WO2023223677A1 - キャパシタ、電気回路、回路基板、機器、及び蓄電デバイス - Google Patents

キャパシタ、電気回路、回路基板、機器、及び蓄電デバイス Download PDF

Info

Publication number
WO2023223677A1
WO2023223677A1 PCT/JP2023/012325 JP2023012325W WO2023223677A1 WO 2023223677 A1 WO2023223677 A1 WO 2023223677A1 JP 2023012325 W JP2023012325 W JP 2023012325W WO 2023223677 A1 WO2023223677 A1 WO 2023223677A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
containing layer
dielectric
atoms
Prior art date
Application number
PCT/JP2023/012325
Other languages
English (en)
French (fr)
Inventor
宏樹 竹内
諒介 菊地
圭 網井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023539775A priority Critical patent/JPWO2023223677A1/ja
Publication of WO2023223677A1 publication Critical patent/WO2023223677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • Patent Document 1 describes a capacitor including a first electrode layer, a dielectric layer, and a second electrode layer.
  • a dielectric layer is formed on the first electrode layer.
  • the second electrode layer is formed on the dielectric layer.
  • the dielectric layer includes a metal oxide, and the metal oxide includes HfO 2 in which a portion of Hf is replaced by Bi and an element with a valence of 5 or more.
  • the dielectric layer has antiferroelectric properties. Therefore, the dielectric layer exhibits a high dielectric constant by applying a bias electric field.
  • Non-Patent Document 2 describes the influence of dopants such as Mg, Ba, Sr, Y, La, Nd, Sm, Er, Al, Ga, In, Co, and Ni on the ferroelectricity of HfO2 . There is. HfO 2 doped with Ga has ferroelectricity.
  • Non-Patent Document 4 describes that a 0.1CeO 2 -0.9HfO 2 thin film exhibits ferroelectricity.
  • the capacitor of the present disclosure includes: a first electrode; a second electrode; a dielectric disposed between the first electrode and the second electrode,
  • the dielectric includes an oxide having a composition represented by Hf 1-xy Si x Ga y O z , In the composition, z is a value for maintaining electrical neutrality of the oxide,
  • the composition satisfies the following conditions: 0.01 ⁇ x, 0.05 ⁇ y ⁇ 0.11, and 0.09 ⁇ x+y ⁇ 0.15.
  • FIG. 1 is a cross-sectional view showing an example of a capacitor of the present disclosure.
  • FIG. 2A is a diagram schematically showing an example of an electric circuit according to the present disclosure.
  • FIG. 2B is a diagram schematically showing an example of the circuit board of the present disclosure.
  • FIG. 2C is a diagram schematically showing an example of the device of the present disclosure.
  • FIG. 2D is a diagram schematically showing an example of the power storage device of the present disclosure.
  • FIG. 3 is a cross-sectional view showing another example of the capacitor of the present disclosure.
  • FIG. 4 is a graph showing an X-ray diffraction (XRD) profile of the dielectric of the capacitor according to Example 1.
  • XRD X-ray diffraction
  • the inventors of the present invention have conducted extensive studies to see if it is possible to realize a capacitor that is capable of high capacity and highly efficient charging and discharging while using an oxide containing Hf as a dielectric material.
  • the present inventors discovered that in a capacitor using a dielectric material containing an oxide having a predetermined composition including Hf, the nonlinear relationship between the amount of change in polarization of the dielectric material with respect to the amount of change in electric field strength and the hysteresis We have discovered that it is possible to suppress loss. Based on this new knowledge, the present inventors devised the capacitor of the present disclosure.
  • the capacitor according to the first aspect of the present disclosure includes: a first electrode; a second electrode; a dielectric disposed between the first electrode and the second electrode,
  • the dielectric includes an oxide having a composition represented by Hf 1-xy Si x Ga y O z , In the composition, z is a value for maintaining electrical neutrality of the oxide,
  • the composition satisfies the following conditions: 0.01 ⁇ x, 0.05 ⁇ y ⁇ 0.11, and 0.09 ⁇ x+y ⁇ 0.15.
  • An electric circuit according to a fourth aspect of the present disclosure includes a capacitor according to any one of the first to third aspects. According to the fourth aspect, it is possible to provide an electric circuit that is advantageous from the viewpoint of large capacity and highly efficient charging and discharging.
  • a device includes a capacitor according to any one of the first to third aspects. According to the sixth aspect, it is possible to provide a device that is advantageous from the viewpoint of large capacity and highly efficient charging and discharging.
  • z in the above composition is not limited to a specific value as long as the electrical neutrality of the oxide is maintained.
  • z may vary, for example, depending on the value of y and the fabrication process of dielectric 20. For example, z satisfies the condition of 1.9 ⁇ z ⁇ 2.
  • the structure of the above-mentioned oxide of the dielectric 20 is not limited to a particular structure.
  • This oxide includes, for example, a fluorite structure.
  • the relationship between the amount of change in polarization of the dielectric and the amount of change in electric field strength tends to be nonlinear.
  • the entire oxide may have a fluorite structure, or a portion of the oxide may have a fluorite structure.
  • the shapes of the first electrode 11, second electrode 12, and dielectric 20 are not limited to specific shapes. As shown in FIG. 1, each of the first electrode 11, the second electrode 12, and the dielectric 20 is formed, for example, in a layered manner.
  • the material of the first electrode 11 is not limited to a specific material.
  • the first electrode 11 may contain metal such as Pt, Au, Al, Ta, and Zr, for example.
  • the first electrode 11 may contain conductive nitride such as TiN and TaN.
  • the first electrode 11 may contain a conductive oxide such as indium tin oxide (ITO), antimony tin oxide (ATO), and ZnO.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • ZnO ZnO
  • the first electrode 11 desirably contains at least one selected from the group consisting of Pt, Au, ITO, and ZnO.
  • the first electrode 11 desirably contains at least one selected from the group consisting of Pt, Au, Al, Ta, Zr, TiN, and TaN.
  • the thickness of the second electrode 12 is not limited to a specific value.
  • the thickness of the second electrode 12 is, for example, 50 nm or more. This tends to reduce the internal resistance in the capacitor 1a.
  • the thickness of the second electrode 12 is, for example, 500 nm or less. As a result, when a plurality of capacitors 1a are used in an integrated manner, the overall capacitance density tends to increase.
  • the material of the second electrode 12 is not limited to a specific material.
  • the second electrode 12 may contain metals such as Pt, Au, Al, Ta, and Zr, for example.
  • Second electrode 12 may include doped polycrystalline silicon.
  • the second electrode 12 may contain conductive nitride such as TiN and TaN.
  • the second electrode 12 may contain conductive oxides such as ITO, ATO, and ZnO.
  • the second electrode 12 may include a conductive organic polymer such as polyaniline and polypyrrole.
  • the second electrode 12 desirably contains at least one selected from the group consisting of Pt, Au, ITO, ATO, and ZnO.
  • the second electrode 12 When the second electrode 12 is exposed to a reducing atmosphere, the second electrode 12 desirably comprises at least one selected from the group consisting of Pt, Au, Al, Ta, Zr, TiN, TaN, and doped polycrystalline silicon. Contains one.
  • the second electrode 12 when annealing is performed after forming the second electrode 12 to promote crystallization in the dielectric 20, the second electrode 12 is exposed to an oxidizing atmosphere or a reducing atmosphere due to the gas supplied around the second electrode 12. It can be done.
  • the second electrode 12 when the second electrode 12 is exposed to an oxidizing atmosphere during the annealing process, the second electrode 12 more desirably contains at least one member from the group consisting of Pt, ITO, ATO, and ZnO.
  • the second electrode 12 When the second electrode 12 is exposed to a reducing atmosphere in the annealing process, the second electrode 12 more desirably contains at least one member from the group consisting of Pt, TiN, and TaN.
  • the capacitor 1a further includes a support 30, for example.
  • the first electrode 11 is arranged on the support body 30, for example. Thereby, the laminate including the first electrode 11, the dielectric 20, and the second electrode 12 is supported by the support 30, and the mechanical strength of the capacitor 1a tends to be increased.
  • the support body 30 can be used as a base material for forming the first electrode 11, for example. In the capacitor 1a, the support body 30 may be omitted.
  • the thickness of the support body 30 is not limited to a specific value.
  • the thickness of the support 30 may be greater than or equal to 50 nm and less than or equal to 500 nm, or may be greater than 500 nm.
  • an electric circuit 3 including a capacitor 1a can be provided.
  • the electric circuit 3 is not limited to a specific circuit as long as it includes the capacitor 1a.
  • the electric circuit 3 may be an active circuit or a passive circuit.
  • the electric circuit 3 may be a discharge circuit, a smoothing circuit, a decoupling circuit, or a coupling circuit. Since the electric circuit 3 includes the capacitor 1a, it is advantageous in terms of large capacity and highly efficient charging and discharging.
  • a circuit board 5 including a capacitor 1a can be provided. Since the circuit board 5 includes the capacitor 1a, it is advantageous in terms of large capacity and highly efficient charging and discharging.
  • the circuit board 5 includes an electric circuit 3 including a capacitor 1a.
  • a device 7 including a capacitor 1a can be provided. Since the device 7 includes the capacitor 1a, it is advantageous in terms of large capacity and highly efficient charging and discharging.
  • the device 7 includes, for example, a circuit board 5 including a capacitor 1a.
  • the device 7 may be an electronic device, a communication device, a signal processing device, or a power supply device.
  • the device 7 may be a server, an AC adapter, an accelerator, or a flat panel display such as a liquid crystal display (LCD).
