연결부(미도시), 충격 연결부(152), 충격부(160), 파형송출부(미도시), 접촉유지부(170), 실링부(미표기), 외피부(미도시), 캡부(미도시) 및 커버(미도시)를 포함할 수 있다. 이때, 상기 손잡이부, 상기 코어부, 상기 자석부, 상기 바디부, 실린더(141), 상기 운동부, 상기 코어 연결부, 충격 연결부(152), 상기 파형송출부, 상기 실링부, 상기 외피부, 상기 캡부 및 상기 커버는 상기 도 1 내지 도 4에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
충격부(160)는 삽입부(161)와 충격전달부(162)를 구비할 수 있다. 이때, 충격전달부(162)에는 후술할 제1 접촉유지부(171)의 위치를 한정하도록 충격전달부(162) 외면으로부터 돌출되는 위치한정부(162b)가 배치될 수 있다. 이러한 경우 위치한정부(162b)는 제1 접촉유지부(171)의 내측에 배치될 수 있다.
접촉유지부(170)는 제1 접촉유지부(171)와 제2 접촉유지부(172)를 구비할 수 있다. 제1 접촉유지부(171)는 스프링을 구비할 수 있으며, 충격전달부(162)와 충격 연결부(152) 사이에 배치될 수 있다. 제2 접촉유지부(172)는 삽입부(161)와 충격 연결부(152) 사이에 배치되는 자석을 구비할 수 있다. 이러한 자석은 영구자석 형태일 수 있으며, 내측 돌기부(152b)에 상기 운동부의 타격 시 내측 돌기부(152b)와 삽입부(161)가 서로 떨어지는 것을 방지할 수 있다.
따라서 상기 체외 충격파 의료기는 물리적 진동을 사용자에게 전달함과 동시에 안정적으로 고주파 신호 및/또는 저주파 신호를 제공할 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 체외 충격파 의료기의 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 6을 참고하면, 체외 충격파 의료기(미도시)는 손잡이부(미도시), 코어부(미도시), 자석부(미도시), 바디부(미도시), 실린더(141), 운동부(미도시), 코어 연결부(미도시), 충격 연결부(152), 충격부(160), 파형송출부(미도시), 접촉유지부(170), 실링부(미표기), 외피부(미도시), 캡부(미도시) 및 커버(미도시)를 포함할 수 있다. 이때, 상기 손잡이부, 상기 코어부, 상기 자석부, 상기 바디부, 실린더(141), 상기 운동부, 상기 코어 연결부, 충격 연결부(152), 상기 파형송출부, 상기 실링부, 상기 외피부, 상기 캡부 및 상기 커버는 상기 도 1 내지 도 4에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
충격부(160)는 삽입부(161)와 충격전달부(162)를 포함할 수 있다. 이때, 충격전달부(162)에는 후술할 제1 접촉유지부(171)의 위치를 한정하도록 충격전달부(162) 외면으로부터 인입되는 홈 형태인 위치한정부(162b)가 배치될 수 있다.
접촉유지부(170)는 제1 접촉유지부(171), 제2 접촉유지부(172) 및 제3접촉유지부(173)를 구비할 수 있다.
제1 접촉유지부(171)는 스프링을 구비할 수 있으며, 충격전달부(162)와 충격 연결부(152) 사이에 배치될 수 있다. 제2 접촉유지부(172)는 삽입부(161) 및/또는 충격 연결부(152)에 배치되는 자석을 구비할 수 있다. 이러한 자석은 영구자석 형태일 수 있으며, 내측 돌기부(152b)에 상기 운동부의 타격 시 내측 돌기부(152b)와 삽입부(161)가 서로 떨어지는 것을 방지할 수 있다. 제3접촉유지부(173)는 실린더(141) 및/또는 충격 연결부(152)에 배치되는 자석으로 구비할 수 있다. 이러한 자석은 영구자석 형태일 수 있으며, 내측 돌기부(152b)에 상기 운동부의 타격 시 내측 돌기부(152b)와 실린더(141)의 끝단이 서로 떨어지는 것을 방지할 수 있다.
따라서 상기 체외 충격파 의료기는 물리적 진동을 사용자에게 전달함과 동시에 안정적으로 고주파 신호 및/또는 저주파 신호를 제공할 수 있다.
도 7은 본 발명의 다른 실시예에 따른 체외 충격파 의료기의 연결부, 충격부 및 접촉유지부를 보여주는 단면도이다.
