WO2023223903A1 - Film roll holding device, method of preventing failure in film roll, and control program - Google Patents

Film roll holding device, method of preventing failure in film roll, and control program Download PDF

Info

Publication number
WO2023223903A1
WO2023223903A1 PCT/JP2023/017528 JP2023017528W WO2023223903A1 WO 2023223903 A1 WO2023223903 A1 WO 2023223903A1 JP 2023017528 W JP2023017528 W JP 2023017528W WO 2023223903 A1 WO2023223903 A1 WO 2023223903A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film roll
winding
index value
holding device
Prior art date
Application number
PCT/JP2023/017528
Other languages
French (fr)
Japanese (ja)
Inventor
絢斗 長井
修 増田
由紀 金子
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023223903A1 publication Critical patent/WO2023223903A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H43/00Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable
    • B65H43/04Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable detecting, or responding to, presence of faulty articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a film roll holding device for holding a film roll in which a film used for a liquid crystal display (LCD) or the like is wound into a roll, a failure prevention method for this film roll, and a control program.
  • LCD liquid crystal display
  • Liquid crystal display devices are increasingly being used in large-screen televisions and large monitors, and along with this, the films used for the display surfaces of liquid crystal display devices are also required to be wider. For example, there is a demand for a wide fin with a width of 2000 mm or more. Furthermore, in order to account for base material loss (film loss) in advance and to reduce transportation costs, it is required to manufacture long film rolls with a winding length of 1000 m or more, and even 3000 m or more.
  • Patent Document 1 discloses a storage box and a storage method for preventing film rolls from being bent or stuck during storage or transportation.
  • a film roll (original film) stored in a storage box is rotated by a rotating means at least once every two weeks, thereby suppressing failure.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a film roll holding device that can suppress failures of film rolls by appropriately performing suppression treatment depending on the storage state of the film roll. shall be.
  • a holding part that holds a film roll formed by winding a film around a core; a rotation mechanism that rotates the film roll held by the holding section; a measuring unit that measures a side surface of the film roll held by the holding unit to generate measurement data; an analysis unit that generates an index value regarding voids between film layers by analyzing the measurement data; an inhibition control unit that determines whether or not the change in the index value over time exceeds a determination threshold, and when it is determined that the change over time exceeds the determination threshold, causes the rotation mechanism to rotate the film roll by a predetermined amount;
  • a film roll holding device comprising:
  • the first timing is the timing immediately after the production of the film roll, or the timing immediately after the rotation mechanism rotates the previous film roll,
  • the measuring unit is an imaging device that photographs a side surface of the film roll as a photographing area,
  • the film roll holding device according to any one of (1) to (4) above, wherein the analysis unit generates the index value by analyzing image data generated by the imaging device.
  • the change over time is a reduction rate of the voids, The film roll holding device according to (6) above, wherein the determination threshold value is any value in the range of 10 to 30%.
  • the holding unit holds the film roll in a state where the tape that joins the film to the core is located on the upper side of the core,
  • the suppression control unit determines that the determination threshold is exceeded, the suppression control unit rotates the film roll by a predetermined angle within a range of 1 to 180 degrees in the winding direction or the opposite direction as the predetermined amount of rotation.
  • the film roll holding device according to any one of (1) to (4) above, which is rotated.
  • a holding part that holds a film roll formed by winding a film around a core, a rotation mechanism that rotates the film roll held by the holding part, and a side surface of the film roll held by the holding part.
  • a control program for controlling a film roll holding device comprising: a measurement unit that generates measurement data; (a) measuring a side surface of the film roll held by the holding unit to generate measurement data; (b) generating an index value regarding voids between film layers by analyzing the measurement data; determining whether the change over time of the index value exceeds a determination threshold, and when determining that the change over time exceeds the determination threshold, rotating the film roll held by the holding unit by a predetermined amount by the rotation mechanism; (c) and A control program that causes a computer to perform processes including
  • the film roll holding device includes a measurement unit that measures the side surface of the film roll held by the holding unit and generates measurement data, and generates an index value regarding gaps between film layers by analyzing the measurement data. and a suppression control section that determines whether or not the change over time of the index value exceeds a threshold value, and rotates the film roll by a predetermined amount using a rotation mechanism when it is determined that the change over time of the index value exceeds the threshold value. This can suppress failures in the film roll.
  • FIG. 1 is a diagram showing a schematic configuration of a film roll holding device according to the present embodiment.
  • FIG. 2 is a block diagram of a film roll holding device.
  • FIG. 3 is a perspective view showing the appearance of a held film roll.
  • FIG. 2 is a cross-sectional view showing the configuration of an imaging unit.
  • FIG. 1 is a schematic diagram showing the configuration of an imaging device including an imaging unit.
  • FIG. 2 is a schematic diagram showing measurement points on a held film roll. It is a flowchart which shows failure suppression processing. It is a subroutine flowchart which shows index value calculation processing.
  • FIG. 2 is a schematic diagram showing a method of manufacturing a film by a solution casting method. It is a schematic diagram of a film production line.
  • It is a top view of a winding device. 11 is Table 1 showing evaluation results when different determination thresholds are applied in the suppression process.
  • Table 2 shows evaluation results when different rotation amounts and rotation speeds are applied in the suppression process.
  • Table 3 shows evaluation results when different rotation amounts are applied in the suppression process.
  • the vertical direction is the Z direction
  • the direction along the rotation axis (core axis) of the film roll held by the film roll holding device is the Y direction
  • the direction perpendicular to these Y and Z directions is the X direction. direction.
  • the direction perpendicular to the rotation axis of the film roll is also referred to as the radial direction, lamination direction, or thickness direction.
  • FIG. 1 is a diagram showing a schematic configuration of a film roll holding device 1 according to the present embodiment.
  • FIG. 2 is a block diagram showing the hardware configuration of the film holding device 1.
  • FIG. 3 is a perspective view showing the appearance of the film roll 80 held by the film roll holding device 1.
  • the film roll 80 is produced by winding a film 81 around a core 82 (also referred to as a winding core).
  • the film 81 has a thickness in the range of 10 to 50 ⁇ m, for example, 40 ⁇ m.
  • the width of the film 81 is within the range of 1300 to 3000 mm (1.3 to 3.0 m), for example 2200 mm.
  • the total length of the film 81 wound around one film roll 80 (hereinafter referred to as the winding length) is 2000 m to 8000 m, for example, the winding length is 3900 m.
  • the outer diameter of the film roll 80 is within the range of several hundred mm to 1 m.
  • FIG. 3 shows an initial state in which a film roll 80 immediately after manufacture is loaded and held in the film roll holding device 1.
  • the double-sided tape 89 (or marker) protruding from the end is used as a mark of the rotation angle, and the double-sided tape 89 is placed in the upward direction (Z direction).
  • the rotational position of the film roll 80 may be detected using the position of the double-sided tape 89 as a mark, and the rotation amount and stop position may be controlled.
  • the position of the double-sided tape 89 can be detected by arranging an optical sensor on the holding part 30.
  • the initial state refers to the state in which the film roll 80 immediately after production is loaded and held in the film roll holding device 1, and before the failure suppression process of this embodiment (hereinafter simply referred to as suppression process) is performed. say.
  • the film roll 80 is rotated by a certain amount of angle at a constant speed. Note that at the tip of the film 81 at this starting point, there is a thickness equal to the overlap of the film 81 and the double-sided tape, and a step will be created between the tip and the point immediately before this.
  • problems occur in the second and subsequent rolls due to deformation caused by this level difference (hereinafter referred to as tape transfer). In this embodiment, this tape transfer malfunction is also included in the malfunctions to be suppressed.
  • the suppression process for preventing this failure and the improvement effect will be described later (FIGS. 7 and 8, which will be described later). Further, the materials and production method of this film roll 80 will also be described later (FIGS. 9 to 11, which will be described later).
  • the film roll holding device 1 includes a control section 10, a storage section 20, a holding section 30, and an imaging device 40.
  • the holding unit 30 holds and stores the film roll 80 for a long period of time. Further, the holding section 30 performs a failure prevention process of rotating the held film roll 80 around the rotation axis in response to a control signal from the control section 10 .
  • the imaging device 40 functions as a measurement unit, measures the side surface of the film roll 80, and generates measurement data. The layer state of the film 81 of the film roll 80 can be observed from the side.
  • the control unit 10 generates an index value regarding the gap between the film layers by analyzing the measurement data acquired from the measurement unit, that is, the image data acquired from the imaging device 40. Further, the timing for implementing failure suppression processing for the film roll 80 is determined according to the change in the index value over time, and the film roll 80 is rotated by controlling the holding unit 30 according to the determination.
  • the “layer spacing” is the “layer spacing” (also referred to as layer pitch (spatial frequency)) in the radial direction of the film roll 80.
  • the “average void distance” or “porosity” can be calculated using the “layer spacing” value and the average thickness value of the film.
  • These "layer spacing,”"average void distance (hereinafter also simply referred to as voids),” or “porosity” are generated by analyzing image data obtained from a film imaging device serving as a measurement unit. Specifically, the layer spacing is determined from the number of layers of the film 81 per unit distance.
  • the voids and the porosity can be calculated by measuring the number of layers of the film 81 per unit distance or the distance in the radial direction at a predetermined number of layers, and using this value and the average thickness of the film 81 using the following formula.
  • the average film thickness is measured in advance or is a product specification value, and is stored in the storage unit 20 in advance.
  • Voids average gap distance
  • the film 81 has an average thickness of 0.04 mm (40 ⁇ m)
  • the length in the thickness direction (hereinafter also referred to as the radial direction) of the 100 layers when wound as the film roll 80 is is 4.1 mm.
  • "void" is used as the index value unless otherwise mentioned.
  • the unevenness of the side surface is measured by a contact type surface roughness measuring device using a probe or the like or a non-contact surface roughness measuring device using a laser beam, and the layer pitch etc. can be calculated from the period.
  • Control unit 10 has a CPU and a memory.
  • the CPU is a control circuit composed of a multi-core processor and the like that controls the above-mentioned parts and executes various arithmetic processing according to a program. Each function of the film roll holding device 1 is performed by the CPU executing a corresponding program.
  • Memory is a fast-accessible main storage device that temporarily stores programs and data as a work area. For example, DRAM, SDRAM, SRAM, etc. are employed as the memory.
  • the storage unit 20 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, solid state drive, flash memory, ROM, etc. are used as the storage.
  • the storage unit 20 also stores film thickness information (product specifications or actual measurement values) of the film 81 constituting the film roll 80 that is the target of the suppression process, and an index value generated at a predetermined first timing.
  • the first timing may be, for example, immediately after production of the film roll 80 (immediately after winding up during production), or when the film roll 80 is subjected to repeated restraint processing, the same film immediately before This is immediately after rotation with respect to the roll 80.
  • Control unit 10 functions as an analysis unit 11, a change amount calculation unit 12, and a suppression control unit 13.
  • the analysis unit 11 measures the number of film layers per unit length in the radial direction, or the distance in the radial direction with a predetermined number of layers, by performing image analysis on the image data acquired from the imaging device 40. As an image analysis, the analysis unit 11 calculates the number of film layers by, for example, performing edge enhancement processing on the image data and measuring the cycle of image density in the radial direction.
  • the analysis unit 11 generates one of the above index values based on the number of film layers or the number of film layers and (known) film thickness information of the film 81.
  • the index value generated by the analysis section 11 is stored in the storage section 20 or passed to the change amount calculation section 12 together with timing information.
  • the timing information here refers to information indicating that it is immediately after production, and/or date and time information when the side surface of the film roll 80 was measured by a measuring device (for example, the date and time of photographing by the imaging device 40).
  • the suppression control unit 13 determines whether or not to perform the suppression process based on the change over time sent from the change amount calculation unit 12, and based on the determination result, sends a control signal to the holding unit 30 to control the rotation of the film roll 80. or have them do something. Further, a control signal is sent to the imaging device 40 at a predetermined timing according to a predetermined observation period (for example, every few hours or every day) to cause the side surface of the film roll 80 to be measured.
  • the holding section 30 includes a rotation mechanism 31 and a housing 32.
  • the housing 32 includes a front panel 32f and a rear panel 32r that face each other.
  • Rotation mechanism 31 includes a motor 311, a drive shaft 312 non-rotatably engaged with core 82, and a plurality of gear trains. When the motor 311 is driven, the entire film roll 80 rotates together with the drive shaft 312.
  • the rotation direction is set to be the same as the winding direction or the opposite direction, more preferably the same as the winding direction, and the rotation speed and rotation amount (rotation time) at this time are controlled by control signals from the control unit 10. be done.
  • the rotation mechanism 31 of the holding unit 30 rotates the film roll 80 at a very slow rotation speed of 1 degree/1 min within a range of 1 to 360 degrees, more preferably 1 degree in one suppression process.
  • Imaging device 40 The imaging device 40 will be described below with reference to FIG. 2 and FIGS. 4 to 6.
  • the imaging device 40 includes an imaging unit 41 and a movement mechanism 45.
  • FIG. 4 is a cross-sectional view showing the configuration of the imaging unit 41.
  • FIG. 5 is a schematic diagram showing the overall configuration of the imaging device 40.
  • FIG. 6 is a schematic diagram showing measurement points p01 to p03 and p11 to p13 (also referred to as photographing points) on the side surface s1 of the held film roll 80.
  • the imaging unit 41 includes an imaging element 411, a telecentric lens 412, a half mirror 413, an illumination 414, a total reflection mirror 415, and a housing 419 that houses these as a whole.
  • the opening w1 provided in the housing 419 is made of a transparent plate that transmits light.
  • the imaging unit 41 photographs the side surface s1 of the film roll 80 and generates image data.
  • the image sensor 411 is a CCD or a CMOS.
  • the image sensor 411 is a two-dimensional sensor composed of, for example, CMOS monochrome 2K ⁇ 2K pixels or 4K ⁇ 4K pixels.
  • the image sensor 411 may be configured with a one-dimensional line sensor with monochrome 8K pixels.
  • the orientation of the imaging unit 41 is adjusted so that the direction in which the pixels of the CMOS are lined up is along the radial direction of the measurement point (p01, etc.) to be photographed by the rotation function of the moving mechanism 45 (not shown).
  • the telecentric lens 412 is, for example, a lens with a magnification of 1 to 3 times, for example 2 times, and a WD of 50 to 150 mm, for example 65 mm.
  • the illumination 414 is composed of an LED, and is white illumination or white line illumination whose light emitting surface is the long axis along the line of line sensors.
  • the imaging unit 41 obtains image data by photographing the side surface of the film roll 80 in an imaging field of view in a range of 10 to 50 mm along the radial direction, for example, a length of 14 mm, at a resolution of 4000 pixels. In this case, the pixel resolution is 3.5 ⁇ m, which is sufficient for the thickness of the film 81 of several tens of ⁇ m (for example, 40 ⁇ m).
  • the image sensor 411 is an 8K pixel line sensor and a telecentric lens 412 with a magnification of 1x is used, image data obtained by photographing a 28 mm long imaging field with a resolution of 8000 pixels is obtained.
  • the pixel resolution is 3.5 ⁇ m. Note that by selecting the lens magnification and the number of pixels of the image sensor, it may be configured to have a higher pixel resolution of 1 ⁇ m or less.
  • the moving mechanism 45 moves the imaging unit 41 to an arbitrary position within the XZ plane depending on the location to be photographed.
  • the moving mechanism 45 includes a bottom plate 451, a motor 452, a horizontal rail 453, a horizontal slide pedestal 454, a vertical rail 455, a vertical slide pedestal 456, a support member 457 that supports the imaging unit 41, and a motor 458.
  • the horizontal slide pedestal 454 includes a bottom portion 5a, a pedestal 5b, and a pillar 5c that are slidably connected to the horizontal rail 453 in the X direction.
  • the pillar 5c fixedly supports the upper and lower rails 455.
  • the vertical rail 455 connects the vertical sliding pedestal 456 so as to be slidable in the Z direction.
  • the vertically sliding pedestal 456 fixedly supports the support member 457 and the imaging unit 41 connected thereto.
  • the horizontal slide pedestal 454 and the vertical slide pedestal 456 are moved in the X direction and Z direction by motors 452 and 458, respectively (directions of arrows A and B in FIG. 5).
  • the imaging unit 41 is moved to an arbitrary position within the XZ plane.
  • FIG. 6 is a diagram showing a photographing location on the side surface s1 of the film roll 80.
  • the imaging unit 41 is moved by the moving mechanism 45 to perform imaging at a plurality of imaging locations.
  • the photographing points are photographing points p01 to p03 arranged above the core 82, more precisely, directly above the core 82 (indicated by 0 degrees in FIG. 6). Furthermore, photographing points p11 to p13 arranged in a 90 degree direction (horizontal direction) may be added to this.
  • the outer circumferential surface of the innermost film 81 that is, the core 82
  • the outer circumferential surface of the outermost film 81 that is, the film roll 80
  • the shooting locations p11, p12, and p13 are at 20%, 50%, and 80% positions, respectively, in the horizontal direction.
  • the average value of index values obtained by analyzing six image data obtained by photographing six locations p01 to p03 and p11 to p13, or The average value of the three or any index value can be used. In the following description, it is assumed that the average value of the index values at three locations (p01 to p03) in the directly upward direction (upper side surface) is used.
  • FIG. 6 shows the film roll 80 placed in its initial state.
  • the rotation position is adjusted so that the double-sided tape 89 is on top.
  • the film roll 80 held by the holding part 30 is rotated by the rotation mechanism 31 clockwise when viewed from the Y direction (indicated by an arrow).
  • the directly upward direction in the initial state is assumed to be 0 degrees
  • the clockwise direction is assumed to be the positive direction (positive angle).
  • rotation is performed by only 90 degrees or 180 degrees at a constant speed (this suppression process may be repeated multiple times).
  • Operation panel 50 includes a touch panel, a numeric keypad, a start button, a stop button, etc., and is used to display various information and input various instructions. Through the operation panel 50, the user can set the execution period of the suppression process and input an end instruction. Further, it may be possible to set conditions such as a determination threshold value, rotation amount, rotation speed, etc. in the following failure suppression process.
  • FIG. 7 is a flowchart showing the failure suppression process.
  • FIG. 8 is a subroutine flowchart showing the index value calculation process performed in FIG.
  • Step S01 The produced film roll 80 is held in the holding section 30. A method for producing this film roll 80 will be described later (see FIGS. 9 to 11, which will be described later).
  • the film roll 80 held here is immediately after production, more specifically, immediately after the film 81 is wound around the core 82 to produce the film roll 80.
  • Step S02 The film roll holding device 1 performs index value calculation processing.
  • the processing here is shown in the subroutine flowchart of FIG.
  • the index value calculation process performed in step S02 is performed at the first timing.
  • the first timing is the timing immediately after production (immediately after production winding).
  • the process in step S02 is performed via step S09 (encircled number 20)
  • the timing is immediately after the suppression operation in step S08 is executed.
  • Steps S201, S202 The control unit 10 sends a control signal to the imaging device 40 to move the imaging unit 41 and perform imaging. By moving and photographing, image data of a measurement location (for example, measurement location p01 (see FIG. 6)) on the side surface s1 of the film roll 80 is obtained.
  • a measurement location for example, measurement location p01 (see FIG. 6)
  • Step S203 If the imaging of all locations has not been completed (NO), the process from step S201 onward is repeated, and the next measurement locations (for example, measurement locations p02 and p03) are captured to obtain image data at each measurement location.
  • next measurement locations for example, measurement locations p02 and p03
  • Step S204 The analysis unit 11 analyzes the image and calculates an index value. For example, each of the three image data obtained by photographing the three measurement points p01, p02, and p03 is analyzed to determine the air gap in the radial direction. Then, by averaging these three voids, a void (average void) as an index value is obtained. With this, the process in FIG. 8 is completed, and the process returns to step S03 and subsequent steps in FIG.
  • Step S03 the control unit 10 stores the index value obtained in step S204 in the storage unit 20.
  • Step S04 If it is the suppression operation determination timing (YES), the control unit 10 advances the process to step S05.
  • the determination timing is set in advance, and is, for example, every half day (12 hours) or every day (24 hours).
  • Step S05 the film roll holding device 1 performs index value calculation processing. This process is the same as step S02, except that the timing of calculating the index value is different, and is the process shown in the subroutine flowchart of FIG. 8. In the following, the current timing at which the calculation process of step S05 is performed will also be referred to as a second timing.
  • Step S06 The change amount calculation unit 12 compares the index value at the second timing obtained in step S05 with the index value at the first timing read from the storage unit 20, and calculates the change over time.
  • the suppression control unit 13 determines whether the change over time is larger than a predetermined threshold.
  • the threshold value is any value in the range of 10 to 30%, preferably 20%, and more preferably 15%. For example, if the gap is 1 ⁇ m at the initial stage (first timing) and decreases to 0.8 ⁇ m at the second timing, the rate of change will be 20%, exceeding the threshold of 15%. . If the change over time exceeds the threshold (YES), the process proceeds to step S08, and if it does not exceed the threshold (NO), the process returns to step S04 (the circled number 10).
  • Step S08 The suppression control unit 13 sends a control signal to the holding unit 30, and causes the rotation mechanism 31 to rotate the film roll 80 by a predetermined rotation angle within a range of ⁇ 180 degrees (excluding 0 degrees) at a constant rotation speed.
  • the rotation speed is a constant speed within the range of 1 to 5 degrees/min. If the rotation speed is faster than 5 degrees/min, winding misalignment may occur, and if it is slower than 1 degree/min, it takes too much time to rotate.
  • the winding misalignment here means a failure in which the film shifts in the width direction due to weak winding tension or excessive air entrainment.
  • the direction of rotation is preferably the winding direction (ie, +1 to +180 degrees (clockwise in FIG.
  • the angle is preferably in the range of +90 to +180 degrees, more preferably +180 degrees (half a turn in the winding direction).
  • the rotation is performed by +180 degrees at a rotation speed of 1 degree/min over a period of 3 hours.
  • Step S09 If it is to be repeated, the control unit 10 does not end the process (NO) and repeats the process from step S02 onwards (the circled number 20). On the other hand, if termination conditions are met (YES), such as when a termination instruction is received from the operation panel 50 or the like used by the user, or when a predetermined execution period has elapsed, the process is terminated (END). .
  • the film roll holding device 1 includes a measurement section that measures the side surface of the film roll held by the holding section and generates measurement data, and a measurement section that generates measurement data by analyzing the measurement data.
  • An analysis unit that generates an index value regarding voids, and a suppression control unit that determines whether the change in index value over time exceeds a threshold value, and when it is determined that the change in index value exceeds the threshold value, rotates the film roll by a predetermined amount using a rotation mechanism. and. This can prevent failures in the film roll.
  • thermoplastic resin material used for the film according to this embodiment is not limited as long as it can be handled as a film roll after film formation.
  • thermoplastic resins used for polarizing plates include cellulose ester resins such as triacetylcellulose (TAC), cellulose acetate propionate (CAP), and diacetylcellulose (DAC), and cycloolefin polymers (COP).
  • Cyclic olefin resins such as (hereinafter also referred to as cycloolefin resins), polypropylene resins such as polypropylene (PP), acrylic resins such as polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET). Polyester resin can be used.
  • the knurling part is part A
  • the part on the back side of the film opposite to part A is part B
  • the surface of the film that has not been knurled other than part A and part B is part C
  • part A and part B are
  • Relational expression (2) a ⁇ b Controlling the coefficient of static friction in this way is effective when applied to film rolls using cycloolefin polymer (COP) or polymethyl methacrylate (PMMA), which are films with a low elastic modulus, as thermoplastic resins. .
  • COP cycloolefin polymer
  • PMMA polymethyl methacrylate
  • the thickness of the thin film is preferably 5 to 80 ⁇ m, more preferably 10 to 50 ⁇ m, and even more preferably 10 to 45 ⁇ m.
  • the film thickness is less than 10 ⁇ m, the rigidity of the film roll is low and it is difficult to maintain the roll shape. If the film thickness exceeds 80 ⁇ m, the mass increases, making it difficult to produce a long film roll.
  • Cycloolefin resin The cycloolefin resin contained in the film roll of this embodiment is a polymer of cycloolefin monomers, or a copolymerizable monomer of cycloolefin monomers and other monomers. A copolymer with a polymer is preferable.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). It is more preferable that there be.
  • R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer from 0 to 2.
  • R 1 to R 4 do not all represent hydrogen atoms at the same time
  • R 1 and R 2 do not represent hydrogen atoms at the same time
  • R 3 and R 4 do not represent hydrogen atoms at the same time. do.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 is preferably a hydrocarbon group having 1 to 10 carbon atoms; More preferably, it is a hydrocarbon group of number 1 to 5.
  • the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom.
  • linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, and thioether bonds.
  • Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl, and the like.
  • Examples of the polar groups represented by R 1 to R 4 in general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, and a cyano group. is included.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group, and an aryloxycarbonyl group are preferable, and from the viewpoint of ensuring solubility during solution film formation, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable.
  • p is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to increase.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a carboxyl group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom).
  • p represents an integer from 0 to 2.
  • R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in the general formula (A-2) preferably represents a carboxyl group, a hydroxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group. More preferred is an oxycarbonyl group.
  • p preferably represents 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to increase.
  • a cycloolefin monomer having a structure represented by general formula (A-2) is preferred from the viewpoint of improving solubility in organic solvents.
  • the crystallinity of organic compounds decreases by breaking the symmetry, so the solubility in organic solvents improves.
  • R 5 and R 6 in the general formula (A-2) are substituted only on the ring-constituting carbon atoms on one side with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, the general formula (A- Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
  • the content ratio of the cycloolefin monomer having the structure represented by general formula (A-2) in the cycloolefin monomer polymer is relative to the total of all cycloolefin monomers constituting the cycloolefin resin. For example, it may be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%.
  • a certain amount or more of a cycloolefin monomer having a structure represented by general formula (A-2) is contained, the orientation of the resin increases, so that the retardation value tends to increase.
  • cycloolefin monomers having a structure represented by general formula (A-1) are shown below in Exemplary Compounds 1 to 14, and cycloolefin monomers having a structure represented by general formula (A-2) are shown below. Specific examples of the mer are shown in Exemplary Compounds 15 to 34.
  • copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
  • Examples of copolymerizable monomers capable of addition copolymerization include unsaturated double bond-containing compounds, vinyl cyclic hydrocarbon monomers, (meth)acrylates, and the like.
  • Examples of unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms), such as ethylene, propylene, butene, and the like.
  • Examples of vinyl cyclic hydrocarbon monomers include vinyl cyclopentene monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth)acrylates examples include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol%, based on the total of all monomers constituting the copolymer. Preferably, it may be 30 to 70 mol%.
  • the cycloolefin resin is produced by polymerizing or It is a polymer obtained by copolymerization, and examples thereof include the following.
  • the cycloolefin resin has a structural unit represented by the following general formula (B-1) and a structural unit represented by the following general formula (B-1) in that the resulting cycloolefin resin can have a high glass transition temperature and a high light transmittance. It is preferable to contain at least one of the structural units represented by the following general formula (B-2), only contain the structural unit represented by the general formula (B-2), or contain the structural unit represented by the general formula (B-1). It is more preferable to include both the structural unit represented by the formula (B-2) and the structural unit represented by the general formula (B-2).
  • the structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2).
  • the structural unit represented by the above-mentioned general formula (A-2) is a structural unit derived from a cycloolefin monomer.
  • R 1 to R 4 and p have the same meanings as R 1 to R 4 and p in general formula (A-1), respectively.
  • R 5 to R 6 and p have the same meanings as R 5 to R 6 and p in general formula (A-2), respectively.
  • the cycloolefin resin according to this embodiment may be a commercially available product.
  • Examples of commercially available cycloolefin resins include Arton G (for example, G7810, etc.), Arton F, Arton R (for example, R4500, R4900, and R5000, etc.) manufactured by JSR Corporation, and Arton RX. included.
  • the intrinsic viscosity [ ⁇ ] inh of the cycloolefin resin is preferably 0.2 to 5 cm 3 /g, more preferably 0.3 to 3 cm 3 /g, and 0.4 cm 3 /g when measured at 30°C. It is more preferably 1.5 cm 3 /g.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably 8,000 to 100,000, more preferably 10,000 to 80,000, and even more preferably 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000.
  • the number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured in terms of polystyrene using gel permeation chromatography (GPC).
  • the cycloolefin resin has good heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film. Become.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110°C or higher, preferably 110 to 350°C, more preferably 120 to 250°C, and preferably 120 to 220°C. More preferred.
  • Tg is 110°C or higher, deformation under high temperature conditions can be easily suppressed.
  • Tg is 350° C. or less, molding becomes easy and deterioration of the resin due to heat during molding is easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more based on the film.
  • Acrylic Resin The acrylic resin according to the present embodiment is a polymer of acrylic ester or methacrylic ester, and also includes copolymers with other monomers.
  • the acrylic resin according to this embodiment also includes methacrylic resin.
  • the resin is not particularly limited, but it consists of methyl methacrylate units in the range of 50 to 99% by mass and other monomer units copolymerizable with this in the range of 1 to 50% by mass. is preferred.
  • alkyl methacrylates having an alkyl number of 2 to 18 carbon atoms alkyl acrylates having an alkyl number of 1 to 18 carbon atoms, isobornyl methacrylate, 2- Hydroxyalkyl acrylates such as hydroxyethyl acrylate, ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholine and N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, maleic acid, fumaric acid, itaconic acid, etc.
  • unsaturated group-containing dicarboxylic acids aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric acid.
  • aromatic vinyl compounds such as styrene and ⁇ -methylstyrene
  • ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile
  • maleic anhydride maleimide
  • N-substituted maleimide glutaric acid.
  • glutaric acid examples include imide and glutaric anhydride.
  • Examples of copolymerizable monomers forming units excluding glutarimide and glutaric anhydride from the above units include monomers corresponding to the above units. That is, alkyl methacrylates having an alkyl number of 2 to 18 carbon atoms, alkyl acrylates having an alkyl number of 1 to 18 carbon atoms, hydroxyalkyl acrylates such as isobornyl methacrylate, 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid, etc.
  • ⁇ , ⁇ -unsaturated acids acryloylmorpholine, acrylamide such as N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, styrene, ⁇ -methylstyrene monomers such as aromatic vinyl compounds such as, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, and N-substituted maleimide.
  • acrylamide such as N-hydroxyphenylmethacrylamide
  • N-vinylpyrrolidone unsaturated group-containing dicarboxylic acids
  • unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid
  • styrene ⁇ -methylstyrene monomers
  • aromatic vinyl compounds such as, ⁇ , ⁇
  • the glutarimide unit can be formed, for example, by reacting an intermediate polymer having a (meth)acrylic acid ester unit with a primary amine (imidizing agent) to imidize it (see JP-A No. 2011-26563). ).
  • the glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having (meth)acrylic acid ester units (see Japanese Patent No. 4961164).
  • the acrylic resin according to this embodiment includes isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, Particular preference is given to the inclusion of maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide.
  • the acrylic resin according to the present embodiment has the following advantages: from the viewpoint of controlling dimensional changes due to changes in environmental temperature and humidity, peelability from metal supports during film production, drying properties of organic solvents, heat resistance, and mechanical strength. From the viewpoint of improvement of It is particularly preferable that
  • the method for producing the acrylic resin according to this embodiment is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • the polymerization initiator ordinary peroxide-based and azo-based ones can be used, and redox-based ones can also be used.
  • the polymerization temperature suspension or emulsion polymerization can be carried out within the range of 30 to 100°C, and bulk or solution polymerization can be carried out within the range of 80 to 160°C.
  • polymerization can also be carried out using an alkyl mercaptan or the like as a chain transfer agent.
  • the glass transition temperature Tg of the acrylic resin is preferably within the range of 80 to 120°C from the viewpoint of maintaining the mechanical strength of the film.
  • acrylic resins can also be used as the acrylic resin according to this embodiment.
  • Delpet 60N, 80N, 980N, SR8200 manufactured by Asahi Kasei Chemicals
  • Examples include EMB-218, EMB-229, EMB-270, EMB-273 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75, TX400S, and IPX012 (all manufactured by Denki Kagaku Kogyo Co., Ltd.).
  • Two or more types of acrylic resins can also be used in combination.
  • the acrylic resin according to the present embodiment preferably contains an additive.
  • acrylic particles rubber elastic particles described in International Publication No. 2010/001668 can be used to It is preferable to include it in order to improve strength and adjust the rate of dimensional change.
  • acrylic particles rubber elastic particles described in International Publication No. 2010/001668
  • Examples of commercially available multilayered acrylic granular composites include “Metablen W-341” manufactured by Mitsubishi Rayon, "Kane Ace” manufactured by Kaneka, "Paraloid” manufactured by Kureha, and Roam & Examples include “Acryloid” manufactured by Haas, "Stafyloid” manufactured by Aica, Chemisnow MR-2G, MS-300X (manufactured by Soken Kagaku Co., Ltd.), and "Parapet SA” manufactured by Kuraray. can be used alone or in combination of two or more.
  • the volume average particle diameter of the acrylic particles is 0.35 ⁇ m or less, preferably 0.01 to 0.35 ⁇ m, and more preferably 0.05 to 0.30 ⁇ m. If the particle size is above a certain level, the film can be easily stretched under heating, and if the particle size is below a certain level, the transparency of the obtained film is unlikely to be impaired.
  • the film according to this embodiment preferably has a flexural modulus (JIS K7171) of 1500 MPa or less.
  • This bending elastic modulus is more preferably 1300 MPa or less, still more preferably 1200 MPa or less.
  • the bending elastic modulus varies depending on the type and amount of the acrylic resin and rubber elastic particles in the film, and for example, the larger the content of rubber elastic particles, the lower the bending elastic modulus.
  • the flexural modulus is generally smaller when a copolymer of an alkyl methacrylate and an alkyl acrylate is used as the acrylic resin than when a homopolymer of an alkyl methacrylate is used.
  • the cellulose ester used in this embodiment refers to a portion of the hydrogen atoms of the 2-, 3-, and 6-position hydroxy groups (-OH) in the ⁇ -1,4-bonded glucose unit constituting cellulose, or A cellulose acylate resin completely substituted with acyl groups.
  • the cellulose ester used is not particularly limited, but it is preferably an ester of a linear or branched carboxylic acid having about 2 to 22 carbon atoms.
  • the carboxylic acid constituting the ester may be an aliphatic carboxylic acid, may form a ring, or may be an aromatic carboxylic acid.
  • the hydrogen atom in the hydroxyl group of cellulose is an acyl group having 2 to 22 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, pivaloyl group, hexanoyl group, octanoyl group, lauroyl group, stearoyl group, etc.
  • Examples include cellulose esters substituted with .
  • the carboxylic acid (acyl group) constituting the ester may have a substituent.
  • the carboxylic acid constituting the ester is preferably a lower fatty acid having 6 or less carbon atoms, and more preferably a lower fatty acid having 3 or less carbon atoms.
  • the acyl group in the cellulose ester may be a single type or a combination of a plurality of acyl groups.
  • cellulose esters include cellulose acetates such as diacetylcellulose (DAC) and triacetylcellulose (TAC), as well as cellulose acetate propionate (CAP), cellulose acetate butyrate, and cellulose acetate propionate butyrate.
  • DAC diacetylcellulose
  • TAC triacetylcellulose
  • CAP cellulose acetate propionate
  • cellulose acetate butyrate examples include mixed fatty acid esters of cellulose to which a propionate group or a butyrate group is bonded in addition to the acetyl group. These cellulose esters may be used alone or in combination.
  • the cellulose ester preferably has a total degree of substitution of 2.1 to 2.5. By setting it within this range, environmental fluctuations (particularly Rt fluctuations due to humidity) can be suppressed, and the uniformity of the film thickness can be improved. More preferably, it is 2.2 to 2.45 from the viewpoint of improving the flowability and stretchability during film formation and further improving the uniformity of film thickness.
  • the cellulose ester satisfies both the following formulas (a) and (b).
  • X is the degree of substitution of an acetyl group
  • Y is the degree of substitution of a propionyl group or a butyryl group, or a mixture thereof.
  • CAP cellulose acetate propionate
  • the degree of substitution of acyl groups indicates the average number of acyl groups per glucose unit, and how many hydrogen atoms of the hydroxy groups at the 2nd, 3rd, and 6th positions of 1 glucose unit are substituted with acyl groups. shows. Therefore, the maximum degree of substitution is 3.0, which means that the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd, and 6th positions are all substituted with acyl groups.
  • These acyl groups may be substituted on the 2nd, 3rd, and 6th positions of the glucose unit on an average basis, or may be substituted with a distribution. The degree of substitution is determined by the method specified in ASTM-D817-96.
  • cellulose acetate having different degrees of substitution may be mixed and used.
  • the mixing ratio of different cellulose acetates is not particularly limited.
  • the number average molecular weight (Mn) of the cellulose ester is in the range of 2 ⁇ 10 4 to 3 ⁇ 10 5 , more preferably in the range of 2 ⁇ 10 4 to 1.2 ⁇ 10 5 , and even more in the range of 4 ⁇ 10 4 to 8 ⁇ A value in the range of 10 4 is preferable because the resulting film roll has high mechanical strength.
  • the number average molecular weight Mn of the cellulose ester is calculated by measurement using gel permeation chromatography (GPC) under the measurement conditions described above.
  • the weight average molecular weight (Mw) of the cellulose ester is in the range of 2 ⁇ 10 4 to 1 ⁇ 10 6 , further in the range of 2 ⁇ 10 4 to 1.2 ⁇ 10 5 , and even more in the range of 4 ⁇ 10 4 to 8 ⁇ 10 A range of 4 is preferable because the resulting film roll has high mechanical strength.
  • the raw material cellulose for cellulose ester is not particularly limited, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose esters obtained from these can be mixed and used in any desired ratio.
  • Cellulose esters such as cellulose acetate and cellulose acetate propionate can be produced by known methods.
  • raw material cellulose is mixed with specified organic acids (acetic acid, propionic acid, etc.), acid anhydrides (acetic anhydride, propionic anhydride, etc.), and catalysts (sulfuric acid, etc.) to esterify cellulose.
  • the reaction proceeds until the triester is produced. In the triester, the three hydroxy groups of the glucose unit are replaced by acylic acid, an organic acid.
  • mixed ester type cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate
  • cellulose ester resin having a desired degree of acyl substitution is synthesized.
  • cellulose ester resin is completed through processes such as filtration, precipitation, washing, dehydration, and drying. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the film roll of this embodiment may contain the following in addition to the above-mentioned thermoplastic resin as other additives.
  • the film roll of this embodiment preferably contains at least one plasticizer for the purpose of imparting processability to, for example, a polarizing plate protective film. It is preferable to use the plasticizer alone or in combination of two or more.
  • plasticizers it is preferable to include at least one plasticizer selected from the group consisting of sugar esters, polyesters, and styrene compounds for effective control of moisture permeability and compatibility with base resins such as cellulose esters. It is preferable from the viewpoint of achieving both high solubility.