  • the device 7 may be a USB charger, a solid state drive (SSD), an information terminal such as a PC, a smartphone, or a tablet PC, or an Ethernet switch. It's okay.
  • a power storage device 9 including a capacitor 1a can be provided. Since the power storage device 9 includes the capacitor 1a, it is advantageous from the viewpoint of large capacity and highly efficient charging and discharging.
  • a power storage system 50 can be provided using the power storage device 9.
  • the power storage system 50 includes a power storage device 9 and a power generation device 2.
  • electricity obtained through power generation in the power generation device 2 is stored in the power storage device 9 .
  • the power generation device 2 is, for example, a device for solar power generation or wind power generation.
  • the power storage device 9 is, for example, a device including a secondary battery such as a lithium ion battery and a lead acid battery.
  • the first electrode 11 is formed on the main surface of the support 30.
  • a vacuum process, plating, or coating can be applied.
  • vacuum processes are DC sputtering, RF magnetron sputtering, pulsed laser deposition (PLD), atomic layer deposition (ALD), and chemical vapor deposition (CVD).
  • PLD pulsed laser deposition
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the support body 30 a metal foil such as aluminum foil or zirconium foil may be used, and the support body 30 and the first electrode 11 may be integrally configured.
  • a Pt(111) film may be epitaxially grown on a c-plane sapphire single crystal substrate as the support 30 by RF magnetron sputtering.
  • the film when a film for the dielectric 20 is formed by RF magnetron sputtering, the film may be amorphous. Since the relative dielectric constant of the film is small if it remains amorphous, for example, rapid thermal annealing (RTA) treatment is performed on this film to promote crystallization.
  • RTA rapid thermal annealing
  • the second electrode 12 is formed on the dielectric 20.
  • a vacuum process, plating, or coating can be applied to form the second electrode 12. In this way, capacitor 1a can be manufactured.
  • FIG. 3 is a cross-sectional view showing another example of the capacitor of the present disclosure.
  • Capacitor 1b shown in FIG. 3 has the same structure as capacitor 1a except for parts to be specifically explained. Components of capacitor 1b that are the same as or correspond to components of capacitor 1a are given the same reference numerals, and detailed explanations are omitted. The description regarding capacitor 1a also applies to capacitor 1b unless technically contradictory.
  • the capacitor 1b As shown in FIG. 3, in the capacitor 1b, at least a portion of the first electrode 11 is porous. According to such a configuration, the surface area of the first electrode 11 tends to increase, and the capacitance of the capacitor 1b tends to increase.
  • a porous structure can be formed, for example, by etching metal foil and sintering powder.
  • a dielectric film 20 is formed on the surface of the porous portion of the first electrode 11.
  • ALD method atomic layer deposition method
  • CVD method chemical vapor phase method
  • mist CVD method a method for forming the dielectric 20
  • Capacitors 1a and 1b may be electrolytic capacitors.
  • an electrolyte 13 is placed between the first electrode 11 and the second electrode 12.
  • An electrolyte 13 may be arranged between the dielectric 20 and the second electrode 12.
  • the electrolyte 13 is arranged, for example, to fill the void around the porous portion of the first electrode 11.
  • the sapphire single crystal substrate on which the Hf-containing layer was formed was heated in a nitrogen atmosphere at 700° C. for 30 seconds to perform RTA treatment. It is thus understood that the structure of the Hf-containing layer has changed from an amorphous structure to a tetragonal phase exhibiting antiferroelectricity or a rectangular phase exhibiting ferroelectricity. Thereafter, an Au film having a thickness of 100 nm was formed on the Hf-containing layer by vacuum evaporation to obtain an Au electrode. In this way, the capacitor according to Example 1 was manufactured.
  • the peak indicated by the symbol “m” is derived from monoclinic crystal
  • the peak indicated by symbol “o/t/c” is at least one selected from the group consisting of rectangular crystal, tetragonal crystal, and cubic crystal. Derived from one.
  • the main phase is at least one phosphor selected from the group consisting of rectangular crystal, tetragonal crystal, and cubic crystal. It was understood to be a stone structure.
  • FIG. 5 is a PE curve of the capacitor according to Example 1, showing the relationship between polarization and electric field strength in the Hf-containing layer.
  • the vertical axis shows polarization and the horizontal axis shows electric field strength.
  • the area S PE [ ⁇ C ⁇ MV/cm 3 ] of the portion surrounded by the PE curve, the first straight line, and the second straight line was determined.
  • the relative dielectric constant of the Hf-containing layer of the capacitor according to Example 1 was determined by calculating the differential value of polarization with the electric field intensity as a variable in the PE curve obtained by increasing the electric field intensity.
  • FIG. 6 shows the relationship between the dielectric constant of the Hf-containing layer of the capacitor according to Example 1 and the electric field strength. As shown in Figure 6, the dielectric constant of the Hf-containing layer at an electric field strength of 0 MV/cm (no voltage applied) was approximately 30, whereas at an electric field strength of 3.0 MV/cm to 3.5 MV/cm, the dielectric constant of the Hf-containing layer was approximately 30. The dielectric constant of the Hf-containing layer increases to about 50.
  • Example 3 In the Hf-containing layer, the ratio of the number of Si atoms to the number (total number) of Hf, Si, and Ga atoms was 0.035. In the Hf-containing layer, the ratio of the number of Ga atoms to the number (total number) of Hf, Si, and Ga atoms was 0.061.
  • a capacitor according to Example 3 was manufactured in the same manner as Example 1, except that the RF magnetron sputtering conditions for forming the Hf-containing layer were adjusted as described above. The crystal structure of the Hf-containing layer, the composition of the Hf-containing layer, and the dielectric properties of the capacitor according to Example 3 were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In the Hf-containing layer, the ratio of the number of Si atoms to the number (total number) of Hf, Si, and Ga atoms was 0.035. In the Hf-containing layer, the ratio of the number of Ga atoms to the number (total number) of Hf, Si, and Ga atoms was 0.102.
  • a capacitor according to Example 4 was manufactured in the same manner as in Example 1, except that the RF magnetron sputtering conditions for forming the Hf-containing layer were adjusted as described above. The crystal structure of the Hf-containing layer, the composition of the Hf-containing layer, and the dielectric properties of the capacitor according to Example 4 were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the Hf-containing layer, the ratio of the number of Si atoms to the number (total number) of Hf, Si, and Ga atoms was 0.014. In the Hf-containing layer, the ratio of the number of Ga atoms to the number (total number) of Hf, Si, and Ga atoms was 0.102.
  • a capacitor according to Example 5 was manufactured in the same manner as Example 1 except that the conditions of RF magnetron sputtering for forming the Hf-containing layer were adjusted as described above. The crystal structure of the Hf-containing layer, the composition of the Hf-containing layer, and the dielectric properties of the capacitor according to Example 5 were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • FIG. 7 is a graph (PE curve) showing the relationship between polarization and electric field strength in the dielectric of the capacitor according to Comparative Example 1.
  • the vertical axis shows polarization
  • the horizontal axis shows electric field strength.
  • FIG. 8 shows the relationship between the relative dielectric constant of the Hf-containing layer of the capacitor according to Comparative Example 1 and the electric field strength.
  • the vertical axis represents the dielectric constant
  • the horizontal axis represents the electric field strength.
  • FIG. 9 shows the relationship between the polarization of the Hf-containing layer and the electric field strength of the capacitor according to Comparative Example 2.
  • the vertical axis shows polarization
  • the horizontal axis shows electric field strength.
  • Comparative Example 7 In the Hf-containing layer, the ratio of the number of Si atoms to the number (total number) of Hf, Si, and Ga atoms was 0.106. In the Hf-containing layer, the ratio of the number of Ga atoms to the number (total number) of Hf, Si, and Ga atoms was 0. A capacitor according to Comparative Example 7 was manufactured in the same manner as in Example 1, except that the RF magnetron sputtering conditions for forming the Hf-containing layer were adjusted as described above. The composition and dielectric properties of the Hf-containing layer of the capacitor according to Comparative Example 7 were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • FIG. 10 is a graph showing the relationship between the Si composition ratio and Ga composition ratio in the Hf-containing layer of the capacitors according to Examples 1 to 5 and Comparative Examples 1 to 9, and the dielectric properties of the dielectric material.
  • the vertical axis is the ratio y of the number of Ga atoms to the number of Hf, Si, and Ga atoms in the Hf-containing layer.
  • the horizontal axis is the ratio x of the number of Si atoms to the number of Hf, Si, and Ga atoms in the Hf-containing layer.
  • plots of " ⁇ " indicate examples, and plots of "x" indicate comparative examples. As shown in FIG.
  • the oxide with the composition Hf 1-xy Si x Ga y O z contained in the dielectric of the capacitor is 0.01 ⁇ x, 0.05 ⁇ y ⁇ 0.11, and 0.09.
  • ⁇ x+y ⁇ 0.15 When the condition of ⁇ x+y ⁇ 0.15 is satisfied, large capacity and highly efficient charging and discharging are likely to be possible.
  • the capacitor of the present disclosure is advantageous in terms of large capacity and highly efficient charging and discharging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

