WO2011093222A1 - Optical control film and manufacturing method therefor - Google Patents

Optical control film and manufacturing method therefor Download PDF

Info

Publication number
WO2011093222A1
WO2011093222A1 PCT/JP2011/051081 JP2011051081W WO2011093222A1 WO 2011093222 A1 WO2011093222 A1 WO 2011093222A1 JP 2011051081 W JP2011051081 W JP 2011051081W WO 2011093222 A1 WO2011093222 A1 WO 2011093222A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
curable resin
stretching
preferable
Prior art date
Application number
PCT/JP2011/051081
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 別宮
耕二 田代
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011093222A1 publication Critical patent/WO2011093222A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a light control film having high mechanical strength and easy optical property control, and a method for producing the same.
  • louver film with multiple light-absorbing or light-scattering parts as a light control film that can control optical properties such as light transmission and scattering, and used as a visual field selection film, anisotropic light scattering film, etc. has been.
  • Patent Document 2 as a method for producing a light control film having an angle dependency in light transmission, a single layer of transparent plastic such as polystyrene or a multilayer film laminated with another film is dissolved in the film. The film is immersed in a solvent and / or surfactant solution at a predetermined temperature and time, and then wound around the roll to give distortion, thereby creating a craze perpendicular to the surface of the film and parallel to the width direction of the roll.
  • a method of manufacturing a light control film that is uniformly formed and has an angle dependency on light transmission is disclosed. However, this manufacturing method has a problem that solvent recovery, smoothness, and uniform control of craze are difficult.
  • Patent Document 3 in a method for producing a transmitted light scattering control film by uniaxially stretching a thermoplastic polymer resin film, a groove extending in a direction perpendicular to the stretching direction is formed on the surface of the thermoplastic polymer resin film.
  • a method of uniaxial stretching is disclosed.
  • this method has problems that it is difficult to control craze and optical properties, and the mechanical strength becomes extremely weak.
  • Patent Document 4 is composed of a thermoplastic polymer film, in which the primary structure of the thermoplastic polymer is the same, but a layer having a small electron density and a layer having a large electron density are alternately repeated substantially perpendicular to the film surface. And a method for producing a transmitted light scattering control film in which the film has optical anisotropy is disclosed. However, the manufacturing method has the same problem as the manufacturing method disclosed in Patent Document 3.
  • Patent Document 5 discloses a viewing angle control film in which linear light-absorbing portions having a specific cross-sectional shape on a transparent base material are continuously arranged at regular intervals throughout the viewing angle control region, and a method for manufacturing the same. Yes.
  • the UV curable resin is made into a concavo-convex structure by embossing, it is divided into a thick part and a thin part of the curable resin. There is a problem that it is difficult to form a large uniform layer. This method has a problem that production efficiency is very poor.
  • Patent Document 6 includes a step of applying a bending deformation along a straight line to the polymer resin film, and in the step of applying the bending deformation, tension and periodic vibration in a direction orthogonal to the straight line are applied to the polymer resin film.
  • a manufacturing method for forming crazes on a polymer resin film is disclosed.
  • the bending guide is pressed against a single film, it can be manufactured only with an originally brittle material such as acrylic or police styrene.
  • the film strength is remarkably lowered because crazing is produced on a single film.
  • the manufacturing method requires complicated devices and equipment, and has a problem that production efficiency is very poor.
  • the present invention has been made in view of the above-described problems and situations, and a solution to the problem is to provide a light control film having high mechanical strength and easy optical control, and a manufacturing method capable of easily manufacturing the light control film. It is to be.
  • the present inventor has obtained a laminate in which a curable resin layer having a lower breaking elongation is provided on a thermoplastic resin support. It has been found that it is possible to form a craze having a constant pitch on the curable resin layer in the direction substantially perpendicular to the stretching direction due to the difference in the elongation at break by longitudinal stretching.
  • a light control film having a curable resin layer on a thermoplastic resin support, the rupture elongation of the curable resin layer being lower than the rupture elongation of the thermoplastic resin support, and on the curable resin layer And a light control film characterized by having crazes formed and disposed at a pitch in the range of 1 to 100 ⁇ m by physical stretching.
  • Outline flow sheet showing one embodiment of manufacturing apparatus for thermoplastic resin support
  • Schematic diagram showing the optical system when evaluating optical characteristics
  • the light control film of the present invention (hereinafter also referred to as “clay film”) is a light control film having a curable resin layer on a thermoplastic resin support, and the elongation at break of the curable resin layer is the above. It is characterized by having crazes formed and disposed at a pitch within a range of 1 to 100 ⁇ m by physical stretching on the curable resin layer, which is lower than the breaking elongation of the thermoplastic resin support. This feature is a technical feature common to the inventions according to claims 1 to 3.
  • the resin constituting the curable resin layer is preferably an actinic radiation curable resin from the viewpoint of easily manifesting the effects of the present invention.
  • a laminate in which a curable resin layer having a lower elongation at break is provided on a thermoplastic resin support is longitudinally stretched, and the cured in a direction substantially perpendicular to the stretching direction. It is the manufacturing method of the aspect which forms a craze with a pitch of 1 micrometer or more on a property resin layer.
  • craze refers to a substantially linear crack or crack formed in a resin film.
  • the resin fibrils that remain between the cracks or cracks formed on the resin film are referred to as “crazes” (narrow sense), and the “crazes” (narrow sense) is expanded and no resin fibrils remain.
  • the term “craze” in the present application includes both of “craze” (in a narrow sense) and “crack”.
  • the rupture elongation of the curable resin layer is lower than the rupture elongation of the thermoplastic resin support, and the pitch is in the range of 1 to 100 ⁇ m by physical stretching on the curable resin layer. It has a craze formed and arranged.
  • craze formed and arranged by physical stretching means that the film is immersed in a solvent and / or surfactant solution as disclosed in Patent Document 2 at a predetermined temperature and time. Then, unlike a method using a chemical action of winding around a roll and applying a strain, a laminate having a curable resin layer having a lower elongation at break on a thermoplastic resin support is uniaxially stretched. This is a craze formed and arranged using the difference in elongation at break.
  • the length of the craze is equal to or greater than the coating width of the curable resin layer, the width of the craze is 0.01 to 50 ⁇ m, the depth of the craze is 100 nm to 20 ⁇ m, and the length a ( ⁇ m) and width It is preferable that the ratio a / b of b ( ⁇ m) is 1.5 or more.
  • the variation in the direction of the craze is within ⁇ 5 degrees
  • the length of the craze is 6 ⁇ m or more
  • the width of the craze is 0.05 to 40 ⁇ m
  • the depth of the craze is 1 to 10 ⁇ m
  • the length a ( ⁇ m) and the width The ratio a / b of b ( ⁇ m) is 2.0 or more.
  • the depth and width of the craze shape can be specified from the profile obtained when the atomic force microscope needle is scanned one-dimensionally in a direction orthogonal to the craze longitudinal direction.
  • the light control film is produced by uniaxially stretching a laminate in which a curable resin layer having a lower breaking elongation is provided on a thermoplastic resin support, and the curable resin in a direction substantially perpendicular to the stretching direction. It is a manufacturing method of the aspect which forms a craze with a pitch of 1 micrometer or more on a layer, It is characterized by the above-mentioned.
  • a pitch within a range of 1 to 100 ⁇ m means that an interval between individual crazes is within a range of 1 to 100 ⁇ m. Preferably, it is 1 to 80 ⁇ m. By forming the pitch within a range of 1 to 100 ⁇ m, light control according to various purposes can be facilitated.
  • a direction substantially perpendicular to the stretching direction refers to a direction of 90 ⁇ 5 degrees with respect to the stretching direction.
  • uniaxial stretching there are longitudinal and lateral uniaxial stretching, but longitudinal uniaxial stretching is preferable.
  • multistage stretching may be used. In uniaxial stretching, it is preferable to stretch near the temperature at which the thermoplastic resin can be stretched, and the stretching conditions in the vicinity immediately before the curable resin layer breakage are preferably selected. Further, both dry and wet stretching can be used, but dry stretching is preferred.
  • the above-described craze is formed on the curable resin layer.
  • the stretching temperature D (° C.) is Tg ⁇ 40 ⁇ D. ⁇ Tg + 20, and it is preferable to use a stretching condition in which the neck-in rate is 25% or more and 70% or less.
  • the “neck-in rate” here is defined as a change in layer thickness.
  • the heating temperature is the above-described stretching temperature in all heating stretching zones, and the neck-in ratio is reached after the stretching is completed.
  • a longitudinal direction refers to the continuous film forming direction of a support body (film), and is also called a film forming direction, a vertical direction, and MD direction.
  • the width direction refers to a direction orthogonal to the longitudinal direction, and is also referred to as a horizontal direction or a TD direction.
  • the pitch (interval) for forming and arranging crazes in the curable resin layer is adjusted by the draw ratio. Furthermore, the depth of craze can be adjusted with the film thickness of curable resin. Regarding the width of the craze, since the coating width of the curable resin layer becomes uniform, the width can be easily adjusted.
  • thermoplastic resin support The light control film of the present invention is characterized by using a thermoplastic resin support containing a thermoplastic resin as a main constituent material of the support.
  • thermoplastic resin refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into the desired shape.
  • thermoplastic resins include cellulose esters, polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene. (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), or the like can be used.
  • PE polyethylene
  • PVC polyvinyl chloride
  • PS polyvinylidene chloride
  • PS polystyrene.
  • PVAc polyvinyl acetate
  • Teflon registered trademark
  • AS resin acrylic resin
  • PMMA acrylic resin
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PET Polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide PPS
  • polytetrafluoroethylene PTFE
  • polysulfone polyethersulfone
  • amorphous polyarylate liquid crystal polymer
  • polyetherether A ketone thermoplastic polyimide (PI)
  • PAI polyamideimide
  • thermoplastic resin support is the rupture elongation of the curable resin layer. It is necessary to select in consideration of the degree.
  • the elongation at break in at least one direction of the thermoplastic resin support is preferably 10% or more, more preferably 20% or more.
  • the upper limit of the elongation at break is not particularly limited, but in reality it is about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the thickness of the support is preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 ⁇ m from the viewpoint of applicability, foaming, solvent drying, and the like.
  • the thickness of a film can be suitably selected according to a use.
  • the support preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • the cellulose ester resin that can be used in the present invention is selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. At least one kind is preferred.
  • particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • substitution degree of the mixed fatty acid ester more preferable cellulose acetate propionate and lower fatty acid ester of cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, and the substitution degree of the acetyl group is X.
  • substitution degree of propionyl group or butyryl group is Y, it is preferably a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II).
  • cellulose acetate propionate is particularly preferably used.
  • 1.9 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 0.9 are preferable.
  • the part not substituted with the acyl group is usually present as a hydroxyl group.
  • the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0,
  • the cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (conifer): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • cellulose ester resin 1 g is added to 20 ml of pure water (electric conductivity 0.1 ⁇ S / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 ⁇ S / cm.
  • the acrylic resin that can be used in the present invention includes a methacrylic resin.
  • the resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin preferably has a weight average molecular weight (Mw) of 80,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when the film is produced. With this molecular weight, both heat resistance and brittleness can be achieved.
  • Mw weight average molecular weight
  • the weight average molecular weight of a resin such as an acrylic resin can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the method for producing the acrylic resin is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
  • cyclic olefin resin examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group.
  • these substituents may be the same or different and a plurality may be bonded to the ring.
  • Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units.
  • 9-diyl-ethylene structure the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60.
  • the molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use.
  • Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • Mw weight average molecular weight measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • the glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretchability, it is preferably in the range of 130 to 160 ° C, more preferably 135 to 150 ° C.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is 1.2 to 3.5, preferably 1.5 to 3.0, from the viewpoint of relaxation time, productivity and the like. More preferably, it is 1.8 to 2.7.
  • the cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and more preferably 4 ⁇ 10 12 It is particularly preferably ⁇ 12 Pa ⁇ 1 or less.
  • the cyclic olefin resin does not substantially contain particles.
  • substantially free of particles means that even if particles are added to a film made of a cyclic olefin resin, the amount of increase in haze from the non-added state is allowed to be in the range of 0.05% or less. Means you can.
  • the alicyclic polyolefin resin lacks affinity with many organic particles and inorganic particles. Therefore, when a cyclic olefin resin film to which particles exceeding the above range are added is stretched, voids are easily generated, and as a result, There is a risk that a significant decrease in haze occurs.
  • ⁇ Polycarbonate resin> various known polycarbonate resins can also be used.
  • a polymer material generally called polycarbonate is a generic name of a polymer material in which a polycondensation reaction is used in the synthesis method and the main chain is linked by a carbonic acid bond.
  • Phosgene, diphenyl carbonate and the like obtained by polycondensation.
  • an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected.
  • bisphenol derivatives should be selected as appropriate.
  • an aromatic polycarbonate copolymer can be formed.
  • bisphenol-A bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
  • aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components.
  • a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved.
  • the present invention is also effective for coalescence.
  • the viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000.
  • a viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. If a resin having a viscosity average molecular weight lower than 10,000 is used, the mechanical strength of the obtained film may be insufficient, and if it has a high molecular weight of 400000 or more, the viscosity of the dope becomes too high, which causes problems in handling.
  • the viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
  • the glass transition temperature of the aromatic polycarbonate according to the present invention is preferably 200 ° C. or higher in order to obtain a highly heat-resistant film, and more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component.
  • the glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetric analyzer). For example, the baseline is unevenly determined by a temperature rising condition of 10 ° C./min with RDC220 manufactured by Seiko Instruments Inc. It is the temperature that begins to do.
  • the solvent used in the dope composition containing the aromatic polycarbonate is a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms. It is preferable.
  • the mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass.
  • the type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more.
  • the alcohol in the present invention is preferably a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms. Specific examples include methanol, ethanol, isopropanol, and tert-butanol. Of these, ethanol, isopropanol, and tertiary-butanol can achieve almost the same effect, but methanol is slightly less effective. Although the reason is not clear, it is presumed that the boiling point of the solvent, that is, the ease of flying during drying is related. Higher alcohols higher than that are not preferred because they have a high boiling point and are likely to remain after film formation.
  • the amount of alcohol to be added must be carefully selected. These alcohols are completely poor in solubility in aromatic polycarbonate and are completely poor solvents. Therefore, it cannot be added too much, and should be the minimum amount that provides satisfactory peelability. As described above, it is 4 to 14 parts by mass, preferably 4 to 12 parts by mass with respect to methylene chloride. When the addition amount is in the range of 4 to 14 parts by mass with respect to the amount of methylene chloride, the solubility of the solvent in the polymer and the dope stability are improved, and the effect of improving the peelability is increased.
  • the present invention is composed of the above methylene chloride and aliphatic alcohol in the dope composition, but other solvents can also be used.
  • the remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and is a low-boiling solvent.
  • halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
  • the effects here include mixing the solvent without sacrificing solubility and stability, for example, improving the surface properties of the film formed by the solution casting method (leveling effect), evaporation rate and system These include viscosity adjustment and crystallization suppression effects. What is necessary is just to determine the kind and addition amount of the solvent to mix by the degree of these effects, and you may use 1 type, or 2 or more types as a solvent to mix.
  • solvents preferably used include halogen solvents such as chloroform and 1,2-dichloroethane, hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and butyl acetate.
  • halogen solvents such as chloroform and 1,2-dichloroethane
  • hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone
  • ethyl acetate and butyl acetate examples include ester solvents, ether solvents such as ethylene glycol dimethyl ether and methoxyethyl acetate.
  • the dope composition according to the present invention may be prepared by any method as long as a transparent solution with low haze is obtained as a result.
  • a predetermined amount of alcohol may be added to the aromatic polycarbonate solution dissolved in a certain solvent in advance, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol.
  • alcohol is a poor solvent, the method of adding the latter after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
  • the polyester resin that can be used in the present invention is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of dicarboxylic acid structural units (constituent units derived from dicarboxylic acid) are derived from aromatic dicarboxylic acid, and 70% or more of the diol constituent units (constituent units derived from the diol) are derived from the aliphatic diol.
  • the proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and the like, 4,4′-biphenyldicarboxylic acid 3,4′-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
  • polyester resin aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
  • Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
  • polyester resin monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
  • a known esterification method or transesterification method can be applied to the production of the polyester resin.
  • polycondensation catalysts used in the production of polyester resins include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
  • Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4′-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
  • polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
  • the curable resin layer according to the present invention contains an actinic ray curable resin or a thermosetting resin as a binder component.
  • an actinic radiation curable resin is preferable.
  • the “active ray curable resin” refers to a resin whose main component is a resin that is cured through a crosslinking reaction upon irradiation with active rays such as ultraviolet rays and electron beams (also referred to as “active energy rays”). .
  • the curable resin layer since the breaking elongation of the curable resin layer is lower than the breaking elongation of the thermoplastic resin support, the curable resin layer has a breaking elongation of the thermoplastic resin support. Adjustment is required.
  • the elongation at break in at least one direction of the thermoplastic resin support is less than 10% in the measurement according to JIS-K7127-1999.
  • Actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the actinic radiation curable resin layer is cured by irradiation with actinic radiation such as ultraviolet rays or electron beams. It is formed.
  • actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by ultraviolet irradiation has excellent mechanical film strength (abrasion resistance, pencil hardness). To preferred.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • a polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • Tetramethylolmethane tetraacrylate pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerol triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Lithol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylo
  • the curable resin layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin.
  • photopolymerization initiator examples include acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
  • a mixed solvent composed of a good solvent for the thermoplastic resin and a poor solvent for the thermoplastic resin is used as a solvent.
  • the good solvent and the poor solvent refer to solvents having solubility measured by the following method.
  • thermoplastic resin is, for example, a polyester resin or a polyester urethane resin
  • examples of the good solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, ethyl acetate, and tetrahydrofuran.
  • examples of the poor solvent include xylene, ethyl cellosolve, propylene glycol monomethyl ether, isobutanol, isopropanol, ethanol, methanol, hexane, and purified water.
  • thermoplastic resin is an acrylic resin
  • examples of the good solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, ethyl acetate, tetrahydrofuran, xylene, and the like.
  • examples of the poor solvent include ethyl cellosolve, propylene glycol monomethyl ether, isobutanol, isopropanol, ethanol, methanol, hexane, and purified water.
  • the good solvent and the poor solvent other than purified water are good solvents for the commonly used actinic radiation curable resins.
  • the good solvent and the poor solvent may be used alone or in combination of two or more with respect to the thermoplastic resin.
  • the curable resin layer according to the present invention may contain fine particles of an inorganic compound or an organic compound.
  • inorganic fine particles silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate.
  • silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
  • These inorganic fine particles are preferably coated with an organic component having a reactive functional group on a part of the surface, since the scratch resistance is improved while maintaining the transparency of the film.
  • an organic component having a reactive functional group on a part of the surface for example, a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the metal oxide fine particles, and the surface A mode in which an organic component is bonded to a part of the metal particle, a mode in which an organic component is attached to a hydroxyl group present on the surface of a metal oxide fine particle by an interaction such as a hydrogen bond, or one or more inorganic fine particles
  • a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the metal oxide fine particles, and the surface A mode in which an organic component is bonded to a part of the metal particle, a mode in which an organic component is attached to a hydroxyl group present on the surface of a
  • Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, and melamine resin. Powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluoroethylene resin powder, or the like can be added.
  • Preferred fine particles include crosslinked polystyrene particles (for example, SX-130H, SX-200H, SX-350H manufactured by Soken Chemical), polymethyl methacrylate-based particles (for example, MX150, MX300 manufactured by Soken Chemical), and fluorine-containing acrylic resin fine particles.
  • fluorine-containing acrylic resin fine particles include commercially available products such as FS-701 manufactured by Nippon Paint.
  • acrylic particles include Nippon Paint: S-4000, and examples of the acrylic-styrene particles include Nippon Paint: S-1200, MG-251.
  • the average particle diameter of these fine particle powders is not particularly limited, but is preferably 0.01 to 5 ⁇ m, and more preferably 0.01 to 1.0 ⁇ m. Moreover, you may contain 2 or more types of microparticles
  • the average particle diameter of the fine particles can be measured by, for example, a laser diffraction particle size distribution measuring device.
  • the proportion of the ultraviolet curable resin composition and the fine particles is desirably 1 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the resin composition.
  • the curable resin layer according to the present invention is applied by applying a coating composition for forming a hard coat layer using a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an inkjet method. Thereafter, it can be formed by heat drying and UV curing.
  • a coating composition for forming a hard coat layer using a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an inkjet method. Thereafter, it can be formed by heat drying and UV curing.
  • the coating amount is suitably 0.1 to 40 ⁇ m, preferably 0.5 to 30 ⁇ m as the wet layer thickness.
  • the dry layer thickness is an average layer thickness of 0.1 to 30 ⁇ m, preferably 1 to 20 ⁇ m, particularly preferably 6 to 15 ⁇ m.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 200 mJ / cm 2 .
  • irradiating active rays it is preferably performed while applying tension in the film transport direction, more preferably while applying tension in the width direction.
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the conveying direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.
  • the curable resin layer may contain a conductive agent in order to impart antistatic properties, and preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the curable resin layer has a nonionic surfactant such as a silicone surfactant, a fluorosurfactant or a polyoxyether, an anion from the viewpoint of coating properties and the uniform dispersibility of fine particles.
  • a surfactant or the like can also be contained. These enhance the applicability.
  • these components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.
  • thermoplastic resin support and the curable resin layer according to the present invention can contain various compounds as additives depending on the purpose.
  • a plasticizer, an antioxidant, an acid scavenger, a light stabilizer, an ultraviolet absorber, an optical anisotropy control agent, a matting agent, an antistatic agent, a release agent, and the like can be contained.
  • the retardation increasing agent is preferably an aromatic compound having at least two aromatic rings.
  • the aromatic compound is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. It is preferably used in the range of 0.05 to 15 parts by mass, more preferably in the range of 0.1 to 10 parts by mass. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring.
  • the aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring).
  • the aromatic heterocycle is generally an unsaturated heterocycle.
  • the aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring.
  • Aromatic heterocycles generally have the most double bonds.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. Details of these are described in JP-A No. 2004-109410, JP-A No. 2003-344655, JP-A No. 2000-275434, JP-A No. 2000-1111914, JP-A No. 12-275434, and the like.
  • the light control film of the present invention it is preferable to add fine particles as a matting agent in order to prevent the manufactured film from being scratched or being deteriorated in transportability.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable.
  • the content of these fine particles in the optical film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a light control film having a multilayer structure by the co-casting method, it is preferable to contain fine particles of this addition amount on the surface.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
  • Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • Examples of the polymer include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the light control film low.
  • the dynamic friction coefficient of at least one surface is preferably 0.2 to 1.0.
  • the craze according to the present invention may be provided with a light absorbing material or a light absorbing layer.
  • a light absorbing material such as copper, silver, carbon, nickel, iron, chromium, aluminum, to binder resin.
  • the conductive particles have a black color because they can also serve as a visible light absorbing ability.
  • a black dye or pigment may be added.
  • a known resin can be used as the binder resin, but it is preferable to use a resin having a low refractive index such as urethane acrylate or silicone resin.
  • thermoplastic resin support film As a method for producing the thermoplastic resin support according to the present invention as a film, a usual inflation method, T-die method, calendar method, cutting method, casting method, emulsion method, hot press method or the like is used. However, the solution casting method and the melt casting method by the casting method are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
  • thermoplastic resin support According to the present invention, the production method for producing the thermoplastic resin support according to the present invention will be described in detail.
  • thermoplastic resin support film by solution casting method> ⁇ Organic solvent ⁇
  • an organic solvent useful for forming a dope is used without limitation as long as it dissolves a thermoplastic resin such as a cellulose ester resin. be able to.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate,
  • the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • thermoplastic resin and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
  • thermoplastic resin For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
  • Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
  • An endless metal belt such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
  • a liquid feed pump for example, a pressurized metering gear pump
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by weight depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout the drying is generally carried out at 40-250 ° C. It is particularly preferable to dry at 40 to 160 ° C.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create compartments having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding process This is a process in which the amount of residual solvent in the web becomes 2% by mass or less, and is taken up by the winder 37 as a film, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the film according to the present invention is not particularly limited, but is preferably 20 to 200 ⁇ m, more preferably 25 to 150 ⁇ m, and particularly preferably 30 to 120 ⁇ m.
  • thermoplastic resin support film by melt casting method A method for producing the thermoplastic resin support according to the present invention as a resin film by a melt casting film forming method will be described.
  • thermoplastic resin film used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, a dry thermoplastic resin and an additive depending on the purpose are fed to an extruder with a feeder and kneaded using a uniaxial or biaxial extruder, and then formed into a strand from a die. It is possible to perform extrusion, water cooling or air cooling and cutting.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the melt temperature Tm when extruding the pellets is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, Coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll there is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747 A silicon rubber roll coated with a thin-film metal sleeve can be used as described in Japanese Unexamined Patent Application Publication No. 2002-36332, Japanese Patent Application Laid-Open No. 2005-172940 and Japanese Patent Application Laid-Open No. 2005-280217.
  • the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the optical film also serves as a polarizing plate protective film, it is preferable to stack the polarizing film in a roll form by setting the stretching direction to the width direction.
  • the slow axis of the optical film becomes the width direction by stretching in the width direction.
  • the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times
  • the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film-shaped resin film produced by the above method When the film-shaped resin film produced by the above method is used as an optical film, the film may be contracted in the longitudinal direction or the width direction for the purpose of adjusting the retardation of the optical film and reducing the dimensional change rate.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the film-like resin film of the present invention is preferably a long film.
  • the film-like resin film has a thickness of about 100 m to 5000 m and is usually provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the film-like resin film according to the present invention is not particularly limited, and is preferably changed according to the purpose.
  • the thickness is preferably 20 to 200 ⁇ m, more preferably 25 to 150 ⁇ m, and particularly preferably 30 to 120 ⁇ m.
  • FIG. 1 is a schematic flow sheet showing an overall configuration of an example of a production apparatus for a thermoplastic resin support film according to the present invention.
  • the resin film is produced by mixing a film material such as a thermoplastic resin and then using the extruder 1 to melt and extrude from a casting die 4 onto a first cooling roll 5.
  • the film 10 is further circumscribed by a total of three cooling rolls, that is, the second cooling roll 7 and the third cooling roll 8 in order, and is cooled and solidified.
  • the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by holding both ends of the film by the stretching device 12 and then wound by the winding device 16.
  • a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness.
  • the touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
  • a device for automatically cleaning the belt and the roll it is preferable to add a device for automatically cleaning the belt and the roll to the manufacturing apparatus.
  • the cleaning device there is no particular limitation on the cleaning device, but for example, a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, etc., an air blowing method for spraying clean air, a laser incinerator, or a combination thereof. is there.
  • the light control film of the present invention can be suitably used for a polarizing plate.
  • the light control film of the present invention is incorporated in a polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), It is preferably used in liquid crystal display devices of various driving systems such as IPS type and OCB type.
  • thermoplastic resin support 1 Pellets of polyethylene terephthalate (inherent viscosity 0.65 dl / g, Tg: 70 ° C.) are dried at 180 ° C. for 4 hours, then fed to an extruder heated to 270 to 300 ° C., and formed into a sheet by an extrusion die. did. Further, the film was statically adhered and solidified on a cooling drum having a surface temperature of 25 ° C., and the film was air-cooled with a cooling knife to obtain an unstretched film.
  • polyethylene terephthalate inherent viscosity 0.65 dl / g, Tg: 70 ° C.
  • this unstretched film is preheated with a heating roll group at 75 ° C., and is further brought into non-contact with an infrared heating means using a peripheral speed difference between a roll heated to 75 ° C. and a pair of rolls adjusted to 50 ° C. While heating, the film was longitudinally stretched 3.1 times in the longitudinal direction, then cooled with a cooling roll group of 20 to 50 ° C., and then led to a tenter.
  • the tenter 1 is preheated in a hot atmosphere at 80 ° C. while holding both ends of the film with clips, and stretched by a factor of 3.2 in a hot atmosphere at 120 ° C. in the subsequent stretching zone.
  • heat fixing is performed at three stages of 210 ° C., 230 ° C., and 190 ° C., and in the subsequent cooling zone, the film is cooled to 70 ° C., and the number of adhered foreign matters is measured and measured at a speed of 25 ⁇ m / min.
  • the biaxially stretched polyester film was wound up with a turret type winder.
  • thermoplastic resin support 2 (Preparation of thermoplastic resin support 2) Stainless steel with polyethylene terephthalate (inherent viscosity 0.65 dl / g, Tg: 70 ° C.) dried at 170 ° C. for 6 hours, supplied to an extruder hopper, melted at a melting temperature of 280 ° C., and an average opening of 17 ⁇ m The resultant was filtered through a fine wire filter, extruded through a 2 mm slit die on a rotary cooling drum having a surface temperature of 60 ° C., and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 100 ° C., and further heated by a 900 ° C.
  • thermoplastic resin support 3 Methylene chloride 42g Ethanol 8g Cellulose triacetate (acetyl group substitution degree: 60.3%; weight average molecular weight: 180,000) 10 g
  • the above materials were put in a sealed container in order, completely dissolved and mixed with heating and stirring, lowered to a fluent temperature, and allowed to stand overnight for defoaming operation.
  • the dope temperature was 30 ° C., and the mixture was evenly poured on a stainless belt support at 30 ° C. Then, after drying to the range which can be peeled, the web was peeled from the stainless steel support body. The residual solvent amount of the web at this time was 80%.
  • the biaxially stretched tenter is used in the TD direction (width direction) and While stretching in the MD direction (film forming direction), the film was dried at 90 ° C., and further dried in a 125 ° C. drying zone while being conveyed by rolls to produce a substrate film.
  • the film thickness was 100 ⁇ m.
  • the residual solvent amount at the time of winding was less than 0.1% by mass.
  • the pellets with the above contents were dried at 80 ° C. overnight.
  • the extruded resin is sandwiched between a mirror mirror roll for cooling adjusted to 75 ° C. (a chrome-plated roll having a surface roughness of 0.2S) and a silicone mirror rubber roll, and a 125 ⁇ m thick acrylic resin film is formed. did.
  • thermoplastic resin support 5 Preparation of thermoplastic resin support 5 While stirring at 25 ° C., 35 parts by mass of polycarbonate resin (Teijin Chemicals Ltd. Panlite L-1225Y) containing bisphenol A as a structural unit with respect to 65 parts by mass of a mixed solvent of methylene chloride and ethanol containing 5 parts by mass of ethanol. Upon dissolution, a transparent and viscous dope was obtained. The dope was poured on a stainless steel belt and peeled off. It dried until the residual solvent density
  • thermoplastic resin support 6 A pellet of thermoplastic norbornene resin (Zeon Corporation, ZEONOR 1420, glass transition point 137 ° C.), which is a kind of alicyclic olefin polymer, was dried at 100 ° C. for 5 hours. The pellets are supplied to an extruder, melted in the extruder, passed through a polymer pipe and a polymer filter, extruded from a T-die onto a casting drum, cooled, and an unstretched film having a thickness of 130 ⁇ m and a width of 1200 mm was obtained. It was.
  • thermoplastic norbornene resin Zeon Corporation, ZEONOR 1420, glass transition point 137 ° C.
  • This unstretched film is continuously supplied to a tenter for transverse stretching as it is, and a first stretching process is performed at a stretching temperature of 140 ° C. and a stretching ratio of 1.42 times to obtain a first stretched film, which is wound around a winding core. It was.
  • curable resin layer coated supports 1 to 6 The following curable resin layer coating solution is applied by reverse coating to the substrates 1 to 3 prepared above, dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet light using a 120 W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere. (Irradiation distance 10 cm, irradiation time 30 seconds) was performed to cure the coating film to form a curable resin layer having a thickness of 5 ⁇ m.
  • curable resin layer coating solution 1 Polybasic acid consisting of isophthalic acid and adipic acid and neopentyl glycol are reacted to produce a polyester resin having a weight average molecular weight of 65,000, an acid value of 7 mgKOH / g, a non-volatile content of 60%, 7 parts by weight of dipentaerythritol tetraacrylate 1.8 parts by mass, 57.2 parts by mass of a mixed solvent having a mass ratio of n-butanol / xylene of 4/6, a photopolymerization initiator (trade name: Irgacure 907, manufactured by BASF Japan Ltd.) 2 parts by mass were mixed and stirred to prepare a curable resin layer coating solution 1.
  • a photopolymerization initiator trade name: Irgacure 907, manufactured by BASF Japan Ltd.
  • the following curable resin layer coating solution was applied to the supports 4 to 6 prepared above by reverse coating, dried at 70 ° C. for 1 minute, and then irradiated with ultraviolet rays at 230 W / cm in a nitrogen atmosphere (irradiation distance 10 cm, (Irradiation time 30 seconds), the coating film was cured, and a curable resin layer having a thickness of 5 ⁇ m was formed.
  • the prepared curable resin layer-coated support (3 to 6) is preheated at 100 ° C., and heated by a 150 ° C. IR heater from 15 mm above between low speed and high speed rolls to 40% in the vertical direction. Stretched.
  • Comparative Example 1 According to Example 1 described in the specification of JP-A-2000-233438, a film of Comparative Example 1 was produced as follows.
  • the unstretched film was heat-treated at 130 ° C. for 1 hour, and measured with a differential scanning calorimeter (DSC-2920, manufactured by TA-instruments) at a heating rate of 20 ° C./min and a measurement temperature range of 35 to 250 ° C.
  • a polycarbonate film (trade name “PURE ACE C-110” manufactured by Teijin Ltd.) having a width of 230 mm and a thickness of 100 ⁇ m with an endothermic amount (unit: J / g) at the glass transition point of 0.3 is uniaxial.
  • the apparatus used for stretching is the same apparatus as the heating uniaxial stretching apparatus described in FIG. 4 of the above publication, the stretching temperature is 150 ° C., the stretching speed is 100 ⁇ m / min, and the exit side roll is A film was produced at a speed of 240 mm / min and a draw ratio of 2.4 times.
  • Comparative Example 2 In accordance with Example 1 described in the specification of JP-A-9-166702, a film of Comparative Example 2 was produced as follows.
  • a biaxially stretched polystyrene film having a thickness of 300 ⁇ m (Sant Clear, manufactured by Mitsubishi Chemical Corporation) was used, and the room temperature was adjusted to room temperature with isopropyl alcohol using the same apparatus as described in FIG. 1 minute, and then wound around a strain imparting roll having a diameter of 10 mm to form a craze. Subsequently, the remaining solvent was dried with warm air to prepare a light control film.
  • the light scattering characteristics were obtained from the obtained I 0 and I 30 by the following formula.
  • the tear load of the Elmendorf method was determined according to JIS K 7128-1991 in both the film transport direction (MD direction) and the direction orthogonal to the transport direction (TD direction).
  • the tear strength was measured with a light load tearing device manufactured by (1). 20 mN or more was evaluated as ⁇ , and less than 20 mN was evaluated as ⁇ .
  • ⁇ Measurement of elongation at break> Under the conditions of 23 ° C. and 55% RH, in the direction orthogonal to the film transport direction (TD direction) and in the transport direction (MD direction), the sample width is 10 mm and the length is 130 mm according to the method described in JIS K 7127. The distance between chucks was set to 100 mm at an arbitrary temperature, and a tensile test was performed at a pulling speed of 100 mm / min. For measuring the elongation at break, A & D Tensilon Universal Testing Machine RTF series (RTF-1225A) was used.
  • the light control film according to the present invention is superior in light scattering characteristics, the degree of haismura, and the tear strength to the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an optical control film that has high mechanical strength and allows easy optical control. Also provided is a method that can easily manufacture said optical control film. The provided optical control film has a curable resin layer on a thermoplastic resin support. The fracture elongation of the curable resin layer is less than that of the thermoplastic resin support. Physical stretching forms craze with a pitch of 1 μm or greater on the curable resin layer.