  • the molecular weight of the plasticizer is preferably 15,000 or less, more preferably 10,000 or less, from the viewpoint of achieving both improvement in heat and humidity resistance and compatibility with the base resin such as cellulose ester.
  • the weight average molecular weight (Mw) is preferably 10,000 or less.
  • the weight average molecular weight (Mw) is preferably within the range of 100 to 10,000, more preferably within the range of 400 to 8,000.
  • the compound having a molecular weight of 1500 or less in the range of 6 to 40 parts by mass, and preferably 10 to 20 parts by mass, based on 100 parts by mass of the base resin. It is more preferable to contain it within the following range. By containing within the above range, effective control of moisture permeability and compatibility with the base resin can be achieved, which is preferable.
  • the film roll of this embodiment may contain a sugar ester compound for the purpose of preventing hydrolysis.
  • a sugar ester compound it is possible to use a sugar ester that has at least 1 to 12 pyranose structures or furanose structures and has esterified all or part of the OH groups of that structure. .
  • the film roll preferably contains polyester.
  • Polyesters are not particularly limited, but include, for example, polymers with hydroxyl groups at the ends (polyester polyols) obtained by a condensation reaction of dicarboxylic acids or their ester-forming derivatives with glycols, or polymers with hydroxyl groups at the ends of the polyester polyols, or A polymer in which hydroxyl groups are capped with monocarboxylic acid (end-capped polyester) can be used.
  • the ester-forming derivative referred to herein refers to dicarboxylic acid esters, dicarboxylic acid chlorides, and dicarboxylic acid anhydrides.
  • styrenic compounds In addition to or in place of the sugar ester and polyester described above, a styrene compound can also be used in the film roll of this embodiment for the purpose of improving the water resistance of the film.
  • the styrene compound may be a homopolymer of styrene monomers, or a copolymer of styrene monomers and other comonomers.
  • the content of the structural unit derived from the styrene monomer in the styrene compound may be preferably 30 to 100 mol%, more preferably 50 to 100 mol%, in order for the molecular structure to have a certain bulkiness or more.
  • styrenic monomers include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene, and p-methylstyrene; halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene; p-hydroxy Hydroxystyrenes such as styrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene; vinylbenzyl alcohols; p-methoxystyrene, p-tert-butoxystyrene, m -Alkoxy-substituted styrenes such as tert-butoxystyrene; Vinylbenzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl
  • Nitrostyrenes such as 3-cyanostyrene and 4-cyanostyrene; vinylphenylacetonitrile; arylstyrenes such as phenylstyrene, indenes, and the like.
  • the styrenic monomer may be used alone or in combination of two or more types.
  • the film roll of this embodiment may contain other optional components such as antioxidants, colorants, ultraviolet absorbers, matting agents, acrylic particles, hydrogen-bonding solvents, and ionic surfactants. These components can be added in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the base resin.
  • antioxidants can be used as antioxidants.
  • lactone-based, sulfur-based, phenol-based, double bond-based, hindered amine-based, and phosphorus-based compounds can be preferably used.
  • antioxidants and the like are added in an amount of 0.05 to 20% by mass, preferably 0.1 to 1% by mass, based on the resin that is the main raw material of the film. Rather than using only one type of these antioxidants, a synergistic effect can be obtained by using several different types of compounds together. For example, it is preferable to use lactone-based, phosphorus-based, phenol-based, and double bond-based compounds in combination.
  • the film roll of this embodiment preferably contains a coloring agent for color adjustment within a range that does not impair the effects of this embodiment.
  • coloring agent refers to a dye or a pigment, and in this embodiment, it refers to a material having the effect of making the color tone of the liquid crystal screen blue-ish, adjusting the yellow index, or reducing haze.
  • dyes and pigments can be used as colorants, but anthraquinone dyes, azo dyes, phthalocyanine pigments, etc. are effective.
  • the film roll of this embodiment can be used on the viewing side or backlight side of a polarizing plate, it may contain an ultraviolet absorber for the purpose of imparting an ultraviolet absorbing function.
  • the ultraviolet absorber is not particularly limited, but includes, for example, benzotriazole-based, 2-hydroxybenzophenone-based, or salicylic acid phenyl ester-based ultraviolet absorbers.
  • benzotriazole-based 2-hydroxybenzophenone-based, or salicylic acid phenyl ester-based ultraviolet absorbers.
  • 2-(5-methyl-2-hydroxyphenyl)benzotriazole 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3, Triazoles such as 5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone
  • benzophenones such as.
  • the above ultraviolet absorbers can be used alone or in combination of two or more.
  • the amount of ultraviolet absorber used varies depending on the type of ultraviolet absorber, conditions of use, etc., but generally it is 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the base resin. It is added in a range of %.
  • the film roll of this embodiment preferably contains fine particles (matting agent) that impart slipperiness to the film roll.
  • addition is effective from the viewpoint of improving the slipperiness of the surface C according to the present embodiment, improving the slipperiness during winding, and preventing the occurrence of scratches and blocking.
  • the matting agent may be either an inorganic compound or an organic compound as long as it does not impair the transparency of the resulting film roll and has heat resistance during melting. These matting agents can be used alone or in combination of two or more.
  • silicon dioxide is particularly preferably used because it has a refractive index close to that of the cycloolefin resin, acrylic resin, and cellulose ester resin, and thus has excellent transparency (haze).
  • silicon dioxide examples include Aerosil (registered trademark) 200V, Aerosil (registered trademark) R972V, Aerosil (registered trademark) R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (Japan Aerosil Co., Ltd.
  • the shape of the particles may be amorphous, acicular, flat, spherical, or the like without any particular restriction, but spherical particles are particularly preferred since the obtained film roll can have good transparency.
  • the particle size is close to the wavelength of visible light, light will be scattered and transparency will deteriorate, so it is preferably smaller than the wavelength of visible light, and more preferably 1/2 or less of the wavelength of visible light. . If the particle size is too small, the slipperiness may not be improved, so it is particularly preferable that the particle size is in the range of 80 nm to 180 nm.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles. Furthermore, when the particle is not spherical, it means the diameter of a circle corresponding to its projected area.
  • the matting agent is preferably added in an amount of 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the base resin.
  • film roll manufacturing method The film roll manufacturing method of this embodiment is characterized by having a step of subjecting at least the portion A or the portion B to a surface modification treatment.
  • the surface modification treatment is preferably performed only on the site B, and is preferably performed on both the site A and the site B.
  • the knurling portion is preferably formed by laser knurling (laser method).
  • a manufacturing method of the film roll of this embodiment a manufacturing method such as a normal inflation method, T-die method, calendar method, cutting method, casting method, emulsion method, hot press method, etc. can be used for film formation.
  • the solution casting method and melt casting method are preferable as the film forming method, and the solution casting method is particularly preferred. is more preferred in order to obtain a uniform surface.
  • the method for manufacturing the film roll of this embodiment includes a step of preparing a dope by dissolving the thermoplastic resin and the above-mentioned additives in a solvent (dissolving step; dope preparation step), A process of casting onto an endless metal support that moves infinitely (casting process), a process of drying the cast dope as a web (solvent evaporation process), a process of peeling it off from the metal support (peeling process), drying It is preferable to include a process of stretching and maintaining the width (stretching/width maintaining/drying process), and a process of winding the finished film into a roll (winding process).
  • the thermoplastic resin it is particularly preferable to use a cycloolefin resin or an acrylic resin.
  • FIG. 9 is a diagram schematically showing an example of the dope preparation step, the casting step, and the drying step (solvent evaporation step) of the solution casting film forming method.
  • the main dope is filtered in the main filter A3, and the additive addition liquid is added in-line to it from A16.
  • the main dope may contain about 10 to 50% by mass of returned material.
  • Returned materials are finely crushed films, such as those produced when film is produced by cutting off both sides of the film, or original film that has been out of specification due to scratches, etc.
  • the raw material for the resin used for preparing the dope it is also possible to preferably use pellets of cellulose ester and other additives as a base resin.
  • This step is a step of dissolving the COP and, if necessary, other compounds in a dissolution pot with stirring in a solvent that is mainly a good solvent for COP, or a step of forming a dope by dissolving the COP and, if necessary, other compounds into the COP solution.
  • This is a step of mixing compound solutions to form a dope, which is the main solution.
  • the concentration of COP in the dope be higher because it can reduce the drying load after being cast onto a metal support, but if the concentration of COP is too high, the load during filtration will increase and the filtration accuracy will deteriorate.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, more preferably 15 to 30% by mass.
  • the solvent used in dope may be used alone or in combination of two or more types, but it is preferable to use a mixture of a good solvent and a poor solvent for COP in terms of production efficiency, and the one with more good solvent is preferable from the viewpoint of solubility of COP.
  • the preferred range of the mixing ratio of the good solvent and poor solvent is 70 to 98% by mass of the good solvent and 2 to 30% by mass of the poor solvent.
  • a good solvent and a poor solvent are defined as a good solvent that dissolves the COP used alone, and a poor solvent as a solvent that swells or does not dissolve the COP used alone. Therefore, a good solvent or a poor solvent changes depending on the average degree of substitution of COP.
  • the good solvent used in this embodiment is not particularly limited, but includes organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, methyl acetoacetate, and the like. Particularly preferred are methylene chloride and methyl acetate.
  • the poor solvent used in this embodiment is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone, etc. are preferably used. Further, it is preferable that the dope contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving COP is used by recovering the solvent removed from the film by drying in the film forming process and reusing it.
  • the recovered solvent may contain trace amounts of additives added to COP, such as plasticizers, ultraviolet absorbers, polymers, and monomer components, but even if these are contained, it is preferable to reuse them. It can also be purified and reused if necessary.
  • additives added to COP such as plasticizers, ultraviolet absorbers, polymers, and monomer components, but even if these are contained, it is preferable to reuse them. It can also be purified and reused if necessary.
  • a general method can be used to dissolve COP. Specifically, preferred are a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, and a method carried out under pressure above the boiling point of the main solvent.If heating and pressurization are combined, heating can be carried out above the boiling point at normal pressure.
  • a method of stirring and dissolving while heating at a temperature above the boiling point of the solvent at normal pressure and within a range where the solvent does not boil under pressure is also preferable in order to prevent the generation of lumpy undissolved substances called gels and mako.
  • COP is mixed with a poor solvent to make it wet or swell, and then a good solvent is further added to dissolve it.
  • Pressurization may be performed by injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. It is preferable to perform heating from the outside. For example, a jacket type is preferable because the temperature can be easily controlled.
  • a higher heating temperature after adding the solvent is preferable from the viewpoint of solubility of COP, but if the heating temperature is too high, the required pressure will increase and productivity will deteriorate.
  • the preferred heating temperature is 45 to 120°C, more preferably 60 to 110°C, and even more preferably 70 to 105°C. Further, the pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby COP can be dissolved in a solvent such as methyl acetate.
  • this COP solution (dope during or after dissolution) using a suitable filter medium such as filter paper.
  • the filter medium it is preferable for the filter medium to have a small absolute filtration accuracy in order to remove insoluble matters, but if the absolute filtration accuracy is too small, there is a problem in that the filter medium is likely to become clogged. For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium of 0.001 to 0.008 mm is more preferable, and a filter medium of 0.003 to 0.006 mm is even more preferable.
  • filter media there are no particular restrictions on the material of the filter media, and ordinary filter media can be used, but filter media made of plastic such as polypropylene or Teflon (registered trademark), or metal filter media such as stainless steel are preferred since they do not cause fibers to fall off. preferable.
  • a bright spot foreign substance is a phenomenon in which two polarizing plates are arranged in a crossed nicol state, a film, etc. is placed between them, and when light is applied from one polarizing plate side and observed from the other polarizing plate side, the opposite image appears.
  • Filtration of the dope can be carried out in the usual way, but the method of filtering while heating at a temperature above the boiling point of the solvent at normal pressure and within the range where the solvent does not boil under pressure is the most effective method for reducing the filtration pressure before and after filtration. This is preferable because the increase in the difference (referred to as differential pressure) is small.
  • the preferred temperature is 45 to 120°C, more preferably 45 to 70°C, even more preferably 45 to 55°C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, even more preferably 1.0 MPa or less.
  • Step 2 Casting step Next, the dope is cast onto a metal support. That is, in this step, the dope is sent to a pressurizing die A30 through a liquid sending pump (for example, a pressurizing metering gear pump), and an endless metal belt A31, such as a stainless steel band, or a rotating metal drum, etc., is used to transport the dope indefinitely.
  • a liquid sending pump for example, a pressurizing metering gear pump
  • an endless metal belt A31 such as a stainless steel band, or a rotating metal drum, etc.
  • a pressure die is preferred because the slit shape of the die mouthpiece can be adjusted and the film thickness can be easily made uniform.
  • Pressure dies include coat hanger dies, T dies, and the like, and any of them are preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the doping amount may be divided and layered.
  • the width of the cast is preferably 1.3 m or more from the viewpoint of productivity. More preferably, it is 1.3 to 4.0 m. If the length exceeds 4.0 m, there is a risk that stripes may appear in the manufacturing process or that stability in the subsequent conveyance process may be reduced. More preferably, the length is 1.3 to 3.0 m in terms of transportability and productivity.
  • the metal support used in the casting process preferably has a mirror-finished surface, and a stainless steel belt or a cast drum with a plated surface is preferably used as the metal support.
  • the surface temperature of the metal support during the casting process is between -50°C and below the boiling point of the solvent. Higher temperatures are preferable because they allow the web to dry faster, but if the temperature is too high, the web may foam or become flat. properties may deteriorate.
  • the preferred support temperature is 0 to 55°C, more preferably 22 to 50°C.
  • the method of controlling the temperature of the metal support is not particularly limited, but there are methods such as blowing hot or cold air or bringing hot water into contact with the back side of the metal support. It is preferable to use hot water because heat transfer is more efficient and the time required for the temperature of the metal support to become constant is shorter. When hot air is used, air at a temperature higher than the target temperature may be used.
  • Step 3 Solvent evaporation step
  • the web (the dope film formed by casting the dope on the casting support is called a web) is heated on the casting support to evaporate the solvent. This is the process of
  • the web on the support after casting is preferably dried on the support in an atmosphere of 35 to 100°C. In order to maintain the atmosphere at 35 to 100° C., it is preferable to apply warm air at this temperature to the upper surface of the web or to heat it by means such as infrared rays.
  • Step 4 Peeling step Next, the web is peeled from the metal support. That is, this step is a step in which the web on which the solvent has been evaporated on the metal support is peeled off at the peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably within the range of -50 to 40°C, more preferably within the range of 10 to 40°C, and most preferably within the range of 15 to 30°C.
  • the amount of solvent remaining on the metal support at the time of peeling is appropriately adjusted depending on the strength of the drying conditions, the length of the metal support, etc.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass.
  • the amount can be determined. More preferably 20 to 40% by weight or 60 to 130% by weight, particularly preferably 20 to 30% by weight or 70 to 120% by weight.
  • the amount of residual solvent is defined by the following formula.
  • Amount of residual solvent (mass%) ⁇ (MN)/N ⁇ x 100
  • M is the mass of a sample taken at any time during or after manufacturing the web or film
  • N is the mass after heating M at 115° C. for 1 hour.
  • the peeling tension when peeling the metal support and the film is preferably 300 N/m or less. More preferably, the tension is within the range of 196 to 245 N/m, but if wrinkles are likely to occur during peeling, it is preferable to peel with a tension of 190 N/m or less.
  • the peeling tension is preferably 300 N/m or less.
  • Drying/stretching/width maintenance process (Process 5) Drying/stretching/width maintenance process (drying) In the film drying step, the web is peeled off from the metal support and further dried to reduce the amount of residual solvent to 1% by mass or less, more preferably 0.1% by mass or less, particularly preferably 0. ⁇ 0.01% by mass or less.
  • the film drying process generally uses a roll drying method (a method in which the web is dried by passing it alternately through a number of rollers arranged above and below) or a tenter method, in which the web is dried while being transported.
  • a roll drying method a method in which the web is dried by passing it alternately through a number of rollers arranged above and below
  • a tenter method in which the web is dried while being transported.
  • the web is transported using a drying device A35 that conveys the web by passing it alternately through a plurality of rollers arranged in the drying device, and/or a tenter stretching device A34 that clips both ends of the web with clips and conveys the web. dry.
  • the means for drying the web is not particularly limited, and generally hot air, infrared rays, heated rollers, microwaves, etc. can be used, but hot air is preferred from the viewpoint of simplicity. Too rapid drying tends to impair the flatness of the finished film. Drying at high temperatures is preferably carried out when the residual solvent is about 8% by mass or less. Drying is generally carried out within the range of 30 to 250°C throughout. In particular, it is preferable to dry within the range of 35 to 200°C. It is preferable to increase the drying temperature in stages.
  • tenter stretching device When using a tenter stretching device, it is preferable to use a device that can independently control the gripping length (distance from the start of gripping to the end of gripping) of the film on the left and right sides using the left and right gripping means of the tenter. Furthermore, in the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve flatness.
  • the web peeled from the metal support is preferably stretched in at least one direction.
  • the orientation of molecules within the film can be controlled by stretching.
  • the film has the configuration of this embodiment and further controls the refractive index by controlling the transport tension and stretching operation. For example, it is possible to vary the retardation value by lowering or increasing the tension in the longitudinal direction.
  • biaxial stretching is performed sequentially or simultaneously in the longitudinal direction of the web (film forming direction; casting direction; MD direction) and the direction perpendicular to the web plane, that is, the width direction (TD direction). It can be stretched or uniaxially stretched.
  • it is a biaxially stretched film that is biaxially stretched in the casting direction (MD direction) and the width direction (TD direction), but the film according to this embodiment may be a uniaxially stretched film. , or may be an unstretched film.
  • the stretching operation may be performed in multiple steps.
  • simultaneous biaxial stretching may be performed or it may be performed in stages.
  • stepwise means, for example, that stretching in different stretching directions can be carried out sequentially, or that stretching in the same direction can be divided into multiple stages and stretching in different directions can be added to any of the stages. is also possible.
  • stretching steps are also possible: ⁇ Stretching in the casting direction ⁇ Stretching in the width direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the width direction ⁇ Stretching in the width direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction
  • Simultaneous biaxial stretching also includes stretching in one direction and shrinking the other by relaxing the tension.
  • the final stretching ratio in two axes perpendicular to each other is preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction. It is preferable to carry it out in the range of 0.8 to 1.2 times in the extending direction and 1.2 to 2.0 times in the width direction.
  • the stretching temperature is usually preferably carried out within the temperature range of Tg to Tg + 60°C of the resin constituting the film.
  • the stretching temperature is preferably 120°C to 200°C, more preferably 120°C to 180°C.
  • the residual solvent in the web during stretching is preferably 20 to 0%, more preferably 15 to 0%.
  • the method of stretching the web there is no particular limitation on the method of stretching the web.
  • a method in which multiple rollers have different circumferential speeds and the difference in roller circumferential speed is used to stretch the web in the longitudinal direction, or both ends of the web are fixed with clips or pins, and the distance between the clips or pins is increased in the direction of travel examples include a method in which the material is stretched in the longitudinal and longitudinal directions, a method in which the material is similarly spread in the transverse direction and then stretched in the transverse direction, and a method in which the material is simultaneously spread in the longitudinal and lateral directions and stretched in both the longitudinal and lateral directions.
  • these methods may be used in combination.
  • a tenter it is preferable to maintain the width or stretch in the lateral direction in the film forming process using a tenter, and a pin tenter or a clip tenter may be used.
  • the slow axis or fast axis of the film according to the present embodiment exists within the film plane, and if the angle formed with the film forming direction is ⁇ 1, it is preferable that ⁇ 1 is ⁇ 1° or more and +1° or less, and ⁇ 0 More preferably, the angle is .5° or more and +0.5° or less.
  • This ⁇ 1 can be defined as an orientation angle, and ⁇ 1 can be measured using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.).
  • KOBRA-21ADH automatic birefringence meter
  • Step 6 Winding step Finally, a film roll is obtained by winding up the obtained web (finished film). More specifically, it is a process in which the web is wound up as a film using a winder A37 after the amount of residual solvent in the web is 2% by mass or less, and dimensional stability is achieved by reducing the amount of residual solvent to 0.4% by mass or less. A film with good properties can be obtained. In particular, it is preferable to wind it in a range of 0.00 to 0.10% by mass.
  • Any commonly used winding method may be used, such as a constant torque method, a constant tension method, a taper tension method, a programmed tension control method with constant internal stress, etc., and any of these methods may be used.
  • the ends are slit to the width of the product and bleeded, and the knurling and surface modification treatments according to this embodiment are applied to both ends of the film to prevent sticking and scratches during winding.
  • the gripping portions of the clips at both ends of the film are usually cut off because the film is deformed and cannot be used as a product. If the material has not deteriorated due to heat, it will be recycled after recovery.
  • the film roll of this embodiment is preferably a long film, specifically about 100 m to 10,000 m, and is usually provided in the form of a roll.
  • the film after knurling and surface modification treatment is preferably wound up by the following winding method.
  • the winding method includes a straight winding process in which the film is wound around a core so that the side edges of the film are aligned, and after the straight winding process, the side edges are periodically wound in a certain range in the width direction of the film. It is preferable to have an oscillating winding step of winding the film around the core by periodically vibrating the film or the core in the width direction of the film so that the film is deviated from the core.
  • the winding length of the film reaches a switching winding length that is predetermined within a range of 10 to 30% of the total winding length of the film, switching from the straight winding process to the oscillating winding process. is preferred.
  • the film winding device includes a film winding unit that rotates a core to wind the film onto the core, and an oscillator that periodically shifts the film in the width direction of the film on the core within a certain range.
  • an oscillating unit that vibrates the film or the winding core in the width direction of the film in conjunction with the winding of the film so that the winding length of the film reaches a predetermined winding length at the time of switching;
  • the film manufacturing line B10 includes a film manufacturing device B11 and a winding device B12.
  • the film manufacturing apparatus B11 manufactures the film 81 using a solution casting method.
  • a dope is prepared using raw materials.
  • the prepared dope is cast onto an endless support to form a cast film.
  • the cast membrane becomes self-supporting, the cast membrane is peeled off from the endless support.
  • a film 81 is formed by drying the peeled cast film with hot air or the like.
  • the formed film 81 is sent to the winding device B12 via the knurling roller B15.
  • the knurling roller B15 forms minute irregularities on both side edges (edges) of the film 81 in the width direction by embossing or the like. Note that the height of the unevenness formed by the knurling roller is preferably in the range of 0.5 to 20 ⁇ m.
  • the winding device B12 includes a winding shaft B19, a winding core holder B20, a core 82 (also referred to as a winding core), a turret B22, guide rollers B23, B24, a dancer roller B25, and an encoder B27. , an oscillating section B29, a winding motor B30, a controller B31, and a dancer section B32.
  • the size of the film to be wound in the winding device B12 is not particularly limited, it is preferable that the film has a total winding length of 2,000 to 10,000 m and a width of 500 to 2,500 mm.
  • the winding shaft B19 is attached to the turret B22 with a cantilever support mechanism.
  • the cantilever support mechanism is a mechanism that supports only one end of the winding shaft B19.
  • a core 82 is attached to the winding shaft B19.
  • the core 82 is held at both ends by the core holder B20 of the winding shaft B19.
  • the winding core holder B20 is attached to the winding shaft B19 so as to be slidable in the axial direction (Y direction) of the winding shaft B19 and not to rotate.
  • a winding motor B30 is connected to one end of the winding shaft B19, and is configured to rotate the winding shaft B19.
  • the core 82 Due to this rotation, the core 82 also rotates, and the film 81 can be wound around the core 82.
  • the leading end of the film 81 is bonded to the core 82 using double-sided tape, adhesive, or the like, and the film 81 is wound around the rotating core 82 starting from this bonded portion.
  • a film roll 80 in which the film 81 is wound into a roll shape is obtained.
  • a shift mechanism B28 is attached to the turret B22 at the attachment end of the winding shaft B19.
  • This shift mechanism B28 causes the core holder B20 to reciprocate in the axial direction on the winding shaft B19.
  • the shift mechanism B28, the winding shaft B19, and the winding core holder B20 constitute an oscillating section B29.
  • the position of the side edge 91a changes within the range of the amplitude Wo every time the film 81 is stacked. This enables oscillating winding in which the film 81 is wound while shifting within the winding.
  • the oscillating part B29 is not operated, straight winding is possible in which both side edges of the film 81 are aligned. This switching between straight winding and oscillating winding is performed by controller B31.
  • the oscillating width Wo which is the amplitude of the oscillating winding
  • the amplitude Wo is preferably within the range of 10 to 30 mm, and within the above range, the amplitude Wo is constant. In addition to being fixed at a value, it may be gradually increased, decreased, or decreased after increasing.
  • Guide rollers B23, B24 and dancer roller B25 guide the film 81 from the film manufacturing apparatus B11 in the transport direction (X direction). Further, the dancer roller B25 adjusts the winding tension of the film 81 by moving the film 81 in the vertical direction (Z direction) using a shift mechanism B26. This shift mechanism B26 and dancer roller B25 constitute a dancer section B32. Encoder B27 transmits an encoder pulse signal to controller B31 every time guide roller B24 rotates at a constant rotation angle. Note that the guide roller B24 may be provided with a tension sensor that measures the winding tension of the film 81.
  • the controller B31 controls the driving of the oscillating section B29, the winding motor B30, and the dancer section B32.
  • the controller B31 includes a winding information input section B39, an LUT memory B40, a switching winding length specifying section B41, a winding length measuring section B42, and a switching determining section B43. Winding information such as the total winding length, thickness, and width of the film 81, the outer diameter of the core 82, and the winding tension is input to the winding information input section B39.
  • the LUT memory B40 stores the winding length of the film 81 when switching from straight winding to oscillating winding (winding length at the time of switching) for each winding information.
  • the switching winding length is preferably set in advance in a range of 10 to 30% of the total length of the film 81, and more preferably in a range of 15 to 25% of the total length of the film 81. There is.
  • the timing to switch from straight winding to oscillated winding is more preferably when the winding length is in the range of 15 to 25% of the total winding length.
  • the switching winding length specifying unit B41 compares the winding information stored in the LUT memory B40 with the winding information input to the winding information input unit B39, and determines the switching time corresponding to the input winding information. Determine the winding length.
  • the winding length measuring section B42 measures the winding length of the film 81 wound around the core 82 based on the encoder pulse signal from the encoder B27.
  • the switching determining unit B43 determines whether the winding length measured by the winding length measuring unit B42 exceeds the winding length at the time of switching specified by the winding length at switching unit B41. If it is determined that the winding length exceeds the switching winding length, an oscillating winding start signal is transmitted to the oscillating section B29. When the oscillating unit B29 receives the oscillating winding start signal, the oscillating unit B29 changes from straight winding, in which the film 81 is wound so that the side edges 91a of the film are aligned, to winding the film 81 while shifting the position of the side edges 91a within the range of the amplitude Wo. The winding of the film 81 is changed to oscillate winding.
  • the film roll of this embodiment can also be formed by a melt casting method.
  • Melt film forming method is a method in which a composition containing a thermoplastic resin and the above-mentioned additives is heated and melted to a temperature that exhibits fluidity, and then the melt containing the fluid thermoplastic resin is cast. means.
  • the thermoplastic resin it is particularly preferable to use cellulose ester.
  • melt extrusion is preferred from the viewpoint of mechanical strength and surface precision. It is usually preferable that the plurality of raw materials used in the melt extrusion method be kneaded and pelletized in advance.
  • Pelletization may be carried out by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder, kneaded using a single-screw or twin-screw extruder, and then passed through a die into strands. This can be done by extruding, water or air cooling, and cutting.
  • the additives may be mixed before being fed to the extruder, or may be fed from separate feeders.
  • additives such as particles and antioxidants in advance in order to mix them uniformly.
  • the extruder suppresses shearing force, can pelletize the resin so that it does not deteriorate (molecular weight decrease, coloring, gel formation, etc.), and processes at as low a temperature as possible.
  • the extruder suppresses shearing force, can pelletize the resin so that it does not deteriorate (molecular weight decrease, coloring, gel formation, etc.), and processes at as low a temperature as possible.
  • the extruder in the case of a twin-screw extruder, it is preferable to use deep groove type screws and rotate them in the same direction. In terms of uniformity of kneading, the interlocking type is preferred.
  • a film is formed using the pellets obtained as described above.
  • the melting temperature when extruding the above pellets using a single-screw or twin-screw extruder is in the temperature range of 200 to 300°C, and after filtering with a leaf disc type filter to remove foreign substances, T
  • T The film is cast from a die, the film is nipped between a cooling roller and an elastic touch roller, and the film is solidified on the cooling roller.
  • a stainless steel fiber sintered filter is preferably used as the filter used to remove foreign matter.
  • Stainless fiber sintered filters are made by creating a complex intertwined state of stainless steel fibers, compressing them, and sintering the contact points to integrate them. The density is changed depending on the thickness of the fibers and the amount of compression, and the filtration accuracy is improved. can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in during the extruder. For uniform addition, it is preferable to use a mixing device such as a static mixer.
  • the film temperature on the touch roller side is preferably in the temperature range of Tg of the film to (Tg+110)°C.
  • a known roller having an elastic surface can be used for this purpose.
  • the elastic touch roller is also called a pinching rotating body.
  • As the elastic touch roller a commercially available one can also be used.
  • the film obtained as described above be stretched by the above-mentioned stretching operation after passing through a step of coming into contact with a cooling roller.
  • a known roller stretching machine, tenter, etc. can be preferably used.
  • the specific conditions are the same as those for the solution drooling method.
  • the film obtained as described above is wound up to obtain the film roll of this embodiment.
  • the film unrolled from the film roll of this embodiment is suitably used as an optical film, such as a protective film for a polarizing plate, and is used in various optical measurement devices, liquid crystal display devices, organic electroluminescence display devices, etc. It can be used for display devices.
  • ⁇ Preparation of dope D-1> The following composition was put into a mixing tank, stirred to dissolve each component, and then filtered through a filter paper with an average pore size of 34 ⁇ m and a sintered metal filter with an average pore size of 10 ⁇ m to prepare a dope.
  • Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle diameter: 7 nm, apparent specific gravity 50 g/L) 4 parts by mass Dichloromethane 76 parts by mass Ethanol 20 parts by mass Cyclic polyolefin solution (dope D-1) 10 parts by mass The above cyclic polyolefin solution and 0.75 parts by mass of the fine particle dispersion were mixed to prepare a film-forming dope. The dope was cast in a width of 1800 mm on a film forming line, dried on a metal support until it had self-supporting properties, and then stripped off as a web and introduced into a tenter.
  • the residual solvent in the web at the time of introduction into the tenter was 5 to 15% by mass.
  • the film was transported in a tenter at a stretching ratio of 20% in the width direction and at a temperature inside the tenter of 160°C. Thereafter, it was dried and slit to adjust the film roll width to 2200 mm and film thickness to 40 ⁇ m.
  • the knurling width at both ends was 15 mm from the edge of the film.
  • the line speed for conveying the film was 10 m/min.
  • the laser device a carbon dioxide laser device was used, the output of the laser device was 20 W, the center wavelength of the light emission wavelength was 9.4 ⁇ m, and the light emission wavelength range was set to ⁇ 0.01 ⁇ m or less around the center wavelength.
  • a collimated beam emitted from a carbon dioxide laser device is reflected by two galvanometer mirrors, and focused on the surface of the film being transported via an f ⁇ lens (focal length 200 mm). This was done by lighting it.
  • the angle of the galvano mirror the light condensing position was moved in the plane of the film, thereby controlling the locus of laser light irradiation onto the film surface.
  • ⁇ Surface modification treatment atmospheric pressure plasma treatment process> AGP-500 manufactured by Kasuga Denki was installed on the back side (part B) of the knurling part (part A) of the film, and irradiated with 0.5 kW. The distance between the probe that emits atmospheric pressure plasma and the film was 5 mm. The installation position was set so that the atmospheric pressure plasma to be irradiated could be irradiated to a width of 110% of the width of the knurling part on the back side of the film facing the knurling part.
  • ⁇ Winding process> A double-sided tape 89 (not shown in FIG. 11) was attached to the core 82 along the axial direction (Y direction), thereby joining the tip of the knurling film 81 to the core 82.
  • the film subjected to the knurling process was wound up.
  • the initial tension was 150N
  • the taper was 70%
  • the corner was 25%.
  • the film roll 80 immediately after being produced in the winding process is moved manually or automatically by a moving mechanism (not shown) in a subsequent process and is attached to the above-mentioned film roll holding device 1 to the holding position (Fig. 1, see FIG. 7 (step S01), etc.).
  • the average air layer thickness contained in the initial film roll was suppressed to 1.0 ⁇ m.
  • the winding length was 3900m or 7800m.
  • Tables 1 to 3 shown in FIGS. 12A to 12C show the experimental conditions and evaluation results of Examples 1 to 8 and Comparative Example.
  • the film rolls for each Example and Comparative Example used were those produced in the above Examples with an average film thickness of 40 ⁇ m and a roll width of 2200 mm.
  • a film roll immediately after production was used as the evaluation start point, and was held in the holding section 30 of the film holding device 1 in a state where the axis (core 82) was horizontal as shown in FIG.
  • the double-sided tape 89 was oriented upward (0 degree angle position) (see FIGS. 3 and 6). Further, the storage environment and evaluation were performed in an atmosphere of 23° C. and 55% RH.
  • the determination timing of the suppressing operation (step S04 in FIG. 7), that is, the measurement cycle during leaving is once a day (24 hours).
  • the measurement points are three points on the upper side surface, that is, measurement points p01, p02, and p03.
  • the voids were used as an index value obtained by averaging.
  • the rate of change was used to repair the threshold for determining the change over time (step S07 in FIG. 7).
  • the value is the judgment threshold (change rate 12%, 20%, or 40%) listed in Tables 1 to 3 for the first or second time in the suppression treatment by rotation while left for 14 days. Using.
  • the second determination threshold is not based on the index value after the immediately preceding first rotation process, but is based on the initial index value for the second time as well, and is set based on this index value.
  • the initial index value is an index value obtained by measurement immediately after production.
  • Example 1 the first rotation process using the index value is performed on the second day (48 hours) after the start of storage, and thereafter, the rotation process is performed periodically 12 times over 12 days from the 3rd day to the 14th day. A rotation process of 180 degrees was performed. Immediately after the rotation treatment on the 14th day, the evaluation items were evaluated. In Example 3, the first rotation process using the index value is performed on the 6th day, and thereafter, 8 regular rotation processes are performed from the 7th day to the 14th day, and immediately after the last rotation process, We conducted an evaluation regarding the evaluation items.
  • the rotation amount and rotation speed of one rotation process are as listed in Tables 1 to 3, and are any of 90, 180, and 360 degrees.
  • the rotation direction is the same "winding direction" for both index value-based rotation processing and periodic rotation processing.
  • Evaluation item 1 is buckling deformation based on appearance evaluation.
  • Roll buckling deformation refers to a phenomenon in which air caught in a film roll escapes over time, causing the roll to cave in or buckle.
  • Evaluation item 2 is tape transfer based on appearance evaluation. After leaving the film roll for 14 days, the film roll is rewound and tape transfer (also called core transfer), where point-like deformation of 50 ⁇ m or more or band-like deformation in the width direction is clearly visible, occurs up to several meters from the core. We measured how well they were doing and ranked them into the following levels.
  • Table 1 shows the difference depending on the change rate determination threshold (step S07 in FIG. 7).
  • the evaluation results were worse in the order of Examples 1, 2, and 3.
  • Example 3 although it is improved over the comparative example, a failure of evaluation level C occurs. It can be seen that in order to achieve an evaluation level of B or higher, the appropriate determination threshold is 20% or less, more preferably 12% or less.
  • Table 2 shows the results in which the rotation amount and rotation speed are varied in one rotation process in the rotation process based on the index value when the same determination threshold is used.
  • amount of rotation from a comparison of Examples 1, 4, and 5, it can be seen that 180 degrees (half rotation) gives the best evaluation results compared to rotations of 90 and 360 degrees.
  • Table 3 evaluates the degree of influence due to the difference in the amount of rotation in the second rotation process.
  • the second rotation process is a periodic rotation process, in which rotation is performed for 180 degrees at a rotation speed of 1 degree/min.
  • the second rotation process is a rotation process based on an index value, and rotation is performed by 90 degrees at a rotation speed of 1 degree/min. Note that the timing of the second rotation process in Example 1 and Example 8 is determined by periodic and index value, and the processing method is different, but it happens to be performed on the same third day. As shown in Table 3, the evaluation results of Example 8 are worse than those of Example 1.
  • each condition is the condition of Example 1, the determination threshold is 12% or less, the rotation amount in one suppression process is 180 degrees, and the rotation speed is 1 degree/min. It can be seen that the condition gives the best evaluation results.
  • the structure of the film roll holding device 1 explained above is the main structure explained in explaining the features of the above embodiment, and is not limited to the above structure, and various modifications can be made within the scope of the claims. Can be done. Moreover, the configuration provided in a general image forming apparatus is not excluded.
  • the film roll holding device 1 may further include an injection part that injects inert gas from the side of the film roll 80 held by the holding part 30.
  • an injection part that injects inert gas from the side of the film roll 80 held by the holding part 30.
  • rotation processing is performed based on the index value, and inert gas is injected. This can suppress the decrease in voids and, in turn, suppress the failure of the film roll.
  • the means and methods for performing various processes in the film roll holding device 1 according to the embodiment described above can be realized by either a dedicated hardware circuit or a programmed computer.
  • the program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk.
  • the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the device.