キャパシタ1aは、第一電極11と、第二電極12と、誘電体20とを備えている。誘電体20は、第一電極11と第二電極12との間に配置されている。誘電体20は、Hf1-x-ySixGayzで表される組成を有する酸化物を含んでいる。この組成は、0.01≦x、0.05≦y≦0.11、及び0.09≦x+y≦0.15の条件を満たす。

Description

キャパシタ、電気回路、回路基板、機器、及び蓄電デバイス
 本開示は、キャパシタ、電気回路、回路基板、機器、及び蓄電デバイスに関する。
 従来、HfO2にドーパントを添加して誘電特性を変化させることが知られている。
 例えば、非特許文献1には、Si、Al、及びZr等の元素がドーピングされたHfO2膜が反強誘電性を示すことが記載されている。
 また、特許文献1には、第1電極層と、誘電体層と、第2電極層とを備えたキャパシタが記載されている。誘電体層は第1電極層上に形成されている。第2電極層は誘電体層上に形成されている。誘電体層は金属酸化物を含み、その金属酸化物は、Hfの一部がBi及び5価以上の元素によって置換されたHfO2を含む。誘電体層は反強誘電体性を有する。このため、誘電体層は、バイアス電界を印加することによって高い誘電率を示す。
 非特許文献2には、Mg、Ba、Sr、Y、La、Nd、Sm、Er、Al、Ga、In、Co、及びNi等のドーパントのHfO2の強誘電性への影響が記載されている。GaがドープされたHfO2は強誘電性を有している。
 非特許文献3には、Hf1-xx2膜(ここで、B=Zr、Si、Al、Gd、La、Y等)において強誘電性がみられることが記載されている。
 非特許文献4には、0.1CeO2-0.9HfO2薄膜が強誘電性を示すことが記載されている。
国際公開第2019/208340号
M.H.Park et al, Advanced Materials, 2015, 27, 1811-1831 S. Starschich et al, Journal of Materials Chemistry C, 2017, 5, 333 Hyo Jeong Kim et al, Phys. Status Solidi RRL 2021, 15, 2100028 T. Shiraishi et al, Applied Physics Letters, 2019, 114, 232902
 非特許文献1及び特許文献1に記載の技術は、大容量かつ高効率な充放電の観点から再検討の余地を有する。そこで、本開示は、Hfを含む酸化物を誘電体に用いつつ、大容量かつ高効率な充放電の観点から有利なキャパシタを提供する。
 本開示のキャパシタは、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に配置された誘電体と、を備え、
 前記誘電体は、Hf1-x-ySixGayzで表される組成を有する酸化物を含み、
 前記組成において、zは前記酸化物の電気的中性を保つための値であり、
 前記組成は、0.01≦x、0.05≦y≦0.11、及び0.09≦x+y≦0.15の条件を満たす。
 本開示によれば、Hfを含む酸化物を誘電体に用いつつ、大容量かつ高効率な充放電の観点から有利なキャパシタを提供できる。
図1は、本開示のキャパシタの一例を示す断面図である。 図2Aは、本開示の電気回路の一例を模式的に示す図である。 図2Bは、本開示の回路基板の一例を模式的に示す図である。 図2Cは、本開示の機器の一例を模式的に示す図である。 図2Dは、本開示の蓄電デバイスの一例を模式的に示す図である。 図3は、本開示のキャパシタの別の一例を示す断面図である。 図4は、実施例1に係るキャパシタの誘電体のX線回折(XRD)プロファイルを示すグラフである。 図5は、実施例1に係るキャパシタの誘電体における分極と電界強度との関係を示すグラフである。 図6は、実施例1に係るキャパシタの誘電体における比誘電率と電界強度との関係を示すグラフである。 図7は、比較例1に係るキャパシタの誘電体における分極と電界強度との関係を示すグラフである。 図8は、比較例1に係るキャパシタの誘電体における比誘電率と電界強度との関係を示すグラフである 図9は、比較例2に係るキャパシタの誘電体における分極と電界強度との関係を示すグラフである。 図10は、実施例1から5及び比較例1から9に係るキャパシタの誘電体におけるSiの組成比及びGaの組成比と、誘電体の誘電特性との関係を示すグラフである。
(本開示の基礎となった知見)
 例えば、反強誘電体では、所定の電界強度の範囲において、電界強度の増加に伴い電界強度の変化量に対する誘電体の分極の変化量が大きくなる。このような電界強度の変化量に対する誘電体の分極の変化量の非線形な関係は、その誘電体を備えたキャパシタにおいて大容量な充放電を可能にする観点から有利である。一方、このような非線形な関係のためにHfO2にドーパントを添加させて得られた誘電体を備えたキャパシタにおいて、ヒステリシスロスが発生しうる。ヒステリシスロスにより、充電のために電圧を上昇させて貯蔵された電荷量に対して、放電にて出力される電荷量が少なくなる。このようなヒステリシスロスの発生は、キャパシタの充電により貯蔵されたエネルギーに対して放電においてキャパシタから出力可能なエネルギーが小さくなるというエネルギー損失の問題を生じさせる。このことは、高効率なキャパシタの充放電の観点から有利とは言い難い。
 上記の文献によれば、Si、Al、Y、La、及びCe等の元素をHfO2に添加することにより、明瞭な強誘電性又は反強誘電性が発現すると理解される。一方、GaをHfO2に添加した報告では、わずかな強誘電性が確認されているに過ぎない。添加によりわずかな強誘電性がみられるにすぎないGaを、SiとともにHfO2に添加した報告はされていない。
 このような事情に鑑み、本発明者らは、Hfを含む酸化物を誘電体に用いつつ、大容量かつ高効率な充放電が可能なキャパシタを実現できないか鋭意検討を重ねた。その結果、本発明者らは、Hfを含む所定の組成を有する酸化物を含む誘電体を用いて、キャパシタにおいて、電界強度の変化量に対する誘電体の分極の変化量の非線形な関係と、ヒステリシスロスの抑制とを実現できることを見出した。この新たな知見に基づき、本発明者らは本開示のキャパシタを案出した。
(本開示に係る一態様の概要)
 本開示の第1態様に係るキャパシタは、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に配置された誘電体と、を備え、
 前記誘電体は、Hf1-x-ySixGayzで表される組成を有する酸化物を含み、
 前記組成において、zは前記酸化物の電気的中性を保つための値であり、
 前記組成は、0.01≦x、0.05≦y≦0.11、及び0.09≦x+y≦0.15の条件を満たす。
 第1態様によれば、電界強度の変化量に対する誘電体の分極の変化量の関係が非線形な関係になりやすい。加えて、キャパシタの充放電においてヒステリシスロスが抑制されやすい。このため、第1態様に係るキャパシタは、大容量かつ高効率な充放電の観点から有利である。
 本開示の第2態様において、例えば、第1態様に係るキャパシタでは、前記酸化物は、蛍石構造を含んでいてもよい。第2態様によれば、電界強度の変化量に対する誘電体の分極の変化量の関係が非線形な関係によりなりやすい。
 本開示の第3態様において、例えば、第2態様に係るキャパシタでは、前記酸化物は、正方晶相及び直方晶相からなる群より選ばれる少なくとも1つを含んでいてもよい。第3態様によれば、電界強度の変化量に対する誘電体の分極の変化量の関係が非線形な関係によりなりやすい。
 本開示の第4態様に係る電気回路は、第1態様から第3態様のいずれか1つの態様に係るキャパシタを備えている。第4態様によれば、大容量かつ高効率な充放電の観点から有利な電気回路を提供できる。
 本開示の第5態様に係る回路基板は、第1態様から第3態様のいずれか1つの態様に係るキャパシタを備えている。第5態様によれば、大容量かつ高効率な充放電の観点から有利な回路基板を提供できる。
 本開示の第6態様に係る機器は、第1態様から第3態様のいずれか1つの態様に係るキャパシタを備えている。第6態様によれば、大容量かつ高効率な充放電の観点から有利な機器を提供できる。
 本開示の第7態様に係る蓄電デバイスは、第1態様から第3態様のいずれか1つの態様に係るキャパシタを備えている。第7態様によれば、大容量かつ高効率な充放電の観点から有利な蓄電デバイスを提供できる。
(実施の形態)
 以下、本開示の実施形態について、図面を参照しながら説明する。
