WO2023222059A1 - 一种生物传感器及其制作方法 - Google Patents

一种生物传感器及其制作方法 Download PDF

Info

Publication number
WO2023222059A1
WO2023222059A1 PCT/CN2023/094908 CN2023094908W WO2023222059A1 WO 2023222059 A1 WO2023222059 A1 WO 2023222059A1 CN 2023094908 W CN2023094908 W CN 2023094908W WO 2023222059 A1 WO2023222059 A1 WO 2023222059A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
engraving
line
sensor
engraving line
Prior art date
Application number
PCT/CN2023/094908
Other languages
English (en)
French (fr)
Inventor
季旭波
雷天然
王毅
吴梦群
郭涛
张莉
Original Assignee
利多(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利多(香港)有限公司 filed Critical 利多(香港)有限公司
Publication of WO2023222059A1 publication Critical patent/WO2023222059A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry

Definitions

  • the present invention relates to biosensor technology in the field of biomedical detection, and in particular to a biosensor and a preparation method thereof.
  • Electrochemical sensors and supporting detectors used to detect the content of analytes in samples have been widely used in daily monitoring of diseases.
  • Diabetics for example, often use electrochemical sensors to monitor glucose levels in their blood on a daily basis.
  • the basic structure of this type of electrochemical biosensor includes: an electrode system set on an insulating substrate.
  • the electrode system includes various types of electrodes such as working electrodes and counter electrodes. Detection reagents that react with the analyte are covered on the corresponding electrodes.
  • a sample middle compartment with grooves is located on the electrode, and a cover with air holes covers the sample middle compartment.
  • the insulating substrate, middle partition and cover form a sampling channel.
  • the other end of the electrode system is equipped with a detection device. The contact point where the detector's pins come into contact.
  • the end of the sensor with the sampling channel is called the sample injection end, and the end where the sensor and the detector's pins are in contact is called the contact end.
  • the sample flowing into the sampling channel reacts with the detection reagent on the electrode to generate electrical signals, and the detector obtains detection results based on these electrical signals.
  • Chinese patent ZL00803756.6 provides a method for forming thin film electrodes, that is, a thin film conductor layer is evenly spread on an insulating substrate in advance, and is ablated by laser method to form electrodes.
  • This method has high production accuracy and can basically ensure that there are no inter-batch differences between products produced in different batches, or that the existence of inter-batch differences will not affect the test results without correction.
  • This type of sensor uses laser ablation to form electrodes.
  • Chinese patent ZL00803756.6 also proposes a method of fixing the electrode area to ensure that the electrode will not be scrapped due to fluctuations in the cutting and assembly process. That is, there are provided on the left and right sides of the sensor electrode extending to the sample contact end. and the slit at the edge of the contact end. This method is easy to make and only needs not to touch these two slits when cutting to ensure product performance.
  • the slits extend to the contact end and contact end of the sample respectively.
  • the longer slit size results in a longer laser travel path during the laser etching process.
  • the processing is different. Material time will increase to varying degrees.
  • the production time will be greatly increased and the production capacity will be limited. Therefore, the present invention is developed to address the above problems, and its purpose is to provide a simpler design that can not only ensure performance but also improve production efficiency and capacity.
  • the present invention is based on the above-mentioned problems existing in the prior art. Its purpose is to provide a biosensor that is designed with an engraving line for identifying shear deviation. By observing the engraving line for identifying shear deviation, it is simple and convenient. It can effectively screen out scrapped products caused by electrode damage caused by cutting deviation during the cutting process of biosensors, or defective products whose sample injection slot is not within a reasonable range near the central axis of the sensor.
  • the biosensor of the present invention includes an insulating substrate and a conductive layer provided on the insulating substrate.
  • the electrode is formed on the conductive layer and divided by engraved lines.
  • the detection reagent is distributed on the electrode, and the biosensor is provided with a fluid channel for the solution of the test substance to enter.
  • the fluid channel is formed by superimposing the electrode conductive layer, the opening groove of the middle partition layer, and the upper cover.
  • the other end of the electrode system is provided with an area that can be in contact with the detector contacts, and part of the area is exposed and not covered by materials such as color layers.
  • the end of the sensor in the fluid channel is called the injection end, and the end of the sensor in contact with the detector is called the contact end.
  • the electrode extends from the sample contact end to the sensor contact end, and conducts the electrical signal generated by the reaction between the substance to be measured and the reagent to the sensor contact end, and then reports the test results to the user through the instrument.
  • engraving lines are provided on the electrodes. This engraving line is an engraving line to identify cutting deviations, which can help quality inspection personnel to efficiently determine cutting deviations. Whether it meets the requirements, when the engraving line identifying the cutting deviation can be clearly observed on the product after cutting and assembly, or the engraving line identifying the cutting deviation is still intact, the product can be judged to be qualified. Since there are engraving lines designed to identify cutting deviations, scrapped products that cause electrode damage due to cutting errors or defective products with poor appearance can be easily and accurately screened out.
  • a first aspect of the present invention is to provide an engraving line for identifying shear deviation at the contact end of the biosensor, and the engraving line for identifying shear deviation extends to both sides of the biosensor, but does not intersect with the sides.
  • the second aspect of the present invention is to set engraving lines for identifying shear deviation on both sides of the biosensor.
  • the engraving lines for identifying shear deviation are adjacent to the sides of the sensor and not with any of the sample contact end and the instrument contact end of the biosensor.
  • An engraving line intersects.
  • the existence of the above-mentioned engraving line for identifying shear deviation can also be that one end extends to the sample contact end and intersects with the engraving line at the sample contact end, while the other end does not intersect with the engraving line at the contact end.
  • This design can reduce the number of steps in the laser etching process.
  • the jumping of the engraving line that is to say, the engraving line for identifying shear deviation can be etched continuously by the engraving line at the contact end of the sample, which reduces the jumping of the engraving line and the waiting time of the laser in the air, further improving the efficiency of laser etching.
  • a second engraving line can be extended to the side of the sensor and intersect with the side of the sensor. These combined to identify the shear deviation engraving The line appears in the shape of "several" in the biosensor. Judging from the electrode card obtained after laser etching, this design can connect the identification engraving lines of adjacent sensors in sequence, thereby achieving uninterrupted etching of laser engraving lines, further improving the efficiency of laser etching and increasing productivity.
  • the third aspect of the present invention is: on the basis of the above-mentioned second aspect, comprehensive consideration is given to the influence of the double-sided tape color layer on the semi-finished large card on the engraving line for identifying the cutting deviation, and the identification of the cutting deviation.
  • the influence of engraving line length on laser etching efficiency has been further optimized. More specifically, most of the engraving lines for identifying shear deviation in the biosensor mentioned in the second aspect of the present invention are covered under the double-sided tape and the color layer. Their length is relatively long, and the required laser etching time is correspondingly long. It takes a long time; and the identification of the offset engraving line is easily affected by the upper and lower deviation of the color layer of the double-sided tape, resulting in misjudgment.
  • the biosensor of the third aspect of the present invention is provided with engraving lines for identifying shear deviation on both sides of the sensor, and one end thereof intersects with the transverse engraving line at the contact end of the biosensor.
  • the biosensor contact The dot-end transverse engraving lines may or may not intersect with both sides of the sensor. More preferably, the other end of the identification shear deviation engraving line located on both sides of the biosensor does not extend toward the sample contact end and does not intersect with any of the engraving lines on the sample contact end. This end is bent and extended toward both sides of the biosensor. And intersect to the third engraved line on the side of the sensor.
  • the third engraving line, the engraving lines on both sides for identifying shear deviation and the transverse engraving line at the contact end are combined together to form an engraving line for identifying shear deviation, which appears in the sensor in the shape of "several".
  • the "several"-shaped engraving lines can connect the identification engraving lines of adjacent sensors in sequence, thereby achieving uninterrupted etching of laser engraving lines, further improving the efficiency of laser etching and increasing productivity.
  • the invention provides a biosensor, which includes an insulating substrate, a sample inlet, and a fluid channel for detection samples to enter.
  • a biosensor which includes an insulating substrate, a sample inlet, and a fluid channel for detection samples to enter.
  • There is a conductive layer on the insulating substrate engraving lines are distributed on the conductive layer, and electrodes divided by the engraving lines are located in the fluid channel area.
  • a reagent layer is provided on some or all of the electrodes, and the other side of the biosensor is opposite to the inlet.
  • a transverse engraved line 42 is provided at the contact end of the biosensor. At least one end of the transverse engraved line 42 extends toward the longitudinal side of the biosensor but does not intersect with the longitudinal side.
  • one end of the transverse engraving line 42 close to the longitudinal side of the biosensor is connected to a vertical engraving line 31a or 32a, and the vertical engraving line is parallel to or at a certain angle with the longitudinal side of the biosensor.
  • both ends of the transverse engraving line 42 extend toward both longitudinal sides of the biosensor, but do not intersect with the longitudinal sides.
  • both ends of the transverse engraving line 42 are connected to vertical engraving lines 31a or 32a, and the vertical engraving lines are parallel to or at a certain angle with the longitudinal side of the biosensor.
  • the vertical engraving line 31a or 32a intersects the side of the biosensor. Furthermore, when two or more biosensors are arranged side by side, the vertical engraved lines intersecting the sides of two adjacent biosensors can be connected to each other.
  • the vertical engraving line 31a or 32a is connected with another transverse engraving line relative to the other end connected to the transverse engraving line 42, and the other transverse engraving line 31b or 32b intersects the side of the biosensor.
  • transverse engraving line 42, the vertical engraving line 31a or 32a and the other transverse engraving line 31b or 32b are connected to each other to form a digit shape. Furthermore, when two or more biosensors are arranged side by side, the other transverse engraved lines of two adjacent biosensors can be connected to each other.
  • the biosensor includes an engraving line.
  • the engraving lines of two adjacent biosensors can be connected together.
  • the engraved lines at the contact ends of two adjacent biosensors can be connected to each other.
  • transverse engraving line, the longitudinal engraving line and the other transverse engraving line can be observed.
  • transverse engraved line located at the contact end spans the electrode, or the area where the electrode extends toward the contact end.
  • the biosensor includes a working electrode and a counter electrode.
  • the horizontal engraving line or the longitudinal engraving line is arranged in such a way that when the transverse engraving line or the longitudinal engraving line on the biosensor meets the preset requirements, the electrode at the sample contact end of the biosensor is complete, and/or the sample is injected
  • the central axis of the groove is located on the central axis of the biosensor or deviates within a preset range.
  • the engraving lines of the present invention are not limited to straight lines, but can also be curves such as arcs and wavy lines.
  • the engraving line for identifying shear deviation is not only a straight line, but can also be an arc and other curves.
  • the transverse engraving line does not mean that it needs to be parallel to the two end edges of the biosensor sample end and the contact end.
  • the transverse engraving line can be parallel to the end edge, or can be at a certain angle with the end edge.
  • the longitudinal engraving line does not mean that it needs to be parallel to both sides of the biosensor.
  • the longitudinal engraving line can be parallel to the side, or can also be at a certain angle with the side.
  • the transverse engraving lines or longitudinal engraving lines may be straight lines, wavy lines and other shapes.
  • the invention also provides a method for preparing a biosensor, which includes the following steps: etching electrodes on an insulating substrate with a conductive layer according to a pre-designed electrode pattern, and etching the above-mentioned engraving lines to form a basic unit with multiple sensors.
  • the electrode card add the prepared reagent to the corresponding electrode where the reagent needs to be added; fit the middle layer to the sample contact end of each sensor basic unit; set the upper cover on the middle layer to obtain a semi-finished product Large card; use a cutting tool to cut the semi-finished large card along the preset cutting line to obtain a finished biosensor; remove unqualified biosensors that do not completely present the engraving line, and retain qualified biosensors.
  • the present invention also provides a method for judging whether the biosensor is correctly cut when making the biosensor, which includes setting an engraving line for identifying shear deviation on the contact end on the other side of the biosensor relative to the sampling port.
  • the engraving line for identifying shear deviation Including a transverse engraving line, at least one end of the transverse engraving line extends to the longitudinal side of the biosensor but does not intersect with the longitudinal side. Observe and identify whether the engraving line meets the pre-designed requirements. If not, it is judged to be cutting. Incorrect.
  • the finished biosensor obtained after cutting is observed. If the biosensor does not completely present the engraving line, it is determined that the cutting is incorrect.
  • the invention also provides a biosensor, which includes an insulating substrate, a sample inlet, a fluid channel for detection samples to enter, a conductive layer provided on the insulating substrate, engraving lines distributed on the conductive layer, and divided by the engraving lines.
  • the electrodes, some or all of the electrodes located in the fluid channel area are provided with reagent layers, and longitudinal engraving lines 31a, 32a adjacent to both sides of the biosensor are provided on both sides of the biosensor.
  • the longitudinal engraving lines are At least one end does not intersect with the edge of the sensor.
  • one end of the two longitudinal engraving lines extends toward the sample end of the biosensor respectively, and intersects with the transverse engraving line at the sample end respectively.
  • one end of the two longitudinal engraving lines respectively extends toward the contact end of the biosensor, and the end points of the extension ends intersect with both ends of the same transverse engraving line at the contact end.
  • the other end of the longitudinal engraving line that is not connected to the transverse engraving line is also connected to another transverse engraving line.
  • the other transverse engraving line extends to the side of the biosensor and intersects with the side of the biosensor. .
  • the engraved lines located at the contact ends of the two biosensors can be connected to each other.
  • the longitudinal engraving lines are arranged in such a way that when the adjacent longitudinal engraving lines on both sides of the biosensor can be completely seen, the electrodes at the sample contact end of the biosensor are complete, and/or the center of the sample injection tank is The axis is located on the central axis of the biosensor or deviates within a preset range.
  • the beneficial effects of the present invention mainly include: the biosensor is provided with engraving lines 42, 31a, 31b, 32a, 32b, 31c, 32c, etc. for identifying shear deviation.
  • the engraving lines for identifying shear deviation screening can be simple and convenient
  • the method is simple and easy to operate, which can not only ensure product performance, but also eliminate scrap products caused by electrode damage caused by cutting deviation during the cutting process of biosensors, or defective products whose sample injection slot is not within a reasonable range near the central axis of the sensor. Can improve production efficiency and capacity.
  • the identification of the off-cut engraving line in the biosensor is a continuous and uninterrupted engraving line, such as a digit shape. This design can connect the identification engraving lines of adjacent sensors in sequence, thereby achieving uninterrupted etching of the laser engraving line and further improving the laser Etching efficiency increases productivity.
  • FIG. 1 is an exploded view of the biosensor of Example 1.
  • Figure 2 is a schematic diagram of the distribution of the electrode system and engraving lines on the conductive layer of the biosensor in Embodiment 1.
  • Figure 3 is the production process of the biosensor.
  • FIG. 4 is a schematic diagram of a multi-row sensor basic unit A formed by laser engraving the conductive layer of the biosensor in Embodiment 1.
  • FIG. 5 is a schematic diagram of a single row of sensor basic units A formed after being cut by a cutting knife along the cutting line 50 shown in FIG. 4 .
  • Figure 6 is a schematic diagram of the first biosensors arranged side by side in Embodiment 1 before being cut.
  • Figure 6-1 is a single independent biosensor obtained after correct cutting in Figure 6, and its enlarged schematic diagram at L and R.
  • Figure 6-2 is a single independent unqualified biosensor obtained after incorrect cutting in Figure 6, and its amplification at L and R. Schematic diagram.
  • Figure 6-3 is a schematic diagram of the second biosensor arranged side by side in Embodiment 1 before being cut.
  • Figure 7 is a schematic diagram of the electrode system and engraving line distribution of the first biosensor in Embodiment 2, where a, b, and c respectively represent biosensors formed after cutting at different positions.
  • Figure 8 shows the biosensor obtained after incorrect cutting of the first biosensor design scheme in Embodiment 2, in which a can be judged as a defective product and b can be judged as a scrapped product.
  • Figure 9 is a schematic diagram of the electrode system and engraving line distribution of the second biosensor in Embodiment 2.
  • Figure 10 is a schematic diagram of the electrode system and engraving line distribution of the third biosensor in Example 2.