Abstract

A film roll holding device (1) comprises: a measurement part (40) that generates measurement data by measuring a side surface of a film roll (80) held by a holding part (30); an analysis part (11) that generates an indication value related to a void between film layers by analyzing the measurement data; and a prevention control part (13) that determines whether a temporal change in the indication value has exceeded a threshold, and that, upon determining that the temporal change has exceeded the threshold, rotates the film roll (80) by a predetermined amount by means of a rotation mechanism (313).

Description

フィルムロール保持装置、フィルムロールの故障抑制方法、および制御プログラムFilm roll holding device, film roll failure suppression method, and control program
 本発明は、液晶表示装置(LCD)等に用いられるフィルムがロール状に巻き取られたフィルムロールを保持するためのフィルムロール保持装置、このフィルムロールの故障抑制方法、および制御プログラムに関する。 The present invention relates to a film roll holding device for holding a film roll in which a film used for a liquid crystal display (LCD) or the like is wound into a roll, a failure prevention method for this film roll, and a control program.
 液晶表示装置は、大画面テレビや大型モニターに使用されるようになってきており、これにともない液晶表示装置の表示面に用いられるフィルムも広幅化が求められている。例えば、2000mm幅以上の幅広のフィが要望されている。また、あらかじめ基材ロス(フィルムロス)を見込んだり、および輸送コスト削減を図ったりするために、巻き長も1000m以上、更には3000m以上の長尺のフィルムロールの製造が求められる。 Liquid crystal display devices are increasingly being used in large-screen televisions and large monitors, and along with this, the films used for the display surfaces of liquid crystal display devices are also required to be wider. For example, there is a demand for a wide fin with a width of 2000 mm or more. Furthermore, in order to account for base material loss (film loss) in advance and to reduce transportation costs, it is required to manufacture long film rolls with a winding length of 1000 m or more, and even 3000 m or more.
 このようなフィルムロールを製造してから出荷まで長期間放置されたり、また顧客に納品してから使用されずに長期間放置される場合がある。これにより、フィルム基材の自重によりフィルムロール全体でたわみ等による変形が発生し、これによりフィルム同士が貼り付いたり、座屈変形したりすることで、品質不良(故障)が発生する。 There are cases where such film rolls are left unused for a long period of time after being manufactured, or left unused for a long time after being delivered to a customer. As a result, the entire film roll undergoes deformation due to deflection due to the weight of the film base material, which causes the films to stick to each other or undergo buckling deformation, resulting in quality defects (failures).
 特許文献1では、フィルムロールの保管時や移送時の生じるたわみ、くっつきの発生を防止するための保管箱、および保管方法が開示されている。この保管方法では、保管箱に保管したフィルムロール(原反)を、回転手段により2週間に1回以上の頻度で回転させることで、故障を抑制している。 Patent Document 1 discloses a storage box and a storage method for preventing film rolls from being bent or stuck during storage or transportation. In this storage method, a film roll (original film) stored in a storage box is rotated by a rotating means at least once every two weeks, thereby suppressing failure.
特開2005-241793号公報Japanese Patent Application Publication No. 2005-241793
 しかしながら、巻き取るフィルムの材料、幅、厚さ、表面性、保管環境、等により、保管したフィルムロールで故障が発生する放置期間は一律ではなく、特許文献1に開示された保管方法では、適切に故障を抑制できないおそれがある。また、回転の頻度を多くすれば故障を抑制できると思われるが、全ての条件で故障を抑制できるようにするためには、高頻度で回転させなくてはならず現実的でない。 However, depending on the material, width, thickness, surface properties, storage environment, etc. of the film to be wound, the length of time a stored film roll is left unused for failure to occur is not uniform, and the storage method disclosed in Patent Document 1 is not suitable for this purpose. There is a risk that failures may not be suppressed. Further, it is thought that failures can be suppressed by increasing the frequency of rotation, but in order to suppress failures under all conditions, it is necessary to rotate at a high frequency, which is not realistic.
 本発明は、上記事情に鑑みてなされたものであり、フィルムロールの保管状態に応じて、適切に抑制処理をすることで、フィルムロールの故障を抑制できるフィルムロール保持装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a film roll holding device that can suppress failures of film rolls by appropriately performing suppression treatment depending on the storage state of the film roll. shall be.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)フィルムをコアに巻回してなるフィルムロールを保持する保持部と、
 前記保持部に保持された前記フィルムロールを回転させる回転機構と、
 前記保持部に保持された前記フィルムロールの側面を測定して測定データを生成する測定部と、
 前記測定データを解析することで、フィルム層間の空隙に関する指標値を生成する解析部と、
 前記指標値の経時変化が判定閾値を超えた否かを判定し、前記判定閾値を超えたと判定した場合に、前記回転機構により前記フィルムロールを所定量だけ回転させる抑制制御部と、
を備える、フィルムロール保持装置。
(1) A holding part that holds a film roll formed by winding a film around a core;
a rotation mechanism that rotates the film roll held by the holding section;
a measuring unit that measures a side surface of the film roll held by the holding unit to generate measurement data;
an analysis unit that generates an index value regarding voids between film layers by analyzing the measurement data;
an inhibition control unit that determines whether or not the change in the index value over time exceeds a determination threshold, and when it is determined that the change over time exceeds the determination threshold, causes the rotation mechanism to rotate the film roll by a predetermined amount;
A film roll holding device comprising:
 (2)前記抑制制御部は、前記経時変化を、過去の第1のタイミングにおける前記指標値と、現在のタイミングにおける前記指標値との比較により求める、上記(1)に記載のフィルムロール保持装置。 (2) The film roll holding device according to (1), wherein the suppression control unit determines the change over time by comparing the index value at a past first timing with the index value at a current timing. .
 (3)前記第1のタイミングは、前記フィルムロールの生産直後のタイミングである、上記(2)に記載のフィルムロール保持装置。 (3) The film roll holding device according to (2) above, wherein the first timing is a timing immediately after production of the film roll.
 (4)前記第1のタイミングは、前記フィルムロールの生産直後のタイミング、または前記回転機構により直前の前記フィルムロールを回転させた直後のタイミングであり、
 前記抑制制御部は、前記判定閾値を超えたと判定する度に、前記回転機構による前記フィルムロールの回転を繰り返し行う、上記(2)に記載のフィルムロール保持装置。
(4) The first timing is the timing immediately after the production of the film roll, or the timing immediately after the rotation mechanism rotates the previous film roll,
The film roll holding device according to (2), wherein the suppression control unit repeatedly rotates the film roll by the rotation mechanism every time it is determined that the determination threshold value is exceeded.
 (5)前記測定部は、前記フィルムロールの側面を撮影領域として撮影する撮像装置であり、
 前記解析部は、前記撮像装置により生成された画像データを解析することで、前記指標値を生成する、上記(1)から上記(4)のいずれかに記載のフィルムロール保持装置。
(5) The measuring unit is an imaging device that photographs a side surface of the film roll as a photographing area,
The film roll holding device according to any one of (1) to (4) above, wherein the analysis unit generates the index value by analyzing image data generated by the imaging device.
 (6)前記指標値は、前記撮影領域における所定距離に含まれる前記フィルムの層数と、前記フィルムの膜厚から求めた半径方向における空隙である、上記(5)に記載のフィルムロール保持装置。 (6) The film roll holding device according to (5) above, wherein the index value is a gap in the radial direction determined from the number of layers of the film included in a predetermined distance in the photographing area and the film thickness of the film. .
 (7)前記経時変化は、前記空隙の減少率であり、
 前記判定閾値は10~30%の範囲のいずれかの値である、上記(6)に記載のフィルムロール保持装置。
(7) The change over time is a reduction rate of the voids,
The film roll holding device according to (6) above, wherein the determination threshold value is any value in the range of 10 to 30%.
 (8)前記測定部は、前記保持部に保持された状態の前記フィルムロールの側面のうち、コアの上方の側面を測定する、上記(1)から上記(4)のいずれかに記載のフィルムロール保持装置。 (8) The film according to any one of (1) to (4) above, wherein the measurement unit measures a side surface above the core among the side surfaces of the film roll held by the holding unit. Roll holding device.
 (9)前記保持部は、前記フィルムのコアへの接合を行うテープが前記コアの上部側に位置する状態で、前記フィルムロールを保持し、
 前記測定部は、前記保持部に保持された状態の前記フィルムロールの側面のうち、コアの上方の側面を測定する、上記(8)に記載のフィルムロール保持装置。
(9) The holding unit holds the film roll in a state where the tape that joins the film to the core is located on the upper side of the core,
The film roll holding device according to (8), wherein the measuring section measures a side surface above the core among the side surfaces of the film roll held by the holding section.
 (10)前記抑制制御部は、前記判定閾値を超えたと判定した場合に、前記所定量の回転として、前記フィルムロールの巻き方向またはその逆方向に1~180度の範囲内の所定角度分だけ回転させる、上記(1)から上記(4)のいずれかに記載のフィルムロール保持装置。 (10) When the suppression control unit determines that the determination threshold is exceeded, the suppression control unit rotates the film roll by a predetermined angle within a range of 1 to 180 degrees in the winding direction or the opposite direction as the predetermined amount of rotation. The film roll holding device according to any one of (1) to (4) above, which is rotated.
 (11)フィルムをコアに巻回してなるフィルムロールを保持する保持部に保持された前記フィルムロールの側面を測定して測定データを生成するステップ(a)と、
 前記測定データを解析することで、フィルム層間の空隙に関する指標値を生成するステップ(b)と、
 前記指標値の経時変化が判定閾値を超えた否かを判定し、前記判定閾値を超えたと判定した場合に、前記保持部に保持された前記フィルムロールを回転機構により所定量だけ回転させるステップ(c)と、
を含む処理を実行するフィルムロールの故障抑制方法。
(11) step (a) of generating measurement data by measuring the side surface of the film roll held by a holding unit that holds a film roll formed by winding a film around a core;
(b) generating an index value regarding voids between film layers by analyzing the measurement data;
determining whether or not the change over time of the index value exceeds the determination threshold, and when determining that the change over time exceeds the determination threshold, rotating the film roll held by the holding unit by a predetermined amount by a rotation mechanism ( c) and
A method for suppressing failure of a film roll that performs processing including.
 (12)
 フィルムをコアに巻回してなるフィルムロールを保持する保持部と、前記保持部に保持された前記フィルムロールを回転させる回転機構と、前記保持部に保持された前記フィルムロールの側面を測定して測定データを生成する測定部と、を備えるフィルムロール保持装置を制御するための制御プログラムであって、
 前記保持部に保持された前記フィルムロールの側面を測定して測定データを生成するステップ(a)と、
 前記測定データを解析することで、フィルム層間の空隙に関する指標値を生成するステップ(b)と、
 前記指標値の経時変化が判定閾値を超えた否かを判定し、前記判定閾値を超えたと判定した場合に、前記保持部に保持された前記フィルムロールを前記回転機構により所定量だけ回転させるステップ(c)と、
を含む処理をコンピューターに実行させるための制御プログラム。
(12)
A holding part that holds a film roll formed by winding a film around a core, a rotation mechanism that rotates the film roll held by the holding part, and a side surface of the film roll held by the holding part. A control program for controlling a film roll holding device comprising: a measurement unit that generates measurement data;
(a) measuring a side surface of the film roll held by the holding unit to generate measurement data;
(b) generating an index value regarding voids between film layers by analyzing the measurement data;
determining whether the change over time of the index value exceeds a determination threshold, and when determining that the change over time exceeds the determination threshold, rotating the film roll held by the holding unit by a predetermined amount by the rotation mechanism; (c) and
A control program that causes a computer to perform processes including
 本発明に係るフィルムロール保持装置は、保持部に保持されたフィルムロールの側面を測定して測定データを生成する測定部と、測定データを解析することで、フィルム層間の空隙に関する指標値を生成する解析部と、指標値の経時変化が閾値を超えた否かを判定し、閾値を超えたと判定した場合に、回転機構によりフィルムロールを所定量だけ回転させる抑制制御部と、を備える。これにより、フィルムロールに故障が生じることを抑制できる。 The film roll holding device according to the present invention includes a measurement unit that measures the side surface of the film roll held by the holding unit and generates measurement data, and generates an index value regarding gaps between film layers by analyzing the measurement data. and a suppression control section that determines whether or not the change over time of the index value exceeds a threshold value, and rotates the film roll by a predetermined amount using a rotation mechanism when it is determined that the change over time of the index value exceeds the threshold value. This can suppress failures in the film roll.
本実施形態に係るフィルムロール保持装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a film roll holding device according to the present embodiment. フィルムロール保持装置のブロック図である。FIG. 2 is a block diagram of a film roll holding device. 保持されたフィルムロールの外観を示す斜視図である。FIG. 3 is a perspective view showing the appearance of a held film roll. 撮像ユニットの構成を示す構成断面図である。FIG. 2 is a cross-sectional view showing the configuration of an imaging unit. 撮像ユニットを含む撮像装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of an imaging device including an imaging unit. 保持されたフィルムロールの測定箇所を示す概略図である。FIG. 2 is a schematic diagram showing measurement points on a held film roll. 故障抑制処理を示すフローチャートである。It is a flowchart which shows failure suppression processing. 指標値算出処理を示すサブルーチンフローチャートである。It is a subroutine flowchart which shows index value calculation processing. 溶液流延法によってフィルム製造する方法を示す模式図である。FIG. 2 is a schematic diagram showing a method of manufacturing a film by a solution casting method. フィルム製造ラインの概略図である。It is a schematic diagram of a film production line. 巻取装置の平面図である。It is a top view of a winding device. 抑制処理で異なる判定閾値を適用した際の評価結果を示す表1である。11 is Table 1 showing evaluation results when different determination thresholds are applied in the suppression process. 抑制処理で異なる回転量と回転速度を適用した際の評価結果示す表2である。Table 2 shows evaluation results when different rotation amounts and rotation speeds are applied in the suppression process. 抑制処理で異なる回転量を適用した際の評価結果示す表3である。Table 3 shows evaluation results when different rotation amounts are applied in the suppression process.
 以下、添付した図面を参照して、本発明の実施形態を説明する。しかしながら、本発明の範囲は、開示される実施形態に限定されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。図面においては、上下方向をZ方向、フィルムロール保持装置に保持された状態のフィルムロールの回転軸(コアの軸)に沿った方向をY方向、これらのY、Z方向に直交する方向をX方向とする。また、フィルムロールにおいて回転軸に直交する方向を、半径方向、積層方向、または厚さ方向ともいう。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. However, the scope of the invention is not limited to the disclosed embodiments. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted. Furthermore, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. In the drawings, the vertical direction is the Z direction, the direction along the rotation axis (core axis) of the film roll held by the film roll holding device is the Y direction, and the direction perpendicular to these Y and Z directions is the X direction. direction. In addition, the direction perpendicular to the rotation axis of the film roll is also referred to as the radial direction, lamination direction, or thickness direction.
 図1は、本実施形態に係るフィルムロール保持装置1の概略構成を示す図である。図2は、フィルム保持装置1のハードウェア構成を示すブロック図である。図3は、フィルムロール保持装置1に保持されたフィルムロール80の外観を示す斜視図である。 FIG. 1 is a diagram showing a schematic configuration of a film roll holding device 1 according to the present embodiment. FIG. 2 is a block diagram showing the hardware configuration of the film holding device 1. As shown in FIG. FIG. 3 is a perspective view showing the appearance of the film roll 80 held by the film roll holding device 1.
 (フィルムロール80)
 図1、図3に示すように、フィルムロール80は、フィルム81をコア82(巻芯ともいう)に巻回して生成される。フィルム81は、膜厚10~50μmの範囲であり、例えば40μmである。フィルム81の幅は1300~3000mm(1.3~3.0m)の範囲内であり、例えば2200mmである。1つのフィルムロール80に巻回されるフィルム81の全長(以下、巻長という)は、2000m~8000mであり、例えば、巻長は3900mである。フィルムロール80の外径は、数百mm~1mの範囲内である。
(Film roll 80)
As shown in FIGS. 1 and 3, the film roll 80 is produced by winding a film 81 around a core 82 (also referred to as a winding core). The film 81 has a thickness in the range of 10 to 50 μm, for example, 40 μm. The width of the film 81 is within the range of 1300 to 3000 mm (1.3 to 3.0 m), for example 2200 mm. The total length of the film 81 wound around one film roll 80 (hereinafter referred to as the winding length) is 2000 m to 8000 m, for example, the winding length is 3900 m. The outer diameter of the film roll 80 is within the range of several hundred mm to 1 m.
 コア82へのフィルム81の巻き取りの起点となる箇所においては、コア82に幅数mm程度の幅狭の両面テープ89(図3参照)を、軸方向(Y方向)に沿って貼り付け、これによりフィルム81の先端をコア82に固定(接合)する。また、両面テープ89はフィルムの幅よりも若干長く、フィルムロール80の側面端部からはみ出るようにしてもよい。なお、両面テープ89をはみ出さずに、コア82の一方の側面端部側の両面テープの位置に対応した位置に、テープやインクによるマーカーを付与してもよい。図3は、フィルムロール保持装置1に製造直後のフィルムロール80を装填し、保持した初期状態を示している。本実施形態においては、この初期状態では、端部からはみ出た両面テープ89(またはマーカー)を回転角度の目印とし、この両面テープ89が上方向(Z方向)になるような位置に配置する。また、両面テープ89の位置を目印として、フィルムロール80の回転位置を検知し、回転量および停止位置の制御を行うようにしてもよい。この場合、保持部30に光学センサーを配置することで両面テープ89の位置を検知できる。初期状態とは、生産直後のフィルムロール80をフィルムロール保持装置1に装填し、保持した状態であって、本実施形態の故障の抑制処理(以下、単に抑制処理という)を行う前の状態をいう。故障の抑制処理では、フィルムロール80を一定速度で一定量の角度分の回転を行う。なお、この起点のフィルム81先端では、フィルム81と両面テープを重ねた分の厚さがあり、この直前の箇所とで段差が生じることになる。コア82を回転させてフィルム81を巻回したときに、2巻目以降にこの段差を要因とする変形による不具合(故障)が発生する(以下、テープ転写という)。本実施形態では、このテープ転写の不具合も抑制の対象となる故障に含まれる。この故障を未然に防ぐための抑制処理、および改善効果については後述する(後述の図7、8)。また、このフィルムロール80の、材料、生産方法についても後述する(後述の図9~図11)。 At the point where the film 81 is wound around the core 82, a narrow double-sided tape 89 (see FIG. 3) with a width of several millimeters is attached to the core 82 along the axial direction (Y direction). This fixes (joins) the tip of the film 81 to the core 82. Further, the double-sided tape 89 may be slightly longer than the width of the film and protrude from the side edge of the film roll 80. Note that a marker using tape or ink may be applied to a position corresponding to the position of the double-sided tape on one side edge of the core 82 without extending the double-sided tape 89. FIG. 3 shows an initial state in which a film roll 80 immediately after manufacture is loaded and held in the film roll holding device 1. In this embodiment, in this initial state, the double-sided tape 89 (or marker) protruding from the end is used as a mark of the rotation angle, and the double-sided tape 89 is placed in the upward direction (Z direction). Alternatively, the rotational position of the film roll 80 may be detected using the position of the double-sided tape 89 as a mark, and the rotation amount and stop position may be controlled. In this case, the position of the double-sided tape 89 can be detected by arranging an optical sensor on the holding part 30. The initial state refers to the state in which the film roll 80 immediately after production is loaded and held in the film roll holding device 1, and before the failure suppression process of this embodiment (hereinafter simply referred to as suppression process) is performed. say. In the failure suppression process, the film roll 80 is rotated by a certain amount of angle at a constant speed. Note that at the tip of the film 81 at this starting point, there is a thickness equal to the overlap of the film 81 and the double-sided tape, and a step will be created between the tip and the point immediately before this. When the core 82 is rotated and the film 81 is wound, problems (failures) occur in the second and subsequent rolls due to deformation caused by this level difference (hereinafter referred to as tape transfer). In this embodiment, this tape transfer malfunction is also included in the malfunctions to be suppressed. The suppression process for preventing this failure and the improvement effect will be described later (FIGS. 7 and 8, which will be described later). Further, the materials and production method of this film roll 80 will also be described later (FIGS. 9 to 11, which will be described later).
 〔1〕フィルムロール保持装置1
 図1、図2に示すようにフィルムロール保持装置1は、制御部10、記憶部20、保持部30、および撮像装置40を備える。保持部30はフィルムロール80を長期間保持し、保管する。また保持部30は、制御部10の制御信号に応じて、保持したフィルムロール80を回転軸周りに回転させる故障抑制処理を実施する。撮像装置40は、測定部として機能し、フィルムロール80の側面を測定し、測定データを生成する。側面からはフィルムロール80のフィルム81の層状態を観察できる。制御部10は、測定部から取得した測定データ、すなわち、撮像装置40から取得した画像データを解析することで、フィルム層間の空隙に関する指標値を生成する。また指標値の経時変化に応じて、フィルムロール80の故障の抑制処理の実施タイミングを判定し、判定に応じて、保持部30を制御することでフィルムロール80を回転させる。
[1] Film roll holding device 1
As shown in FIGS. 1 and 2, the film roll holding device 1 includes a control section 10, a storage section 20, a holding section 30, and an imaging device 40. The holding unit 30 holds and stores the film roll 80 for a long period of time. Further, the holding section 30 performs a failure prevention process of rotating the held film roll 80 around the rotation axis in response to a control signal from the control section 10 . The imaging device 40 functions as a measurement unit, measures the side surface of the film roll 80, and generates measurement data. The layer state of the film 81 of the film roll 80 can be observed from the side. The control unit 10 generates an index value regarding the gap between the film layers by analyzing the measurement data acquired from the measurement unit, that is, the image data acquired from the imaging device 40. Further, the timing for implementing failure suppression processing for the film roll 80 is determined according to the change in the index value over time, and the film roll 80 is rotated by controlling the holding unit 30 according to the determination.
 (指標値)
 ここでフィルム層間の空隙に関する「指標値」としては、「層の間隔」、または「平均空隙距離」もしくは「空隙率」を用いることができる。「層の間隔」は、フィルムロール80の半径方向における「層の間隔」(層ピッチ(空間周波数)ともいう)である。「平均空隙距離」または「空隙率」は、「層の間隔」値とフィルムの平均厚み値を用いて算出できる。これらの「層の間隔」、「平均空隙距離(以下、単に空隙ともいう)」または「空隙率」は、測定部としてのフィルム撮像装置から得られた画像データを解析することによって生成する。具体的には、層の間隔は、単位距離あたりのフィルム81の層数から求められる。また、空隙、および空隙率は、単位距離あたりのフィルム81の層数または所定層数での半径方向の距離を測定し、この数値とフィルム81の平均膜厚から以下の式により算出できる。ここで平均膜厚は、あらかじめ測定したもの、あるいは製品スペック値であり、あらかじめ記憶部20に記憶される。
空隙(平均空隙距離)=(n層の半径方向の長さ-平均膜厚×層数n)/層数n
空隙率=(平均空隙距離/1層あたりの半径方向の長さ)
 例えば、n=100層を用い、フィルム81が平均膜厚0.04mm(40μm)であり、フィルムロール80として巻かれた状態で100層の厚さ方向(以下、半径方向ともいう)における長さが4.1mmとする。この場合には、空隙は1.0μm(=(4.1-(0.04×100)/100))となる。空隙率も同様に、空隙を膜厚で除することにより算出できる。例えば同じ数値例であれば、空隙率は、1.0/41.0=2.44%となる。以下に説明する本実施形態においては、特に言及がない場合には、指標値として「空隙」を用いる。
(Indicator value)
Here, as the "index value" regarding the voids between film layers, "layer spacing", "average void distance", or "porosity" can be used. The “layer spacing” is the “layer spacing” (also referred to as layer pitch (spatial frequency)) in the radial direction of the film roll 80. The "average void distance" or "porosity" can be calculated using the "layer spacing" value and the average thickness value of the film. These "layer spacing,""average void distance (hereinafter also simply referred to as voids)," or "porosity" are generated by analyzing image data obtained from a film imaging device serving as a measurement unit. Specifically, the layer spacing is determined from the number of layers of the film 81 per unit distance. Further, the voids and the porosity can be calculated by measuring the number of layers of the film 81 per unit distance or the distance in the radial direction at a predetermined number of layers, and using this value and the average thickness of the film 81 using the following formula. Here, the average film thickness is measured in advance or is a product specification value, and is stored in the storage unit 20 in advance.
Voids (average gap distance) = (radial length of n layers - average film thickness x number of layers n) / number of layers n
Porosity = (average pore distance/radial length per layer)
For example, if n=100 layers are used, and the film 81 has an average thickness of 0.04 mm (40 μm), the length in the thickness direction (hereinafter also referred to as the radial direction) of the 100 layers when wound as the film roll 80 is is 4.1 mm. In this case, the gap is 1.0 μm (=(4.1−(0.04×100)/100)). Similarly, the porosity can be calculated by dividing the porosity by the film thickness. For example, in the same numerical example, the porosity is 1.0/41.0=2.44%. In this embodiment described below, "void" is used as the index value unless otherwise mentioned.
 なお、指標値の生成の元となる測定データを得る測定装置としては、撮像装置に替えて他の測定器を適用してもよい。例えば、プローブ等を用いた接触式、またはレーザー光を用いた非接触の表面粗さ測定器により側面の凹凸を測定し、その周期により、層ピッチ等を算出できる。 Note that other measuring devices may be used instead of the imaging device as the measuring device that obtains the measurement data that is the basis for generating the index value. For example, the unevenness of the side surface is measured by a contact type surface roughness measuring device using a probe or the like or a non-contact surface roughness measuring device using a laser beam, and the layer pitch etc. can be calculated from the period.
 〔1.1〕制御部10
 制御部10は、CPUと、メモリを有する。CPUは、プログラムにしたがって上記各部の制御や各種の演算処理を実行するマルチコアのプロセッサ等から構成される制御回路である。フィルムロール保持装置1の各機能は、対応するプログラムをCPUが実行することにより発揮される。メモリは、作業領域として一時的にプログラムおよびデータを記憶する高速アクセス可能な主記憶装置である。メモリには、例えば、DRAM、SDRAM、SRAM等が採用される。
[1.1] Control unit 10
The control unit 10 has a CPU and a memory. The CPU is a control circuit composed of a multi-core processor and the like that controls the above-mentioned parts and executes various arithmetic processing according to a program. Each function of the film roll holding device 1 is performed by the CPU executing a corresponding program. Memory is a fast-accessible main storage device that temporarily stores programs and data as a work area. For example, DRAM, SDRAM, SRAM, etc. are employed as the memory.
 〔1.2〕記憶部20
 記憶部20は、オペレーティングシステムを含む各種プログラムや各種データを格納する大容量の補助記憶装置である。ストレージには、例えば、ハードディスク、ソリッドステートドライブ、フラッシュメモリ、ROM等が採用される。また、記憶部20は、抑制処理の対象となるフィルムロール80を構成するフィルム81の膜厚情報(製品スペックまたは実測値)、および所定の第1のタイミングで生成された指標値を記憶する。第1のタイミングとしては、例えば、フィルムロール80の生産直後(生産の巻き取り直後)、または、フィルムロール80に対して、繰り返しフィルムロール80への抑制処理をする場合には、直前に同じフィルムロール80に対して回転させた直後である。
[1.2] Storage unit 20
The storage unit 20 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, solid state drive, flash memory, ROM, etc. are used as the storage. The storage unit 20 also stores film thickness information (product specifications or actual measurement values) of the film 81 constituting the film roll 80 that is the target of the suppression process, and an index value generated at a predetermined first timing. The first timing may be, for example, immediately after production of the film roll 80 (immediately after winding up during production), or when the film roll 80 is subjected to repeated restraint processing, the same film immediately before This is immediately after rotation with respect to the roll 80.
 〔1.3〕制御部10
 制御部10は、解析部11、変化量算出部12、および抑制制御部13として機能する。解析部11は、撮像装置40から取得した画像データに対して画像解析することで、半径方向における、単位長さあたりのフィルム層数、または所定層数での半径方向の距離を測定する。解析部11は、画像解析としては、例えば画像データに対して、エッジ強調処理を行い、半径方向における画像濃度の濃淡周期を測定することで、フィルム層数を算出する。解析部11は、フィルム層数、またはフィルム層数とフィルム81の(既知の)膜厚情報により、上述のいずれかの指標値を生成する。解析部11が生成した指標値は、タイミング情報とともに、記憶部20に記憶されたり、変化量算出部12に渡されたりする。ここでいうタイミング情報とは、生産直後であることを示す情報、および/または、測定装置によりフィルムロール80の側面を測定した日時情報である(例えば、撮像装置40の撮影日時)。
[1.3] Control unit 10
The control unit 10 functions as an analysis unit 11, a change amount calculation unit 12, and a suppression control unit 13. The analysis unit 11 measures the number of film layers per unit length in the radial direction, or the distance in the radial direction with a predetermined number of layers, by performing image analysis on the image data acquired from the imaging device 40. As an image analysis, the analysis unit 11 calculates the number of film layers by, for example, performing edge enhancement processing on the image data and measuring the cycle of image density in the radial direction. The analysis unit 11 generates one of the above index values based on the number of film layers or the number of film layers and (known) film thickness information of the film 81. The index value generated by the analysis section 11 is stored in the storage section 20 or passed to the change amount calculation section 12 together with timing information. The timing information here refers to information indicating that it is immediately after production, and/or date and time information when the side surface of the film roll 80 was measured by a measuring device (for example, the date and time of photographing by the imaging device 40).
 変化量算出部12は、記憶部20に記憶した第1のタイミングにおける指標値と、解析部11から取得した現在のタイミング(第2のタイミングともいう)における指標値(以下、現在の指標値という)とを比較することで、経時変化を算出する。例えば、記憶部20から取得した、第1のタイミングの指標値として、フィルムロール80の生成直後の指標値(A1)と比較した現在の指標値(A2)の変化量(A1-A2)、または変化率(1-A2/A1)を経時変化として算出する。例えば、指標値として空隙(平均空隙)を用いた場合には、第1のタミングで1.0μmであった指標値が、第2のタイミングで0.8μmに変化した場合には、変化率は20%(=1-0.8/1.0)となる。 The change calculation unit 12 calculates the index value at the first timing stored in the storage unit 20 and the index value at the current timing (also referred to as the second timing) acquired from the analysis unit 11 (hereinafter referred to as the current index value). ) to calculate changes over time. For example, as the index value at the first timing acquired from the storage unit 20, the amount of change (A1-A2) in the current index value (A2) compared to the index value (A1) immediately after the film roll 80 is generated, or The rate of change (1-A2/A1) is calculated as the change over time. For example, when using voids (average voids) as the index value, if the index value changes from 1.0 μm at the first timing to 0.8 μm at the second timing, the rate of change is It becomes 20% (=1-0.8/1.0).
 抑制制御部13は、変化量算出部12から送られた経時変化に基づいて、抑制処理を行うか否かを判定し、判定結果により、保持部30に制御信号を送り、フィルムロール80の回転を行わせたりする。また、あらかじめ定められた観察周期(例えば、数時間、または日毎)に応じて、所定タイミングで撮像装置40に制御信号を送り、フィルムロール80の側面の測定を行わせる。 The suppression control unit 13 determines whether or not to perform the suppression process based on the change over time sent from the change amount calculation unit 12, and based on the determination result, sends a control signal to the holding unit 30 to control the rotation of the film roll 80. or have them do something. Further, a control signal is sent to the imaging device 40 at a predetermined timing according to a predetermined observation period (for example, every few hours or every day) to cause the side surface of the film roll 80 to be measured.
 〔1.4〕保持部30
 図1等に示すように保持部30は、回転機構31、および筐体32を備える。筐体32は、互いに対向するフロントパネル32fとリアパネル32rを含む。フィルムロール80が保持部30に保持された状態では、両パネル32f、32rの先端に取り付けられたベアリングb1を介してフィルムロール80は回転可能に保持部30に保持される。回転機構31は、モーター311、コア82と回転不可能に係合する駆動軸312、および複数のギア系列を含む。モーター311が駆動することで、駆動軸312とともにフィルムロール80全体が回転する。回転方向は、巻き方向またはこれと逆方向、より好ましくは巻き方向と同じになるように設定しており、その際の回転速度、回転量(回転時間)は、制御部10の制御信号により制御される。保持部30の回転機構31は、例えば、1回の抑制処理では、フィルムロール80が、1度/1minの非常にゆっくりとした回転速度で、1~360度の範囲内で、より好ましくは1~180度の範囲内で所定角度分だけ回転させる。例えば90度分だけ、または180度分だけ巻き方向に回転するように制御される。
[1.4] Holding part 30
As shown in FIG. 1 and the like, the holding section 30 includes a rotation mechanism 31 and a housing 32. The housing 32 includes a front panel 32f and a rear panel 32r that face each other. In a state where the film roll 80 is held by the holding part 30, the film roll 80 is rotatably held by the holding part 30 via bearings b1 attached to the tips of both panels 32f and 32r. Rotation mechanism 31 includes a motor 311, a drive shaft 312 non-rotatably engaged with core 82, and a plurality of gear trains. When the motor 311 is driven, the entire film roll 80 rotates together with the drive shaft 312. The rotation direction is set to be the same as the winding direction or the opposite direction, more preferably the same as the winding direction, and the rotation speed and rotation amount (rotation time) at this time are controlled by control signals from the control unit 10. be done. For example, the rotation mechanism 31 of the holding unit 30 rotates the film roll 80 at a very slow rotation speed of 1 degree/1 min within a range of 1 to 360 degrees, more preferably 1 degree in one suppression process. Rotate by a predetermined angle within the range of ~180 degrees. For example, it is controlled to rotate by 90 degrees or 180 degrees in the winding direction.
 〔1.5〕撮像装置40
 以下、図2、および図4から図6を参照し、撮像装置40について説明する。撮像装置40は、撮像ユニット41および移動機構45を備える。図4は、撮像ユニット41の構成を示す構成断面図である。図5は、撮像装置40の全体構成を示す模式図である。図6は、保持されたフィルムロール80の側面s1における測定箇所p01~p03、p11~p13(撮影箇所ともいう)を示す概略図である。
[1.5] Imaging device 40
The imaging device 40 will be described below with reference to FIG. 2 and FIGS. 4 to 6. The imaging device 40 includes an imaging unit 41 and a movement mechanism 45. FIG. 4 is a cross-sectional view showing the configuration of the imaging unit 41. As shown in FIG. FIG. 5 is a schematic diagram showing the overall configuration of the imaging device 40. FIG. 6 is a schematic diagram showing measurement points p01 to p03 and p11 to p13 (also referred to as photographing points) on the side surface s1 of the held film roll 80.
 (撮像ユニット41)
 図4に示すように、撮像ユニット41は、撮像素子411、テレセントリックレンズ412、ハーフミラー413、照明414、全反射ミラー415、およびこれら全体を収納する筐体419を備える。筐体419に設けられた開口w1は、光を透過する透明板で構成される。撮像ユニット41は、フィルムロール80の側面s1を撮影し、画像データを生成する。撮像素子411は、撮像素子411は、CCD、またはCMOSである。撮像素子411は、例えばCMOSのモノクロ2K×2K画素、または4K×4K画素で構成される2次元センサーである。また別の例として、撮像素子411は、モノクロ8K画素の1次元ラインセンサーで構成してもよい。この場合、CMOSの画素の並び方向が、移動機構45の回転機能により(図示せず)、撮影する測定箇所(p01等)における半径方向に沿うように撮像ユニット41の向きが調整される。テレセントリックレンズ412は、例えば、倍率1~3倍の範囲内、例えば2倍の、WD50~150mmの範囲内、例えば65mmのレンズである。テレセントリックレンズを用いることで、撮像ユニット41と測定箇所(フィルムロール80の側面s1)との距離が変化しても、像のサイズへの影響が少なくなる。照明414はLEDで構成され、白色照明、または、発光面がラインセンサーの並びに沿った長軸となる白色ライン照明である。撮像ユニット41は、フィルムロール80の側面を、半径方向に沿って10~50mmの範囲、例えば14mmの長さの撮像視野を、4000画素の解像度で撮影した画像データを得る。この場合、画素分解能は3.5μmであり、フィルム81の厚さ数十μm(例えば40μm)に対して十分な分解能を持つ。または撮像素子411が8K画素のラインセンサーであり、倍率1倍のテレセントリックレンズ412を用いた場合には、28mmの長さの撮像視野を、8000画素の解像度で撮影した画像データを得る。この場合も3.5μmの画素分解能を持つ。なお、レンズ倍率および撮像素子の画素数の選択により、1μm以下のより高い画素分解能を持つように構成してもよい。
(Imaging unit 41)
As shown in FIG. 4, the imaging unit 41 includes an imaging element 411, a telecentric lens 412, a half mirror 413, an illumination 414, a total reflection mirror 415, and a housing 419 that houses these as a whole. The opening w1 provided in the housing 419 is made of a transparent plate that transmits light. The imaging unit 41 photographs the side surface s1 of the film roll 80 and generates image data. The image sensor 411 is a CCD or a CMOS. The image sensor 411 is a two-dimensional sensor composed of, for example, CMOS monochrome 2K×2K pixels or 4K×4K pixels. As another example, the image sensor 411 may be configured with a one-dimensional line sensor with monochrome 8K pixels. In this case, the orientation of the imaging unit 41 is adjusted so that the direction in which the pixels of the CMOS are lined up is along the radial direction of the measurement point (p01, etc.) to be photographed by the rotation function of the moving mechanism 45 (not shown). The telecentric lens 412 is, for example, a lens with a magnification of 1 to 3 times, for example 2 times, and a WD of 50 to 150 mm, for example 65 mm. By using a telecentric lens, even if the distance between the imaging unit 41 and the measurement location (side surface s1 of the film roll 80) changes, the effect on the image size is reduced. The illumination 414 is composed of an LED, and is white illumination or white line illumination whose light emitting surface is the long axis along the line of line sensors. The imaging unit 41 obtains image data by photographing the side surface of the film roll 80 in an imaging field of view in a range of 10 to 50 mm along the radial direction, for example, a length of 14 mm, at a resolution of 4000 pixels. In this case, the pixel resolution is 3.5 μm, which is sufficient for the thickness of the film 81 of several tens of μm (for example, 40 μm). Alternatively, if the image sensor 411 is an 8K pixel line sensor and a telecentric lens 412 with a magnification of 1x is used, image data obtained by photographing a 28 mm long imaging field with a resolution of 8000 pixels is obtained. In this case as well, the pixel resolution is 3.5 μm. Note that by selecting the lens magnification and the number of pixels of the image sensor, it may be configured to have a higher pixel resolution of 1 μm or less.