Description

光制御フィルムとその製造方法Light control film and manufacturing method thereof
 本発明は、機械的強度が強く、光学特性制御が容易な光制御フィルムとその製造方法に関する。 The present invention relates to a light control film having high mechanical strength and easy optical property control, and a method for producing the same.
 光透過・散乱等の光学特性を制御でき、視野選択フィルム、異方性光散乱フィルム等として使用される光制御フィルムとして、複数の光吸収性又は光散乱性の部位が設けられた所謂ルーバフィルムが提案されている。 Proposed so-called louver film with multiple light-absorbing or light-scattering parts as a light control film that can control optical properties such as light transmission and scattering, and used as a visual field selection film, anisotropic light scattering film, etc. Has been.
 例えば、無配向の光透過性高分子フィルムに応力をかけ、光透過性高分子フィルム内に方向性を有するクレイズ(「クレーズ」ともいう。)を形成することによって、光制御フィルムを得る方法が知られている(特許文献1参照。)。しかしながら、この光制御フィルム製造方法は、非常に簡便に光制御フィルムを得ることができるが、クレイズの形成位置を制御することができないため、製造した光制御フィルム内でクレイズ同士の間隔が不均一となり、この結果、高度な光制御性を有する光制御フィルムを得ることができないという問題があった。 For example, there is a method for obtaining a light control film by applying stress to a non-oriented light-transmitting polymer film and forming directional craze (also referred to as “craze”) in the light-transmitting polymer film. It is known (see Patent Document 1). However, although this light control film manufacturing method can obtain a light control film very easily, the formation position of crazes cannot be controlled, so the spacing between crazes in the manufactured light control film is not uniform. As a result, there is a problem that a light control film having a high light controllability cannot be obtained.
 また、このような光制御フィルムとして、種々の特徴を有する光制御フィルムとその製造方法が、下記の特許文献等に開示されている。 Further, as such a light control film, a light control film having various characteristics and a method for producing the same are disclosed in the following patent documents and the like.
 すなわち、特許文献2には、光の透過に角度依存性を有する光制御フィルムの製造方法として、ポリスチレン等透明なプラスチックの単層、もしくは他のフィルムと積層した多層のフィルムを、該フィルムを溶解しない溶剤、及び/又は界面活性剤の溶液中に所定の温度と時間で浸漬した後、ロールに巻き付けて歪みを与えることにより、フィルムの表面に対して垂直でロールの幅方向に平行なクレイズを均一に形成させて光の透過に角度依存性を有する光制御フィルムを製造する方法が開示されている。しかしながら、当該製造方法では、溶媒回収や、平滑性及びクレイズの均一制御が難しいという問題がある。 That is, in Patent Document 2, as a method for producing a light control film having an angle dependency in light transmission, a single layer of transparent plastic such as polystyrene or a multilayer film laminated with another film is dissolved in the film. The film is immersed in a solvent and / or surfactant solution at a predetermined temperature and time, and then wound around the roll to give distortion, thereby creating a craze perpendicular to the surface of the film and parallel to the width direction of the roll. A method of manufacturing a light control film that is uniformly formed and has an angle dependency on light transmission is disclosed. However, this manufacturing method has a problem that solvent recovery, smoothness, and uniform control of craze are difficult.
 特許文献3には、熱可塑性高分子樹脂フィルムを一軸延伸して透過光散乱性制御フィルムを製造する方法において、熱可塑性高分子樹脂フィルム表面に、延伸方向とは垂直方向に延びた溝が生じるように一軸延伸する方法が開示されている。しかしながら、当該方法では、クレイズの制御と光学特性の制御が難しい、また、機械的強度が極端に弱くなってしまうという問題ある。 In Patent Document 3, in a method for producing a transmitted light scattering control film by uniaxially stretching a thermoplastic polymer resin film, a groove extending in a direction perpendicular to the stretching direction is formed on the surface of the thermoplastic polymer resin film. A method of uniaxial stretching is disclosed. However, this method has problems that it is difficult to control craze and optical properties, and the mechanical strength becomes extremely weak.
 特許文献4には、熱可塑性高分子フィルムからなり、内部に熱可塑性高分子の一次構造は同じであるが、電子密度が小さな層と大きな層がフィルム表面に略垂直に交互に繰り返し存在する構造を有し、かつ当該フィルムが光学異方性を有する透過光散乱性制御フィルムの製造方法が開示されている。しかしながら、当該製造方法についても、上記特許文献3に開示されている製造方法と同様の問題がある。 Patent Document 4 is composed of a thermoplastic polymer film, in which the primary structure of the thermoplastic polymer is the same, but a layer having a small electron density and a layer having a large electron density are alternately repeated substantially perpendicular to the film surface. And a method for producing a transmitted light scattering control film in which the film has optical anisotropy is disclosed. However, the manufacturing method has the same problem as the manufacturing method disclosed in Patent Document 3.
 特許文献5には、透明基材に特定断面形状を有する線状の光吸収部が一定の間隔で連続して視野角制御領域全体に配置された視野角制御フィルムとその製造方法が開示されている。しかしながら、UV硬化性樹脂を型押しで凹凸構造に作製しているために、硬化性樹脂の厚い部分と薄い部分とに分かれるために、硬化速度が場所により異なることや硬化収縮の影響が凹凸構造の大きき均一に形成しにくい課題がある。当該方法は、生産効率が非常に悪いという問題がある。 Patent Document 5 discloses a viewing angle control film in which linear light-absorbing portions having a specific cross-sectional shape on a transparent base material are continuously arranged at regular intervals throughout the viewing angle control region, and a method for manufacturing the same. Yes. However, because the UV curable resin is made into a concavo-convex structure by embossing, it is divided into a thick part and a thin part of the curable resin. There is a problem that it is difficult to form a large uniform layer. This method has a problem that production efficiency is very poor.
 特許文献6には、高分子樹脂フィルムに直線に沿った曲げ変形を加えるステップを備え、曲げ変形を加えるステップにおいて、高分子樹脂フィルムに直線に直交する方向の張力と周期的な振動を付与しながら、高分子樹脂フィルムにクレイズを形成する製造方法が開示されている。しかしながら、単独フィルムに曲げガイドを押し当てて作製しているために、元々脆い材料のアクリルやポリススチレンの材料でしか作製できない。さらに、単独フィルムにクレイズを作製するためにフィルム強度が著しく低下するという問題がある。さらに、当該製造方法は、複雑な装置・設備を要し、生産効率が非常に悪いという問題がある。 Patent Document 6 includes a step of applying a bending deformation along a straight line to the polymer resin film, and in the step of applying the bending deformation, tension and periodic vibration in a direction orthogonal to the straight line are applied to the polymer resin film. However, a manufacturing method for forming crazes on a polymer resin film is disclosed. However, since the bending guide is pressed against a single film, it can be manufactured only with an originally brittle material such as acrylic or police styrene. Furthermore, there is a problem in that the film strength is remarkably lowered because crazing is produced on a single film. Further, the manufacturing method requires complicated devices and equipment, and has a problem that production efficiency is very poor.
特開平9-281306号公報JP-A-9-281306 特開平9-166702号公報JP-A-9-166702 特開平10-119125号公報JP-A-10-119125 特開2000-233438号公報JP 2000-233438 A 特開2008-242232号公報JP 2008-242232 A 特開2009-298100号公報JP 2009-298100 A
 本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、機械的強度が強く、光学制御が容易な光制御フィルムと当該光制御フィルムを容易に製造できる製造方法を提供することである。 The present invention has been made in view of the above-described problems and situations, and a solution to the problem is to provide a light control film having high mechanical strength and easy optical control, and a manufacturing method capable of easily manufacturing the light control film. It is to be.
 本発明者は、上記課題を解決すべく樹脂フィルム等の破断伸度の観点から種々検討した結果、熱可塑性樹脂支持体上にそれより破断伸度が低い硬化性樹脂層を設けた積層体を縦延伸して、当該破断伸度の相違により、延伸方向と略直交方向に当該硬化性樹脂層上に一定のピッチのクレイズを形成させることができることを見出し本発明に至った。 As a result of various studies from the viewpoint of breaking elongation of resin films and the like in order to solve the above problems, the present inventor has obtained a laminate in which a curable resin layer having a lower breaking elongation is provided on a thermoplastic resin support. It has been found that it is possible to form a craze having a constant pitch on the curable resin layer in the direction substantially perpendicular to the stretching direction due to the difference in the elongation at break by longitudinal stretching.
 すなわち、本発明に係る課題は、以下の手段により解決される。 That is, the problem according to the present invention is solved by the following means.
 1.熱可塑性樹脂支持体上に硬化性樹脂層を有する光制御フィルムであって、前記硬化性樹脂層の破断伸度が前記熱可塑性樹脂支持体の破断伸度より低く、かつ当該硬化性樹脂層上に物理的延伸により1~100μmの範囲内のピッチで形成・配設されたクレイズを有することを特徴とする光制御フィルム。 1. A light control film having a curable resin layer on a thermoplastic resin support, the rupture elongation of the curable resin layer being lower than the rupture elongation of the thermoplastic resin support, and on the curable resin layer And a light control film characterized by having crazes formed and disposed at a pitch in the range of 1 to 100 μm by physical stretching.
 2.前記硬化性樹脂層を構成する樹脂が、活性線硬化性樹脂であることを特徴とする前記第1項に記載の光制御フィルム。 2. 2. The light control film according to item 1, wherein the resin constituting the curable resin layer is an actinic radiation curable resin.
 3.熱可塑性樹脂支持体上にそれより破断伸度が低い硬化性樹脂層を設けた積層体を一軸延伸して、当該硬化性樹脂層上に延伸方向と略垂直方向に1~100μmの範囲内のピッチでクレイズを形成させることを特徴とする光制御フィルムの製造方法。 3. A laminate in which a curable resin layer having a lower breaking elongation is provided on a thermoplastic resin support is uniaxially stretched, and the curable resin layer has a range of 1 to 100 μm in a direction substantially perpendicular to the stretch direction. A method for producing a light control film, wherein crazes are formed at a pitch.
 本発明の上記手段により、機械的強度が強く、光学制御が容易な光制御フィルムと当該光制御フィルムを容易に製造できる製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a light control film having high mechanical strength and easy optical control and a production method capable of easily manufacturing the light control film.
熱可塑性樹脂支持体の製造装置の1つの実施形態を示す概略フローシートOutline flow sheet showing one embodiment of manufacturing apparatus for thermoplastic resin support 光学特性を評価する際の光学系を示す模式図Schematic diagram showing the optical system when evaluating optical characteristics 本発明の光制御フィルムのクレイズのレーザー顕微鏡観察写真の一例;当該写真において、白色部分は凸になっており硬化性樹脂層部分推測され、黒色部分は凹部分で熱可塑性樹脂のポリエチレンテレフタレート樹脂部分と推測される。An example of a photograph of the light control film of the present invention, which is observed with a laser microscope; in the photograph, the white part is convex and the curable resin layer part is estimated, and the black part is the concave part and the polyethylene terephthalate resin part of the thermoplastic resin It is guessed. クレイズ部分とその周辺を拡大して観察した電子顕微鏡写真An electron micrograph of the craze area and its surroundings
 本発明の光制御フィルム(以下において「クレイズフィルム」ともいう。)は、熱可塑性樹脂支持体上に硬化性樹脂層を有する光制御フィルムであって、前記硬化性樹脂層の破断伸度が前記熱可塑性樹脂支持体の破断伸度より低く、かつ当該硬化性樹脂層上に物理的延伸により1~100μmの範囲内のピッチで形成・配設されたクレイズを有することを特徴とする。この特徴は、請求項1から請求項3までの請求項に係る発明に共通する技術的特徴である。 The light control film of the present invention (hereinafter also referred to as “clay film”) is a light control film having a curable resin layer on a thermoplastic resin support, and the elongation at break of the curable resin layer is the above. It is characterized by having crazes formed and disposed at a pitch within a range of 1 to 100 μm by physical stretching on the curable resin layer, which is lower than the breaking elongation of the thermoplastic resin support. This feature is a technical feature common to the inventions according to claims 1 to 3.
 本発明の実施態様としては、本発明の効果を容易に発現させる観点から、前記硬化性樹脂層を構成する樹脂が、活性線硬化性樹脂であることが好ましい。 As an embodiment of the present invention, the resin constituting the curable resin layer is preferably an actinic radiation curable resin from the viewpoint of easily manifesting the effects of the present invention.
 また、当該光制御フィルムの製造方法としては、熱可塑性樹脂支持体上にそれより破断伸度が低い硬化性樹脂層を設けた積層体を縦延伸して、延伸方向と略直交方向に当該硬化性樹脂層上に1μm以上のピッチでクレイズを形成させる態様の製造方法であることを特徴とする。 Further, as a method for producing the light control film, a laminate in which a curable resin layer having a lower elongation at break is provided on a thermoplastic resin support is longitudinally stretched, and the cured in a direction substantially perpendicular to the stretching direction. It is the manufacturing method of the aspect which forms a craze with a pitch of 1 micrometer or more on a property resin layer.
 以下、本発明とその構成要素、及び発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the invention will be described in detail.
 (クレイズ)
 本願において、「クレイズ(craze)」とは、樹脂フィルムに形成される略直線状のひび、あるいは割れ目をいう。樹脂フィルムに形成されるひび或いは割れ目の壁面間に樹脂フィブリルが残存しているものを「クレイズ」(狭義)とし、この「クレイズ」(狭義)が広げられ樹脂フィブリルが残存していないものを「クラック」と区別していう場合もあるが、本願の「クレイズ」は、これらの「クレイズ」(狭義)及び「クラック」のいずれをも含む。
(Crays)
In the present application, “craze” refers to a substantially linear crack or crack formed in a resin film. The resin fibrils that remain between the cracks or cracks formed on the resin film are referred to as “crazes” (narrow sense), and the “crazes” (narrow sense) is expanded and no resin fibrils remain. The term “craze” in the present application includes both of “craze” (in a narrow sense) and “crack”.
 本発明の光制御フィルムは、硬化性樹脂層の破断伸度が熱可塑性樹脂支持体の破断伸度より低く、かつ当該硬化性樹脂層上に物理的延伸により1~100μmの範囲内のピッチで形成・配設されたクレイズを有することを特徴とする。 In the light control film of the present invention, the rupture elongation of the curable resin layer is lower than the rupture elongation of the thermoplastic resin support, and the pitch is in the range of 1 to 100 μm by physical stretching on the curable resin layer. It has a craze formed and arranged.
 ここで、「物理的延伸により形成・配設されたクレイズ」とは、特許文献2に開示されているような溶剤、及び/又は界面活性剤の溶液中にフィルムを所定の温度と時間で浸漬した後、ロールに巻き付けて歪みを与えるという化学的作用を利用する方法とは異なり、熱可塑性樹脂支持体上にそれより破断伸度が低い硬化性樹脂層を設けた積層体を一軸延伸の際の破断伸度の相違を利用して形成・配設されたクレイズをいう。 Here, “craze formed and arranged by physical stretching” means that the film is immersed in a solvent and / or surfactant solution as disclosed in Patent Document 2 at a predetermined temperature and time. Then, unlike a method using a chemical action of winding around a roll and applying a strain, a laminate having a curable resin layer having a lower elongation at break on a thermoplastic resin support is uniaxially stretched. This is a craze formed and arranged using the difference in elongation at break.
 クレイズの長さは硬化性樹脂層塗布幅同等以上であること、クレイズの幅が0.01~50μmであること、クレイズの深さが100nm~20μmであること、長さa(μm)と幅b(μm)の比a/bが1.5以上であることがそれぞれ好ましい。 The length of the craze is equal to or greater than the coating width of the curable resin layer, the width of the craze is 0.01 to 50 μm, the depth of the craze is 100 nm to 20 μm, and the length a (μm) and width It is preferable that the ratio a / b of b (μm) is 1.5 or more.
 さらに好ましくは、クレイズの方向のばらつきが±5度以内、クレイズの長さが6μm以上、クレイズの幅が0.05~40μm、クレイズの深さが1~10μm、長さa(μm)と幅b(μm)の比a/bが2.0以上であることである。 More preferably, the variation in the direction of the craze is within ± 5 degrees, the length of the craze is 6 μm or more, the width of the craze is 0.05 to 40 μm, the depth of the craze is 1 to 10 μm, the length a (μm) and the width The ratio a / b of b (μm) is 2.0 or more.
 なお、上記クレイズの形状のうち、深さ、幅は、クレイズ長手方向と直交する方向に一次元的に原子間力顕微鏡の針を走査させた際のプロファイルから特定することができる。 The depth and width of the craze shape can be specified from the profile obtained when the atomic force microscope needle is scanned one-dimensionally in a direction orthogonal to the craze longitudinal direction.
 当該光制御フィルムの製造方法としては、熱可塑性樹脂支持体上にそれより破断伸度が低い硬化性樹脂層を設けた積層体を一軸延伸して、延伸方向と略垂直方向に当該硬化性樹脂層上に1μm以上のピッチでクレイズを形成させる態様の製造方法であることを特徴とする。 The light control film is produced by uniaxially stretching a laminate in which a curable resin layer having a lower breaking elongation is provided on a thermoplastic resin support, and the curable resin in a direction substantially perpendicular to the stretching direction. It is a manufacturing method of the aspect which forms a craze with a pitch of 1 micrometer or more on a layer, It is characterized by the above-mentioned.
 ここで、「1~100μmの範囲内のピッチ」とは、個々のクレイズ間の間隔が1~100μmの範囲内であることをいう。好ましくは、1~80μmである。当該ピッチを1~100μmの範囲内で形成することで、種々の目的に応じた光制御を容易にすることができる。 Here, “a pitch within a range of 1 to 100 μm” means that an interval between individual crazes is within a range of 1 to 100 μm. Preferably, it is 1 to 80 μm. By forming the pitch within a range of 1 to 100 μm, light control according to various purposes can be facilitated.
 また、本願において、「延伸方向と略垂直方向」とは、延伸方向に対して90±5度の方向をいう。 Further, in the present application, “a direction substantially perpendicular to the stretching direction” refers to a direction of 90 ± 5 degrees with respect to the stretching direction.
 一軸延伸としては、縦、横一軸延伸があるが、好ましくは縦一軸延伸である。また、多段延伸であっても良い。一軸延伸においては、熱可塑性樹脂が延伸可能な温度付近で延伸することが好ましく、硬化性樹脂層破断直前付近の延伸条件が好ましく選択される。また、乾式、湿式延伸いずれも用いることができるが、好ましくは乾式延伸である。 As the uniaxial stretching, there are longitudinal and lateral uniaxial stretching, but longitudinal uniaxial stretching is preferable. Further, multistage stretching may be used. In uniaxial stretching, it is preferable to stretch near the temperature at which the thermoplastic resin can be stretched, and the stretching conditions in the vicinity immediately before the curable resin layer breakage are preferably selected. Further, both dry and wet stretching can be used, but dry stretching is preferred.
 フィルム内部におけるある方向に揃った屈折率の周期的な分布を得るためには、できるだけある方向にのみ張力がかかるような延伸であることが必要であり、二軸延伸では少なくとも二方向に張力が加わり、ある方向に揃った屈折率の周期的な分布を得ることが困難である。 In order to obtain a periodic distribution of the refractive index that is aligned in a certain direction inside the film, it is necessary to perform stretching so that tension is applied only in a certain direction as much as possible. In biaxial stretching, tension is at least in two directions. In addition, it is difficult to obtain a periodic distribution of refractive indexes aligned in a certain direction.
 本発明においては、前述したクレイズが硬化性樹脂層に形成されればよく、硬化性樹脂層のガラス転移点温度をTg(℃)とした場合、延伸温度D(℃)がTg-40≦D≦Tg+20であり、ネックイン率が25%以上70%以下となる延伸条件を用いることが好ましい。ここでいう「ネックイン率」とは、層厚の変化で定義するものとされ、延伸前の層厚をA、延伸後の膜厚をBとした場合、100×(A-B)/A(%)で表すものとする。多段延伸である場合にはすべての加熱延伸ゾーンで上記延伸温度であり、延伸終了後に上記ネックイン率となることが好ましい。 In the present invention, it is sufficient that the above-described craze is formed on the curable resin layer. When the glass transition temperature of the curable resin layer is Tg (° C.), the stretching temperature D (° C.) is Tg−40 ≦ D. ≦ Tg + 20, and it is preferable to use a stretching condition in which the neck-in rate is 25% or more and 70% or less. The “neck-in rate” here is defined as a change in layer thickness. When the layer thickness before stretching is A and the film thickness after stretching is B, 100 × (AB) / A (%). In the case of multi-stage stretching, it is preferable that the heating temperature is the above-described stretching temperature in all heating stretching zones, and the neck-in ratio is reached after the stretching is completed.