  • Figure 11 is a biosensor obtained after correct cutting of the first biosensor design in Example 3, where a, b, and c respectively represent the biosensors formed after cutting at different positions.
  • Figure 12 is a biosensor obtained after incorrect cutting of the first biosensor design in Example 3, in which a can be judged as a defective product and b can be judged as a scrapped product.
  • Figure 13 is a schematic diagram of the sensor of the other two solutions in Embodiment 3, in which the engraving lines 31a and 32a of the biosensor shown in a are arranged perpendicularly to the engraving line 42, and the engraving lines 31a and 32a of the biosensor shown in b are arranged vertically to the engraving line 42.
  • the angle between the lines 42 is an obtuse angle.
  • Figure 14 is a schematic diagram of the distribution of the electrode system and engraving lines on the conductive layer corresponding to the further optimized design of the biosensor in Embodiment 3.
  • Figure 15 is a biosensor obtained by incorrect cutting of the design shown in Figure 14, in which a can be judged as a defective product and b can be judged as a scrapped product.
  • Figure 16 is a schematic diagram of an uncut single row arrangement of the design shown in Figure 14 in Embodiment 3.
  • Figure 17 is a schematic diagram of the electrode system and engraving line distribution on the conductive layer of one of the biosensors in Embodiment 3.
  • FIG. 18 is a schematic diagram of the uncut single-row arrangement of the biosensor in FIG. 17 .
  • Figure 19 is a schematic diagram of the arrangement of quality inspection contacts during semi-finished product inspection.
  • A is a schematic diagram with six quality inspection contacts, and b is a schematic diagram with five quality inspection contacts.
  • Figure 20 is an exploded schematic diagram of the biosensor corresponding to Figure 14.
  • Figure 21 is a schematic diagram of a biosensor design with six quality inspection contacts.
  • Figure 22 is a line graph of biosensor test values and YSI test values in Example 3.
  • the biosensor 100 shown in Figure 1 includes an insulating substrate 1, a conductive layer 2 provided on the substrate, and engraved lines 31, 32, 33, 34, 41, 42, 43, 44, 45, 46 on the conductive layer.
  • the electrode system formed after segmentation includes a working electrode 5, a counter electrode 4 and a reference electrode 3.
  • the electrode has a sample contact end 101 that is in contact with the sample and a contact end 102 that is in contact with the analyzer contact.
  • the reagent layer 6 is added On the corresponding electrode at the sample contact end, the middle barrier layer 8 with the open groove 81 covers the sample contact end of the electrode, and the upper cover 9 covers the middle barrier layer 8, so that the conductive layer 2, the open groove 81 and the upper cover 9 are superimposed on Together, they form a fluid channel for the detection fluid to enter.
  • One side of the fluid channel has a sample inlet.
  • a vent hole 91 is opened on the upper cover 9. The vent hole is located on the open slot for discharging the test fluid.
  • a color or identification system is printed on the color layer 7 for identifying the sensor and is tightly bonded to the middle layer.
  • the two sides of the biosensor are 21 and 23, and the end sides of the sample end and contact end of the biosensor are 22 and 24.
  • the engraving lines are the insulating gaps left after the conductive material is removed from the conductive layer 2 .
  • the engraving lines are not limited to gaps formed by engraving.
  • the working electrode 5 is surrounded by engraving lines 32, 33, 34, 42, 43, and 44
  • the counter electrode 4 is surrounded by engraving lines 33, 34, 42, 44, and 45
  • the reference electrode 3 is surrounded by engraving lines 31 ,32, It is surrounded by 33, 41, 42 and 43.
  • the engraving line 46 serves as a reference line for attaching the middle separator layer to ensure that the middle separator layer is attached to the correct position.
  • Step 1 Laser etching of the electrode pattern: According to the pre-designed electrode pattern, use a laser to etch the electrode pattern or other engraving lines on the conductive layer on the raw material with the insulating substrate and the conductive layer to obtain multiple sensors.
  • the sensor basic unit A includes engraving lines and electrodes divided by the engraving lines.
  • Step 2 Add reagent layer: Prepare detection reagents, and add the prepared reagents to the corresponding electrodes where reagents need to be added.
  • Step 3 Fit the middle layer 8 to each sensor base unit A. Generally, the intermediate layer is placed at the sample contact end of the biosensor.
  • Step 4 Paste the upper cover 9 on each middle layer 8 and roll it.
  • Step 5 After the upper cover 9 is attached, the color layer 7 is attached and rolled on the upper cover to obtain the semi-finished card.
  • Step 6 Use a cutting tool to cut the semi-finished card along the preset cutting line to obtain the finished biosensor.
  • step 1 laser etching technology is used to etch the conductive layer 2 on the surface of the insulating substrate to form a plurality of engraving lines 31-34 and engraving lines 41-46 on the conductive layer 2.
  • the conductive layer within these engraved lines is basically removed and the insulating substrate is exposed.
  • the required electrodes and other engraving lines with certain uses are formed on the conductive layer.
  • an electrode card is obtained.
  • the electrode card contains multiple sensor base units A arranged side by side on an insulating substrate that can be used to make finished biosensors.
  • Each sensor base unit A includes an insulating substrate, The electrode system formed after being divided by the engraving lines, the engraving lines and/or other areas formed by etching.
  • the electrode system includes the working electrode 5, the counter electrode 4 and the reference electrode 3.
  • two rows of sensor basic units A are formed tail-to-tail (the contact ends of the two sensor basic units A are set up opposite each other), where N represents 0 to n, "a total of N "Indicates that it includes N sensor base units A.
  • the etching path of the engraving lines in the conductive layer is controlled by software.
  • the engraving lines 32, 43 and 33 are formed by continuous and uninterrupted laser etching.
  • the specific implementation methods such as the path and direction of the engraving line can be manually designed and controlled by software according to the needs of the actual product, and are not limited to the above paths.
  • Use appropriate laser etching parameters for the engraving line For example, the engraving line width ranges from 0.020mm to 0.200mm. In this example, the engraving line width is 0.080mm.
  • Figure 4 is only one of the forms formed after step 1. There can also be other arrangements, as long as the sensor base unit A can be effectively cut in the back-end process. You can also use Figure 4 as a unit.
  • the electrode card formed after etching is an arrangement of multiple units shown in Figure 4. For example, if Figure 4 is a repeating unit and N is 4, the number of repetitions is 2, then the completed semi-finished product It can be four rows and four columns.
  • the material of the insulating substrate is polyvinyl chloride, polyterephthalate, polyethylene terephthalate, polyethylene glycol, etc. In this example, polyethylene terephthalate is preferred.
  • the material of the conductive layer 2 is selected from, but is not limited to, conductive metals or conductive non-metals such as gold, silver, platinum, palladium, carbon, graphite, conductive glass, or mixtures thereof.
  • the conductive layer covering method can adopt printing, coating, electroplating, sputtering, etc.
  • a conductive carbon layer (carbon film) formed by coating is used.
  • the thickness of the carbon layer is 1-30um.
  • the thickness used in this example is It is about 8um, and the resistance of the conductive layer is 10 ⁇ / ⁇ 100 ⁇ / ⁇ , preferably 30 ⁇ / ⁇ in this example.
  • the electrodes of the biosensor can be configured with a reagent layer.
  • the reagent layer uses specific enzymes to perform quantitative or qualitative analysis of the measured target substance in the environment of a buffer system, and generally contains the following components: enzyme, electronic mediator, polymer, disintegrant, surfactant, stabilizer agents and buffer systems.
  • the enzyme is selected from the group consisting of glucose oxidase, glucose dehydrogenase, lactate oxidase, lactate dehydrogenase, uric acid oxidase, cholesterol oxidase or D-3-hydroxybutyrate oxidase.
  • the electronic mediator is selected from one or more ruthenium compounds, potassium ferricyanide, ferrocene, etc.
  • the buffer system is sodium succinate, sodium citrate, piperazine buffer, Any one or more of propanesulfonic acid, PBS buffer or sodium fumarate
  • the disintegrant is any one or more of cross-linked PVP, sodium carboxymethyl starch, and cross-linked CCNa
  • the surfactant is an anionic surfactant, a cationic surfactant, and a zwitterionic surfactant.
  • the stabilizer is one or more of maltitol, trehalose, BSA or protein protective agent.
  • Step 2 of configuring reaction reagents often uses methods such as liquid dispensing, screen printing, drop coating, slot-die coating, etc. to configure a reagent mixture with a certain chemical composition onto a specific electrode of the biosensor to form a reagent layer.
  • screen printing is preferably used to arrange biochemical reagents on specific electrodes in specific patterns and positions.
  • the biochemical reagents in specific patterns and positions can react with the substance to be detected in the sample and generate a certain electrical signal.
  • the signal is transmitted to the detection instrument through the conductive material and fed back to the user.
  • the screen used for screen printing is generally made of polyester, nylon, stainless steel and other materials.
  • the mesh number is generally 250 to 420 mesh.
  • the wire diameter of the screen used is generally 27um to 120um.
  • the maximum tension it bears is generally 22 ⁇ 38N/cm; In this example, a 305 mesh 34um wire diameter nylon screen is preferably used, which can withstand a maximum tension of 33N/cm.
  • the above-mentioned reagents with fixed patterns and positions obtained by screen printing contact the sample in the sampling channel and react with the substance to be measured in the sample.
  • the sampling channel is formed between the opening groove 81 and the upper cover 9 , and the surface of the upper cover facing the sampling channel is made of hydrophilic layer material.
  • the material of the middle separator layer is usually a PET base, and is coated with an acrylic resin system as an adhesive material.
  • the thickness of the middle layer is generally 75um-150um, and the width of the opening groove is generally 0.7mm-1.8mm. In this example, the thickness of the middle layer is preferably 100um, and the width of the hollow structure is preferably 1.2mm.
  • the upper cover 9 has a vent hole 91 at the end of the sampling channel.
  • the shape of the vent hole can be circular, square, rectangular, linear or other shapes.
  • the shape of the vent hole is preferably rectangular.
  • the hydrophilic material is preferably 9901P produced by 3M. The vent holes of hydrophilic material can ensure that the original air in the cavity can be smoothly discharged when the blood sample flows into the sampling channel, ensuring that the sample can flow into the cavity smoothly.
  • the color layer 7 is generally a printable single-sided tape, and the surface is generally printed with the product name, which makes it easy to identify the product and protect the reagent strip from scratches.
  • Step 5 is an omitted step.
  • the upper cover itself can be printed with a product name and can also serve a similar function as the color layer, step 5 will be omitted.
  • the biosensor does not require a color layer, skip step 5.
  • a cutting tool is used along the preset cutting line. Specifically, the cutting tool is used to cut the semi-finished large card along the cutting line shown in the horizontal dotted line 50 and the longitudinal dotted line 51 in Figure 4 and obtain the finished biosensor. Suitable cutting methods include but are not limited to hob cutting, die punching, chopping, etc. Specifically, in this example, it is preferable to use a hob to roll the semi-finished large card shown in Figure 4 into a long semi-finished sheet containing several sensor basic units A as shown in Figure 5 along the transverse dotted line 50, and then cut it into a long sheet. Use a hob to cut the semi-finished strip along the vertical dotted line 51 into a finished biosensor.
  • a transverse engraved line 42 across the electrodes 3, 4 and 5 is provided at the contact end of the biosensor, or in the direction of the extending area of the electrodes towards the contact end.
  • a transverse engraving line 42 is provided.
  • the engraving line 42 can be observed, or at least both ends of the engraving line can be observed, for example, the engraving line 42 is not completely covered by the upper cover 9 or the color layer 7 .
  • the engraving line 42 does not intersect with the longitudinal sides 23 and 21 of the sensor, that is, the left and right end points 421 and 422 of the engraving line 42 are at a certain distance from the longitudinal sides 23 and 21 of the sensor. In a preferred solution, there is no engraving line between one end of the transverse engraving line 42 extending toward the longitudinal side of the biosensor and the side.
  • Figure 6 is a schematic diagram of the positions of two adjacent sensors waiting to be cut (in this example, color layer 7 uses LOGO characters to represent the company trademark. For ease of explanation, reagent layer 6 is not shown in the illustration for the time being.
  • Figure 6-1 and Figure 6 -2 the cutting knife divides them into two independent biosensors along the preset cutting line 51.
  • Figure 6-1 shows the cutting knife accurately cutting along the cutting lines 50 and 51.
  • the transverse engraving line 42 serves as an engraving line for identifying shear deviation at the sensor contact end.
  • the sensor side edges 21 and 23 are obtained by cutting through the cutting line 51 , and the sensor end edges 22 and 24 are obtained through cutting through the cutting line 50 .
  • the engraving line 42 for identifying shear deviation can be observed at the contact end of the sensor. Its left and right endpoints 421 and 422 are located on both sides of the sensor respectively, and the engraving line 42 does not intersect the sensor side. Based on the above observed information, the quality inspection personnel can consider that the obtained sensor is a intact finished sensor. At this time, the electrode system of the finished sensor does not have cutting deviation and damage the electrode when cutting along the cutting line 51. The test performance of the cut sensor It is not affected; at the same time, the LOGO in its appearance and the sample injection slot at the sample contact end are located near the central axis of the finished sensor. For users, the finished sensor has a relatively beautiful appearance and is visually comfortable. experience.
  • the cutting tool may cut at a preset position that deviates from the cutting line 51, and the actual sensor shape may change.
  • the quality inspection personnel use judgment to identify the offset between the engraving line 42 and the sensor.
  • the relative positions of the side edges 21 and 23 are used to determine the cutting quality of the cut sensor.
  • the cutting deviation identification engraving line intersects with the side edge of the sensor, which indicates that the fluctuation of the cutting tool when cutting along the cutting line 51 exceeds the preset range.
  • the electrode at the sample contact end of the obtained biosensor may have been cut and damaged, which may affect the test results; at the same time, from the appearance of the biosensor, the color layer with the LOGO and the sample injection slot at the sample contact end are The positions are beyond the central axis range of the sensor, so that the sensor does not have a good appearance and may have a poor user experience.
  • Figure 6-2 only shows the situation when the cutting line deviates from one side. If the cutting line deviates from the other side, there will be a similar situation, which will not be described in this embodiment.
  • the engraving lines covered under the middle layer and the color layer in Figures 6-1 and 6-2 are represented by dotted lines, while the engraving lines that are exposed and can be observed by quality inspection personnel are represented by solid lines.
  • FIG 6-3 shows another design method of this embodiment.
  • Transverse engraving lines 42a and 42b are segmented at the contact end of the biosensor.
  • the engraving lines 42a and 42b are used as engraving lines for identifying shear deviation in this design.
  • the engraving line 42a is located on the electrode 3 or the area where the electrode 3 extends to the contact end.
  • the engraving line 42b is located on the electrode 5 or the area where the electrode 5 extends to the contact end. area.
  • the engraving lines 42a and 42b can be observed, or at least both ends of the engraving lines can be observed, for example, the engraving lines 42a and 42b are not completely covered by the upper cover 9 or the color layer 7 .
  • the left end of the engraving line 42a does not intersect the longitudinal side 23 of the sensor, and the right end of the engraving line 42b does not intersect the longitudinal side 21 of the sensor.
  • the engraving line 42a and the engraving line 42b are not connected, and neither end of them intersects with the side of the sensor.
  • the quality inspector observes the intersection of the engraving lines 42a and 42b with the side of the sensor, as well as the engraving lines on one side of the sensor. The number of endpoints is used to determine whether the sensor meets the quality requirements.
  • the electrode system of the biosensor 100 is formed by enclosing the conductive layer covered on the insulating substrate by laser etching and then removing the insulating engraving lines of the conductive layer.
  • the sensor also includes a conductive layer connected to the sample.
  • the sample contact end in contact and the contact end in contact with the analyzer.
  • the sample contact end is composed of a middle partition with an open slot and an upper cover covering the middle layer and having air holes for sample entry.
  • the fluid channel has a reagent layer covering some or all of the electrodes in the fluid channel.
  • the preparation process of the biosensor 100 is basically the same as described in Embodiment 1.
  • the engraving lines covered under the color layer and the middle layer are represented by dotted lines, and the engraving lines that can be seen exposed are represented by solid lines, which are set on both sides of the sensor close to the sensor sides 23 and 21.
  • the engraving lines 31a and 32a do not intersect with any of the engraving lines at the contact end and contact end of the sensor sample, and all or part of the engraving lines 31a and 32a are not covered. being observed.
  • the biosensor appears in the situation shown in Figure 8 a and Figure 8 b, that is, two engraving lines 31a, 32a for identifying the cutting deviation are only seen on one side of the sensor at the same time, or only on one side. If the engraving line that identifies the cutting is broken or incomplete, it indicates that the cutting position of the cutting tool has exceeded the expected range, and the sensor can be determined to be a scrap or defective product.
  • FIG. 8 it is a schematic diagram of the front of the sensor in two different situations obtained after the cutting process of the semi-finished large card.
  • the invisible engraving line covered under the color layer and the middle layer is represented by a dotted line, and it can be seen when exposed.
  • the engraving lines that are seen are shown as solid lines.
  • a slight deviation beyond the preset occurs during the cutting process, so that the sensor edge 21 obtained after cutting happens to pass through the engraving line 32a, and the engraving line 32a can be seen on both sides of the sensor. , but they are all incomplete and incomplete.
  • the cutting tool only cuts on the engraving line forming the electrode, and the electrode itself is not damaged, the color layer LOGO of the sensor and the position of the injection slot at the sample injection end have exceeded the preset central axis range of the sensor.
  • the performance of the sensor at this time will not be affected, its appearance is unacceptable and can be considered a defective product.
  • a large deviation occurs during the cutting process.