 図1は、本開示のキャパシタの一例を示す断面図である。図1に示す通り、キャパシタ1aは、第一電極11と、第二電極12と、誘電体20とを備えている。誘電体20は、第一電極11と第二電極12との間に配置されている。誘電体20は、Hf1-x-ySixGayzで表される組成を有する酸化物を含んでいる。この組成において、zはこの酸化物の電気的中性を保つための値である。加えて、この組成は、0.01≦x、0.05≦y≦0.11、及び0.09≦x+y≦0.15の条件を満たす。これにより、キャパシタ1aにおいて電界強度の変化量に対する誘電体の分極の変化量の関係が非線形な関係になりやすく、キャパシタ1aの充放電においてヒステリシスロスが抑制されやすい。このため、キャパシタ1aは、大容量かつ高効率な充放電の観点から有利である。
 上記の組成におけるzは、酸化物の電気的中性が保たれる限り特定の値に限定されない。zは、例えば、yの値及び誘電体20の作製プロセスによって変動しうる。zは、例えば、1.9≦z<2の条件を満たす。
 誘電体20の上記の酸化物の構造は特定の構造に限定されない。この酸化物は、例えば蛍石構造を含む。この場合、キャパシタ1aにおいて、電界強度の変化量に対する誘電体の分極の変化量の関係が非線形な関係によりなりやすい。酸化物の全体が蛍石構造を有していてもよく、酸化物の一部が蛍石構造を有していてもよい。
 誘電体20の上記の酸化物が蛍石構造を含む場合、この酸化物は、正方晶相及び直方晶相からなる群より選ばれる少なくとも1つを含んでいてもよい。この場合、キャパシタ1aにおいて、電界強度の変化量に対する誘電体の分極の変化量の関係が非線形な関係によりなりやすい。酸化物の全体が正方晶相及び直方晶相からなる群より選ばれる少なくとも1つを有していてもよく、酸化物の一部が正方晶相及び直方晶相からなる群より選ばれる少なくとも1つを有していてもよい。
 キャパシタ1aにおいて、第一電極11、第二電極12、及び誘電体20の形状は特定の形状に限定されない。図1に示す通り、第一電極11、第二電極12、及び誘電体20のそれぞれは、例えば層状に形成されている。
 第一電極11の厚みは特定の値に限定されない。第一電極11の厚みは、例えば50nm以上である。これにより、キャパシタ1aにおいて内部抵抗が小さくなりやすい。第一電極11の厚みは、例えば500nm以下である。これにより、複数のキャパシタ1aを集積して使用する場合に全体の容量密度が大きくなりやすい。
 第一電極11の材料は特定の材料に限定されない。第一電極11は、例えば、Pt、Au、Al、Ta、及びZr等の金属を含んでいてもよい。第一電極11は、TiN及びTaN等の導電性の窒化物を含んでいてもよい。第一電極11は、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、及びZnO等の導電性の酸化物を含んでいてもよい。第一電極11が酸化雰囲気で形成される場合、第一電極11は、望ましくは、Pt、Au、ITO、及びZnOからなる群より選ばれる少なくとも1つを含む。第一電極11が還元雰囲気で形成される場合、第一電極11は、望ましくは、Pt、Au、Al、Ta、Zr、TiN、及びTaNからなる群より選ばれる少なくとも1つを含む。
 第二電極12の厚みは特定の値に限定されない。第二電極12の厚みは、例えば50nm以上である。これにより、キャパシタ1aにおいて内部抵抗が小さくなりやすい。第二電極12の厚みは、例えば500nm以下である。これにより、複数のキャパシタ1aを集積して使用する場合に全体の容量密度が大きくなりやすい。
 第二電極12の材料は特定の材料に限定されない。第二電極12は、例えば、Pt、Au、Al、Ta、及びZr等の金属を含んでいてもよい。第二電極12は、ドープされた多結晶シリコンを含んでいてもよい。第二電極12は、TiN及びTaN等の導電性の窒化物を含んでいてもよい。第二電極12は、ITO、ATO、及びZnO等の導電性の酸化物を含んでいてもよい。第二電極12は、ポリアニリン及びポリピロール等の導電性の有機ポリマーを含んでいてもよい。第二電極12が酸化雰囲気に曝される場合、第二電極12は、望ましくは、Pt、Au、ITO、ATO、及びZnOからなる群より選ばれる少なくとも1つを含む。第二電極12が還元雰囲気に曝される場合、第二電極12は、望ましくは、Pt、Au、Al、Ta、Zr、TiN、TaN、及びドープされた多結晶シリコンからなる群より選ばれる少なくとも1つを含む。例えば、第二電極12を形成した後にアニール処理を行って誘電体20において結晶化を促す場合に、第二電極12の周囲に供給されるガスによって第二電極12が酸化雰囲気又は還元雰囲気に曝されうる。アニール処理において第二電極12が酸化雰囲気に曝される場合、第二電極12は、より望ましくは、Pt、ITO、ATO、及びZnOからなる群より少なくとも1つを含む。アニール処理において第二電極12が還元雰囲気に曝される場合、第二電極12は、より望ましくは、Pt、TiN、及びTaNからなる群より少なくとも1つを含む。
 図1に示す通り、キャパシタ1aは、例えば支持体30をさらに備えている。第一電極11は、例えば、支持体30上に配置されている。これにより、第一電極11、誘電体20、及び第二電極12を含む積層体が支持体30によって支持され、キャパシタ1aの機械的強度が高くなりやすい。支持体30は、例えば、第一電極11を形成するための基材として使用されうる。キャパシタ1aにおいて、支持体30は省略されてもよい。
 支持体30は、特定の支持体に限定されない。支持体30は、導電体であってもよいし、半導体であってもよいし、絶縁体であってもよい。支持体30が導電体である場合、支持体30と第一電極11とが一体化されていてもよい。
 支持体30の厚みは特定の値に限定されない。支持体30の厚みは、50nm以上500nm以下であってもよいし、500nmより大きくてもよい。
 図2Aに示す通り、例えば、キャパシタ1aを備えた電気回路3を提供できる。電気回路3は、キャパシタ1aを備える限り、特定の回路に限定されない。電気回路3は、能動回路であってもよいし、受動回路であってもよい。電気回路3は、放電回路であってもよいし、平滑回路であってもよいし、デカップリング回路であってもよいし、カップリング回路であってもよい。電気回路3は、キャパシタ1aを備えているので、大容量かつ高効率な充放電の観点から有利である。
 図2Bに示す通り、例えば、キャパシタ1aを備えた回路基板5を提供できる。回路基板5は、キャパシタ1aを備えているので、大容量かつ高効率な充放電の観点から有利である。例えば、回路基板5は、キャパシタ1aを含む電気回路3を備えている。
 図2Cに示す通り、例えば、キャパシタ1aを備えた機器7を提供できる。機器7は、キャパシタ1aを備えているので、大容量かつ高効率な充放電の観点から有利である。機器7は、例えば、キャパシタ1aを含む回路基板5を備えている。機器7は、電子機器であってもよいし、通信機器であってもよいし、信号処理装置であってもよいし、電源装置であってもよい。機器7は、サーバーであってもよいし、ACアダプタであってもよいし、アクセラレータであってもよいし、液晶表示装置(LCD)等のフラットパネルディスプレイであってもよい。機器7は、USB充電器であってもよいし、ソリッドステートドライブ(SSD)であってもよいし、PC、スマートフォン、及びタブレットPC等の情報端末であってもよいし、イーサーネットスイッチであってもよい。
 図2Dに示す通り、例えば、キャパシタ1aを備えた蓄電デバイス9を提供できる。蓄電デバイス9は、キャパシタ1aを備えているので、大容量かつ高効率な充放電の観点から有利である。図2Dに示す通り、例えば、蓄電デバイス9を用いて、蓄電システム50を提供できる。蓄電システム50は、蓄電デバイス9と、発電装置2とを備えている。蓄電システム50において、発電装置2における発電に伴い得られる電気が蓄電デバイス9に蓄えられる。発電装置2は、例えば、太陽光発電又は風力発電のための装置である。蓄電デバイス9は、例えば、リチウムイオン電池及び鉛蓄電池等の二次電池を備えたデバイスである。
 キャパシタ1aの製造方法の一例を説明する。まず、支持体30の主面上に第一電極11を形成する。第一電極11の形成には、例えば、真空プロセス、めっき、又は塗布を適用しうる。真空プロセスの例は、DCスパッタリング法、RFマグネトロンスパッタリング法、パルスレーザー堆積(PLD)、原子層堆積(ALD)、及び化学気相成長(CVD)である。支持体30として、アルミニウム箔及びジルコニウム箔等の金属箔を用い、支持体30と第一電極11とが一体的に構成されていてもよい。一例として、支持体30としてのc面サファイア単結晶基板上にRFマグネトロンスパッタリング法によってPt(111)膜をエピタキシャル成長させてもよい。
 次に、第一電極11の上に、誘電体20又は誘電体20の前駆体として、Hf1-x-ySixGayzで表される組成を有する酸化物を含む膜が形成される。誘電体20又は誘電体20の前駆体は、第一電極11の形成と同様に真空プロセスを用いて形成できる。もしくは、Chemical Solution Deposition(CSD)法を用いた、ディップコーティング、スピンコーティング、及びダイコーティング等の湿式プロセスによって、誘電体20又は誘電体20の前駆体が形成されてもよい。
 例えば、RFマグネトロンスパッタリング法によって誘電体20のための膜を形成した場合、その膜はアモルファスでありうる。アモルファスのままでは膜の比誘電率が小さいので、例えば、この膜に対してRapid Thermal Anneal(RTA)処理がなされ、結晶化が促される。
 次に、誘電体20の上に第二電極12が形成される。第二電極12の形成には、第一電極11と同様に、真空プロセス、めっき、又は塗布を適用しうる。このようにして、キャパシタ1aを製造できる。
 図3は、本開示のキャパシタの別の一例を示す断面図である。図3に示すキャパシタ1bは、特に説明する部分を除き、キャパシタ1aと同様に構成されている。キャパシタ1aの構成要素と同一又は対応するキャパシタ1bの構成要素には、同一の符号を付し、詳細な説明を省略する。キャパシタ1aに関する説明は、技術的に矛盾しない限り、キャパシタ1bにも当てはまる。
 図3に示す通り、キャパシタ1bにおいて、第一電極11の少なくとも一部は多孔質である。このような構成によれば、第一電極11の表面積が大きくなりやすく、キャパシタ1bの静電容量が高くなりやすい。このような多孔質の構造は、例えば、金属箔のエッチング及び粉末の焼結処理等によって形成できる。
 図3に示す通り、例えば、第一電極11の多孔質な部位の表面上に誘電体20の膜が形成されている。この場合、誘電体20の成膜方法として、原子層堆積法(ALD法)又はCVD法及びミストCVD法等の化学気相法を採用できる。
 第一電極11は、例えば、Al、Ta、Nb、Zr、Hf、及びBi等の弁金属を含んでいる。第二電極12は、例えば、銀含有ペーストの固化物、グラファイト等のカーボン材料、又は上記固化物及びカーボン材料の双方を含んでいてもよい。
 キャパシタ1a及び1bは、電解キャパシタであってもよい。この場合、例えば、第一電極11と第二電極12との間に電解質13が配置されている。誘電体20と第二電極12との間に電解質13が配置されていてもよい。キャパシタ1bにおいて、電解質13は、例えば、第一電極11の多孔質な部位の周囲の空隙を充填するように配置されている。
 電解質は、例えば、酸化マンガン、電解液、及び導電性高分子からなる群より選択される少なくとも一つを含む。導電性高分子の例は、ポリピロール、ポリチオフェン、ポリアニリン、及びこれらの誘導体である。電解質は、酸化マンガン等のマンガン化合物であってもよい。電解質は、固体電解質を含んでいてもよい。
 以下、本開示を実施例に基づいて、さらに詳細に説明する。ただし、本開示は以下の実施例に限定されるものではない。
(実施例1)
 RFマグネトロンスパッタリング法によって、c面サファイア単結晶基板上に100nmの厚みを有するPt(111)膜をエピタキシャル成長させ、Pt電極を得た。次に、RFマグネトロンスパッタリング法によって、Pt電極上に20nmの厚みを有するHf含有層を形成した。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.053であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.056であった。次に、Hf含有層が形成されたサファイア単結晶基板を700℃の窒素雰囲気で30秒間加熱し、RTA処理を行った。これにより、Hf含有層の構造は、アモルファス構造から、反強誘電性を示す正方晶相又は強誘電性を示す直方晶相を有するように変化したと理解される。その後、真空蒸着法によって、Hf含有層の上に100nmの厚みを有するAu膜を形成し、Au電極を得た。このようにして、実施例1に係るキャパシタを作製した。
 マルバーンパナリティカル社製のX線回折(XRD)装置Aerisを用いて、実施例1に係るキャパシタのHf含有層の結晶構造を評価した。XRDにおいて、Cu‐Kα線(波長λ=0.15418nm)をX線として用いた。図4に、実施例1に係るキャパシタのHf含有層のXRDプロファイルを示す。図4において、縦軸はXRDの強度を示し、横軸は回折角を示す。図4において、符号「m」で示されるピークは単斜晶に由来し、符号「o/t/c」で示されるピークは、直方晶、正方晶、及び立方晶からなる群より選ばれる少なくとも1つに由来する。図4によれば、実施例1に係るキャパシタのHf含有層は、単斜晶をわずかに含むものの、主たる相は、直方晶、正方晶、及び立方晶からなる群より選ばれる少なくとも1つの蛍石構造であると理解された。
 リガク社製の波長分散型蛍光X線分析(WDXRF)装置ZSX-Primusを用いて、実施例1に係るキャパシタのHf含有層の組成を決定した。この組成をHf1-x-yxy2で表したときの元素A、元素B、xの値、及びyの値を表1に示す。
 ラジアントテクノロジー社製の強誘電体テスターPremier IIを用いて、実施例1に係るキャパシタに対してPolarization-Electric field測定を行って、実施例1に係るキャパシタのP-Eカーブを得た。このP-Eカーブに基づいて実施例1に係るキャパシタの誘電特性を評価した。図5は、実施例1に係るキャパシタのP-Eカーブであり、Hf含有層における分極と電界強度との関係を示す。図5において、縦軸は分極を示し、横軸は電界強度を示す。P-Eカーブにおいて、P-Eカーブ、第一直線、及び第二直線によって囲まれる部分の面積SPE[μC・MV/cm3]を求めた。第一直線は、電界強度が0[MV/cm2]以上であり、かつ、分極が0[μC/cm2]である条件を満たす直線である。第二直線は、電界強度が0[MV/cm2]であり、かつ、分極が0[μC/cm2]以上である条件を満たす直線である。図5に示す通り、実施例1に係るキャパシタにおいて、昇圧時(充電)及び降圧時(放電)において大きなヒステリシスロスは発生しておらず、エネルギー損失を低減できることが示唆された。キャパシタのヒステリシスロスに関し、面積SPEが15[J/cm3]以下である場合を「A」と評価し、それ以外の場合を「X」と評価した。結果を表1に示す。
 電界強度を増加させて得られたP-Eカーブにおいて、電界強度を変数とする分極の微分値を求めて実施例1に係るキャパシタのHf含有層の比誘電率を決定した。図6は、実施例1に係るキャパシタのHf含有層の比誘電率と電界強度との関係を示す。図6に示す通り、0MV/cm(電圧印加なし)の電界強度におけるHf含有層の比誘電率は約30であったのに対し、3.0MV/cmから3.5MV/cmの電界強度におけるHf含有層の比誘電率は約50に増加している。このように、実施例1に係るキャパシタにおいて、分極及び電界強度は非線形な関係を有していた。キャパシタにおける分極と電界強度との関係の非線形性に関し、各電界強度における比誘電率の最小値に対する最大値の比が1.5以上である場合に非線形性ありと評価し、それ以外の場合に非線形なしと評価した。結果を表1に示す。
(実施例2)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.078であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.061であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、実施例2に係るキャパシタを作製した。実施例2に係るキャパシタの、Hf含有層の結晶構造、Hf含有層の組成、及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(実施例3)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.035であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.061であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、実施例3に係るキャパシタを作製した。実施例3に係るキャパシタの、Hf含有層の結晶構造、Hf含有層の組成、及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(実施例4)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.035であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.102であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、実施例4に係るキャパシタを作製した。実施例4に係るキャパシタの、Hf含有層の結晶構造、Hf含有層の組成、及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(実施例5)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.014であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.102であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、実施例5に係るキャパシタを作製した。実施例5に係るキャパシタの、Hf含有層の結晶構造、Hf含有層の組成、及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例1)
 Si及びGaを含まないHfO2の組成を有するようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例1に係るキャパシタを作製した。比較例1に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。図7は、比較例1に係るキャパシタの誘電体における分極と電界強度との関係を示すグラフ(P-Eカーブ)である。図7において、縦軸は分極を示し、横軸は電界強度を示す。図8は、比較例1に係るキャパシタのHf含有層の比誘電率と電界強度との関係を示す。図8において、縦軸は比誘電率を示し、横軸は電界強度を示す。
(比較例2)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.053であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例2に係るキャパシタを作製した。比較例2に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。図9は、比較例2に係るキャパシタのHf含有層の分極と電界強度との関係を示す。図9において、縦軸は分極を示し、横軸は電界強度を示す。
(比較例3)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.077であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例3に係るキャパシタを作製した。比較例3に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例4)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.153であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例4に係るキャパシタを作製した。比較例4に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例5)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.078であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.026であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例5に係るキャパシタを作製した。比較例5に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例6)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.113であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.061であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例6に係るキャパシタを作製した。比較例6に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例7)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.106であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例7に係るキャパシタを作製した。比較例7に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例8)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.078であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.102であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例8に係るキャパシタを作製した。比較例8に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例9)
 Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Siの原子数の比が0.035であった。Hf含有層において、Hf、Si、及びGaの原子数(総数)に対して、Gaの原子数の比が0.153であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例9に係るキャパシタを作製した。比較例9に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例10)
 Hf含有層において、Hf、Ti、及びNbの原子数(総数)に対して、Tiの原子数の比が0.016であった。Hf含有層において、Hf、Ti、及びNbの原子数(総数)に対して、Nbの原子数の比が0.005であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例10に係るキャパシタを作製した。比較例10に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例11)
 Hf含有層において、Hf、Sr、及びNbの原子数(総数)に対して、Srの原子数の比が0.005であった。Hf含有層において、Hf、Sr、及びNbの原子数(総数)に対して、Nbの原子数の比が0.003であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例11に係るキャパシタを作製した。比較例11に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
(比較例12)
 Hf含有層において、Hf、Gd、及びNbの原子数(総数)に対して、Gdの原子数の比が0.059であった。Hf含有層において、Hf、Gd、及びNbの原子数(総数)に対して、Nbの原子数の比が0.006であった。このようにHf含有層の形成のためのRFマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして、比較例12に係るキャパシタを作製した。比較例12に係るキャパシタの、Hf含有層の組成及び誘電特性を実施例1と同様に評価した。結果を表1に示す。
 表1に示す通り、実施例1から5に係るキャパシタにおいて、分極及び電界強度に関し非線形な関係が認められた。加えて、実施例1から5に係るキャパシタにおいてヒステリシスロスは小さかった。このため、実施例1から5に係るキャパシタが大容量かつ高効率な充放電の観点から有利であると示唆された。一方、比較例1、6から12に係るキャパシタでは、分極及び電界強度において非線形な関係が認められなかった。例えば、比較例1に係るキャパシタでは、図7及び図8に示す通り、Hf含有層は常誘電体的な誘電特性を有していた。比較例2から5に係るキャパシタでは、分極及び電界強度において非線形な関係が認められたものの、ヒステリシスロスが大きかった。例えば、比較例2に係るキャパシタでは、図9に示す通り、Hf含有層は反強誘電体的な誘電特性を有するものの、ヒステリシスロスが大きく、高効率な充放電の観点から有利であるとは言い難かった。
 図10は、実施例1から5及び比較例1から9に係るキャパシタのHf含有層におけるSiの組成比及びGaの組成比と、誘電体の誘電特性との関係を示すグラフである。図10において、縦軸は、Hf含有層における、Hf、Si、及びGaの原子数に対するGaの原子数の比yである。横軸は、Hf含有層における、Hf、Si、及びGaの原子数に対するSiの原子数の比xである。図10において、「○」のプロットは実施例を示し、「×」のプロットは比較例を示す。図10に示す通り、キャパシタの誘電体に含まれる、Hf1-x-ySixGayzの組成の酸化物が0.01≦x、0.05≦y≦0.11、及び0.09≦x+y≦0.15の条件を満たすと、大容量かつ高効率な充放電が可能となりやすい。
Figure JPOXMLDOC01-appb-T000001
 本開示のキャパシタは、大容量かつ高効率な充放電の観点から有利である。