 なお、本願において、長手方向とは、支持体(フィルム)の連続製膜方向を指し、製膜方向、縦方向、MD方向とも称する。また、幅方向とは、長手方向と直交方向を指し、横方向、TD方向とも称する。 In addition, in this application, a longitudinal direction refers to the continuous film forming direction of a support body (film), and is also called a film forming direction, a vertical direction, and MD direction. Further, the width direction refers to a direction orthogonal to the longitudinal direction, and is also referred to as a horizontal direction or a TD direction.
 本発明において、硬化性樹脂層にクレイズを形成・配列するピッチ(間隔)は、延伸倍率により調整する。さらに、クレイズの深さは硬化性樹脂の膜厚で調整することができる。クレイズの幅に関しては、硬化性樹脂層の塗布幅で均一になるために、幅の調整も容易である。 In the present invention, the pitch (interval) for forming and arranging crazes in the curable resin layer is adjusted by the draw ratio. Furthermore, the depth of craze can be adjusted with the film thickness of curable resin. Regarding the width of the craze, since the coating width of the curable resin layer becomes uniform, the width can be easily adjusted.
 (熱可塑性樹脂支持体)
 本発明の光制御フィルムは、支持体の主体的構成素材として、熱可塑性樹脂を含有する熱可塑性樹脂支持体を用いることを特徴とする。
(Thermoplastic resin support)
The light control film of the present invention is characterized by using a thermoplastic resin support containing a thermoplastic resin as a main constituent material of the support.
 ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。 Here, "thermoplastic resin" refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into the desired shape.
 熱可塑性樹脂としては、一般的汎用樹脂としては、セルロースエステル、ポリエチレン(PE)、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)等を用いることができる。 General thermoplastic resins include cellulose esters, polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene. (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), or the like can be used.
 また、強度や壊れにくさを特に要求される場合、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、環状ポリオレフィン(COP)等を用いることができる。 When strength and resistance to breakage are particularly required, polyamide (PA), nylon, polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), polybutylene terephthalate (PBT) ), Polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cyclic polyolefin (COP), and the like.
 さらに高い熱変形温度と長期使用できる特性を要求される場合は、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。 If higher heat distortion temperature and long-term use characteristics are required, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, amorphous polyarylate, liquid crystal polymer, polyetherether A ketone, thermoplastic polyimide (PI), polyamideimide (PAI), or the like can be used.
 なお、本発明においては、硬化性樹脂層の破断伸度が熱可塑性樹脂支持体の破断伸度より低いことを特徴とすることから、当該熱可塑性樹脂支持体は、硬化性樹脂層の破断伸度を考慮して選択することを要する。 In the present invention, since the rupture elongation of the curable resin layer is lower than the rupture elongation of the thermoplastic resin support, the thermoplastic resin support is the rupture elongation of the curable resin layer. It is necessary to select in consideration of the degree.
 この点に関しては、JIS-K7127-1999に準拠した測定において、当該熱可塑性樹脂支持体の少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。 In this regard, in the measurement based on JIS-K7127-1999, the elongation at break in at least one direction of the thermoplastic resin support is preferably 10% or more, more preferably 20% or more.
 破断伸度がこの範囲内であれば、フィルム上状持体の製造工程において、フィルムが各工程を通過する時、所定サイズへのスリット時、切り抜き時、クレイズ付与時における支持体フィルムの割れや欠けを良好に防ぐことができる。 If the elongation at break is within this range, in the manufacturing process of the film upper support, when the film passes through each step, when slitting to a predetermined size, when cutting, when cracking is applied, Chipping can be prevented well.
 また、破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 Further, the upper limit of the elongation at break is not particularly limited, but in reality it is about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 なお、上記要件を考慮に入れた上で、本発明の用途にそって樹脂の種類、分子量の組み合わせを行うことが可能である。 In addition, it is possible to combine the kind of resin and the molecular weight in accordance with the use of the present invention in consideration of the above requirements.
 支持体の厚さは、20μm以上であることが好ましい。より好ましくは30μm以上である。 The thickness of the support is preferably 20 μm or more. More preferably, it is 30 μm or more.
 厚さの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚さは用途により適宜選定することができる。 The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying, and the like. In addition, the thickness of a film can be suitably selected according to a use.
 支持体は、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。 The support preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
 以下、本発明において、特に好適な樹脂について詳細な説明をする。 Hereinafter, a particularly suitable resin in the present invention will be described in detail.
 〈セルロースエステル樹脂〉
 本発明に用いることができるセルロースエステル樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも一種であることが好ましい。
<Cellulose ester resin>
The cellulose ester resin that can be used in the present invention is selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. At least one kind is preferred.
 これらの中で特に好ましいセルロースエステルは、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。 Among these, particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
 混合脂肪酸エステルの置換度として、さらに好ましいセルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。 As the substitution degree of the mixed fatty acid ester, more preferable cellulose acetate propionate and lower fatty acid ester of cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, and the substitution degree of the acetyl group is X. When the substitution degree of propionyl group or butyryl group is Y, it is preferably a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II).
 式(I)  2.6≦X+Y≦3.0
 式(II)  1.0≦X≦2.5
 この内特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5であり、0.1≦Y≦0.9であることが好ましい。上記アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することができる。
Formula (I) 2.6 ≦ X + Y ≦ 3.0
Formula (II) 1.0 ≦ X ≦ 2.5
Of these, cellulose acetate propionate is particularly preferably used. Among them, 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9 are preferable. The part not substituted with the acyl group is usually present as a hydroxyl group. These can be synthesized by known methods.
 さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5~5.5のものが好ましく用いられ、特に好ましくは2.0~5.0であり、さらに好ましくは2.5~5.0であり、さらに好ましくは3.0~5.0のセルロースエステルが好ましく用いられる。 Further, the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (conifer): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 本発明において、セルロースエステル樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌した時のpHが6~7、電気伝導度が1~100μS/cmであることが好ましい。 In the present invention, 1 g of cellulose ester resin is added to 20 ml of pure water (electric conductivity 0.1 μS / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 μS / cm.
 〈アクリル樹脂〉
 本発明に用いることができるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
<acrylic resin>
The acrylic resin that can be used in the present invention includes a methacrylic resin. The resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは二種以上を併用して用いることができる。 Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Saturated acids, maleic acids, fumaric acids, divalent carboxylic acids containing unsaturated groups such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.
 アクリル樹脂は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が80000~1000000であることが好ましい。この分子量とすることで、耐熱性と脆性の両立を図ることができる。 The acrylic resin preferably has a weight average molecular weight (Mw) of 80,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when the film is produced. With this molecular weight, both heat resistance and brittleness can be achieved.
 なお、アクリル樹脂等の樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。 The weight average molecular weight of a resin such as an acrylic resin can be measured by gel permeation chromatography. The measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃、塊状又は溶液重合では80~160℃で実施しうる。さらに、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The method for producing the acrylic resin is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. Furthermore, in order to control the reduced viscosity of the produced copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 アクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。 Commercially available acrylic resins can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
 〈環状オレフィン樹脂〉
 本発明においては、環状オレフィン樹脂を用いることも好ましい。環状オレフィン樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
<Cyclic olefin resin>
In the present invention, it is also preferable to use a cyclic olefin resin. Examples of the cyclic olefin resin include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. An addition polymer of a monomer having a monomer, an addition copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof.
 これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。 Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。 Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類及びその誘導体、シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエン及びその誘導体などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
 ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers capable of addition copolymerization with these A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる光学フィルムを得ることができる。 Among norbornene-based resins, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units. , 9-diyl-ethylene structure, the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60. By using such a resin, it is possible to obtain an optical film that has no dimensional change in the long term and is excellent in stability of optical characteristics.
 本発明に用いる環状オレフィン樹脂の分子量は使用目的に応じて適宜選定される。溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常20,000~150,000である。好ましくは25,000~100,000、より好ましくは30,000~80,000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成型加工性とが高度にバランスされ好適である。 The molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use. Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
 環状オレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよい。耐久性及び延伸加工性の観点から、好ましくは130~160℃、より好ましくは135~150℃の範囲である。 The glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretchability, it is preferably in the range of 130 to 160 ° C, more preferably 135 to 150 ° C.
 環状オレフィン樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、緩和時間、生産性等の観点から、1.2~3.5、好ましくは1.5~3.0、さらに好ましくは1.8~2.7である。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is 1.2 to 3.5, preferably 1.5 to 3.0, from the viewpoint of relaxation time, productivity and the like. More preferably, it is 1.8 to 2.7.
 本発明に用いる環状オレフィン樹脂は、光弾性係数の絶対値が10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。 The cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 × 10 −12 Pa −1 or less, more preferably 7 × 10 −12 Pa −1 or less, and more preferably 4 × 10 12 It is particularly preferably −12 Pa −1 or less. The photoelastic coefficient C is a value represented by C = Δn / σ where birefringence is Δn and stress is σ.
 本発明において、環状オレフィン樹脂には、実質的に粒子を含まないことが好ましい。ここで、実質的に粒子を含まないとは、環状オレフィン樹脂からなるフィルムへ粒子を添加しても、未添加状態からのヘイズの上昇巾が0.05%以下の範囲である量までは許容できることを意味する。特に、脂環式ポリオレフィン樹脂は、多くの有機粒子や無機粒子との親和性に欠けるため、上記範囲を超えた粒子を添加した環状オレフィン樹脂フィルムを延伸すると、空隙が発生しやすく、その結果として、ヘイズの著しい低下が生じるおそれがある。 In the present invention, it is preferable that the cyclic olefin resin does not substantially contain particles. Here, “substantially free of particles” means that even if particles are added to a film made of a cyclic olefin resin, the amount of increase in haze from the non-added state is allowed to be in the range of 0.05% or less. Means you can. In particular, the alicyclic polyolefin resin lacks affinity with many organic particles and inorganic particles. Therefore, when a cyclic olefin resin film to which particles exceeding the above range are added is stretched, voids are easily generated, and as a result, There is a risk that a significant decrease in haze occurs.
 〈ポリカーボネート樹脂〉
 本発明では、種々の公知のポリカーボネート樹脂も使用することができる。本発明においては、特に芳香族ポリカーボネートを用いることが好ましい。当該芳香族ポリカーボネートについて特に制約はなく、所望するフィルムの諸特性が得られる芳香族ポリカーボネートであれば特に制約はない。
<Polycarbonate resin>
In the present invention, various known polycarbonate resins can also be used. In the present invention, it is particularly preferable to use an aromatic polycarbonate. There is no restriction | limiting in particular about the said aromatic polycarbonate, and there will be no restriction | limiting in particular if it is an aromatic polycarbonate from which the various characteristics of a desired film are acquired.
 一般に,ポリカーボネートと総称される高分子材料は,その合成手法において重縮合反応が用いられて,主鎖が炭酸結合で結ばれているものを総称するが,これらの内でも,一般に,フェノール誘導体と、ホスゲン、ジフェニルカーボネートらから重縮合で得られるものを意味する。通常、ビスフェノール-Aと呼称されている2,2-ビス(4-ヒドロキシフェニル)プロパンをビスフェノール成分とする繰り返し単位で表される芳香族ポリカーボネートが好ましく選ばれるが,適宜各種ビスフェノール誘導体を選択することで,芳香族ポリカーボネート共重合体を構成することができる。 In general, a polymer material generally called polycarbonate is a generic name of a polymer material in which a polycondensation reaction is used in the synthesis method and the main chain is linked by a carbonic acid bond. , Phosgene, diphenyl carbonate and the like obtained by polycondensation. Usually, an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected. Various bisphenol derivatives should be selected as appropriate. Thus, an aromatic polycarbonate copolymer can be formed.
 かかる共重合成分としてこのビスフェノール-A以外に,ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)-2-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)サルファイド、ビス(4-ヒドロキシフェニル)スルホン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等を挙げることができる。 In addition to this bisphenol-A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
 また、一部にテレフルタル酸及び/又はイソフタル酸成分を含む芳香族ポリエステルカーボネートを使用することも可能である。このような構成単位をビスフェノール-Aからなる芳香族ポリカーボネートの構成成分の一部に使用することにより芳香族ポリカーボネートの性質、例えば耐熱性、溶解性を改良することができるが,このような共重合体についても本発明は有効である。 It is also possible to use an aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components. By using such a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved. The present invention is also effective for coalescence.
 ここで用いられる芳香族ポリカーボネートの粘度平均分子量は、10000以上、200000以下であれば好適に用いられる。粘度平均分子量20000~120000が特に好ましい。粘度平均分子量が10000より低い樹脂を使用すると得られるフィルムの機械的強度が不足する場合があり,また400000以上の高分子量になるとドープの粘度が大きくなり過ぎ取扱い上問題を生じるので好ましくない。粘度平均分子量は市販の高速液体クロマトグラフィ等で測定することができる。 The viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000. A viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. If a resin having a viscosity average molecular weight lower than 10,000 is used, the mechanical strength of the obtained film may be insufficient, and if it has a high molecular weight of 400000 or more, the viscosity of the dope becomes too high, which causes problems in handling. The viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
 本発明に係る芳香族ポリカーボネートのガラス転移温度は200℃以上であることが高耐熱性のフィルムを得る上で好ましく、より好ましくは230℃以上である。これらは、上記共重合成分を適宜選択して得ることができる。ガラス転移温度は、DSC装置(示差走査熱量分析装置)にて測定することができ、例えばセイコー電子工業株式会社製:RDC220にて、10℃/分の昇温条件によって求められる、ベースラインが偏奇し始める温度である。 The glass transition temperature of the aromatic polycarbonate according to the present invention is preferably 200 ° C. or higher in order to obtain a highly heat-resistant film, and more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component. The glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetric analyzer). For example, the baseline is unevenly determined by a temperature rising condition of 10 ° C./min with RDC220 manufactured by Seiko Instruments Inc. It is the temperature that begins to do.
 本発明において、上記芳香族ポリカーボネートを含むドープ組成物に用いる溶媒は、メチレンクロライド、及び炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールを4~14質量部含有する混合溶媒であることが好ましい。 In the present invention, the solvent used in the dope composition containing the aromatic polycarbonate is a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms. It is preferable.
 上記炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールの混合量は、好ましくは4~12質量部である。このような混合溶媒を用い、従来よりも高い残留溶媒濃度でウェブを剥離することにより、ウェブ剥離時の強い静電気の発生を抑制し、これによりベルトが損傷したり、フィルムのスジやムラ、微小傷の発生を防止することができる。 The mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass. By using such a mixed solvent, the web is peeled off at a higher residual solvent concentration than before, thereby suppressing the generation of strong static electricity when the web is peeled off, thereby causing damage to the belt, film streaks, unevenness, and minuteness. Scratches can be prevented from occurring.
 加えるアルコールの種類は用いる溶媒により制限される。アルコールと当該溶媒とが相溶性があることが必要条件である。これらは単独で加えても良いし、二種類以上組み合わせても問題ない。本発明におけるアルコールとしては、炭素数1~6、好ましくは1~4、より好ましくは2~4の鎖状、或いは分岐した脂肪族アルコールが好ましい。具体的にはメタノール、エタノール、イソプロパノール、ターシャリ-ブタノールなどが挙げられる。これらのうちエタノール、イソプロパノール、ターシャリ-ブタノールはほぼ同等の効果が得られるが、メタノールはやや効果が低い。理由は明らかでないが溶媒の沸点、即ち乾燥時の飛び易さが関係しているものと推測している。それ以上の高級アルコールは、高沸点であるためフィルム製膜後も残留しやすくなるので好ましくない。 The type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more. The alcohol in the present invention is preferably a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms. Specific examples include methanol, ethanol, isopropanol, and tert-butanol. Of these, ethanol, isopropanol, and tertiary-butanol can achieve almost the same effect, but methanol is slightly less effective. Although the reason is not clear, it is presumed that the boiling point of the solvent, that is, the ease of flying during drying is related. Higher alcohols higher than that are not preferred because they have a high boiling point and are likely to remain after film formation.
 アルコールの添加量は慎重に選択されなければならない。これらのアルコールは芳香族ポリカーボネートに対する溶解性には全く乏しく、完全な貧溶媒である。従ってあまり多く加えることはできず、満足すべき剥離性が得られる最少量とすべきである。前述したようにメチレンクロライドに対して4~14質量部、好ましくは4~12質量部である。メチレンクロライド量に対しては、添加量が4~14質量部の範囲であると、当該溶媒のポリマーに対する溶解性、ドープ安定性が向上し、剥離性改善の効果が大きくなる。 The amount of alcohol to be added must be carefully selected. These alcohols are completely poor in solubility in aromatic polycarbonate and are completely poor solvents. Therefore, it cannot be added too much, and should be the minimum amount that provides satisfactory peelability. As described above, it is 4 to 14 parts by mass, preferably 4 to 12 parts by mass with respect to methylene chloride. When the addition amount is in the range of 4 to 14 parts by mass with respect to the amount of methylene chloride, the solubility of the solvent in the polymer and the dope stability are improved, and the effect of improving the peelability is increased.