  • the engraving lines 31a and 32a that identify the cutting deviation are located on the same side of the sensor, but do not appear on the other side. This causes the sensor color layer LOGO and the sample contact end to be separated.
  • the sample tank has completely deviated from the preset central axis range of the sensor, and the sample contact end electrode has also been damaged.
  • the sensor at this time can be considered a scrapped sensor.
  • One end of the shear deviation identification engraving line located on both sides of the sensor and adjacent to the side of the sensor can also extend toward the sample contact end of the sensor and intersect with the engraving line at the sample contact end.
  • the engraved lines 31 a and 32 a for identifying shear deviation extend toward the sample contact end respectively, and intersect with the engraved lines 41 at the sample contact end respectively.
  • the way the sensor recognizes shear deviation is basically the same as the example in Figure 7.
  • the engraving line design shown in Figure 9 can connect 31a and 32a through the engraving line 41 to achieve continuous cutting, thereby avoiding the idle jump time of the laser when cutting and identifying the engraving lines 31a and 32a, and improving the efficiency of laser etching.
  • One end of the shear deviation identification engraving line located on both sides of the sensor and adjacent to the sensor side can also extend to the sensor sample contact end and intersect with the engraving line on the sample contact end. At the same time, the other end can also extend to both sides of the sensor.
  • the second engraving line intersects with the sensor edge.
  • one end of the engraving lines 31a and 32a for identifying shear deviation extends toward the sample contact end and separates. respectively intersect with the engraving line 41, and the other ends of the engraving lines 31a and 32a are bent toward both sides of the sensor to extend the second engraving lines 31b and 32b and intersect with the sensor side lines respectively.
  • the method shown in Figure 10 to identify the engraved line of shear deviation to determine whether the sensor is shear deviation is basically the same as Figure 7.
  • the advantage of the electrode structure shown in Figure 10 compared to Figure 9 is that during the electrode etching process of the sensor manufacturing process, the "several"-shaped engraving lines between consecutive adjacent sensors can be continuously cut, thereby reducing the electrode The time required for large card etching, thus improving production efficiency and throughput.
  • the biosensor described in this embodiment is based on Embodiment 2 and comprehensively considers the impact of the attached middle layer and color layer on the semi-finished large card on the engraving line for identifying shear deviation, as well as the aforementioned recognition of shear deviation.
  • the influence of engraving line length on laser etching efficiency has been further optimized.
  • Part of the engraving line for identifying the deviation of the biosensor mentioned in Embodiment 2 is covered under the middle layer (also called double-sided tape) and the color layer.
  • the engraving line for identifying the deviation of the sensor is The exposed part of the thread that can be seen by quality inspection personnel is easily affected by the upper and lower deviation of the color layer of the double-sided tape and is covered, thereby increasing the difficulty of judgment by quality inspection personnel and increasing the risk of misjudgment.
  • the biosensor of this embodiment is provided with engraving lines for identifying shear deviation on both sides of the sensor, and one end thereof intersects with the transverse engraving line at the contact end of the biosensor.
  • the transverse engraving line at the contact end of the biosensor can be Intersects or does not intersect with both sides of the sensor.
  • a biosensor 100 according to the third aspect of the present invention is shown in FIG. 11 .
  • the electrode system of the biosensor 100 is composed of a conductive layer covered on an insulating substrate surrounded by insulating engraving lines that remove the conductive layer after laser engraving.
  • the sensor also includes a sample contact end that is in contact with the sample and a contact end that is in contact with the analyzer.
  • a middle partition with an open groove and an upper cover covering the middle layer and having air holes form a fluid channel for the sample to enter, and some or all of the electrodes in the fluid channel are covered with a reagent layer.
  • the preparation process of the biosensor 100 is basically the same as described in Embodiment 1.
  • the front schematic diagram of the sensor obtained after cutting and assembly in which the engraving lines covered by the middle layer and the color layer are represented by dotted lines.
  • the contact end of the biosensor is designed with a transverse engraving line 42 adjacent to the sensor end edge 24 and vertical engraving lines 31a and 32a located on both sides of the sensor and adjacent to the sides of the sensor to identify shear deviation.
  • Engraving line 42 does not intersect the sensor sides, nor do vertical engraving lines 31a and 32a intersect the sensor sides.
  • the left and right ends of the engraving line 42 are respectively connected to one end of the engraving lines 31a and 32a.
  • the other ends of the engraving lines 31a and 32a extend toward the sensor sample contact end but are not connected to the end edge of the sample contact end or the transverse engraving line near it.
  • the lengths of the engraving lines 31a and 32a for identifying shear deviation can be designed according to actual needs. At least the engraving lines where engraving line 42 intersects engraving lines 31a and 32a are uncovered and can be observed.
  • One end of the transverse engraving line 42 close to the longitudinal side of the biosensor is connected to a vertical engraving line 31a or 32a.
  • the vertical engraving lines 31a and 32a are parallel to the longitudinal side of the biosensor.
  • the vertical engraving lines 31a and 32a form a certain angle with the longitudinal sides of the biosensor. There is no engraving line between the end of the transverse engraving line 42 extending toward the longitudinal side of the biosensor and the side.
  • the sensor is obtained after cutting according to cutting standards.
  • the complete engraving lines 31a, 32a and 42 can be seen, and the two ends of the engraving line 42 do not intersect with the sides of the sensor.
  • the cutting did not cause damage to the electrode, and the LOGO on the sample injection channel and color layer was also located near the central axis of the sensor.
  • the sensor had better test performance and the most acceptable and comfortable appearance for users.
  • the cutting tool will be offset to the left or right for cutting, as shown in Figure 11 b and Figure 11 c. In the states b and c in Figure 11, the criteria for determining the quality of the sensor are still met.
  • FIG. 12 it is a schematic diagram of the front of the sensor in two different situations obtained after the cutting process of the semi-finished large card.
  • the engraving lines covered under the color layer and the middle layer are represented by dotted lines. If exposed, they can be seen.
  • the engraving lines that are seen are shown as solid lines.
  • a slight deviation beyond the preset occurs during the cutting process, so that the sensor edge 21 obtained after cutting happens to pass through the engraving line 32a, and the engraving line 32a can be seen on both sides of the sensor. , but they are all incomplete and incomplete.
  • the total length of the laser engraving route is significantly shortened, which can reduce the time consumed in the laser engraving process, thereby improving efficiency and productivity, and will not be affected by the intermediate layer Due to the influence of the color layer overlapping position deviation, the identification engraving line will not be covered by the color layer and cannot be observed.
  • identifying the relative positions of the end points of the engraving line 42 and the sensor sides 21, 23 in Embodiment 1 identifying the relative positions of the engraving lines 31a, 32a and the sensor sides 21, 23 is more intuitive and easier. Through identification and interpretation, quality inspection personnel can identify more simply and quickly, reducing possible interpretation errors caused by relying solely on interpretation to identify the endpoint position of the engraving line 42, and improving the efficiency and accuracy of the production process.
  • the length of the engraved lines for identifying shear deviation located on both sides of the biosensor can be shortened or extended according to actual needs.
  • the engraved line 42 located at the contact end can also extend to both sides of the sensor and intersect with it.
  • the engraving line 42 that extends to and intersects the side of the sensor can be etched continuously and uninterruptedly from one side of the first sensor to the other side of the engraving line 42 of the Nth sensor in the laser etching of the large card, thereby reducing Laser etching path jumps and laser idle jump times.
  • the angle between the off-cut engraving lines 31a and 32a and the engraving line 42 is an obtuse angle.
  • the quality inspection personnel will judge the engraving lines 31a and 32a on the sensors produced through cutting and assembly.
  • the solution in Figure 14 is an improved design based on the solution in Figure 11 of this embodiment.
  • the preparation process of the biosensor 100 shown in Figure 14 is consistent with that described in Example 1 and Example 2.
  • the design of the engraving lines is basically the same as that in Figure 11. The difference is that the engraving lines 31a and 32a on the sides for identifying shear deviation are bent and extended to both sides of the sensor to extend the engraving lines 31b and 32b and intersect at the sides of the sensor.
  • the engraving lines 31b and 32b can be parallel to the end edges or have a certain angle.
  • the continuous engraving line composed of the engraving lines 31a, 31b, 32a, 32b and the engraving line 42 is in the shape of an inverted "ji" as a whole.
  • the sensor edge 21 obtained after cutting happens to pass through the engraving line 32a, and the engraving line 32a can be seen on both sides of the sensor. , but they are only incomplete and incomplete, and it can be seen on the side of the sensor that the engraving lines 31b and 32b that should have been distributed on both sides of the sensor have been connected into one engraving line.
  • the cutting tool only cuts the part where the electrode is formed, On the engraving line, the electrode itself was not damaged, that is, the electrode part of the sensor sample contact end was only cut to the engraving line without damaging the electrode.
  • the color layer LOGO of the sensor and the position of the injection channel at the sample injection end have exceeded Outside the range of the theoretical central axis of the sensor, although the performance of the sensor at this time will not be affected, its appearance is unacceptable and can be considered a defective product.
  • it is a sensor obtained when a large deviation occurs during the cutting process.
  • the engraving line that identifies the cutting deviation is only completely present on one side of the sensor, but does not appear on the other side, and is not visible on the sensor. On one side, you can see that the engraving lines 31b and 32b that were originally distributed on both sides of the sensor have been connected into one engraving line.
  • the sensor color layer LOGO and the sample contact end injection slot have completely deviated from the preset central axis range of the sensor.
  • the sample contact electrode is also damaged, and the sensor at this time can be considered a scrap sensor.
  • the sensor unit A has a digit-shaped engraving line.
  • the digit-shaped engraving line It consists of engraving lines 31b, 31a, 42, 32a and 32b.
  • the engraving lines 31b and 32b are connected between two adjacent sensor base units A, so that the contact ends of N sensor base units A are used to identify the geometry of shear deviation. Font engraving lines can be connected end to end to form a continuous engraving line.
  • the laser engraving method does not require sequential engraving of the N unit sensor base unit A.
  • This invention only introduces the help of this method in improving engraving efficiency and production capacity by taking the end-to-end connection of the engraving lines that identify the shear deviation at the contact end as an example.
  • this solution is also applicable to all other engraving lines.
  • the R&D personnel only need to Reasonable engraving line arrangement and laser path design to connect the laser paths end to end can also improve the efficiency and productivity of laser engraving.
  • the engraving line covering the middle layer and the color layer is represented by a dotted line.
  • An engraving line 42 is designed at the contact end of the sensor, and there are engravings for identifying shear deviation on both sides of the sensor.
  • Line 31c, 32c One end of the engraving lines 31c and 32c for identifying shear deviation intersects with the engraving line 42, and the other end intersects with the side edges 23 and 21 of the sensor.
  • this design can also ensure that the engraving of N sensor units A on the conductive layer of the sensor can be connected end to end.
  • the middle layer and color layer are omitted in the figure, and the N sensor units on the conductive layer are
  • the etching of 31c, 32c and engraving line 42 in A can start from a' of the first sensor basic unit A, pass through b', c', d', e' of several sensor basic units A and finally end at the f' of the N sensor basic unit A can realize the end-to-end connection of the engraving lines, which can also improve the efficiency and productivity of laser engraving.
  • the solution shown in the present invention also has advantages in specific production processes.
  • quality inspection may be required at each step of the biosensor production process. More specifically, for biosensors with electrodes formed by laser etching, the electrodes or conductive areas on both sides separated by the same engraved line must be non-conductive or insulated from each other, so it needs to be confirmed electrically. Verify.
  • Figure 19 shows an uncut semi-finished product containing biosensors arranged side by side.
  • the insulation quality inspection points on the semi-finished product can be set at six points 71-76 as shown in a in Figure 19.
  • the quality inspection points 71, 72, and 73 are respectively located on electrodes 3, 4, and 5 of sensor A.
  • the quality inspection points Sites 74, 75 and 76 are respectively located on electrodes 3, 4 and 5 of sensor B. It can also be set at five positions 71-75 shown in b in Figure 19.
  • the quality inspection positions 71 and 72 are respectively located on the electrodes 3 and 4 of the sensor C.
  • the quality inspection positions 74 and 75 are respectively located on the electrodes of the sensor D.
  • the quality inspection site 73 is set in the connection area between the electrode 5 of the sensor C and the electrode 3 of the sensor D, so that the electrode 5 of the sensor C and the electrode 3 of the sensor D can share a quality inspection site 73.
  • sensor A is connected to sensor B, and sensor C is connected to sensor D.
  • the detection points can choose to use the method a in Figure 19 or the method b in Figure 19 as needed.
  • the number of quality inspection points in b in Figure 19 is less than the number of quality inspection points in a in Figure 19.
  • an independent biosensor is formed.
  • the two biosensors are located at the engraved lines 42, 31a, 31b, 32a, and 32b can be connected to each other.
  • the engraving line 32b of the biosensor on the left can be connected with the engraving line 31b of the biosensor on the right, so that when the two biosensors are arranged side by side, the engraving lines of the two adjacent biosensors 42, 31a, 31b, 32a, 32b, etc. can be connected to each other.
  • the engraved lines 42, 31c, 32c located at the contact end to identify the shear deviation can pass through the biosensor located on the left.
  • the engraving line 32c butts with the engraving line 31c of the biosensor on the right, thereby connecting these engraving lines together.
  • engraved lines are formed at the contact ends that can be connected to each other. In the examples shown in Figures 16 and 18, these interconnected engraved lines form repeating units of the same shape.
  • the position of the engraving line (for example, 42, 31a, 31b, 32a or 32b) for identifying shear deviation in the present invention on the conductive layer can be set according to the following principles.
  • the electrode at the sample contact end will not be cut and damaged.
  • a more preferred method is to also include the biosensor obtained after cutting. From the appearance, the color layer with the LOGO
  • the central axis of the sample injection tank at the end in contact with the sample is located on the central axis of the biosensor or does not deviate much, so that the sensor has a better appearance. Specifically, for example but not limited to the following methods.
  • L1 The distance between the endpoint of the engraving line 42 that identifies the shear deviation and the side of the sensor is L1, and the distance between the endpoint of the engraving line 42 that is used to form the electrode and is closest to the side of the sensor and the side of the sensor is L2. Then L1 is less than or equal to L2.
  • the engraving lines forming the electrode include horizontal engraving lines and vertical engraving lines.
  • the engraving lines close to the edge of the conductive layer are outer engraving lines, and the engraving lines far away from the edge of the same conductive layer are inner engraving lines.
  • the distance between the endpoint of the engraving line to identify shear deviation and the edge of the conductive layer is L1
  • the closest distance between the longitudinal outer engraving line of the electrode closest to the same edge of the conductive layer and the edge of the conductive layer is L3, then L1 is less than or equal to L3.
  • the glucose biosensor in this embodiment includes: an insulating substrate 1, a conductive carbon layer 2, a reagent layer 6, a middle layer 8 and an upper cover 9.
  • the glucose biosensor of this embodiment includes a conductive layer 2 of uniform thickness prepared by a coating process on an insulating substrate 1, on which are etched 31a, 31b, 32a, and 32b using laser etching technology based on a reasonable programming design. , 33, 34, 41, 42, 43, 44, 45, 46 and other laser engraving lines. The laser engraving lines ablate and remove the conductive layer to expose the insulating substrate, thus forming non-connected electrodes 3 and 4 on the conductive layer 2.
  • the reagent layer 6 is located on the electrodes 3, 4, 5 and is located in the sampling slot 81 of the intermediate layer 8.
  • the middle partition 8 is covered with an upper cover 9 , and the air hole 91 on the upper cover 9 is located at the bottom of the middle partition sampling tank 81 .
  • the middle layer injection tank 81, the hydrophilic upper cover 9 and the air holes 91 thereon form a channel for blood sampling.
  • a LOGO or color is printed on the color layer 7 to distinguish the sensor.
  • the blood sample is sucked into the sampling channel through siphoning.
  • the air in the original sampling channel is eliminated through the upper cover air hole 91 at the end of the sampling channel, effectively ensuring the blood flow into the channel. Fluency.
  • a DC voltage of 200 to 500mv is applied to the electrode to cause the reagent layer 6 to undergo an oxidation-reduction reaction with the glucose to be measured in the blood, and generate a test current.
  • the test instrument measures the current value based on the detected current value and the value measured by the temperature sensor.
  • the ambient temperature is appropriately corrected and compensated, and converted into blood glucose values and displayed to the user.
  • the materials of reagent layer 6 mainly include glucose dehydrogenase FAD-GDH, potassium ferricyanide and second electron enzyme mediator; the enzyme activity of glucose dehydrogenase is 200-600U/mg.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种生物传感器和方法,包括绝缘基板,设置在绝缘基板上的导电层,进样口,供检测样本进入的流体通道,导电层上分布有雕刻线,以及由雕刻线分割而成的电极,位于流体通道区域内的部分或全部电极上设有试剂层,在进样口的相对另一侧设有横向雕刻线,所述横向雕刻线的至少一端向生物传感器的纵向侧边延伸,但不与纵向侧边相交。利用本发明所述的生物传感器触点端的雕刻线设置,可有效简化生产过程的质控过程,提高生物传感器的合格率。

