WO2023222359A1 - Verfahren zur aufreinigung von kohlenwasserstoffströmen inklusive heterogen und homogen katalysierter reaktionen - Google Patents

Verfahren zur aufreinigung von kohlenwasserstoffströmen inklusive heterogen und homogen katalysierter reaktionen Download PDF

Info

Publication number
WO2023222359A1
WO2023222359A1 PCT/EP2023/061158 EP2023061158W WO2023222359A1 WO 2023222359 A1 WO2023222359 A1 WO 2023222359A1 EP 2023061158 W EP2023061158 W EP 2023061158W WO 2023222359 A1 WO2023222359 A1 WO 2023222359A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon stream
separation
reaction
stream
hydrogenation
Prior art date
Application number
PCT/EP2023/061158
Other languages
English (en)
French (fr)
Inventor
Stephan Peitz
Guido Stochniol
Martin Althoff
Ralf BOLL
Helena LOPEZ-FERNANDEZ
Original Assignee
Evonik Oxeno Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Oxeno Gmbh & Co. Kg filed Critical Evonik Oxeno Gmbh & Co. Kg
Publication of WO2023222359A1 publication Critical patent/WO2023222359A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation

Definitions

  • low boilers are first removed and then separated into two partial streams, each of which is subjected to a chemical reaction. After the products have been separated off, the streams are combined again and subjected to high boiler removal.
  • C3 to C5 alkane streams which can be used, for example, as propellants
  • the C3 to C5 alkane streams obtained must have certain product specifications, i.e. they must only contain small amounts of undesirable and/or odor-causing substances.
  • odor-causing substance in this context is any substance or compound that does not correspond to the substance that constitutes the propellant gas. If the propellant gases are to be used in the cosmetic or medical sector, any contamination with reactive components such as olefins, but also any odor contamination with other substances or compounds should be avoided, as these are mostly applications close to the body.
  • the general task is to improve the known processes in order to obtain streams in which the contamination with foreign odor-causing substances is lower. It is also important to provide a process that is as efficient and cost-effective as possible.
  • the process according to the invention is therefore a process for purifying a hydrocarbon stream which contains at least Cx alkanes, Cx olefins, low boilers such as Cx-1 hydrocarbons and high boilers such as Cx+i hydrocarbons, where x is an integer from 3 to 5 , wherein the method comprises the following steps: a) separating at least some of the low boilers from the hydrocarbon stream in a first separation unit to obtain a hydrocarbon stream at least partially freed from low boilers and separating the at least partially freed from low boilers hydrocarbon stream into two partial streams A1 and A2; b) carrying out a heterogeneously catalyzed reaction with the partial stream A1 using a nickel-containing catalyst to obtain a reaction mixture A1; c) separating the reaction product obtained from the reaction mixture A1 to obtain a hydrocarbon stream A1, from which the reaction products from step b) have been at least partially removed; d) carrying out a homogeneously catalyzed reaction with the partial stream A2
  • the process according to the invention has the advantage that a highly pure alkane stream can be obtained.
  • both a homogeneously catalyzed and a heterogeneously catalyzed reaction are carried out, whereby the olefins contained in the hydrocarbon stream used can be converted into more valuable products.
  • This makes the separation task of removing high boilers in the last stage easier to accomplish.
  • we can react flexibly to the needs of the market. If products from the heterogeneously catalyzed reaction are in greater demand, the subset A1 of the hydrocarbon stream freed from low boilers, which is fed to the heterogeneously catalyzed reaction, can be increased in order to produce more of these products. The same applies vice versa if the need for the product of the homogeneously catalyzed reaction is higher, in which case the subset A2 must be increased.
  • Another advantage of the present process is that it can be integrated into existing petrochemical production plants.
  • Such streams contain both Cx alkanes and Cx olefins, but also low boilers such as Cx-i hydrocarbons and high boilers such as Cx +i-hydrocarbons.
  • Such streams are available on an industrial scale from cracking processes and are used in a wide variety of ways petrochemical processes are used.
  • the streams used here do not contain any alkyl tert-butyl ethers (ATBE) such as MTBE (methyl tert-butyl ether) or ETBE (ethyl tert-butyl ether), since these would enter as high boilers in the reaction steps described below and can lead to serious disruptions there.
  • ATBE alkyl tert-butyl ethers
  • ETBE ethyl tert-butyl ether
  • the hydrocarbon stream to be cleaned is therefore a C3 hydrocarbon stream, a C4 hydrocarbon stream, or a C5 hydrocarbon stream.
  • C3 hydrocarbon streams according to the invention contain at least propene, propane, C2 hydrocarbons (e.g. ethene, ethane) and C4 hydrocarbons (e.g. butane, butene).
  • propane e.g. ethene, ethane
  • C4 hydrocarbons e.g. butane, butene
  • a C3 hydrocarbon stream is also referred to as a propene stream (to be purified).
  • C4 hydrocarbon streams according to the invention contain at least butene (e.g. 1-butene, 2-butene, possibly isobutene), butane, C3 hydrocarbons (e.g.
  • C4 hydrocarbon stream is also referred to as a butene stream (to be purified) or isobutene stream.
  • C5 hydrocarbon streams according to the invention contain at least pentene (e.g. 1-pentene, cis- or trans-2-pentene), pentane, C4 hydrocarbons (e.g. butene, butane) and C6 hydrocarbons (e.g. hexene , hexane).
  • C5 hydrocarbon stream is also referred to as a pentene stream (to be purified).
  • a butene stream is used as the hydrocarbon stream to be purified.
  • the composition of the butene stream that is preferably used is fundamentally not limited to a specific composition. The only requirement is that the individual components according to claim 1 are present.
  • Preferred butene streams contain butane, isobutane, butenes (1-butene and 2-butene and possibly isobutene).
  • the butene stream can contain from 0.0001 to 3% by weight of C3 hydrocarbons, from 0.01 to 90% by weight of butenes and from 0.0001 to 20% by weight of C5 hydrocarbons.
  • the butene stream can additionally contain, among other things, small amounts of dimethyl ether, water, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and/or hydrogen sulfide (each up to 100 ppm by weight).
  • the butene stream may contain traces of other substances or compounds that cannot be listed individually. Some of these substances may have a noticeable odor. Their presence is undesirable and is minimized by the procedure described here.
  • the hydrocarbon stream to be purified in particular the propene stream, the butene stream or the pentene stream, is fed to a low boiler separation in a first separation unit, where at least part of the Low boilers are separated off.
  • a first separation unit where at least part of the Low boilers are separated off.
  • the separation of at least some of the low boilers is preferably carried out in one or more distillation columns, particularly preferably in a single distillation column. It goes without saying that the low boilers present accumulate at the top and are at least partially removed there.
  • the hydrocarbon stream at least partially freed from low boilers by the low boiler removal in step a) can then be removed in particular as a bottom stream.
  • the distillation column preferably used for the separation of at least some of the low boilers in step a) can in principle be designed in any way and have any internals such as separation stages, as long as the function, i.e. the separation of at least some of the low boilers, is guaranteed.
  • the separation of at least some of the low boilers in step a) is carried out at a pressure of 1 to 25 barg, particularly preferably 2 to 20 barg.
  • the temperature during the separation in step a) is preferably in the range from 30 to 150 ° C, particularly preferably in the range from 35 to 100 ° C.
  • the unit barü means bar overpressure, i.e. an overpressure above the respective ambient pressure.
  • the resulting hydrocarbon stream which is at least partially freed from low boilers, is separated into two partial streams A1 and A2.
  • this separation also counts as step a).
  • Such a separation can, for example, simply be done via a T-piece in the line together with one or more valves.
  • the partial stream A1 is then subjected to a heterogeneously catalyzed reaction in step b).
  • a catalyst containing nickel is used.
  • the olefins contained in partial stream A1 are at least partially converted.
  • a reaction mixture A1 is thus obtained which contains at least the reaction products formed in the reaction, unreacted olefins and the Cx alkanes.
  • the heterogeneously catalyzed reaction preferred in the context of the present invention, which can be carried out as step b) of the process according to the invention, is an oligomerization of the olefins contained, i.e. propenes, butenes or pentenes.
  • this is the heterogeneously catalyzed