 (移動機構45)
 移動機構45は、撮影箇所に応じて、撮像ユニット41をXZ平面内で任意の位置に移動させる。移動機構45は、底板451、モーター452、水平レール453、水平スライド架台454、上下レール455、上下スライド架台456、撮像ユニット41を支持する支持部材457、およびモーター458を備える。水平スライド架台454は、水平レール453とX方向にスライド可能に連結する底部5a、台座5bおよび柱5cを備える。柱5cは、上下レール455を固定支持する。上下レール455は、上下スライド架台456をZ方向にスライド可能に連結する。上下スライド架台456は、支持部材457およびこれに連結された撮像ユニット41を固定支持する。水平スライド架台454、および上下スライド架台456は、それぞれモーター452、458によりX方向、Z方向に移動される(図5の矢印A、B方向)。これにより、撮像ユニット41は、XZ平面内で任意の位置に移動される。
(Moving mechanism 45)
The moving mechanism 45 moves the imaging unit 41 to an arbitrary position within the XZ plane depending on the location to be photographed. The moving mechanism 45 includes a bottom plate 451, a motor 452, a horizontal rail 453, a horizontal slide pedestal 454, a vertical rail 455, a vertical slide pedestal 456, a support member 457 that supports the imaging unit 41, and a motor 458. The horizontal slide pedestal 454 includes a bottom portion 5a, a pedestal 5b, and a pillar 5c that are slidably connected to the horizontal rail 453 in the X direction. The pillar 5c fixedly supports the upper and lower rails 455. The vertical rail 455 connects the vertical sliding pedestal 456 so as to be slidable in the Z direction. The vertically sliding pedestal 456 fixedly supports the support member 457 and the imaging unit 41 connected thereto. The horizontal slide pedestal 454 and the vertical slide pedestal 456 are moved in the X direction and Z direction by motors 452 and 458, respectively (directions of arrows A and B in FIG. 5). Thereby, the imaging unit 41 is moved to an arbitrary position within the XZ plane.
 図6は、フィルムロール80の側面s1における撮影箇所を示す図である。撮像ユニット41が、移動機構45により移動されることで、複数の撮影箇所での撮影を行う。撮影箇所としては、コア82の上方に、より正確には真上方向(図6では0度で示す)に並んだ撮影箇所p01~p03である。また、これに、90度方向(水平方向)に並んだ撮影箇所p11~p13を加えてもよい。最も内側のフィルム81、すなわちコア82の外周面を0%、最も外側のフィルム81、すなわちフィルムロール80の外周面を100%としたとき、撮影箇所p01、p02、p03(の中心)は、真上方向においてそれぞれ20%、50%、80%の位置である。また同様に撮影箇所p11、p12、p13は、それぞれ水平方向において20%、50%、80%の位置である。本実施形態では、p01~p03、p11~p13の6箇所を撮影して得られた6つの画像データをそれぞれ解析することで得られた指標値の平均値、または、真上方向または水平方向の3つの平均値、またはいずれかの指標値を用いることができる。以下においては、真上方向(上方の側面)の3箇所(p01~p03)の指標値の平均値を用いるものとして説明する。 FIG. 6 is a diagram showing a photographing location on the side surface s1 of the film roll 80. The imaging unit 41 is moved by the moving mechanism 45 to perform imaging at a plurality of imaging locations. The photographing points are photographing points p01 to p03 arranged above the core 82, more precisely, directly above the core 82 (indicated by 0 degrees in FIG. 6). Furthermore, photographing points p11 to p13 arranged in a 90 degree direction (horizontal direction) may be added to this. When the outer circumferential surface of the innermost film 81, that is, the core 82, is 0%, and the outer circumferential surface of the outermost film 81, that is, the film roll 80, is 100%, the (centers of) photographed points p01, p02, and p03 are true. The positions are 20%, 50%, and 80% in the upward direction, respectively. Similarly, the shooting locations p11, p12, and p13 are at 20%, 50%, and 80% positions, respectively, in the horizontal direction. In this embodiment, the average value of index values obtained by analyzing six image data obtained by photographing six locations p01 to p03 and p11 to p13, or The average value of the three or any index value can be used. In the following description, it is assumed that the average value of the index values at three locations (p01 to p03) in the directly upward direction (upper side surface) is used.
 図6では、初期状態に配置したフィルムロール80を示している。初期状態では、両面テープ89が上になるように回転位置合わせされる。図6に示すように保持部30に保持されたフィルムロール80は、回転機構31により、Y方向から視て時計回りに回転する(矢印で示す)。また、以下においては、初期状態における真上方向を0度とし、時計回りを正方向(プラスの角度)とする。そして1回の回転による抑制処理では、一定速度での90度または180度分のみの回転が行われる(この抑制処理は、複数回繰り返される場合もある)。 FIG. 6 shows the film roll 80 placed in its initial state. In the initial state, the rotation position is adjusted so that the double-sided tape 89 is on top. As shown in FIG. 6, the film roll 80 held by the holding part 30 is rotated by the rotation mechanism 31 clockwise when viewed from the Y direction (indicated by an arrow). Further, in the following, the directly upward direction in the initial state is assumed to be 0 degrees, and the clockwise direction is assumed to be the positive direction (positive angle). In the suppression process by one rotation, rotation is performed by only 90 degrees or 180 degrees at a constant speed (this suppression process may be repeated multiple times).
 〔1.6〕操作パネル50
 操作パネル50は、タッチパネル、テンキー、スタートボタン、ストップボタン、等を備えており、各種情報の表示および各種指示の入力に使用される。ユーザーは操作パネル50を通じて、抑制処理の実行期間を設定したり、終了指示を入力したりできる。また、以下の故障抑制処理における判定閾値、回転量、回転速度、等の条件設定を行えるようにしてもよい。
[1.6] Operation panel 50
The operation panel 50 includes a touch panel, a numeric keypad, a start button, a stop button, etc., and is used to display various information and input various instructions. Through the operation panel 50, the user can set the execution period of the suppression process and input an end instruction. Further, it may be possible to set conditions such as a determination threshold value, rotation amount, rotation speed, etc. in the following failure suppression process.
 〔1.7〕故障抑制処理
 以下、図7、図8を参照し、フィルムロールの故障抑制処理(以下、単に抑制処理ともいう)について説明する。図7は、故障抑制処理を示すフローチャートである。図8は、図7で行われる指標値算出処理を示すサブルーチンフローチャートである。
[1.7] Failure Suppression Process The film roll failure suppression process (hereinafter also simply referred to as suppression process) will be described below with reference to FIGS. 7 and 8. FIG. 7 is a flowchart showing the failure suppression process. FIG. 8 is a subroutine flowchart showing the index value calculation process performed in FIG.
 (ステップS01)
 生成されたフィルムロール80を保持部30に保持する。このフィルムロール80の生産方法については後述する(後述の図9から図11)。ここで保持されたフィルムロール80は生産直後、より詳しくはコア82にフィルム81が巻回されてフィルムロール80が生成された直後のものである。
(Step S01)
The produced film roll 80 is held in the holding section 30. A method for producing this film roll 80 will be described later (see FIGS. 9 to 11, which will be described later). The film roll 80 held here is immediately after production, more specifically, immediately after the film 81 is wound around the core 82 to produce the film roll 80.
 (ステップS02)
 フィルムロール保持装置1は、指標値算出処理を行う。ここでの処理を図8のサブルーチンフローチャートに示す。このステップS02で行う指標値算出処理は、第1のタイミングで行われるものである。このステップS02の処理がステップS01に続いて行われる場合には、第1のタイミングは、生産直後(生産の巻き取り直後)のタイミングである。一方で、このステップS02の処理がステップS09を経由して行われる場合(丸で囲まれた数字20)には、ステップS08での抑制動作を実行した直後のタイミングである。
(Step S02)
The film roll holding device 1 performs index value calculation processing. The processing here is shown in the subroutine flowchart of FIG. The index value calculation process performed in step S02 is performed at the first timing. When the process of step S02 is performed subsequent to step S01, the first timing is the timing immediately after production (immediately after production winding). On the other hand, if the process in step S02 is performed via step S09 (encircled number 20), the timing is immediately after the suppression operation in step S08 is executed.
 (ステップS201、S202)
 制御部10は、制御信号を撮像装置40に送ることにより、撮像ユニット41を移動させ、撮影を行う。移動し、撮影することによりフィルムロール80の側面s1の測定箇所(例えば測定箇所p01(図6参照))の画像データが得られる。
(Steps S201, S202)
The control unit 10 sends a control signal to the imaging device 40 to move the imaging unit 41 and perform imaging. By moving and photographing, image data of a measurement location (for example, measurement location p01 (see FIG. 6)) on the side surface s1 of the film roll 80 is obtained.
 (ステップS203)
 全箇所の撮影が終了していなければ(NO)、ステップS201以降の処理を繰り返し、次の測定箇所(例えば測定箇所p02、p03)の撮影を行い、それぞれの測定箇所における画像データを得る。
(Step S203)
If the imaging of all locations has not been completed (NO), the process from step S201 onward is repeated, and the next measurement locations (for example, measurement locations p02 and p03) are captured to obtain image data at each measurement location.
 (ステップS204)
 解析部11は、画像を解析し指標値を算出する。例えば、3つの測定箇所p01、p02、p03の撮影により得られた3つの画像データそれぞれを解析して、半径方向の空隙を求める。そして、これら3つの空隙を平均化処理することで、指標値としての空隙(平均空隙)を得る。以上で、図8の処理を終了し、図7のステップS03以下の処理に戻る。
(Step S204)
The analysis unit 11 analyzes the image and calculates an index value. For example, each of the three image data obtained by photographing the three measurement points p01, p02, and p03 is analyzed to determine the air gap in the radial direction. Then, by averaging these three voids, a void (average void) as an index value is obtained. With this, the process in FIG. 8 is completed, and the process returns to step S03 and subsequent steps in FIG.
 (ステップS03)
 ここでは、制御部10は、ステップS204で得られた指標値を記憶部20に記憶する。
(Step S03)
Here, the control unit 10 stores the index value obtained in step S204 in the storage unit 20.
 (ステップS04)
 制御部10は、抑制動作判定タイミングであれば(YES)処理をステップS05に進める。判定タイミングは、あらかじめ設定されたものであり、例えば、半日毎(12h)または1日毎(24h)である。
(Step S04)
If it is the suppression operation determination timing (YES), the control unit 10 advances the process to step S05. The determination timing is set in advance, and is, for example, every half day (12 hours) or every day (24 hours).
 (ステップS05)
 ここでは、フィルムロール保持装置1は、指標値算出処理を行う。この処理は、指標値を算出するタイミングが異なる以外は、ステップS02と同様の処理であり、図8のサブルーチンフローチャートに示す処理である。以下においてはこのステップS05の算出処理を行った現在のタイミングを第2のタイミングともいう。
(Step S05)
Here, the film roll holding device 1 performs index value calculation processing. This process is the same as step S02, except that the timing of calculating the index value is different, and is the process shown in the subroutine flowchart of FIG. 8. In the following, the current timing at which the calculation process of step S05 is performed will also be referred to as a second timing.
 (ステップS06)
 変化量算出部12は、ステップS05で得られた第2のタイミングの指標値と、記憶部20から読み出した第1のタイミングの指標値を比較し、経時変化を算出する。経時変化は、例えば変化率である。例えば過去の第1のタイミングの指標値x1で、現在の第2のタイミングの指標値x2を除することで、経時変化としての変化率(=1-x2/x1)が算出される。
(Step S06)
The change amount calculation unit 12 compares the index value at the second timing obtained in step S05 with the index value at the first timing read from the storage unit 20, and calculates the change over time. The change over time is, for example, a rate of change. For example, by dividing the index value x2 at the current second timing by the index value x1 at the past first timing, the rate of change (=1-x2/x1) as a change over time is calculated.
 (ステップS07)
 ここでは、抑制制御部13は、経時変化が所定の閾値よりも大きいか否かを判定する。例えば、閾値は10~30%の範囲のいずれかの値であり、好ましくは20%であり、より好ましくは15%である。例えば初期(第1のタイミング)での空隙が1μmであり、第2のタイミングで空隙が0.8μmまで減少した場合には、変化率は20%となり、閾値15%を超えていることになる。経時変化が閾値を超えていれば(YES)、処理をステップS08に進め、超えていなければ(NO)処理をステップS04に戻す(丸で囲まれた数字の10)。
(Step S07)
Here, the suppression control unit 13 determines whether the change over time is larger than a predetermined threshold. For example, the threshold value is any value in the range of 10 to 30%, preferably 20%, and more preferably 15%. For example, if the gap is 1 μm at the initial stage (first timing) and decreases to 0.8 μm at the second timing, the rate of change will be 20%, exceeding the threshold of 15%. . If the change over time exceeds the threshold (YES), the process proceeds to step S08, and if it does not exceed the threshold (NO), the process returns to step S04 (the circled number 10).
 (ステップS08)
 抑制制御部13は、保持部30に制御信号を送り、回転機構31により、フィルムロール80を一定の回転速度で、±180度(0度を除く)以内の範囲で所定の回転角度だけ回転させる。回転速度としては、1~5度/minの範囲内の一定速度である。5度/minよりも速い回転速度では、巻ズレが生じる可能性があり、1度/minよりも遅いと、回転させる時間がかかり過ぎるからである。ここでいう巻ズレとは、巻き取り張力が弱いために、またはエア巻き込みが多いために、フィルムが幅手方向にズレる故障を意味する。また、回転方向としては、巻ズレの観点から巻き方向(すなわち+1~+180度(図6の時計回り))が好ましい。角度としては、+90~+180度の範囲が好ましく、より好ましくは+180度(巻き方向へ半回転)である。このステップS08では、例えば、1回の抑制処理において、+180度分だけの回転を1度/minの回転速度で、3時間かけて回転させる。
(Step S08)
The suppression control unit 13 sends a control signal to the holding unit 30, and causes the rotation mechanism 31 to rotate the film roll 80 by a predetermined rotation angle within a range of ±180 degrees (excluding 0 degrees) at a constant rotation speed. . The rotation speed is a constant speed within the range of 1 to 5 degrees/min. If the rotation speed is faster than 5 degrees/min, winding misalignment may occur, and if it is slower than 1 degree/min, it takes too much time to rotate. The winding misalignment here means a failure in which the film shifts in the width direction due to weak winding tension or excessive air entrainment. Furthermore, the direction of rotation is preferably the winding direction (ie, +1 to +180 degrees (clockwise in FIG. 6)) from the viewpoint of winding misalignment. The angle is preferably in the range of +90 to +180 degrees, more preferably +180 degrees (half a turn in the winding direction). In this step S08, for example, in one suppression process, the rotation is performed by +180 degrees at a rotation speed of 1 degree/min over a period of 3 hours.
 (ステップS09)
 制御部10は、繰り返し行うのであれば処理を終了せずに(NO)、ステップS02以降の処理を繰り返す(丸で囲まれた数字の20)。一方で、ユーザーが使用する操作パネル50等により終了指示を受け付けた場合、またはあらかじめ定められた実行期間が経過した場合、等の終了条件を満たす場合(YES)は、処理を終了する(エンド)。
(Step S09)
If it is to be repeated, the control unit 10 does not end the process (NO) and repeats the process from step S02 onwards (the circled number 20). On the other hand, if termination conditions are met (YES), such as when a termination instruction is received from the operation panel 50 or the like used by the user, or when a predetermined execution period has elapsed, the process is terminated (END). .
 このように、本実施形態に係るフィルムロール保持装置1は、保持部に保持されたフィルムロールの側面を測定して測定データを生成する測定部と、測定データを解析することで、フィルム層間の空隙に関する指標値を生成する解析部と、指標値の経時変化が閾値を超えた否かを判定し、閾値を超えたと判定した場合に、回転機構によりフィルムロールを所定量だけ回転させる抑制制御部と、を備える。これにより、フィルムロールに故障が生じることを未然に防ぐことができる。 As described above, the film roll holding device 1 according to the present embodiment includes a measurement section that measures the side surface of the film roll held by the holding section and generates measurement data, and a measurement section that generates measurement data by analyzing the measurement data. An analysis unit that generates an index value regarding voids, and a suppression control unit that determines whether the change in index value over time exceeds a threshold value, and when it is determined that the change in index value exceeds the threshold value, rotates the film roll by a predetermined amount using a rotation mechanism. and. This can prevent failures in the film roll.
 (本実施形態におけるフィルムロールの生産(製造))
 〔2〕フィルムロール80(以下では単にフィルムロールとも表記する)
 〔2.1〕熱可塑性樹脂
 本実施形態に係るフィルムに用いられる熱可塑性樹脂材料としては、製膜後フィルムロールとして扱えるものであれば限定はない。例えば、偏光板用途として使用されている熱可塑性樹脂としては、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)、ジアセチルセルロース(DAC)などのセルロースエステル系樹脂やシクロオレフィンポリマー(COP)などの環状オレフィン系樹脂(以下、シクロオレフィン系樹脂ともいう。)、ポリプロピレン(PP)などのポリプロピレン系樹脂、ポリメチルメタクリレート(PMMA)などのアクリル系樹脂、及びポリエチレンテレフターレート(PET)などのポリエステル系樹脂が適用できる。
(Production (manufacturing) of film roll in this embodiment)
[2] Film roll 80 (hereinafter also simply referred to as film roll)
[2.1] Thermoplastic Resin The thermoplastic resin material used for the film according to this embodiment is not limited as long as it can be handled as a film roll after film formation. For example, thermoplastic resins used for polarizing plates include cellulose ester resins such as triacetylcellulose (TAC), cellulose acetate propionate (CAP), and diacetylcellulose (DAC), and cycloolefin polymers (COP). Cyclic olefin resins such as (hereinafter also referred to as cycloolefin resins), polypropylene resins such as polypropylene (PP), acrylic resins such as polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET). Polyester resin can be used.
 特に、低弾性率のフィルム、例えば、3.0GPa未満の樹脂において、フィルムロールを形成する際に巻ズレが起きやすいことから、本実施形態に係る下記関係式(1)及び(2)を満たすように静止摩擦係数を制御することが好ましい。
ナーリング加工部を部位A、当該部位Aに対向するフィルム裏面側の部位を部位B、当該部位A及び部位B以外のナーリング加工されていないフィルム面を面Cとし、かつ、当該部位A及び部位Bの静止摩擦係数をそれぞれ、a及びbとしたとき、
 関係式(1) 面C同士間の静止摩擦係数<部位Aと部位Bとの間の静止摩擦係数
 関係式(2) a<b
このように静止摩擦係数を制御することは、低弾性率のフィルムであるシクロオレフィンポリマー(COP)やポリメチルメタクリレート(PMMA)を熱可塑性樹脂として用いたフィルムロールに適用することが効果的である。
In particular, in a film with a low elastic modulus, for example, a resin with less than 3.0 GPa, winding misalignment is likely to occur when forming a film roll, so the following relational expressions (1) and (2) according to the present embodiment are satisfied. It is preferable to control the coefficient of static friction as follows.
The knurling part is part A, the part on the back side of the film opposite to part A is part B, the surface of the film that has not been knurled other than part A and part B is part C, and part A and part B are When the static friction coefficients of are respectively a and b,
Relational expression (1) Static friction coefficient between surfaces C<Static friction coefficient between parts A and B Relational expression (2) a<b
Controlling the coefficient of static friction in this way is effective when applied to film rolls using cycloolefin polymer (COP) or polymethyl methacrylate (PMMA), which are films with a low elastic modulus, as thermoplastic resins. .
 また、本実施形態の効果は、薄膜領域にて価値が高まる。薄膜フィルムの膜厚としては5~80μmが好ましく、10~50μmがより好ましく、10~45μmがさらに好ましい。膜厚が10μm未満であるとフィルムロールの剛性が低く、ロール形状を保つことが難しい。膜厚が80μmを超えると質量が増すため長尺のフィルムロールを作製しづらい。 Furthermore, the effects of this embodiment are more valuable in the thin film region. The thickness of the thin film is preferably 5 to 80 μm, more preferably 10 to 50 μm, and even more preferably 10 to 45 μm. When the film thickness is less than 10 μm, the rigidity of the film roll is low and it is difficult to maintain the roll shape. If the film thickness exceeds 80 μm, the mass increases, making it difficult to produce a long film roll.
 〔2.1.1〕シクロオレフィン系樹脂
 本実施形態のフィルムロールに含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
[2.1.1] Cycloolefin resin The cycloolefin resin contained in the film roll of this embodiment is a polymer of cycloolefin monomers, or a copolymerizable monomer of cycloolefin monomers and other monomers. A copolymer with a polymer is preferable.
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。 The cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). It is more preferable that there be.
 一般式(A-1)中、R~Rは、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R~Rの全てが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはないものとする。 In general formula (A-1), R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group. p represents an integer from 0 to 2. However, R 1 to R 4 do not all represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
 一般式(A-1)においてR~Rで表される炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基を更に有していてもよい。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。 In the general formula (A-1), the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 is preferably a hydrocarbon group having 1 to 10 carbon atoms; More preferably, it is a hydrocarbon group of number 1 to 5. The hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl, and the like.
 一般式(A-1)においてR~Rで表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。 Examples of the polar groups represented by R 1 to R 4 in general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, and a cyano group. is included. Among these, a carboxy group, a hydroxy group, an alkoxycarbonyl group, and an aryloxycarbonyl group are preferable, and from the viewpoint of ensuring solubility during solution film formation, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable.
 一般式(A-1)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2であることが好ましい。pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 In general formula (A-1), p is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to increase.
 一般式(A-2)中、Rは、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。 In the general formula (A-2), R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. R 6 represents a carboxyl group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom). p represents an integer from 0 to 2.
 一般式(A-2)におけるRは、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。 R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
 一般式(A-2)におけるRは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。 R 6 in the general formula (A-2) preferably represents a carboxyl group, a hydroxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group. More preferred is an oxycarbonyl group.
 一般式(A-2)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 In general formula (A-2), p preferably represents 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to increase.
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。一般式(A-2)におけるR及びRは、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、光学フィルムを溶液流延法によって製造する場合に適している。 A cycloolefin monomer having a structure represented by general formula (A-2) is preferred from the viewpoint of improving solubility in organic solvents. Generally, the crystallinity of organic compounds decreases by breaking the symmetry, so the solubility in organic solvents improves. Since R 5 and R 6 in the general formula (A-2) are substituted only on the ring-constituting carbon atoms on one side with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, the general formula (A- Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して例えば、70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。 The content ratio of the cycloolefin monomer having the structure represented by general formula (A-2) in the cycloolefin monomer polymer is relative to the total of all cycloolefin monomers constituting the cycloolefin resin. For example, it may be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%. When a certain amount or more of a cycloolefin monomer having a structure represented by general formula (A-2) is contained, the orientation of the resin increases, so that the retardation value tends to increase.
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。 Specific examples of cycloolefin monomers having a structure represented by general formula (A-1) are shown below in Exemplary Compounds 1 to 14, and cycloolefin monomers having a structure represented by general formula (A-2) are shown below. Specific examples of the mer are shown in Exemplary Compounds 15 to 34.
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。 Examples of copolymerizable monomers that can be copolymerized with cycloolefin monomers include copolymerizable monomers that can be ring-opening copolymerized with cycloolefin monomers, and addition copolymerizable monomers that can be copolymerized with cycloolefin monomers. Possible copolymerizable monomers and the like are included.
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。 Examples of copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。 Examples of copolymerizable monomers capable of addition copolymerization include unsaturated double bond-containing compounds, vinyl cyclic hydrocarbon monomers, (meth)acrylates, and the like. Examples of unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms), such as ethylene, propylene, butene, and the like. Examples of vinyl cyclic hydrocarbon monomers include vinyl cyclopentene monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth)acrylates include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して例えば、20~80mol%、好ましくは30~70mol%とし得る。 The content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol%, based on the total of all monomers constituting the copolymer. Preferably, it may be 30 to 70 mol%.
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。 As mentioned above, the cycloolefin resin is produced by polymerizing or It is a polymer obtained by copolymerization, and examples thereof include the following.
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 (5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記(2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記(3)及び(6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記(5)~(7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記(7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
(1) Ring-opening polymer of cycloolefin monomer (2) Ring-opening copolymer of cycloolefin monomer and copolymerizable monomer capable of ring-opening copolymerization with it (3) Above (1) or a hydrogenated product of the ring-opened (co)polymer of (2) (4) The ring-opened (co)polymer of (1) or (2) above is cyclized by a Friedel-Crafts reaction, and then hydrogenated ( Co) Polymer (5) Saturated copolymer of a cycloolefin monomer and an unsaturated double bond-containing compound (6) Addition copolymer of a cycloolefin monomer and a vinyl cyclic hydrocarbon monomer and its hydrogenated product (7) Alternating copolymer of cycloolefin monomer and (meth)acrylate The polymers of (1) to (7) above can be prepared by known methods, for example, JP-A-2008- It can be obtained by the method described in JP-A No. 107534 and JP-A-2005-227606. For example, as the catalyst and solvent used in the ring-opening copolymerization in (2) above, those described in paragraphs 0019 to 0024 of JP-A No. 2008-107534 can be used. As the catalyst used for the hydrogenation in (3) and (6) above, for example, those described in paragraphs 0025 to 0028 of JP-A No. 2008-107534 can be used. As the acidic compound used in the Friedel-Crafts reaction in (4) above, for example, those described in paragraph 0029 of JP-A No. 2008-107534 can be used. As the catalyst used in the addition polymerizations of (5) to (7) above, for example, those described in paragraphs 0058 to 0063 of JP-A No. 2005-227606 can be used. The alternating copolymerization reaction (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A No. 2005-227606.
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。 Among these, the polymers (1) to (3) and (5) above are preferred, and the polymers (3) and (5) above are more preferred. In other words, the cycloolefin resin has a structural unit represented by the following general formula (B-1) and a structural unit represented by the following general formula (B-1) in that the resulting cycloolefin resin can have a high glass transition temperature and a high light transmittance. It is preferable to contain at least one of the structural units represented by the following general formula (B-2), only contain the structural unit represented by the general formula (B-2), or contain the structural unit represented by the general formula (B-1). It is more preferable to include both the structural unit represented by the formula (B-2) and the structural unit represented by the general formula (B-2). The structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2). The structural unit represented by the above-mentioned general formula (A-2) is a structural unit derived from a cycloolefin monomer.
 一般式(B-1)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-1)のR~R及びpと同義である。 In general formula (B-1), X represents -CH=CH- or -CH 2 CH 2 -. R 1 to R 4 and p have the same meanings as R 1 to R 4 and p in general formula (A-1), respectively.
 一般式(B-2)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-2)のR~R及びpと同義である。 In general formula (B-2), X represents -CH=CH- or -CH 2 CH 2 -. R 5 to R 6 and p have the same meanings as R 5 to R 6 and p in general formula (A-2), respectively.
 本実施形態に係るシクロオレフィン系樹脂は、市販品であってもよい。シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えば、G7810等)、アートンF、アートンR(例えば、R4500、R4900及びR5000等)、及びアートンRXが含まれる。 The cycloolefin resin according to this embodiment may be a commercially available product. Examples of commercially available cycloolefin resins include Arton G (for example, G7810, etc.), Arton F, Arton R (for example, R4500, R4900, and R5000, etc.) manufactured by JSR Corporation, and Arton RX. included.
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm3/gであることが好ましく、0.3~3cm/gであることがより好ましく、0.4~1.5cm/gであることが更に好ましい。 The intrinsic viscosity [η] inh of the cycloolefin resin is preferably 0.2 to 5 cm 3 /g, more preferably 0.3 to 3 cm 3 /g, and 0.4 cm 3 /g when measured at 30°C. It is more preferably 1.5 cm 3 /g.
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000であることが好ましく、10000~80000であることがより好ましく、12000~50000であることが更に好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000であることが好ましく、30000~250000であることがより好ましく、40000~200000であることが更に好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。 The number average molecular weight (Mn) of the cycloolefin resin is preferably 8,000 to 100,000, more preferably 10,000 to 80,000, and even more preferably 12,000 to 50,000. The weight average molecular weight (Mw) of the cycloolefin resin is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000. The number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured in terms of polystyrene using gel permeation chromatography (GPC).
 <ゲルパーミエーションクロマトグラフィー>
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
<Gel permeation chromatography>
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (3 units manufactured by Showa Denko K.K. were connected and used)
Column temperature: 25℃
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Science)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml/min
Calibration curve: A calibration curve using 13 samples of standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) within the range of Mw=500 to 2,800,000 was used. The 13 samples are preferably used at approximately equal intervals.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。 When the intrinsic viscosity [η] inh, number average molecular weight, and weight average molecular weight are within the above ranges, the cycloolefin resin has good heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film. Become.
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃であることが好ましく、120~250℃であることがより好ましく、120~220℃であることが更に好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110°C or higher, preferably 110 to 350°C, more preferably 120 to 250°C, and preferably 120 to 220°C. More preferred. When Tg is 110°C or higher, deformation under high temperature conditions can be easily suppressed. On the other hand, when Tg is 350° C. or less, molding becomes easy and deterioration of the resin due to heat during molding is easily suppressed.
 シクロオレフィン系樹脂の含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more based on the film.
 〔2.1.2〕アクリル系樹脂
 本実施形態に係るアクリル系樹脂は、アクリル酸エステル又はメタアクリル酸エステルの重合体であって、ほかのモノマーとの共重合体も含まれる。
[2.1.2] Acrylic Resin The acrylic resin according to the present embodiment is a polymer of acrylic ester or methacrylic ester, and also includes copolymers with other monomers.
 したがって、本実施形態に係るアクリル系樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位が50~99質量%の範囲内、及びこれと共重合可能なほかの単量体単位が1~50質量%の範囲内からなるものが好ましい。 Therefore, the acrylic resin according to this embodiment also includes methacrylic resin. The resin is not particularly limited, but it consists of methyl methacrylate units in the range of 50 to 99% by mass and other monomer units copolymerizable with this in the range of 1 to 50% by mass. is preferred.
 共重合で形成されるアクリル系樹脂を構成するほかの単位としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタルイミド、グルタル酸無水物等が挙げられる。 Other units constituting the acrylic resin formed by copolymerization include alkyl methacrylates having an alkyl number of 2 to 18 carbon atoms, alkyl acrylates having an alkyl number of 1 to 18 carbon atoms, isobornyl methacrylate, 2- Hydroxyalkyl acrylates such as hydroxyethyl acrylate, α,β-unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholine and N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, maleic acid, fumaric acid, itaconic acid, etc. unsaturated group-containing dicarboxylic acids, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric acid. Examples include imide and glutaric anhydride.
 上記単位より、グルタルイミド及びグルタル酸無水物を除いた単位を形成する共重合可能な単量体としては、上記単位に対応した単量体が挙げられる。すなわち、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、等の単量体が挙げられる。 Examples of copolymerizable monomers forming units excluding glutarimide and glutaric anhydride from the above units include monomers corresponding to the above units. That is, alkyl methacrylates having an alkyl number of 2 to 18 carbon atoms, alkyl acrylates having an alkyl number of 1 to 18 carbon atoms, hydroxyalkyl acrylates such as isobornyl methacrylate, 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid, etc. α,β-unsaturated acids, acryloylmorpholine, acrylamide such as N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, styrene, α-methylstyrene monomers such as aromatic vinyl compounds such as, α,β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, and N-substituted maleimide.
 また、グルタルイミド単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーに1級アミン(イミド化剤)を反応させてイミド化することにより形成できる(特開2011-26563号公報参照。)。 Further, the glutarimide unit can be formed, for example, by reacting an intermediate polymer having a (meth)acrylic acid ester unit with a primary amine (imidizing agent) to imidize it (see JP-A No. 2011-26563). ).
 グルタル酸無水物単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーを加熱することにより形成することができる(特許第4961164号公報参照。)。 The glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having (meth)acrylic acid ester units (see Japanese Patent No. 4961164).