Claims (7)

  1.  第一電極と、
     第二電極と、
     前記第一電極と前記第二電極との間に配置された誘電体と、を備え、
     前記誘電体は、Hf1-x-ySixGayzで表される組成を有する酸化物を含み、
     前記組成において、zは前記酸化物の電気的中性を保つための値であり、
     前記組成は、0.01≦x、0.05≦y≦0.11、及び0.09≦x+y≦0.15の条件を満たす、
     キャパシタ。
  2.  前記酸化物は、蛍石構造を含む、請求項1に記載のキャパシタ。
  3.  前記酸化物は、正方晶相及び直方晶相からなる群より選ばれる少なくとも1つを含む、請求項2に記載のキャパシタ。
  4.  請求項1から3のいずれか1項に記載のキャパシタを備えた、電気回路。
  5.  請求項1から3のいずれか1項に記載のキャパシタを備えた、回路基板。
  6.  請求項1から3のいずれか1項に記載のキャパシタを備えた、機器。
  7.  請求項1から3のいずれか1項に記載のキャパシタを備えた、蓄電デバイス。
PCT/JP2023/012325 2022-05-18 2023-03-27 キャパシタ、電気回路、回路基板、機器、及び蓄電デバイス WO2023223677A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023539775A JPWO2023223677A1 (ja) 2022-05-18 2023-03-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-081901 2022-05-18
JP2022081901 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223677A1 true WO2023223677A1 (ja) 2023-11-23