  • step b) Reaction in step b) an oligomerization.
  • the olefins contained in substream A1 i.e. propenes, butenes or pentenes, are converted into the corresponding oligomers.
  • propenes i.e. propenes, butenes or pentenes
  • the use of a butene stream in step a) is particularly preferred, this would result in an oligomerization of butenes in step b).
  • the heterogeneous nickel-containing catalyst used in the oligomerization can be selected from the known nickel catalysts that are suitable for use in the oligomerization.
  • Numerous catalyst systems are known to those skilled in the art. By way of example, reference is made here to the catalysts whose production has been described in EP 21213152.8, EP 3 546 065 A1 and EP 3 549 669 A1.
  • the catalyst systems disclosed there have a composition of 15 to 40 wt.%, preferably 15 to 30 wt.% NiO, 5 to 30 wt.% Al2O3, 55 to 80 wt.% SiO2 and up to 2, 5% by weight, preferably 0.01 to 2% by weight, of an alkali metal oxide, preferably sodium oxide.
  • the information refers to a total composition of 100% by weight.
  • the nickel-containing catalyst for the oligomerization used in step b) can have a specific surface area (calculated according to BET) of 150 to 400 m 2 /g, preferably 190 to 350 m 2 /g, particularly preferably 220 to 330 m 2 / g.
  • the BET surface is measured using nitrogen physisorption according to DIN-ISO 9277 (as of 2014-01).
  • the nickel-containing catalyst used in step b) for the oligomerization has mesopores and macropores, i.e. has a bimodal pore size distribution.
  • the mesopores of the nickel-containing catalyst for the oligomerization used in step b) have an average pore diameter of 5 to 15 nm, preferably 7 to 14 nm, particularly preferably 9 to 13 nm.
  • the macropores of the nickel-containing catalyst used in step b) for the oligomerization preferably have an average pore diameter of 1 to 100 ⁇ m, particularly preferably of 2 to 50 ⁇ m.
  • the average pore volume of the nickel-containing catalyst used in step b) for the oligomerization i.e.
  • both the mesopores and the macropores can be 0.5 to 1.5 cm3/g, preferably 0.7 to 1.3 cm3/g.
  • the average pore diameter and the average pore volume can be determined using mercury porosimetry according to DIN 66133 (as of 1993-06).
  • the nickel-containing catalyst for the oligomerization used in step b) can have an average particle diameter (d50) of 0.1 mm to 7 mm, preferably 0.5 to 6 mm, particularly preferably 1 mm to 5 mm.
  • the average particle diameter can be determined using imaging methods, in particular those determined in the standards ISO 13322-1 (as of 2004-12-01) and ISO 13322-2 (as of 2006-11-01).
  • a suitable device for analyzing the particle diameter is, for example, the Camsizer 2006 (Retsch Technology). If an oligomerization is carried out in step b), this can be carried out under conditions known to those skilled in the art.
  • the oligomerization in step b) preferably takes place at a temperature in the range from 50 to 200 ° C, further preferably 60 to 180 ° C, particularly preferably in the range from 60 to 130 ° C.
  • the pressure during the oligomerization in step b) can be in the range from 10 to 70 bar, preferably in the range from 20 to 55 bar. If the oligomerization is to take place in the liquid phase, the pressure and temperature parameters must be selected so that the educt stream (the olefins or olefin mixtures used) is in the liquid phase.
  • the reaction mixture A1 obtained from the heterogeneously catalyzed reaction in step b) is then worked up in step c) by at least partially removing the reaction products from step b).
  • a hydrocarbon stream A1 is obtained which is depleted in the reaction products from step b).
  • the reaction products in step c) are preferably separated off by distillation.
  • the conditions of distillation for example temperature and pressure, are usually determined by the structure (height of column, number of trays, type of trays or packing, distances, etc.).
  • the separation properties of the distillation can be controlled via the temperature distribution and/or the heat supply in the column and the reflux in the distillate.
  • the separation properties can also be adjusted to a certain extent by changing the pressure. The exact settings cannot therefore be defined overarchingly and independently of the structure of the distillation column, although this is known to those skilled in the art.
  • This has the advantage that even small residual olefins are hydrogenated and the purest possible hydrocarbon stream can be obtained after the separation in step g).
  • Hydrogenation is the last reaction step of the process according to the invention, after which the hydrogenated stream is only subjected to high boiler removal.
  • the hydrogenation is preferably a liquid phase hydrogenation.
  • the process conditions such as the pressure must be chosen so that liquid phase hydrogenation is possible. Corresponding conditions are familiar to those skilled in the art.
  • olefins still contained in step c) in the hydrocarbon stream A1 are hydrogenated as completely as possible to the corresponding alkanes.
  • the hydrogenation in step f) is preferably carried out in a hydrogenation unit consisting of one or more reactors.
  • the reactors can be operated in a circuit or in a straight line.
  • the hydrogenation is carried out in at least two reactors, the first reactor being operated in circulation and the second and possible further reactors being operated in a straight pass.
  • hydrogen is preferably used in a slight stoichiometric excess, particularly preferably in a stoichiometric excess of 5 to 30%.
  • supported catalysts can be used which contain at least one transition metal from the group consisting of palladium, platinum, rhodium. Ruthenium, nickel or mixtures thereof and a carrier material from the group consisting of aluminum oxide, silicon dioxide, titanium dioxide, magnesium oxide or mixtures thereof.
  • carbon-based carriers can also be used, for example activated carbon, graphitic carriers, carbon nanotubes or similar.
  • the hydrogenation in the optional step uses a supported catalyst which contains palladium or platinum as the transition metal and aluminum oxide as the support material.
  • the hydrogenation in step f) is preferably carried out at a temperature of 25 to 80 ° C, particularly preferably at a temperature of 35 to 60 ° C.
  • the pressure during the hydrogenation in step f) is preferably 5 to 25 barg, particularly preferably 8 to 15 barg. These conditions apply in particular if a butene stream is used in the process according to the invention.
  • a phase separation known to those skilled in the art takes place in order to separate the gas phase, which comprises unreacted hydrogen and possibly also small amounts of hydrocarbons, from the liquid phase, which is then fed to the separation in step g).
  • step f With the exception of the hydrogenation in step f), this sequence of the previously described process steps applies exclusively to the partial stream A1 obtained from step a).
  • the partial stream A2 from step a) is instead subjected to a homogeneously catalyzed reaction in step d).
  • the homogeneously catalyzed reaction can be a hydroformylation, an alkoxycarbonylation or an epoxidation.
  • the epoxidation can be carried out using methods familiar to those skilled in the art. All substances containing active oxygen are conceivable as epoxidizing agents, for example hydrogen peroxide, peracetic acid or other peracids or even oxygen.
  • the epoxidation can be carried out either in the gas phase with heterogeneous catalysts or in the liquid phase with heterogeneous or homogeneous catalysts. Suitable processes for epoxidation are described in the prior art, for example in WO 2011/107199 A2 or WO 2017/089075 A1. If the homogeneously catalyzed reaction in step d) is a hydroformylation, the following process conditions are preferred:
  • the olefins used in the process are hydroformylated with synthesis gas in the presence of a homogeneously dissolved catalyst system.
  • the molar ratio between synthesis gas and the feed mixture should be between 6:1 and 1:1, preferably between 3:1 and 1:1, particularly preferably between 2:1 and 1:1.
  • the hydroformylation can optionally be carried out in the presence of a solvent known to those skilled in the art.
  • the homogeneous catalyst system that can be used in hydroformylation can comprise Co or Rh, preferably Rh, and preferably a phosphorus-containing ligand.
  • Corresponding catalyst systems are familiar to those skilled in the art. Co-based hydroformylations generally work without ligands.
  • the homogeneous catalyst system comprises or consists of Rh and a phosphorus-containing ligand.
  • Suitable ligands for the catalyst systems according to the invention are known to those skilled in the art (see, for example, the textbooks “Rhodium Catalyzed Hydroformylation” (from 2002) by P. W. N. M van Leeuwen or “Hydroformylation - Fundamentals, Processes and Applications in Organic Synthesis” (from 2016) by A. Börner and R. Franke).
  • the phosphorus-containing ligand for the catalyst system according to the invention is preferably a phosphine (e.g. TPP (triphenylphosphine)), a monophosphite (e.g. Alkanox 240 (Tris(2,4-di-tert-butylphenyl) phosphite) or a bisphosphite (e.g. Biphephos).