 本発明はドープ組成物中、上記メチレンクロライドと脂肪族アルコールで構成されるが、他の溶媒を使用することもできる。その他残りの溶媒としては芳香族ポリカーボネートを高濃度に溶解し、かつアルコールと相溶性があること、さらに低沸点溶媒であれば特に限定はない。例えば、芳香族ポリカーボネートに対して溶解力のある溶媒として、塩化メチレン以外にクロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼンなどのハロゲン系溶媒、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル系の溶媒、シクロヘキサノン等のケトン系の溶媒が挙げられる。 The present invention is composed of the above methylene chloride and aliphatic alcohol in the dope composition, but other solvents can also be used. The remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and is a low-boiling solvent. For example, as a solvent having a solubility in aromatic polycarbonate, in addition to methylene chloride, halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
 他の溶媒を使用する場合は特に限定はなく、効果を勘案して用いればよい。ここでいう効果とは、溶解性や安定性を犠牲にしない範囲で溶媒を混合することによる、たとえば溶液流延法により製膜したフィルムの表面性の改善(レベリング効果)、蒸発速度や系の粘度調節、結晶化抑制効果などである。これらの効果の度合により混合する溶媒の種類や添加量を決定すればよく、また混合する溶媒として一種又は二種以上用いてもかまわない。 When using other solvents, there is no particular limitation, and the effect may be taken into consideration. The effects here include mixing the solvent without sacrificing solubility and stability, for example, improving the surface properties of the film formed by the solution casting method (leveling effect), evaporation rate and system These include viscosity adjustment and crystallization suppression effects. What is necessary is just to determine the kind and addition amount of the solvent to mix by the degree of these effects, and you may use 1 type, or 2 or more types as a solvent to mix.
 好適に用いられる他の溶媒としてはクロロホルム、1,2-ジクロロエタンなどのハロゲン系溶媒、トルエン、キシレンなどの炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチル、酢酸ブチルなどのエステル系溶媒、エチレングリコールジメチルエーテル、メトキシエチルアセテートなどのエーテル系溶媒が挙げられる。 Other solvents preferably used include halogen solvents such as chloroform and 1,2-dichloroethane, hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and butyl acetate. Examples include ester solvents, ether solvents such as ethylene glycol dimethyl ether and methoxyethyl acetate.
 本発明に係るドープ組成物は、結果としてヘイズの低い透明な溶液が得られればいかなる方法で調製してもよい。あらかじめある溶媒に溶解させた芳香族ポリカーボネート溶液に、アルコールを所定量添加してもよいし、アルコールを含む混合溶媒に芳香族ポリカーボネートを溶解させてもよい。ただ先にも述べた様にアルコールは貧溶媒であるため、前者の後から添加する方法ではポリマーの析出によるドープ白濁の可能性があるため、後者の混合溶媒に溶解させる方法が好ましい。 The dope composition according to the present invention may be prepared by any method as long as a transparent solution with low haze is obtained as a result. A predetermined amount of alcohol may be added to the aromatic polycarbonate solution dissolved in a certain solvent in advance, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol. However, as described above, since alcohol is a poor solvent, the method of adding the latter after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
 〈ポリエステル樹脂〉
 本発明において用いることができるポリエステル樹脂は、ジカルボン酸とジオールを重合することにより得られ、ジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の70%以上が芳香族ジカルボン酸に由来し、かつジオール構成単位(ジオールに由来する構成単位)の70%以上が脂肪族ジオールに由来する。
<Polyester resin>
The polyester resin that can be used in the present invention is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of dicarboxylic acid structural units (constituent units derived from dicarboxylic acid) are derived from aromatic dicarboxylic acid, and 70% or more of the diol constituent units (constituent units derived from the diol) are derived from the aliphatic diol.
 芳香族ジカルボン酸に由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。 The proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
 脂肪族ジオールに由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。ポリエステル樹脂は、二種以上を併用してもよい。 The proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
 前記芳香族ジカルボン酸として、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and the like, 4,4′-biphenyldicarboxylic acid 3,4′-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
 ポリエステル樹脂には本発明の目的を損なわない範囲でアジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸や安息香酸、プロピオン酸、酪酸等のモノカルボン酸を用いることができる。 As the polyester resin, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
 前記脂肪族ジオールとして、エチレングリコール、1,3-プロピレンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
 ポリエステル樹脂には本発明の目的を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類を用いることもできる。 As the polyester resin, monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
 ポリエステル樹脂の製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル樹脂の製造時に使用する重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物、酢酸チタン等のチタン化合物、塩化アルミニウム等のアルミニウム化合物等が例示できるが、これらに限定されない。 A known esterification method or transesterification method can be applied to the production of the polyester resin. Examples of polycondensation catalysts used in the production of polyester resins include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
 好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリエチレン-2,6-ナフタレンジカルボキレート樹脂、ポリエチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合樹脂、ポリエチレン-テレフタレート-4,4’-ビフェニルジカルボキシレート樹脂、ポリ-1,3-プロピレン-テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン-2,6-ナフタレンジカルボキシレート樹脂等がある。 Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4′-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
 より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン-2,6-ナフタレンジカルボキシレート樹脂が挙げられる。 More preferable polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
 ポリエステル樹脂の固有粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比混合溶媒中、25℃で測定した値)は、0.7~2.0dl/gが好ましく、より好ましくは0.8~1.5dl/gである。固有粘度が0.7以上であるとポリエステル樹脂の分子量が充分に高いために、これを使用して得られるポリエステル樹脂組成物からなる成形物が成形物として必要な機械的性質を有すると共に、透明性が良好となる。固有粘度が2.0以下の場合、成形性が良好となる。 The intrinsic viscosity of the polyester resin (phenol / 1,1,2,2-tetrachloroethane = value measured at 25 ° C. in a 60/40 mass ratio mixed solvent) is preferably 0.7 to 2.0 dl / g, more Preferably, it is 0.8 to 1.5 dl / g. Since the molecular weight of the polyester resin is sufficiently high when the intrinsic viscosity is 0.7 or more, the molded product comprising the polyester resin composition obtained by using the polyester resin has mechanical properties necessary for the molded product and is transparent. Property is improved. When the intrinsic viscosity is 2.0 or less, the moldability is good.
 (硬化性樹脂層)
 本発明に係る硬化性樹脂層は、バインダー成分として、活性線硬化性樹脂又は熱硬化性樹脂を含有する。本発明においては、活性線硬化性樹脂が好ましい。ここで、「活性線硬化性樹脂」とは、紫外線や電子線のような活性線(「活性エネルギー線」ともいう。)照射により、架橋反応を経て硬化する樹脂を主たる成分とする樹脂をいう。
(Curable resin layer)
The curable resin layer according to the present invention contains an actinic ray curable resin or a thermosetting resin as a binder component. In the present invention, an actinic radiation curable resin is preferable. Here, the “active ray curable resin” refers to a resin whose main component is a resin that is cured through a crosslinking reaction upon irradiation with active rays such as ultraviolet rays and electron beams (also referred to as “active energy rays”). .
 なお、本発明においては、硬化性樹脂層の破断伸度が熱可塑性樹脂支持体の破断伸度より低いことを特徴とすることから、当該硬化性樹脂層は熱可塑性樹脂支持体の破断伸度を考慮して調整することを要する。 In the present invention, since the breaking elongation of the curable resin layer is lower than the breaking elongation of the thermoplastic resin support, the curable resin layer has a breaking elongation of the thermoplastic resin support. Adjustment is required.
 この点に関しては、JIS-K7127-1999に準拠した測定において、当該熱可塑性樹脂支持体の少なくとも一方向の破断伸度が、10%未満であることが好ましい。 In this regard, it is preferable that the elongation at break in at least one direction of the thermoplastic resin support is less than 10% in the measurement according to JIS-K7127-1999.
 〈活性線硬化性樹脂〉
 活性線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化性樹脂層が形成される。活性線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に二個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソボロニルアクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独又は二種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
<Actinic radiation curable resin>
As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the actinic radiation curable resin layer is cured by irradiation with actinic radiation such as ultraviolet rays or electron beams. It is formed. Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by ultraviolet irradiation has excellent mechanical film strength (abrasion resistance, pencil hardness). To preferred. As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred. As the ultraviolet curable acrylate resin, a polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerol triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Lithol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate Acrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, isobornyl acrylate and the like preferably. These compounds are used alone or in combination of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient.
 また、硬化性樹脂層には活性線硬化性樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化性樹脂=20:100~0.01:100で含有することが好ましい。 In addition, the curable resin layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active radiation curable resin = 20: 100 to 0.01: 100.
 光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
 〈溶媒〉
 本発明に係る硬化性樹脂層を塗布して形成する際の塗布組成物には、溶媒として、前記熱可塑性樹脂に対する良溶媒、及び前記熱可塑性樹脂に対する貧溶媒からなる混合溶媒が用いられることが好ましい。ここで、良溶媒及び貧溶媒とは、以下に示す方法で測定した溶解性を有する溶媒を指す。
<solvent>
In the coating composition when the curable resin layer according to the present invention is applied and formed, a mixed solvent composed of a good solvent for the thermoplastic resin and a poor solvent for the thermoplastic resin is used as a solvent. preferable. Here, the good solvent and the poor solvent refer to solvents having solubility measured by the following method.
 前記熱可塑性樹脂の固形分3g相当に、溶解性を測定しようとする溶媒を全量が20gになるように加え、温度25℃にてかきまぜた場合に、均一で透明性を有し、粘度変化がなく相溶したものを、該試料に対し良溶媒であるとし、一方、にごりが認められたり、増粘、分離が認められたものを、該試料に対し貧溶媒であるとする。 When a solvent whose solubility is to be measured is added to a solid content of 3 g corresponding to 3 g of the thermoplastic resin so that the total amount is 20 g and stirred at a temperature of 25 ° C., it is uniform and transparent and has a viscosity change. Those that are compatible with each other are considered to be good solvents for the sample, while those that are found to be dusty, thickened, or separated are considered to be poor solvents for the sample.
 熱可塑性樹脂が、例えばポリエステル系樹脂又はポリエステルウレタン系樹脂である場合、良溶媒としては、トルエン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトン、酢酸エチル、テトラヒドロフランなどを例示することができる。一方、貧溶媒としては、キシレン、エチルセロソルブ、プロピレングリコールモノメチルエーテル、イソブタノール、イソプロパノール、エタノール、メタノール、ヘキサン、精製水などを例示することができる。また、熱可塑性樹脂がアクリル系樹脂である場合、良溶媒としては、トルエン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトン、酢酸エチル、テトラヒドロフラン、キシレンなどを例示することができる。一方、貧溶媒としては、エチルセロソルブ、プロピレングリコールモノメチルエーテル、イソブタノール、イソプロパノール、エタノール、メタノール、ヘキサン、精製水などを例示することができる。なお、前記の良溶媒、及び精製水を除く貧溶媒は、いずれも、通常用いられる活性線硬化性樹脂に対して、良溶媒である。 When the thermoplastic resin is, for example, a polyester resin or a polyester urethane resin, examples of the good solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, ethyl acetate, and tetrahydrofuran. On the other hand, examples of the poor solvent include xylene, ethyl cellosolve, propylene glycol monomethyl ether, isobutanol, isopropanol, ethanol, methanol, hexane, and purified water. When the thermoplastic resin is an acrylic resin, examples of the good solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, ethyl acetate, tetrahydrofuran, xylene, and the like. On the other hand, examples of the poor solvent include ethyl cellosolve, propylene glycol monomethyl ether, isobutanol, isopropanol, ethanol, methanol, hexane, and purified water. The good solvent and the poor solvent other than purified water are good solvents for the commonly used actinic radiation curable resins.
 本発明においては、熱可塑性樹脂に対して良溶媒及び貧溶媒は、ともに一種を単独で用いてもよいし、二種以上を混合して用いてもよい。 In the present invention, the good solvent and the poor solvent may be used alone or in combination of two or more with respect to the thermoplastic resin.
 また、本発明に係る硬化性樹脂層には、無機化合物又は有機化合物の微粒子を含有してもよい。 Moreover, the curable resin layer according to the present invention may contain fine particles of an inorganic compound or an organic compound.
 (微粒子〉
 無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。
(Fine particles)
As inorganic fine particles, silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
 これら無機微粒子は、フィルムの透明性を維持しつつ耐擦傷性が向上することから、表面の一部に反応性官能基を有する有機成分が被覆されたものが好ましい。表面の一部に反応性官能基を有する有機成分を被覆する方法としては、例えば、金属酸化物微粒子の表面に存在する水酸基にシランカップリング剤等の有機成分を含む化合物が反応して、表面の一部に有機成分が結合した態様、金属酸化物微粒子の表面に存在する水酸基に水素結合等の相互作用により有機成分を付着させた態様や、ポリマー粒子中に一個又は二個以上の無機微粒子を含有する態様などが挙げられる。 These inorganic fine particles are preferably coated with an organic component having a reactive functional group on a part of the surface, since the scratch resistance is improved while maintaining the transparency of the film. As a method for coating an organic component having a reactive functional group on a part of the surface, for example, a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the metal oxide fine particles, and the surface A mode in which an organic component is bonded to a part of the metal particle, a mode in which an organic component is attached to a hydroxyl group present on the surface of a metal oxide fine particle by an interaction such as a hydrogen bond, or one or more inorganic fine particles The aspect etc. which contain are mentioned.
 また、有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、又はポリ弗化エチレン系樹脂粉末等を添加することができる。 Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, and melamine resin. Powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluoroethylene resin powder, or the like can be added.
 好ましい微粒子は、架橋ポリスチレン粒子(例えば、綜研化学製SX-130H、SX-200H、SX-350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)、フッ素含有アクリル樹脂微粒子が挙げられる。フッ素含有アクリル樹脂微粒子としては、例えば日本ペイント製:FS-701等の市販品が挙げられる。また、アクリル粒子として、例えば日本ペイント製:S-4000、アクリル-スチレン粒子として、例えば日本ペイント製:S-1200、MG-251等が挙げられる。 Preferred fine particles include crosslinked polystyrene particles (for example, SX-130H, SX-200H, SX-350H manufactured by Soken Chemical), polymethyl methacrylate-based particles (for example, MX150, MX300 manufactured by Soken Chemical), and fluorine-containing acrylic resin fine particles. . Examples of the fluorine-containing acrylic resin fine particles include commercially available products such as FS-701 manufactured by Nippon Paint. Examples of the acrylic particles include Nippon Paint: S-4000, and examples of the acrylic-styrene particles include Nippon Paint: S-1200, MG-251.
 これらの微粒子粉末の平均粒子径は特に制限されないが、0.01~5μmが好ましく、さらには、0.01~1.0μmであることが特に好ましい。また、粒径の異なる二種以上の微粒子を含有しても良い。微粒子の平均粒子径は、例えばレーザー回折式粒度分布測定装置により測定することができる。 The average particle diameter of these fine particle powders is not particularly limited, but is preferably 0.01 to 5 μm, and more preferably 0.01 to 1.0 μm. Moreover, you may contain 2 or more types of microparticles | fine-particles from which a particle size differs. The average particle diameter of the fine particles can be measured by, for example, a laser diffraction particle size distribution measuring device.
 紫外線硬化樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、1~400質量部となるように配合することが望ましく、さらに望ましくは、50~200質量部である。 The proportion of the ultraviolet curable resin composition and the fine particles is desirably 1 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the resin composition.
 本発明に係る硬化性樹脂層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、ハードコート層を形成する塗布組成物を塗布し、塗布後、加熱乾燥し、UV硬化処理することで形成できる。 The curable resin layer according to the present invention is applied by applying a coating composition for forming a hard coat layer using a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an inkjet method. Thereafter, it can be formed by heat drying and UV curing.
 塗布量はウェット層厚として0.1~40μmが適当で、好ましくは、0.5~30μmである。また、ドライ層厚としては平均層厚0.1~30μm、好ましくは1~20μm、特に好ましくは6~15μmである。 The coating amount is suitably 0.1 to 40 μm, preferably 0.5 to 30 μm as the wet layer thickness. The dry layer thickness is an average layer thickness of 0.1 to 30 μm, preferably 1 to 20 μm, particularly preferably 6 to 15 μm.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5~500mJ/cm、好ましくは5~200mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 200 mJ / cm 2 .
 また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は二軸方向に張力を付与してもよい。これによってさらに平面性の優れたフィルムを得ることができる。 Further, when irradiating active rays, it is preferably performed while applying tension in the film transport direction, more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying tension is not particularly limited, and tension may be applied in the conveying direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.
 硬化性樹脂層には、帯電防止性を付与するために導電剤を含んでも良く、好ましい導電剤としては、金属酸化物粒子又はπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。 The curable resin layer may contain a conductive agent in order to impart antistatic properties, and preferred conductive agents include metal oxide particles or π-conjugated conductive polymers. An ionic liquid is also preferably used as the conductive compound.
 また、硬化性樹脂層には、塗布性の観点、及び微粒子の均一な分散性の観点から、シリコーン系界面活性剤、フッ素系界面活性剤或いはポリオキシエーテル等の非イオン性界面活性剤、アニオン界面活性剤等を含有させることもできる。これらは塗布性を高める。また、これら成分は、塗布液中の固形分成分に対し、0.01~3質量%の範囲で添加することが好ましい。 In addition, the curable resin layer has a nonionic surfactant such as a silicone surfactant, a fluorosurfactant or a polyoxyether, an anion from the viewpoint of coating properties and the uniform dispersibility of fine particles. A surfactant or the like can also be contained. These enhance the applicability. Further, these components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.
 〈その他添加剤〉
 本発明に係る熱可塑性樹脂支持体上及び硬化性樹脂層には、目的に応じて種々の化合物等を添加剤として含有させることができる。例えば、可塑剤、酸化防止剤、酸捕捉剤、光安定剤、紫外線吸収剤、光学異方性制御剤、マット剤、帯電防止剤、剥離剤、等を含有させることができる。
<Other additives>
The thermoplastic resin support and the curable resin layer according to the present invention can contain various compounds as additives depending on the purpose. For example, a plasticizer, an antioxidant, an acid scavenger, a light stabilizer, an ultraviolet absorber, an optical anisotropy control agent, a matting agent, an antistatic agent, a release agent, and the like can be contained.