 本実施形態に係るアクリル系樹脂には、上記の構成単位の中でも、機械的強度の観点から、メタクリル酸イソボルニル、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド、N-ビニルピロリドン、スチレン、ヒドロキシエチルメタクリレート、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物又はグルタルイミドが含まれることが、特に好ましい。 Among the above structural units, the acrylic resin according to this embodiment includes isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, Particular preference is given to the inclusion of maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide.
 本実施形態に係るアクリル系樹脂は、環境の温湿度雰囲気の変化に対する寸法変化を制御する観点や、フィルム生産時の金属支持体からの剥離性、有機溶媒の乾燥性、耐熱性及び機械的強度の改善の観点から、重量平均分子量(Mw)が5万~100万の範囲内であることが好ましく、10万~100万の範囲内であることがより好ましく、20万~80万の範囲内であることが特に好ましい。 The acrylic resin according to the present embodiment has the following advantages: from the viewpoint of controlling dimensional changes due to changes in environmental temperature and humidity, peelability from metal supports during film production, drying properties of organic solvents, heat resistance, and mechanical strength. From the viewpoint of improvement of It is particularly preferable that
 5万以上であれば、耐熱性及び機械的強度が優れ、100万以下であれば、金属支持体からの剥離性及び有機溶媒の乾燥性に優れる。 If it is 50,000 or more, it has excellent heat resistance and mechanical strength, and if it is 1,000,000 or less, it has excellent releasability from a metal support and drying property of an organic solvent.
 本実施形態に係るアクリル系樹脂の製造方法としては、特に制限はなく、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いてもよい。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃の範囲内、塊状又は溶液重合では80~160℃の範囲内で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The method for producing the acrylic resin according to this embodiment is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as the polymerization initiator, ordinary peroxide-based and azo-based ones can be used, and redox-based ones can also be used. Regarding the polymerization temperature, suspension or emulsion polymerization can be carried out within the range of 30 to 100°C, and bulk or solution polymerization can be carried out within the range of 80 to 160°C. In order to control the reduced viscosity of the obtained copolymer, polymerization can also be carried out using an alkyl mercaptan or the like as a chain transfer agent.
 アクリル系樹脂のガラス転移温度Tgは、80~120℃の範囲内であることが、フィルムの機械的強度を保持する観点から、好ましい。 The glass transition temperature Tg of the acrylic resin is preferably within the range of 80 to 120°C from the viewpoint of maintaining the mechanical strength of the film.
 本実施形態に係るアクリル系樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N、980N、SR8200(以上、旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88、EMB-143、EMB-159、EMB-160、EMB-161、EMB-218、EMB-229、EMB-270、EMB-273(以上、三菱レイヨン(株)製)、KT75、TX400S、IPX012(以上、電気化学工業(株)製)等が挙げられる。アクリル系樹脂は2種以上を併用することもできる。 Commercially available acrylic resins can also be used as the acrylic resin according to this embodiment. For example, Delpet 60N, 80N, 980N, SR8200 (manufactured by Asahi Kasei Chemicals), Dianal BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, Examples include EMB-218, EMB-229, EMB-270, EMB-273 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75, TX400S, and IPX012 (all manufactured by Denki Kagaku Kogyo Co., Ltd.). Two or more types of acrylic resins can also be used in combination.
 本実施形態に係るアクリル系樹脂は、添加剤を含有することが好ましく、添加剤の一例としては、国際公開第2010/001668号に記載のアクリル粒子(ゴム弾性体粒子)を、フィルムの機械的強度向上や寸法変化率の調整のために含有することが好ましい。このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製の「メタブレンW-341」、カネカ社製の「カネエース」、クレハ社製の「パラロイド」、ロームアンドハース社製の「アクリロイド」、アイカ社製の「スタフィロイド」、ケミスノーMR-2G、MS-300X(以上、綜研化学(株)製)及びクラレ社製の「パラペットSA」などが挙げられ、これらは、単独ないし2種以上を用いることができる。 The acrylic resin according to the present embodiment preferably contains an additive. As an example of the additive, acrylic particles (rubber elastic particles) described in International Publication No. 2010/001668 can be used to It is preferable to include it in order to improve strength and adjust the rate of dimensional change. Examples of commercially available multilayered acrylic granular composites include "Metablen W-341" manufactured by Mitsubishi Rayon, "Kane Ace" manufactured by Kaneka, "Paraloid" manufactured by Kureha, and Roam & Examples include "Acryloid" manufactured by Haas, "Stafyloid" manufactured by Aica, Chemisnow MR-2G, MS-300X (manufactured by Soken Kagaku Co., Ltd.), and "Parapet SA" manufactured by Kuraray. can be used alone or in combination of two or more.
 アクリル粒子の体積平均粒子径は0.35μm以下であり、好ましくは0.01~0.35μmであり、より好ましくは0.05~0.30μmである。粒子径が一定以上であれば、フィルムを加熱下で伸びやすくでき、粒子径が一定以下であれば、得られるフィルムの透明性を損ないにくい。 The volume average particle diameter of the acrylic particles is 0.35 μm or less, preferably 0.01 to 0.35 μm, and more preferably 0.05 to 0.30 μm. If the particle size is above a certain level, the film can be easily stretched under heating, and if the particle size is below a certain level, the transparency of the obtained film is unlikely to be impaired.
 本実施形態に係るフィルムは、柔軟性の観点から、曲げ弾性率(JIS K7171)が1500MPa以下であることが好ましい。この曲げ弾性率は、より好ましくは1300MPa以下であり、更に好ましくは1200MPa以下である。この曲げ弾性率は、フィルム中のアクリル系樹脂やゴム弾性体粒子の種類や量などによって変動し、例えば、ゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。また、アクリル系樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。 From the viewpoint of flexibility, the film according to this embodiment preferably has a flexural modulus (JIS K7171) of 1500 MPa or less. This bending elastic modulus is more preferably 1300 MPa or less, still more preferably 1200 MPa or less. The bending elastic modulus varies depending on the type and amount of the acrylic resin and rubber elastic particles in the film, and for example, the larger the content of rubber elastic particles, the lower the bending elastic modulus. Furthermore, the flexural modulus is generally smaller when a copolymer of an alkyl methacrylate and an alkyl acrylate is used as the acrylic resin than when a homopolymer of an alkyl methacrylate is used.
 〔2.1.3〕、セルロースエステル系樹脂
 本実施形態のフィルムロールにおいては、セルロースエステル系樹脂を用いることも好ましい。
[2.1.3] Cellulose ester resin In the film roll of this embodiment, it is also preferable to use a cellulose ester resin.
 本実施形態に用いられるセルロースエステルとは、セルロースを構成するβ-1,4結合しているグルコース単位中の2位、3位及び6位のヒドロキシ基(-OH)の水素原子の一部又は全部がアシル基で置換されたセルロースアシレート樹脂をいう。 The cellulose ester used in this embodiment refers to a portion of the hydrogen atoms of the 2-, 3-, and 6-position hydroxy groups (-OH) in the β-1,4-bonded glucose unit constituting cellulose, or A cellulose acylate resin completely substituted with acyl groups.
 用いられるセルロースエステルは特に限定されないが、炭素数2~22程度の直鎖又は分岐のカルボン酸のエステルであることが好ましい。エステルを構成するカルボン酸は脂肪族カルボン酸でもよいし、環を形成してもよく、芳香族カルボン酸でもよい。例えば、セルロースのヒドロキシ基部分の水素原子が、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、ラウロイル基、ステアロイル等の炭素数2~22のアシル基で置換されたセルロースエステルが挙げられる。エステルを構成するカルボン酸(アシル基)は、置換基を有してもよい。エステルを構成するカルボン酸は、特に炭素数が6以下の低級脂肪酸であることが好ましく、炭素数が3以下の低級脂肪酸であることがさらに好ましい。なお、セルロースエステル中のアシル基は単一種であってもよいし、複数のアシル基の組み合わせであってもよい。 The cellulose ester used is not particularly limited, but it is preferably an ester of a linear or branched carboxylic acid having about 2 to 22 carbon atoms. The carboxylic acid constituting the ester may be an aliphatic carboxylic acid, may form a ring, or may be an aromatic carboxylic acid. For example, if the hydrogen atom in the hydroxyl group of cellulose is an acyl group having 2 to 22 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, pivaloyl group, hexanoyl group, octanoyl group, lauroyl group, stearoyl group, etc. Examples include cellulose esters substituted with . The carboxylic acid (acyl group) constituting the ester may have a substituent. The carboxylic acid constituting the ester is preferably a lower fatty acid having 6 or less carbon atoms, and more preferably a lower fatty acid having 3 or less carbon atoms. Note that the acyl group in the cellulose ester may be a single type or a combination of a plurality of acyl groups.
 好ましいセルロースエステルの具体例には、ジアセチルセルロース(DAC)、トリアセチルセルロース(TAC)等のセルロースアセテートのほか、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基又はブチレート基が結合したセルロースの混合脂肪酸エステルが挙げられる。これらのセルロースエステルは単一種を使用してもよいし、複数種を組み合わせて用いてもよい。 Specific examples of preferred cellulose esters include cellulose acetates such as diacetylcellulose (DAC) and triacetylcellulose (TAC), as well as cellulose acetate propionate (CAP), cellulose acetate butyrate, and cellulose acetate propionate butyrate. Examples include mixed fatty acid esters of cellulose to which a propionate group or a butyrate group is bonded in addition to the acetyl group. These cellulose esters may be used alone or in combination.
 (アシル基の種類・置換度)
 セルロースエステルのアシル基の種類及び置換度を調節することによって位相差の湿度変動を所望の範囲に制御することができ、膜厚の均一性を向上させることができる。
(Type of acyl group/degree of substitution)
By adjusting the type and degree of substitution of the acyl group of the cellulose ester, the humidity fluctuation of the phase difference can be controlled within a desired range, and the uniformity of the film thickness can be improved.
 セルロースエステルのアシル基の置換度が小さいほど位相差発現性が向上するため、薄膜化が可能となる。一方で、アシル基の置換度が小さすぎると、耐久性が悪化するおそれがあり好ましくない。 The smaller the degree of substitution of the acyl group of the cellulose ester, the better the retardation development property becomes, making it possible to form a thin film. On the other hand, if the degree of substitution of the acyl group is too small, durability may deteriorate, which is not preferable.
 一方、セルロースエステルのアシル基の置換度が大きいほど位相差が発現しないため、製膜の際に延伸倍率を増加させる必要があるが、高延伸倍率で均一に延伸させることは難しく、このため、膜厚バラツキが大きくなる(悪化する)。また、厚さ方向のリターデーション(位相差)であるRt湿度変動はセルロースのカルボニル基に水分子が配位することで生じるため、アシル基の置換度が高い、すなわち、セルロース中のカルボニル基が多いほど、Rt湿度変動が悪くなる傾向がある。 On the other hand, the higher the degree of substitution of the acyl group in the cellulose ester, the less the retardation will appear, so it is necessary to increase the stretching ratio during film formation, but it is difficult to stretch uniformly at a high stretching ratio. Film thickness variation increases (deteriorates). In addition, Rt humidity fluctuation, which is retardation (phase difference) in the thickness direction, is caused by water molecules coordinating with the carbonyl groups of cellulose. The larger the amount, the worse the Rt humidity fluctuation tends to be.
 セルロースエステルは総置換度が、2.1~2.5であることが好ましい。当該範囲とすることによって、環境変動(特に湿度によるRt変動)を抑制するとともに、膜厚の均一性が向上しうる。より好ましくは、製膜の際の流延性及び延伸性を向上させ、膜厚の均一性が一層向上する観点から、2.2~2.45である。 The cellulose ester preferably has a total degree of substitution of 2.1 to 2.5. By setting it within this range, environmental fluctuations (particularly Rt fluctuations due to humidity) can be suppressed, and the uniformity of the film thickness can be improved. More preferably, it is 2.2 to 2.45 from the viewpoint of improving the flowability and stretchability during film formation and further improving the uniformity of film thickness.
 より具体的には、セルロースエステルは、下記式(a)及び(b)をともに満足する。式中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基の置換度、若しくはその混合物の置換度である。 More specifically, the cellulose ester satisfies both the following formulas (a) and (b). In the formula, X is the degree of substitution of an acetyl group, Y is the degree of substitution of a propionyl group or a butyryl group, or a mixture thereof.
 式(a): 2.1≦X+Y≦2.5
 式(b): 0≦Y≦1.5
 セルロースエステルは、セルロースアセテート(Y=0)、及び、セルロースアセテートプロピオネート(CAP)(Y;プロピオニル基、Y>0)がより好ましく、さらに好ましくは膜厚バラツキを低減させる点からY=0であるセルロースアセテートである。特に好ましく用いられるセルロースアセテートは、位相差発現性、Rt湿度変動、膜厚バラツキを所望の範囲とする点から2.1≦X≦2.5(一層好ましくは2.15≦X≦2.45)のセルロースジアセテート(DAC)である。また、Y>0の場合には、特に好ましく用いられるセルロースアセテートプロピオネート(CAP)は、0.95≦X≦2.25、0.1≦Y≦1.2、2.15≦X+Y≦2.45である。
Formula (a): 2.1≦X+Y≦2.5
Formula (b): 0≦Y≦1.5
The cellulose ester is more preferably cellulose acetate (Y=0) or cellulose acetate propionate (CAP) (Y; propionyl group, Y>0), and even more preferably Y=0 to reduce film thickness variation. It is cellulose acetate. Particularly preferably used cellulose acetate is 2.1 ≦ ) cellulose diacetate (DAC). In addition, when Y>0, particularly preferably used cellulose acetate propionate (CAP) is 0.95≦X≦2.25, 0.1≦Y≦1.2, 2.15≦X+Y≦ It is 2.45.
 上述のセルロースアセテート若しくはセルロースアセテートプロピオネートを用いることで、リターデーションに優れ、機械強度、環境変動に優れたフィルムロールが得られる。 By using the above cellulose acetate or cellulose acetate propionate, a film roll with excellent retardation, mechanical strength, and environmental fluctuations can be obtained.
 なお、アシル基の置換度は、1グルコース単位あたりのアシル基の平均数を示し、1グルコース単位の2位、3位及び6位のヒドロキシ基の水素原子のいくつがアシル基に置換されているかを示す。従って、最大の置換度は3.0であり、この場合には2位、3位及び6位のヒドロキシ基の水素原子がすべてアシル基で置換されていることを意味する。これらアシル基は、グルコース単位の2位、3位、6位に平均的に置換していてもよいし、分布をもって置換していてもよい。置換度は、ASTM-D817-96に規定の方法により求められる。 In addition, the degree of substitution of acyl groups indicates the average number of acyl groups per glucose unit, and how many hydrogen atoms of the hydroxy groups at the 2nd, 3rd, and 6th positions of 1 glucose unit are substituted with acyl groups. shows. Therefore, the maximum degree of substitution is 3.0, which means that the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd, and 6th positions are all substituted with acyl groups. These acyl groups may be substituted on the 2nd, 3rd, and 6th positions of the glucose unit on an average basis, or may be substituted with a distribution. The degree of substitution is determined by the method specified in ASTM-D817-96.
 所望の光学特性を得るために置換度の異なるセルロースアセテートを混合して用いてもよい。異なるセルロースアセテートの混合比は特に限定されない。 In order to obtain desired optical properties, cellulose acetate having different degrees of substitution may be mixed and used. The mixing ratio of different cellulose acetates is not particularly limited.
 セルロースエステルの数平均分子量(Mn)は、2×10~3×10の範囲、さらには2×10~1.2×10の範囲、また、さらには4×10~8×10の範囲であると得られるフィルムロールの機械的強度が高くなるから好ましい。 The number average molecular weight (Mn) of the cellulose ester is in the range of 2×10 4 to 3×10 5 , more preferably in the range of 2×10 4 to 1.2×10 5 , and even more in the range of 4×10 4 to 8× A value in the range of 10 4 is preferable because the resulting film roll has high mechanical strength.
 セルロースエステルの数平均分子量Mnは、前述の測定条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いた測定により算出する。 The number average molecular weight Mn of the cellulose ester is calculated by measurement using gel permeation chromatography (GPC) under the measurement conditions described above.
 セルロースエステルの重量平均分子量(Mw)は、2×10~1×10の範囲、さらには2×10~1.2×10の範囲、またさらには4×10~8×10の範囲であると得られるフィルムロールの機械的強度が高くなるから好ましい。 The weight average molecular weight (Mw) of the cellulose ester is in the range of 2×10 4 to 1×10 6 , further in the range of 2×10 4 to 1.2×10 5 , and even more in the range of 4×10 4 to 8×10 A range of 4 is preferable because the resulting film roll has high mechanical strength.
 セルロースエステルの原料セルロースは、特に限定されないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。 The raw material cellulose for cellulose ester is not particularly limited, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose esters obtained from these can be mixed and used in any desired ratio.
 セルロースアセテート、セルロースアセテートプロピオネートなどのセルロースエステルは、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸など)と酸無水物(無水酢酸、無水プロピオン酸など)、触媒(硫酸など)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいてはグルコース単位の三個のヒドロキシ基は、有機酸のアシル酸で置換されている。 Cellulose esters such as cellulose acetate and cellulose acetate propionate can be produced by known methods. Generally, raw material cellulose is mixed with specified organic acids (acetic acid, propionic acid, etc.), acid anhydrides (acetic anhydride, propionic anhydride, etc.), and catalysts (sulfuric acid, etc.) to esterify cellulose. The reaction proceeds until the triester is produced. In the triester, the three hydroxy groups of the glucose unit are replaced by acylic acid, an organic acid.
 同時に二種類の有機酸を使用すると、混合エステル型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースエステル樹脂を合成する。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、セルロースエステル樹脂ができあがる。具体的には特開平10-45804号に記載の方法を参考にして合成することができる。 When two types of organic acids are used at the same time, mixed ester type cellulose esters, such as cellulose acetate propionate and cellulose acetate butyrate, can be produced. Next, by hydrolyzing the cellulose triester, a cellulose ester resin having a desired degree of acyl substitution is synthesized. After that, cellulose ester resin is completed through processes such as filtration, precipitation, washing, dehydration, and drying. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
 〔2.1.4〕その他の添加剤
 本実施形態のフィルムロールは、その他の添加剤として上記熱可塑性樹脂の他に以下のものを含有していてもよい。
[2.1.4] Other Additives The film roll of this embodiment may contain the following in addition to the above-mentioned thermoplastic resin as other additives.
 (a)可塑剤
 本実施形態のフィルムロールは例えば、偏光板保護フィルムなどに加工性を付与する目的で少なくとも1種の可塑剤を含むことが好ましい。可塑剤は単独で又は2種以上混合して用いることが好ましい。
(a) Plasticizer The film roll of this embodiment preferably contains at least one plasticizer for the purpose of imparting processability to, for example, a polarizing plate protective film. It is preferable to use the plasticizer alone or in combination of two or more.
 可塑剤の中でも、糖エステル、ポリエステル、及びスチレン系化合物からなる群から選択される少なくとも1種の可塑剤を含むことが、透湿性の効果的な制御及びセルロースエステルなどの基材樹脂との相溶性を高度に両立できる観点から好ましい。 Among the plasticizers, it is preferable to include at least one plasticizer selected from the group consisting of sugar esters, polyesters, and styrene compounds for effective control of moisture permeability and compatibility with base resins such as cellulose esters. It is preferable from the viewpoint of achieving both high solubility.
 当該可塑剤は、分子量が15000以下、さらには10000以下であることが、耐湿熱性の改善とセルロースエステルなどの基材樹脂との相溶性を両立する観点から好ましい。当該分子量が10000以下である化合物が重合体である場合は、重量平均分子量(Mw)が10000以下であることが好ましい。好ましい重量平均分子量(Mw)の範囲は100~10000の範囲内であり、更に好ましくは、400~8000の範囲内である。 The molecular weight of the plasticizer is preferably 15,000 or less, more preferably 10,000 or less, from the viewpoint of achieving both improvement in heat and humidity resistance and compatibility with the base resin such as cellulose ester. When the compound having a molecular weight of 10,000 or less is a polymer, the weight average molecular weight (Mw) is preferably 10,000 or less. The weight average molecular weight (Mw) is preferably within the range of 100 to 10,000, more preferably within the range of 400 to 8,000.
 特に本実施形態の効果を得るためには、当該分子量が1500以下の化合物を、基材樹脂100質量部に対して6~40質量部の範囲内で含有することが好ましく、10~20質量
部の範囲内で含有させることがより好ましい。上記範囲内で含有させることにより、透湿性の効果的な制御と基材樹脂との相溶性を両立することができ、好ましい。
In particular, in order to obtain the effects of this embodiment, it is preferable to contain the compound having a molecular weight of 1500 or less in the range of 6 to 40 parts by mass, and preferably 10 to 20 parts by mass, based on 100 parts by mass of the base resin. It is more preferable to contain it within the following range. By containing within the above range, effective control of moisture permeability and compatibility with the base resin can be achieved, which is preferable.
 〈糖エステル〉
 本実施形態のフィルムロールには、加水分解防止を目的として、糖エステル化合物を含有させてもよい。具体的には、糖エステル化合物として、ピラノース構造又はフラノース構造の少なくとも1種を1個以上12個以下有しその構造のOH基の全て若しくは一部をエステル化した糖エステルを使用することができる。
<Sugar ester>
The film roll of this embodiment may contain a sugar ester compound for the purpose of preventing hydrolysis. Specifically, as a sugar ester compound, it is possible to use a sugar ester that has at least 1 to 12 pyranose structures or furanose structures and has esterified all or part of the OH groups of that structure. .
 〈ポリエステル〉
 本実施形態にフィルムロールには、ポリエステルを含有させることが好ましい。
<polyester>
In this embodiment, the film roll preferably contains polyester.
 ポリエステルは特に限定されないが、例えば、ジカルボン酸又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基となる重合体(ポリエステルポリオール)、又は、当該ポリエステルポリオールの末端のヒドロキシ基がモノカルボン酸で封止された重合体(末端封止ポリエステル)を用いることができる。ここでいうエステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。 Polyesters are not particularly limited, but include, for example, polymers with hydroxyl groups at the ends (polyester polyols) obtained by a condensation reaction of dicarboxylic acids or their ester-forming derivatives with glycols, or polymers with hydroxyl groups at the ends of the polyester polyols, or A polymer in which hydroxyl groups are capped with monocarboxylic acid (end-capped polyester) can be used. The ester-forming derivative referred to herein refers to dicarboxylic acid esters, dicarboxylic acid chlorides, and dicarboxylic acid anhydrides.
 〈スチレン系化合物〉
 本実施形態のフィルムロールには、上記糖エステル、ポリエステルに加えて又はこれに代えて、フィルムの耐水性改善を目的として、スチレン系化合物を用いることもできる。
<Styrenic compounds>
In addition to or in place of the sugar ester and polyester described above, a styrene compound can also be used in the film roll of this embodiment for the purpose of improving the water resistance of the film.
 スチレン系化合物は、スチレン系モノマーの単独重合体であってもよいし、スチレン系モノマーとそれ以外の共重合モノマーとの共重合体であってもよい。スチレン系化合物におけるスチレン系モノマー由来の構成単位の含有割合は、分子構造が一定以上の嵩高さを有するためには、好ましくは30~100モル%、より好ましくは50~100モル%でありうる。 The styrene compound may be a homopolymer of styrene monomers, or a copolymer of styrene monomers and other comonomers. The content of the structural unit derived from the styrene monomer in the styrene compound may be preferably 30 to 100 mol%, more preferably 50 to 100 mol%, in order for the molecular structure to have a certain bulkiness or more.
 スチレン系モノマーの例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレンなどのアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレンなどのハロゲン置換スチレン類;p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレンなどのヒドロキシスチレン類;ビニルベンジルアルコール類;p-メトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレンなどのアルコキシ置換スチレン類;3-ビニル安息香酸、4-ビニル安息香酸などのビニル安息香酸類;4-ビニルベンジルアセテート;4-アセトキシスチレン;2-ブチルアミドスチレン、4-メチルアミドスチレン、p-スルホンアミドスチレンなどのアミドスチレン類;3-アミノスチレン、4-アミノスチレン、2-イソプロペニルアニリン、ビニルベンジルジメチルアミンなどのアミノスチレン類;3-ニトロスチレン、4-ニトロスチレンなどのニトロスチレン類;3-シアノスチレン、4-シアノスチレンなどのシアノスチレン類;ビニルフェニルアセトニトリル;フェニルスチレンなどのアリールスチレン類、インデン類などが含まれる。スチレン系モノマーは、一種類であっても、二種類以上を組み合わせてもよい。 Examples of styrenic monomers include styrene; alkyl-substituted styrenes such as α-methylstyrene, β-methylstyrene, and p-methylstyrene; halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene; p-hydroxy Hydroxystyrenes such as styrene, α-methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene; vinylbenzyl alcohols; p-methoxystyrene, p-tert-butoxystyrene, m -Alkoxy-substituted styrenes such as tert-butoxystyrene; Vinylbenzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl acetate; 4-acetoxystyrene; 2-butylamidostyrene, 4-methylamide Amidostyrenes such as styrene and p-sulfonamidostyrene; aminostyrenes such as 3-aminostyrene, 4-aminostyrene, 2-isopropenylaniline, and vinylbenzyldimethylamine; 3-nitrostyrene, 4-nitrostyrene, etc. Nitrostyrenes; cyanostyrenes such as 3-cyanostyrene and 4-cyanostyrene; vinylphenylacetonitrile; arylstyrenes such as phenylstyrene, indenes, and the like. The styrenic monomer may be used alone or in combination of two or more types.
 (b)任意成分
 本実施形態のフィルムロールは、酸化防止剤、着色剤、紫外線吸収剤、マット剤、アクリル粒子、水素結合性溶媒、イオン性界面活性剤などの他の任意成分を含みうる。これらの成分は、基材樹脂100質量部に対して0.01~20質量部の範囲で添加することができる。
(b) Optional Components The film roll of this embodiment may contain other optional components such as antioxidants, colorants, ultraviolet absorbers, matting agents, acrylic particles, hydrogen-bonding solvents, and ionic surfactants. These components can be added in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the base resin.
 〈酸化防止剤〉
 本実施形態のフィルムロールは、酸化防止剤としては、通常知られているものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。
<Antioxidant>
In the film roll of this embodiment, commonly known antioxidants can be used as antioxidants. In particular, lactone-based, sulfur-based, phenol-based, double bond-based, hindered amine-based, and phosphorus-based compounds can be preferably used.
 これらの酸化防止剤等は、フィルムの主原料である樹脂に対して、0.05~20質量%、好ましくは0.1~1質量%の範囲で添加される。これらの酸化防止剤等は、1種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えば、ラクトン系、リン系、フェノール系及び二重結合系化合物の併用は好ましい。 These antioxidants and the like are added in an amount of 0.05 to 20% by mass, preferably 0.1 to 1% by mass, based on the resin that is the main raw material of the film. Rather than using only one type of these antioxidants, a synergistic effect can be obtained by using several different types of compounds together. For example, it is preferable to use lactone-based, phosphorus-based, phenol-based, and double bond-based compounds in combination.
 〈着色剤〉
 本実施形態のフィルムロールは、本実施形態の効果を損なわない範囲内で、色味調整のために、着色剤を含むことが好ましい。着色剤というのは染料や顔料を意味し、本実施形態では、液晶画面の色調を青色調にする効果又はイエローインデックスの調整、ヘイズの低減を有するものを指す。
<Colorant>
The film roll of this embodiment preferably contains a coloring agent for color adjustment within a range that does not impair the effects of this embodiment. The term "coloring agent" refers to a dye or a pigment, and in this embodiment, it refers to a material having the effect of making the color tone of the liquid crystal screen blue-ish, adjusting the yellow index, or reducing haze.
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。 Various dyes and pigments can be used as colorants, but anthraquinone dyes, azo dyes, phthalocyanine pigments, etc. are effective.
 〈紫外線吸収剤〉
 本実施形態のフィルムロールは、偏光板の視認側やバックライト側に用いられることもできることから、紫外線吸収機能を付与することを目的として、紫外線吸収剤を含有してもよい。
<Ultraviolet absorber>
Since the film roll of this embodiment can be used on the viewing side or backlight side of a polarizing plate, it may contain an ultraviolet absorber for the purpose of imparting an ultraviolet absorbing function.
 紫外線吸収剤としては、特に限定されないが、例えば、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系等の紫外線吸収剤が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 The ultraviolet absorber is not particularly limited, but includes, for example, benzotriazole-based, 2-hydroxybenzophenone-based, or salicylic acid phenyl ester-based ultraviolet absorbers. For example, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3, Triazoles such as 5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone Examples include benzophenones such as.
 上記紫外線吸収剤は、1種単独で又は2種以上組み合わせて用いることができる。 The above ultraviolet absorbers can be used alone or in combination of two or more.
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、一般には、基材樹脂に対して、0.05~10質量%、好ましくは0.1~5質量%の範囲で添加される。 The amount of ultraviolet absorber used varies depending on the type of ultraviolet absorber, conditions of use, etc., but generally it is 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the base resin. It is added in a range of %.
 〈マット剤〉
 本実施形態のフィルムロールは、フィルムロールの滑り性を付与する微粒子(マット剤)を添加することが好ましい。特に、本実施形態に係る面Cの滑り性を向上し、巻取り時の滑り性を向上し、傷の発生やブロッキングの発生を防止する観点からも、添加することは有効である。
<Matting agent>
The film roll of this embodiment preferably contains fine particles (matting agent) that impart slipperiness to the film roll. In particular, addition is effective from the viewpoint of improving the slipperiness of the surface C according to the present embodiment, improving the slipperiness during winding, and preventing the occurrence of scratches and blocking.
 マット剤としては、得られるフィルムロールの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物又は有機化合物どちらでもよい。これらのマット剤は、単独でも2種以上併用しても使用できる。 The matting agent may be either an inorganic compound or an organic compound as long as it does not impair the transparency of the resulting film roll and has heat resistance during melting. These matting agents can be used alone or in combination of two or more.
 粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。 By using particles with different particle sizes and shapes (for example, acicular and spherical), it is possible to achieve both high transparency and slipperiness.
 これらの中でも、前記シクロオレフィン系樹脂、アクリル系樹脂やセルロースエステル系樹脂と屈折率が近いので透明性(ヘイズ)に優れる二酸化珪素が特に好ましく用いられる。 Among these, silicon dioxide is particularly preferably used because it has a refractive index close to that of the cycloolefin resin, acrylic resin, and cellulose ester resin, and thus has excellent transparency (haze).
 二酸化珪素の具体例としては、アエロジル(登録商標)200V、アエロジル(登録商標)R972V、アエロジル(登録商標)R972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル株式会社製)、シーホスター(登録商標)KEP-10、シーホスター(登録商標)KEP-30、シーホスター(登録商標)KEP-50(以上、株式会社日本触媒製)、サイロホービック(登録商標)100(富士シリシア株式会社製)、ニップシール(登録商標)E220A(日本シリカ工業株式会社製)、アドマファイン(登録商標)SO(株式会社アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。 Specific examples of silicon dioxide include Aerosil (registered trademark) 200V, Aerosil (registered trademark) R972V, Aerosil (registered trademark) R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (Japan Aerosil Co., Ltd. ), Seahoster (registered trademark) KEP-10, Seahoster (registered trademark) KEP-30, Seahoster (registered trademark) KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Cylohobic (registered trademark) 100 (Fuji Silicia) Commercial products having trade names such as Nip Seal (registered trademark) E220A (manufactured by Nippon Silica Kogyo Co., Ltd.) and AdmaFine (registered trademark) SO (manufactured by Admatex Co., Ltd.) can be preferably used.
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムロールの透明性が良好にできるので好ましい。 The shape of the particles may be amorphous, acicular, flat, spherical, or the like without any particular restriction, but spherical particles are particularly preferred since the obtained film roll can have good transparency.
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。 If the particle size is close to the wavelength of visible light, light will be scattered and transparency will deteriorate, so it is preferably smaller than the wavelength of visible light, and more preferably 1/2 or less of the wavelength of visible light. . If the particle size is too small, the slipperiness may not be improved, so it is particularly preferable that the particle size is in the range of 80 nm to 180 nm. In addition, the particle size means the size of the aggregate when the particle is an aggregate of primary particles. Furthermore, when the particle is not spherical, it means the diameter of a circle corresponding to its projected area.
 マット剤は、基材樹脂に対して、0.05~10質量%、好ましくは0.1~5質量%の範囲で添加されることが好ましい。 The matting agent is preferably added in an amount of 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the base resin.
 〔2.2〕フィルムロールの製造方法
 本実施形態のフィルムロールの製造方法は、少なくとも前記部位A又は前記部位Bに表面改質処理を行う工程を有することを特徴とする。
[2.2] Film roll manufacturing method The film roll manufacturing method of this embodiment is characterized by having a step of subjecting at least the portion A or the portion B to a surface modification treatment.
 また、前記表面改質処理は前記部位Bのみに行うことが好ましく、また前記部位A及び前記部位Bの両方に行うことが好ましい。 Further, the surface modification treatment is preferably performed only on the site B, and is preferably performed on both the site A and the site B.
 さらに、前述のとおり、前記ナーリング加工部は、レーザーナーリング加工(レーザー方式)によって形成することが、好ましい。 Further, as described above, the knurling portion is preferably formed by laser knurling (laser method).
 本実施形態のフィルムロールの製造方法として、フィルムの製膜は、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延製膜法と溶融流延製膜法が好ましく、特に溶液流延法であることが、均一な表面を得るためにより好ましい。 As a manufacturing method of the film roll of this embodiment, a manufacturing method such as a normal inflation method, T-die method, calendar method, cutting method, casting method, emulsion method, hot press method, etc. can be used for film formation. However, from the viewpoints of suppressing coloration, suppressing foreign matter defects, suppressing optical defects such as die lines, etc., the solution casting method and melt casting method are preferable as the film forming method, and the solution casting method is particularly preferred. is more preferred in order to obtain a uniform surface.
 〈溶液流延製膜法〉
 溶液流涎法により製膜する場合、本実施形態のフィルムロールの製造方法は、熱可塑性樹脂及び上述した添加剤を溶媒に溶解させてドープを調製する工程(溶解工程;ドープ調製工程)、ドープを無限に移行する無端の金属支持体上に流延する工程(流延工程)、流延したドープをウェブとして乾燥する工程(溶媒蒸発工程)、金属支持体から剥離する工程(剥離工程)、乾燥、延伸、幅保持する工程(延伸・幅保持・乾燥工程)、仕上がったフィルムをロール状に巻取る工程(巻き取り工程)を含むことが好ましい。熱可塑性樹脂としては、特にシクロオレフィン系樹脂やアクリル系樹脂を用いることが好ましい。
<Solution casting film forming method>
When forming a film by the solution drooling method, the method for manufacturing the film roll of this embodiment includes a step of preparing a dope by dissolving the thermoplastic resin and the above-mentioned additives in a solvent (dissolving step; dope preparation step), A process of casting onto an endless metal support that moves infinitely (casting process), a process of drying the cast dope as a web (solvent evaporation process), a process of peeling it off from the metal support (peeling process), drying It is preferable to include a process of stretching and maintaining the width (stretching/width maintaining/drying process), and a process of winding the finished film into a roll (winding process). As the thermoplastic resin, it is particularly preferable to use a cycloolefin resin or an acrylic resin.
 図9は、溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程(溶媒蒸発工程)の一例を模式的に示した図である。 FIG. 9 is a diagram schematically showing an example of the dope preparation step, the casting step, and the drying step (solvent evaporation step) of the solution casting film forming method.
 仕込釜A41より濾過器A44で大きな凝集物を除去し、ストック釜A42へ送液する。その後、ストック釜A42より主ドープ溶解釜1へ各種添加液を添加する。 Large aggregates are removed from the preparation pot A41 using a filter A44, and the liquid is sent to the stock pot A42. Thereafter, various additive liquids are added from the stock pot A42 to the main dope dissolving pot 1.
 その後主ドープは主濾過器A3にて濾過され、これに添加剤添加液がA16よりインライン添加される。 After that, the main dope is filtered in the main filter A3, and the additive addition liquid is added in-line to it from A16.
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。 In many cases, the main dope may contain about 10 to 50% by mass of returned material.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反が使用される。 Returned materials are finely crushed films, such as those produced when film is produced by cutting off both sides of the film, or original film that has been out of specification due to scratches, etc.
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめ基材樹脂としてセルロースエステル及びその他の添加剤などをペレット化したものも、好ましく用いることができる。 Furthermore, as the raw material for the resin used for preparing the dope, it is also possible to preferably use pellets of cellulose ester and other additives as a base resin.
 以下、各工程について説明する。 Each step will be explained below.
 (工程1)溶解工程(ドープ調製工程)
 以下、本実施形態の一実施形態として、熱可塑性樹脂としてシクロオレフィン系樹脂(以下、COPともいう。)を使用する場合を一例として溶解工程を説明するが、本実施形態はこれに限定されない。
(Process 1) Dissolution process (dope preparation process)
Hereinafter, as one embodiment of the present embodiment, the melting step will be described using as an example a case where a cycloolefin resin (hereinafter also referred to as COP) is used as the thermoplastic resin, but the present embodiment is not limited thereto.
 本工程は、COPに対する良溶媒を主とする溶媒に、溶解釜中で該COP、場合によって、その他の化合物を攪拌しながら溶解しドープを形成する工程、あるいは該COP溶液に、場合によってその他の化合物溶液を混合して主溶解液であるドープを形成する工程である。 This step is a step of dissolving the COP and, if necessary, other compounds in a dissolution pot with stirring in a solvent that is mainly a good solvent for COP, or a step of forming a dope by dissolving the COP and, if necessary, other compounds into the COP solution. This is a step of mixing compound solutions to form a dope, which is the main solution.
 ドープ中のCOPの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、COPの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~30質量%である。 It is preferable that the concentration of COP in the dope be higher because it can reduce the drying load after being cast onto a metal support, but if the concentration of COP is too high, the load during filtration will increase and the filtration accuracy will deteriorate. The concentration that achieves both of these is preferably 10 to 35% by mass, more preferably 15 to 30% by mass.
 ドープで用いられる溶媒は、単独で用いても2種以上を併用してもよいが、COPの良溶媒と貧溶媒を混合して使用することが生産効率の点で好ましく、良溶媒が多い方がCOPの溶解性の点で好ましい。 The solvent used in dope may be used alone or in combination of two or more types, but it is preferable to use a mixture of a good solvent and a poor solvent for COP in terms of production efficiency, and the one with more good solvent is preferable from the viewpoint of solubility of COP.
 良溶媒と貧溶媒の混合比率の好ましい範囲は、良溶媒が70~98質量%であり、貧溶剤が2~30質量%である。良溶媒、貧溶媒とは、使用するCOPを単独で溶解するものを良溶媒、単独で膨潤するか又は溶解しないものを貧溶媒と定義している。そのため、COPの平均置換度によって良溶媒、貧溶媒が変わる。 The preferred range of the mixing ratio of the good solvent and poor solvent is 70 to 98% by mass of the good solvent and 2 to 30% by mass of the poor solvent. A good solvent and a poor solvent are defined as a good solvent that dissolves the COP used alone, and a poor solvent as a solvent that swells or does not dissolve the COP used alone. Therefore, a good solvent or a poor solvent changes depending on the average degree of substitution of COP.
 本実施形態に用いられる良溶媒は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。 The good solvent used in this embodiment is not particularly limited, but includes organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, methyl acetoacetate, and the like. Particularly preferred are methylene chloride and methyl acetate.
 また、本実施形態に用いられる貧溶媒は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。 Further, the poor solvent used in this embodiment is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone, etc. are preferably used. Further, it is preferable that the dope contains 0.01 to 2% by mass of water.
 また、COPの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。 Furthermore, the solvent used for dissolving COP is used by recovering the solvent removed from the film by drying in the film forming process and reusing it.
 回収溶媒中に、COPに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。 The recovered solvent may contain trace amounts of additives added to COP, such as plasticizers, ultraviolet absorbers, polymers, and monomer components, but even if these are contained, it is preferable to reuse them. It can also be purified and reused if necessary.
 上記記載のドープを調製する時の、COPの溶解方法としては、一般的な方法を用いることができる。具体的には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法が好ましく、加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。 When preparing the dope described above, a general method can be used to dissolve COP. Specifically, preferred are a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, and a method carried out under pressure above the boiling point of the main solvent.If heating and pressurization are combined, heating can be carried out above the boiling point at normal pressure.
 また、溶媒の常圧での沸点以上でかつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら攪拌溶解する方法も、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。 In addition, a method of stirring and dissolving while heating at a temperature above the boiling point of the solvent at normal pressure and within a range where the solvent does not boil under pressure is also preferable in order to prevent the generation of lumpy undissolved substances called gels and mako.
 また、COPを貧溶媒と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。 Also preferably used is a method in which COP is mixed with a poor solvent to make it wet or swell, and then a good solvent is further added to dissolve it.
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 Pressurization may be performed by injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. It is preferable to perform heating from the outside. For example, a jacket type is preferable because the temperature can be easily controlled.
 溶媒を添加しての加熱温度は、高い方がCOPの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。 A higher heating temperature after adding the solvent is preferable from the viewpoint of solubility of COP, but if the heating temperature is too high, the required pressure will increase and productivity will deteriorate.
 好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。また、圧力は設定温度で溶媒が沸騰しないように調整される。 The preferred heating temperature is 45 to 120°C, more preferably 60 to 110°C, and even more preferably 70 to 105°C. Further, the pressure is adjusted so that the solvent does not boil at the set temperature.
 又は、冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にCOPを溶解させることができる。 Alternatively, a cooling dissolution method is also preferably used, whereby COP can be dissolved in a solvent such as methyl acetate.
 次に、このCOP溶液(溶解中又は溶解後のドープ)を濾紙等の適当な濾過材を用いて濾過することが好ましい。 Next, it is preferable to filter this COP solution (dope during or after dissolution) using a suitable filter medium such as filter paper.
 濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。 It is preferable for the filter medium to have a small absolute filtration accuracy in order to remove insoluble matters, but if the absolute filtration accuracy is too small, there is a problem in that the filter medium is likely to become clogged. For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium of 0.001 to 0.008 mm is more preferable, and a filter medium of 0.003 to 0.006 mm is even more preferable.
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。 There are no particular restrictions on the material of the filter media, and ordinary filter media can be used, but filter media made of plastic such as polypropylene or Teflon (registered trademark), or metal filter media such as stainless steel are preferred since they do not cause fibers to fall off. preferable.
 濾過により、原料のCOPに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。 It is preferable to remove and reduce impurities contained in the raw COP, particularly bright spot foreign substances, by filtration.
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にフィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。 A bright spot foreign substance is a phenomenon in which two polarizing plates are arranged in a crossed nicol state, a film, etc. is placed between them, and when light is applied from one polarizing plate side and observed from the other polarizing plate side, the opposite image appears. These are points (foreign objects) that appear to leak light from the side, and the number of bright spots with a diameter of 0.01 mm or more is preferably 200 pieces/cm 2 or less. More preferably, the number is 100 pieces/cm 2 or less, still more preferably 50 pieces/m 2 or less, and even more preferably 0 to 10 pieces/cm 2 or less. Further, it is preferable that there are fewer bright spots with a diameter of 0.01 mm or less.
 ドープの濾過は通常の方法で行うことができるが、溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。 Filtration of the dope can be carried out in the usual way, but the method of filtering while heating at a temperature above the boiling point of the solvent at normal pressure and within the range where the solvent does not boil under pressure is the most effective method for reducing the filtration pressure before and after filtration. This is preferable because the increase in the difference (referred to as differential pressure) is small.
 好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。 The preferred temperature is 45 to 120°C, more preferably 45 to 70°C, even more preferably 45 to 55°C.
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。 The smaller the filtration pressure, the better. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, even more preferably 1.0 MPa or less.
 (工程2)流延工程
 続いて、ドープを金属支持体上に流延(キャスト)する。すなわち、本工程は、ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイA30に送液し、無限に移送する無端の金属ベルトA31、例えばステンレスバンド、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
(Step 2) Casting step Next, the dope is cast onto a metal support. That is, in this step, the dope is sent to a pressurizing die A30 through a liquid sending pump (for example, a pressurizing metering gear pump), and an endless metal belt A31, such as a stainless steel band, or a rotating metal drum, etc., is used to transport the dope indefinitely. This is a process in which the dope is cast from a pressurized die slit onto the casting position on the metal support.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっていることが好ましい。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムロールを得ることも好ましい。 A pressure die is preferred because the slit shape of the die mouthpiece can be adjusted and the film thickness can be easily made uniform. Pressure dies include coat hanger dies, T dies, and the like, and any of them are preferably used. Preferably, the surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the doping amount may be divided and layered. Alternatively, it is also preferable to obtain a film roll having a laminated structure by a co-casting method in which a plurality of dopes are simultaneously cast.
 キャストの幅は生産性の観点から1.3m以上が好ましい。より好ましくは1.3~4.0mである。4.0mを超える場合には、製造工程で縞が入ったり、その後の搬送工程での安定性が低くなったりするおそれがある。さらに好ましくは、搬送性、生産性の点で1.3~3.0mである。 The width of the cast is preferably 1.3 m or more from the viewpoint of productivity. More preferably, it is 1.3 to 4.0 m. If the length exceeds 4.0 m, there is a risk that stripes may appear in the manufacturing process or that stability in the subsequent conveyance process may be reduced. More preferably, the length is 1.3 to 3.0 m in terms of transportability and productivity.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The metal support used in the casting process preferably has a mirror-finished surface, and a stainless steel belt or a cast drum with a plated surface is preferably used as the metal support.
 流延工程の金属支持体の表面温度は-50℃~溶媒の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。 The surface temperature of the metal support during the casting process is between -50°C and below the boiling point of the solvent. Higher temperatures are preferable because they allow the web to dry faster, but if the temperature is too high, the web may foam or become flat. properties may deteriorate.
 好ましい支持体温度は0~55℃であり、22~50℃が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。 The preferred support temperature is 0 to 55°C, more preferably 22 to 50°C. Alternatively, it is also a preferable method to gel the web by cooling and peel it from the drum in a state containing a large amount of residual solvent.
 金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。 The method of controlling the temperature of the metal support is not particularly limited, but there are methods such as blowing hot or cold air or bringing hot water into contact with the back side of the metal support. It is preferable to use hot water because heat transfer is more efficient and the time required for the temperature of the metal support to become constant is shorter. When hot air is used, air at a temperature higher than the target temperature may be used.
 (工程3)溶媒蒸発工程
 本工程は、ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
(Step 3) Solvent evaporation step In this step, the web (the dope film formed by casting the dope on the casting support is called a web) is heated on the casting support to evaporate the solvent. This is the process of
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを35~100℃の雰囲気下、支持体上で乾燥させることが好ましい。35~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are methods such as blowing air from the web side, transferring heat with liquid from the back side of the support, and transferring heat from the front and back using radiant heat. It is preferable because of its good drying efficiency. Moreover, a method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 35 to 100°C. In order to maintain the atmosphere at 35 to 100° C., it is preferable to apply warm air at this temperature to the upper surface of the web or to heat it by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoints of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 (工程4)剥離工程
 次いで、ウェブを金属支持体から剥離する。すなわち、本工程は金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
(Step 4) Peeling step Next, the web is peeled from the metal support. That is, this step is a step in which the web on which the solvent has been evaporated on the metal support is peeled off at the peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。 The temperature at the peeling position on the metal support is preferably within the range of -50 to 40°C, more preferably within the range of 10 to 40°C, and most preferably within the range of 15 to 30°C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等によって適宜調節される。フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましい。残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。更に好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。 Note that the amount of solvent remaining on the metal support at the time of peeling is appropriately adjusted depending on the strength of the drying conditions, the length of the metal support, etc. In order for the film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass. When peeling occurs when the amount of residual solvent is larger, if the web is too soft, the flatness will be lost during peeling, and warping or vertical streaks will easily occur due to peeling tension. The amount can be determined. More preferably 20 to 40% by weight or 60 to 130% by weight, particularly preferably 20 to 30% by weight or 70 to 120% by weight.
 本実施形態においては、残留溶媒量は下記式で定義される。 In this embodiment, the amount of residual solvent is defined by the following formula.
  残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Amount of residual solvent (mass%) = {(MN)/N} x 100
In addition, M is the mass of a sample taken at any time during or after manufacturing the web or film, and N is the mass after heating M at 115° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、300N/m以下とすることが好ましい。より好ましくは、196~245N/mの範囲内であるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましい。剥離張力は300N/m以下で剥離することが好ましい。 The peeling tension when peeling the metal support and the film is preferably 300 N/m or less. More preferably, the tension is within the range of 196 to 245 N/m, but if wrinkles are likely to occur during peeling, it is preferable to peel with a tension of 190 N/m or less. The peeling tension is preferably 300 N/m or less.
 (工程5)乾燥・延伸・幅保持工程
 (乾燥)
 フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
(Process 5) Drying/stretching/width maintenance process (drying)
In the film drying step, the web is peeled off from the metal support and further dried to reduce the amount of residual solvent to 1% by mass or less, more preferably 0.1% by mass or less, particularly preferably 0. ~0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。例えば、剥離後、ウェブを乾燥装置内に複数配置したローラーに交互に通して搬送する乾燥装置A35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置A34を用いて、ウェブを乾燥する。 The film drying process generally uses a roll drying method (a method in which the web is dried by passing it alternately through a number of rollers arranged above and below) or a tenter method, in which the web is dried while being transported. For example, after peeling, the web is transported using a drying device A35 that conveys the web by passing it alternately through a plurality of rollers arranged in the drying device, and/or a tenter stretching device A34 that clips both ends of the web with clips and conveys the web. dry.
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点から熱風で行うことが好ましい。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥はおおむね30~250℃の範囲内で行われる。特に35~200℃の範囲内で乾燥させることが好ましい。乾燥温度は、段階的に高くしていくことが好ましい。 The means for drying the web is not particularly limited, and generally hot air, infrared rays, heated rollers, microwaves, etc. can be used, but hot air is preferred from the viewpoint of simplicity. Too rapid drying tends to impair the flatness of the finished film. Drying at high temperatures is preferably carried out when the residual solvent is about 8% by mass or less. Drying is generally carried out within the range of 30 to 250°C throughout. In particular, it is preferable to dry within the range of 35 to 200°C. It is preferable to increase the drying temperature in stages.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching device, it is preferable to use a device that can independently control the gripping length (distance from the start of gripping to the end of gripping) of the film on the left and right sides using the left and right gripping means of the tenter. Furthermore, in the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve flatness.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone between different temperature zones so that each zone does not interfere with each other.
 (延伸・幅保持)
 続いて、金属支持体より剥離したウェブを少なくとも一方向に延伸処理することが好ましい。延伸処理することでフィルム内の分子の配向を制御することができる。本実施形態において目標とするリターデーション値Ro、Rtを得るには、フィルムが本実施形態の構成をとり、更に搬送張力の制御、延伸操作により屈折率制御を行うことが好ましい。例えば、長手方向の張力を低く又は高くすることでリターデーション値を変動させることが可能となる。
(Stretching/width maintenance)
Subsequently, the web peeled from the metal support is preferably stretched in at least one direction. The orientation of molecules within the film can be controlled by stretching. In order to obtain the target retardation values Ro and Rt in this embodiment, it is preferable that the film has the configuration of this embodiment and further controls the refractive index by controlling the transport tension and stretching operation. For example, it is possible to vary the retardation value by lowering or increasing the tension in the longitudinal direction.
 具体的な延伸方法としては、ウェブの長手方向(製膜方向;流延方向;MD方向)及びウェブ面内で直交する方向、即ち幅手方向(TD方向)に対して、逐次又は同時に2軸延伸もしくは1軸延伸することができる。好ましくは、流延方向(MD方向)、幅手方向(TD方向)に二軸延伸を実施した、二軸延伸フィルムであるが、本実施形態に係るフィルムは一軸延伸フィルムであってもよいし、未延伸フィルムであってもよい。なお、延伸操作は多段階に分割して実施してもよい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 As a specific stretching method, biaxial stretching is performed sequentially or simultaneously in the longitudinal direction of the web (film forming direction; casting direction; MD direction) and the direction perpendicular to the web plane, that is, the width direction (TD direction). It can be stretched or uniaxially stretched. Preferably, it is a biaxially stretched film that is biaxially stretched in the casting direction (MD direction) and the width direction (TD direction), but the film according to this embodiment may be a uniaxially stretched film. , or may be an unstretched film. Note that the stretching operation may be performed in multiple steps. Moreover, when biaxial stretching is performed, simultaneous biaxial stretching may be performed or it may be performed in stages. In this case, stepwise means, for example, that stretching in different stretching directions can be carried out sequentially, or that stretching in the same direction can be divided into multiple stages and stretching in different directions can be added to any of the stages. is also possible.
 例えば、次のような延伸ステップも可能である:
・流延方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
・幅手方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。
For example, the following stretching steps are also possible:
・Stretching in the casting direction → Stretching in the width direction → Stretching in the casting direction → Stretching in the casting direction ・Stretching in the width direction → Stretching in the width direction → Stretching in the casting direction → Stretching in the casting direction Simultaneous biaxial stretching also includes stretching in one direction and shrinking the other by relaxing the tension.
 互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に0.8~1.5倍、幅手方向に1.1~2.5倍の範囲とすることが好ましく、流延方向に0.8~1.2倍、幅手方向に1.2~2.0倍の範囲で行うことが好ましい。 The final stretching ratio in two axes perpendicular to each other is preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction. It is preferable to carry it out in the range of 0.8 to 1.2 times in the extending direction and 1.2 to 2.0 times in the width direction.
 延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。通常、延伸温度は120℃~200℃が好ましく、さらに好ましくは120℃~180℃である。 The stretching temperature is usually preferably carried out within the temperature range of Tg to Tg + 60°C of the resin constituting the film. Usually, the stretching temperature is preferably 120°C to 200°C, more preferably 120°C to 180°C.
 延伸時におけるウェブ中の残留溶媒は20~0%が好ましく、さらに好ましくは15~0%で延伸するのが好ましい。例えば、135℃で残留溶媒が8%で延伸する、あるいは155℃で残留溶媒が11%で延伸するのが好ましい。もしくは155℃で残留溶媒が2%で延伸するのが好ましく、あるいは160℃で残留溶媒が1%未満で延伸するのが好ましい。 The residual solvent in the web during stretching is preferably 20 to 0%, more preferably 15 to 0%. For example, it is preferable to stretch at 135°C with a residual solvent content of 8%, or preferably to stretch at 155°C with a residual solvent content of 11%. Alternatively, it is preferable to stretch at 155° C. with a residual solvent of 2%, or preferably to stretch at 160° C. with a residual solvent of less than 1%.
 ウェブを延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれらの方法は、組み合わせて用いてもよい。中でも、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが特に好ましい。 There is no particular limitation on the method of stretching the web. For example, there is a method in which multiple rollers have different circumferential speeds and the difference in roller circumferential speed is used to stretch the web in the longitudinal direction, or both ends of the web are fixed with clips or pins, and the distance between the clips or pins is increased in the direction of travel. Examples include a method in which the material is stretched in the longitudinal and longitudinal directions, a method in which the material is similarly spread in the transverse direction and then stretched in the transverse direction, and a method in which the material is simultaneously spread in the longitudinal and lateral directions and stretched in both the longitudinal and lateral directions. Of course, these methods may be used in combination. Among these, it is particularly preferable to stretch the web in the width direction (lateral direction) using a tenter method in which both ends of the web are held with clips or the like.
 また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。 In addition, in the case of the so-called tenter method, it is preferable to drive the clip portion using a linear drive method because smooth stretching can be performed and the risk of breakage etc. can be reduced.
 製膜工程のこれらの幅保持あるいは横方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 It is preferable to maintain the width or stretch in the lateral direction in the film forming process using a tenter, and a pin tenter or a clip tenter may be used.
 本実施形態に係るフィルムの遅相軸又は進相軸がフィルム面内に存在し、製膜方向とのなす角をθ1とするとθ1は-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。 The slow axis or fast axis of the film according to the present embodiment exists within the film plane, and if the angle formed with the film forming direction is θ1, it is preferable that θ1 is −1° or more and +1° or less, and −0 More preferably, the angle is .5° or more and +0.5° or less.
 このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-21ADH(王子計測機器株式会社製)を用いて行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制又は防止することに寄与でき、カラー液晶表示装置においては忠実な色再現を得ることに寄与できる。 This θ1 can be defined as an orientation angle, and θ1 can be measured using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.). The fact that θ1 satisfies each of the above relationships can contribute to obtaining high brightness in a displayed image, suppress or prevent light leakage, and can contribute to obtaining faithful color reproduction in a color liquid crystal display device.
 (工程6)巻き取り工程
 最後に、得られたウェブ(仕上がったフィルム)を巻取ることにより、フィルムロールが得られる。より具体的には、ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機A37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%の範囲で巻き取ることが好ましい。
(Step 6) Winding step Finally, a film roll is obtained by winding up the obtained web (finished film). More specifically, it is a process in which the web is wound up as a film using a winder A37 after the amount of residual solvent in the web is 2% by mass or less, and dimensional stability is achieved by reducing the amount of residual solvent to 0.4% by mass or less. A film with good properties can be obtained. In particular, it is preferable to wind it in a range of 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 Any commonly used winding method may be used, such as a constant torque method, a constant tension method, a taper tension method, a programmed tension control method with constant internal stress, etc., and any of these methods may be used.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きや擦り傷防止のために、本実施形態に係るナーリング加工及び表面改質処理をフィルム両端に施す。 Before winding, the ends are slit to the width of the product and bleeded, and the knurling and surface modification treatments according to this embodiment are applied to both ends of the film to prevent sticking and scratches during winding.
 なお、フィルム両端部のクリップの把持部分は、通常はフィルムが変形しており、製品として使用できないので切除される。熱による材料の劣化が起こっていない場合は、回収後に再利用される。 Note that the gripping portions of the clips at both ends of the film are usually cut off because the film is deformed and cannot be used as a product. If the material has not deteriorated due to heat, it will be recycled after recovery.
 本実施形態のフィルムロールは、長尺フィルムであることが好ましく、具体的には、100m~10000m程度のものを示し、通常、ロール状で提供される形態のものである。 The film roll of this embodiment is preferably a long film, specifically about 100 m to 10,000 m, and is usually provided in the form of a roll.
 〈フィルムの巻取り方法の詳細〉
 ナーリング加工及び表面改質処理を施した後のフィルムは以下の巻取方法で巻取ることが好ましい。
<Details of film winding method>
The film after knurling and surface modification treatment is preferably wound up by the following winding method.
 巻取方法は、フィルムの側縁が揃うように前記フィルムを巻芯に巻き取るストレート巻き工程と、前記ストレート巻き工程の後に、前記側縁が前記フィルムの幅方向に対して一定範囲で周期的にずれるように、前記フィルムの幅方向に前記フィルム又は前記巻芯を周期的に振動させて前記フィルムを前記巻芯に巻き取るオシレート巻き工程とを有することが好ましい。 The winding method includes a straight winding process in which the film is wound around a core so that the side edges of the film are aligned, and after the straight winding process, the side edges are periodically wound in a certain range in the width direction of the film. It is preferable to have an oscillating winding step of winding the film around the core by periodically vibrating the film or the core in the width direction of the film so that the film is deviated from the core.
 特に、前記フィルムの巻長が、前記フィルムの全巻長に対して10~30%の範囲内であらかじめ定められる切替時巻長に達したときに、前記ストレート巻き工程から前記オシレート巻き工程に切り替えることが好ましい。 In particular, when the winding length of the film reaches a switching winding length that is predetermined within a range of 10 to 30% of the total winding length of the film, switching from the straight winding process to the oscillating winding process. is preferred.
 フィルムの巻取装置は、巻芯を回転させて前記巻芯にフィルムを巻き取るフィルム巻取部と、前記フィルムが前記巻芯上で前記フィルムの幅方向に一定範囲内で周期的にずれるオシレート巻きになるように、前記フィルムの巻取りに連動させて前記フィルム又は前記巻芯を前記フィルムの幅方向に振動させるオシレート部と、前記フィルムの巻長があらかじめ定められる切替時巻長に達したときに、前記フィルムの巻取りを前記ストレート巻きから前記オシレート巻きに切り替える切替部とを備えることが好ましい。 The film winding device includes a film winding unit that rotates a core to wind the film onto the core, and an oscillator that periodically shifts the film in the width direction of the film on the core within a certain range. an oscillating unit that vibrates the film or the winding core in the width direction of the film in conjunction with the winding of the film so that the winding length of the film reaches a predetermined winding length at the time of switching; In some cases, it is preferable to include a switching section that switches the winding of the film from the straight winding to the oscillating winding.
 以下オシレート巻きについて説明する。 Oscillate winding will be explained below.
 図10に示すように、フィルム製造ラインB10は、フィルム製造装置B11と、巻取装置B12とを備えている。フィルム製造装置B11は、溶液製膜方法によりフィルム81を製造する。溶液製膜方法では、まず、原料を用いてドープを調製する。そして、調製したドープを無端支持体上に流延して流延膜を形成する。流延膜が自己支持性を有するようになったときに、無端支持体から流延膜を剥離する。剥離された流延膜を熱風等で乾燥することによって、フィルム81が形成される。形成されたフィルム81は、ナーリング付与ローラーB15を介して、巻取装置B12に送られる。ナーリング付与ローラーB15は、エンボス加工等により、フィルム81の幅方向の両側縁部(耳部)に対して微小な凹凸を形成する。なお、ナーリング付与ローラーにより形成される凹凸の高さは0.5~20μmの範囲であることが好ましい。 As shown in FIG. 10, the film manufacturing line B10 includes a film manufacturing device B11 and a winding device B12. The film manufacturing apparatus B11 manufactures the film 81 using a solution casting method. In the solution casting method, first, a dope is prepared using raw materials. Then, the prepared dope is cast onto an endless support to form a cast film. When the cast membrane becomes self-supporting, the cast membrane is peeled off from the endless support. A film 81 is formed by drying the peeled cast film with hot air or the like. The formed film 81 is sent to the winding device B12 via the knurling roller B15. The knurling roller B15 forms minute irregularities on both side edges (edges) of the film 81 in the width direction by embossing or the like. Note that the height of the unevenness formed by the knurling roller is preferably in the range of 0.5 to 20 μm.
 図10及び図11に示すように、巻取装置B12は、巻取軸B19、巻芯ホルダB20、コア82(巻芯ともいう)、ターレットB22、ガイドローラーB23、B24、ダンサローラーB25、エンコーダB27、オシレート部B29、巻取モーターB30、コントローラB31、及びダンサ部B32を備えている。この巻取装置B12における巻取対象のフィルムサイズなどは特に限定されないが、例えば全巻取長が2000~10000mの範囲であり、幅が500~2500mmの範囲のサイズのフィルムであることが好ましい。 As shown in FIGS. 10 and 11, the winding device B12 includes a winding shaft B19, a winding core holder B20, a core 82 (also referred to as a winding core), a turret B22, guide rollers B23, B24, a dancer roller B25, and an encoder B27. , an oscillating section B29, a winding motor B30, a controller B31, and a dancer section B32. Although the size of the film to be wound in the winding device B12 is not particularly limited, it is preferable that the film has a total winding length of 2,000 to 10,000 m and a width of 500 to 2,500 mm.
 図10に示すように、巻取軸B19はターレットB22に片持ち支持機構で取り付けられている。片持ち支持機構とは、巻取軸B19の一端のみを支持する機構である。巻取軸B19には、コア82が取り付けられている。コア82は、巻取軸B19の巻芯ホルダB20により両端部が挟持される。巻芯ホルダB20は巻取軸B19の軸方向(Y方向)でスライド自在にかつ巻取軸B19に回転不能に取り付けられている。巻取軸B19の一端には巻取モーターB30が連結されており、巻取軸B19を回転するように構成されている。この回転により、コア82も回転し、フィルム81をコア82に巻き取ることができる。コア82にフィルム81の先端は、両面テープ、接着剤、等により接合されており、この接合部を起点としてフィルム81は、回転するコア82に巻き取られる。このフィルム81の巻取りにより、フィルム81がロール状に巻き付けられたフィルムロール80が得られる。 As shown in FIG. 10, the winding shaft B19 is attached to the turret B22 with a cantilever support mechanism. The cantilever support mechanism is a mechanism that supports only one end of the winding shaft B19. A core 82 is attached to the winding shaft B19. The core 82 is held at both ends by the core holder B20 of the winding shaft B19. The winding core holder B20 is attached to the winding shaft B19 so as to be slidable in the axial direction (Y direction) of the winding shaft B19 and not to rotate. A winding motor B30 is connected to one end of the winding shaft B19, and is configured to rotate the winding shaft B19. Due to this rotation, the core 82 also rotates, and the film 81 can be wound around the core 82. The leading end of the film 81 is bonded to the core 82 using double-sided tape, adhesive, or the like, and the film 81 is wound around the rotating core 82 starting from this bonded portion. By winding up the film 81, a film roll 80 in which the film 81 is wound into a roll shape is obtained.
 ターレットB22には、巻取軸B19の取付端部にシフト機構B28が取り付けられている。このシフト機構B28は巻芯ホルダB20を巻取軸B19上で軸方向に往復運動させる。このシフト機構B28、巻取軸B19、巻芯ホルダB20により、オシレート部B29が構成されている。このオシレート部B29を作動させて、シフト機構B28により巻芯ホルダB20を巻取軸B19上でY方向に往復運動させることにより、フィルム81が積層するごとに側縁91aの位置が振幅Woの範囲内でずれながら、フィルム81が巻き取られるオシレート巻きを可能にする。オシレート部B29を作動させない場合には、フィルム81の両側縁が揃った状態になるストレート巻きが可能になる。このストレート巻き及びオシレート巻きの切り替えはコントローラB31により行われる。 A shift mechanism B28 is attached to the turret B22 at the attachment end of the winding shaft B19. This shift mechanism B28 causes the core holder B20 to reciprocate in the axial direction on the winding shaft B19. The shift mechanism B28, the winding shaft B19, and the winding core holder B20 constitute an oscillating section B29. By activating this oscillator B29 and causing the shift mechanism B28 to reciprocate the core holder B20 in the Y direction on the winding shaft B19, the position of the side edge 91a changes within the range of the amplitude Wo every time the film 81 is stacked. This enables oscillating winding in which the film 81 is wound while shifting within the winding. When the oscillating part B29 is not operated, straight winding is possible in which both side edges of the film 81 are aligned. This switching between straight winding and oscillating winding is performed by controller B31.
 ここで、オシレート巻きにおいて、その振り幅であるオシレート幅Woは任意に設定することができ、振幅Woは10~30mmの範囲内であることが好ましく、前記範囲内であれば、振幅Woは一定値で固定する他、徐々に増加させたり、減少させたり、増加後に減少させたりしてもよい。 Here, in the oscillating winding, the oscillating width Wo, which is the amplitude of the oscillating winding, can be set arbitrarily, and the amplitude Wo is preferably within the range of 10 to 30 mm, and within the above range, the amplitude Wo is constant. In addition to being fixed at a value, it may be gradually increased, decreased, or decreased after increasing.
 ガイドローラーB23、B24及びダンサローラーB25は、フィルム製造装置B11からのフィルム81を搬送方向(X方向)に案内する。また、ダンサローラーB25はシフト機構B26によりフィルム81を上下方向(Z方向)に移動させることにより、フィルム81の巻取張力を調整する。このシフト機構B26及びダンサローラーB25によりダンサ部B32が構成される。エンコーダB27は、ガイドローラーB24が一定の回転角度で回転するごとに、エンコーダパルス信号をコントローラB31に送信する。なお、ガイドローラーB24にはフィルム81の巻取張力を測定する張力センサーを設けてもよい。 Guide rollers B23, B24 and dancer roller B25 guide the film 81 from the film manufacturing apparatus B11 in the transport direction (X direction). Further, the dancer roller B25 adjusts the winding tension of the film 81 by moving the film 81 in the vertical direction (Z direction) using a shift mechanism B26. This shift mechanism B26 and dancer roller B25 constitute a dancer section B32. Encoder B27 transmits an encoder pulse signal to controller B31 every time guide roller B24 rotates at a constant rotation angle. Note that the guide roller B24 may be provided with a tension sensor that measures the winding tension of the film 81.
 コントローラB31は、オシレート部B29、巻取モーターB30、及びダンサ部B32の駆動を制御する。コントローラB31は、巻取情報入力部B39、LUTメモリB40、切替時巻長特定部B41、巻長測定部B42、及び切り替え判定部B43を備えている。巻取情報入力部B39には、フィルム81の全巻取長、厚さ、幅、コア82の外径、巻取張力などの巻取情報が入力される。 The controller B31 controls the driving of the oscillating section B29, the winding motor B30, and the dancer section B32. The controller B31 includes a winding information input section B39, an LUT memory B40, a switching winding length specifying section B41, a winding length measuring section B42, and a switching determining section B43. Winding information such as the total winding length, thickness, and width of the film 81, the outer diameter of the core 82, and the winding tension is input to the winding information input section B39.
 LUTメモリB40には、巻取情報ごとに、ストレート巻きからオシレート巻きに切り替えるときのフィルム81の巻長(切替時巻長)が記憶されている。切替時巻長は、好ましくはフィルム81の全巻長に対して10~30%の範囲であらかじめ設定されており、より好ましくはフィルム81の全長に対して15~25%の範囲であらかじめ設定されている。 The LUT memory B40 stores the winding length of the film 81 when switching from straight winding to oscillating winding (winding length at the time of switching) for each winding information. The switching winding length is preferably set in advance in a range of 10 to 30% of the total length of the film 81, and more preferably in a range of 15 to 25% of the total length of the film 81. There is.
 ストレート巻きからオシレート巻きに切り替えるタイミングは、巻長が全巻長に対して15~25%の範囲になったときがより好ましい。 The timing to switch from straight winding to oscillated winding is more preferably when the winding length is in the range of 15 to 25% of the total winding length.
 なお、巻長が全巻長に対して10%以上のときにストレート巻きからオシレート巻きに切り替えたときには、10%未満のときに切り替える場合と比べてフィルム81の巻取り始めにおいて面圧が急激に低下することをより確実に防止する。このため、フィルムロール80に巻き緩みや巻ズレが発生してしまうことを、より確実に防ぐことができる。また、巻長が全巻長に対して30%を超えてから切り替えたときには、フィルム81の円周方向の応力が負の領域を抜け出した後もストレート巻きで巻き取ることになるため、30%以下のときに切り替える場合と比べてフィルムロール80に耳伸びが発生しやすい。そこで、巻長が全巻長に対して30%以下のときにストレート巻きからオシレート巻きに切り替えることにより、30%を超えてから切り替える場合よりも、耳伸びの発生をより確実に防止することができる。 In addition, when switching from straight winding to oscillating winding when the winding length is 10% or more of the total winding length, the surface pressure at the beginning of winding of the film 81 decreases rapidly compared to when switching when the winding length is less than 10%. more reliably prevent this from happening. Therefore, it is possible to more reliably prevent the film roll 80 from becoming loose or misaligned. In addition, when switching after the winding length exceeds 30% of the total winding length, the stress in the circumferential direction of the film 81 will continue to be wound straight even after it leaves the negative region, so that the winding length will be less than 30%. Elongation is more likely to occur in the film roll 80 than in the case of switching at the same time. Therefore, by switching from straight winding to oscillating winding when the winding length is less than 30% of the total winding length, it is possible to more reliably prevent the occurrence of edge elongation than when switching after the winding length exceeds 30%. .
 切替時巻長特定部B41は、LUTメモリB40に記憶された巻取情報と、巻取情報入力部B39に入力された巻取情報とを照合して、入力された巻取情報に対応する切替時巻長を特定する。巻長測定部B42は、エンコーダB27からのエンコーダパルス信号に基づき、コア82に巻き取ったフィルム81の巻長を測定する。 The switching winding length specifying unit B41 compares the winding information stored in the LUT memory B40 with the winding information input to the winding information input unit B39, and determines the switching time corresponding to the input winding information. Determine the winding length. The winding length measuring section B42 measures the winding length of the film 81 wound around the core 82 based on the encoder pulse signal from the encoder B27.
 切り替え判定部B43は、巻長測定部B42で測定した巻長が、切替時巻長特定部B41で特定された切替時巻長を超えたか否かを判定する。巻長が切替時巻長を超えたと判定した場合には、オシレート部B29にオシレート巻き開始信号が送信される。オシレート部B29は、オシレート巻き開始信号を受信すると、フィルムの側縁91aが揃うようにフィルム81を巻き取っていくストレート巻きから、側縁91aの位置を振幅Woの範囲内でずらしながらフィルム81を巻き取っていくオシレート巻きにフィルム81の巻取りを変更する。 The switching determining unit B43 determines whether the winding length measured by the winding length measuring unit B42 exceeds the winding length at the time of switching specified by the winding length at switching unit B41. If it is determined that the winding length exceeds the switching winding length, an oscillating winding start signal is transmitted to the oscillating section B29. When the oscillating unit B29 receives the oscillating winding start signal, the oscillating unit B29 changes from straight winding, in which the film 81 is wound so that the side edges 91a of the film are aligned, to winding the film 81 while shifting the position of the side edges 91a within the range of the amplitude Wo. The winding of the film 81 is changed to oscillate winding.
 〈溶融流延製膜法〉
 本実施形態のフィルムロールは、溶融流延法により製膜することもできる。
<Melt casting film forming method>
The film roll of this embodiment can also be formed by a melt casting method.
 「溶融製膜法」とは、熱可塑性樹脂及び上述した添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性の熱可塑性樹脂を含む溶融物を流延する方法をいう。熱可塑性樹脂としては、特にセルロースエステルを用いることが好ましい。 "Melt film forming method" is a method in which a composition containing a thermoplastic resin and the above-mentioned additives is heated and melted to a temperature that exhibits fluidity, and then the melt containing the fluid thermoplastic resin is cast. means. As the thermoplastic resin, it is particularly preferable to use cellulose ester.
 加熱溶融する成形方法としては、詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度及び表面精度などの点から、溶融押出し法が好ましい。溶融押出し法に用いる複数の原材料は、通常あらかじめ混錬してペレット化しておくことが好ましい。 Molding methods that involve heating and melting can be classified, in detail, into melt extrusion, press molding, inflation, injection molding, blow molding, stretch molding, and the like. Among these molding methods, melt extrusion is preferred from the viewpoint of mechanical strength and surface precision. It is usually preferable that the plurality of raw materials used in the melt extrusion method be kneaded and pelletized in advance.
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給し、1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることで行うことができる。 Pelletization may be carried out by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder, kneaded using a single-screw or twin-screw extruder, and then passed through a die into strands. This can be done by extruding, water or air cooling, and cutting.
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。 The additives may be mixed before being fed to the extruder, or may be fed from separate feeders.
 粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 It is preferable to mix small amounts of additives such as particles and antioxidants in advance in order to mix them uniformly.
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能で、なるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 It is preferable that the extruder suppresses shearing force, can pelletize the resin so that it does not deteriorate (molecular weight decrease, coloring, gel formation, etc.), and processes at as low a temperature as possible. For example, in the case of a twin-screw extruder, it is preferable to use deep groove type screws and rotate them in the same direction. In terms of uniformity of kneading, the interlocking type is preferred.
 以上のようにして得られたペレットを用い、フィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。 A film is formed using the pellets obtained as described above. Of course, it is also possible to directly feed the raw material powder to an extruder using a feeder and form a film without pelletizing it.
 上記ペレットを、1軸や2軸タイプの押出し機を用いて押出す際の溶融温度は、200~300℃の温度範囲とし、リーフディスクタイプのフィルターなどで濾過し、異物を除去した後、Tダイからフィルム状に流延し、冷却ローラーと弾性タッチローラーでフィルムをニップし、冷却ローラー上で固化させる。 The melting temperature when extruding the above pellets using a single-screw or twin-screw extruder is in the temperature range of 200 to 300°C, and after filtering with a leaf disc type filter to remove foreign substances, T The film is cast from a die, the film is nipped between a cooling roller and an elastic touch roller, and the film is solidified on the cooling roller.
 供給ホッパーから押出し機へ導入する際、真空下又は減圧下や不活性ガス雰囲気下にして、酸化分解等を防止する方法も好ましい。 When introducing the material from the supply hopper into the extruder, it is also preferable to prevent oxidative decomposition by placing it under vacuum, reduced pressure, or an inert gas atmosphere.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体の複雑に絡み合った状態を作り出した上で圧縮し、接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 It is preferable to stabilize the extrusion flow rate by, for example, introducing a gear pump. Furthermore, as the filter used to remove foreign matter, a stainless steel fiber sintered filter is preferably used. Stainless fiber sintered filters are made by creating a complex intertwined state of stainless steel fibers, compressing them, and sintering the contact points to integrate them.The density is changed depending on the thickness of the fibers and the amount of compression, and the filtration accuracy is improved. can be adjusted.
 可塑剤や粒子などの添加剤は、あらかじめ樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in during the extruder. For uniform addition, it is preferable to use a mixing device such as a static mixer.
 冷却ローラーと弾性タッチローラーによりフィルムをニップする際、タッチローラー側のフィルム温度は、フィルムのTg~(Tg+110)℃の温度範囲にすることが好ましい。このような目的で使用する弾性体表面を有するローラーは、公知のローラーが使用できる。 When nipping a film using a cooling roller and an elastic touch roller, the film temperature on the touch roller side is preferably in the temperature range of Tg of the film to (Tg+110)°C. A known roller having an elastic surface can be used for this purpose.
 弾性タッチローラーは、挟圧回転体ともいう。弾性タッチローラーとしては、市販されているものを用いることもできる。 The elastic touch roller is also called a pinching rotating body. As the elastic touch roller, a commercially available one can also be used.
 冷却ローラーからフィルムを剥離する際、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ローラーに接する工程を通過した後、前記延伸操作により延伸することが好ましい。 Furthermore, it is preferable that the film obtained as described above be stretched by the above-mentioned stretching operation after passing through a step of coming into contact with a cooling roller.
 延伸する方法は、公知のローラー延伸機やテンターなどを好ましく用いることができる。具体的な条件は溶液流涎法の場合と同様である。 For the stretching method, a known roller stretching machine, tenter, etc. can be preferably used. The specific conditions are the same as those for the solution drooling method.
 最後に、溶液流涎法の場合と同様に、上記のようにして得られたフィルムを巻取ることにより、本実施形態のフィルムロールが得られる。 Finally, as in the case of the solution drooling method, the film obtained as described above is wound up to obtain the film roll of this embodiment.
 〔3〕フィルムの用途
 本実施形態のフィルムロールから繰り出されたフィルムは、光学フィルムとして偏光板の保護フィルムなどに好適に利用され、種々の光学測定装置及び液晶表示装置や有機エレクトロルミネッセンス表示装置などの表示装置に用いることができる。
[3] Applications of the film The film unrolled from the film roll of this embodiment is suitably used as an optical film, such as a protective film for a polarizing plate, and is used in various optical measurement devices, liquid crystal display devices, organic electroluminescence display devices, etc. It can be used for display devices.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. In the examples, "parts" or "%" are used, but unless otherwise specified, "parts by mass" or "% by mass" are expressed.
 <フィルムロールの作製>
 なお、以下の実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
〈環状ポリオレフィン重合体P-1の合成〉
 精製トルエン100質量部とノルボルネンカルボン酸メチルエステル100質量部を反応釜に投入した。次いでトルエン中に溶解したエチルヘキサノエート-Ni25mmol%(対モノマー質量)、トリ(ペンタフルオロフェニル)ボロン0.225mol%(対モノマー質量)及びトルエンに溶解したトリエチルアルミニウム0.25mol%(対モノマー質量)を反応釜に投入した。室温で撹拌しながら18時間反応させた。反応終了後過剰のエタノール中に反応混合物を投入し、重合物沈殿を生成させた。沈殿を精製し得られた重合体(P-1)を真空乾燥で65℃24時間乾燥した。
<Production of film roll>
In addition, although "parts" or "%" are used in the following examples, unless otherwise specified, "parts by mass" or "mass %" is expressed.
<Synthesis of cyclic polyolefin polymer P-1>
100 parts by mass of purified toluene and 100 parts by mass of norbornenecarboxylic acid methyl ester were charged into a reaction vessel. Next, 25 mmol% of ethylhexanoate-Ni (based on monomer mass) dissolved in toluene, 0.225 mol% of tri(pentafluorophenyl)boron (based on monomer mass), and 0.25 mol% of triethylaluminum dissolved in toluene (based on monomer mass) ) was added to the reaction vessel. The reaction was allowed to proceed for 18 hours at room temperature with stirring. After the reaction was completed, the reaction mixture was poured into excess ethanol to form a polymer precipitate. The polymer (P-1) obtained by purifying the precipitate was vacuum dried at 65° C. for 24 hours.
 〈ドープD-1の作製〉
 下記組成物をミキシングタンクに投入し、撹拌して各成分を溶解した後、平均孔径34μmの濾紙及び平均孔径10μmの焼結金属フィルターで濾過してドープを調製した。
<Preparation of dope D-1>
The following composition was put into a mixing tank, stirred to dissolve each component, and then filtered through a filter paper with an average pore size of 34 μm and a sintered metal filter with an average pore size of 10 μm to prepare a dope.
 環状ポリオレフィン重合体P-1            150質量部
 ジクロロメタン                    380質量部
 エタノール                       70質量部
 次に上記方法で作製した下記組成物を分散機に投入し、微粒子分散液(M-1)を調製した。
Cyclic polyolefin polymer P-1 150 parts by mass Dichloromethane 380 parts by mass Ethanol 70 parts by mass Next, the following composition prepared by the above method was charged into a dispersion machine to prepare a fine particle dispersion (M-1).
 微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L)                4質量部
 ジクロロメタン                     76質量部
 エタノール                       20質量部
 環状ポリオレフィン溶液(ドープD-1)         10質量部
 上記環状ポリオレフィン溶液を100質量部、微粒子分散液を0.75質量部を混合し、製膜用ドープを調製した。ドープを製膜ラインで1800mm幅で流延し、ドープが自己支持性を持つまで金属支持体上で乾燥した後にウェブとしてはぎ取って、テンターに導入した。
Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle diameter: 7 nm, apparent specific gravity 50 g/L) 4 parts by mass Dichloromethane 76 parts by mass Ethanol 20 parts by mass Cyclic polyolefin solution (dope D-1) 10 parts by mass The above cyclic polyolefin solution and 0.75 parts by mass of the fine particle dispersion were mixed to prepare a film-forming dope. The dope was cast in a width of 1800 mm on a film forming line, dried on a metal support until it had self-supporting properties, and then stripped off as a web and introduced into a tenter.
 テンターへの導入時のウェブの残留溶媒は5~15質量%であった。テンターで幅手方向の延伸率は20%、テンター内温度は160℃として搬送させた。その後乾燥し、スリットしてフィルムロール幅を2200mm、膜厚40μmに調整した。 The residual solvent in the web at the time of introduction into the tenter was 5 to 15% by mass. The film was transported in a tenter at a stretching ratio of 20% in the width direction and at a temperature inside the tenter of 160°C. Thereafter, it was dried and slit to adjust the film roll width to 2200 mm and film thickness to 40 μm.
 〈ナーリング加工工程〉
 レーザー光を照射し、ナーリング加工部(部位A)を形成した。
<Knurling process>
Laser light was irradiated to form a knurling part (part A).
 両端部のナーリング加工幅はフィルム端から15mmとした。フィルムを搬送するラインスピードは10m/分とした。 The knurling width at both ends was 15 mm from the edge of the film. The line speed for conveying the film was 10 m/min.
 レーザー装置としては、炭酸ガスレーザー装置を用い、レーザー装置の出力を20W、出光波長の中心波長を9.4μm、出光波長範囲を、中心波長を中心として±0.01μm以下とした。 As the laser device, a carbon dioxide laser device was used, the output of the laser device was 20 W, the center wavelength of the light emission wavelength was 9.4 μm, and the light emission wavelength range was set to ±0.01 μm or less around the center wavelength.
 レーザー光のフィルムへの照射は、炭酸ガスレーザー装置から発光した平行化したビームを、2枚のガルバノミラーで反射し、fθレンズ(焦点距離200mm)を介して、搬送されるフィルムの表面に集光させることにより行った。ガルバノミラーの角度を制御することで、集光位置を、フィルム平面方向に移動させ、それにより、フィルム表面上へのレーザー光の照射の軌跡を制御した。 To irradiate the film with laser light, a collimated beam emitted from a carbon dioxide laser device is reflected by two galvanometer mirrors, and focused on the surface of the film being transported via an fθ lens (focal length 200 mm). This was done by lighting it. By controlling the angle of the galvano mirror, the light condensing position was moved in the plane of the film, thereby controlling the locus of laser light irradiation onto the film surface.
 〈表面改質処理:大気圧プラズマ処理工程〉
 春日電機製AGP-500をフィルムのナーリング加工部(部位A)の裏面側(部位B)に設置し、0.5kW照射した。大気圧プラズマを発するプローブとフィルムとの距離は5mmで実施した。照射する大気圧プラズマはナーリング加工部に対向するフィルム裏面側で、ナーリング加工部幅の110%の幅に照射できるよう設置位置を設定した。
<Surface modification treatment: atmospheric pressure plasma treatment process>
AGP-500 manufactured by Kasuga Denki was installed on the back side (part B) of the knurling part (part A) of the film, and irradiated with 0.5 kW. The distance between the probe that emits atmospheric pressure plasma and the film was 5 mm. The installation position was set so that the atmospheric pressure plasma to be irradiated could be irradiated to a width of 110% of the width of the knurling part on the back side of the film facing the knurling part.
 〈巻取工程〉
 コア82には、両面テープ89(図11では図示省略)が軸方向(Y方向)に沿って貼り付け、これにより上記ナーリング加工したフィルム81の先端をコア82に接合した。上記ナーリング加工したフィルムを巻き取った。初期張力は150N、テーパー70%、及びコーナー25%にて実施した。巻取工程により生産された直後のフィルムロール80は、その後の工程により手動により、または移動機構(図示せず)によって自動により、移動されて上述のフィルムロール保持装置1に取付けられ保持位置(図1、図7(ステップS01)等参照)にセットされる。
<Winding process>
A double-sided tape 89 (not shown in FIG. 11) was attached to the core 82 along the axial direction (Y direction), thereby joining the tip of the knurling film 81 to the core 82. The film subjected to the knurling process was wound up. The initial tension was 150N, the taper was 70%, and the corner was 25%. The film roll 80 immediately after being produced in the winding process is moved manually or automatically by a moving mechanism (not shown) in a subsequent process and is attached to the above-mentioned film roll holding device 1 to the holding position (Fig. 1, see FIG. 7 (step S01), etc.).
 TRを使用して、初期のフィルムロールに含まれる平均空気層厚みを1.0μmに抑えた。 Using TR, the average air layer thickness contained in the initial film roll was suppressed to 1.0 μm.
 巻長は3900または7800mで実施した。 The winding length was 3900m or 7800m.
 以上の工程により、各実施例(以下の実施例1~8、および比較例)で共通に用いる
フィルムロールの作製を行った。
Through the above steps, film rolls commonly used in each of the Examples (Examples 1 to 8 below and Comparative Examples) were produced.
 <故障の評価テスト>
 図12A~図12Cに示す表1~3に実施例1~8、および比較例の実験条件および評価結果を示す。
<Failure evaluation test>
Tables 1 to 3 shown in FIGS. 12A to 12C show the experimental conditions and evaluation results of Examples 1 to 8 and Comparative Example.
 (共通条件)
 各実施例および比較例のフィルムロールは上記実施例で生産した平均膜厚40μm、ロール幅2200mmのものを用いた。生産直後(巻取工程直後)のフィルムロールを評価開始時点とし、フィルム保持装置1の保持部30で図1のように軸(コア82)が水平となる状態で保持した。この初期の放置状態では、両面テープ89は、上方向(角度0度の位置)になるようにした(図3、図6参照)。また、放置環境、および評価は23℃55%RHの雰囲気下でおこなった。
(Common conditions)
The film rolls for each Example and Comparative Example used were those produced in the above Examples with an average film thickness of 40 μm and a roll width of 2200 mm. A film roll immediately after production (immediately after the winding process) was used as the evaluation start point, and was held in the holding section 30 of the film holding device 1 in a state where the axis (core 82) was horizontal as shown in FIG. In this initial left-standing state, the double-sided tape 89 was oriented upward (0 degree angle position) (see FIGS. 3 and 6). Further, the storage environment and evaluation were performed in an atmosphere of 23° C. and 55% RH.
 (抑制処理および評価タイミング)
 実施例1~実施例8については、14日の放置期間中に図7、図8に示す回転による故障の抑制処理を行った。一方で比較例については、抑制処理を行わず、放置期間中は保持されたままとした。評価タイミングは、14日間の放置期間の経過後であり、下記評価項目1、2について評価を行った。なお、表1~3では、実施例1および比較例は見易さのため重複して記載している。
(Suppression processing and evaluation timing)
Regarding Examples 1 to 8, the failure prevention process due to rotation shown in FIGS. 7 and 8 was performed during the 14-day storage period. On the other hand, in the comparative example, no suppression treatment was performed and the sample was kept as it was during the standing period. The evaluation timing was after the 14-day standing period had elapsed, and the following evaluation items 1 and 2 were evaluated. Note that in Tables 1 to 3, Example 1 and Comparative Example are listed redundantly for ease of viewing.
 (抑制処理の判定タイミングおよび判定閾値)
 実施例1~8における抑制動作の判定タイミング(図7のステップS04)、すなわち放置中の測定周期は、1日(24h)に1回である。測定箇所は、上方の側面、すなわち測定箇所p01、p02、p03の3箇所である。平均で得られた指標値としての空隙を用いた。経時変化の判定閾値(図7のステップS07)の修理としては変化率を用いた。その値は、14日間の放置中の回転による抑制処理において、1回目、または2回目については、表1~表3それぞれに記載の判定閾値(変化率12%、20%、または40%)を用いた。なお、実施例8(表3)では、2回目の判定閾値は、直前の1回目の回転処理の後の指標値を基準とせずに、2回目も初期の指標値を基準とし、この指標値からの経時変化を用いた。初期の指標値とは、生産直後の測定により得られた指標値である。
(Judgment timing and judgment threshold for suppression processing)
In Examples 1 to 8, the determination timing of the suppressing operation (step S04 in FIG. 7), that is, the measurement cycle during leaving is once a day (24 hours). The measurement points are three points on the upper side surface, that is, measurement points p01, p02, and p03. The voids were used as an index value obtained by averaging. The rate of change was used to repair the threshold for determining the change over time (step S07 in FIG. 7). The value is the judgment threshold (change rate 12%, 20%, or 40%) listed in Tables 1 to 3 for the first or second time in the suppression treatment by rotation while left for 14 days. Using. In addition, in Example 8 (Table 3), the second determination threshold is not based on the index value after the immediately preceding first rotation process, but is based on the initial index value for the second time as well, and is set based on this index value. We used the change over time from . The initial index value is an index value obtained by measurement immediately after production.
 (指標値による判定以外での「定期的な回転処理」)
 実施例1~7については2回目以降については、実施例8については3回目以降については、定期的な回転処理を行った。定期的な回転処理は、1回目(実施例8では2回目)までの図7に示した指標値の経時変化の判定よる回転処理(以下、指標値による回転処理ともいう)による故障のレベルがそれ以上悪化せずに維持されるようにするために行っている。この定期的な回転処理では、直前の回転から(より正確には回転開始してから)1日(24h)経過毎に180度分の回転量で、1度/minの回転速度で行った。例えば実施例1では、放置開始してから2日目(48h)に1回目の指標値による回転処理を行い、その後は、3日目から14日目までの12日間で、12回の定期的な180度分の回転処理を行った。そして14日目の回転処理をした直後に評価項目に関する評価を行った。実施例3では、同様に6日目に1回目の指標値による回転処理を行い、その後は、7日目から14日目まで8回の定期的な回転処理を行い、最後の回転処理の直後に評価項目に関する評価を行った。
(“Regular rotation processing” other than judgment based on index values)
For Examples 1 to 7, periodic rotation processing was performed for the second and subsequent times, and for Example 8, for the third and subsequent times, rotation processing was performed periodically. The periodic rotation processing is performed to determine the level of failure caused by the rotation processing (hereinafter also referred to as rotation processing based on index values) based on the judgment of the temporal change in the index value shown in FIG. 7 up to the first (second time in Example 8) This is done to ensure that it is maintained without further deterioration. This periodic rotation process was performed at a rotation speed of 1 degree/min with a rotation amount of 180 degrees every 1 day (24 hours) after the previous rotation (more precisely, after the start of rotation). For example, in Example 1, the first rotation process using the index value is performed on the second day (48 hours) after the start of storage, and thereafter, the rotation process is performed periodically 12 times over 12 days from the 3rd day to the 14th day. A rotation process of 180 degrees was performed. Immediately after the rotation treatment on the 14th day, the evaluation items were evaluated. In Example 3, the first rotation process using the index value is performed on the 6th day, and thereafter, 8 regular rotation processes are performed from the 7th day to the 14th day, and immediately after the last rotation process, We conducted an evaluation regarding the evaluation items.
 (回転処理での回転条件)
 1回の回転処理の回転量、および回転速度は各表1~3に記載したとおりであり、90、180、360度のいずれかである。回転方向は、指標値による回転処理および定期的な回転処理で、全て「巻き方向」で共通である。
(Rotation conditions for rotation processing)
The rotation amount and rotation speed of one rotation process are as listed in Tables 1 to 3, and are any of 90, 180, and 360 degrees. The rotation direction is the same "winding direction" for both index value-based rotation processing and periodic rotation processing.
 (評価方法)
 (評価項目1)
 評価項目1は、外観評価による座屈変形である。
(Evaluation method)
(Evaluation item 1)
Evaluation item 1 is buckling deformation based on appearance evaluation.
 ロールの座屈変形とは、フィルムロールに巻き込まれたエアが経時で抜け、ロールに陥没あるいは座屈が生じる現象を意味する。 Roll buckling deformation refers to a phenomenon in which air caught in a film roll escapes over time, causing the roll to cave in or buckle.
 フィルム座屈変形(陥没)のランク
 A:ロール変形が全くない、
 B:ロール変形がほとんどない、
 C:軽度の座屈箇所があり、
 D:ロール変形があり、全体的にベコベコしている。
Rank of film buckling deformation (capping) A: No roll deformation at all;
B: There is almost no roll deformation.
C: There are slight buckling points,
D: There is roll deformation, and the entire surface is uneven.
 (評価項目2)
 評価項目2は、外観評価によるテープ転写である。14日放置した後のフィルムロールを巻き返して、50μm以上の点状の変形、または幅手方向の帯状の変形がはっきり見えるテープ転写(巻芯転写ともいう)が、巻芯部分より何mまで発生しているかを測定し、下記レベルにランク分けを行った。
(Evaluation item 2)
Evaluation item 2 is tape transfer based on appearance evaluation. After leaving the film roll for 14 days, the film roll is rewound and tape transfer (also called core transfer), where point-like deformation of 50 μm or more or band-like deformation in the width direction is clearly visible, occurs up to several meters from the core. We measured how well they were doing and ranked them into the following levels.
 A:テープ転写発生なし、
 B:巻き芯から50mまで弱いレベル、
 C:巻き芯から100mまで弱いレベル、
 D:巻き芯から100mまで強いレベル(目視で容易に確認できるレベル)。
A: No tape transfer occurred;
B: Weak level up to 50m from the winding core,
C: Weak level up to 100m from the winding core,
D: Strong level up to 100m from the winding core (level that can be easily confirmed visually).
 (評価結果)
 表1に示すように変化率の判定閾値(図7のステップS07)による違いを示している。実施例1、2、3の順で評価結果が悪くなっている。実施例3では、比較例よりも改善はしているが、評価レベルCの故障が生じている。評価レベルB以上とするためには、判定閾値としては20%以下が適正であり、より好ましくは12%以下であることがわかる。
(Evaluation results)
Table 1 shows the difference depending on the change rate determination threshold (step S07 in FIG. 7). The evaluation results were worse in the order of Examples 1, 2, and 3. In Example 3, although it is improved over the comparative example, a failure of evaluation level C occurs. It can be seen that in order to achieve an evaluation level of B or higher, the appropriate determination threshold is 20% or less, more preferably 12% or less.
 表2は、同じ判定閾値を用いた場合に、指標値による回転処理において1回の回転処理で回転量および回転速度を異ならせたものである。回転量としては実施例1、4、5の比較から、90、360度の回転に比べて、180度(半回転)が最も評価結果がよいことがわかる。 Table 2 shows the results in which the rotation amount and rotation speed are varied in one rotation process in the rotation process based on the index value when the same determination threshold is used. As for the amount of rotation, from a comparison of Examples 1, 4, and 5, it can be seen that 180 degrees (half rotation) gives the best evaluation results compared to rotations of 90 and 360 degrees.
 回転速度としては、実施例1と実施例6との比較から、1度/minの回転速度が、5度/minの回転速度よりも良好な評価結果を示すことがわかる。また、実施例1と実施例7では、巻長が異なるが、その他の抑制処理に関する条件は同じである。実施例7の巻長7800mでも実施例1の3900mと同等の良好な評価結果が得られており、本実施形態の予防処理により7800mまで対応できることがわかる。 As for the rotation speed, from a comparison between Example 1 and Example 6, it can be seen that a rotation speed of 1 degree/min shows better evaluation results than a rotation speed of 5 degrees/min. Furthermore, although the winding lengths are different between Example 1 and Example 7, the other conditions regarding the suppression process are the same. Even with the roll length of 7,800 m in Example 7, good evaluation results equivalent to those of 3,900 m in Example 1 were obtained, indicating that the preventive treatment of this embodiment can be used up to 7,800 m.
 表3では、2回目の回転処理の回転量の違いによる影響度を評価している。実施例1では、2回目の回転処理は、定期的な回転処理であり、1度/minの回転速度で180度分の回転を行う。実施例8では、2回目の回転処理は、指標値による回転処理であり、1度/minの回転速度で90度分の回転を行う。なお、実施例1と実施例8の2回目の回転処理のタイミングは、定期的と指標値による判定と、処理方法が異なるが、たまたま同じ3日目に実施されている。表3に示すように、実施例8の方が実施例1に比べて評価結果は悪い。 Table 3 evaluates the degree of influence due to the difference in the amount of rotation in the second rotation process. In the first embodiment, the second rotation process is a periodic rotation process, in which rotation is performed for 180 degrees at a rotation speed of 1 degree/min. In Example 8, the second rotation process is a rotation process based on an index value, and rotation is performed by 90 degrees at a rotation speed of 1 degree/min. Note that the timing of the second rotation process in Example 1 and Example 8 is determined by periodic and index value, and the processing method is different, but it happens to be performed on the same third day. As shown in Table 3, the evaluation results of Example 8 are worse than those of Example 1.
 以上のことから、各条件としては、実施例1の条件である、判定閾値としては変化率12%以下、1回の抑制処理での回転量は180度分、回転速度は1度/minの条件が最も評価結果がよいことが分かる。 From the above, each condition is the condition of Example 1, the determination threshold is 12% or less, the rotation amount in one suppression process is 180 degrees, and the rotation speed is 1 degree/min. It can be seen that the condition gives the best evaluation results.
 以上に説明したフィルムロール保持装置1の構成は、上記の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上記の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な画像形成装置が備える構成を排除するものではない。 The structure of the film roll holding device 1 explained above is the main structure explained in explaining the features of the above embodiment, and is not limited to the above structure, and various modifications can be made within the scope of the claims. Can be done. Moreover, the configuration provided in a general image forming apparatus is not excluded.
 例えば、変形例として、フィルムロール保持装置1が、保持部30に保持されたフィルムロール80の側面から、不活性ガスを注入する注入部をさらに備えてもよい。これにより指標値による回転処理を実施するとともに、不活性ガスを注入する。これにより、空隙が減少を抑制でき、引いては、フィルムロールの故障を抑制できる。 For example, as a modification, the film roll holding device 1 may further include an injection part that injects inert gas from the side of the film roll 80 held by the holding part 30. As a result, rotation processing is performed based on the index value, and inert gas is injected. This can suppress the decrease in voids and, in turn, suppress the failure of the film roll.
 また、上述した実施形態に係るフィルムロール保持装置1における各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD(Digital Versatile Disc)-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、装置の一機能としてその装置のソフトウエアに組み込まれてもよい。 Further, the means and methods for performing various processes in the film roll holding device 1 according to the embodiment described above can be realized by either a dedicated hardware circuit or a programmed computer. The program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk. Further, the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the device.
 本出願は、2022年5月17日に出願された日本特許出願(特願2022-80606号)に基づいており、その開示内容は、参照され、全体として組み入れられている。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-80606) filed on May 17, 2022, the disclosure content of which is incorporated by reference in its entirety.
1 フィルムロール保持装置
10 制御部
 11 解析部
 12 変化量算出部
 13 抑制制御部
20 記憶部
30 保持部
 313 回転機構
40 撮像装置
 41 撮像ユニット
 45 移動機構
50 操作パネル
80 フィルムロール
81 フィルム
82 コア(巻芯)
89 両面テープ
A1 溶解釜
A2、A5、A11、A14 送液ポンプ
A3、A6、A12、A15 濾過器
A4、A13 ストックタンク
A8、A16 導管
A10 添加剤用仕込釜
A20 合流管
A21 混合機
A30 ダイ
A31 金属支持体
A32 ウェブ
A33 剥離位置
A34 テンター装置
A35 ローラー乾燥装置
A36 ローラー
A37 ワインダー
A41 ストックタンク
A43 ポンプ
A44 濾過器
B10 フィルム製造ライン
B11 フィルム製造装置
B12 巻取装置
B15 ナーリング付与部
B19 巻取軸
B20 巻芯ホルダ
B22 ターレット
B23、B24 ガイドローラー
B25 ダンサローラー
B26 シフト機構
B27 エンコーダ
B28 シフト機構
B29 オシレート部
B30 巻取モーター
B31 コントローラ
B32 ダンサ部
B39 巻取情報入力部
B40 LUTメモリ部
B41 切替時巻長特定部
B42 巻長測定部
B43 切り替え判定部
1 Film roll holding device 10 Control section 11 Analysis section 12 Change amount calculation section 13 Suppression control section 20 Storage section 30 Holding section 313 Rotating mechanism 40 Imaging device 41 Imaging unit 45 Moving mechanism 50 Operation panel 80 Film roll 81 Film 82 Core (rolling) core)
89 Double-sided tape A1 Melting pot A2, A5, A11, A14 Liquid pump A3, A6, A12, A15 Filter A4, A13 Stock tank A8, A16 Conduit A10 Additive charging pot A20 Merging pipe A21 Mixer A30 Die A31 Metal Support body A32 Web A33 Peeling position A34 Tenter device A35 Roller dryer A36 Roller A37 Winder A41 Stock tank A43 Pump A44 Filter B10 Film manufacturing line B11 Film manufacturing device B12 Winding device B15 Knurling section B19 Winding shaft B20 Winding core holder B22 Turret B23, B24 Guide roller B25 Dancer roller B26 Shift mechanism B27 Encoder B28 Shift mechanism B29 Oscillator section B30 Winding motor B31 Controller B32 Dancer section B39 Winding information input section B40 LUT memory section B41 Switching winding length specification section B42 Winding length Measuring section B43 Switching judgment section

Claims (12)

  1.  フィルムをコアに巻回してなるフィルムロールを保持する保持部と、
     前記保持部に保持された前記フィルムロールを回転させる回転機構と、
     前記保持部に保持された前記フィルムロールの側面を測定して測定データを生成する測定部と、
     前記測定データを解析することで、フィルム層間の空隙に関する指標値を生成する解析部と、
     前記指標値の経時変化が判定閾値を超えた否かを判定し、前記判定閾値を超えたと判定した場合に、前記回転機構により前記フィルムロールを所定量だけ回転させる抑制制御部と、
    を備える、フィルムロール保持装置。
    a holding unit that holds a film roll formed by winding a film around a core;
    a rotation mechanism that rotates the film roll held by the holding section;
    a measuring unit that measures a side surface of the film roll held by the holding unit to generate measurement data;
    an analysis unit that generates an index value regarding voids between film layers by analyzing the measurement data;
    an inhibition control unit that determines whether or not the change in the index value over time exceeds a determination threshold, and when it is determined that the change over time exceeds the determination threshold, causes the rotation mechanism to rotate the film roll by a predetermined amount;
    A film roll holding device comprising:
  2.  前記抑制制御部は、前記経時変化を、過去の第1のタイミングにおける前記指標値と、現在のタイミングにおける前記指標値との比較により求める、請求項1に記載のフィルムロール保持装置。 The film roll holding device according to claim 1, wherein the suppression control unit determines the change over time by comparing the index value at a past first timing with the index value at a current timing.
  3.  前記第1のタイミングは、前記フィルムロールの生産直後のタイミングである、請求項2に記載のフィルムロール保持装置。 The film roll holding device according to claim 2, wherein the first timing is a timing immediately after production of the film roll.
  4.  前記第1のタイミングは、前記フィルムロールの生産直後のタイミング、または前記回転機構により直前の前記フィルムロールを回転させた直後のタイミングであり、
     前記抑制制御部は、前記判定閾値を超えたと判定する度に、前記回転機構による前記フィルムロールの回転を繰り返し行う、請求項2に記載のフィルムロール保持装置。
    The first timing is the timing immediately after the production of the film roll, or the timing immediately after the rotation mechanism rotates the previous film roll,
    The film roll holding device according to claim 2, wherein the suppression control unit repeatedly rotates the film roll by the rotation mechanism every time it is determined that the determination threshold value is exceeded.
  5.  前記測定部は、前記フィルムロールの側面を撮影領域として撮影する撮像装置であり、
     前記解析部は、前記撮像装置により生成された画像データを解析することで、前記指標値を生成する、請求項1から請求項4のいずれかに記載のフィルムロール保持装置。
    The measuring unit is an imaging device that photographs a side surface of the film roll as a photographing area,
    The film roll holding device according to any one of claims 1 to 4, wherein the analysis section generates the index value by analyzing image data generated by the imaging device.
  6.  前記指標値は、前記撮影領域における所定距離に含まれる前記フィルムの層数と、前記フィルムの膜厚から求めた半径方向における空隙である、請求項5に記載のフィルムロール保持装置。 The film roll holding device according to claim 5, wherein the index value is a gap in the radial direction determined from the number of layers of the film included in a predetermined distance in the photographing area and the thickness of the film.
  7.  前記経時変化は、前記空隙の減少率であり、
     前記判定閾値は10~30%の範囲のいずれかの値である、請求項6に記載のフィルムロール保持装置。
    The change over time is a reduction rate of the void,
    The film roll holding device according to claim 6, wherein the determination threshold value is any value in the range of 10% to 30%.
  8.  前記測定部は、前記保持部に保持された状態の前記フィルムロールの側面のうち、コアの上方の側面を測定する、請求項1から請求項4のいずれかに記載のフィルムロール保持装置。 The film roll holding device according to any one of claims 1 to 4, wherein the measuring section measures a side surface above the core among the side surfaces of the film roll held by the holding section.
  9.  前記保持部は、前記フィルムのコアへの接合を行うテープが前記コアの上部側に位置する状態で、前記フィルムロールを保持し、
     前記測定部は、前記保持部に保持された状態の前記フィルムロールの側面のうち、コアの上方の側面を測定する、請求項8に記載のフィルムロール保持装置。
    The holding unit holds the film roll in a state where the tape that joins the film to the core is located on the upper side of the core,
    The film roll holding device according to claim 8, wherein the measuring section measures a side surface above the core among the side surfaces of the film roll held by the holding section.
  10.  前記抑制制御部は、前記判定閾値を超えたと判定した場合に、前記所定量の回転として、前記フィルムロールの巻き方向またはその逆方向に1~180度の範囲内の所定角度分だけ回転させる、請求項1から請求項4のいずれかに記載のフィルムロール保持装置。 The suppression control unit rotates the film roll by a predetermined angle within a range of 1 to 180 degrees in the winding direction or the opposite direction as the predetermined amount of rotation when determining that the determination threshold is exceeded. The film roll holding device according to any one of claims 1 to 4.
  11.  フィルムをコアに巻回してなるフィルムロールを保持する保持部に保持された前記フィルムロールの側面を測定して測定データを生成するステップ(a)と、
     前記測定データを解析することで、フィルム層間の空隙に関する指標値を生成するステップ(b)と、
     前記指標値の経時変化が判定閾値を超えた否かを判定し、前記判定閾値を超えたと判定した場合に、前記保持部に保持された前記フィルムロールを回転機構により所定量だけ回転させるステップ(c)と、
    を含む処理を実行するフィルムロールの故障抑制方法。
    a step (a) of generating measurement data by measuring a side surface of the film roll held by a holding unit that holds a film roll formed by winding a film around a core;
    (b) generating an index value regarding voids between film layers by analyzing the measurement data;
    determining whether or not the change over time of the index value exceeds the determination threshold, and when determining that the change over time exceeds the determination threshold, rotating the film roll held by the holding unit by a predetermined amount by a rotation mechanism ( c) and
    A method for suppressing failure of a film roll that performs processing including.
  12.  フィルムをコアに巻回してなるフィルムロールを保持する保持部と、前記保持部に保持された前記フィルムロールを回転させる回転機構と、前記保持部に保持された前記フィルムロールの側面を測定して測定データを生成する測定部と、を備えるフィルムロール保持装置を制御するための制御プログラムであって、
     前記保持部に保持された前記フィルムロールの側面を測定して測定データを生成するステップ(a)と、
     前記測定データを解析することで、フィルム層間の空隙に関する指標値を生成するステップ(b)と、
     前記指標値の経時変化が判定閾値を超えた否かを判定し、前記判定閾値を超えたと判定した場合に、前記保持部に保持された前記フィルムロールを前記回転機構により所定量だけ回転させるステップ(c)と、
    を含む処理をコンピューターに実行させるための制御プログラム。
     
    A holding part that holds a film roll formed by winding a film around a core, a rotation mechanism that rotates the film roll held by the holding part, and a side surface of the film roll held by the holding part. A control program for controlling a film roll holding device comprising: a measurement unit that generates measurement data;
    (a) measuring a side surface of the film roll held by the holding unit to generate measurement data;
    (b) generating an index value regarding voids between film layers by analyzing the measurement data;
    determining whether the change over time of the index value exceeds a determination threshold, and when determining that the change over time exceeds the determination threshold, rotating the film roll held by the holding unit by a predetermined amount by the rotation mechanism; (c) and
    A control program that causes a computer to perform processes including
PCT/JP2023/017528 2022-05-17 2023-05-10 Film roll holding device, method of preventing failure in film roll, and control program WO2023223903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022080606 2022-05-17
JP2022-080606 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023223903A1 true WO2023223903A1 (en) 2023-11-23

Family

ID=88835444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017528 WO2023223903A1 (en) 2022-05-17 2023-05-10 Film roll holding device, method of preventing failure in film roll, and control program

Country Status (1)

Country Link
WO (1) WO2023223903A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241793A (en) * 2004-02-25 2005-09-08 Konica Minolta Opto Inc Storage box having stand, production method and storage method of optical film, optical film, polarizing plate and display device
JP2014028668A (en) * 2012-07-31 2014-02-13 Nippon Paper Crecia Co Ltd Original fabric roll storage device and method
JP2014058398A (en) * 2012-09-19 2014-04-03 Yokohama Rubber Co Ltd:The Holding jig for conveyor belt conveyance
JP2015202963A (en) * 2014-04-11 2015-11-16 テクスマーク ゲゼルシャフト ミット ベシュレンクテル ハフツング フェアトリーブスゲゼルシャフトTexmag GmbH Vertriebsgesellschaft Method and device for inspecting and tailoring a moving product web

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241793A (en) * 2004-02-25 2005-09-08 Konica Minolta Opto Inc Storage box having stand, production method and storage method of optical film, optical film, polarizing plate and display device
JP2014028668A (en) * 2012-07-31 2014-02-13 Nippon Paper Crecia Co Ltd Original fabric roll storage device and method
JP2014058398A (en) * 2012-09-19 2014-04-03 Yokohama Rubber Co Ltd:The Holding jig for conveyor belt conveyance
JP2015202963A (en) * 2014-04-11 2015-11-16 テクスマーク ゲゼルシャフト ミット ベシュレンクテル ハフツング フェアトリーブスゲゼルシャフトTexmag GmbH Vertriebsgesellschaft Method and device for inspecting and tailoring a moving product web

Similar Documents

Publication Publication Date Title
JP2006308938A (en) Polyvinyl alcohol-based film, and polarizing film, polarizing plate
CN103313838B (en) The manufacture method of strip polymer film and polymer film, λ/4 plate, polarizer and liquid crystal indicator
KR102444730B1 (en) Film roll and method for manufacturing the same
JP2014178709A (en) Process for producing polarizing plate
JPWO2014136529A1 (en) Optical film, and polarizing plate and VA liquid crystal display device including the same
JP5609427B2 (en) Polarizer protective film, roll-shaped polarizing plate, and liquid crystal display device
JP5186122B2 (en) Method for producing thermoplastic film
WO2023223903A1 (en) Film roll holding device, method of preventing failure in film roll, and control program
KR101530797B1 (en) Vertically aligned liquid crystal display device and method for manufacturing same
WO2022153785A1 (en) Film roll and method for manufacturing film roll
JP2013076872A (en) Cellulose acylate film, polarizing plate and liquid crystal display device
JP2023176991A (en) Film roll and manufacturing method for the same
WO2023248896A1 (en) Film roll and method for manufacturing film roll
WO2022259668A1 (en) Method for manufacturing film roll, and projection adjustment system used in method for manufacturing film roll
WO2023248894A1 (en) Film roll and method for manufacturing film roll
WO2011093222A1 (en) Optical control film and manufacturing method therefor
JP2023173157A (en) Film roll, method for manufacture thereof, polarizer, and display device
JP2021012331A (en) Method for manufacturing polarizing plate and polarizing plate
JP2023173151A (en) Film roll, method for manufacture thereof, polarizer, and display device
TW202408915A (en) Film roll, manufacturing method thereof, polarizing plate and display device
TWI785703B (en) Optical film, polarizing plate and liquid crystal display device
TW202406821A (en) Film roller, manufacturing method thereof, polarizing plate and display device
JP2011241264A (en) Optical film and method for producing optical film
WO2010119732A1 (en) Polarizer protective film, polarizing plate using same and method for production thereof
TW202411151A (en) Film roll and film roll manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807507

Country of ref document: EP

Kind code of ref document: A1