  • phosphine e.g. TPP (triphenylphosphine)
  • a monophosphite e.g. Alkanox 240 (Tris(2,4-di-tert-butylphenyl) phosphite)
  • a bisphosphite e.g. Biphephos
  • the temperature during the homogeneously catalyzed hydroformylation is preferably in the range from 80 to 250 ° C, further preferably in the range from 90 to 225 ° C and particularly preferably in the range from 100 to 210 ° C.
  • the pressure in the homogeneously catalyzed hydroformylation is preferably in the range from 20 to 350 bar, more preferably in the range from 30 to 325 bar and particularly preferably in the range from 45 to 300 bar.
  • the pressure during hydroformylation usually corresponds to the total gas pressure.
  • the total gas pressure means the sum of the existing pressures of all gaseous substances present, i.e. the pressure of the (entire) gas phase. In the present process, this corresponds in particular to the sum of the partial pressures of CO and H2, i.e. H. the total gas pressure is then the synthesis gas pressure.
  • Homogeneously catalyzed hydroformylation can be operated as a liquid recycle process or as a gas recycle process. Both process variants are known to those skilled in the art and are described in many textbooks. A specific selection of one Such a method is not necessary in the context of the present invention because the method can in principle be carried out in both ways.
  • step d) is an alkoxycarbonylation
  • the following process conditions are preferred:
  • the homogeneous catalyst system used for the alkoxycarbonylation preferably comprises at least one metal from Group 8 to 10 of the Periodic Table of Elements (PSE) or a compound thereof, a phosphorus-containing ligand and an acid as a co-catalyst.
  • PSE Periodic Table of Elements
  • the metal from Group 8 to 10 of PSE is preferably palladium.
  • the palladium is preferably used in the form of a precursor compound as a palladium compound, which is coordinated by the phosphorus-containing ligand.
  • Examples of palladium compounds that can be used as precursor compounds are palladium chloride [PdC], palladium(II) acetylacetonate [Pd(acac)2], palladium(II) acetate [Pd(OAc)2], dichloro-(1, 5-cyclooctadiene)palladium(II) [Pd(cod)2Cl2], bis(dibenzylideneacetone)palladium(0) [Pd(dba)2], tris(dibenzylideneacetone)dipalladium(0) [Pd2(dba)s] bis(acetonitrile )-dichloropalladium(II) [Pd(CH3CN)2Cl2], palladium
  • the compounds [Pd(acac)2] or [Pd(OAc)2] are preferably used.
  • the metal concentration of palladium in the alkoxycarbonylation is preferably between 0.01 and 0.6 mol%, preferably between 0.03 and 0.3 mol%, particularly preferably between 0.04 and 0.2 mol%, based on Amount of hydrocarbon used.
  • Suitable phosphorus-containing ligands of the catalyst system according to the invention preferably have a bidentate structure.
  • Preferred phosphorus-containing ligands for the catalyst system according to the invention are benzene-based diphosphine compounds, as disclosed, for example, in EP 3 121 184 A2.
  • the ligands can be combined with the palladium in a pre-reaction, so that the palladium-ligand complex is led to the reaction zone, or added to the reaction in situ and combined with the palladium there.
  • the molar ratio of ligand:metal in the alkoxycarbonylation can be 1:1 to 10:1, preferably 2:1 to 6:1, particularly preferably 3:1 to 5:1.
  • the homogeneous catalyst system further comprises an acid, which can in particular be a Brönsted or a Lewis acid.
  • an acid which can in particular be a Brönsted or a Lewis acid.
  • aluminum triflate, aluminum chloride, aluminum hydride, trimethylaluminum, tris(pentafluorophenyl)borane, boron trifluoride, boron trichloride or mixtures thereof can be used as Lewis acid.
  • aluminum triflate is preferred.
  • the Lewis acid is preferably added in a Lewis acid:ligand molar ratio of 1:1 to 20:1, preferably 2:1 to 15:1, particularly preferably 5:1 to 10:1.
  • Suitable Brönsted acids preferably have an acid strength of pKs ⁇ 5, particularly preferably an acid strength of pKs ⁇ 3.
  • the stated acid strength pKs refers to the pKs value determined under normal conditions (25 ° C, 1.01325 bar).
  • the acid strength pKs in the context of this invention refers to the pKs value of the first protolysis step.
  • the Brönsted acid is preferably added in a Brönsted acid:ligand molar ratio of 1:1 to 15:1, preferably 2:1 to 10:1, particularly preferably 3:1 to 5:1.
  • Brönsted acids that can be used are, in particular, perchloric acid, sulfuric acid, phosphoric acid, methylphosphonic acid or sulfonic acids.
  • Suitable sulfonic acids are, for example, methanesulfonic acid, trifluoromethanesulfonic acid, tert-butanesulfonic acid, p-toluenesulfonic acid (PTSA), 2-hydroxypropane-2-sulfonic acid, 2,4,6-trimethylbenzenesulfonic acid and dodecyl sulfonic acid.
  • Particularly preferred acids are sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid and p-toluenesulfonic acid.
  • the acid is preferably sulfuric acid.
  • Carboxylic acid on the other hand, is less or not at all suitable.
  • the homogeneously catalyzed alkoxycarbonylation is preferably carried out at a temperature of 25 to 140 ° C, more preferably at a temperature of 80 to 120 ° C and particularly preferably at a temperature of 90 to 110 ° C.
  • the pressure can be between 5 and 60 bar, preferably between 10 and 40 bar, particularly preferably between 15 and 30 bar.
  • the homogeneously catalyzed alkoxycarbonylation results in a product mixture which comprises at least the ester formed by the reaction, the homogeneous catalyst system, low boilers, for example low boiling by-products such as ethers, high boilers, unreacted alcohols and possibly unreacted hydrocarbons.
  • the product mixture can therefore be subjected to a subsequent catalyst separation. This can be done, for example, with a membrane separation, whereby the homogeneous catalyst system and unreacted hydrocarbon and/or unreacted alcohol are enriched in the retentate, while the ester formed is enriched in the permeate.
  • the retentate which comprises the enriched homogeneous catalyst system, can be returned to the reaction zone.
  • reaction mixture A2 obtained from step d), which generally contains at least the reaction products formed in the reaction, unreacted olefins and the Cx alkanes, is then worked up in step e) by at least partially removing the reaction products from step d). become.
  • a hydrocarbon stream A2 is obtained which is depleted in the reaction products from step d).
  • the reaction products from step d) are preferably separated off by distillation.
  • the catalyst system is also present in the reaction output and should be separated before product separation. This can be done, for example, via evaporation and/or membrane separation. Corresponding procedures and conditions are familiar to those skilled in the art.
  • step g) The hydrocarbon stream A2 obtained from step e), from which the reaction products from step d) have been at least partially removed, is then passed to step f) together with the hydrocarbon stream A1 from step c) for hydrogenation.
  • the process conditions have already been described above.
  • the resulting hydrogenation product is then fed to the separation in step g).
  • any high boilers still present should be removed in order to obtain a purified hydrocarbon stream which contains more than 98% by weight of Cx-alkanes.
  • the purified hydrocarbon stream obtained, which contains more than 98% by weight of Cx alkanes, is then discharged from the process.
  • the discharged hydrocarbon stream can then be sold and used, for example, as a propellant gas.
  • Possible high boilers that can be removed here are the reaction products from steps c) and/or e), which may not have been completely removed in the subsequent separations there.
  • the separation in step g) is preferably carried out by distillation in one or more distillation columns, preferably a single distillation column.
  • the high boilers are produced in the bottom of the distillation column and the purified hydrocarbon stream is produced at the top of the distillation column.
  • Process conditions can vary depending on the composition and type of hydrocarbon stream. However, the selection of suitable conditions does not pose any major problems for the expert.
  • the separation of at least some of the high boilers in step g) can preferably be carried out at a pressure of 1 to 25 barg, particularly preferably 2 to 20 barg.
  • the temperature during the separation in step g) is preferably in the range from 30 to 150 ° C, particularly preferably in the range from 35 to 100 ° C. This applies in particular if a butene stream is used in the process according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Reinigung eines Kohlenwasserstoffstroms, der zumindest Cx-Alkane, Cx-Olefine, Leichtsieder wie Cx-1-Kohlenwasserstoffe und Schwersieder wie Cx+1-Kohlenwasserstoffe, mit x = 3 bis 5, enthält. Bei dem erfindungsgemäßen Verfahren wird zunächst eine Leichtsiederabtrennung und anschließend eine Auftrennung in zwei Teilströme durchgeführt, die jeweils einer chemischen Reaktion unterworfen werden. Nach Abtrennung der Produkte werden die Ströme wieder vereint und einer Schwersiederabtrennung unterworfen.