 前記添加剤の中で、本発明に有効に寄与するのは光学異方性制御剤であり、特にリターデーション上昇剤が光学的に複屈折性を本願目的の平面から斜め方向に発現し易くするため好ましい。リターデーション上昇剤は、少なくとも二つの芳香族環を有する芳香族化合物が好ましい。芳香族化合物は、樹脂の100質量部に対して、0.01~20質量部の範囲で使用することが好ましい。そして、0.05~15質量部の範囲で使用することが好ましく、0.1~10質量部の範囲で使用することがさらに好ましい。二種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環及び1,3,5-トリアジン環が含まれる。これらについては、特開2004-109410号、特開2003-344655号、特開2000-275434号、特開2000-111914号、特開平12-275434号公報などに詳細が記載されている。 Among the additives, it is an optical anisotropy control agent that effectively contributes to the present invention, and in particular, the retardation increasing agent makes it easy to develop birefringence optically in an oblique direction from the intended plane. Therefore, it is preferable. The retardation increasing agent is preferably an aromatic compound having at least two aromatic rings. The aromatic compound is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. It is preferably used in the range of 0.05 to 15 parts by mass, more preferably in the range of 0.1 to 10 parts by mass. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. The aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring). The aromatic heterocycle is generally an unsaturated heterocycle. The aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring. Aromatic heterocycles generally have the most double bonds. As the hetero atom, a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable. Examples of aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. Details of these are described in JP-A No. 2004-109410, JP-A No. 2003-344655, JP-A No. 2000-275434, JP-A No. 2000-1111914, JP-A No. 12-275434, and the like.
 本発明の光制御フィルムは、作製されたフィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化することを防止するために、マット剤として、微粒子を添加することが好ましい。 In the light control film of the present invention, it is preferable to add fine particles as a matting agent in order to prevent the manufactured film from being scratched or being deteriorated in transportability.
 微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子は珪素を含むものが、濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。 As fine particles, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、さらに好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの2次凝集体として含有されていてもよく、平均粒径100~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。光学フィルム中のこれらの微粒子の含有量は0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。共流延法による多層構成の光制御フィルムの場合は、表面にこの添加量の微粒子を含有することが好ましい。 The average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable. The content of these fine particles in the optical film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a light control film having a multilayer structure by the co-casting method, it is preferable to contain fine particles of this addition amount on the surface.
 二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
 ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。 Examples of the polymer include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
 これらの中でもアエロジル200V、アエロジルR972Vが光制御フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明の光制御フィルムにおいては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。 Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the light control film low. In the light control film of the present invention, the dynamic friction coefficient of at least one surface is preferably 0.2 to 1.0.
 (光吸収層)
 本発明に係るクレイズには、光吸収材又は光吸収層を付与しても良い。このための材料としては、特に制限はないが、バインダー樹脂に銅、銀、炭素、ニッケル、鉄、クロム、アルミニウムなどの導電性粒子を添加した材料を例示することができる。なお、導電性粒子が黒色を有していると可視光線吸収能を兼ねることができるため好ましい。あるいは、黒色の染料又は顔料を添加してもよい。バインダー樹脂としては、公知のものを用いることができるが、ウレタンアクリレートやシリコーン樹脂などの屈折率の低い樹脂を好適に用いることが好ましい。光吸収部の充填率に特に制限はないが、充填率が低いと光線透過率や導電性に影響を及ぼすため、空隙に対して95%以上であることが好ましい。
(Light absorption layer)
The craze according to the present invention may be provided with a light absorbing material or a light absorbing layer. Although there is no restriction | limiting in particular as a material for this, The material which added conductive particles, such as copper, silver, carbon, nickel, iron, chromium, aluminum, to binder resin can be illustrated. Note that it is preferable that the conductive particles have a black color because they can also serve as a visible light absorbing ability. Alternatively, a black dye or pigment may be added. A known resin can be used as the binder resin, but it is preferable to use a resin having a low refractive index such as urethane acrylate or silicone resin. Although there is no restriction | limiting in particular in the filling rate of a light absorption part, since it will affect a light transmittance and electroconductivity if a filling rate is low, it is preferable that it is 95% or more with respect to a space | gap.
 (熱可塑性樹脂支持体フィルムの製造方法)
 本発明に係る熱可塑性樹脂支持体をフィルムとして製造する方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液流延法及び溶融流延法が好ましい。
(Method for producing thermoplastic resin support film)
As a method for producing the thermoplastic resin support according to the present invention as a film, a usual inflation method, T-die method, calendar method, cutting method, casting method, emulsion method, hot press method or the like is used. However, the solution casting method and the melt casting method by the casting method are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
 以下、本発明に係る熱可塑性樹脂支持体を作製する場合の製造方法について詳述する。 Hereinafter, the production method for producing the thermoplastic resin support according to the present invention will be described in detail.
 <溶液流延法による熱可塑性樹脂支持体フィルムの製造方法>
 《有機溶媒》
 本発明に係る熱可塑性樹脂支持体フィルムを溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースエステル樹脂等の熱可塑性樹脂を溶解するものであれば制限なく用いることができる。
<Method for producing thermoplastic resin support film by solution casting method>
《Organic solvent》
When the thermoplastic resin support film according to the present invention is produced by a solution casting method, an organic solvent useful for forming a dope is used without limitation as long as it dissolves a thermoplastic resin such as a cellulose ester resin. be able to.
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、乳酸エチル、乳酸、ジアセトンアルコール等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトン、乳酸エチル等を好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate, acetone, ethyl lactate, etc. Get.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させてもよい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the dissolution of the thermoplastic resin in a non-chlorine organic solvent system is promoted. There is also a role.
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性樹脂は、少なくとも計10~45質量%溶解させたドープ組成物であることが好ましい。 In particular, the thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 以下、本発明に係る樹脂フィルム(以下、単に「フィルム」ともいう。)の好ましい製膜方法について説明する。 Hereinafter, a preferred method for forming a resin film according to the present invention (hereinafter also simply referred to as “film”) will be described.
 1)溶解工程
 熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で熱可塑性樹脂、その他の添加剤を攪拌しながら溶解しドープを形成する工程である。
1) Dissolution Step In this step, a thermoplastic resin and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
 熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことをいい、これも再使用される。 Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
 2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt, such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、さらに好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by weight depending on the strength of drying conditions, the length of the metal support, and the like. When peeling off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling is impaired, and slippage and vertical stripes due to peeling tension are likely to occur. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
5) Drying and stretching step After peeling, a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
 乾燥手段は、ウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥はでき上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout the drying is generally carried out at 40-250 ° C. It is particularly preferable to dry at 40 to 160 ° C.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create compartments having different temperatures in order to improve planarity.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone between different temperature zones so that each zone does not cause interference.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。 The stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。 In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時二軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
-Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction-Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、さらに好ましくは5質量%以下である。 When the tenter is used, the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
 テンターを行う場合の乾燥温度は、30~160℃が好ましく、50~150℃がさらに好ましく、70~140℃が最も好ましい。 When performing the tenter, the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C. Is more preferable, and within ± 1 ° C. is most preferable.
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%で巻き取ることが好ましい。
6) Winding process This is a process in which the amount of residual solvent in the web becomes 2% by mass or less, and is taken up by the winder 37 as a film, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明に係るフィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に係るフィルムの膜厚に特に制限はないが、20~200μmであることが好ましく、25~150μmであることがより好ましく、30~120μmであることが特に好ましい。 The film thickness of the film according to the present invention is not particularly limited, but is preferably 20 to 200 μm, more preferably 25 to 150 μm, and particularly preferably 30 to 120 μm.
 <溶融流延製膜法による熱可塑性樹脂支持体フィルムの製造方法>
 本発明に係る熱可塑性樹脂支持体を、樹脂フィルムとして、溶融流延製膜法により製造する場合の方法について説明する。
<Method for producing thermoplastic resin support film by melt casting method>
A method for producing the thermoplastic resin support according to the present invention as a resin film by a melt casting film forming method will be described.
 〈溶融ペレット製造工程〉
 溶融押出に用いる熱可塑性樹脂フィルムを構成する組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
The composition constituting the thermoplastic resin film used for melt extrusion is usually preferably kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と目的に応じて添加剤をフィーダーで押出機に供給し一軸や二軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることによりできる。 Pelletization may be performed by a known method. For example, a dry thermoplastic resin and an additive depending on the purpose are fed to an extruder with a feeder and kneaded using a uniaxial or biaxial extruder, and then formed into a strand from a die. It is possible to perform extrusion, water cooling or air cooling and cutting.
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw material before extruding to prevent the raw material from being decomposed. In particular, since cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。 Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 The antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、二軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 まず、作製したペレットを一軸や二軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
<Process for extruding molten mixture from die to cooling roll>
First, using a single-screw or twin-screw type extruder, the melt temperature Tm when extruding the pellets is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, Coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 本発明において冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 In the present invention, there is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明において、弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97-028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 In the present invention, as an elastic touch roll, JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, A silicon rubber roll coated with a thin-film metal sleeve can be used as described in Japanese Unexamined Patent Application Publication No. 2002-36332, Japanese Patent Application Laid-Open No. 2005-172940 and Japanese Patent Application Laid-Open No. 2005-280217.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することもできる。
<Extension process>
In the present invention, the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
 好ましくは、縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。 Preferably, the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。特に光学フィルムが、偏光板保護フィルムを兼ねる場合は、延伸方向を巾方向とすることで偏光フィルムとの積層がロール形態においてできるので好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. In particular, when the optical film also serves as a polarizing plate protective film, it is preferable to stack the polarizing film in a roll form by setting the stretching direction to the width direction.
 巾方向に延伸することで光学フィルムの遅相軸は巾方向になる。 The slow axis of the optical film becomes the width direction by stretching in the width direction.
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~1.5倍であり、延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+50℃の温度範囲で行われる。 Usually, the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times, and the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
 延伸は、長手方向もしくは幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。 The stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.
 上記の方法で作製したフィルム状樹脂フィルムを光学フィルムとして用いる場合、当該光学フィルムのレターデーション調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。 When the film-shaped resin film produced by the above method is used as an optical film, the film may be contracted in the longitudinal direction or the width direction for the purpose of adjusting the retardation of the optical film and reducing the dimensional change rate.
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、又は横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。 In order to shrink in the longitudinal direction, for example, there is a method in which the film is shrunk by temporarily clipping out the width stretching and relaxing in the longitudinal direction, or by gradually narrowing the interval between adjacent clips of the transverse stretching machine.
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。 Uniformity in the slow axis direction is also important, and the angle is preferably −5 to + 5 ° with respect to the film width direction, more preferably in the range of −1 to + 1 °, particularly −0. A range of 5 to + 0.5 ° is preferable, and a range of −0.1 to + 0.1 ° is particularly preferable. These variations can be achieved by optimizing the stretching conditions.
 本発明のフィルム状樹脂フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film-like resin film of the present invention is preferably a long film. Specifically, the film-like resin film has a thickness of about 100 m to 5000 m and is usually provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に係るフィルム状樹脂フィルムの膜厚に特に制限はなく、目的に応じて変化させることが好ましい。例えば、偏光板保護フィルムに使用する場合は、20~200μmであることが好ましく、25~150μmであることがより好ましく、30~120μmであることが特に好ましい。 The film thickness of the film-like resin film according to the present invention is not particularly limited, and is preferably changed according to the purpose. For example, when used for a polarizing plate protective film, the thickness is preferably 20 to 200 μm, more preferably 25 to 150 μm, and particularly preferably 30 to 120 μm.
 〈熱可塑性樹脂支持体フィルムの製造装置〉
 図1は、本発明に係る熱可塑性樹脂支持体フィルムの製造装置の一例の全体構成を示す概略フローシートである。図1において、樹脂フィルムの製造方法は、熱可塑性樹脂等のフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出し、第1冷却ロール5に外接させるとともに、さらに、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。次いで、剥離ロール9によって剥離したフィルム10を、次いで延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻取り装置16により巻き取る。また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。
<Production equipment for thermoplastic resin support film>
FIG. 1 is a schematic flow sheet showing an overall configuration of an example of a production apparatus for a thermoplastic resin support film according to the present invention. In FIG. 1, the resin film is produced by mixing a film material such as a thermoplastic resin and then using the extruder 1 to melt and extrude from a casting die 4 onto a first cooling roll 5. The film 10 is further circumscribed by a total of three cooling rolls, that is, the second cooling roll 7 and the third cooling roll 8 in order, and is cooled and solidified. Next, the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by holding both ends of the film by the stretching device 12 and then wound by the winding device 16. In addition, a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness. The touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
 本発明において、製造装置には、ベルト及びロールを自動的に清掃する装置を付加させることが好ましい。清掃装置については特に限定はないが、例えば、ブラシ・ロール、吸水ロール、粘着ロール、ふき取りロール等をニップする方式、清浄エアーを吹き掛けるエアーブロー方式、レーザーによる焼却装置、あるいはこれらの組み合わせなどがある。 In the present invention, it is preferable to add a device for automatically cleaning the belt and the roll to the manufacturing apparatus. There is no particular limitation on the cleaning device, but for example, a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, etc., an air blowing method for spraying clean air, a laser incinerator, or a combination thereof. is there.
 清掃用ロールをニップする方式の場合、ベルト線速度とローラ線速度を変えると清掃効果が大きい。 ¡In the case of a system in which a cleaning roll is nipped, the cleaning effect is great if the belt linear velocity and roller linear velocity are changed.
 (機能性層)
 光制御フィルム製造に際し、延伸の前及び/又は後で帯電防止層、反射防止層、易滑性層、易接着層、防眩層、バリアー層、光学補償層等の機能性層を塗設してもよい。この際、コロナ放電処理、プラズマ処理、薬液処理等の各種表面処理を必要に応じて施すことができる。
(Functional layer)
When producing the light control film, functional layers such as an antistatic layer, an antireflection layer, a slippery layer, an easy adhesion layer, an antiglare layer, a barrier layer, and an optical compensation layer are coated before and / or after stretching. May be. At this time, various surface treatments such as corona discharge treatment, plasma treatment, and chemical treatment can be performed as necessary.
 (偏光板、液晶表示装置)
 本発明の光制御フィルムは、偏光板に好適に用いることができる。また、本発明の光制御フィルムは偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置又はTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。
(Polarizing plate, liquid crystal display)