Description

一种生物传感器及其制作方法 技术领域
本发明涉及生物医学检测领域的生物传感器技术,特别涉及一种生物传感器及其制备方法。
背景技术
用于检测样本中被分析物含量的电化学传感器及其配套的检测仪已被广泛应用于疾病的日常监测中。例如糖尿病患者通常使用电化学传感器来监测日常血液中的葡萄糖浓度。
这类电化学生物传感器的基本结构包括:设置在绝缘基板上的电极系统,电极系统包括工作电极和对电极等多种类型的电极,与被分析物反应的检测试剂覆盖在相应电极上。一个具有凹槽的样本中隔层位于电极上,带气孔的盖片覆盖在样本中隔层上,绝缘基板、中隔层和盖片形成了进样通道,电极系统的另一端设有与检测仪的触脚接触的触点,其中传感器拥有进样通道的一端称为样本进样端,传感器与检测仪触脚接触的一端称为触点端。流入进样通道的样本与电极上的检测试剂反应产生电信号,检测仪根据这些电信号得出检测结果。
利用丝网印刷技术将导电材料印制在绝缘基板上形成电极、电极连接触点和引线是目前制备电化学传感器时通常采用的方法。利用丝网印刷方法制作电化学传感器,每个批次在某些参数上存在较大批间差。为了消除批间差对检测结果的影响程度,一般通过向检测仪中插入校准芯片以修正检测结果,从而克服批间差的问题。但是插入校准芯片不仅会增加操作者的操作步骤,而且若操作者忘记插入或插错校准芯片则会导致检测结果不准确。也有研究者采用例如中国专利ZL201210095096.5的方法来修正批间差异,通过在传感器上设置校正信息来实现。
为了解决上面提及的检测步骤繁琐或制备工艺复杂的问题,中国专利ZL00803756.6提供了一种薄膜电极的形成方法,即预先在绝缘基板上均匀铺满薄膜状的导体层,通过激光烧蚀法形成电极。该方法制作精度较高,基本能保证不同批次生产的产品之间不存在批间差,或在无需校正的情况下,批间差的存在也不会影响检测结果。
此类通过激光烧蚀法形成电极的传感器,在由多个传感器基础单元组成的大版面半成品大卡切割得到成品传感器的生产工艺过程中,需保证设置好的传感器基础单元不会因切割工艺波动而伤害到其上的电极导致成品报废或者因切割工艺波动导致样本进样通道不在传感器中轴线附近位置而影响美观。为解决上述问题,中国专利ZL00803756.6也提出了一种固定电极面积保证电极不会因切割装配工艺波动而导致报废的方法,即在传感器电极左右两侧边上设置有分别延伸至样本接触端和触点接触端端边的狭缝。该方法制作难度低,只需要切割时不触及这两条狭缝,就可以保证产品性能。
中国专利ZL00803756.6记载的方案中狭缝分别延伸至样本接触端和触点端端边,狭缝尺寸较长导致激光蚀刻过程中激光行进路线较长,在实际的生产加工过程中,加工不同材料的时间会不同程度的增长,对于如碳膜、导电玻璃等这些激光蚀刻本就产能有限的产品,则将会大大增加生产时间,限制了生产产能。因此本发明是针对上述问题开展研发,其目的在于提供一种更为简便的设计,其既可以保证性能也可提升生产效率和产能。
发明内容
本发明是基于现有技术中存在的上述问题而完成的,其目的在于提供一种生物传感器,其在设计上设置有识别切偏的雕刻线,通过观察识别切偏的雕刻线,可简单便捷地筛选出生物传感器在切割过程中因切割偏差引起的电极损伤而产生的报废品,或样本进样槽不在传感器中轴线附近合理范围内的残次品。
本发明的生物传感器,包含绝缘基板和设置在绝缘基板上的导电层,电极是形成于导电层上且由雕刻线分割而成。检测试剂被分配在电极上,生物传感器上设有可供待测物溶液进入的流体通道,该流体通道由电极导电层和中隔层开口槽及上盖相互叠加后形成。电极系统的另一端设有可与检测仪触点相接触的区域,所述区域有一部分是暴露在外不被颜色层等物料所遮盖。传感器在流体通道的一端称为进样端,传感器与检测仪触点接触的一端称为触点端。电极由样本接触端向传感器触点端延伸,并将待测物与试剂反应产生的电学信号传导至传感器触点端,再经由仪器将测试结果回报给用户。为防止生物传感器半成品切割偏差而导致的电极伤害或传感器外观形貌不佳的情况,在电极上设置有雕刻线,该雕刻线为识别切偏的雕刻线,可以帮助质检人员高效判定切割偏差是否符合要求,当在经过切割装配之后的产品可明显观察到识别切偏的雕刻线,或识别切偏的雕刻线依然完整存在,则可判定产品为合格品。由于存在识别切偏的雕刻线的设计,所以可以容易且准确地筛选出因切割误差而导致电极伤害的报废品或者外观形貌不佳的残次品。
本发明的第一方面是:在生物传感器的触点端设置识别切偏的雕刻线,该识别切偏的雕刻线向生物传感器的两侧边延伸,但不与侧边相交。通过观察所述识别切偏的雕刻线来快速判定切割后的生物传感器是否符合标准,将切割出错的报废品和残次品及时地剔除,保证了成品传感器的稳定性。
本发明的第二方面是:在生物传感器的两侧设置识别切偏的雕刻线,该识别切偏的雕刻线与传感器侧边相邻,不与生物传感器的样本接触端和仪器触点端的任一雕刻线相交。当生物传感器半成品大卡切割得到的成品传感器后,若可以在两侧看到露出的识别切偏雕刻线,则认定为切割合格的成品传感器,否则即是报废品或是残次品,可被快速的识别并剔除。
上述识别切偏的雕刻线的存在还可以是其一端向样本接触端延伸,并与样本接触端的雕刻线相交,而其另一端不与触点端的雕刻线相交,如此设计可以减少激光蚀刻过程中雕刻线的跳跃,也就是说,识别切偏的雕刻线可以由样本接触端的雕刻线不间断地蚀刻得到,减少了雕刻线的跳跃和激光滞空等待的时间,进一步提升激光蚀刻的效率。基于同样的考虑,在识别切偏的雕刻线不与触点端雕刻线相交的一端可以向传感器侧边延伸出第二雕刻线,并与传感器侧边相交,这些组合在一起的识别切偏雕刻线在生物传感器中呈现“几”字型。从激光蚀刻后得到的电极大卡上来看,这样的设计可以将相邻传感器的识别雕刻线依次相连,从而实现激光雕刻线的不间断蚀刻,进一步地提升激光蚀刻的效率而提升产能。
本发明所述的第三方面是:在上述第二方面的基础上,综合考虑半成品大卡上已贴合的双面胶颜色层对识别切偏的雕刻线的影响,以及所述识别切偏雕刻线长度对激光蚀刻效率的影响,而所做的进一步优化。更具体地说,本发明第二方面提及的生物传感器中的识别切偏的雕刻线大部分是覆盖在双面胶和颜色层之下的,其长度较长,所需的激光蚀刻时间相应较久;且此识别切偏雕刻线易受到双面胶颜色层套贴位置上下偏差的影响而出现误判。基于上述情况,本发明所述的第三方面的生物传感器,在传感器的两侧设置有识别切偏的雕刻线,并且其一端与生物传感器触点端横向雕刻线相交,所述的生物传感器触点端横向雕刻线可以与传感器两侧边相交或不相交。更优地,位于生物传感器两侧边的识别切偏雕刻线的另一端不向样本接触端延伸且不与样本接触端任一雕刻线相交,在此一端向生物传感器的两侧边弯折延伸并相交至传感器侧边有第三雕刻线。由此第三雕刻线、两侧边的识别切偏的雕刻线和触点端横向雕刻线共同组合在一起所形成的识别切偏的雕刻线在传感器中呈现“几”字型,所述的“几”字型雕刻线可以将相邻传感器的识别雕刻线依次相连,从而实现激光雕刻线的不间断蚀刻,进一步地提升激光蚀刻的效率而提升产能。
对以上几个方面进一步展开说明。
本发明提供了一种生物传感器,包括绝缘基板,进样口,供检测样本进入的流体通道,设置 在绝缘基板上的导电层,导电层上分布有雕刻线,以及由雕刻线分割而成的电极位于流体通道区域内的部分或全部电极上设有试剂层,生物传感器相对进样口的另一侧的触点端设有横向雕刻线42,所述横向雕刻线42的至少一端向生物传感器的纵向侧边延伸但不与纵向侧边相交。
进一步的,在所述横向雕刻线42向生物传感器纵向侧边延伸的一端与该侧边之间无雕刻线。
进一步的,所述横向雕刻线42靠近生物传感器纵向侧边的一端连接有竖向雕刻线31a或32a,所述竖向雕刻线与生物传感器纵向侧边平行或呈一定夹角。
进一步的,所述竖向雕刻线31a或32a与同侧的生物传感器纵向侧边之间无雕刻线。
进一步的,所述横向雕刻线42的两端向生物传感器的纵向两侧边延伸,但不与纵向侧边相交。
进一步的,所述横向雕刻线42的两端连接有竖向雕刻线31a或32a,所述竖向雕刻线与生物传感器纵向侧边平行或呈一定夹角。
进一步的,竖向雕刻线31a或32a与生物传感器的侧边相交。更进一步的,当两个或两个以上的生物传感器并排排列在一起时,相邻两个生物传感器相邻的所述与侧边相交的竖向雕刻线可以相互连接在一起。
进一步的,竖向雕刻线31a或32a相对于与横向雕刻线42连接的另一端连接有另一横向雕刻线,所述另一横向雕刻线31b或32b与生物传感器的侧边相交。
进一步的,所述横向雕刻线42、竖向雕刻线31a或32a和另一横向雕刻线31b或32b相互连接呈几字型。更进一步的,当两个或两个以上的生物传感器并排排列在一起时,相邻两个生物传感器相邻的所述另一横向雕刻线彼此之间可以相互连接在一起。
进一步的,生物传感器包括一种雕刻线,所述雕刻线在两个或两个以上的生物传感器并排排列在一起时,相邻两个生物传感器相邻的雕刻线可连接在一起。更进一步的,当两个或两个以上生物传感器并排排列时,相邻两个生物传感器位于触点端的雕刻线可相互连接在一起。
进一步的,当两个生物传感器并排排列时,在触点端形成了相互连接且具有相同形状的雕刻线重复单元。
进一步的,所述横向雕刻线42向生物传感器的纵向侧边延伸的一端可以被观察到。
进一步的,所述横向雕刻线、所述纵向雕刻线和所述另一横向雕刻线可以被观察到。
进一步的,所述位于触点端的横向雕刻线横跨在电极上,或电极向触点端延伸的区域上。
进一步的,所述生物传感器包括工作电极和对电极。
进一步的,所述横向雕刻线或纵向雕刻线设置方式是:当生物传感器上横向雕刻线或纵向雕刻线符合预设要求时,生物传感器的样本接触端的电极是完整的,和/或样本进样槽的中轴线位于生物传感器的中轴线上或偏离幅度在预设范围内。
本发明所述雕刻线并不只能是直线,也可以是弧线、波浪线等曲线。同样的识别切偏的雕刻线并不只能是直线,还可以是弧线等曲线。进一步的所述的横向雕刻线并不是指其需与生物传感器样本端和触点端的两端边平行,所述横向雕刻线可以与端边平行,也可以与端边成一定角度。所述纵向雕刻线也并不是指其需与生物传感器的两侧边平行,所述纵向雕刻线可以与侧边平行,也可以与侧边成一定角度。所述横向雕刻线或纵向雕刻线可以是直线,波浪线等形状。
本发明还提供了一种制备生物传感器的方法,包括以下步骤:按预先设计的电极图形,在具有导电层的绝缘基板上蚀刻出电极,并蚀刻出上述雕刻线,形成具有多个传感器基础单元的电极大卡;将配制好的试剂添加在需要添加试剂的相应电极上;将中隔层贴合在每个传感器基础单元的样本接触端;将上盖设置在中隔层之上,获得半成品大卡;使用切割刀具沿着预设的切割线将半成品大卡进行切割得到成品生物传感器;剔除没有完整呈现所述雕刻线的切割不合格的生物传感器,保留切割合格的生物传感器。
本发明还提供了一种判断制作生物传感器时是否被正确切割的方法,包括在生物传感器相对进样口另一侧的触点端设置识别切偏的雕刻线,所述识别切偏的雕刻线包括横向雕刻线,所述横向雕刻线的至少一端向生物传感器的纵向侧边延伸但不与纵向侧边相交,观察识别切偏的雕刻线是否符合预先设计要求,若不符合,则判断为切割不正确。
进一步的,观察切割后得到的成品生物传感器,若没有完整呈现所述雕刻线的生物传感器,则判断为切割不正确。
本发明还提供了一种生物传感器,包括绝缘基板,进样口,供检测样本进入的流体通道,设置在绝缘基板上的导电层,导电层上分布有雕刻线,以及由雕刻线分割而成的电极,位于流体通道区域内的部分或全部电极上设有试剂层,在生物传感器的两侧分别设有与生物传感器两侧边相邻的纵向雕刻线31a,32a,所述纵向雕刻线的至少一端不与传感器端边相交。
进一步的,所述纵向雕刻线与生物传感器侧边之间无雕刻线。
进一步的,所述两根纵向雕刻线的线宽相同,
进一步的,所述两根纵向雕刻线的一端分别向生物传感器的样本端延伸,并分别与样本端横向的雕刻线相交。
进一步的,所述两根纵向雕刻线的一端分别向生物传感器的触点端延伸,所述延伸端的端点分别与触点端同一个横向的雕刻线两端相交。
进一步的,所述与生物传感器两侧边相邻的纵向雕刻线至少有一段可以被观察到。
进一步的,所述纵向雕刻线不与横向雕刻线连接的另一端上还连接有另一个横向的雕刻线,所述另一个横向雕刻线向生物传感器的侧边延伸并与生物传感器的侧边相交。
进一步的,当两个生物传感器并排排列时,两个生物传感器位于触点端的雕刻线彼此之间可以相互连接在一起。