도 7을 참고하면, 체외 충격파 의료기(미도시)는 손잡이부(미도시), 코어부(미도시), 자석부(미도시), 바디부(미도시), 실린더(141), 운동부(미도시), 코어 연결부(미도시), 충격 연결부(152), 충격부(160), 파형송출부(미도시), 접촉유지부(170), 실링부(미표기), 외피부(미도시), 캡부(미도시) 및 커버(미도시)를 포함할 수 있다. 이때, 상기 손잡이부, 상기 코어부, 상기 자석부, 상기 바디부, 실린더(141), 상기 운동부, 상기 코어 연결부, 충격 연결부(152), 충격부(160), 상기 파형송출부, 상기 실링부, 상기 외피부, 상기 캡부 및 상기 커버는 상기 도 1 내지 도 4에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
충격부(160)는 삽입부(161)와 충격전달부(162)를 포함할 수 있다. 이때, 충격전달부(162)에는 도 6 및 도 7에 도시된 것과 같이 후술할 제1 접촉유지부(171)의 위치를 한정하도록 충격전달부(162) 외면으로부터 인입되는 홈 형태 또는 돌기 형태의 위치한정부가 배치되는 것도 가능하다.
접촉유지부(170)는 제1 접촉유지부(171) 및 제4 접촉유지부(174)를 구비할 수 있다.
제1 접촉유지부(171)는 스프링을 구비할 수 있으며, 충격전달부(162)와 충격 연결부(152) 사이에 배치될 수 있다.
제4 접촉유지부(174)는 충격부(160)와 충격 연결부(152) 사이에 배치되어 충격부(160)와 충격 연결부(152)를 전기적으로 연결하는 전선을 구비할 수 있다. 제4 접촉유지부(174)의 끝단 중 하나는 충격부(160)의 다양한 부위에 부착되거나 고정될 수 있다. 제4 접촉유지부(174)의 끝단 중 다른 하나는 충격 연결부(152)에 부착되거나 고정될 수 있다. 이러한 경우 제4 접촉유지부(174)의 끝단 각각은 충격부(160)의 외면 및 충격 연결부(152)의 표면에 삽입되어 고정될 수 있다. 다른 실시예로서 제4 접촉유지부(174)의 끝단 각각은 충격부(160)의 외면 및 충격 연결부(152)의 표면에 용접으로 고정될 수 있다.
또 다른 실시예로써 제4 접촉유지부(174)의 끝단 각각은 자석을 포함하여, 충격부(160)의 외면 및 충격 연결부(152)의 표면에 부착됨으로써 고정될 수 있다.
또 다른 실시예로써 제4 접촉유지부(174)의 끝단 각각은 충격부(160)의 외면 및 충격 연결부(152)의 표면에 테이프 등으로 고정될 수 있다. 상기와 같은 경우 충격부(160)와 충격 연결부(152)는 서로 전기적으로 연결될 뿐만 아니라 상기 운동부가 내측 돌기부(152b)를 타격 시 충격부(160)와 충격 연결부(152)가 분리되는 것을 방지할 수 있다.
따라서 상기 체외 충격파 의료기는 물리적 진동을 사용자에게 전달함과 동시에 안정적으로 고주파 신호 및/또는 저주파 신호를 제공할 수 있다.
도 8은 본 발명의 다른 실시예에 따른 체외 충격파 의료기의 블록 구성도이다. 도 1 내지 도 7을 참고한다. 본 실시예들에 따른 구성요소는 전술한 동일 명칭 및/또는 도면 부호의 구성요소에 대한 설명으로 대체되어 생략될 수 있다.
도 8을 참조하면, 체외 충격파 의료기는 제어부(100), 펌프(240), 파형송출부(191), 신호 전달부, 충격부 전극면(165), 및 모노폴라용 전극 패드(166)를 포함할 수 있다.
파형송출부(191)는 고주파 및 저주파 중 적어도 하나의 전기 신호를 발진할 수 있다. 파형송출부(191)는 발진된 전기 신호를 외부로 송출하기 위해 2 이상의 단자를 구비할 수 있다.
펌프(240)는 실린더(141)에 연결되어, 실린더(141)에 공기를 공급할 수 있다.
파형송출부(191) 중 제1 단자는 신호 전달부와 연결될 수 있다. 신호 전달부는 적어도 전술한 실린더(141), 충격 연결부(152), 및 충격부(160)를 구비할 수 있다. 앞서 설명한 바와 같이, 실린더(141), 충격 연결부(152), 및 충격부(160)는 전기적으로 서로 연결될 수 있다. 전기 신호는 실린더(141), 충격 연결부(152), 및 충격부(160)를 통해, 사용자 피부에 전송될 수 있다.
실린더(141)는 바디부(130) 내부에 배치될 수 있다.
충격 연결부(152)는 실린더(141)의 일측 끝단 및 충격부(160)를 연결할 수 있다.
충격부(160)는 실린더(141) 내부를 왕복 운동하는 운동부(142)에 의한 충격파를 생성할 수 있다. 생성된 충격파는 사용자 피부에 전달될 수 있다.
신호 전달부는 충격 연결부(152)와 충격부(160) 사이에 배치되어 충격 연결부(152)와 충격부(160)를 전기적으로 연결하는 접촉유지부(170)를 더 구비할 수 있다.
접촉유지부(170)는 충격 연결부(152)와 충격부(160)에 이격이 있는 경우, 충격 연결부(152)와 충격부(160)를 전기적으로 연결할 수 있다. 접촉유지부(170)는 전도성 물질인 스프링을 구비할 수 있다.
충격부 전극면(165)은 충격부(160)의 사용자 피부에 접하는 일측 면을 의미할 수 있다. 충격부 전극면(165)은 사용자 피부에 부착되는 모노폴라용 전극 패드(166)와 함께 양 단자로 기능할 수 있다.
모노폴라(mono-polar)용 전극 패드(166)는 충격부 전극면(165)과 별도 위치의 피부에 접촉되는 판 형 패드일 수 있다. 즉, 피시술자의 팔, 다리, 몸통 등은 모노폴라용 전극 패드(166)와 충격부 전극면(165) 사이에 배치될 수 있다.
모노폴라용 전극 패드(166)는 후술하는 바이폴라 방식 보다 깊은 피부 침투가 가능할 수 있다.
제어부(100)는 체외 충격파 의료기의 전반적인 동작을 제어하며, 마이크로 컨트롤러나 중앙처리장치로 해석될 수 있다.
도 8을 참조하면, 체외 충격파 의료기는 충격부(160)의 온도를 측정하는 온도 센서부(220)를 더 포함할 수 있다.
온도 센서부(220)는 충격부(160)의 온도 측정에 한정되지 않고, 충격부 전극면(165) 또는 충격부 전극면(165)이 접하는 사용자 피부의 온도를 측정할 수 있다. 충격부(160), 충격부 전극면(165) 및 사용자 피부의 온도는 서로 실질적으로 동일하거나, 특정 상수에 따라 비례할 수 있다. 즉, 온도 센서부(220)가 사용자 피부를 측정하여도, 실질적으로 충격부(160)의 온도를 측정하는 것으로 해석될 수 있다.
온도 센서부(220)는 공지된 다양한 온도 센서를 구비할 수 있다. 온도 센서는 열전대(thermocouples)나 저항 등을 이용하여 온도를 감지하는 접촉식 온도 센서, 및 적외선 등으로 온도를 감지하는 비접촉식 온도 센서 등이 있을 수 있다.
제어부(100)는 상기 측정된 온도가 기 설정된 온도를 초과하면, 파형송출부(191)의 작동을 중지시킬 수 있다. 사용자 피부의 온도가 너무 높으면, 화상의 위험이 있기 때문이다.
도 8을 참조하면, 체외 충격파 의료기는 충격부 전극면(165)이 사용자 피부에 접촉하는 지, 그 접촉 여부를 감지하는 모노폴라용 접촉 감지부(231)를 더 포함할 수 있다.
제어부(100)는 모노폴라용 접촉 감지부(231)에서 접촉을 감지하지 않으면, 파형송출부(191)의 작동을 중지시킬 수 있다. 이로써 불필요한 전력의 소모를 방지할 수 있다. 모노폴라용 접촉 감지부(231)에서 비접촉 감지시, 제어부(100)는 펌프(240)의 작동을 중지시킬 수 있다.
모노폴라용 접촉 감지부(231)는 충격부 전극면(165) 및 모노폴라용 전극 패드(166) 사이의 전기적인 특성을 기초로, 상기 접촉 여부를 감지할 수 있다. 전기적인 특성으로 충격부 전극면(165)와 모노폴라용 전극 패드(166) 사이의 저항이나 임피던스 등이 있을 수 있다. 저항 보다는 임피던스를 기초로 접촉 여부를 감지하는 것이 바람직할 수 있다. 충격부 전극면(165)이 사용자 피부에 접촉하지 않는 경우의 임피던스는 공기가 매질로 기능하여, 충격부 전극면(165)이 사용자 피부에 접촉하지 않는 경우의 임피던스와 상이하기 때문이다.