Family

ID=88835317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012325 WO2023223677A1 (ja) 2022-05-18 2023-03-27 キャパシタ、電気回路、回路基板、機器、及び蓄電デバイス

Country Status (2)

Country Link
JP (1) JPWO2023223677A1 (ja)
WO (1) WO2023223677A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054465A (ja) * 2004-08-12 2006-02-23 Internatl Business Mach Corp <Ibm> ウェハ接合によって製造される半導体−誘電体−半導体デバイス構造体
JP2015506089A (ja) * 2011-11-24 2015-02-26 ユニバーシティ オブ マニトバ 金属膜の酸化
WO2020218617A1 (ja) * 2019-04-26 2020-10-29 国立大学法人東京工業大学 強誘電性膜の製造方法、強誘電性膜、及びその用途
JP2021528856A (ja) * 2018-06-21 2021-10-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 酸化ハフニウムの薄膜におけるドーパント濃度のチューニング可能性

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054465A (ja) * 2004-08-12 2006-02-23 Internatl Business Mach Corp <Ibm> ウェハ接合によって製造される半導体−誘電体−半導体デバイス構造体
JP2015506089A (ja) * 2011-11-24 2015-02-26 ユニバーシティ オブ マニトバ 金属膜の酸化
JP2021528856A (ja) * 2018-06-21 2021-10-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 酸化ハフニウムの薄膜におけるドーパント濃度のチューニング可能性
WO2020218617A1 (ja) * 2019-04-26 2020-10-29 国立大学法人東京工業大学 強誘電性膜の製造方法、強誘電性膜、及びその用途

Also Published As

Publication number Publication date
JPWO2023223677A1 (ja) 2023-11-23

Similar Documents

Publication Publication Date Title
Pan et al. BiFeO 3–SrTiO 3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance
Qin et al. High energy storage and thermal stability under low electric field in Bi0. 5Na0. 5TiO3-modified BaTiO3-Bi (Zn0. 25Ta0. 5) O3 ceramics
Diao et al. Enhanced energy storage properties of BaTiO3 thin films by Ba0. 4Sr0. 6TiO3 layers modulation
Instan et al. Ultrahigh capacitive energy storage in highly oriented Ba (ZrxTi1-x) O3 thin films prepared by pulsed laser deposition
US8877388B1 (en) Solid-state lithium battery
Diao et al. Significantly improved energy storage properties of sol-gel derived Mn-modified SrTiO3 thin films
Li et al. Enhanced energy storage density and discharge efficiency in potassium sodium niobite-based ceramics prepared using a new scheme
Puli et al. Observation of large enhancement in energy-storage properties of lead-free polycrystalline 0.5 BaZr0. 2Ti0. 8O3–0.5 Ba0. 7Ca0. 3TiO3 ferroelectric thin films
Zannen et al. Electrostatic energy storage in antiferroelectric like perovskite
Sharma et al. Large energy storage density performance of epitaxial BCT/BZT heterostructures via interface engineering
US20220005647A1 (en) Relaxor-ferroelectric material and method of synthesizing the same and device including relaxor-ferroelectric material
Wang et al. Colossal Permittivity Ti1–x (Eu0. 5Ta0. 5) x O2 Ceramics with Excellent Thermal Stability
Hoang et al. Reducing dielectric loss in Na0. 5Bi0. 5TiO3 based high temperature capacitor material
Muhammad et al. Structure and dielectric characteristics of Ba1-xCaxTi1-xCaxO3-δ ceramics
Lin et al. MIM Capacitors Based on ${\rm ZrTiO} _ {\rm x}/{\rm BaZr} _ {\rm y}{\rm Ti} _ {\rm 1-y}{\rm O} _ {3} $ Featuring Record-Low VCC and Excellent Reliability
He et al. High-performance La-doped BCZT thin film capacitors on LaNiO3/Pt composite bottom electrodes with ultra-high efficiency and high thermal stability
Sun et al. Breakdown field enhancement and energy storage performance in four-layered Aurivillius films
Lin et al. Achieving high energy storage performance by LaMg0. 5Ti0. 5O3 modification of multiphase engineered Bi0. 5Na0. 5TiO3–based ceramics
Puli et al. Review on energy storage in lead‐free ferroelectric films
Han et al. Compensation for volatile elements to modify the microstructure and energy storage performance of (W, Ni)-codoped Na0. 5Bi0. 5TiO3 ceramic films
Won et al. Lead-free bismuth pyrochlore-based dielectric films for ultrahigh energy storage capacitors
Michael et al. Amorphous-nanocrystalline lead titanate thin films for dielectric energy storage
CN114388693A (zh) 电介质材料以及包括其的器件和存储设备
Karan et al. High energy density metal-insulator-metal capacitors with Ba [(Ni1∕ 2, W1∕ 2) 0.1 Ti0. 9] O3 thin films
EP2831895B1 (en) High energy density capacitor and dielectric material therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023539775

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807292

Country of ref document: EP

Kind code of ref document: A1