进一步的,当两个生物传感器并排排列时,在触点端形成了相互连接且具有相同形状的雕刻线重复单元。
进一步的,所述纵向雕刻线设置方式是:当能完整看到生物传感器两侧边相邻的纵向雕刻线时,生物传感器的样本接触端的电极是完整的,和/或样本进样槽的中轴线位于生物传感器的中轴线上或偏离幅度在预设范围内。
本发明的有益效果主要包括了:在生物传感器上设置有识别切偏的雕刻线42、31a、31b、32a、32b、31c、32c等,通过观察识别切偏的雕刻线,可简单便捷地筛选出生物传感器在切割过程中因切割偏差引起的电极损伤而产生的报废品,或样本进样槽不在传感器中轴线附近合理范围内的残次品,方法简单容易操作,既可以保证产品性能,也可提升生产效率和产能。识别切偏雕刻线在生物传感器是连续不间断的雕刻线,例如几字型,这样的设计可以将相邻传感器的识别雕刻线依次相连,从而实现激光雕刻线的不间断蚀刻,进一步地提升激光蚀刻的效率而提升产能。
附图说明
图1是实施例1的生物传感器的分解图。
图2是实施例1的生物传感器导电层上的电极系统及雕刻线的分布示意图。
图3是生物传感器的制作流程。
图4是实施例1的生物传感器导电层经激光雕刻形成的多联排排列的传感器基础单元A示意图。
图5是切割刀沿图4所示切割线50切割后形成的单排排列的传感器基础单元A的示意图。
图6是实施例1中第一种生物传感器并排排列未被切割前的示意图。
图6-1是图6经正确切割后得到的单个独立的生物传感器,及其在L和R处的放大示意图。
图6-2是图6经错误切割后得到的单个独立的不合格生物传感器,及其在L和R处的放大 示意图。
图6-3是实施例1中第二种生物传感器并排排列未被切割前的示意图。
图7为实施例2第一种生物传感器的电极系统和雕刻线分布示意图,其中a、b、c分别代表在不同位置上切割后形成的生物传感器。
图8为实施例2第一种生物传感器设计方案经错误切割后所得到的生物传感器,其中a可判为残次品,b可判为报废品。
图9为实施例2中第二种生物传感器的电极系统和雕刻线分布示意图示意图。
图10为实施例2中第三种生物传感器的电极系统和雕刻线分布示意图示意图。
图11是实施例3中第一种生物传感器设计方案经正确切割后得到的生物传感器,其中a、b、c分别代表在不同位置上切割后形成的生物传感器。
图12是实施例3中第一种生物传感器设计方案经错误切割后得到的生物传感器,其中a可判为残次品,b可判为报废品。
图13是实施例3中另外两种方案的传感器示意图,其中,a中所示生物传感器的雕刻线31a和32a与雕刻线42垂直设置,b中所示生物传感器的雕刻线31a和32a与雕刻线42之间的夹角为钝角。
图14是实施例3进一步优化设计的生物传感器所对应的导电层上的电极系统及雕刻线的分布示意图。
图15是图14所示设计方案经错误切割所得到的生物传感器,其中,a可判为残次品,b可判为报废品。
图16是实施例3中图14所示设计方案未经切割的单联排排列示意图。
图17是实施例3其中一种生物传感器的导电层上的电极系统及雕刻线分布示意图。
图18是图17的生物传感器未被切割的单联排排列示意图。
图19是半成品检测时,质检触点的排布示意图,其中,a为设置了六个质检触点的示意图,b为设置了质检五个触点的示意图。
图20是附图14对应的生物传感器的分解示意图。
图21是具有六个质检触点的生物传感器设计示意图。
图22为实施例3的生物传感器测试值与YSI测试值的线形图。
具体实施方式
实施例1:
如图1所示的生物传感器100,包括绝缘基板1,设置在基板上的导电层2,在导电层上经雕刻线31、32、33、34、41、42、43、44、45、46分割后形成的电极系统,电极系统包括工作电极5、对电极4和参比电极3,电极具有与样品接触的样本接触端101和与分析仪触点接触的触点端102,试剂层6添加在样本接触端的相应电极上,具有开口槽81的中隔层8覆盖在电极的样本接触端,上盖9覆盖在中隔层8上,从而导电层2、开口槽81和上盖9叠加在一起形成供检测流体进入的流体通道,在通道内具有电极和试剂层,流体通道的一侧具有进样口,上盖9上开有通气孔91,通气孔位于开口槽上用于排出待测样本加入后流体通道内的气体,颜色层7上印刷有颜色或标识系统用于识别传感器且与中隔层紧密粘合在一起。生物传感器的两侧边为21和23,生物传感器的样本端和触点端的端边为22和24。
如图2所示,为图1导电层2的正面视图,雕刻线是导电层2去除导电材料后留下的绝缘缝隙,所述雕刻线并不限于以雕刻的方式形成的缝隙。工作电极5由雕刻线32、33、34、42、43、44围合而成,对电极4由雕刻线33、34、42、44、45围合而成,参比电极3由雕刻线31、32、 33、41、42、43围合而成。雕刻线46在生物传感器制备过程中,作为中隔层的套贴参照线,以确保中隔层贴在正确的位置上。
以图3、图4、图5为例说明制作图1所示的生物传感器的一种方法。
步骤1:电极图形的激光蚀刻:按预先设计的电极图形,在具有绝缘基板和导电层的原物料上,用激光在导电层上蚀刻出电极图形或其他的雕刻线,得到了具有多个传感器基础单元A的电极大卡。传感器基础单元A包括了雕刻线和由雕刻线分割而成的电极。
步骤2:添加试剂层:配制检测试剂,将配制好的试剂添加在需要添加试剂的相应电极上。
步骤3:将中隔层8贴合在每个传感器基础单元A上。一般中隔层放置在生物传感器的样本接触端。
步骤4:将上盖9粘贴在每个中隔层8上,并进行辊压。
步骤5:上盖9贴合完成后,在上盖之上进行颜色层7的贴合和辊压,以获得半成品大卡。
步骤6:切割:使用切割刀具沿着预设的切割线将半成品大卡切割得到成品生物传感器。
以图4、图5为例具体说明制作步骤,步骤1中采用激光蚀刻技术对绝缘基板表面的导电层2进行蚀刻,在导电层2上形成多条雕刻线31-34,雕刻线41-46,这些雕刻线内的导电层基本被清除干净并暴露出了绝缘基板。经雕刻线分割,在导电层上形成所需要的电极以及其他具有一定用处的雕刻线。当激光蚀刻完成后,获得电极大卡,所述的电极大卡在绝缘基板上包含有并排排列的多个可用于制作成品生物传感器的传感器基础单元A,每个传感器基础单元A包括绝缘基板、经雕刻线分割后形成的电极系统、雕刻线和/或经蚀刻形成的其他区块,在本例中电极系统包括工作电极5、对电极4和参比电极3。如图4所示,经蚀刻后形成两排尾对尾依次排列的传感器基础单元A(两个传感器基础单元A的触点端上下相对设立),其中N表示0到n个,“共计N个”表示包括N个传感器基础单元A。
电极图形的激光蚀刻的步骤1中,导电层内的雕刻线蚀刻行走路线通过软件进行控制。以图4为例,雕刻线32、43和33的形成方式是激光连续不间断蚀刻得到。雕刻线的路径和方向等具体实现方式,可根据实际产品的需求进行人为设计和软件控制,并不限于上述路径。雕刻线采用合适的激光蚀刻参数,例如雕刻线宽的范围为0.020mm~0.200mm,本实例使用雕刻线宽为0.080mm。
图4只是步骤1后形成的其中一种形式,也可以有其他的排列形式,只要能在后端工艺可有效切割传感器基础单元A。还可以以图4作为一个单元,经蚀刻后形成的电极大卡是多个图4所示单元的排列,例如以图4为重复单元且N为4,重复数为2,则制作完成的半成品可以是四排四列。
绝缘基板的材料为聚氯乙烯、聚对苯二甲酸、聚对苯二甲酸二醇酯、聚乙二醇酯等,本实例优选聚对苯二甲酸二醇酯。
导电层2的材料选自但不限于金、银、铂、钯、碳、石墨、导电玻璃等导电金属或导电非金属、或它们的混合物。导电层覆盖方法可采用印刷、涂布、电镀、溅射等,本实例使用以涂布方式形成的导电碳层(碳膜),所述碳层厚度为1-30um,本例中使用的厚度约为8um,所述导电层的电阻为10Ω/□~100Ω/□,本例中优选为30Ω/□。
生物传感器的部分或全部电极可以配置有试剂层。所述试剂层采用特定的酶在缓冲体系的环境下对所测量的目标物质进行定量或者定性分析,一般包含以下成分:酶、电子媒介体、高聚物、崩解剂、表面活性剂、稳定剂和缓冲体系。根据检测项目的需要,所述的酶选自葡萄糖氧化酶、葡萄糖脱氢酶、乳酸氧化酶、乳酸脱氢酶、尿酸氧化酶、胆固醇氧化酶或D-3-羟丁酸氧化酶等的一种或几种酶;所述电子媒介体选自钌化合物、铁氰化钾,二茂铁等的一种或几种;所述缓冲体系为琥珀酸钠、柠檬酸钠、哌嗪缓冲液、丙磺酸、PBS缓冲液或富马酸钠中的任意一种或多种; 所述崩解剂为交联PVP、羧甲基淀粉钠、交联CCNa中的任意一种或几种;所述表面活性剂为阴离子表面活性剂、阳离子表面活性剂、双性离子表面活性剂或者非离子表面活性剂中的任意一种或几种;所述稳定剂为麦芽糖醇、海藻糖、BSA或蛋白保护剂中的一种或几种。上述组分配制完成后进行充分搅拌,使得组分充分溶解分散,形成均匀的溶液。在本例中,如图1的生物传感器包括试剂层6。
配置反应试剂的步骤2常采用点液、丝网印刷、滴涂、Slot-Die涂布等方法将具备一定化学成分的试剂混合物配置到生物传感器的特定电极上,形成试剂层。本实例优选采用丝网印刷将生化试剂以特定的图案和位置配置在特定电极上,所述特定图案和位置的生化试剂可与样本中的待检测物质发生反应,并产生一定的电信号,电信号经由导电材料传导至检测仪器并反馈至用户。所述丝网印刷所使用的网版,一般为聚酯、尼龙、不锈钢等材质,目数一般为250目~420目,所使用丝网丝径一般为27um~120um,所承受的最大张力一般为22~38N/cm;本实例优选采用305目34um丝径的尼龙网版,可承受最大张力为33N/cm。
上述经丝网印刷得到的固定图案和位置的试剂在进样通道中与样本接触并与样本中待测物质发生反应。进样通道形成于开口槽81和上盖9之间,上盖面向进样通道的表面为亲水层材料。具体来说,所述中隔层的材料通常为PET基底,并涂布有丙烯酸树脂系作为粘合材料。所述中隔层厚度一般为75um~150um,开口槽的宽度一般为0.7mm~1.8mm,本实例优选中隔层厚度为100um,镂空结构宽度优选1.2mm。
上盖9在位于进样通道的尾部处留有通气孔91,通气孔的形状可以是圆形、方形、矩形、线条型等其他形状,本实例优选气孔的形状为矩形。在本例中,所述亲水材料优选为3M产的9901P。亲水材料的通气孔可保证血样流入进样通道时腔体内原有空气顺利排出,保证样本可以顺利流畅流入腔体。
颜色层7一般是可印刷单面胶,表面一般印有商品名称,起到易于识别商品、保护试剂条不受刮擦的损坏。
步骤5是一个可省略的步骤。例如若上盖本身可印刷有商品名称,可同时起到与颜色层相似的功能,则省略步骤5。或者,生物传感器的不需要颜色层,则省略步骤5。
切割步骤6中使用切割刀具沿着预设的切割线,具体来说,切割刀具沿着图4中的横向虚线50和纵向虚线51所示位置切割线,对半成品大卡切割并得到成品生物传感器。合适的切割方法包括但不限于滚刀滚切,模具冲切,斩切等。具体的,在本例中优选使用滚刀沿横向虚线50将如图4所示的半成品大卡滚切成如图5所示的含数个传感器基础单元A的半成品长条片材,然后再用滚刀沿竖向虚线51将半成品长条片材切割成成品生物传感器。为了更直观地说明滚刀的切割位置,以图4和图5作为步骤6切割过程的介绍时,在图4和图5中未显示中隔层、上盖和颜色层。步骤6所述的切割工序是传感器装配中重要的一个步骤之一,其效果直接影响传感器最终成品通过率和传感器的成品效果。标注在图4和图5上的虚线,在实际产品加工时是不存在的,下同。切割后,虚线50和51的位置即为生物传感器的边线,或也可称为边缘、侧边或端边。
下面将使用图6、图6-1和图6-2具体介绍在制备图1和图2生物传感器时,切割装配工序是如何影响传感器的成品效果以及如何实现对切割装配后报废或残次品传感器的识别剔除。
如图1、图2和图6所示,在生物传感器的触点端设有横穿电极3、电极4和电极5的横向雕刻线42,或在所述电极向触点端延伸区域方向上设有横向雕刻线42。雕刻线42是可以被观察到的,或至少雕刻线的两端是可以被观察到的,例如雕刻线42未被上盖9或颜色层7全部覆盖住。雕刻线42与传感器的纵向侧边23、21不相交,即雕刻线42的左右两端点421和422离传感器的纵向侧边23和21有一定的距离。在一个优选的方案中,横向雕刻线42向生物传感器纵向侧边延伸的一端与该侧边之间无雕刻线。
图6为等待切割的相邻两个传感器的位置示意图(在本例中颜色层7以LOGO字符表示公司商标,为了便于说明,图示中暂不体现试剂层6,图6-1和图6-2也是如此),切割刀沿着预设的切割线51将它们分割成两个独立的生物传感器。图6-1是切割刀准确沿着切割线50和51进行切割的,经过切割后得到的符合设计要求且完好的成品生物传感器。横向的雕刻线42作为传感器触点端的识别切偏的雕刻线,传感器侧边缘21、23是经由切割线51裁切后得到,传感器的端边22、24是经由切割线50裁切后得到。从图6-1的L和R处的放大示意图可以看到,在传感器触点端可以观察到识别切偏的雕刻线42,其左右两端点421和422分别位于传感器的两侧,且雕刻线42并不与传感器侧边相交。质检人员根据以上观察的信息,可以认为得到的传感器是完好的成品传感器,此时成品传感器的电极系统在沿切割线51切割时没有发生切割偏差而伤害到电极,切割得到的传感器的测试性能不受影响;同时其外观形貌中的LOGO和样本接触端的样本进样槽均位于成品传感器的中轴线附近,对用户而言,此时成品传感器具有相对美观的外表和视觉上较为舒适的用户体验。
然而在实际切割装配过程中,切割刀具可能会切割在偏离切割线51的预设位置上,实际得到的传感器形貌可能会有所变化,质检人员通过判断识别切偏的雕刻线42与传感器侧边缘21、23的相对位置来判别切割得到的传感器的切割质量好坏。当传感器触点端的一侧可以看到识别切偏雕刻线42的两个端点的时候,如图6-2以及该图L和R处的放大示意图所示,在传感器触点端的左侧看到两段不相连的识别切偏雕刻线42,在右侧,识别切偏雕刻线与传感器侧边缘相交,这表明切割刀具沿着切割线51进行裁切时候的波动超出了预设范围,此时得到的生物传感器的样本接触端的电极可能已被切割到而受损,这可能对测试结果有影响;同时从生物传感器的外观上看,带有LOGO的颜色层和样本接触端的样本进样槽的位置均已超出了传感器的中轴线范围,让传感器不具备较好的外观,从而可能会有较差的用户体验。图6-2仅展示了切割线偏离一侧的情况,若切割线偏离另一侧则会有相似的情况,本实施例不再做描述。
为了便于说明,图6-1和图6-2覆盖在中隔层和颜色层之下的雕刻线均以虚线表示,而裸露在外可以被质检人员观察到的雕刻线使用实线表示。
从图6-1和图6-2的切割情况比较分析可知,通过在传感器触点端添加不与传感器侧边相交的识别切偏的雕刻线,可以帮助质检人员对切割装配后的生物传感器进行质检筛选,保证了产品质量。在图6、图6-1和图6-2的实施例中,当经过切割后的传感器在其触点端两侧均可以看到完整的识别切偏雕刻线的端点的时候,可以认为得到的传感器为完好成品;而当只有一侧可以看到识别切偏雕刻线的端点的时候,此时的传感器则为报废品或残次品,应被质检人员及时剔除而不可流入下一道生产工艺。通过这种方法,可以简单而高效的筛选出切割后的报废品残次品,有效地保证了产品出货的稳定性和有效性。
图6-3所示为本实施例的另一种设计方式。在生物传感器的触点端分段设置了横向的雕刻线42a和42b。雕刻线42a和42b作为本设计的识别切偏的雕刻线,雕刻线42a位于电极3上或电极3向触点端延伸的区域,雕刻线42b设在电极5或电极5向触点端延伸的区域。所述雕刻线42a和42b是可以被观察到的,或至少雕刻线的两端是可以被观察到的,例如雕刻线42a和42b未被上盖9或颜色层7全部覆盖住。雕刻线42a的左端不与传感器的纵向侧边23相交,雕刻线42b的右端不与传感器的纵向侧边21相交。雕刻线42a和雕刻线42b之间不相连,其两端均不与传感器侧边相交,质检员通过观察雕刻线42a和42b与传感器侧边的相交情况,以及传感器某一侧具有的雕刻线端点数目来判断传感器是否符合质量要求。
实施例2
以图7为例阐述本发明所述的第二方面的生物传感器100。生物传感器100的电极系统是绝缘基板上覆盖的导电层经由激光蚀刻后去除导电层的绝缘雕刻线围合而成,传感器还包括与样本 接触的样品接触端和与分析仪接触的触点端,其中具体的,在样本接触端,由具有开口槽的中隔层和覆盖在中隔层上且具有气孔的上盖组成供样品进入的流体通道,在流体通道内的部分或全部电极上覆盖有试剂层。
生物传感器100的制备工艺与实施例1中所述基本一致。如图7所示被覆盖在颜色层和中隔层之下的雕刻线以虚线表示,裸露在外可以被看到的雕刻线以实线表示,在传感器两侧靠近传感器侧边23和21处设置有纵向的识别切偏的纵向雕刻线31a和32a,雕刻线31a和32a不与传感器样本接触端和触点端的任一雕刻线相交,且雕刻线31a和32a全部或部分没有被覆盖,是可以被观察到的。
如图7中a所示,是严格按切割标准进行切割后得到的传感器,传感器的两侧可以看到完整的切割线31a和32a,此时切割并没有导致任何电极受损,样本进样口和颜色层上的LOGO也位于传感器的中轴线附近,此时的传感器具有较好的性能和用户最为接受的舒适的外观。切割过程存在适当的合理偏差,例如切割刀具稍微向左和或稍微向右两种偏移切割的情况,具体如图7中b和图7中c所示,在图7中b和图7中c状态下也依然满足对传感器合格品的判定标准,虽然图7中b向左偏移和图7中c向右偏移,但在传感器触点端两侧仍然可以看到完整的识别切偏的雕刻线31a和32a,这样的偏移被认为是在产品设计的预期范围内的偏移,是被允许的。
当切割后,生物传感器出现图8中a和图8中b所示的情形时,即只在传感器的某一侧同时看到两根识别切偏的雕刻线31a,32a或只在一侧看到破碎的、不完整的识别切割的雕刻线,则表明切割刀具裁切的位置已经超出了预期范围,可认定该传感器为报废品或残次品。
以下具体说明报废和残次的生物传感器是如何通过识别切偏雕刻线31a和32a进行识别的。如图8所示,为半成品大卡经切割工序后得到的两种不同情形的传感器正面示意图,其中覆盖在颜色层和中隔层之下的不能被看到雕刻线以虚线表示,裸露在外可以被看到的雕刻线以实线表示。如图8中a所示,切割过程中发生超预设的少许偏差,使得经切割后得到的传感器边线21恰好穿过了雕刻线32a,传感器紧挨两侧边处均能看到雕刻线32a,但都是不完整的、残缺的。此时,虽然切割刀具只是切在了形成电极的雕刻线上,电极本身并未受到损害,但是传感器的颜色层LOGO和样本进样端进样槽的位置已经超出预设的传感器中轴线范围之外,此时的传感器虽不会影响性能,但外观不可接受,可以认为是残次品。如图8中b所示,切割过程中发生较大偏差,识别切偏的雕刻线31a和32a位于传感器的同一侧,而在另一侧没有出现,这导致传感器颜色层LOGO和样本接触端进样槽已经完全偏离传感器预设中轴线范围,同时样本接触端电极也受到了破坏,此时的传感器可认为是报废传感器。
通过在传感器两侧与侧边相邻的位置上设置有识别切偏的雕刻线,可以帮助质检人员快速地筛选出经切割后所得到的报废品和残次品,当切割后所得到的传感器中在传感器两侧都可以看到完整的识别雕刻线,则认为是完好的成品;否则认为是报废品或残次品。如此的设计相比较于实施例1的对触点端设置横向的识别切偏雕刻线42的判断,具有更好的可辨识度,同时提升了准确度,保证了产品生产效率的同时也保证了产品的稳定性。
位于传感器两侧并与传感器侧边相邻的识别切偏雕刻线的一端还可以向传感器样本接触端延伸,并与样本接触端的雕刻线相交。如图9所示,识别切偏的雕刻线31a和32a分别向样本接触端延伸,并且分别与样本接触端的雕刻线41相交。其实现传感器识别切偏的方式与图7示例基本一致。图9所示的雕刻线设计方案可以将31a和32a经由雕刻线41进行相连,实现连续切割,从而避免切割识别雕刻线31a和32a时激光器空置的跳跃时间,提升激光蚀刻的效率。
位于传感器两侧并与传感器侧边相邻的识别切偏雕刻线的一端还可以向传感器样本接触端延伸,并和样本接触端的雕刻线相交,同时另一端还可以向传感器的两侧边延伸出第二雕刻线,并与传感器边线相交,图10所示,识别切偏的雕刻线31a和32a的一端向样本接触端延伸并分 别与雕刻线41相交,而雕刻线31a和32a的另一端向传感器两侧边弯折延伸出第二雕刻线31b和32b且分别与传感器边线相交,所述的识别切偏的雕刻线31a、32a及与之相交的雕刻线31b、32b和41共同组成了一个形状为“几”字型的雕刻线,从图10的方向观察为倒置的“几”字型。图10所示识别切偏的雕刻线来判断传感器是否切偏的方式与图7基本一致。如图10所示的电极结构相比较于图9的优势在于传感器制作工艺的电极蚀刻过程中,连续相邻传感器之间的所述的“几”字型雕刻线可以连续切割,从而可以降低电极大卡蚀刻所需的时间,从而提高生产效率和产能。
实施例3
本实施例所述的生物传感器,是在实施例2的基础上,综合考虑半成品大卡上已贴合的中隔层和颜色层对识别切偏的雕刻线的影响,以及所述识别切偏雕刻线长度对激光蚀刻效率的影响,而所做的进一步优化。实施例2中提及的生物传感器的识别切偏的雕刻线有一部分是覆盖在中隔层(又称为双面胶)和颜色层之下的,经过切割装配后的传感器的识别切偏雕刻线所露出来的可以被质检人员看到的部分容易受到双面胶颜色层套贴位置上下偏差的影响而被覆盖,从而增加了质检人员判断的困难,增加误判风险。基于上述情况,本实施例的生物传感器在传感器的两侧设置有识别切偏的雕刻线,并且其一端与生物传感器触点端横向雕刻线相交,所述的生物传感器触点端横向雕刻线可以与传感器两侧边相交或不相交。
如图11所示本发明第三方面的生物传感器100。生物传感器100的电极系统是绝缘基板上覆盖的导电层经由激光雕刻后去除导电层的绝缘雕刻线围合而成,传感器还包括与样本接触的样品接触端和与分析仪接触的触点端,在样本接触端,由具有开口槽的中隔层和覆盖在中隔层上且具有气孔的上盖组成供样品进入的流体通道,在流体通道内的部分或全部电极上覆盖有试剂层。
生物传感器100的制备工艺与实施例1中所述基本一致。如图11所示,经切割装配后得到的传感器正面示意图,其中被中隔层和颜色层所覆盖的雕刻线使用虚线表示。在生物传感器的触点端设计有相邻于传感器端边缘24的横向雕刻线42和位于传感器两侧并与传感器侧边相邻的识别切偏的竖向雕刻线31a和32a。雕刻线42不与传感器侧边相交,竖向雕刻线31a和32a也不与传感器侧边相交。雕刻线42左右两端分别与雕刻线31a和32a的一端相连,雕刻线31a和32a的另一端向传感器样本接触端延伸但不与样本接触端的端边或其附近的横向雕刻线连接。识别切偏的雕刻线31a,32a的长度可以根据实际需求进行设计。至少雕刻线42与雕刻线31a和32a相交处的雕刻线是不被覆盖且可以被观察到的。所述横向雕刻线42靠近生物传感器纵向侧边的一端连接有竖向雕刻线31a或32a,在图11所述方案中,所述竖向雕刻线31a和32a与生物传感器纵向侧边平行,在图13的b设计方案中,竖向雕刻线31a和32a与生物传感器纵向侧边呈一定夹角。横向雕刻线42向生物传感器纵向侧边延伸的一端与该侧边之间无雕刻线。
如图11中a所示是按切割标准进行切割后得到的传感器,可以看到完整的雕刻线31a、32a和42,且雕刻线42的两端不与传感器侧边相交。此时切割并没有导致电极受损,样本进样通道和颜色层上的LOGO也位于传感器的中轴线附近,此时的传感器具有较好的测试性能和用户最为接受和舒适的外观。当切割过程存在适当合理的偏差的时候,存在着切割刀具向左或向右偏移切割,具体如图11中b和图11中c所示。在图11中b和图11中c状态下也依然满足对传感器合格品的判定标准,虽然图11中b的切割向左偏移和图11中的切割c向右偏移,但在传感器触点端两侧仍然可以看到完整的识别切偏的雕刻线31a和32a,这样的偏移被认为是在产品设计的预期范围内的偏移,是被允许的。
如图12中a和图12中b所示的情形时,即只在传感器的某一侧同时看到两根识别切偏的雕刻线31a,32a或只在一侧看到破碎的不完整的识别切割的雕刻线31a,32a,则表明切割刀具裁切的位置已经超出了预期范围,可认定该传感器为报废品或残次品。
以下具体说明报废和残次的生物传感器是如何通过识别切偏雕刻线31a和32a进行识别的。如图12所示,为半成品大卡经切割工序后得到的两种不同情形的传感器正面示意图,其中覆盖在颜色层和中隔层之下的不能被看到雕刻线以虚线表示,裸露在外可以被看到的雕刻线以实线表示。如图12中a所示,为切割过程中发生超预设的少许偏差,使得经切割后得到的传感器边线21恰好穿过了雕刻线32a,在传感器的两侧边均能看到雕刻线32a,但都是不完整的、残缺的。此时,虽然切割刀具只是切在了形成电极的雕刻线上,电极本身并未受到损害,,但是传感器的颜色层LOGO和样本进样端进样槽的位置已经超出传感器预设中轴线的范围之外,此时的传感器虽不会影响性能,但外观不可接受,可以认为是残次品。如图12中b所示,切割过程中发生较大偏差,识别切偏的雕刻线仅在传感器的一侧完整呈现,而在另一侧没有出现,这传感器颜色层LOGO和样本接触端进样槽已经完全偏离传感器理论中轴线范围,同时样本接触端电极也受到了破坏,此时的传感器可认为是报废传感器。