Description

Verfahren zur Aufreinigung von Kohlenwasserstoffströmen inklusive heterogen und homogen katalysierter Reaktionen
Gegenstand der Erfindung ist ein Verfahren zur Reinigung eines Kohlenwasserstoffstroms, der zumindest Cx-Alkane, Cx-Olefine, Leichtsieder wie Cx-i-Kohlenwasserstoffe und Schwersieder wie Cx+i-Kohlenwasserstoffe, mit x = 3 bis 5, enthält. Bei dem erfindungsgemäßen Verfahren wird zunächst eine Leichtsiederabtrennung und anschließend eine Auftrennung in zwei Teilströme durchgeführt, die jeweils einer chemischen Reaktion unterworfen werden. Nach Abtrennung der Produkte werden die Ströme wieder vereint und einer Schwersiederabtrennung unterworfen.
Die Bereitstellung von C3- bis C5-Alkanströmen, die beispielsweise als Treibgase verwendet werden können, ist seit langer Zeit bekannt. Um als Treibgase eingesetzt werden zu können, müssen die erhaltenen C3- bis C5-Alkanströme bestimmte Produktspezifikationen aufweisen, dürfen also nur geringe Mengen an unerwünschten und/oder geruchsbildenden Substanzen enthalten. Der Begriff geruchsbildender Stoff ist in diesem Zusammenhang jeder Stoff oder Verbindung, die nicht dem Stoff entspricht, der das Treibgas darstellt. Sollen die Treibgase im kosmetischen oder medizinischen Bereich eingesetzt werden, sollte sogar jede Belastung mit reaktiven Komponenten wie Olefinen, aber auch jede geruchliche Belastung mit anderen Stoffen oder Verbindungen vermieden werden, da es sich zumeist um körpernahe Anwendungen handelt.
Die allgemeine Aufgabe besteht darin die bekannten Verfahren zu verbessern, um Ströme zu erhalten, bei denen die Belastung mit fremdgeruchsbildenden Substanzen geringer ist. Wichtig ist dabei auch ein möglichst effizientes und kostengünstiges Verfahren bereitzustellen.
Es hat sich überraschend gezeigt, dass die Auftrennung eines aus einer Leichtsiederabtrennung gewonnen Stroms und das Durchfahren unterschiedlicher Reaktionsschritte zu einer geringeren Belastung mit fremdgeruchsbildenden Substanzen führt.
Das erfindungsgemäße Verfahren ist demnach ein Verfahren zur Reinigung eines Kohlenwasserstoffstroms, welcher zumindest Cx-Alkane, Cx-Olefine, Leichtsieder wie Cx-1- Kohlenwasserstoffe und Schwersieder wie Cx+i-Kohlenwasserstoffe, wobei x eine ganze Zahl von 3 bis 5 ist, enthält, wobei das Verfahren die folgenden Schritte umfasst: a) Abtrennung zumindest eines Teils der Leichtsieder aus dem Kohlenwasserstoffstrom in einer ersten Abtrenneinheit unter Erhalt eines zumindest teilweise von Leichtsiedern befreiten Kohlenwasserstoffstromes und Auftrennen des zumindest teilweise von Leichtsiedern befreiten Kohlenwasserstoffstroms in zwei Teilströme A1 und A2; b) Durchführung einer heterogen katalysierten Reaktion mit dem Teilstrom A1 unter Verwendung eines Nickel-enthaltenden Katalysators unter Erhalt eines Reaktionsgemisches A1 ; c) Abtrennung des erhaltenen Reaktionsprodukts aus dem Reaktionsgemisch A1 unter Erhalt eines Kohlenwasserstoffstroms A1 , aus dem die Reaktionsprodukte aus Schritt b) zumindest teilweise entfernt worden sind; d) Durchführung einer homogen katalysierten Reaktion mit dem Teilstrom A2 unter Erhalt eines Reaktionsgemisches A2; e) Abtrennung des erhaltenen Reaktionsprodukts aus dem Reaktionsgemisch A2 unter Erhalt eines Kohlenwasserstoffstroms A2, aus dem die Reaktionsprodukte aus Schritt d) zumindest teilweise entfernt worden sind; f) Zuführen des Kohlenwasserstoffstroms A1 aus Schritt c) und des Kohlenwasserstoffstroms A2 aus dem Schritt e) zu einer Hydrierung unter Erhalt eines Hydrierprodukts; g) Abtrennung zumindest eines Teils der Schwersieder aus dem Hydrierprodukt aus Schritt f) in einer zweiten Abtrenneinheit unter Erhalt eines gereinigten Kohlenwasserstoffstroms, der zu mehr als 98 Gew.-% Cx-Alkane enthält.
Das erfindungsgemäße Verfahren hat den Vorteil, dass dadurch einen hochreiner Alkanstrom gewonnen werden kann. Gleichzeitig werden sowohl eine homogen katalysierte und eine heterogen katalysierte Reaktion betrieben, wodurch die im eingesetzten Kohlenwasserstoffstrom enthaltenen Olefine zu werthaltigeren Produkten umgesetzt werden können. Die Trennaufgabe in der Schwersiederabtrennung in der letzte Stufe ist dadurch leichter zu bewerkstelligen. Zudem kann auf die Bedürfnisse des Marktes flexibel reagiert werden. Sind Produkte aus der heterogen katalysierten Reaktion stärker nachgefragt kann die Teilmenge A1 des von Leichtsiedern befreiten Kohlenwasserstoffstroms, die zur heterogen katalysierten Reaktion geführt wird, erhöht werden, um mehr dieser Produkte herzustellen. Gleiches gilt auch umgekehrt, wenn der Bedarf an dem Produkt der homogen katalysierten Reaktion höher ist, wobei dann die Teilmenge A2 zu erhöhen ist. Ein weiterer Vorteil des vorliegenden Verfahrens ist, dass es in bestehende petrochemische Produktionsanlagen integriert werden kann.
Der zu reinigende Kohlenwasserstoffstrom ist ein Cx-Kohlenwasserstoffstrom mit x = 3 bis 5, d. h. x = 3, 4 oder 5. Derartige Ströme enthalten sowohl Cx-Alkane und Cx-Olefine, aber auch Leichtsieder wie Cx-i-Kohlenwasserstoffe und Schwersieder wie Cx+i-Kohlenwasserstoffe. Solche Ströme sind großtechnisch aus Cracking-Verfahren verfügbar und werden in unterschiedlichsten petrochemischen Verfahren eingesetzt. Die hier eingesetzten Ströme enthalten keine Alkyl-tert.- Butyl-Ether (ATBE) wie MTBE (Methyl tert.-butyl ether) oder ETBE (Ethyl tert.-butyl ether), da diese als Schwersieder in die nachfolgend beschriebenen Reaktionsschritte eintreten würden und dort zu schwerwiegenden Störungen führen können. Ziel der vorliegenden Erfindung ist es Ströme zu erhalten, die mehr als 98 Gew.-% Cx-Alkane zu erhalten, da ein Bedarf an derartigen Strömen besteht. Dazu werden die Ströme erfindungsgemäß aufgereinigt.
Der zu reinigende Kohlenwasserstoffstrom ist demnach ein C3-Kohlenwasserstoffstrom, ein C4- Kohlenwasserstoffstrom, oder ein C5-Kohlenwasserstoffstrom. Erfindungsgemäße C3- Kohlenwasserstoffströme enthalten zumindest Propen, Propan, C2-Kohlenwasserstoffe (z. B. Ethen, Ethan) und C4-Kohlenwasserstoffe (z. B. Butan, Buten). Ein derartiger C3- Kohlenwasserstoffstrom wird im Rahmen der vorliegenden Erfindung auch als (zu reinigender) Propenstrom bezeichnet. Erfindungsgemäße C4-Kohlenwasserstoffströme enthalten zumindest Buten (z. B. 1 -Buten, 2-Buten, ggf. Isobuten), Butan, C3-Kohlenwasserstoffe (z. B. Propen, Propan) und C5-Kohlenwasserstoffe (z. B. Penten, Pentan). Ein derartiger C4- Kohlenwasserstoffstrom wird im Rahmen der vorliegenden Erfindung auch als (zu reinigender) Butenstrom oder Isobutenstrom bezeichnet. Erfindungsgemäße C5-Kohlenwasserstoffströme enthalten zumindest Penten (z. B. 1-Penten, cis- oder trans-2-Pentene), Pentan, C4- Kohlenwasserstoffe (z. B. Butene, Butan) und C6-Kohlenwasserstoffe (z. B. Hexene, Hexan). Ein derartiger C5-Kohlenwasserstoffstrom wird im Rahmen der vorliegenden Erfindung auch als (zu reinigender) Pentenstrom bezeichnet. In einer bevorzugten Ausführungsform wird als zu reinigender Kohlenwasserstoffstrom ein Butenstrom eingesetzt.
Die Zusammensetzung des bevorzugt eingesetzten Butenstroms ist grundsätzlich nicht auf bestimmte Zusammensetzung limitiert. Voraussetzung ist lediglich, dass die einzelnen Komponenten gemäß Anspruch 1 vorhanden sind. Bevorzugte Butenströme enthalten Butan, Isobutan, Butene (1 -Buten und 2-Buten und ggf. Isobuten). Erfindungsgemäß kann der Butenstrom aber von 0,0001 bis zu 3 Gew.-% C3-Kohlenwasserstoffe, von 0,01 bis zu 90 Gew.-% Butene und von 0,0001 bis zu 20 Gew.-% C5-Kohlenwasserstoffe enthalten. Weiterhin kann der Butenstrom zusätzlich unter anderem geringe Mengen Dimethylether, Wasser, Methanthiol, Ethanthiol, Dimethylsulfid, Dimethyldisulfid und/oder Schwefelwasserstoff (jeweils bis zu 100 Gew-ppm) enthalten. Der Butenstrom kann weitere Stoffe oder Verbindungen in Spuren enthalten, die nicht einzeln aufgezählt werden können. Einige dieser Stoffe können einen wahrnehmbaren Geruch haben. Ihre Anwesenheit ist unerwünscht und wird durch das hier beschriebene Verfahren minimiert.
Im ersten Schritt a) des erfindungsgemäßen Verfahrens wird der zu reinigende Kohlenwasserstoffstrom, insbesondere der Propenstrom, der Butenstrom oder der Pentenstrom, einer Leichtsiederabtrennung in einer ersten Abtrenneinheit zugeführt, wo zumindest ein Teil der Leichtsieder abgetrennt werden. Geeignete Verfahren sind dem Fachmann grundsätzlich geläufig. Die Abtrennung zumindest eines Teils der Leichtsieder wird vorzugsweise in einer oder mehrerer Destillationskolonnen durchgeführt, besonders bevorzugt in einer einzigen Destillationskolonne. Es versteht sich, dass die vorhandenen Leichtsieder dabei am Kopf anfallen und dort zumindest teilweise entnommen werden. Der durch die Leichtsiederabtrennung in Schritt a) zumindest teilweise von Leichtsiedern befreite Kohlenwasserstoffstrom kann dann insbesondere als Sumpfstrom abgenommen werden.
Die für die Abtrennung zumindest eines Teils der Leichtsieder in Schritt a) bevorzugt eingesetzte Destillationskolonne kann grundsätzlich beliebig ausgestaltet sein und beliebige Einbauten wie Trennstufen aufweisen, solange die Funktion, also die Abtrennung zumindest eines Teils Leichtsiedern, gewährleistet wird.
In einer weiterhin bevorzugten Ausführungsform der vorliegenden Erfindung wird die Abtrennung zumindest eines Teils der Leichtsieder in Schritt a) bei einem Druck von 1 bis 25 barü, besonders bevorzugt 2 bis 20 barü durchgeführt. Die Temperatur bei der Abtrennung in Schritt a) liegt vorzugsweise im Bereich von 30 bis 150 °C, besonders bevorzugt im Bereich von 35 bis 100 °C. Die Einheit barü meint im Rahmen der vorliegenden Erfindung bar Überdruck, also einen Überdruck über dem jeweiligen Umgebungsdruck.
Nach der Abtrennung zumindest eines Teils der Leichtsieder aus dem eingesetzten Kohlenwasserstoffstrom wird der erhaltene zumindest teilweise von Leichtsiedern befreiten Kohlenwasserstoffstroms in zwei Teilströme A1 und A2 aufgetrennt. Diese Auftrennung zählt im Rahmen der vorliegenden Erfindung ebenfalls zu Schritt a). Eine solche Auftrennung kann beispielsweise einfach über ein T-Stück in der Leitung zusammen mit einem oder mehreren Ventile(n) erfolgen.
Der Teilstrom A1 wird dann in Schritt b) einer heterogen katalysierten Reaktion unterworfen. Dabei kommt ein Nickel-enthaltender Katalysator zum Einsatz. Durch die heterogen katalysierte Reaktion werden die im Teilstrom A1 enthaltenen Olefine zumindest teilweise umgesetzt. Es wird somit ein Reaktionsgemisch A1 erhalten, welches zumindest die bei der Reaktion entstandenen Reaktionsprodukte, nicht umgesetzte Olefine und die Cx-Alkane enthält. Die im Rahmen der vorliegenden Erfindung bevorzugte heterogen katalysierte Reaktion, die als Schritt b) des erfindungsgemäßen Verfahrens durchgeführt werden kann, ist eine Oligomerisierung der enthaltenen Olefine, also Propene, Butene oder Pentene.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die die heterogen katalysierte
Reaktion in Schritt b) eine Oligomerisierung. Dabei werden die im Teilstrom A1 enthaltenen Olefine, also Propene, Butene oder Pentene, zu den entsprechenden Oligomeren umgesetzt. Da im Rahmen der vorliegenden Erfindung der Einsatz eines Butenstroms in Schritt a) besonders bevorzugt ist, ergäbe sich daraus eine Oligomerisierung von Butenen in Schritt b).
Der bei der Oligomerisierung eingesetzte heterogene Nickel-enthaltende Katalysator kann aus den bekannten Nickelkatalysatoren, die sich für den Einsatz bei der Oligomerisierung eignen, ausgewählt. Zahlreiche Katalysatorsysteme sind dem Fachmann bekannt. Beispielhaft sei hier auf die Katalysatoren verwiesen, deren Herstellung in der EP 21213152.8, der EP 3 546 065 A1 und der EP 3 549 669 A1 beschrieben worden sind. Im Allgemeinen weisen die dort offenbarten Katalysatorsysteme eine Zusammensetzung von 15 bis 40 Gew.-%, vorzugsweise 15 bis 30 Gew.- % NiO, 5 bis 30 Gew.-% AI2O3, 55 bis 80 Gew.-% SiO2 und bis zu 2,5 Gew.-%, vorzugsweise 0,01 bis 2 Gew.-% eines Alkalimetalloxids, vorzugsweise Natriumoxid, auf. Die Angaben beziehen sich jeweils auf eine Gesamtzusammensetzung von 100 Gew.-%.
Erfindungsgemäß kann der in Schritt b) eingesetzte Nickel-enthaltende Katalysator für die Oligomerisierung eine spezifische Oberfläche (berechnet nach BET) von 150 bis 400 m2/g, vorzugsweise 190 bis 350 m2/g, besonders bevorzugt von 220 bis 330 m2/g aufweisen. Die BET- Oberfläche wird mittels Stickstoff-Physisorption gemäß DIN-ISO 9277 (Stand: 2014-01) gemessen.
In einer weiterhin bevorzugten Ausführungsform weist der in Schritt b) eingesetzte Nickel- enthaltende Katalysator für die Oligomerisierung Mesoporen und Makroporen auf, hat also eine bimodale Porengrößenverteilung. Die Mesoporen des in Schritt b) eingesetzten Nickelenthaltenden Katalysators für die Oligomerisierung weisen einen mittleren Porendurchmesser von 5 bis 15 nm, vorzugsweise von 7 bis 14 nm, besonders bevorzugt von 9 bis 13 nm auf. Die Makroporen des in Schritt b) eingesetzten Nickel-enthaltenden Katalysators für die Oligomerisierung weisen demgegenüber vorzugsweise einen mittleren Porendurchmesser von 1 bis 100 pm, besonders bevorzugt von 2 bis 50 pm auf. Das mittlere Porenvolumen des in Schritt b) eingesetzten Nickel-enthaltenden Katalysators für die Oligomerisierung, d. h. sowohl der Mesoporen als auch der Makroporen, kann 0,5 bis 1 ,5 cm3/g, vorzugsweise 0,7 bis 1 ,3 cm3/g betragen. Der mittlere Porendurchmesser und das mittlere Porenvolumen können mittels Quecksilber-Porosimetrie gemäß DIN 66133 (Stand: 1993-06) bestimmt werden.
Darüber hinaus kann der in Schritt b) eingesetzte Nickel-enthaltende Katalysator für die Oligomerisierung einen mittleren Partikeldurchmesser (d50) von 0,1 mm bis 7 mm, vorzugsweise 0,5 bis 6 mm, besonders bevorzugt von 1 mm bis 5 mm aufweisen. Der mittlere Partikeldurchmesser kann mittels bildgebender Verfahren ermittelt werden, insbesondere durch die in den Normen ISO 13322-1 (Stand: 2004-12-01) und ISO 13322-2 (Stand: 2006-11-01) ermittelt werden. Ein geeignetes Gerät zur Analyse des Partikeldurchmessers ist beispielsweise der Camsizer 2006 (Retsch Technology). Sofern in Schritt b) eine Oligomerisierung durchgeführt wird, kann diese unter dem Fachmann bekannten Bedingungen durchgeführt werden. Die Oligomerisierung in Schritt b) erfolgt im Rahmen der vorliegenden Erfindung vorzugsweise bei einer Temperatur im Bereich von 50 bis 200 °C, weiterhin bevorzugt 60 bis 180 °C, besonders bevorzugt im Bereich von 60 bis 130°C. Der Druck kann bei der Oligomerisierung in Schritt b) im Bereich von 10 bis 70 bar, bevorzugt im Bereich von 20 bis 55 bar liegen. Sofern die Oligomerisierung in flüssiger Phase erfolgen soll, müssen die Parameter Druck und Temperatur hierfür so gewählt werden, dass der Eduktstrom (die eingesetzten Olefine oder Olefingemische) in flüssiger Phase vorliegt. Die gewichtbasierten Raumgeschwindigkeiten (Reaktandmasse pro Katalysatormasse pro Zeit; weight hourly space velocity (WHSV)) befinden sich im Bereich zwischen 1 g Reaktand pro g Katalysator und pro h (= 1 h 1) und 190 h 1, vorzugsweise zwischen 2 tr1 und 35 tr1, besonders bevorzugt zwischen 3 tr1 und 25 h-1.
Das aus der heterogen katalysierten Reaktion in Schritt b) erhaltene Reaktionsgemisch A1 wird anschließend im Schritt c) dadurch aufgearbeitet, dass die Reaktionsprodukte aus Schritt b) zumindest teilweise entfernt wird. Dabei wird ein Kohlenwasserstoffstrom A1 erhalten, der an den Reaktionsprodukten aus Schritt b) abgereichert ist. Die Abtrennung der Reaktionsprodukte in Schritt c) erfolgt vorzugsweise mittels Destillation. Die Bedingungen der Destillation, also beispielsweise Temperatur und Druck, sind üblicherweise durch den Aufbau (Höhe Kolonne, Anzahl der Böden, Art der Böden bzw. Packung, Abstände usw.) festgelegt. Während des Betriebs können die Trenneigenschaften der Destillation noch über die Temperaturverteilung und/oder die Wärmezufuhr in der Kolonne und den Rücklauf im Destillat gesteuert werden. Ebenso kann die Trenneigenschaft durch die Veränderung des Drucks in einem gewissen Rahmen eingestellt werden. Die genauen Einstellungen lassen sich daher nicht übergeordnet und unabhängig von dem Aufbau der Destillationskolonne definieren, was dem Fachmann jedoch bekannt ist.
Der aus dem Schritt c) erhaltene Kohlenwasserstoffstrom A1 , aus dem die Reaktionsprodukte aus Schritt b) zumindest teilweise entfernt worden sind, wird zur Hydrierung in Schritt f) geführt. Das hat den Vorteil, dass selbst geringe Rest an Olefinen hydriert werden und so nach der Abtrennung in Schritt g) ein möglichst reiner Kohlenwasserstoffstrom erhalten werden kann. Die Hydrierung ist der letzte Reaktionsschritt des erfindungsgemäßen Verfahrens, wonach der hydrierte Strom nur noch einer Schwersiederabtrennung unterworfen wird.
Die Hydrierung ist vorzugsweise eine Flüssigphasenhydrierung. Die Verfahrensbedingungen wie der Druck sind dabei so zu wählen, dass eine Flüssigphasenhydrierung möglich sind. Entsprechende Bedingungen sind dem Fachmann geläufig. Bei der Hydrierung in Schritt f) werden im Kohlenwasserstoffstrom A1 noch aus Schritt c) enthaltene Olefine möglichst vollständig zu den entsprechenden Alkanen hydriert. Die Hydrierung im Schritt f) wird vorzugsweise in einer Hydriereinheit, bestehend aus einem oder mehreren Reaktoren durchgeführt. Die Reaktoren können im Kreislauf oder im geraden Durchgang betrieben werden. In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die Hydrierung in mindestens zwei Reaktoren durchgeführt, wobei der erste Reaktor im Kreislauf betrieben und der zweite und mögliche weitere Reaktoren im geraden Durchgang betrieben werden. Bei der Hydrierung wird Wasserstoff vorzugsweise im leichten stöchiometrischen Überschuss eingesetzt, besonders bevorzugt in einem stöchiometrischen Überschuss von 5 bis 30 %.
Bei der Hydrierung in Schritt f) können bekannte Trägerkatalysatoren eingesetzt werden, die zumindest ein Übergangsmetall aus der Gruppe bestehend aus Palladium, Platin, Rhodium. Ruthenium, Nickel oder Mischungen davon und ein Trägermaterial aus der Gruppe, bestehend aus Aluminiumoxid, Siliciumdioxid, Titandioxid, Magnesiumoxid oder Mischungen davon. Grundsätzlich können aber auch Kohlenstoff-basierte Träger eingesetzt werden, beispielsweise Aktivkohle, graphitische Träger, Kohlenstoff-Nanoröhren oder ähnliches. In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird bei der Hydrierung im optionalen Schritt ein Trägerkatalysator eingesetzt, der als Übergangsmetall Palladium oder Platin und als Trägermaterial Aluminiumoxid enthält.
Die Hydrierung in Schritt f) wird vorzugsweise bei einer Temperatur von 25 bis 80 °C, besonders bevorzugt bei einer Temperatur von 35 bis 60 °C durchgeführt. Der Druck beträgt bei der Hydrierung in Schritt f) vorzugsweise 5 bis 25 barü, besonders bevorzugt 8 bis 15 barü. Dies Bedingungen gelten insbesondere dann, wenn im erfindungsgemäßen Verfahren ein Butenstrom eingesetzt wird. Nach der Hydrierung f) erfolgt eine dem Fachmann bekannte Phasentrennung, um die Gasphase, die nicht umgesetzten Wasserstoff und ggf. auch geringe Mengen Kohlenwasserstoffe umfasst, von der flüssigen Phase abzutrennen, die dann der Abtrennung in Schritt g) zugeführt wird.
Diese Reihenfolge der vorher beschriebenen Verfahrensschritte betrifft mit Ausnahme der Hydrierung in Schritt f) ausschließlich den aus dem Schritt a) erhaltenen Teilstrom A1 . Der Teilstrom A2 aus Schritt a) wird stattdessen in Schritt d) einer homogen katalysierten Reaktion unterworfen. Die homogen katalysierte Reaktion kann eine Hydroformylierung, eine Alkoxycarbonylierung oder eine Epoxidierung sein.
Die Epoxidierung kann mittels dem Fachmann geläufigen Verfahren durchgeführt werden. Als Epoxidationsmittel sind alle aktiven Sauerstoff enthaltenden Stoffe denkbar, beispielsweise Wasserstoffperoxid, Peressigsäure oder andere Persäuren oder auch Sauerstoff. Die Epoxidation kann entweder in der Gasphase mit heterogenen Katalysatoren oder auch in der flüssigen Phase mit heterogene oder homogenen Katalysatoren durchgeführt werden. Geeignete Verfahren zur Epoxidierung sind im Stand der Technik beispielsweise in der WO 2011/107199 A2 oder der Wo 2017/089075 A1 beschrieben. Ist die homogen katalysierte Reaktion in Schritt d) eine Hydroformylierung sind folgende Verfahrensbedingungen bevorzugt:
Die bei dem Verfahren eingesetzten Olefine werden mit Synthesegas in Gegenwart eines homogen gelösten Katalysatorsystems hydroformyliert. Das molare Verhältnis zwischen Synthesegas und dem Einsatzgemisch sollte zwischen 6:1 und 1 :1 , vorzugsweise zwischen 3:1 und 1 :1 , besonders bevorzug zwischen 2:1 und 1 :1 liegen. Die Hydroformylierung kann optional in Anwesenheit eines dem Fachmann bekannten Lösemittels durchgeführt werden.
Das bei der Hydroformylierung einsetzbare homogene Katalysatorsystem kann Co oder Rh, vorzugsweise Rh, und vorzugsweise einem phosphorhaltigen Liganden umfassen. Entsprechende Katalysatorsysteme sind dem Fachmann geläufig. Co-basierte Hydroformylierungen kommen grundsätzlich auch ohne Liganden aus. In einer besonders bevorzugten Ausführungsform umfasst oder besteht das homogene Katalysatorsystem aus Rh und einem phosphorhaltigen Liganden.
Geeignete Liganden für die erfindungsgemäßen Katalysatorsysteme sind dem Fachmann bekannt (siehe z. B. die Lehrbücher „Rhodium Catalyzed Hydroformylation“ (aus 2002) von P. W. N. M van Leeuwen oder „Hydroformylation - Fundamentals, Proceses and Applications in Organic Synthesis“ (aus 2016) von A. Börner und R. Franke).
Der phosphorhaltige Ligand für das erfindungsgemäße Katalysatorsystem ist, wenn Rh eingesetzt wird, vorzugsweise ein Phosphin (z. B. TPP (Triphenylphosphin)), ein Monophosphit (z. B. Alkanox 240 (Tris(2,4-di-tert-butylphenyl)phosphit) oder ein Bisphosphit (z. B. Biphephos). Es können auch Mischungen von Liganden eingesetzt werden.
Die Temperatur bei der homogen katalysierten Hydroformylierung liegt vorzugsweise im Bereich von 80 bis 250 °C, weiterhin bevorzugt im Bereich von 90 bis 225 °C und besonders bevorzugt im Bereich von 100 bis 210 °C. Der Druck bei der homogen katalysierten Hydroformylierung liegt vorzugsweise im Bereich von 20 bis 350 bar, weiterhin bevorzugt im Bereich von 30 bis 325 bar und besonders bevorzugt im Bereich von 45 bis 300 bar.
Der Druck bei der Hydroformylierung entspricht üblicherweise dem Gesamtgasdruck. Der Gesamtgasdruck meint im Rahmen der vorliegenden Erfindung die Summe der vorliegenden Drücke aller vorhandenen gasförmigen Stoffe, also den Druck der (gesamten) Gasphase. Im vorliegenden Verfahren entspricht dies insbesondere der Summe der Partialdrücke von CO und H2, d. h. der Gesamtgasdruck ist dann der Synthesegasdruck.
Homogen katalysierte Hydroformylierungen können als Flüssigaustragsverfahren („liquid recycle“) oder als Gasaustragsverfahren („gas recycle) betrieben werden. Beide Verfahrensvarianten sind dem Fachmann bekannt und in vielen Lehrbüchern beschrieben. Eine konkrete Auswahl eines solchen Verfahrens ist im Rahmen der vorliegenden Erfindung nicht notwendig, weil das Verfahren grundsätzlich auf beide Arten durchgeführt werden kann.
Ist die die homogen katalysierte Reaktion in Schritt d) eine Alkoxycarbonylierung sind folgende Verfahrensbedingungen bevorzugt:
Das für die Alkoxycarbonylierung eingesetzte homogene Katalysatorsystem umfasst vorzugsweise zumindest ein Metall aus der Gruppe 8 bis 10 des Periodensystems der Elemente (PSE) oder eine Verbindung davon, einen phosphorhaltigen Liganden und eine Säure als Co-Katalysator.
Das Metall aus der Gruppe 8 bis 10 des PSE ist vorzugsweise Palladium. Das Palladium wird bevorzugt in Form einer Vorläuferverbindung als Palladiumverbindung eingesetzt, die durch den phosphorhaltigen Liganden koordiniert wird. Beispiele für Palladiumverbindungen, die als Vorläuferverbindungen eingesetzt werden können, sind Palladiumchlorid [PdC ], Palladium(ll)- Acetylacetonat [Pd(acac)2], Palladium(ll)-Acetat [Pd(OAc)2], Dichloro-(1 ,5- cyclooctadien)palladium(ll) [Pd(cod)2Cl2], Bis(dibenzylideneaceton)palladium(0) [Pd(dba)2], Tris(dibenzylideneaceton)dipalladium(0) [Pd2(dba)s] Bis(acetonitril)-dichloropalladium(ll) [Pd(CH3CN)2Cl2], Palladium(cinnamyl)-dichlorid [Pd(cinnamyl)Cl2]. Vorzugsweise kommen die Verbindungen [Pd(acac)2] oder [Pd(OAc)2] zum Einsatz. Die Metallkonzentration von Palladium bei der Alkoxycarbonylierung beträgt vorzugsweise zwischen 0,01 und 0,6 Mol-%, bevorzugt zwischen 0,03 und 0,3 Mol-%, besonders bevorzugt zwischen 0,04 und 0,2 Mol-% bezogen auf die Stoffmenge des eingesetzten Kohlenwasserstoffs.
Geeignete phosphorhaltige Liganden des erfindungsgemäßen Katalysatorsystems weisen vorzugsweise eine Bidentat-Struktur auf. Bevorzugte phosphorhaltige Liganden für das erfindungsgemäße Katalysatorsystem sind benzolbasierte Diphosphinverbindungen, wie sie beispielsweise in der EP 3 121 184 A2 offenbart worden sind. Die Liganden können in einer Vorreaktion mit dem Palladium kombiniert werden, sodass der Palladium-Ligand-Komplex zur Reaktionszone geführt wird, oder in situ zur Reaktion gegeben und dort mit dem Palladium kombiniert werden. Das Molverhältnis von Ligand : Metall kann bei der Alkoxycarbonylierung 1 : 1 bis 10 : 1 , vorzugsweise 2 : 1 bis 6 : 1 , besonders bevorzugt 3 : 1 bis 5 : 1 betragen.
Das homogene Katalysatorsystem umfasst bei der Alkoxycarbonylierung weiterhin eine Säure, wobei es sich insbesondere um eine Brönsted- oder eine Lewis-Säure handeln kann. Als Lewis- Säure können insbesondere Aluminiumtriflat, Aluminiumchlorid, Aluminiumhydrid, Trimethylaluminium, Tris(pentafluorophenyl)boran, Bortrifluorid, Bortrichlorid oder Mischungen daraus eingesetzt werden. Von den genannten Lewis-Säuren wird bevorzugt Aluminiumtriflat eingesetzt. Die Lewis-Säure wird vorzugsweise in einem Molverhältnis Lewis-Säure : Ligand von 1 : 1 bis 20 : 1 , vorzugsweise 2 : 1 bis 15 : 1 , besonders bevorzugt 5 : 1 bis 10 : 1 hinzugegeben. Geeignete Brönsted-Säuren haben vorzugsweise eine Säurestärke von pKs < 5, besonders bevorzugt eine Säurestärke von pKs < 3. Die angegebene Säurestärke pKs bezieht sich auf den bei Normalbedingungen (25°C, 1 ,01325 bar) bestimmten pKs-Wert. Bei einer mehrprotonigen Säure bezieht sich die Säurestärke pKs im Rahmen dieser Erfindung auf den pKs-Wert des ersten Protolyseschrittes. Die Brönsted-Säure wird vorzugsweise in einem Molverhältnis Brönsted-Säure : Ligand von 1 : 1 bis 15 : 1 , vorzugsweise 2 : 1 bis 10 : 1 , besonders bevorzugt 3 : 1 bis 5 : 1 hinzugegeben.
Als Brönsted-Säuren können insbesondere Perchlorsäure, Schwefelsäure, Phosphorsäure, Methylphosphonsäure oder Sulfonsäuren eingesetzt werden. Geeignete Sulfonsäuren sind beispielsweise Methansulfonsäure, Trifluormethansulfonsäure, tert-Butansulfonsäure, p- Toluolsulfonsäure (PTSA), 2-Hydroxypropan-2-sulfonsäure, 2,4,6-Trimethylbenzolsulfonsäure und Dodecylsulfonsäure. Besonders bevorzugte Säuren sind Schwefelsäure, Methansulfonsäure, Trifluormethansulfonsäure und p-Toluolsulfonsäure. Vorzugsweise handelt es sich bei der Säure um Schwefelsäure. Carbonsäure sind hingegen weniger bis gar nicht geeignet.
Die homogen katalysierte Alkoxycarbonylierung wird vorzugsweise bei einer Temperatur von 25 bis 140 °C, weiterhin bevorzugt bei einer Temperatur von 80 bis 120 °C und besonders bevorzugt bei einer Temperatur von 90 bis 110 °C durchgeführt. Der Druck kann zwischen 5 und 60 bar, vorzugsweise zwischen 10 und 40 bar, besonders bevorzugt zwischen 15 und 30 bar betragen.
Durch die homogen katalysierte Alkoxycarbonylierung wird ein Produktgemisch erhalten, die zumindest den durch die Umsetzung gebildeten Ester, das homogene Katalysatorsystem, Leichtsieder, beispielsweise leichtsiedende Nebenprodukte wie Ether, Hochsieder, nicht umgesetzte Alkohole und ggf. nicht umgesetzte Kohlenwasserstoffe umfasst. Das Produktgemisch kann deshalb einer nachfolgenden Katalysatorabtrennung unterworfen werden. Dies kann beispielsweise mit einer Membrantrennung erfolgen, wodurch das homogene Katalysatorsystem und nicht umgesetzter Kohlenwasserstoff und/oder nicht umgesetzter Alkohol im Retentat angereichert, während der gebildete Ester im Permeat angereichert wird. Das Retentat, welches das angereicherte homogene Katalysatorsystem umfasst, kann in die Reaktionszone zurückgeführt werden.
Das aus dem Schritt d) erhaltene Reaktionsgemisch A2, welches allgemein welches zumindest die bei der Reaktion entstandenen Reaktionsprodukte, nicht umgesetzte Olefine und die Cx-Alkane enthält, wird anschließend in Schritt e) dadurch aufgearbeitet, dass die Reaktionsprodukte aus Schritt d) zumindest teilweise entfernt werden. Dabei wird ein Kohlenwasserstoffstrom A2 erhalten, der an den Reaktionsprodukten aus Schritt d) abgereichert ist. Die Abtrennung der Reaktionsprodukte aus Schritt d) erfolgt vorzugsweise mittels Destillation. Bei den homogen katalysierten Reaktionen ist das Katalysatorsystem auch im Reaktionsaustrag vorhanden und sollte vor der Produktabtrennung abgetrennt werden. Dies kann beispielsweise über eine Verdampfung und/oder eine Membrantrennung erfolgen. Entsprechende Verfahren und Bedingungen sind dem Fachmann geläufig.
Der aus dem Schritt e) erhaltene Kohlenwasserstoffstrom A2, aus dem die Reaktionsprodukte aus Schritt d) zumindest teilweise entfernt worden sind, wird dann zusammen mit dem Kohlenwasserstoffstrom A1 aus Schritt c) zur Hydrierung in Schritt f) geführt. Die Verfahrensbedingungen wurden oben bereits beschrieben. Das dabei erhaltene Hydrierprodukt wird dann der Abtrennung in Schritt g) zugeführt.
Bei der Abtrennung in Schritt g) sollen noch vorhandene Schwersieder entfernt werden, um einen gereinigten Kohlenwasserstoffstrom zu erhalten, der zu mehr als 98 Gew.-% Cx-Alkane enthält. Der erhaltene gereinigte Kohlenwasserstoffstrom, der zu mehr als 98 Gew.-% Cx-Alkane enthält, wird dann aus dem Verfahren ausgeschleust. Der ausgeschleuste Kohlenwasserstoffstrom kann dann verkauft und beispielsweise als Treibgas eingesetzt werden. Mögliche Schwersieder, die hier entfernt werden können, sind die Reaktionsprodukte aus den Schritten c) und/oder e), die bei den dort nachfolgenden Abtrennungen unter Umständen nicht vollständig entfernt worden sind.
Die Abtrennung in Schritt g) erfolgt vorzugsweise mittels Destillation in einer oder mehreren Destillationskolonnen, vorzugsweise einer einzigen Destillationskolonne. Dabei fallen die Schwersieder im Sumpf der Destillationskolonne und der gereinigte Kohlenwasserstoffstrom am Kopf der Destillationskolonne an. Die Verfahrensbedingungen können je nach Zusammensetzung und Art des Kohlenwasserstoffstroms variieren. Die Auswahl geeigneter Bedingungen stellt den Fachmann jedoch vor keine größeren Probleme. Die Abtrennung zumindest eines Teils der Schwersieder in Schritt g) kann vorzugsweise bei einem Druck von 1 bis 25 barü, besonders bevorzugt 2 bis 20 barü durchgeführt werden. Die Temperatur bei der Abtrennung in Schritt g) liegt vorzugsweise im Bereich von 30 bis 150 °C, besonders bevorzugt im Bereich von 35 bis 100 °C. Dies gilt insbesondere, wenn beim erfindungsgemäßen Verfahren ein Butenstrom eingesetzt wird.

Claims

Patentansprüche
1 . Verfahren zur Reinigung eines Kohlenwasserstoffstroms, welcher zumindest Cx-Alkane, Cx-Olefine, Leichtsieder wie Cx-1 -Kohlenwasserstoffe und Schwersieder wie Cx+1- Kohlenwasserstoffe, aber keine Alkyl-tert.-Butyl-Ether (ATBE) enthält, wobei x eine ganze Zahl von 3 bis 5 ist, wobei das Verfahren die folgenden Schritte umfasst: a) Abtrennung zumindest eines Teils der Leichtsieder aus dem Kohlenwasserstoffstrom in einer ersten Abtrenneinheit unter Erhalt eines zumindest teilweise von Leichtsiedern befreiten Kohlenwasserstoffstromes und Auftrennen des zumindest teilweise von Leichtsiedern befreiten Kohlenwasserstoffstroms in zwei Teilströme A1 und A2; b) Durchführung einer heterogen katalysierten Oligomerisierung mit dem Teilstrom A1 unter Verwendung eines Nickel-enthaltenden Katalysators unter Erhalt eines Reaktionsgemisches A1 ; c) Abtrennung des erhaltenen Reaktionsprodukts aus dem Reaktionsgemisch A1 unter Erhalt eines Kohlenwasserstoffstroms A1 , aus dem die Reaktionsprodukte aus Schritt b) zumindest teilweise entfernt worden sind; d) Durchführung einer homogen katalysierten Reaktion mit dem Teilstrom A2 unter Erhalt eines Reaktionsgemisches A2, wobei die homogen katalysierte Reaktion eine Hydroformylierung, eine Alkoxycarbonylierung oder eine Epoxidierung, vorzugsweise eine Hydroformylierung oder eine Alkoxycarbonylierung ist.; e) Abtrennung des erhaltenen Reaktionsprodukts aus dem Reaktionsgemisch A2 unter Erhalt eines Kohlenwasserstoffstroms A2, aus dem die Reaktionsprodukte aus Schritt d) zumindest teilweise entfernt worden sind; f) Zuführen des Kohlenwasserstoffstroms A1 aus Schritt c) und des Kohlenwasserstoffstroms A2 aus dem Schritt e) zu einer Hydrierung unter Erhalt eines Hydrierprodukts; g) Abtrennung zumindest eines Teils der Schwersieder aus dem Hydrierprodukt aus Schritt f) in einer zweiten Abtrenneinheit unter Erhalt eines gereinigten Kohlenwasserstoffstroms, der zu mehr als 98 Gew.-% Cx-Alkane enthält.
2. Verfahren nach Anspruch 1 , wobei der eingesetzte und zu reinigende Kohlenwasserstoffstrom ein C4-Kohlenwasserstoffstrom ist.
3. Verfahren nach Anspruch 1 oder 2, wobei die Abtrennung in Schritt a) bei einem Druck von 2 bis 10 barü erfolgt.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abtrennung in Schritt a) bei einer Temperatur im Bereich von 30 bis 90 °C erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei der Oligomerisierung in Schritt b) ein heterogener Nickel-enthaltender Katalysator eingesetzt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abtrennung in Schritt c) eine Destillation ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das homogene Katalysatorsystem bei der Hydroformylierung Co oder Rh, vorzugsweise Rh, und vorzugsweise einem phosphorhaltigen Liganden umfasst.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das homogene Katalysatorsystem bei der Alkoxycarbonylierung ein Metall aus der Gruppe 8 bis 10 des Periodensystems der Elemente (PSE) oder eine Verbindung davon, vorzugsweise Pd, einen phosphorhaltigen Liganden und eine Säure als Co-Katalysator umfasst.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abtrennung in Schritt e) eine Destillation ist.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Hydrierung in Schritt f) eine Flüssigphasenhydrierung ist.
11 . Verfahren nach Anspruch 10, wobei bei der Hydrierung ein T rägerkatalysator eingesetzt wird, der zumindest ein Übergangsmetall aus der Gruppe bestehend aus Palladium, Platin, Rhodium. Ruthenium, Nickel oder Mischungen davon und ein Trägermaterial aus der Gruppe, bestehend aus Aluminiumoxid, Siliciumdioxid, Titandioxid, Magnesiumoxid oder Mischungen davon, umfasst.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abtrennung in Schritt g) bei einem Druck von 1 bis 25 barü erfolgt. Verfahren nach einem der vorhergehenden Ansprüche, wobei der in Schritt f) erhaltene gereinigten Kohlenwasserstoffstroms, der zu mehr als 98 Gew.-% Cx-Alkane enthält, aus dem Verfahren ausgeschleust wird.
PCT/EP2023/061158 2022-05-18 2023-04-27 Verfahren zur aufreinigung von kohlenwasserstoffströmen inklusive heterogen und homogen katalysierter reaktionen WO2023222359A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22173976 2022-05-18
EP22173976.6 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023222359A1 true WO2023222359A1 (de) 2023-11-23

Family

ID=82270620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/061158 WO2023222359A1 (de) 2022-05-18 2023-04-27 Verfahren zur aufreinigung von kohlenwasserstoffströmen inklusive heterogen und homogen katalysierter reaktionen

Country Status (1)

Country Link
WO (1) WO2023222359A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE903260C (de) * 1939-08-22 1954-02-04 Metallgesellschaft Ag Verfahren zur Gewinnung von reinem Propan und reinem Butan durch kontinuierliche Destillation von C, C, C-Kohlenwasserstoffen und deren Gemischen
WO2011107199A2 (de) 2010-03-05 2011-09-09 Theodor Stuth Verfahren zur herstellung von nickelband
EP3121184A2 (de) 2015-07-23 2017-01-25 Evonik Degussa GmbH Benzolbasierte diphosphinliganden für die alkoxycarbonylierung
WO2017089075A1 (de) 2015-11-25 2017-06-01 Evonik Degussa Gmbh Verfahren zur herstellung von 1,2-propandiol aus propen und wasserstoffperoxid
EP3293171A1 (de) * 2016-09-12 2018-03-14 Evonik Degussa GmbH Verfahren zur flexiblen herstellung von aldehyden
EP3546065A1 (de) 2018-03-14 2019-10-02 Evonik Degussa GmbH Oligomerisierungskatalysator auf basis von nickeloxid und verfahren zur oligomerisierung von olefinen
EP3549669A1 (de) 2018-03-14 2019-10-09 Evonik Degussa GmbH Oligomerisierungskatalysator auf basis von nickeloxid und verfahren zur oligomerisierung von c3- bis c6-olefinen unter seiner verwendung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE903260C (de) * 1939-08-22 1954-02-04 Metallgesellschaft Ag Verfahren zur Gewinnung von reinem Propan und reinem Butan durch kontinuierliche Destillation von C, C, C-Kohlenwasserstoffen und deren Gemischen
WO2011107199A2 (de) 2010-03-05 2011-09-09 Theodor Stuth Verfahren zur herstellung von nickelband
EP3121184A2 (de) 2015-07-23 2017-01-25 Evonik Degussa GmbH Benzolbasierte diphosphinliganden für die alkoxycarbonylierung
WO2017089075A1 (de) 2015-11-25 2017-06-01 Evonik Degussa Gmbh Verfahren zur herstellung von 1,2-propandiol aus propen und wasserstoffperoxid
EP3293171A1 (de) * 2016-09-12 2018-03-14 Evonik Degussa GmbH Verfahren zur flexiblen herstellung von aldehyden
EP3546065A1 (de) 2018-03-14 2019-10-02 Evonik Degussa GmbH Oligomerisierungskatalysator auf basis von nickeloxid und verfahren zur oligomerisierung von olefinen
EP3549669A1 (de) 2018-03-14 2019-10-09 Evonik Degussa GmbH Oligomerisierungskatalysator auf basis von nickeloxid und verfahren zur oligomerisierung von c3- bis c6-olefinen unter seiner verwendung

Similar Documents

Publication Publication Date Title
EP2041049B1 (de) Verfahren zur herstellung von 3-methylbut-1-en
EP1515934B1 (de) Verfahren zur herstellung von c13-alkoholgemischen
EP3599230B1 (de) Verfahren zur oligomerisierung von buten unter bestimmung des anteils an saurer katalyse
EP1358140B1 (de) Verfahren zur herstellung von 1-octen
EP1713749B1 (de) Verfahren zur herstellung von olefinen mit 8 bis 12 kohlenstoffatomen
WO2014056736A1 (de) Gemisch von bisphosphiten und dessen verwendung als katalysatorgemisch in der hydroformylierung
EP2358469A1 (de) Oligomerisierung von olefinen
EP1784476B1 (de) Verfahren zur herstellung von c5-aldehyden und propen aus einem 1-buten-und 2-buten-haltigen c4-strom
EP1856018A2 (de) Verfahren zur herstellung von propen aus 2-buten- und isobuten-reichen feedströmen
EP1257518B1 (de) Verfahren zur herstellung von c 9-alkoholen und verfahren zur integrierten herstellung von c 9-alkoholen und c 10-alkoholen
EP3744707A1 (de) Verfahren zur hydroformylierung von kurzkettigen olefinen im recyclestrom einer flüssigphasen-hydroformylierung
EP1641731B8 (de) Verfahren zur herstellung von 1-octen aus crack-c4
EP3114105B1 (de) Verfahren zur herstellung von aldehyden aus alkanen und synthesegas
EP1562884A1 (de) Verfahren zur herstellung von aldehyden aus alkanen
WO2023222359A1 (de) Verfahren zur aufreinigung von kohlenwasserstoffströmen inklusive heterogen und homogen katalysierter reaktionen
EP1165469B1 (de) Verfahren zur oligomerisierung von c2- bis c8-olefinen
DE1767376C3 (de) Verfahren zur katalytischen Disproportionierung von olefinischen Kohlenwasserstoffen mit 3 bis 30 Kohlenstoffatomen im Molekül oder deren Gemischen
EP1633689B1 (de) Verfahren zur doppelbindungsisomerisierung bei olefinen
EP1824802B1 (de) Verfahren zur herstellung von unverzweigten acyclischen octatrienen
EP3782971B1 (de) Verfahren zur oligomerisierung von olefinen mit optimierter destillation
EP4361123A1 (de) Katalysatorpräformierung in der hydroformylierung
EP3038751A1 (de) Geträgerte zusammensetzung und deren verwendung in verfahren zur hydroformylierung von ungesättigten verbindungen
EP3693355A1 (de) Flexible herstellung von mtbe oder etbe und isononanol
EP3666854A1 (de) Verfahren zur oligomerisierung mit stufenangepasstem austausch des oligomerisierungskatalysators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23718782

Country of ref document: EP

Kind code of ref document: A1