The light control film of the present invention can be suitably used for a polarizing plate. The light control film of the present invention is incorporated in a polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), It is preferably used in liquid crystal display devices of various driving systems such as IPS type and OCB type.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 (熱可塑性樹脂支持体1の作製)
 ポリエチレンテレフタレート(固有粘度0.65dl/g、Tg:70℃)のペレットを180℃で4時間乾燥した後に、270~300℃に加熱された押出機に供給し、押出し成形ダイによりシート状に成形した。さらに、このフィルムを表面温度25℃の冷却ドラム上に静電気で密着固化させつつ、フィルムをクーリングナイフで空冷しながら、未延伸フィルムを得た。
(Preparation of thermoplastic resin support 1)
Pellets of polyethylene terephthalate (inherent viscosity 0.65 dl / g, Tg: 70 ° C.) are dried at 180 ° C. for 4 hours, then fed to an extruder heated to 270 to 300 ° C., and formed into a sheet by an extrusion die. did. Further, the film was statically adhered and solidified on a cooling drum having a surface temperature of 25 ° C., and the film was air-cooled with a cooling knife to obtain an unstretched film.
 次いで、この未延伸フィルムを75℃の加熱ロール群で予熱し、さらに75℃に加熱されたロールと50℃に温調された一対のロールの周速差を利用し赤外線加熱手段で非接触に加熱しながら縦方向に3.1倍に縦延伸し、次いで、20~50℃の冷却ロール群で冷却した後、テンターへと導いた。 Next, this unstretched film is preheated with a heating roll group at 75 ° C., and is further brought into non-contact with an infrared heating means using a peripheral speed difference between a roll heated to 75 ° C. and a pair of rolls adjusted to 50 ° C. While heating, the film was longitudinally stretched 3.1 times in the longitudinal direction, then cooled with a cooling roll group of 20 to 50 ° C., and then led to a tenter.
 テンター1では、前記フィルムの両端をクリップで把持しながら、80℃の熱雰囲気中で予熱し、続く延伸ゾーンで120℃の熱雰囲気中で3.2倍に横延伸し、3ゾーンからなる熱固定ゾーンで、210℃、230℃、190℃の3段階の温度で熱固定し、続く冷却ゾーンでフィルムを70℃まで冷却し、付着異物の個数を測定しながら25m/分の速度で100μmの二軸延伸ポリエステルフィルムをターレット式ワインダーで巻き取った。 The tenter 1 is preheated in a hot atmosphere at 80 ° C. while holding both ends of the film with clips, and stretched by a factor of 3.2 in a hot atmosphere at 120 ° C. in the subsequent stretching zone. In the fixing zone, heat fixing is performed at three stages of 210 ° C., 230 ° C., and 190 ° C., and in the subsequent cooling zone, the film is cooled to 70 ° C., and the number of adhered foreign matters is measured and measured at a speed of 25 μm / min. The biaxially stretched polyester film was wound up with a turret type winder.
 (熱可塑性樹脂支持体2の作製)
 ポリエチレンテレフタレート(固有粘度0.65dl/g、Tg:70℃)のペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度280℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過し、2mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上で押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを100℃にて予熱し、さらに低速、高速のロール間で15mm上方より900℃のIRヒーターにて加熱して縦方向に3.1倍に延伸した。続いてテンターに供給して、145℃にて横方向に.3.5倍に延伸した。得られた二軸配向フィルムを200℃の温度で40秒間熱固定し厚さ100μmのポリエステルフィルムを得た。
(Preparation of thermoplastic resin support 2)
Stainless steel with polyethylene terephthalate (inherent viscosity 0.65 dl / g, Tg: 70 ° C.) dried at 170 ° C. for 6 hours, supplied to an extruder hopper, melted at a melting temperature of 280 ° C., and an average opening of 17 μm The resultant was filtered through a fine wire filter, extruded through a 2 mm slit die on a rotary cooling drum having a surface temperature of 60 ° C., and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 100 ° C., and further heated by a 900 ° C. IR heater 15 mm above between low-speed and high-speed rolls and stretched 3.1 times in the longitudinal direction. Subsequently, it was supplied to a tenter and laterally at 145 ° C. The film was stretched 3.5 times. The obtained biaxially oriented film was heat-fixed at a temperature of 200 ° C. for 40 seconds to obtain a polyester film having a thickness of 100 μm.
 (熱可塑性樹脂支持体3の作製)
 メチレンクロライド                    42g
 エタノール                         8g
 セルローストリアセテート(アセチル基置換度:60.3%;重量平均分子量:180000)                    10g
 上記素材を順に、密閉容器に投入し、加熱・攪拌しながら完全に溶解、混合して流涎する温度まで下げて、一晩静置して脱泡操作を施した。
(Preparation of thermoplastic resin support 3)
Methylene chloride 42g
Ethanol 8g
Cellulose triacetate (acetyl group substitution degree: 60.3%; weight average molecular weight: 180,000) 10 g
The above materials were put in a sealed container in order, completely dissolved and mixed with heating and stirring, lowered to a fluent temperature, and allowed to stand overnight for defoaming operation.
 (流涎)
 ベルト装置を用い、ドープ温度30℃で30℃のステンレスベルト支持体上に均一に流涎した。その後、剥離可能な範囲まで乾燥した後、ステンレス支持体上からウェブを剥離した。この時のウェブの残留溶媒量は80%であった。
(Fluent)
Using a belt device, the dope temperature was 30 ° C., and the mixture was evenly poured on a stainless belt support at 30 ° C. Then, after drying to the range which can be peeled, the web was peeled from the stainless steel support body. The residual solvent amount of the web at this time was 80%.
 ステンレスベルト支持体から剥離した後、85℃の乾燥ゾーンをロール搬送しながら乾燥させた後、残留溶媒量が35質量%未満となったところで、二軸延伸テンターでTD方向(幅手方向)及びMD方向(製膜方向)に延伸しながら90℃で乾燥させ、さらにロール搬送しながら125℃の乾燥ゾーンで乾燥を終了させ、基板フィルムを作製した。膜厚は100μmであった。巻き取り時の残留溶媒量は0.1質量%未満であった。 After peeling from the stainless steel belt support, after drying the roll in an 85 ° C. drying zone, when the residual solvent amount is less than 35% by mass, the biaxially stretched tenter is used in the TD direction (width direction) and While stretching in the MD direction (film forming direction), the film was dried at 90 ° C., and further dried in a 125 ° C. drying zone while being conveyed by rolls to produce a substrate film. The film thickness was 100 μm. The residual solvent amount at the time of winding was less than 0.1% by mass.
 (熱可塑性樹脂支持体4の作製)
 MMA/MA=99/1(質量比)、還元粘度0.06L/g、屈折率(20℃)1.4897、重量平均分子量:100000、ビーズ形状
 上記内容のペレットを80℃で一昼夜乾燥し、300mm巾のTダイを取り付けた40mmφのノンベントスクリュー型押出機(L/D=26)を用いて、シリンダー温度180~240℃、Tダイ温度240℃の条件で、100メッシュの金属フィルター、Tダイを介して溶融押出を行った。押出した樹脂は、75℃に温調した冷却用の鏡面ロール(クロムメッキ加工した表面粗度が0.2Sのロール)と、シリコーン鏡面ゴムロールとで挟み込み、125μm厚さのアクリル樹脂フィルムを製膜した。
(Preparation of thermoplastic resin support 4)
MMA / MA = 99/1 (mass ratio), reduced viscosity 0.06 L / g, refractive index (20 ° C.) 1.4897, weight average molecular weight: 100,000, bead shape The pellets with the above contents were dried at 80 ° C. overnight. Using a 40 mmφ non-vented screw type extruder (L / D = 26) with a 300 mm wide T-die, a 100-mesh metal filter under the conditions of a cylinder temperature of 180-240 ° C. and a T-die temperature of 240 ° C. Melt extrusion was performed through a die. The extruded resin is sandwiched between a mirror mirror roll for cooling adjusted to 75 ° C. (a chrome-plated roll having a surface roughness of 0.2S) and a silicone mirror rubber roll, and a 125 μm thick acrylic resin film is formed. did.
 (熱可塑性樹脂支持体5の作製)
 エタノール5質量部含む、塩化メチレンとエタノール混合溶媒65質量部に対して、ビスフェノールAを構成単位とするポリカーボネート樹脂(帝人化成(株)パンライトL-1225Y)35質量部を25℃で攪拌しながら溶解して、透明で粘ちょうなドープを得た。このドープをステンレスベルト上に流涎し、剥離した。残留溶媒濃度が1質量%以下になるまで乾燥した。膜厚は115μmであった。
(Preparation of thermoplastic resin support 5)
While stirring at 25 ° C., 35 parts by mass of polycarbonate resin (Teijin Chemicals Ltd. Panlite L-1225Y) containing bisphenol A as a structural unit with respect to 65 parts by mass of a mixed solvent of methylene chloride and ethanol containing 5 parts by mass of ethanol. Upon dissolution, a transparent and viscous dope was obtained. The dope was poured on a stainless steel belt and peeled off. It dried until the residual solvent density | concentration became 1 mass% or less. The film thickness was 115 μm.
 (熱可塑性樹脂支持体6の作製)
 脂環式オレフィンポリマーの一種である熱可塑性ノルボルネン樹脂のペレット(日本ゼオン社製、ZEONOR1420、ガラス転移点137℃)を100℃で5時間乾燥した。前記ペレットを押出機に供給し、押出機内で溶融させ、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押出し、冷却し、厚さ130μm、幅1200mmの未延伸フィルムを得た。
(Preparation of thermoplastic resin support 6)
A pellet of thermoplastic norbornene resin (Zeon Corporation, ZEONOR 1420, glass transition point 137 ° C.), which is a kind of alicyclic olefin polymer, was dried at 100 ° C. for 5 hours. The pellets are supplied to an extruder, melted in the extruder, passed through a polymer pipe and a polymer filter, extruded from a T-die onto a casting drum, cooled, and an unstretched film having a thickness of 130 μm and a width of 1200 mm was obtained. It was.
 この未延伸フィルムを、そのまま連続して横延伸用のテンターに供給し、延伸温度140℃、延伸倍率1.42倍で第一延伸工程を行い、第一延伸フィルムを得、巻き芯に巻き取った。 This unstretched film is continuously supplied to a tenter for transverse stretching as it is, and a first stretching process is performed at a stretching temperature of 140 ° C. and a stretching ratio of 1.42 times to obtain a first stretched film, which is wound around a winding core. It was.
 <硬化性樹脂層塗設支持体1~6の作製>
 前記において作製した支持体1~3に下記硬化性樹脂層塗布液をリバースコーティングにて塗布し、100℃で1分間乾燥後、窒素雰囲気中で120W/cm集光型高圧水銀灯1灯で紫外線照射(照射距離10cm、照射時間30秒)を行い、塗工膜を硬化させ、厚さ5μm、の硬化性樹脂層を形成した。
<Preparation of curable resin layer coated supports 1 to 6>
The following curable resin layer coating solution is applied by reverse coating to the substrates 1 to 3 prepared above, dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet light using a 120 W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere. (Irradiation distance 10 cm, irradiation time 30 seconds) was performed to cure the coating film to form a curable resin layer having a thickness of 5 μm.
 [硬化性樹脂層塗布液1の調製]
 イソフタル酸及びアジピン酸からなる多塩基酸と、ネオペンチルグリコールを反応させることにより生成する、重量平均分子量65000、酸価7mgKOH/g、不揮発分60%のポリエステル樹脂7質量部、ジペンタエリスリトールテトラアクリレート1.8質量部、n-ブタノール/キシレンの質量比が4/6となる混合溶媒57.2質量部、光重合開始剤(商品名:イルガキュアー907、BASFジャパン(株)社製)0.2質量部を混合・撹拌して硬化性樹脂層塗布液1を調製した。
[Preparation of curable resin layer coating solution 1]
Polybasic acid consisting of isophthalic acid and adipic acid and neopentyl glycol are reacted to produce a polyester resin having a weight average molecular weight of 65,000, an acid value of 7 mgKOH / g, a non-volatile content of 60%, 7 parts by weight of dipentaerythritol tetraacrylate 1.8 parts by mass, 57.2 parts by mass of a mixed solvent having a mass ratio of n-butanol / xylene of 4/6, a photopolymerization initiator (trade name: Irgacure 907, manufactured by BASF Japan Ltd.) 2 parts by mass were mixed and stirred to prepare a curable resin layer coating solution 1.
 次いで、前記において作製した支持体4~6に下記硬化性樹脂層塗布液をリバースコーティングにて塗布し、70℃で1分間乾燥後、窒素雰囲気中で230W/cmで紫外線照射(照射距離10cm、照射時間30秒)を行い、塗工膜を硬化させ、厚さ5μm、の硬化性樹脂層を形成した。 Next, the following curable resin layer coating solution was applied to the supports 4 to 6 prepared above by reverse coating, dried at 70 ° C. for 1 minute, and then irradiated with ultraviolet rays at 230 W / cm in a nitrogen atmosphere (irradiation distance 10 cm, (Irradiation time 30 seconds), the coating film was cured, and a curable resin layer having a thickness of 5 μm was formed.
 [硬化性樹脂層塗布液2の調製]
 (A)ペンタエリスリトールトリアクリレート[新中村化学工業(株)製、商品名「NKエステルA-TMM-3」、固形分濃度100%]100質量部に、(B)トリス(2-アクリロイルオキシエチル)イソシアヌレート[東亜合成化学工業(株)製、商品名「アロニックスM-315」、固形分濃度100%]200質量部、光重合開始剤として1-ヒドロキシ-シクロヘキシルフェニルケトン[BASFジャパン(株)社製、商品名「イルガキュア184」]6質量部を添加し、固形分濃度が40質量%になるようにプロピレングリコールモノメチルエーテルで希釈し、硬化性樹脂層塗布液2を調製した。
[Preparation of Curable Resin Layer Coating Liquid 2]
(A) pentaerythritol triacrylate [manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “NK Ester A-TMM-3”, solid content concentration 100%] to 100 parts by mass, (B) tris (2-acryloyloxyethyl) ) Isocyanurate [Toa Gosei Chemical Co., Ltd., trade name “Aronix M-315”, solid concentration 100%] 200 parts by mass, 1-hydroxy-cyclohexyl phenyl ketone as a photopolymerization initiator [BASF Japan K.K. 6 parts by mass, trade name “Irgacure 184” manufactured by the company was added and diluted with propylene glycol monomethyl ether so that the solid content concentration was 40% by mass to prepare a curable resin layer coating solution 2.
 [クレイズフィルム1~6の作製]
 前記作製した硬化性樹脂層塗設支持体(1及び2)を室温で低速、高速のロール間で縦方向に40%に延伸した。
[Production of Craze Films 1 to 6]
The prepared curable resin layer-coated support (1 and 2) was stretched to 40% in the machine direction between low-speed and high-speed rolls at room temperature.
 前記作製した硬化性樹脂層塗設支持体(3~6)を100℃にて予熱し、低速、高速のロール間で15mm上方より150℃のIRヒーターにて加熱して縦方向に40%に延伸した。 The prepared curable resin layer-coated support (3 to 6) is preheated at 100 ° C., and heated by a 150 ° C. IR heater from 15 mm above between low speed and high speed rolls to 40% in the vertical direction. Stretched.
 比較例1
 特開2000-233438号公報の明細書に記載されている実施例1に従って、下記のように比較例1のフィルムを作製した。
Comparative Example 1
According to Example 1 described in the specification of JP-A-2000-233438, a film of Comparative Example 1 was produced as follows.
 未延伸フィルムを130℃で1時間熱処理することにより、示差走査型熱量分析計(TA-instrunents社製 DSC-2920)により、昇温速度20℃/分、測定温度範囲35~250℃で測定を行った時、ガラス転移点における吸熱量(単位:J/g)が0.3である幅230mm,厚さ100μmのポリカーボネートフィルム(帝人(株)製商品名「PURE ACE C-110」)を一軸延伸した。延伸に用いた装置は上記公報の図4に記載の加熱一軸延伸装置と同様の装置であり、延伸温度は150℃、延伸速度は入り口側ロール速度が100μm/minとなるようにし、出口側ロール速度240mm/minにして2.4倍の延伸倍率になるように設定してフィルムを作製した。 The unstretched film was heat-treated at 130 ° C. for 1 hour, and measured with a differential scanning calorimeter (DSC-2920, manufactured by TA-instruments) at a heating rate of 20 ° C./min and a measurement temperature range of 35 to 250 ° C. When done, a polycarbonate film (trade name “PURE ACE C-110” manufactured by Teijin Ltd.) having a width of 230 mm and a thickness of 100 μm with an endothermic amount (unit: J / g) at the glass transition point of 0.3 is uniaxial. Stretched. The apparatus used for stretching is the same apparatus as the heating uniaxial stretching apparatus described in FIG. 4 of the above publication, the stretching temperature is 150 ° C., the stretching speed is 100 μm / min, and the exit side roll is A film was produced at a speed of 240 mm / min and a draw ratio of 2.4 times.
 比較例2
 特開平9-166702号公報の明細書に記載されている実施例1に従って、下記のように比較例2のフィルムを作製した。
Comparative Example 2
In accordance with Example 1 described in the specification of JP-A-9-166702, a film of Comparative Example 2 was produced as follows.
 透明なプラスチックフィルムとして、厚さ300μmの二軸延伸ポリスチレンフィルム〔サントクリア 三菱化学(株)製〕を使用し、上記公報の図1に記載されている装置と同様の装置により、イソプロピルアルコールに室温で1分間浸漬した後、直径10mmの歪み付与ロールに半周巻き付けてクレイズを形成させ、続いて、残留する溶剤を温風で乾燥して、光制御フィルムを作製した。 As a transparent plastic film, a biaxially stretched polystyrene film having a thickness of 300 μm (Sant Clear, manufactured by Mitsubishi Chemical Corporation) was used, and the room temperature was adjusted to room temperature with isopropyl alcohol using the same apparatus as described in FIG. 1 minute, and then wound around a strain imparting roll having a diameter of 10 mm to form a craze. Subsequently, the remaining solvent was dried with warm air to prepare a light control film.
 (評価)
 (クレイズフィルムの光散乱特性)
 日本電色工業社製ヘイズメータNDH2000ヘイズメータに、前記、クレイズフィルムをセットし、光学シート面の法線方向より光を当て、直進出射されてくる平行透過率Iを測定する。次に、図2に示すように光学フィルムを入射光に対して30°傾斜した状態で測定したときに得られる平行透過率の値をI30とする。
(Evaluation)
(Light scattering characteristics of Craze film)
The above-mentioned craze film is set in a haze meter NDH2000 haze meter manufactured by Nippon Denshoku Industries Co., Ltd., light is applied from the normal direction of the optical sheet surface, and the parallel transmittance I 0 emitted straight is measured. Next, as shown in FIG. 2, the value of the parallel transmittance obtained when the optical film is measured in a state inclined by 30 ° with respect to the incident light is defined as I 30 .
 求めたI、I30より次式により光散乱特性を求めた。 The light scattering characteristics were obtained from the obtained I 0 and I 30 by the following formula.
 光散乱特性=I30/I×100(%)
 ヘイズムラは、目視で評価した。実用上許容できるものを○とし、許容できないものを×とした。
Light scattering property = I 30 / I 0 × 100 (%)
Heismura was evaluated visually. A practically acceptable one was marked with ◯, and an unacceptable one was marked with ×.
 〈引き裂き強度の測定方法〉
 23℃、55%RHの条件下で、フィルム搬送方向(MD方向)、搬送方向と直交する方向(TD方向)の両方向において、エレメンドルフ法の引き裂き荷重をJIS K 7128-1991に従い東洋精機(株)製の軽荷重引き裂き装置で引き裂き強度を測定した。20mN以上を○とし、20mN未満を×とした。
<Measurement method of tear strength>
Under the conditions of 23 ° C. and 55% RH, the tear load of the Elmendorf method was determined according to JIS K 7128-1991 in both the film transport direction (MD direction) and the direction orthogonal to the transport direction (TD direction). The tear strength was measured with a light load tearing device manufactured by (1). 20 mN or more was evaluated as ◯, and less than 20 mN was evaluated as ×.
 〈破断伸度の測定〉
 23℃、55%RHの条件下で、フィルム搬送方向と直交する方向(TD方向)、及び搬送方向(MD方向)において、JIS K 7127に記載の方法に従い、試料幅を10mm、長さ130mmに切り出し、任意温度でチャック間距離100mmにし、引っ張り速度100mm/分で引っ張り試験を行い求めた。破断伸度の測定には、(株)エー・アンド・ディ テンシロン万能試験機 RTFシリーズ(RTF-1225A)を用いた。
<Measurement of elongation at break>
Under the conditions of 23 ° C. and 55% RH, in the direction orthogonal to the film transport direction (TD direction) and in the transport direction (MD direction), the sample width is 10 mm and the length is 130 mm according to the method described in JIS K 7127. The distance between chucks was set to 100 mm at an arbitrary temperature, and a tensile test was performed at a pulling speed of 100 mm / min. For measuring the elongation at break, A & D Tensilon Universal Testing Machine RTF series (RTF-1225A) was used.
 上記評価結果を表1に示す。 The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、本発明に係る光制御フィルムは、比較例に対し、光散乱特性、ヘイズムラの程度、及び引き裂き強度において優れていることが分かる。 As is apparent from the results shown in Table 1, it can be seen that the light control film according to the present invention is superior in light scattering characteristics, the degree of haismura, and the tear strength to the comparative example.
 また、図3及び図4に示した電子顕微鏡観察写真から明らかなように、本発明の手段によれば、前記先行技術文献に記載されている方法によって得られるクレイズとは相違する独特な形態のクレイズ(約50μm前後のピッチで形成・配設されたクレイズ)が得られることが分かる。 Further, as apparent from the electron microscopic observation photographs shown in FIGS. 3 and 4, according to the means of the present invention, a unique form different from the craze obtained by the method described in the prior art document is obtained. It can be seen that crazes (crazes formed and arranged at a pitch of about 50 μm) are obtained.
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 回転支持体(第1冷却ロール)
 6 挟圧回転体(タッチロール)
 7 回転支持体(第2冷却ロール)
 8 回転支持体(第3冷却ロール)
 9 剥離ロール
 10 フィルム
 11、13、14 搬送ロール
 12 延伸機
 15 スリッター
 16 巻き取り機
 F 樹脂フィルム
DESCRIPTION OF SYMBOLS 1 Extruder 2 Filter 3 Static mixer 4 Casting die 5 Rotating support body (1st cooling roll)
6 Nipping pressure rotating body (touch roll)
7 Rotating support (second cooling roll)
8 Rotating support (3rd cooling roll)
9 Peeling roll 10 Film 11, 13, 14 Transport roll 12 Stretching machine 15 Slitter 16 Winding machine F Resin film