如图11所示方案相比较于图9和图10的方案,激光雕刻行进的路线总长度明显缩短,可减少激光雕刻过程中消耗的时间,从而提高效率和产能,且不会受到中隔层和颜色层套贴位置偏差的影响,不会发生识别雕刻线被颜色层覆盖而不被观察到的情况。识别切偏的雕刻线31a,32a与传感器侧边21、23的相对位置相比较于实施例1中识别切偏的雕刻线42的端点与传感器侧边21、23的相对位置更加直观,更容易识别和判读,质检人员可以更加简单快速地识别,降低仅依靠判读识别切偏的雕刻线42的端点位置可能造成的判读失误,提高生产过程的效率和准确性。
上述实施方案中位于生物传感器两侧边的识别切偏的雕刻线的长度可根据实际需求进行缩短或延长。如图13中a所示,位于触点端的雕刻线42还可以向传感器两侧边延伸并与之相交。延伸至并与传感器侧边相交的雕刻线42可以在大卡的激光蚀刻中从第一个传感器的一侧一直连续不间断蚀刻至第N个传感器的雕刻线42的另一侧,从而减少了激光蚀刻路径的跳转和激光器空置的跳跃时间。
如图13中b所示,识别切偏雕刻线31a和32a与雕刻线42之间的夹角为钝角,质检人员对经由切割装配生产后的传感器进行示意雕刻线31a、32a的判定,当传感器的两侧可以看到完整的示意雕刻线31a,32a,也即可以看到完整的识别切偏的雕刻线31a和32a分别与雕刻线42形成的钝角,雕刻线42、31a和32a均不与传感器侧边相交,则可以认定为合格品传感器。
图14方案是在本实施例图11方案的基础上的改进设计。如图14所示的生物传感器100的制备工艺与实施例1、实施例2中所述保持一致。其雕刻线的设计与图11基本相同,不同之处是侧边的识别切偏的雕刻线31a、32a分别向传感器的两侧边弯折延伸出雕刻线31b和32b并相交于传感器侧边,所述雕刻线31b和32b可以与端边平行或具有一定的夹角。雕刻线31a、31b、32a、32b和雕刻线42所组成的连续雕刻线整体呈倒置的“几”字型。
如图14所示,当传感器的左右两侧看到完整的识别切偏的雕刻线31a,32a,即可认为切割并没有导致任何电极被伤害,样本进样通道和颜色层上的LOGO也位于传感器预设中轴线范围内,此时的传感器具有较好的性能和用户最为接受和舒适的外观。
如图15中a所示,当切割过程中发生超预设的少许偏差,使得经切割后得到的传感器边线21恰好穿过了雕刻线32a,在传感器的两侧边均能看到雕刻线32a,但都仅是不完整的残缺的,且在传感器一侧可以看到原本应分布在传感器两侧的雕刻线31b和32b已经连成一条雕刻线,此时虽然切割刀具只是切在形成电极的雕刻线上,电极本身并没有受到损伤,即传感器样本接触端的电极部分也仅仅只是被切割到了雕刻线而未伤害到电极,但是传感器的颜色层LOGO和样本进样端进样通道的位置已经超出传感器理论中轴线的范围之外,此时的传感器虽不会影响性能,但外观不可接受,可以认为是残次品。如图15中b所示,为切割过程中发生较大偏差时候所得到的传感器,识别切偏的雕刻线仅在传感器的一侧完整呈现,而在另一侧没有出现,且在传感器 一侧可以看到原本应分布在传感器两侧的雕刻线31b和32b已经连成一条雕刻线,此时的传感器颜色层LOGO和样本接触端进样槽已经完全偏离传感器预设中轴线范围,同时样本接触端电极也受到了破坏,此时的传感器可认为是报废传感器。
如图16所示,为本实施例方案的导电层经激光雕刻后排列有N个传感器单元A的半产品大卡,传感器单元A上呈几字型的雕刻线,所述几字型雕刻线由雕刻线31b、31a、42、32a和32b组成,雕刻线31b和32b在相邻两个传感器基础单元A之间相连,使得N个传感器基础单元A的触点端用于识别切偏的几字型雕刻线都可以首尾相连形成一条连续的雕刻线。如图16所示,在利用激光蚀刻技术对导电层进行切割产生雕刻线31b、31a、42、32a和32b时,其激光雕刻的方式可以不用对N个单元传感器基础单元A的进行依序雕刻,而是以a点为起始点,经由b,c,d,e,将导电层上位于同一排的N个传感器基础单元A上的识别切偏雕刻线31b、31a、42、32a和32b进行连续切割,最终以f点为终点。即一次连续的切割,就可在N个传感器基础单元A上形成识别切偏的雕刻线。图16的设计可以有效地减少甚至是避免激光路径的跳跃和激光的空置,从而提高生产效率和提升产能。
如图11所示,由于图11所示方案的识别切偏的雕刻线31a和32a均不与传感器侧边相交,激光在相邻传感器单元A之间的路径会不可避免地存在跳跃和空置。例如,当雕刻完第一个传感器基础单元A的雕刻线31a、42和32a之后,激光会发生跳跃并且会空置待机,待激光来到第二个传感器基础单元A的位置后才继续开始蚀刻雕刻线31a、42和32a。
本发明仅以触点端识别切偏的雕刻线的首尾相连为例介绍了这种方法对提升雕刻效率和产能的帮助,但该种方案同样适用于其他所有的雕刻线,研发人员只需通过合理的雕刻线片排布和激光路径的设计来实现激光路径的首尾相连,同样可以提高激光雕刻的效率和产能。
如图17所示的传感器,覆盖在中隔层和颜色层之下的雕刻线用虚线表示,在传感器的触点端设计有雕刻线42,且在传感器两侧边设计有识别切偏的雕刻线31c,32c。识别切偏的雕刻线31c,32c的一端与雕刻线42相交,另一端相交于传感器的侧边缘23、21。雕刻线31c、32c与雕刻线42之间呈钝角,当传感器的两侧可以看到完整的识别切偏的雕刻线31c和32c,以及它们分别与雕刻线42形成的钝角,可以认定为合格品传感器。同时此种设计也可保证传感器导电层上N个传感器单元A的雕刻可以实现雕刻线的首尾相连,具体如图18所示,图中省略中隔层和颜色层,导电层上N个传感器单元A中的31c,32c和雕刻线42的蚀刻可以从第一个传感器基础单元A的a’为起点,经由数个传感器基础单元A的b’,c’,d’,e’最终终结于第N个传感器基础单元A的f’从而实现雕刻线的首尾相连,同样也可提高激光雕刻的效率和产能。
本发明所示方案相比较于现有技术还对具体的生产工艺过程有所优势。为确保生产出的产品性能,在生物传感器的生产过程的每一步可能都需要质检。更具体地来说,对于激光蚀刻形成电极的生物传感器而言,被同一根雕刻线分开的两侧电极或导电区域必须是彼此不导通或彼此绝缘的,因此需要通过使用电学的方式进行确认核实。如图19为未切割的半成品,包含并排排列的生物传感器。半成品上绝缘质检位点可以设置在如图19中a所示的71-76六个位点,质检位点71、72、73分别位于传感器A的电极3、4和5上,质检位点74、75、76分别位于传感器B的电极3、4、5上。也可以设置在图19中b所示的71-75五个位点,质检位点71、72分别位于传感器C的电极3和4上,质检位点74、75、分别位于传感器D的电极4和5上,质检位点73设置在传感器C的电极5与传感器D电极3连接区域,这样传感器C的电极5和传感器D电极3可共用一个质检位点73。在未用切割刀具切割前,传感器A和传感器B相连,传感器C和传感器D相连。在半成品检验中,检测位点可以根据需要选择采用图19中a的方式或采用图19中b的方式,图19中b的质检位点数少于图19中a的质检位点数。
图21所示的设计方案中,质检位点71、72、73分别位于传感器A的电极3、4和5上,质 检位点74、75、76分别位于传感器B的电极3、4、5上,在未用切割刀具切割前,传感器A和传感器B相连。传感器A的电极5和与之相邻的传感器B的电极3无法共用一个质检位点。因此相比于图19的雕刻线设计,图21需要更多的质检位点来进行电极通断情况的质检。
当对图16和19所示的半成品大卡完成切割后,形成独立的生物传感器,当将两个或两个以上生物传感器并排排列时,两个生物传感器位于触点端的雕刻线42、31a、31b、32a、32b彼此之间可以相互连接在一起。例如两个生物传感器并排排列时,位于左边的生物传感器的雕刻线32b可以与位于右边的生物传感器的雕刻线31b对接上,从而两个生物传感器并排排列时,相邻两个生物传感器的雕刻线42、31a、31b、32a、32b等就可以相互连接在一起。同样的,如图17和18所示的生物传感器,将两个或两个以上生物传感器并排排列时,位于触点端的识别切偏的雕刻线42、31c、32c可以通过位于左边的生物传感器的雕刻线32c与位于右边的生物传感器的雕刻线31c对接上,从而将这些雕刻线连接在一起。当两个或两个以上的生物传感器并排排列在一起时,位于触点端形成了可以相互连接在一起的雕刻线。在图16和图18所示示例中,这些相互连接在一起的雕刻线形成了形状相同的重复单元。
本发明所述识别切偏的雕刻线(例如42,31a,31b,32a或32b)在导电层上的位置可以采用以下原则设置。当经切割刀具切割后得到的生物传感器的样本接触端的电极不会被切割到而受损,更优选的方式是还包括经切割后得到的生物传感器,从外观上看,带有LOGO的颜色层和样本接触端的样本进样槽的中轴线均位于生物传感器的中轴线上或偏离不是很多,使传感器具备较好的外观。具体的,例如但不限于以下方式。
设置方式1:识别切偏横向雕刻线42两个端点与传感器侧边21和23的距离相同。
设置方式2:识别切偏的雕刻线42的端点与传感器侧边的距离为L1,与该端点同侧的用于形成电极且离传感器侧边最近的雕刻线与传感器侧边的距离为L2,则L1小于等于L2。
设置方式3:形成电极的雕刻线包括横向雕刻线和纵向雕刻线,靠近导电层边缘的雕刻线为外侧雕刻线,远离同一导电层边线的雕刻线为内侧雕刻线。识别切偏的雕刻线端点与导电层边线的距离为L1,距离导电层同一边缘最近的电极的纵向外侧雕刻线与该导电层边缘的最近距离为L3,则L1小于等于L3。
实施例4血糖检测数据
下面以本发明实施例3方案附图14对应的生物传感器对本发明做进一步说明。
如图22所示,为实施例3附图14对应的生物传感器的分解斜视图。本实施例的葡萄糖生物传感器包括:绝缘基板1,导电碳层2,试剂层6,中隔层8和上盖9。具体的本实施例的葡萄糖生物传感器包括位于绝缘基板1上以涂布工艺制备而成的厚度均一的导电层2,其上使用激光蚀刻技术依据合理的编程设计蚀刻有31a、31b、32a、32b、33、34、41、42、43、44、45、46等激光雕刻线,激光雕刻线将导电层烧蚀去除露出绝缘基板,从而在导电层2上形成了相互不连接的电极3、4、5;试剂层6位于电极3、4、5上且位于中隔层8的进样槽81内。在中隔层8上覆盖有上盖9,且其上的气孔91位于中隔层进样槽81的底部。中隔层进样槽81和其上的亲水上盖9及气孔91形成了血液进样的通道,颜色层7上印刷有LOGO或者颜色等用来区分传感器。
将葡萄糖传感器插入测试仪器后,启动测试仪器,血液样本通过虹吸作用被吸入进样通道,原本进样通道内的空气经由进样通道末端的上盖气孔91被排除,有效保证了血液流入通道的流畅性。当血液进满通道后,在电极上施加200~500mv直流电压使得试剂层6与血液中待测葡萄糖进行氧化还原反应,并产生测试电流,测试仪器根据检测到的电流值以及温度传感器测出的环境温度进行合适的校正补偿,并换算成血糖值显示给用户。
试剂层6的材料主要包括葡萄糖脱氢酶FAD-GDH、铁氰化钾及第二电子酶介体;葡萄糖脱氢酶的酶活性在200~600U/mg。
使用上述葡萄糖传感器对11份不同葡萄糖浓度的血液样本在室温下进行测试。所述的不同浓度血液样本的红细胞压积在测试之前被调整到42%±2%,其具体浓度由美国YSI公司生产的型号为YSI 2300 STAT的葡萄糖乳酸分析仪测试得到,每个浓度的血液样本重复测试10次,测试结果见表1。
表1:葡萄糖传感器测试结果
取每个葡萄糖浓度下血液10次重复测试的平均值,与YSI 2300测试结果比对可知,在极低的葡萄糖浓度范围(小于20mg/dl)和极高的葡萄糖浓度范围(大于600mg/dl)下,仪器测试结果分别显示LO和HI,除此极端浓度外,葡萄糖传感器的测试偏差很小,准确度较高,切同一血液样本的测试值变异系数均在3%以内,精度完全符合需求。
图22为实施例的葡萄糖传感器测试值与YSI测试值的线形图,其拟合方程为y=0.9945x+0.3736;R2=0.9976。可知该葡萄糖传感器线形良好。