다른 실시예로, 모노폴라용 접촉 감지부(231)는 접촉 감지 센서(235)를 구비할 수 있다. 접촉 감지 센서(235)는 공지된 다양한 센서일 수 있다. 예를 들어, 접촉 감지 센서(235)는 스프링 등을 이용한 기계적인 스위치, 공진형 압력 센서, 압전형 압력 센서, 스트레인게이지형 압력센서, 정전용량형 압력센서 등이 있을 수 있다.
온도 센서부(220) 및/또는 접촉 감지 센서(235)는 충격부 전극면(165)의 부근에 예를 들어, 캡부(193)에 장착될 수 있다.
도 8을 참조하면, 체외 충격파 의료기는 입력부(111), 통신부(260), 및 저장부(290)를 더 포함할 수 있다. 사용자는 입력부(111)를 통해 체외 충격파 의료기의 작동을 지시할 수 있다. 체외 충격파 의료기는 통신부(260)를 통해, 외부 장치와 통신할 수 있다. 저장부(290)는 체외 충격파 의료기가 동작하는 데 필요한 데이터와 프로그램 등을 저장할 수 있다.
도 9는본 발명의 다른 실시예에 따른 체외 충격파 의료기의 블록 구성도이다. 도 10은 도 9의 실시예에 따른 체외 충격파 의료기의 충격부 및 접촉유지부를 보여주는 단면도이다. 도 11은 도 10의 좌측면도이다. 도 12는 도 10의 분해도이다. 도 1 내지 도 8을 참고한다. 본 실시예들에 따른 구성요소는 전술한 동일 명칭 및/또는 도면 부호의 구성요소에 대한 설명으로 대체되어 생략될 수 있다.
도 9 내지 도 12를 참조하면, 본 실시예에 따른 바이폴라(bi-polar)형 체외 충격파 의료기는 파형송출부(191), 신호 전달부(210), 충격부(160), 및 바이폴라용 전극(168)을 포함할 수 있다.
제어부(100)는 체외 충격파 의료기의 전반적인 동작을 제어하며, 마이크로 컨트롤러나 중앙처리장치로 해석될 수 있다.
파형송출부(191)는 전기 신호를 발진할 수 있다. 전기 신호는 고주파 및 저주파 중 적어도 하나일 수 있다. 파형송출부(191)는 발진된 전기 신호를 외부로 송출하기 위해 2 이상의 단자를 구비할 수 있다.
펌프(240)는 실린더(141)에 연결되어, 실린더(141)에 공기를 공급할 수 있다.
실린더(141)는 바디부(130) 내부에 배치될 수 있다. 바디부(130)는 손잡이부(110)에 연결될 수 있다. 바디부(130)는 내부에 공간을 구비한 메인바디(131), 및 메인바디(131)로부터 돌출되는 돌출연결부(132)를 구비할 수 있다. 손잡이부(110)는 사용자가 파지 가능할 수 있다. 손잡이부(110)는 내부에 공간이 배치될 수 있으며, 절연물질로 형성될 수 있다. 손잡이부(110) 내부에는 다양한 장치가 배치될 수 있다. 예를 들면, 손잡이부(110)는 펌프(240), 파형송출부(191), 등이 배치될 수 있다. 다만 이에 한정되지 않고, 펌프(240) 및 파형송출부(191) 등은 손잡이부(110) 외부에 배치될 수도 있다.
실린더(141)는 내부에 공간이 형성되며, 이러한 공간에는 운동부(142)가 선형 운동할 수 있다. 운동부(142)는 실린더(141) 내부에 배치되어 실린더(141)의 길이 방향으로 선형 운동할 수 있다. 운동부(142)는 펌프(240)의 작동에 따라 실린더(141) 내부에서 전진하거나 후진할 수 있다.
파형송출부(191) 중 제1 단자는 신호 전달부(210)와 연결될 수 있다. 신호 전달부(210)는 적어도 전술한 실린더(141), 충격 연결부(152), 및 충격부(160)를 구비할 수 있다. 앞서 설명한 바와 같이, 실린더(141), 충격 연결부(152), 및 충격부(160)는 전기적으로 서로 연결될 수 있다. 전기 신호는 실린더(141), 충격 연결부(152), 및 충격부(160)를 통해, 사용자 피부에 전송될 수 있다.
충격 연결부(152)는 그 일측에 실린더(141)의 일측 끝단과 연결되는 실린더 포켓(141-1)을 구비할 수 있다. 충격 연결부(152)의 타측은 충격부(160)와 연결될 수 있다. 충격 연결부(152)는 실린더(141)와 충격부(160)를 연결할 수 있다.
충격부(160)는 실린더(141) 내부를 왕복 운동하는 운동부(142)에 의한 충격파를 생성할 수 있다. 생성된 충격파는 사용자 피부에 전달될 수 있다.
신호 전달부(210)는 충격 연결부(152)와 충격부(160) 사이에 배치되어 충격 연결부(152)와 충격부(160)를 전기적으로 연결하는 접촉유지부(170);를 더 구비할 수 있다.
접촉유지부(170)는 충격 연결부(152)와 충격부(160)에 이격이 있는 경우, 충격 연결부(152)와 충격부(160)를 전기적으로 연결할 수 있다. 접촉유지부(170)는 전도성 물질인 스프링을 구비할 수 있다.
충격부(160)의 사용자 피부에 접하는 일측 면인 충격부 전극면(165)은 바이폴라용 전극(168)과 함께 양 단자로 기능할 수 있다.
도 10 내지 도 12을 참조하면, 바이폴라용 전극(168)은 충격부(160)의 인근에 배치될 수 있다.
바이폴라용 전극(168)은 충격부(160)와 캐패서턴스를 형성할 수 있다. 바이폴라용 전극(168)은 충격부(160)을 감싸는 도넛 형상의 환형이거나, 충격부(160)의 주위에 배치되는 복수의 금속 단자일 수 있다.
바이폴라용 전극(168)은 캡부(193)에 의해 충격부(160) 주위에 결합될 수 있다. 캡부(193)는 절연성 재질이어야 한다. 캡부(193)는 내부에 충격부(160)가 배치되고 바이폴라용 전극(168)이 배치되도록 하는 형상일 수 있다. 도 12를 참조하면, 캡부(193)는 결합링(310)을 통해 충격 연결부(152) 아니면, 바디부(130)와 고정 연결될 수 있다. 결합링(310)은 타 구성요소와 억지끼움 또는 나사 결합될 수 있다.
캡부(193)는 충격부 전극면(165) 및 바이폴라용 전극(168)의 일면이 피시술자의 피부와 접촉될 수 있도록 일측이 개방되는 것이 바람직하다.
바이폴라용 전극(168)은 신호 전달 케이블(215)을 통해 파형송출부(191)의 제2 단자와 연결될 수 있다. 신호 전달 케이블(215)은 유연한 전선줄일 수 있다. 신호 전달 케이블(215)은 미관 및 사용상의 안전을 위해, 손잡이부(110), 바디부(130) 등의 내부에 배치될 수 있다. 예를 들어, 도 12와 같이, 신호 전달 케이블(215)은 결합링(310)에 마련된 관통홀(320)을 관통하도록 배치되어, 체외 충격파 의료기의 내부에 배치될 수 있다.
신호 전달 케이블(215)은 충격부(160)로 향하는 전기회로의 일부와 단선되지 않도록 외부는 절연체로 둘려 쌓이는 것이 바람직하다.
신호 전달 케이블(215)은 충격에 의한 영향이 충격부(160) 보다 덜 한 바이폴라용 전극(168)에 연결되어 있어, 신호 전달부(210) 즉, 접촉유지부(170)와 같이 스프링으로 구성되지 않아도 무방할 수 있다. 다만 이에 한정되지 않고, 신호 전달 케이블(215)의 일부는 접촉유지부(170)의 외주면에 전기 신호를 전달할 수 있는 스프링으로 구성되어(또는 구비하여), 예를 들어 스프링의 일측은 바이폴라용 전극(168)에 다른 일측은 바디부(130)의 일측에 고정될 수 있다.
충격부(160) 및 바이폴라용 전극(168)을 이용한 경우, 모노폴라 방식 보다 협소하지만 전기 에너지의 집중적인 피부 침투가 가능할 수 있으며, 협소한 부분만 치료하므로 화상 등의 위험으로부터 보다 더 안전할 수 있다. 또한 바이폴라 방식의 경우, 시술자가 모노폴라용 전극 패드(166)를 피시술자의 몸에 부착해야 하는 번거로움이 없다.