Claims (3)

  1.  熱可塑性樹脂支持体上に硬化性樹脂層を有する光制御フィルムであって、前記硬化性樹脂層の破断伸度が前記熱可塑性樹脂支持体の破断伸度より低く、かつ当該硬化性樹脂層上に物理的延伸により1~100μmの範囲内のピッチで形成・配設されたクレイズを有することを特徴とする光制御フィルム。 A light control film having a curable resin layer on a thermoplastic resin support, the rupture elongation of the curable resin layer being lower than the rupture elongation of the thermoplastic resin support, and on the curable resin layer And a light control film characterized by having crazes formed and disposed at a pitch in the range of 1 to 100 μm by physical stretching.
  2.  前記硬化性樹脂層を構成する樹脂が、活性線硬化性樹脂であることを特徴とする請求項1に記載の光制御フィルム。 The light control film according to claim 1, wherein the resin constituting the curable resin layer is an actinic radiation curable resin.
  3.  熱可塑性樹脂支持体上にそれより破断伸度が低い硬化性樹脂層を設けた積層体を一軸延伸して、当該硬化性樹脂層上に延伸方向と略垂直方向に1~100μmの範囲内のピッチでクレイズを形成させることを特徴とする光制御フィルムの製造方法。 A laminate in which a curable resin layer having a lower breaking elongation is provided on a thermoplastic resin support is uniaxially stretched, and the curable resin layer has a range of 1 to 100 μm in a direction substantially perpendicular to the stretch direction. A method for producing a light control film, wherein crazes are formed at a pitch.
PCT/JP2011/051081 2010-01-28 2011-01-21 Optical control film and manufacturing method therefor WO2011093222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010016620 2010-01-28
JP2010-016620 2010-07-07