Claims (19)

  1. 一种生物传感器,包括绝缘基板,进样口,供检测样本进入的流体通道,设置在绝缘基板上的导电层,导电层上分布有雕刻线,以及由雕刻线分割而成的电极,位于流体通道区域内的部分或全部电极上设有试剂层,其特征在于,生物传感器相对进样口的另一侧的触点端设有横向雕刻线(42),所述横向雕刻线(42)的至少一端向生物传感器的纵向侧边延伸但不与纵向侧边相交。
  2. 根据权利要求1所述的生物传感器,其特征在于,在所述横向雕刻线(42)向生物传感器纵向侧边延伸的一端与该侧边之间无雕刻线。
  3. 根据权利要求1所述的生物传感器,其特征在于,所述横向雕刻线(42)靠近生物传感器纵向侧边的一端连接有竖向雕刻线(31a或32a),所述竖向雕刻线与生物传感器纵向侧边平行或呈一定夹角。
  4. 根据权利要求3所述的生物传感器,其特征在于,所述竖向雕刻线(31a或32a)与同侧的生物传感器纵向侧边之间无雕刻线。
  5. 根据权利要求1所述的生物传感器,其特征在于,所述横向雕刻线(42)的两端向生物传感器的纵向两侧边延伸,但不与纵向侧边相交。
  6. 根据权利要求5所述的生物传感器,其特征在于,所述横向雕刻线(42)的两端连接有竖向雕刻线(31a或32a),所述竖向雕刻线与生物传感器纵向侧边平行或呈一定夹角。
  7. 根据权利要求6所述的生物传感器,其特征在于,竖向雕刻线(31a或32a)与生物传感器的侧边相交。
  8. 根据权利要求6所述的生物传感器,其特征在于,竖向雕刻线(31a或32a)相对于与横向雕刻线(42)连接的另一端还连接有另一横向雕刻线(31b或32b),所述另一横向雕刻线(31b或32b)与生物传感器的侧边相交。
  9. 根据权利要求8所述的生物传感器,其特征在于,所述横向雕刻线(42)、竖向雕刻线(31a或32a)和另一横向雕刻线(31b或32b)连接呈几字型。
  10. 根据权利要求6或9所述的生物传感器,其特征在于,当两个或两个以上的生物传感器并排排列在一起时,相邻两个生物传感器的相邻雕刻线彼此之间可以相互连接在一起。
  11. 根据权利要求10所述的生物传感器,其特征在于,当两个或两个以上的生物传感器并排排列在一起时,相邻两个生物传感器的相邻的所述竖向雕刻线彼此之间可相互连接在一起,或相邻两个生物传感器的相邻的所述另一横向雕刻线彼此之间可以相互连接在一起。
  12. 根据权利要求1所述的生物传感器,其特征在于,所述横向雕刻线(42)向生物传感器的纵向侧边延伸的一端可以被观察到。
  13. 根据权利要求8所述的生物传感器,其特征在于,所述横向雕刻线、所述纵向雕刻线和所述另一横向雕刻线可以被观察到。
  14. 根据权利要求1所述的生物传感器,其特征在于,所述位于触点端的横向雕刻线横跨在电极上,或电极向触点端延伸的区域上。
  15. 根据权利要求1所述的生物传感器,其特征在于,所述生物传感器包括工作电极和对电极。
  16. 根据权利要求1至15之一所述的生物传感器,其特征在于,所述横向雕刻线或纵向雕刻线设置方式是:当生物传感器上横向雕刻线或纵向雕刻线符合预设要求时,生物传感器的样本接触端的电极是完整的,和/或样本进样槽的中轴线位于生物传感器的中轴线上或偏离幅度在预设范围内。
  17. 一种判断制作生物传感器时是否被正确切割的方法,包括在生物传感器相对进样口另一侧的触点端设置识别切偏的雕刻线,所述识别切偏的雕刻线包括横向雕刻线,所述横向雕刻线的至少一端向生物传感器的纵向侧边延伸但不与纵向侧边相交,观察识别切偏的雕刻线是否符合预先设计要求,若不符合,则判断为切割不正确。
  18. 根据权利要求17所述的生物传感器,其特征在于,所述生物传感器的雕刻线按权利要求1至15任意一项所述,观察切割后得到的成品生物传感器,若没有完整呈现权利要求1至15中任意一项所述雕刻线的生物传感器,则判断为切割不正确。
  19. 一种制备生物传感器的方法,包括以下步骤:按预先设计的电极图形,在具有导电层的绝缘基板上蚀刻出雕刻线,由雕刻线分割而成的电极,并蚀刻出权利要求1至15中任意一项所述的雕刻线,形成具有多个传感器基础单元的电极大卡;将配制好的试剂添加在需要添加试剂的相应电极上;将中隔层贴合在每个传感器基础单元的样本接触端;将上盖设置在中隔层之上,获得半成品大卡;使用切割刀具沿着预设的切割线将半成品大卡进行切割得到成品生物传感器;剔除没有完整呈现权利要求1至15中任意一项所述雕刻线的切割不合格的生物传感器,保留切割合格的生物传感器。
PCT/CN2023/094908 2022-05-18 2023-05-17 一种生物传感器及其制作方法 WO2023222059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210547593.8 2022-05-18
CN202210547593 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023222059A1 true WO2023222059A1 (zh) 2023-11-23

Family

ID=88778077

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2023/094858 WO2023222052A1 (zh) 2022-05-18 2023-05-17 生物传感器及其制备方法
PCT/CN2023/094908 WO2023222059A1 (zh) 2022-05-18 2023-05-17 一种生物传感器及其制作方法
PCT/CN2023/095023 WO2023222078A1 (zh) 2022-05-18 2023-05-18 生物传感器及制备生物传感器的方法
PCT/CN2023/095159 WO2023222100A1 (zh) 2022-05-18 2023-05-18 生物传感器及其制备的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094858 WO2023222052A1 (zh) 2022-05-18 2023-05-17 生物传感器及其制备方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/095023 WO2023222078A1 (zh) 2022-05-18 2023-05-18 生物传感器及制备生物传感器的方法
PCT/CN2023/095159 WO2023222100A1 (zh) 2022-05-18 2023-05-18 生物传感器及其制备的方法

Country Status (2)

Country Link
CN (2) CN117092183A (zh)
WO (4) WO2023222052A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632554A (zh) * 1999-11-15 2005-06-29 松下电器产业株式会社 生物传感器、薄膜电极形成方法、定量装置及定量方法
WO2013073073A1 (ja) * 2011-11-18 2013-05-23 株式会社村田製作所 バイオセンサおよびバイオセンサの製造方法
CN207965418U (zh) * 2018-03-29 2018-10-12 信利半导体有限公司 一种玻璃基板及液晶面板
CN110459402A (zh) * 2019-08-28 2019-11-15 广东风华高新科技股份有限公司 一种多层陶瓷电容器
CN110504103A (zh) * 2019-08-28 2019-11-26 广东风华高新科技股份有限公司 一种多层陶瓷电容器
CN218674842U (zh) * 2022-05-18 2023-03-21 杭州临安艾康生物技术有限公司 生物传感器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2868365B2 (ja) * 1992-05-28 1999-03-10 アルプス電気株式会社 サーマルヘッドにおけるパターンずれ検出構造
JP3239806B2 (ja) * 1997-06-26 2001-12-17 株式会社村田製作所 電子部品の製造方法
EP2230508A1 (en) * 2001-04-16 2010-09-22 Panasonic Corporation Biosensor
JP2004226278A (ja) * 2003-01-24 2004-08-12 Matsushita Electric Ind Co Ltd バイオセンサ
JP4879979B2 (ja) * 2005-06-14 2012-02-22 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 同一平面電気化学センサー上の短絡回路不良の影響を制御する方法およびシステム
CN103092447B (zh) * 2013-01-22 2015-12-23 苏州汉纳材料科技有限公司 图形化电路结构、其制备方法及应用
CN206431088U (zh) * 2016-12-01 2017-08-22 杭州微策生物技术有限公司 一种生物传感器
WO2019049567A1 (ja) * 2017-09-06 2019-03-14 日本碍子株式会社 微粒子検出素子及び微粒子検出器
CN110504104A (zh) * 2019-08-28 2019-11-26 广东风华高新科技股份有限公司 一种多层陶瓷电容器
CN211927776U (zh) * 2020-01-19 2020-11-13 杭州微策生物技术有限公司 一种带有积分电极的电化学测试条
EP3885761A1 (en) * 2020-03-27 2021-09-29 ARKRAY, Inc. Biosensor and measurement method using the same
CN114264713A (zh) * 2020-11-11 2022-04-01 利多(香港)有限公司 生物传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632554A (zh) * 1999-11-15 2005-06-29 松下电器产业株式会社 生物传感器、薄膜电极形成方法、定量装置及定量方法
WO2013073073A1 (ja) * 2011-11-18 2013-05-23 株式会社村田製作所 バイオセンサおよびバイオセンサの製造方法
CN207965418U (zh) * 2018-03-29 2018-10-12 信利半导体有限公司 一种玻璃基板及液晶面板
CN110459402A (zh) * 2019-08-28 2019-11-15 广东风华高新科技股份有限公司 一种多层陶瓷电容器
CN110504103A (zh) * 2019-08-28 2019-11-26 广东风华高新科技股份有限公司 一种多层陶瓷电容器
CN218674842U (zh) * 2022-05-18 2023-03-21 杭州临安艾康生物技术有限公司 生物传感器

Also Published As

Publication number Publication date
CN220438232U (zh) 2024-02-02
WO2023222052A1 (zh) 2023-11-23
CN117092183A (zh) 2023-11-21
WO2023222100A1 (zh) 2023-11-23
WO2023222078A1 (zh) 2023-11-23

Similar Documents

Publication Publication Date Title
US10203298B2 (en) Electrochemical cell and method of making an electrochemical cell
EP1145000B1 (en) Small volume in vitro analyte sensor
EP2889611B1 (en) Biosensor and measurement apparatus.
US7073246B2 (en) Method of making a biosensor
EP1506310B1 (en) Biosensor
US8529741B2 (en) System and methods for determining an analyte concentration incorporating a hematocrit correction
EP2182355B1 (en) Analytical test Strip with Minimal Fill-Error Sample Viewing Window
US8083884B2 (en) Method of forming a multilayer test sensor
CN218674842U (zh) 生物传感器
WO2023222059A1 (zh) 一种生物传感器及其制作方法
JP2020024221A (ja) 保護層を用いた製造中における電極機能の維持
US20100227080A1 (en) Method of Defining Electrodes Using Laser-Ablation and Dielectric Material
JP2009019935A (ja) 分析用具の製造方法
AU2013204851B2 (en) Electrochemical cell and method of making an electrochemical cell
AU2015200854A1 (en) Electrochemical cell and method of making an electrochemical cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807010

Country of ref document: EP

Kind code of ref document: A1