도 9를 참조하면, 체외 충격파 의료기는 충격부(160) 및 바이폴라용 전극(168)의 온도 중 적어도 하나를 측정하는 온도 센서부(220)를 더 포함할 수 있다.
온도 센서부(220)는 충격부(160)의 온도 측정에 한정되지 않고, 충격부 전극면(165) 또는 충격부 전극면(165)이 접하는 사용자 피부의 온도를 측정할 수 있다. 충격부(160), 충격부 전극면(165) 및 사용자 피부의 온도는 서로 실질적으로 동일하거나, 특정 상수에 따라 비례할 수 있다. 즉, 온도 센서부(220)가 사용자 피부를 측정하여도, 실질적으로 충격부(160)의 온도를 측정하는 것으로 해석될 수 있다. 또는 그 역으로도 적용될 수 있다.
온도 센서부(220)는 공지된 다양한 온도 센서를 구비할 수 있다. 온도 센서는 열전대(thermocouples)나 저항 등을 이용하여 온도를 감지하는 접촉식 온도 센서, 및 적외선 등으로 온도를 감지하는 비접촉식 온도 센서 등이 있을 수 있다.
제어부(100)는 상기 측정된 온도가 기 설정된 온도를 초과하면, 파형송출부(191)의 작동을 중지시킬 수 있다. 사용자 피부의 온도가 너무 높으면, 화상의 위험이 있기 때문이다.
도 9를 참조하면, 체외 충격파 의료기는 충격부 전극면(165) 및 바이폴라용 전극(168) 중 적어도 어느 하나가 사용자 피부에 접촉하는 지, 그 접촉 여부를 감지하는 바이폴라용 접촉 감지부(233)를 더 포함할 수 있다. 명세서 전반에서 바이폴라용 전극(168)이 충격부 전극면(165)와 같이 언급되는 경우, 바이폴라용 전극(168)은 충격부 전극면(165)와 같이 피시술자의 피부에 접하는 면으로 해석될 수 있다.
제어부(100)는 바이폴라용 접촉 감지부(233)에서 접촉을 감지하지 않으면, 파형송출부(191)의 작동을 중지시킬 수 있다. 이로써 불필요한 전력의 소모를 방지할 수 있다. 바이폴라용 접촉 감지부(233)에서 비접촉 감지시, 제어부(100)는 펌프(240)의 작동을 중지시킬 수 있다.
바이폴라용 접촉 감지부(233)는 충격부 전극면(165) 및 바이폴라용 전극(168) 사이의 전기적인 특성을 기초로, 상기 접촉 여부를 감지할 수 있다. 전기적인 특성으로 충격부 전극면(165)와 바이폴라용 전극(168) 사이의 임피던스가 이용될 수 있다. 임피던스 성분 중 특히, 인덕턴스(Inductance) 또는 캐피시턴스(Capacitance)가 이용될 수 있다.
예를 들어, 바이폴라용 접촉 감지부(233)는 충격부 전극면(165)과 바이폴라용 전극(168) 사이의 정전용량(캐패시턴스)를 측정할 수 있다. 측정된 정전용량이 기설정된 정전용량 보다 높으면, 제어부(100)는 충격부 전극면(165)과 바이폴라용 전극(168) 중 적어도 하나가 피부와 접촉되었다고 판단할 수 있다. 제어부(100)는 측정된 정전용량이 기설정된 정전용량 보다 높을 경우에, 파형송출부(191)가 작동되도록 할 수 있다.
다른 실시예로, 바이폴라용 접촉 감지부(233)는 접촉 감지 센서(235)를 구비할 수 있다. 접촉 감지 센서(235)는 공지된 다양한 센서일 수 있다. 예를 들어, 접촉 감지 센서(235)는 스프링 등을 이용한 기계적인 스위치, 공진형 압력 센서, 압전형 압력 센서, 스트레인게이지형 압력센서, 정전용량형 압력센서 등이 있을 수 있다.
온도 센서부(220) 및/또는 접촉 감지 센서(235)는 충격부 전극면(165)의 부근에 예를 들어, 캡부(193)에 장착될 수 있다.
도 9를 참조하면, 체외 충격파 의료기는 입력부(111), 통신부(260), 및 저장부(290)를 더 포함할 수 있다. 사용자는 입력부(111)를 통해 체외 충격파 의료기의 작동을 지시할 수 있다. 체외 충격파 의료기는 통신부(260)를 통해, 외부 장치와 통신할 수 있다. 저장부(290)는 체외 충격파 의료기가 동작하는 데 필요한 데이터와 프로그램 등을 저장할 수 있다.
상기 본 발명은 하드웨어 또는 소프트웨어에서 구현될 수 있다. 구현은 상기 본 발명은 또한 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 즉, 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 매체를 포함한다. 컴퓨터 판독 가능 매체는 컴퓨터 저장 매체 및 통신 저장 매체를 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터가 읽을 수 있는 명령어, 데이터 구조, 프로그램 모듈, 및 기타 데이터 등 정보 저장을 위한 임의의 방법 또는 기술로서 구현된 모든 저장 가능한 매체를 포함하는 것으로, 휘발성/비휘발성/하이브리드형 메모리 여부, 분리형/비분리형 여부 등에 한정되지 않는다. 통신 저장 매체는 반송파와 같은 변조된 데이터 신호 또는 전송 메커니즘, 임의의 정보 전달 매체 등을 포함한다. 그리고 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.
<부호의 설명>
100: 제어부 110: 손잡이부
121: 코어부 122: 자석부
130: 바디부 131: 메인바디
132: 돌출연결부 141: 실린더
141-1: 실린더 포켓 141a: 유입홀
141b: 통과홀 142: 운동부
151: 코어 연결부 152: 충격 연결부
152b: 제2 돌기부 160: 충격부

Claims (6)

  1. 바디부 내부에 배치되는 실린더;
    상기 실린더 내부를 왕복 운동하는 운동부;
    상기 실린더의 끝단과 연결되는 충격 연결부;
    상기 충격 연결부와 연결되며, 상기 운동부가 충돌하는 충격부;
    상기 실린더 및 충격 연결부를 통해 상기 충격부와 전기적으로 연결되어 상기 충격부로 전기 신호를 송출하는 파형송출부;
    상기 파형송출부 중 제1 단자와 연결되고, 상기 충격 연결부와 상기 충격부 사이에 배치되어 상기 충격 연결부와 상기 충격부를 전기적으로 연결하는 신호 전달부; 및
    신호 전달 케이블을 통해 상기 파형송출부의 제2 단자와 연결되고, 상기 충격부의 인근에 배치되는 바이폴라용 전극을 포함하는, 체외 충격파 의료기.
  2. 제 1 항에 있어서,
    상기 충격부의 사용자의 피부에 접하는 충격부 전극면과 상기 바이폴라용 전극 중 적어도 어느 하나가 사용자 피부에 접촉하는 지 감지하는 바이폴라용 접촉 감지부; 및
    상기 바이폴라용 접촉 감지부에서 접촉을 감지하지 않으면, 상기 파형송출부의 작동을 중지시키는 제어부를 더 포함하는, 체외 충격파 의료기.
  3. 제 2 항에 있어서,
    상기 바이폴라용 접촉 감지부는 상기 충격부 전극면과 상기 바이폴라용 전극 사이의 임피던스를 측정하고,
    상기 제어부는 상기 측정된 임피던스가 기설정된 범위인 경우에 상기 파형송출부가 작동되도록 하는, 체외 충격파 의료기.
  4. 제 1 항에 있어서,
    상기 충격부 및 상기 바이폴라용 전극의 온도 중 적어도 하나를 측정하는 온도 센서부; 및
    상기 측정된 온도가 기 설정된 온도를 초과하면, 상기 파형송출부의 작동을 중지시키는 제어부를 더 포함하는, 체외 충격파 의료기.
  5. 제 1 항에 있어서,
    상기 신호 전달부는 상기 충격 연결부와 상기 충격부에 이격이 있는 경우, 상기 충격 연결부와 상기 충격부를 전기적으로 연결하는 접촉유지부를 구비하는, 체외 충격파 의료기.
  6. 제 1 항에 있어서,
    상기 실린더와 충격 연결부 사이에 배치되는 제1 실링부 및 상기 충격 연결부와 상기 충격부 사이에 배치되는 제2 실링부를 더 구비하는, 체외 충격파 의료기.
PCT/KR2023/006714 2022-05-17 2023-05-17 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기 WO2023224394A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2022-0060419 2022-05-17
KR20220060419 2022-05-17
KR10-2022-0088290 2022-07-18
KR1020220088290A KR20230161300A (ko) 2022-05-17 2022-07-18 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기
KR1020230064030A KR20230161373A (ko) 2022-05-17 2023-05-17 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기
KR10-2023-0064030 2023-05-17

Publications (1)

Publication Number Publication Date
WO2023224394A1 true WO2023224394A1 (ko) 2023-11-23

Family

ID=88835795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006714 WO2023224394A1 (ko) 2022-05-17 2023-05-17 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기

Country Status (1)

Country Link
WO (1) WO2023224394A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792513B1 (ko) * 2006-11-20 2008-01-08 조도연 체외 충격파 치료기
US20100137752A1 (en) * 2007-05-31 2010-06-03 Gerold Heine Medical Apparatus For Treatment Of The Human Or Animal Body By Mechanical Pressure Waves Or Shock Waves
KR101012818B1 (ko) * 2008-11-20 2011-02-08 (주)아이티시 고주파치료 및 저주파치료 기능이 부가된 체외 충격파 치료기
KR20130077135A (ko) * 2011-12-29 2013-07-09 양명관 피부 조직의 치료를 위한 자극 장치
US20200046602A1 (en) * 2018-08-12 2020-02-13 Jonathan Hoffman Personal use extracorporeal low frequency shock wave instrument and methods of using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792513B1 (ko) * 2006-11-20 2008-01-08 조도연 체외 충격파 치료기
US20100137752A1 (en) * 2007-05-31 2010-06-03 Gerold Heine Medical Apparatus For Treatment Of The Human Or Animal Body By Mechanical Pressure Waves Or Shock Waves
KR101012818B1 (ko) * 2008-11-20 2011-02-08 (주)아이티시 고주파치료 및 저주파치료 기능이 부가된 체외 충격파 치료기
KR20130077135A (ko) * 2011-12-29 2013-07-09 양명관 피부 조직의 치료를 위한 자극 장치
US20200046602A1 (en) * 2018-08-12 2020-02-13 Jonathan Hoffman Personal use extracorporeal low frequency shock wave instrument and methods of using same

Similar Documents

Publication Publication Date Title
WO2020149634A2 (ko) 에어로졸 생성 시스템 및 그 동작 방법
WO2011037394A2 (ko) 멸균 어댑터, 휠의 체결 구조 및 수술용 인스트루먼트의 체결 구조
WO2018066848A1 (en) Skin care device
WO2015190753A1 (ko) 정전용량형 터치와 유도전자기장 입력을 동시에 감지하는 다중 입력 패드 및 입력 시스템
WO2014129732A1 (ko) 선집속 초음파 변환기 및 이를 포함하는 고강도 선집속 초음파 발생 장치
WO2021112485A1 (ko) 무바늘 주사기
WO2019143209A1 (ko) 안테나를 포함하는 전자 장치 및 신호 송신 또는 수신 방법
WO2012144713A1 (ko) 고주파 치료용 니들 팁 및 이를 이용한 고주파 치료장치 및 고주파 치료방법
WO2023224394A1 (ko) 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기
WO2021107263A1 (ko) 피부 관리 기기
WO2021006512A1 (ko) 온열감을 제공할 수 있는 마사지 유닛을 포함하는 마사지 장치
WO2016048001A1 (ko) 카테터 및 그 제조 방법
WO2019240564A1 (ko) 생체 데이터 획득용 탈착식 기능모듈 및 이를 포함하는 헤드 마운트 디스플레이 장치
WO2022102813A1 (ko) 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기
WO2024128765A1 (ko) 가상현실 콘텐츠와 연계하여 온도를 출력 및 제어하는 햅틱 컨트롤러 및 그 동작 방법
WO2019177227A1 (ko) 안과용 수술 장치
WO2023022377A1 (ko) 남성 생식기 웨어러블 장치
WO2021040230A2 (ko) 악력측정장치
WO2021096308A1 (ko) 생체 신호 감지 장치
WO2024043633A1 (ko) 정보 출력 장치
WO2023136650A1 (ko) 탈착형 거치부를 포함하는 마사지 장치
WO2024101785A1 (ko) 혈관 직경에 따라 조작 가능한 신경차단용 카테터
KR20230161373A (ko) 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기
WO2024147579A2 (ko) 스타일러스 펜
WO2023132482A1 (ko) 약액 주입 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807913

Country of ref document: EP

Kind code of ref document: A1