Publications (1)

Publication Number Publication Date
WO2011093222A1 true WO2011093222A1 (en) 2011-08-04

Family

ID=44319210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051081 WO2011093222A1 (en) 2010-01-28 2011-01-21 Optical control film and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2011093222A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146674A (en) * 2017-03-02 2018-09-20 王子ホールディングス株式会社 Reflection display body and inventory tag
EP3991939A1 (en) * 2020-10-30 2022-05-04 Sumitomo Chemical Company Limited Molded article and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288649A (en) * 1988-09-26 1990-03-28 Ube Ind Ltd Finely porous flat membrane and production thereof
JPH10119125A (en) * 1996-08-28 1998-05-12 Teijin Ltd Production of transmitted light scattering control film
JPH11231108A (en) * 1998-02-10 1999-08-27 Kimoto & Co Ltd Visual field selective film with craze

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288649A (en) * 1988-09-26 1990-03-28 Ube Ind Ltd Finely porous flat membrane and production thereof
JPH10119125A (en) * 1996-08-28 1998-05-12 Teijin Ltd Production of transmitted light scattering control film
JPH11231108A (en) * 1998-02-10 1999-08-27 Kimoto & Co Ltd Visual field selective film with craze

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146674A (en) * 2017-03-02 2018-09-20 王子ホールディングス株式会社 Reflection display body and inventory tag
EP3991939A1 (en) * 2020-10-30 2022-05-04 Sumitomo Chemical Company Limited Molded article and method of producing the same
US12042963B2 (en) 2020-10-30 2024-07-23 Sumitomo Chemical Company, Limited Molded article and method of producing the same

Similar Documents

Publication Publication Date Title
JP5630496B2 (en) Surface-modified resin film, method for producing the same, polarizing plate using the same, and liquid crystal display device
JP7088279B2 (en) Polarizing plate, manufacturing method of polarizing plate and liquid crystal display device
JP2014178709A (en) Process for producing polarizing plate
JP2013083795A (en) Antiglare film, antiglare film manufacturing method, polarizer and image display unit
KR20180085759A (en) Polarizer, method of manufacturing polarizer, and liquid crystal display
TWI538944B (en) A cellulose ester film, a method for producing the same, and a polarizing plate
KR102444730B1 (en) Film roll and method for manufacturing the same
JP5704173B2 (en) Optical display device manufacturing system and method
TWI599485B (en) Optical film, polarizer and image display device
JP6711364B2 (en) Optical film, optical film roll, and method for producing optical film
JP6638657B2 (en) Single-layer resin film, method for producing the same, back sheet for solar cell provided with the same, polarizing plate protective film, architectural member, automotive member, and decorative sheet for mobile device
JP2012230154A (en) Polarizing plate, method for producing the same and vertical alignment type liquid crystal display device
JP6699133B2 (en) Optical film and manufacturing method thereof
WO2011093222A1 (en) Optical control film and manufacturing method therefor
JP5835230B2 (en) Vertical alignment type liquid crystal display device and manufacturing method thereof
WO2011148504A1 (en) Light diffusing film, method for manufacturing same, and polarizing plate, roll-shaped polarizing plate, and liquid crystal display device which employ same
JPWO2010119732A1 (en) Polarizer protective film, polarizing plate using the same, and method for producing the same
JP2012062379A (en) Method for producing water-repellent film, and water-repellent film
JP5626133B2 (en) VA liquid crystal display device
WO2022153785A1 (en) Film roll and method for manufacturing film roll
JP6163867B2 (en) Optical polyester film
JP2012094618A (en) Light confining film for solar cell, manufacturing method of the same, and solar cell
JP2011232429A (en) Method for manufacturing optical film, and polarizer and liquid crystal display which are provided with the optical film
JP2023176991A (en) Film roll and manufacturing method for the same
JP2014139688A (en) Method of producing optical film, and optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP