WO2023221872A1 - 一种传输线、传输线缆、传输线的制备方法和电子设备 - Google Patents

一种传输线、传输线缆、传输线的制备方法和电子设备 Download PDF

Info

Publication number
WO2023221872A1
WO2023221872A1 PCT/CN2023/093625 CN2023093625W WO2023221872A1 WO 2023221872 A1 WO2023221872 A1 WO 2023221872A1 CN 2023093625 W CN2023093625 W CN 2023093625W WO 2023221872 A1 WO2023221872 A1 WO 2023221872A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
transmission line
support plate
conductive layer
transmission
Prior art date
Application number
PCT/CN2023/093625
Other languages
English (en)
French (fr)
Inventor
俞熊斌
陈特彦
吴懿鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023221872A1 publication Critical patent/WO2023221872A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines

Definitions

  • the present application relates to the field of communication technology, and in particular, to a transmission line, a transmission cable, a preparation method of a transmission line, and an electronic device.
  • Transmission line is a linear structure used to transmit electromagnetic waves. It is widely used in various types of integrated circuits to connect various passive components and active devices. With the rapid progress of science and technology and huge market demand, radio frequency integrated circuits are developing in the direction of diversification, integration and high-frequency bands.
  • metal rectangular waveguides When used as a transmission line, metal rectangular waveguides have the advantages of low transmission loss and large power capacity. However, traditional metal rectangular waveguides have many problems such as difficult machining, large size, and heavy weight. Therefore, providing a transmission line that is simple to manufacture and is conducive to miniaturization and thinning design has become an urgent technical problem to be solved.
  • the present application provides a transmission line, a transmission cable, a preparation method of the transmission line, and an electronic device that are simple to produce and are conducive to miniaturization and thinning design.
  • the present application provides a transmission line, which may include an outer housing, an outer conductor, a support plate and an inner conductor.
  • the outer shell may include a first shell and a second shell that interlock with each other, the first shell has a first groove, the second shell has a second groove, and the first groove and the second groove
  • the grooves form a channel.
  • the outer conductor may include a first conductive layer and a second conductive layer, the first conductive layer is located on the inner wall of the first groove, and the second conductive layer is located on the inner wall of the second groove.
  • the support plate is suspended in the channel, and at least part of the edge of the support plate is fixed between the first housing and the second housing.
  • the inner conductor is arranged on at least one plate surface of the support plate.
  • the outer shell of the transmission line includes a first shell and a second shell. Therefore, during manufacturing, the first shell and the second shell can be manufactured separately, thereby facilitating the improvement of the manufacturing process. convenience.
  • the first housing has a first groove, and has a first conductive layer on the inner wall of the first groove; the second housing has a second groove, and has a second conductive layer on the inner wall of the second groove. layer. After the first housing and the second housing are fastened together, the first groove and the second groove can be fastened together to form a channel for accommodating the inner conductor.
  • the first conductive layer and the second conductive layer can play a good electromagnetic shielding role for the inner conductor, and the signal is transmitted in the inner conductor.
  • part of the edge of the support plate is fixed between the first shell and the second shell.
  • the support plate can have a larger surface area, and the inner conductor can be located on both surfaces of the support plate. Therefore, when pairing the inner conductor When designing or manufacturing, the number, location, shape and size of inner conductors have more possibilities, therefore, it is beneficial to improve the performance of the transmission line or expand the transmission line.
  • the support plate can have a smaller thickness dimension, so the volume occupied by the support plate can be With a small size, it can reduce or prevent undesirable problems such as transmission dispersion caused by the support plate.
  • at least part of the edge of the support plate is fixed between the first shell and the second shell, which is beneficial to ensuring the connection effect between the support plate and the outer shell, and is also beneficial to improving the convenience of manufacturing or assembling the transmission line. sex.
  • the support plate can be a film, that is, the thickness of the support plate can be smaller, which is beneficial to reducing transmission dispersion and other undesirable problems caused by the support plate.
  • an included angle between the side wall of the first groove and the bottom wall of the first groove is greater than 90°.
  • the angle between the side wall of the second groove and the bottom wall of the second groove is greater than 90°.
  • the second conductive layer it is beneficial to cover the bottom wall and side walls of the second groove with the conductive material.
  • the support plate may be in contact with the top surface of the first groove.
  • the support plate and the top surface of the first groove may or may not be fixedly connected.
  • the first conductive layer can also be located on the top surface of the first groove, and the support plate can be attached to the first conductive layer on the top surface of the first groove.
  • the support plate may be in contact with the top surface of the second groove.
  • the support plate and the top surface of the second groove may or may not be fixedly connected.
  • the second conductive layer can also be located on the top surface of the second groove, and the support plate can be attached to the second conductive layer on the top surface of the second groove.
  • the top surface of the first groove may have a first sink groove, and at least a portion of the support plate may be located within the first sink groove.
  • the depth dimension of the first sinking groove may be greater than, equal to, or smaller than the thickness dimension of the support plate, which is not limited in this application.
  • the first conductive layer may also be located on the bottom wall of the first sinking groove.
  • the support plate can be attached to the first conductive layer located on the bottom wall of the first sinking groove. It can be understood that when the first conductive layer is not provided on the bottom wall of the first sinking tank, the support plate can be attached to the bottom wall of the first sinking tank.
  • the top surface of the second groove may have a second sinking groove, and at least a portion of the support plate may be located within the second sinking groove.
  • the depth dimension of the second sinking groove may be greater than, equal to, or smaller than the thickness dimension of the support plate, which is not limited in this application.
  • the second conductive layer may also be located on the bottom wall of the second sinking groove.
  • the support plate can be attached to the second conductive layer located on the bottom wall of the second sinking groove. It can be understood that when the second conductive layer is not provided on the bottom wall of the second sinking tank, the support plate can be attached to the bottom wall of the second sinking tank.
  • the support plate may have metallized holes penetrating both sides of the support plate (ie, in the thickness direction of the support plate), and the first conductive layer and the second conductive layer may be electrically connected through the metallized holes.
  • the transmission line may further include a functional device, the functional device may be disposed between the support plate and the inner conductor, and the functional device is electrically connected to the inner conductor, thereby extending the functionality of the transmission line.
  • functional devices may include any one of resonant tunneling diodes, Schottky diodes, and quantum cascade lasers. This application does not limit the placement, quantity, and type of functional devices.
  • the cross-sectional shape and size of the inner conductor will hardly change along the length direction of the inner conductor.
  • the cross-sectional shape of the inner conductor may vary along the length of the inner conductor to achieve different functions.
  • the inner conductor may have periodic extensions along the length of the transmission line, thereby enabling the effect of a filter or slow-wave device.
  • the transmission line may be in a linear or curved shape, and the shape of the transmission line is not limited in this application.
  • this application also provides a transmission cable, which may include at least three of any of the above transmission lines, and the at least three transmission lines include one first transmission line and at least two second transmission lines, and the at least The two second transmission lines are respectively connected to the first transmission line.
  • the first transmission line may serve as a main line
  • at least two second transmission lines may serve as branches of the main line.
  • the present application also provides an electronic device, which may include a substrate, one or more electronic devices, and the transmission line proposed in the first aspect.
  • One or more electronic devices and transmission lines may be disposed on the substrate, and the electronic device They can be connected to each other through transmission lines.
  • Each electronic device can be connected to other external devices or other electronic devices through transmission lines.
  • the electronic device may also be connected through transmission lines.
  • the electronic device may be a base station, a server, etc., and this application does not limit the specific type of the electronic device.
  • this application also provides a method for preparing a transmission line, which may include:
  • a first groove is prepared on the surface of the first housing.
  • a first conductive layer is provided on the inner wall of the first groove.
  • An inner conductor is provided on at least one surface of the support plate.
  • a second groove is prepared on the surface of the second housing.
  • a second conductive layer is provided on the inner wall of the second groove.
  • it may also include: preparing a first sinking groove on the top surface of the first groove or preparing a second groove on the top surface of the second groove.
  • the transmission line provided in the embodiment of the present application can be produced through a relatively traditional preparation process, which is helpful to improve the convenience of preparation and also helps to ensure the quality of preparation.
  • the transmission line can have a split structure. Therefore, different structures can be manufactured using different manufacturing processes, which is beneficial to improving manufacturing efficiency and precision, and is beneficial to ensuring the signal transmission performance of the transmission line.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic three-dimensional structural diagram of a typical air rectangular micro-coaxial transmission line
  • Figure 3 is a schematic three-dimensional structural diagram of a transmission line provided by an embodiment of the present application.
  • Figure 4 is a schematic cross-sectional structural diagram of a transmission line provided by an embodiment of the present application.
  • Figure 5 is a comparative data diagram of the transmission loss of a transmission line provided by an embodiment of the present application and a traditional metal rectangular waveguide;
  • Figure 6 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 7 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 8 is a comparative data diagram of the transmission losses of two different transmission lines provided by the embodiment of the present application.
  • Figure 9 is a comparative data diagram of the transmission losses of two different transmission lines provided by the embodiment of the present application.
  • Figure 10 is a schematic three-dimensional structural diagram of a transmission line provided by an embodiment of the present application.
  • Figure 11 is a plan view showing an inner conductor provided by an embodiment of the present application.
  • Figure 12 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 13 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 14 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 15 is a data diagram provided by the embodiment of the present application.
  • Figure 16 is a schematic cross-sectional view of the exploded structure of another transmission line provided by an embodiment of the present application.
  • Figure 17 is a schematic cross-sectional view of the exploded structure of another transmission line provided by an embodiment of the present application.
  • Figure 18 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 19 is a schematic three-dimensional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 20 is a schematic cross-sectional structural diagram of another transmission line provided by an embodiment of the present application.
  • Figure 21 is a schematic three-dimensional structural diagram of the perspective effect of a transmission line provided by an embodiment of the present application.
  • Figure 22 is a schematic three-dimensional structural diagram of a transmission cable provided by an embodiment of the present application.
  • Figure 23 is an electric field intensity distribution diagram perpendicular to the propagation direction of a transmission line provided by an embodiment of the present application.
  • Figure 24 is an electric field intensity distribution diagram parallel to the propagation direction of a transmission line provided by an embodiment of the present application.
  • Figure 25 is an electric field intensity distribution diagram parallel to the propagation direction of another transmission line provided by an embodiment of the present application.
  • Figure 26 is an electric field intensity distribution diagram parallel to the propagation direction of a transmission cable provided by an embodiment of the present application.
  • Figure 27 is a comparative data chart of insertion loss of different support plates provided by the embodiment of the present application.
  • Figure 28 is a simulation data diagram of group delay and dispersion of a transmission line provided by an embodiment of the present application.
  • Figure 29 is a flow chart of a method for preparing a transmission line provided by an embodiment of the present application.
  • Figure 30 is a schematic cross-sectional structural diagram of a first housing provided by an embodiment of the present application.
  • Figure 31 is a schematic cross-sectional structural diagram of a support plate and a first housing provided in an embodiment of the present application;
  • Figure 32 is a schematic cross-sectional structural diagram of a second housing provided by an embodiment of the present application.
  • Figure 33 is a schematic cross-sectional structural diagram of a transmission line provided by an embodiment of the present application.
  • the electronic device 20 may include a substrate 21 , a first electronic component 22 a , a second electronic component 22 b , and a transmission line 10 .
  • the first electronic component 22a, the second electronic component 22b and the transmission line 10 are all arranged on the substrate 21.
  • One end of the transmission line is connected to the first electronic component 22a, and the other end is connected to the second electronic component 22b. That is, the signal connection between the first electronic component 22a and the second electronic component 22b can be realized through the transmission line 10.
  • the first electronic component 22a or the second electronic component 22b may be an active device or a passive device, etc. This application does not limit the specific types of the first electronic component 22a and the second electronic component 22b.
  • transmission lines may include microstrip lines, coplanar waveguides, or coplanar striplines.
  • Microstrip lines, coplanar waveguides or coplanar strip lines have good transmission characteristics in lower frequency bands, and therefore are widely used in microwave integrated circuits.
  • integrated circuits With the continuous development of science and technology and the continuous improvement of market demand, integrated circuits are gradually developing towards high-frequency bands.
  • the operating frequency of traditional transmission lines such as the above-mentioned microstrip lines
  • the transmission loss increases exponentially, and undesirable situations such as high-order modes and large dispersion will occur. Therefore, Traditional transmission lines cannot Meet the transmission requirements of higher operating frequencies.
  • the transmission line may also include a metal rectangular waveguide.
  • Metal rectangular waveguides are usually made of metal materials such as copper and aluminum. They are regular metal waveguides with a rectangular cross-section and filled with air medium inside.
  • metal rectangular waveguides When used as a transmission line, metal rectangular waveguides have the advantages of low transmission loss and large power capacity. However, traditional metal rectangular waveguides have many problems such as difficult machining, large size, and heavy weight.
  • the air rectangular micro-coaxial transmission line With the development of processing technology, new air rectangular micro-coaxial transmission lines have emerged, and are expected to solve the problems of high high-frequency signal transmission loss in traditional transmission lines and the large size and weight of metal rectangular waveguides.
  • the air rectangular micro-coaxial transmission line also has the advantages of low dielectric frequency (close to zero) and high electromagnetic shielding. Therefore, it has gradually become a mainstream research direction.
  • a schematic three-dimensional structural diagram of a typical air rectangular micro-coaxial transmission line 01 is provided. It mainly includes outer frame bottom plate 011, outer frame cap 012, support structure 013, outer conductor 014 and inner conductor 015.
  • the outer frame bottom plate 011 and the outer frame cap 012 form a cavity structure with a rectangular cross-section, and outer conductors 014 are provided on the upper surface of the outer frame bottom plate 011 and the inner wall of the outer frame cap 012 .
  • the inner conductor 015 is fixed in the rectangular channel via a support structure 013 .
  • the support structure 013 since the support structure 013 has a large volume, the transmission dispersion of the air rectangular micro-coaxial transmission line 01 will be increased. If the volume of the support structure 013 is reduced, the performance of the air rectangular micro-coaxial transmission line 01 will be adversely affected. For example, when the width of the support structure 013 is reduced, the support structure 013 cannot provide sufficient top surface area, which will impose greater constraints on the size and shape of the inner conductor 015 . In addition, when the height dimension of the support structure 013 is reduced, the inner conductor 015 will be closer to the outer frame bottom plate 011, resulting in higher transmission loss.
  • the outer frame bottom plate 011 and the outer frame cap 012 are usually made of light-curing liquid resin materials and combined with a 3D printing process.
  • the surface flatness produced by this production method is low, which will affect the production quality of the inner conductor 015 and the outer conductor 014, increase transmission loss, and produce transmission dispersion and other undesirable conditions.
  • the signal transmission performance (such as transmission loss) of the above-mentioned air rectangular micro-coaxial transmission line 01 is basically the same as the transmission performance of the traditional metal rectangular waveguide.
  • embodiments of the present application provide a transmission line with a simple structure that is conducive to miniaturization and thinner design.
  • the transmission line 10 may include an outer housing 11 , an outer conductor 12 , a support plate 13 and an inner conductor 14 .
  • the outer shell 11 may include a first shell 111 and a second shell 112 that are interlocked with each other.
  • the first shell 111 has a first groove 1111
  • the second shell 112 has a second groove 1121
  • the A groove 1111 and a second groove 1121 enclose a channel 100 .
  • the outer conductor 12 may include a first conductive layer 121 and a second conductive layer 122 .
  • the first conductive layer 121 is located on the inner wall of the first groove 1111
  • the second conductive layer 122 is located on the inner wall of the second groove 1121 .
  • the support plate 13 is suspended in the channel 100, and at least part of the edge of the support plate 13 is fixed between the first housing 111 and the second housing 112.
  • the inner conductor 14 is provided on the first plate surface 131 of the support plate 13 (the lower plate surface in FIG. 4 ).
  • the outer shell 11 of the transmission line 10 includes a first shell 111 and a second shell 112. Therefore, when manufacturing, the first shell 111 and the second shell 112 can be separately processed. production, thereby improving the convenience of production.
  • the first housing 111 has a first groove 1111, and has a first conductive layer 121 on the inner wall of the first groove 1111;
  • the second housing 112 has a second groove 1121, and has a first conductive layer 121 on the inner wall of the first groove 1111.
  • the inner wall of 1121 has a second conductive layer 122 .
  • the first groove 1111 and the second groove 1121 can be fastened together to form the channel 100 for accommodating the inner conductor 14 .
  • the first conductive layer 121 and the second conductive layer 122 can play a good electromagnetic shielding role for the inner conductor 14, which is helpful to ensure the signal transmission performance of the transmission line 10 when signals are transmitted in the inner conductor 14.
  • the support plate 13 suspended in the channel 100 specifically means that the support plate 13 can be fixedly connected to the first housing 111, or the support plate 13 can be fixedly connected to the second housing 112; or the support plate 13 can be Fixedly connected to the first housing 111 and the second housing 112 .
  • part of the edge of the support plate 13 is fixed between the first housing 111 and the second housing 112.
  • the support plate 13 can have a larger area of the board surface, and the inner conductor 14 can be located on both board surfaces of the support plate 13. Therefore, when designing or manufacturing the inner conductor 14 , the number, location, shape, and size of the inner conductor 14 have more possibilities, which is beneficial to improving or extending the performance of the transmission line 10 .
  • the support plate 13 can have a smaller thickness, so the volume occupied by the support plate 13 can be very small, which can reduce or prevent transmission dispersion and other undesirable problems caused by the support plate 13 .
  • at least part of the edge of the support plate 13 is fixed between the first housing 111 and the second housing 112, which is beneficial to ensuring the connection effect between the support plate 13 and the outer housing 11, and is also beneficial to improving the transmission line 10. Convenience in making or assembling.
  • the embodiment of the present application also provides a comparative data chart of the transmission loss of the transmission line 10 and the traditional metal rectangular waveguide.
  • the abscissa represents frequency in THz, and the ordinate represents transmission loss in dB/mm, which is the transmission loss of 10 per millimeter of the transmission line.
  • the solid line in Figure 5 represents the simulation curve corresponding to the transmission loss and frequency of the transmission line 10 provided by the embodiment of the present application.
  • the dotted line represents the simulation curve corresponding to the transmission loss and frequency of the traditional metal rectangular waveguide.
  • the transmission line 10 provided by the embodiment of the present application realizes the characteristics of low loss (such as about 0.1dB/mm) and large bandwidth (such as up to 1THz), and the transmission loss in the frequency band above 300GHz is far low in traditional metal rectangular waveguides.
  • the operating frequency band of the transmission line 10 provided by the embodiment of the present application is from DC to terahertz, it has the characteristics of lower dispersion and larger bandwidth.
  • the overall structure of the transmission line 10 as well as the structures and arrangements of the outer shell 11 , the outer conductor 12 , the support plate 13 and the inner conductor 14 can be various, and examples will be given below.
  • the support plate 13 may have a plate structure, that is, the support plate 13 may have a significant thickness, thereby providing greater support force for the inner conductor 14.
  • the support plate 13 may be a film (eg, the thickness dimension is less than or equal to 5 ⁇ ), so that the support plate 13 can have a smaller The thickness size is beneficial to reducing the transmission loss and dispersion of the transmission line 10.
  • the support plate 13 can be cut from a film with a larger area, thereby facilitating batch production of the support plate 13 and ensuring consistent quality.
  • a material with a lower dielectric constant such as a dielectric constant of 2, 3, or 4
  • the support plate 13 may be made of rigid material to ensure the stability of the connection between the inner conductor 14 and the outer shell 11 .
  • the support plate 13 can also be made of a flexible material. When the transmission line 10 is impacted by a large external force, the support plate 13 can buffer and absorb the external force through its own elastic deformation to prevent the transmission line 10 from being damaged.
  • this application does not limit the specific material of the support plate 13 .
  • the thickness of the support plate 13 may be 5 mm thick, greater than 5 mm, or less than 5 mm thick, etc. This application does not limit the thickness of the support plate 13 . In practical applications, the thickness, shape and material of the support plate 13 can be reasonably selected according to different needs, which will not be described in detail here.
  • the inner conductor 14 in specific applications, signals are mainly transmitted in the inner conductor 14. Therefore, the inner conductor 14 can be made of materials with good conductivity such as copper, nickel, gold, titanium, chromium, and palladium. During production, the inner conductor 14 can be directly prepared on the support plate 13 using a deposition process such as electron beam evaporation or magnetron sputtering. Alternatively, the prepared and formed inner conductor 14 may also be disposed on the support plate 13 . This application does not limit the material and preparation process of the inner conductor 14 .
  • the shape and type of the inner conductor 14 may be diverse.
  • the inner conductor 14 may be provided on the first plate surface 131 of the support plate 13 .
  • the inner conductor may be provided on the first plate surface 131 and the second plate surface 132 of the support plate 13 .
  • the inner conductors are the inner conductor 14a and the inner conductor 14b respectively.
  • the inner conductor 14a is located on the first plate surface 131 of the support plate 13, and the inner conductor 14b is located on the second plate surface 132 of the support plate 13.
  • the vertical projection of the inner conductor 14a on the second plate surface 132 coincides with the inner conductor 14b.
  • inner conductor 14a there are three inner conductors, namely inner conductor 14a, inner conductor 14b and inner conductor 14c.
  • the inner conductor 14b and the inner conductor 14c are located on the first plate surface 131 of the support plate 13, the inner conductor 14a is located on the second plate surface 132 of the support plate 13, and the vertical projection of the inner conductor 14a on the first plate surface 131 is consistent with the inner conductor 14b and the inner conductor 14c.
  • the inner conductors 14c do not overlap.
  • increasing the number of inner conductors 14 can help reduce the transmission loss of the transmission line 10 .
  • the embodiment of the present application provides comparative data diagrams of the transmission loss of the transmission line 10 in FIG. 4 and FIG. 6 .
  • the embodiment of the present application provides a comparative data chart of the transmission loss of the transmission line 10 in FIG. 4 and FIG. 7 .
  • the abscissa represents frequency in THz; the ordinate represents transmission loss in dB/mm, which is the transmission loss per millimeter of the transmission line.
  • the dotted line represents the simulation curve corresponding to the transmission loss and frequency of the transmission line 10 corresponding to FIG. 4 .
  • the solid line represents the simulation curve corresponding to the transmission loss and frequency of the transmission line 10 in FIG. 6 .
  • the dotted line represents the simulation curve corresponding to the transmission loss and frequency of the transmission line 10 corresponding to FIG. 4 .
  • the solid line represents the simulation curve corresponding to the transmission loss and frequency of the transmission line 10 in FIG. 7 .
  • the transmission line 10 may also include more inner conductors 14 .
  • the inner conductor 14 may be provided on the first surface 131 of the support plate 13 , or may be provided only on the second surface 132 of the support plate 13 , or it may also be provided on the third surface 132 of the support plate 13 .
  • One board 131 and the second board Surface 132 are all set.
  • the number of inner conductors 14 may be one, two, three or more, which is not limited in this application.
  • the cross-sectional shape of the inner conductor 14 may be consistent along the length direction of the inner conductor 14 (or the signal transmission direction).
  • the cross-sectional shape of the inner conductor 14 is a rectangular sheet, and the cross-sectional shape and size of the inner conductor 14 have almost no effect along the length direction of the inner conductor 14 . Variety.
  • the cross-sectional shape of the inner conductor 14 may be changed along the length direction of the inner conductor 14 to achieve different functions.
  • FIG. 10 is a schematic three-dimensional structural diagram of the transmission line
  • FIG. 11 is a plan view showing the inner conductor 14 .
  • the inner conductor 14 has a periodic extending portion 141, so that the effect of a filter or a slow-wave device can be achieved.
  • the inner conductor 14 has a periodic extending portion 141, so that the effect of a filter or a slow-wave device can be achieved.
  • four extending portions 141 are shown, and the four extending portions 141 are equidistantly arranged.
  • the shape, number, and position of the extension portions 141 can be reasonably set according to actual needs.
  • the support plate 13 can provide a larger board size, it provides more possibilities when designing the shape of the inner conductor 14, which is helpful to The shape of the inner conductor 14 is flexibly designed to expand the function of the transmission line 10 .
  • some functional devices may also be provided between the inner conductor 14 and the support plate 13 to expand the functions of the transmission line 10 .
  • the functional device 15 may be disposed between the support plate 13 and the inner conductor 14 , and the inner conductor 14 is electrically connected to the functional device 15 .
  • the functional device 15 may include: any one of a resonant tunneling diode, a Schottky diode, and a quantum cascade laser.
  • the transmission line 10 may include one, two or more functional devices 15, and this application does not limit the type and quantity of the functional devices 15.
  • the functional device 15 can be directly prepared on the surface of the support plate 13 .
  • an epitaxial layer can be grown on the surface of the support plate 13 to directly prepare the functional device 15 , and then the inner conductor 14 is prepared on the functional device 5 .
  • the prepared and formed functional device 15 can also be arranged on the support plate 13 . This application does not limit the preparation method of the functional device 15 .
  • the structures of the first housing 111 and the second housing 112 are substantially the same.
  • the first groove 1111 of the first housing 111 is open-shaped. Or it can be understood that the angle ⁇ between the bottom wall of the first groove 1111 and the side wall of the first groove 1111 is greater than 90°, so as to facilitate the preparation of the first conductive layer 121.
  • the metal material when a metal evaporation process is used to deposit metal material on the inner wall of the first groove 1111, the metal material can be effectively deposited on the bottom wall and side walls of the first groove 1111 under the action of gravity.
  • the angle ⁇ between the bottom wall of the first groove 1111 and the side wall of the first groove 1111 is 90° or less, the first conductive layer 121 is prepared by using a metal evaporation process.
  • the angle ⁇ between the bottom wall of the first groove 1111 and the side wall of the first groove 1111 may be about 93°.
  • this application does not limit the specific value of ⁇ .
  • the first groove 1111 Or the cross-sectional shape of the second groove 1121 may also be an arc shape, a triangle, an elliptical arc shape or other irregular shapes, which will not be described again here.
  • the first conductive layer 121 may also be located outside the first groove 1111 .
  • the first conductive layer 121 is located on the inner wall (including the bottom wall and side wall) of the first groove 1111 and the top surface of the first groove 1111 .
  • the second conductive layer 122 is located on the inner wall (including the bottom wall and side wall) of the second groove 1121 and on the top surface of the second groove 1121 .
  • the first conductive layer 121 includes a first portion 1211 located on the inner wall of the first groove 1111 and a second portion 1212 located on the top surface of the first groove 1111 .
  • the second conductive layer 122 includes a first portion 1221 located on the inner wall of the second groove 1121 and a second portion 1222 located on the top surface of the second groove 1121 .
  • the support plate 13 may be located between the second part 1212 and the second part 1222.
  • the first plate surface 131 of the support plate 13 may be fixedly connected to the second part 1212 of the first conductive layer 121 .
  • the second plate surface 132 of the support plate 13 may be fixedly connected to the second portion 1222 of the second conductive layer 122 .
  • the support plate 13 and the first conductive layer 121 or the second conductive layer 122 can be fixedly connected by bonding or welding, which is not limited in this application.
  • ohmic contact may or may not be made between the first conductive layer 121 and the second conductive layer 122 (ie, conductive connection). In the example provided in FIG. 12 , no ohmic contact is made between the first conductive layer 121 and the second conductive layer 122 .
  • ohmic contact can be achieved between the first conductive layer 121 and the second conductive layer 122 through a metallized hole 133 .
  • metallized holes 133 may be provided in the support plate 13 through the thickness of the support plate 13 , and ohmic contact may be achieved between the first conductive layer 121 and the second conductive layer 122 through the metallized holes 133 .
  • metalized holes 133 can also be replaced by wires, etc., which will not be described again here.
  • the second part 1212 of the first conductive layer 121 and the second part 1222 of the second conductive layer 122 are both provided with sinking grooves (not shown in the figure), and the support plate 13 is located in the sinking groove. And, the second part 1212 is in contact with the second part 1222.
  • the width of the support plate 13 (the dimension in the left-right direction in the figure) is smaller than the width dimensions of the first housing 111 and the second housing 112 .
  • the thickness of the support plate 13 is approximately equal to the sum of the depths of the sinking grooves of the second part 1212 and the second part 1222.
  • the support plate 13 can be sandwiched between the second part 1212 and a partial area of the second part 1222, Moreover, partial areas of the second part 1212 and the second part 1222 can also be effectively bonded to achieve electrical connection between the first conductive layer 121 and the second conductive layer 122 .
  • the thickness of the support plate 13 can be smaller, when the first conductive layer 121 and the second conductive layer 122 do not make ohmic contact, external electromagnetic waves will not effectively propagate to the inner conductor 14 , the electromagnetic waves in the inner conductor 14 will not leak.
  • the first conductive layer 121 and the second conductive layer 122 are in ohmic contact, the first conductive layer 121 and the second conductive layer 122 can improve the electromagnetic shielding effect on the inner conductor 14 and prevent external electromagnetic waves from propagating to the inner conductor 14. It can also prevent the electromagnetic waves in the inner conductor 14 from leaking outward, thereby ensuring the signal transmission performance of the transmission line 10 .
  • a comparison is provided for a transmission line 10 with a length of 1 mm, when the first conductive layer 121 and the second conductive layer 122 are in ohmic contact, and when the first conductive layer 121 and the second conductive layer 122 are not in ohmic contact. Insertion loss Data plot of the difference.
  • the abscissa represents the frequency in THz; the ordinate represents the insertion loss difference in dB.
  • the ordinate value such as 2.E-03 specifically represents 2*10 -3 ; -5.E-03 specifically represents -5*10 -3 , which will not be elaborated here.
  • the presence or absence of ohmic contact between the first conductive layer 121 and the second conductive layer 122 has almost no impact on the insertion loss of the transmission line 10 .
  • whether to make ohmic contact between the first conductive layer 121 and the second conductive layer 122 can be flexibly selected according to actual requirements (such as electromagnetic shielding performance requirements or the thickness of the support plate 13 , etc.).
  • first housing 111 and the second housing 112 are provided, the structures of the first housing 111 and the second housing 112 may be diverse.
  • a first sinking groove 1112 can be provided on the top surface of the first groove 1111, and a second sinking groove 1112 can be provided on the top surface of the second groove 1121. slot1122.
  • the support plate 13 can be located in the first sinking groove 1112 and the second sinking groove 1122, and the second portion 1212 and the second portion 1222 can achieve ohmic contact.
  • the sum of the depth dimension of the first sinking groove 1112, the depth dimension of the second sinking groove 1122, the thickness dimension of the second part 1212 and the thickness dimension of the second part 1222 is greater than or equal to the thickness dimension of the support plate 13, So as to achieve good ohmic contact between the second part 1212 and the second part 1222.
  • the second part 1212 and the second part 1222 can be fixedly connected through processes such as bonding or welding to improve the connection between the first housing 111 and the second housing 112 Stability and ensuring the electrical connection effect between the second part 1212 and the second part 1222.
  • the second part 1212 and the second part 1222 may also be omitted.
  • the sum of the thickness dimensions of the first sinking groove 1112 and the second sinking groove 1122 may be approximately equal to the thickness dimension of the support plate 13 , and the top surface of the first groove 1111 and the second groove 1121 Contact can be made between the top surfaces of .
  • the top surface of the first groove 1111 and the top surface of the second groove 1121 can be fixedly connected through bonding or welding processes to improve the connection between the first housing 111 and the second housing 112 stability.
  • the second part 1212 of the first conductive layer 121 can also be located on the bottom wall of the first sinking groove (not shown in the figure), and the second conductive layer The second portion 1222 of 122 may also be located on the bottom wall of the second sink (not shown in the figure).
  • first sinking groove 1112 can be provided only on the top wall of the first groove 1111, or the second sinking groove 1122 can be provided only on the top wall of the second groove 1121, or they can also be provided at the same time.
  • the first sink 1112 and the second sink 1122 can be provided only on the top wall of the first groove 1111, or the second sinking groove 1122 can be provided only on the top wall of the second groove 1121, or they can also be provided at the same time.
  • first housing 111 and the second housing 112 when arranging the first housing 111 and the second housing 112, the structures of the first housing 111 and the second housing 111 may be the same or different, which is not specifically limited in this application.
  • first housing 111 second housing 112, outer conductor 12, support plate 13, inner conductor 14, etc. of different structural types can be flexibly combined according to different needs. , we will not go into details here.
  • the transmission line 10 may be straight.
  • the width dimension a of the bottom wall of the first groove 1111 may be about 0.5 mm.
  • the distance b between the bottom walls of the first groove 1111 and the second groove 1121 may be about 0.5 mm.
  • the angle ⁇ between the bottom wall and the side wall of the first groove 1111 (or the second groove 1121) may be about 93°.
  • the width dimension w of the support plate 13 may be about 0.9 mm.
  • the thickness dimension t of the support plate 13 may be about 5 ⁇ or more.
  • the relative dielectric constant ⁇ of the support plate 13 may be 2, 3, 4, etc.
  • the width dimension s of the inner conductor 14 may be about 0.1 mm.
  • Outer conductor 12 The thickness dimension of the inner conductor 14 may be about 0.5 dimensions.
  • the thickness dimensions of the outer conductor 12 and the inner conductor 14 may be the same or different, and are not specifically limited in this application.
  • the transmission line 10 may be S-shaped or the like.
  • the transmission line 10 can be a flexible structure and can be bent at will according to actual construction requirements. Alternatively, it can be understood that this application does not limit the overall shape of the transmission line 10 .
  • another transmission cable provided by this application may include three transmission lines, namely transmission line 10a, transmission line 10b and transmission line 10c.
  • Transmission line b and transmission line c are respectively connected to transmission line a. That is, the transmission cable may have a Y-shaped structure.
  • the transmission line 10a can be used as a main line, and the transmission line b and the transmission line c can be used as branches of the main line.
  • the transmission cable may also include three or more branches.
  • each branch may also include two or more branches, which will not be described in detail here.
  • the embodiment of the present application also provides several electric field intensity simulation effect diagrams of the transmission line 10 .
  • Figure 24 is a diagram of the electric field intensity distribution along the length of the transmission line when the signal propagates in the transmission line in Figure 19. That is, the intensity distribution diagram of the electric field in the x-y plane.
  • Figure 25 is a diagram showing the electric field intensity distribution along the length of the transmission line when the signal propagates in the transmission line in Figure 21. That is, the intensity distribution diagram of the electric field in the x-y plane.
  • Figure 26 is a diagram showing the electric field intensity distribution along the length of the transmission line when the signal propagates in the transmission cable in Figure 22. That is, the intensity distribution diagram of the electric field in the x-y plane.
  • the embodiment of the present application also provides the insertion loss of the support plate 13 under different dielectric constants.
  • Figure 27 also provides the insertion loss of three support plates with different dielectric constants with a length of about 1mm.
  • the operating frequency under test is about 250GHz.
  • the abscissa represents frequency in THz, and the ordinate represents insertion loss in dB.
  • the simulation curve S1 represents the corresponding relationship between the insertion loss of the support plate 13 and frequency when the dielectric constant is 2.
  • the simulation curve S2 represents the corresponding relationship between the insertion loss of the support plate and frequency when the dielectric constant is 3.
  • the simulation curve S3 represents the corresponding relationship between the insertion loss of the support plate and frequency when the dielectric constant is 4.
  • this embodiment of the present application also provides simulation data diagrams of the group delay and dispersion of the transmission line 10.
  • the abscissa represents frequency in THz
  • the left ordinate represents group delay in ps/mm.
  • the right ordinate represents dispersion, and the unit is ps/mm/THz.
  • the solid line represents the corresponding relationship between the group delay of the transmission line 10 and the frequency.
  • the dotted line represents the relationship between the dispersion of the transmission line 10 and the frequency.
  • the group delay of the transmission line 10 changes very little under the large bandwidth of 1THz.
  • the calculated dispersion theoretical average of the group delay is 0.03ps/mm/THz, which verifies the embodiment of the present application.
  • the transmission line 10 provided has Low dispersion characteristics.
  • the transmission line 10 provided by the embodiment of the present application has good signal transmission performance, and the insertion loss generated by the support plate 13 is low or even negligible. Therefore, the signal transmission performance of the transmission line 10 will not be affected.
  • the preparation method may include:
  • Step S100 Prepare a first groove on the surface of the first housing.
  • Step S110 Set a first conductive layer on the inner wall of the first groove.
  • Step S120 Set an inner conductor on at least one surface of the support plate.
  • Step S130 Fix the support plate with the inner conductor on the opening of the first groove.
  • Step S200 Prepare a second groove on the surface of the second housing
  • Step S210 Set a second conductive layer on the inner wall of the second groove
  • Step S300 Fasten the first groove and the second groove.
  • the first housing 111 may use a wafer as a blank, and use an etching process (such as dry etching or wet etching) to prepare the first housing 111 in the wafer.
  • the groove 1111 is formed to form the first housing 111 .
  • semiconductor materials can be used, and the processing precision is relatively high, which can reach the nanometer level, and the preparation process is simple.
  • the first housing 111 can also be made of other materials, which is not limited in this application.
  • a metal deposition process can be used to form a metal material with good conductivity such as copper or gold on the inner wall of the first groove 1111 and the top surface of the first groove 1111 to prepare the second conductive layer 121.
  • a conductive layer 121 may not be prepared on the top surface of the first groove 1111 .
  • a sinking groove structure (not shown in the figure) can be prepared on the top surface of the first groove 1111.
  • the first conductive layer 121 can also be located on the bottom wall or side wall of the sinking groove structure.
  • the support plate 13 can be made using a wafer as a blank and an etching process (such as dry etching or wet etching).
  • the support plate 13 can also be a film, and can be made into the required shape by cutting or other processes.
  • a metal deposition process may be used to form a metal material with good conductivity such as copper or gold on at least one surface of the support plate 13 .
  • a metal material with good conductivity such as copper or gold
  • the shaped conductor structure can also be arranged on the support plate 13, which will not be described again.
  • the support plate 13 When fixing the support plate 13 to the opening of the first groove 1111, bonding, welding and other processes may be used to achieve a fixed connection between the support plate 13 and the first housing 111.
  • the support plate 13 can also be placed at the opening of the first groove 1111 .
  • the second housing 112 may use a wafer as a blank, and use an etching process (such as dry etching or wet etching) to prepare the second housing 112 in the wafer.
  • the groove 1121 is formed to form the second housing 112 .
  • semiconductor materials can be used, and the processing precision is relatively high, which can reach the nanometer level, and the preparation process is simple.
  • the second housing 112 can also be made of other materials, which is not limited in this application.
  • a metal deposition process can be used to form a metal material with good conductivity such as copper or gold on the inner wall of the second groove 1121 and the top surface of the second groove 1121 to prepare the second conductive layer 122.
  • Two conductive layers 122 In addition, in an example provided in this application, the top surface of the second groove 1121 has a second sinking groove 1122, and the second conductive layer 122 is also located on the bottom wall of the second sinking groove 1122. Of course, in other embodiments, the second conductive layer 122 may not be prepared on the top surface of the second groove 1121 .
  • first housing 111 and the second housing 112 can be fastened together.
  • the first housing 111 and the second housing 112 may be fixedly connected directly or through the support plate 13 .
  • the top surface of the first groove 1111 is in contact with the top surface of the second groove 1121
  • the top surface of the first groove 1111 and the top surface of the second groove 1121 can be bonded or welded. connection to achieve a fixed connection between the first housing 111 and the first housing 112 .
  • the first conductive layer 121 is in contact with the second conductive layer 122
  • the first conductive layer 121 and the second conductive layer 122 can be connected through a bonding or welding process to realize the first housing 111 and the second conductive layer 122.
  • the first housing 111 and the support plate 13 may be fixedly connected
  • the second housing 112 and the support plate 13 may be fixedly connected to achieve a fixed connection between the first housing 111 and the second housing 112 .
  • the transmission line provided in the embodiment of the present application can be produced through a relatively traditional preparation process, which is helpful to improve the convenience of preparation and also helps to ensure the quality of preparation.
  • the transmission line can have a split structure. Therefore, different structures can be manufactured using different manufacturing processes, which is beneficial to improving manufacturing efficiency and precision, and is beneficial to ensuring the signal transmission performance of the transmission line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本申请提供了一种传输线、传输线缆、传输线的制备方法和电子设备,涉及通信技术领域,以解决信号传输线结构复杂、传输性能差等问题。本申请提供的传输线包括外壳体、外导体、支撑板和内导体;外壳体可以包括相互扣合的第一壳体和第二壳体,第一壳体具有第一凹槽,第二壳体具有第二凹槽,且第一凹槽和第二凹槽合围成通道;外导体可以包括第一导电层和第二导电层,第一导电层位于第一凹槽的内壁,第二导电层位于第二凹槽的内壁;支撑板悬置在通道内,且支撑板的至少部分边缘固定在第一壳体和第二壳体之间;内导体设置在支撑板的至少一个板面。本申请提供的传输线有利于保证传输线的信号传输性能,且有利于提升传输线在进行制作或装配时的便利性。

Description

一种传输线、传输线缆、传输线的制备方法和电子设备
相关申请的交叉引用
本申请要求在2022年05月19日提交中国专利局、申请号为202210555053.4、申请名称为“一种传输线、传输线缆、传输线的制备方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种传输线、传输线缆、传输线的制备方法和电子设备。
背景技术
传输线是用于传递电磁波的一种线状结构,被广泛的应用在各种不同类型的集成电路中,用于连接各种无源元件和有源器件。在科学技术的快速进步和巨大的市场需求下,射频集成电路正向多样化、集成化和高频段的方向发展。金属矩形波导作为传输线使用时,具有传输损耗低、功率容量大等优势,但是传统的金属矩形波导具有机械加工困难、尺寸大、重量大等诸多问题。因此,提供一种制作简单,有利于实现小型化和轻薄化设计的传输线成为了亟待解决的技术问题。
发明内容
本申请提供了一种制作简单,有利于实现小型化和轻薄化设计的传输线、传输线缆、传输线的制备方法和电子设备。
第一方面,本申请提供了一种传输线,可以包括外壳体、外导体、支撑板和内导体。具体的,外壳体可以包括相互扣合的第一壳体和第二壳体,第一壳体具有第一凹槽,第二壳体具有第二凹槽,且第一凹槽和第二凹槽合围成通道。外导体可以包括第一导电层和第二导电层,第一导电层位于第一凹槽的内壁,第二导电层位于第二凹槽的内壁。支撑板悬置在通道内,且支撑板的至少部分边缘固定在第一壳体和第二壳体之间。内导体设置在支撑板的至少一个板面。
在本申请提供的传输线中,传输线的外壳体包括第一壳体和第二壳体,因此,在进行制作时,可以分别对第一壳体和第二壳体进行制作,从而便于提升制作时的便利性。另外,第一壳体具有第一凹槽,并且,在第一凹槽的内壁具有第一导电层;第二壳体具有第二凹槽,并且,在第二凹槽的内壁具有第二导电层。将第一壳体与第二壳体扣合后,第一凹槽和第二凹槽可以扣合成用于容纳内导体的通道。其中,第一导电层和第二导电层可以对内导体起到良好的电磁屏蔽作用,信号在内导体中进行传输,因此,有利于保证传输线的信号传输性能。另外,支撑板的部分边缘固定在第一壳体和第二壳体之间,支撑板能够具有较大面积的板面,内导体可以位于支撑板的两个板面,因此,在对内导体进行设计或制作时,内导体的数量、位置、形状和大小具有更多的可能性,因此,有利于提升传输线或扩展传输线的性能。另外,支撑板可以具有较小的厚度尺寸,因此,支撑板所占用的体积可 以很小,能降低或防止支撑板所带来的传输色散等不良问题。另外,支撑板的至少部分边缘固定在第一壳体和第二壳体之间,从而有利于保证支撑板与外壳体之间的连接效果,也有利于提升传输线在进行制作或装配时的便利性。
在具体设置时,支撑板可以是薄膜,即支撑板的厚度可以较小,从而有利于降低支撑板所带来的传输色散等不良问题。
在第一凹槽中,第一凹槽的侧壁与第一凹槽的底壁之间的夹角大于90°。在对第一导电层进行制作时,有利于将导电材料布满第一凹槽的底壁和侧壁。相应的,在第二凹槽中,第二凹槽的侧壁与第二凹槽的底壁之间的夹角大于90°。在对第二导电层进行制作时,有利于将导电材料布满第二凹槽的底壁和侧壁。
在一种示例中,支撑板可以与第一凹槽的顶面贴合。其中,支撑板与第一凹槽的顶面之间可以固定连接,也可以不进行固定连接。
当然,在一种示例中,第一导电层还可以位于第一凹槽的顶面,支撑板可以与第一凹槽的顶面的第一导电层贴合。
在一种示例中,支撑板可以与第二凹槽的顶面贴合。其中,支撑板与第二凹槽的顶面之间可以固定连接,也可以不进行固定连接。
当然,在一种示例中,第二导电层还可以位于第二凹槽的顶面,支撑板可以与第二凹槽的顶面的第二导电层贴合。
在一种示例中,第一凹槽的顶面可以具有第一沉槽,且支撑板的至少一部分可以位于第一沉槽内。其中,第一沉槽的深度尺寸可以大于、等于或小于支撑板的厚度尺寸,本申请对此不作限定。
当然,在一种示例中,第一导电层还可以位于第一沉槽的底壁。支撑板可以与位于第一沉槽的底壁的第一导电层进行贴合。可以理解的是,当第一沉槽的底壁未设置第一导电层时,支撑板可以与第一沉槽的底壁贴合。
在一种示例中,第二凹槽的顶面可以具有第二沉槽,且支撑板的至少一部分可以位于第二沉槽内。其中,第二沉槽的深度尺寸可以大于、等于或小于支撑板的厚度尺寸,本申请对此不作限定。
当然,在一种示例中,第二导电层还可以位于第二沉槽的底壁。支撑板可以与位于第二沉槽的底壁的第二导电层进行贴合。可以理解的是,当第二沉槽的底壁未设置第二导电层时,支撑板可以与第二沉槽的底壁贴合。
在一种示例中,支撑板可以具有贯穿支撑板两侧(即支撑板厚度方向)的金属化孔,第一导电层和第二导电层可以通过金属化孔实现电连接。
在一种示例中,传输线还可以包括功能器件,功能器件可以设置在支撑板与内导体之间,且功能器件与内导体电连接,从而可以扩充传输线的功能性。在具体应用时,功能器件可以包括共振隧穿二极管、肖特基二极管、量子级联激光器中的任一种,本申请对功能器件的设置位置、数量和类型不作限制。
另外,在具体应用时,沿内导体的长度方向,内导体的截面形状和大小几乎不产生变化。或者,沿内导体的长度方向,内导体的截面形状可以是变化的,以实现不同的功能。例如,沿传输线的长度方向,内导体可以具有周期延伸部,从而可以实现滤波器或慢波器件的效果。
另外,传输线可以是直线形或曲线形等形状,本申请对传输线的形状不作限定。
第二方面,本申请还提供了一种传输线缆,可以包括至少三条上述任一种传输线,且所述至少三条所述传输线中包括一条第一传输线和至少两条第二传输线,所述至少两条第二传输线分别与所述第一传输线连接。或者,所述第一传输线可以作为主干线,至少两条第二传输线可以作为所述主干线的分支。
第三方面,本申请还提供了一种电子设备,可以包括基板、一个或多个电子器件以及上述第一方面提出的传输线,一个或多个电子器件和传输线可以设置在基板上,且电子器件之间可以通过传输线进行相互连接。其中,每个电子器件可以通过传输线与外部的其他设备或其他电子器件进行连接。或者,当电子设备中包括多个电子器件时,不同的电子器件之间也可以通过传输线进行连接。其中,电子设备可以是基站、服务器等,本申请对电子设备的具体类型不作限制。
另外,本申请还提供了一种传输线的制备方法,可以包括:
在第一壳体的表面制备第一凹槽。
在第一凹槽的内壁设置第一导电层。
在支撑板的至少一个板面设置内导体。
将设置内导体的支撑板固定在第一凹槽的开口。
在第二壳体的表面制备第二凹槽。
在第二凹槽的内壁设置第二导电层。
将第一凹槽和第二凹槽扣合固定。
在一些制备方法中,还可以包括:在第一凹槽的顶面制备第一沉槽或者,在第二凹槽的顶面制备第二凹槽。
在本申请实施例提供的传输线中,可以通过较为传统的制备工艺进行制作,有利于提升制备时的便利性,同时还有助于保证制备品质。另外,传输线可以是分体式的结构,因此,可以对不同的结构采用不同的制备工艺进行制作,有利于提升制作效率和制作精度,有利于保证传输线的信号传输性能。
附图说明
图1为本申请实施例提供的一种电子设备的结构示意简图;
图2为一种典型的空气矩形微同轴传输线的立体结构示意图;
图3为本申请实施例提供的一种传输线的立体结构示意图;
图4为本申请实施例提供的一种传输线的截面结构示意图;
图5为本申请实施例提供的一种传输线与传统的金属矩形波导的传输损耗的对比数据图;
图6为本申请实施例提供的另一种传输线的截面结构示意图;
图7为本申请实施例提供的另一种传输线的截面结构示意图;
图8为本申请实施例提供的两种不同的传输线的传输损耗的对比数据图;
图9为本申请实施例提供的两种不同的传输线的传输损耗的对比数据图;
图10为本申请实施例提供的一种传输线的立体结构示意图;
图11为本申请实施例提供的一种显示内导体的平面图;
图12为本申请实施例提供的另一种传输线的截面结构示意图;
图13为本申请实施例提供的另一种传输线的截面结构示意图;
图14为本申请实施例提供的另一种传输线的截面结构示意图;
图15为本申请实施例提供的一种数据图;
图16为本申请实施例提供的另一种传输线的分解结构的截面示意图;
图17为本申请实施例提供的另一种传输线的分解结构的截面示意图;
图18为本申请实施例提供的另一种传输线的截面结构示意图;
图19为本申请实施例提供的另一种传输线的立体结构示意图;
图20为本申请实施例提供的另一种传输线的截面结构示意图;
图21为本申请实施例提供的一种传输线的透视效果的立体结构示意图;
图22为本申请实施例提供的一种传输线缆的透视效果的立体结构示意图;
图23为本申请实施例提供的一种传输线在垂直于传播方向上的电场强度分布图;
图24为本申请实施例提供的一种传输线在平行于传播方向上的电场强度分布图;
图25为本申请实施例提供的另一种传输线在平行于传播方向上的电场强度分布图;
图26为本申请实施例提供的一种传输线缆在平行于传播方向上的电场强度分布图;
图27为本申请实施例提供的不同的支撑板的插入损耗的对比数据图;
图28为本申请实施例提供的一种传输线的群时延和色散的仿真数据图;
图29为本申请实施例提供的一种传输线的制备方法流程图;
图30为本申请实施例提供的一种第一壳体的截面结构示意图;
图31为本申请实施例提供的一种支撑板和第一壳体的截面结构示意图;
图32为本申请实施例提供的一种第二壳体的截面结构示意图;
图33为本申请实施例提供的一种传输线的截面结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的传输线,下面首先介绍一下其应用场景。
如图1所示,为本申请实施例提供的一种电子设备20的结构示意简图,传输线可以应用在电子设备20中,用于实现电子设备20中的电子器件之间的信号连接。具体来说,在电子设备20中可以包括基板21、第一电子元件22a、第二电子元件22b和传输线10。其中,第一电子元件22a、第二电子元件22b和传输线10均设置在基板21上,传输线的一端与第一电子元件22a连接,另一端与第二电子元件22b连接。即第一电子元件22a和第二电子元件22b之间可以通过传输线10实现信号连接。其中,第一电子元件22a或第二电子元件22b可以是有源器件也可以是无源器件等,本申请对第一电子元件22a和第二电子元件22b的具体类型不作限制。
目前,传输线的种类丰富多样,不同类型传输线具有不同的传输特性,能应用到不同类型的应用场景下。
例如,传输线可以包括微带线、共面波导或共面带状线。微带线、共面波导或共面带状线在较低频段具有良好的传输特性,因此,在微波集成电路中得到了广泛的应用。随着科学技术的不断发展和市场需求的不断提升,集成电路逐渐朝着高频段的方向发展。但是,传统的传输线(如上述的微带线等)的工作频率提高到毫米波段乃至太赫兹波段时,传输损耗呈指数式增加,并且会出现高次模态和色散大等不良情况,因此,传统的传输线不能 满足较高工作频率的传输需求。
传输线还可以包括金属矩形波导,金属矩形波导通常由铜、铝等金属材料制成,是截面形状为矩形、内部填充空气介质的规则金属波导。
金属矩形波导作为传输线使用时,具有传输损耗低、功率容量大等优势,但是传统的金属矩形波导具有机械加工困难、尺寸大、重量大等诸多问题。
随着加工技术的发展,新型的空气矩形微同轴传输线应运而生,并且有望解决传统传输线高频信号传输损耗高、金属矩形波导尺寸重量大等问题。另外,空气矩形微同轴传输线还具有介质频率低(趋近于零)、电磁屏蔽性高等优点,因此,逐渐成为了主流的研究方向。
如图2所示,提供了一种典型的空气矩形微同轴传输线01的立体结构示意图。其主要包括外框架底板011、外框架盖帽012、支撑结构013、外导体014和内导体015。外框架底板011和外框架盖帽012围成截面为矩形的腔体结构,并且,在外框架底板011的上板面以及外框架盖帽012的内壁均设有外导体014。内导体015通过支撑结构013固定在矩形的通道内。
在上述的空气矩形微同轴传输线01中,由于支撑结构013具有较大的体积,因此,会增加空气矩形微同轴传输线01的传输色散。若减小支撑结构013的体积,则会对空气矩形微同轴传输线01的性能造成不良影响。例如,当缩减支撑结构013的宽度尺寸后,支撑结构013则提供不了足够的顶面面积,会对内导体015的尺寸和形状形成较大的制约。另外,当缩减支撑结构013的高度尺寸后,内导体015则会更加靠近外框架底板011,导致传输损耗变高。
另外,进行制作时,外框架底板011和外框架盖帽012通常采用光固化液态树脂材料,并结合用3D打印工艺进行制作。但是,这种制作方式所制作出的表面平整性较低,会影响到内导体015和外导体014的制作质量,会增加传输损耗,还会产生传输色散等不良情况。另外,上述的空气矩形微同轴传输线01的信号传输性能(如传输损耗)与传统的金属矩形波导的传输性能基本相同。
当然,在目前的传输线中仍存在其他多种不同的类型,但是目前的传输线结构,均不利于实现小型化和轻薄化设计,并且不利于制作。
为此,本申请实施例提供了一种结构简单,有利于实现小型化和轻薄化设计的传输线。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施方式中”、“在另外的实施方式中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图3和图4所示,在本申请提供的一种示例中,传输线10可以包括外壳体11、外导体12、支撑板13和内导体14。具体的,外壳体11可以包括相互扣合的第一壳体111和第二壳体112,第一壳体111具有第一凹槽1111,第二壳体112具有第二凹槽1121,且第一凹槽1111和第二凹槽1121合围成通道100。外导体12可以包括第一导电层121和第二导电层122,第一导电层121位于第一凹槽1111的内壁,第二导电层122位于第二凹槽1121的内壁。支撑板13悬置在通道100内,且支撑板13的至少部分边缘固定在第一壳体111和第二壳体112之间。内导体14设置在支撑板13的第一板面131(图4中的下板面)。
在本申请提供的传输线10中,传输线10的外壳体11包括第一壳体111和第二壳体112,因此,在进行制作时,可以分别对第一壳体111和第二壳体112进行制作,从而便于提升制作时的便利性。另外,第一壳体111具有第一凹槽1111,并且,在第一凹槽1111的内壁具有第一导电层121;第二壳体112具有第二凹槽1121,并且,在第二凹槽1121的内壁具有第二导电层122。将第一壳体111与第二壳体112扣合后,第一凹槽1111和第二凹槽1121可以扣合成用于容纳内导体14的通道100。其中,第一导电层121和第二导电层122可以对内导体14起到良好的电磁屏蔽作用,信号在内导体14中进行传输时,有利于保证传输线10的信号传输性能。
另外,支撑板13悬置在通道100内具体指的是,支撑板13可以与第一壳体111固定连接,或者,支撑板13可以与第二壳体112固定连接;或者,支撑板13可以与第一壳体111和第二壳体112固定连接。另外,支撑板13的部分边缘固定在第一壳体111和第二壳体112之间,支撑板13能够具有较大面积的板面,内导体14可以位于支撑板13的两个板面,因此,在对内导体14进行设计或制作时,内导体14的数量、位置、形状和大小具有更多的可能性,因此,有利于提升传输线10或扩展传输线10的性能。另外,支撑板13可以具有较小的厚度尺寸,因此,支撑板13所占用的体积可以很小,能降低或防止支撑板13所带来的传输色散等不良问题。另外,支撑板13的至少部分边缘固定在第一壳体111和第二壳体112之间,从而有利于保证支撑板13与外壳体11之间的连接效果,也有利于提升传输线10在进行制作或装配时的便利性。
为了清楚体现本申请实施例提供的传输线10的技术效果,本申请实施例还提供了传输线10与传统的金属矩形波导的传输损耗的对比数据图。
如图5所示,横坐标表示频率,单位为THz,纵坐标表示传输损耗,单位为dB/mm,即传输线10每毫米的传输损耗。图5中实线表示本申请实施例提供的传输线10的传输损耗与频率对应的仿真曲线。虚线表示传统的金属矩形波导的传输损耗与频率对应的仿真曲线。
从图5中可以明显看出,本申请实施例提供的传输线10实现了低损耗(如0.1dB/mm左右)和大带宽(如能达到1THz)的特性,在300GHz以上频段的传输损耗远低于传统金属矩形波导。或者,也可以理解的是,本申请实施例提供的传输线10工作频段为直流至太赫兹波段时,具有较低色散、较大带宽的特性。
在具体应用时,传输线10的整体结构以及外壳体11、外导体12、支撑板13和内导体14的结构和设置方式可以是多样的,下面将分别进行举例说明。
请参阅图3和图4。对于支撑板13,在具体应用时,支撑板13可以是板体结构,即支撑板13可以具有明显的厚度尺寸,从而能够为内导体14提供较大的支撑力。或者,支撑板13可以是薄膜(如厚度尺寸小于或等于5以是),从而可以使得支撑板13具有较小 的厚度尺寸,有利于降低传输线10的传输损耗和色散。在进行制作时,支撑板13可以由较大面积的薄膜切割而成,从而有便于对支撑板13的批量制作,能保证品质的一致性。在对支撑板13的材质进行选择时,可以选用介电常数较低(如介电常数为2、3或4等)的材料。或者,支撑板13可以是刚性材料,以保证内导体14与外壳体11之间的连接稳定性。或者,支撑板13也可以是柔性材料,当传输线10在遭受较大外力冲击时,支撑板13可以通过自身的弹性形变对外力进行缓冲和吸收,以防止传输线10被破坏。当然,本申请对支撑板13的具体材质不作限定。另外,支撑板13的厚度可以是5厚度,也可以是大于5也可或小于5小于等,本申请对支撑板13的厚度尺寸不作限制。在实际应用中,可以根据不同需求对支撑板13的厚度、形状和材质进行合理选择,在此不作赘述。
对于内导体14,在具体应用时,信号主要在内导体14中进行传输,因此,内导体14可以采用铜、镍、金、钛、铬、钯等导电性较好的材料进行制作。在进行制作时,可以采用电子束蒸镀或磁控溅射等沉积工艺在支撑板13上直接制备内导体14。或者,也可以将制备成型的内导体14设置在支撑板13上。本申请对内导体14的材料和制备工艺不作限制。
另外,在具体应用时,内导体14的形状和类型可以是多样的。
例如,如图4所示,在本申请提供的一种示例中,内导体14可以设置在支撑板13的第一板面131。
或者,如图6所示,在本申请提供的一种示例中,内导体可以设置在支撑板13的第一板面131和第二板面132。具体的,内导体分别为内导体14a和内导体14b。其中,内导体14a位于支撑板13的第一板面131,内导体14b位于支撑板13的第二板面132,内导体14a在第二板面132上的垂直投影与内导体14b重合。
或者,如图7所示,在本申请提供的一种示例中,内导体设有三个,分别为内导体14a、内导体14b和内导体14c。内导体14b和内导体14c位于支撑板13的第一板面131,内导体14a位于支撑板13的第二板面132,内导体14a在第一板面131上的垂直投影与内导体14b和内导体14c不重合。
在具体应用时,通过增加内导体14的设置数量,有利于降低传输线10的传输损耗。
例如,如图8所示,本申请实施例提供了图4和图6中的传输线10的传输损耗的对比数据图。
如图9所示,本申请实施例提供了图4和图7中的传输线10的传输损耗的对比数据图。
在图8和图9中,横坐标表示频率,单位为THz;纵坐标表示传输损耗,单位为dB/mm,即传输线10每毫米的传输损耗。
在图8中,虚线表示图4所对应的传输线10的传输损耗与频率对应的仿真曲线。实线表示图6所对应的传输线10的传输损耗与频率对应的仿真曲线。
在图9中,虚线表示图4所对应的传输线10的传输损耗与频率对应的仿真曲线。实线表示图7所对应的传输线10的传输损耗与频率对应的仿真曲线。
通过对比可以明确得知,当增加内导体14的数量后可以降低传输线10的传输损耗。
当然,在其他的实施方式中,传输线10中还可以包括更多个内导体14。
概括来说,在实际应用时,内导体14可以设置在支撑板13的第一板面131,也可以仅设置在支撑板13的第二板面132,或者,也可以在支撑板13的第一板面131和第二板 面132均设置。
另外,内导体14的数量可以是一个、两个、三个或者更多个,本申请对此不作限定。
其中,沿内导体14的长度方向(或者信号的传输方向),内导体14的截面形状可以是一致的。
例如,在上述的图3和图4中所示出的示例中,内导体14的截面形状为矩形的薄片,并且,沿内导体14的长度方向,内导体14的截面形状和大小几乎不产生变化。
当然,在其他的示例中,沿内导体14的长度方向,内导体14的截面形状可以是变化的,以实现不同的功能。
例如,如图10和图11所示,其中,图10为传输线的立体结构示意图,图11为显示内导体14的平面图。沿传输线10的长度方向,内导体14具有周期延伸部141,从而可以实现滤波器或慢波器件的效果。具体来说,在图11中的示例中,示出了四个延伸部141,且四个延伸部141等距设置。当然,在其他的实施方式中,延伸部141的形状、数量和位置可以根据实际需求进行合理设置。或者,可以理解的是,在具体应用时,由于支撑板13能够提供较大面积的板面尺寸,因此,在对内导体14的形状进行设计时便提供了更多的可能性,有助于对内导体14的形状进行灵活设计,以扩展传输线10的功能。
另外,在一些实施方式中,也可以在内导体14和支撑板13之间设置一些功能器件,以扩展传输线10的功能。
例如,如图12所示,在本申请提供的一种示例中,功能器件15可以设置在支撑板13与内导体14之间,内导体14与功能器件15电连接。
其中功能器件15可以包括:共振隧穿二极管、肖特基二极管、量子级联激光器中的任一种。在实际应用中,传输线10中可以包括一个、两个或者更多个功能器件15,本申请对功能器件15的类型和数量不作限制。
在进行制作时,可以在支撑板13的板面直接制备功能器件15。例如,可以在支撑板13的板面生长外延层以直接制备功能器件15,然后,在功能器件5上制备内导体14。或者,也可以将制备成型的功能器件15设置在支撑板13上。本申请对功能器件15的制备方式不作限制。
在外壳体11的具体应用中,其结构类型也可以是多样的。
例如,如图12所示,在本申请提供的一种示例中,第一壳体111和第二壳体112的结构大致相同。
以第一壳体111为例,第一壳体111的第一凹槽1111为敞口状。或者可以理解的是,第一凹槽1111的底壁与第一凹槽1111的侧壁之间的夹角θ大于90于,以便于对第一导电层121进行制备。
例如,在采用金属蒸镀工艺将金属材料沉积在第一凹槽1111的内壁时,在重力的作用下,金属材料可以有效的沉积至第一凹槽1111的底壁和侧壁。相反的,若第一凹槽1111的底壁与第一凹槽1111的侧壁之间的夹角θ为90壁或90壁以下时,在采用金属蒸镀工艺对第一导电层121进行制备时,金属材料很难或不能有效的沉积在第一凹槽1111的底壁和侧壁的所有区域。因此,在本申请提供的实施例中,将第一凹槽1111设置为敞口结构,有利于在第一凹槽1111的底壁和侧壁有效的制备第一导电层121。
在实际应用时,第一凹槽1111的底壁与第一凹槽1111的侧壁之间的夹角θ可以是93是左右。当然,本申请对θ的具体数值不作限制。或者,在其他的示例中,第一凹槽1111 或第二凹槽1121的截面形状也可以是圆弧形、三角形、椭圆弧形或其他不规则形状等,在此不作赘述。
另外,在对第一导电层121进行设置时,第一导电层121也可以位于第一凹槽1111的外部。
例如,如图12所示,在本申请提供的一种示例中,第一导电层121位于第一凹槽1111的内壁(包括底壁和侧壁),以及第一凹槽1111的顶面。第二导电层122位于第二凹槽1121的内壁(包括底壁和侧壁),以及第二凹槽1121的顶面。或者,也可以理解为,第一导电层121包括位于第一凹槽1111的内壁的第一部分1211,以及位于第一凹槽1111的顶面的第二部分1212。第二导电层122包括位于第二凹槽1121的内壁的第一部分1221,以及位于第二凹槽1121的顶面的第二部分1222。
其中,支撑板13可以位于第二部分1212和第二部分1222之间。支撑板13的第一板面131可以与第一导电层121的第二部分1212固定连接。或者,支撑板13的第二板面132可以与第二导电层122的第二部分1222固定连接。在具体设置时,支撑板13与第一导电层121或第二导电层122之间可以采用键合或者焊接等方式进行固定连接,本申请对此不作限定。
当然,在具体实施时,第一导电层121与第二导电层122之间可以进行欧姆接触,也可以不进行欧姆接触(即导电连接)。在图12中提供的示例中,第一导电层121与第二导电层122之间没有进行欧姆接触。
在将第一导电层121和第二导电层122进行欧姆接触时,其实现方式可以有多种。
例如,如图13所示,在本申请提供的一种示例中,第一导电层121和第二导电层122之间可以通过金属化孔133实现欧姆接触。
具体来说,在支撑板13中可以设置贯穿支撑板13厚度的金属化孔133,第一导电层121和第二导电层122之间可以通过金属化孔133实现欧姆接触。
可以理解的是,在其他的实施方式中,金属化孔133也可以替换为导线等,在此不作赘述。
或者,如图14所示,第一导电层121的第二部分1212和第二导电层122的第二部分1222均设有沉槽(图中未标示出),支撑板13位于沉槽内,并且,第二部分1212与第二部分1222接触。或者,可以理解的是,支撑板13的宽度(图中左右方向的尺寸)小于第一壳体111和第二壳体112的宽度尺寸。支撑板13的厚度尺寸约等于第二部分1212和第二部分1222的沉槽的深度之和,因此,支撑板13能够被夹设在第二部分1212和第二部分1222的部分区域之间,并且,第二部分1212和第二部分1222的部分区域也能进行有效贴合,以实现第一导电层121和第二导电层122之间的电连接。
当然,在具体应用时,由于支撑板13的厚度可以较小,因此,在第一导电层121和第二导电层122不进行欧姆接触时,外界的电磁波也不会有效的传播至内导体14处,内导体14中的电磁波也不会产生泄漏。当第一导电层121和第二导电层122之间欧姆接触后,第一导电层121和第二导电层122可以提升对于内导体14的电磁屏蔽效果,防止外部电磁波传播至内导体14处,也能防止内导体14中的电磁波向外泄露,从而有利于保证传输线10的信号传输性能。
如图15所示,提供了对比了长度为1mm的传输线10,第一导电层121与第二导电层122进行欧姆接触时以及第一导电层121与第二导电层122未进行欧姆接触时的插入损耗 的差值的数据图。
图15中,横坐标表示频率,单位为THz;纵坐标表示插入损耗差值,单位为dB。纵坐标数值如2.E-03具体表示2*10-3;-5.E-03具体表示-5*10-3,在此不作过多赘述。
从图15中可以看出,第一导电层121和第二导电层122之间有无欧姆接触对传输线10的插入损耗几乎没有影响。
可以理解的是,在具体应用中,可以根据实际需求(如电磁屏蔽性能要求或支撑板13的厚度等)对第一导电层121和第二导电层122之间是否进行欧姆接触进行灵活选择。
当然,在对第一壳体111和第二壳体112进行设置时,第一壳体111和第二壳体112的结构可以是多样的。
例如,如图16所示,在本申请提供的另一种示例中,可以在第一凹槽1111的顶面设置第一沉槽1112,可以在第二凹槽1121的顶面设置第二沉槽1122。
其中,支撑板13可以位于第一沉槽1112和第二沉槽1122内,第二部分1212和第二部分1222可以实现欧姆接触。在具体应用时,第一沉槽1112的深度尺寸、第二沉槽1122的深度尺寸、第二部分1212的厚度尺寸以及第二部分1222的厚度尺寸之和大于或等于支撑板13的厚度尺寸,以使第二部分1212和第二部分1222之间实现良好的欧姆接触。
可以理解的是,在具体应用时,第二部分1212和第二部分1222之间可以通过键合或焊接等工艺实现固定连接,以提升第一壳体111和第二壳体112之间的连接稳定性,并保证第二部分1212和第二部分1222之间的电连接效果。
当然,在一些实施方式中,第二部分1212和第二部分1222也可以省略设置。
具体来说,如图17所示,第一沉槽1112和第二沉槽1122的厚度尺寸之和可以约等于支撑板13的厚度尺寸,第一凹槽1111的顶面和第二凹槽1121的顶面之间可以进行接触。其中,第一凹槽1111的顶面与第二凹槽1121的顶面之间可以通过键合或焊接等工艺实现固定连接,以提升第一壳体111和第二壳体112之间的连接稳定性。
另外,如图18所示,在本申请提供的另一个示例中,第一导电层121的第二部分1212还可以位于第一沉槽(图中未标示出)的底壁,第二导电层122的第二部分1222还可以位于第二沉槽(图中未标示出)的底壁。
当然,在具体应用时,可以仅在第一凹槽1111的顶壁设置第一沉槽1112,也可以仅在第二凹槽1121的顶壁设置第二沉槽1122,或者,也可以同时设置第一沉槽1112和第二沉槽1122。
另外,在对第一壳体111和第二壳体112进行设置时,第一壳体111和第二可以的结构可以相同,也可以不相同,本申请对此不作具体限定。
另外,需要说明的是,在实际应用中,可以根据不同需求将上述的不同结构类型的第一壳体111、第二壳体112、外导体12、支撑板13和内导体14等进行灵活组合,在此不作一一赘述。
对于传输线10整体,如图19所示,在实际应用中,传输线10可以是直线形。
如图20所示,第一凹槽1111(或第二凹槽1121)的底壁的宽度尺寸a可以是0.5mm左右。第一凹槽1111和第二凹槽1121的底壁之间的距离b可以是0.5mm左右。第一凹槽1111(或第二凹槽1121)的底壁与侧壁之间的夹角θ可以是93是左右。支撑板13的宽度尺寸w可以是0.9mm左右。支撑板13的厚度尺寸t可以是5以是左右。支撑板13的相对介电常数ε可以是2、3或4等。内导体14的宽度尺寸s可以是0.1mm左右。外导体12 和内导体14的厚度尺寸可以是0.5尺寸左右。其中,外导体12和内导体14的厚度尺寸可以相同也可以不相同,本申请对此不作具体限定。
或者,如图21所示,传输线10也可以是S形等。
当然,传输线10可以是柔性的结构,可以根据实际施工需求进行随意弯曲等。或者,可以理解的是,本申请对传输线10的整体形状不作限定。
另外,如图22所示,在本申请提供的另一种传输线缆中,可以包括三条传输线,分别传输线10a、传输线10b和传输线10c,传输线b和传输线c分别与传输线a连接。即传输线缆可以是Y形结构。传输线10a可以作为主干线,传输线b和传输线c可以作为主干线的分支。当然,在其他的示例中,传输线缆还可以包括三个或者三个以上的分支。或者,每个分支中也可以包括两个及以上的分支,在此不作赘述。
另外,为了便于说明本申请实施例提供的传输线10的技术效果,本申请实施例还提供了几种传输线10的电场强度仿真效果图。
如图23为信号在图19中的传输线中传播时,在垂直于传输线的长度方向的横截面的电场强度分布图。即在x-z平面中,电场的强度分布图。
图24为信号在图19中的传输线中传播时,沿传输线的长度方向,电场强度分布图。即在x-y平面中,电场的强度分布图。
图25为信号在图21中的传输线中传播时,沿传输线的长度方向,电场强度分布图。即在x-y平面中,电场的强度分布图。
图26为信号在图22中的传输线缆中传播时,沿传输线的长度方向,电场强度分布图。即在x-y平面中,电场的强度分布图。
在图23至图26中,颜色越浅表示电场强度越高,相反的,颜色越深,则表示电场强度越低。可以看出,电场基本集中在内导体周围,电场的分布均匀且近似准TEM模式,没有明显受到支撑板的影响。
另外,为了测试支撑板13所产生的插入损耗,本申请实施例还提供了不同介电常数下,支撑板13的插入损耗。
图27中,还提供了长度约为1mm的三种不同介电常数的支撑板的插入损耗,测试下的工作频率为250GHz左右。
图27中,横坐标表示频率,单位为THz,纵坐标表示插入损耗,单位为dB。仿真曲线S1表示介电常数为2时的支撑板13的插入损耗与频率的对应关系。仿真曲线S2表示介电常数为3时的支撑板的插入损耗与频率的对应关系。仿真曲线S3表示介电常数为4时的支撑板的插入损耗与频率的对应关系。
从图27中可以明显看出,三种不同介电常数的支撑板13的插入损耗均较低,因此,不会对电场的分布造成明显影响,从而不会影响传输线10的信号传输性能,并且,传输线10的工作频率为1THz时,也能实现较小的插入损耗。
另外,如图28所示,本申请实施例还提供了传输线10的群时延和色散的仿真数据图。
图28中,横坐标表示频率,单位为THz,左纵坐标表示群时延,单位为ps/mm。右纵坐标表示色散,单位为ps/mm/THz。实线表示传输线10的群时延与频率的对应关系。虚线表示传输线10的色散与频率的对应关系。
从图18中可以看出,传输线10的群时延在1THz的大带宽下的变化非常小,计算出的群时延的色散理论平均值在0.03ps/mm/THz,验证了本申请实施例提供的传输线10具备 低色散的特点。
概括来说,本申请实施例提供的传输线10,具有较好的信号传输性能,支撑板13所产生的插入损耗较低,甚至可以忽略不计,因此,不会影响都传输线10的信号传输性能。
在对传输线10进行制作时,可以采用多种不同的工艺和方法。
例如,如图29所示,在本申请提供的一种示例中,该制备方法可以包括:
步骤S100:在第一壳体的表面制备第一凹槽。
步骤S110:在第一凹槽的内壁设置第一导电层。
步骤S120:在支撑板的至少一个板面设置内导体。
步骤S130:将设置内导体的支撑板固定在第一凹槽的开口。
步骤S200:在第二壳体的表面制备第二凹槽;
步骤S210:在第二凹槽的内壁设置第二导电层;
步骤S300:将第一凹槽和第二凹槽扣合固定。
具体来说,请结合参阅图30至图33。在对第一壳体111进行制备时,第一壳体111可以采用晶圆作为胚料,并采用刻蚀工艺(如干法刻蚀或湿法刻蚀)等工艺在晶圆中制备第一凹槽1111,从而对第一壳体111进行制作成型。在本申请提供的第一壳体111中,可以采用半导体材料,并且,加工精度较高,可以达到纳米级,并且制备工艺简单。
当然,在其他的制备方法中,第一壳体111也可以其他的材料进行制作,本申请对此不作限定。
在对第一导电层121进行制备时,可以采用金属沉积工艺将铜或金等导电性较好的金属材料成型在第一凹槽1111的内壁以及第一凹槽1111的顶面,以制备第一导电层121。当然,在其他的实施方式中,第一凹槽1111的顶面也可以不制备第一导电层121。或者,可以在第一凹槽1111的顶面制备沉槽结构(图中未示出),另外,第一导电层121也可以位于沉槽结构的底壁或侧壁。
在对支撑板13进行制备时,支撑板13可以采用晶圆作为胚料,并采用刻蚀工艺(如干法刻蚀或湿法刻蚀)等工艺进行制作成型。或者,支撑板13也可以是薄膜,并采用切割等工艺制作出所需的形状。
在对内导体14进行制作时,可以采用金属沉积工艺将铜或金等导电性较好的金属材料成型在支撑板13的至少一个板面。当然,在其他的制备方法中,也可以将成型的导体结构设置在支撑板13上,在此不作赘述。
将支撑板13固定在第一凹槽1111的开口时,可以采用键合、焊接等工艺,以实现支撑板13与第一壳体111之间的固定连接。当然,在一些实施方式中,也可以将支撑板13放置在第一凹槽1111的开口处。
在对第二壳体112进行制备时,第二壳体112可以采用晶圆作为胚料,并采用刻蚀工艺(如干法刻蚀或湿法刻蚀)等工艺在晶圆中制备第二凹槽1121,从而对第二壳体112进行制作成型。在本申请提供的第二壳体112中,可以采用半导体材料,并且,加工精度较高,可以达到纳米级,并且制备工艺简单。
当然,在其他的制备方法中,第二壳体112也可以其他的材料进行制作,本申请对此不作限定。
在对第二导电层122进行制备时,可以采用金属沉积工艺将铜或金等导电性较好的金属材料成型在第二凹槽1121的内壁以及第二凹槽1121的顶面,以制备第二导电层122。 另外,在本申请提供的一种示例中,第二凹槽1121的顶面具有第二沉槽1122,且第二导电层122还位于第二沉槽1122的底壁。当然,在其他的实施方式中,第二凹槽1121的顶面也可以不制备第二导电层122。
最后,可以将第一壳体111和第二壳体112进行扣合固定。其中,第一壳体111和第二壳体112之间可以直接固定连接,也可以通过支撑板13进行固定连接。例如,当第一凹槽1111的顶面与第二凹槽1121的顶面相接触时,可以通过键合或焊接的工艺将第一凹槽1111的顶面和第二凹槽1121的顶面进行连接,以实现第一壳体111和第一壳体112之间的固定连接。或者,当第一导电层121与第二导电层122相接触时,可以通过键合或焊接的工艺将第一导电层121第二导电层122进行连接,以实现第一壳体111和第二壳体112之间的固定连接。或者,也可以是第一壳体111与支撑板13固定连接、第二壳体112与支撑板13固定连接,以实现第一壳体111和第二壳体112之间的固定连接。
在本申请实施例提供的传输线中,可以通过较为传统的制备工艺进行制作,有利于提升制备时的便利性,同时还有助于保证制备品质。另外,传输线可以是分体式的结构,因此,可以对不同的结构采用不同的制备工艺进行制作,有利于提升制作效率和制作精度,有利于保证传输线的信号传输性能。
当然,在实际的制备工作中,可以根据实际需求选择合适的制备工艺和流程对传输线进行制作,在此不作赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种传输线,其特征在于,包括:
    外壳体,包括相互扣合的第一壳体和第二壳体,所述第一壳体具有第一凹槽,所述第二壳体具有第二凹槽,且所述第一凹槽和所述第二凹槽合围成通道;
    外导体,包括第一导电层和第二导电层,所述第一导电层位于所述第一凹槽的内壁,所述第二导电层位于所述第二凹槽的内壁;
    支撑板,悬置在所述通道内,且所述支撑板的至少部分边缘固定在所述第一壳体和所述第二壳体之间;
    内导体,设置在所述支撑板的至少一个板面。
  2. 根据权利要求1所述的传输线,其特征在于,所述支撑板为薄膜。
  3. 根据权利要求1或2所述的传输线,其特征在于,所述第一凹槽的侧壁与所述第一凹槽的底壁之间的夹角大于90°。
  4. 根据权利要求1至3中任一项所述的传输线,其特征在于,所述第二凹槽的侧壁与所述第二凹槽的底壁之间的夹角大于90°。
  5. 根据权利要求1至4中任一项所述的传输线,其特征在于,所述支撑板与所述第一凹槽的顶面贴合。
  6. 根据权利要求1至4中任一项所述的传输线,其特征在于,所述第一导电层还位于所述第一凹槽的顶面,所述支撑板与所述第一导电层贴合。
  7. 根据权利要求1至4中任一项所述的传输线,其特征在于,所述第一凹槽的顶面具有第一沉槽,且所述支撑板的至少一部分位于所述第一沉槽内。
  8. 根据权利要求7所述的传输线,其特征在于,所述支撑板与所述第一沉槽的底壁贴合。
  9. 根据权利要求7所述的传输线,其特征在于,所述第一导电层还位于所述第一沉槽的底壁,所述支撑板与所述第一导电层贴合。
  10. 根据权利要求1至9中任一项所述的传输线,其特征在于,所述支撑板与所述第二凹槽的顶面贴合。
  11. 根据权利要求1至9中任一项所述的传输线,其特征在于,所述第二导电层还位于所述第二凹槽的顶面,所述支撑板与所述第二导电层贴合。
  12. 根据权利要求1至9中任一项所述的传输线,其特征在于,所述第二凹槽的顶面具有第二沉槽,且所述支撑板的至少一部分位于所述第二沉槽内。
  13. 根据权利要求12所述的传输线,其特征在于,所述支撑板与所述第二沉槽的底壁贴合。
  14. 根据权利要求12所述的传输线,其特征在于,所述第二导电层还位于所述第二沉槽的底壁,所述支撑板与所述第二导电层贴合。
  15. 根据权利要求1至14中任一项所述的传输线,其特征在于,所述支撑板包括贯穿所述支撑板两侧的金属化孔,所述第一导电层和所述第二导电层通过所述金属化孔电连接。
  16. 根据权利要求1至15中任一项所述的传输线,其特征在于,所述传输线还包括功能器件,所述功能器件设置在所述支撑板与所述内导体之间,且所述功能器件与所述内导体电连接。
  17. 根据权利要求16所述的传输线,其特征在于,所述功能器件包括:共振隧穿二极管、肖特基二极管、量子级联激光器中的任一种。
  18. 根据权利要求1至17中任一项所述的传输线,其特征在于,沿所述传输线的长度方向,所述内导体具有周期延伸部。
  19. 根据权利要求1至18中任一项所述的传输线,其特征在于,所述传输线为直线形或曲线形。
  20. 一种传输线缆,其特征在于,包括至少三条如权利要求1至19中任一项所述的传输线,且所述至少三条所述传输线中包括一条第一传输线和至少两条第二传输线,所述至少两条第二传输线分别与所述第一传输线连接。
  21. 一种电子设备,其特征在于,包括基板和至少两个电子器件,所述至少两个电子器件设置在所述基板上,还包括如权利要求1至19中任一项所述的传输线,或者,包括如权利要求20所述的传输线缆,所述传输线或所述传输线缆设置在所述基板上,用于连接所述至少两个电子器件。
  22. 一种传输线的制备方法,其特征在于,包括:
    在第一壳体的表面制备第一凹槽;
    在所述第一凹槽的内壁设置第一导电层;
    在支撑板的至少一个板面设置内导体;
    将设置所述内导体的所述支撑板固定在所述第一凹槽的开口;
    在第二壳体的表面制备第二凹槽;
    在所述第二凹槽的内壁设置第二导电层;
    将所述第一凹槽和所述第二凹槽扣合固定。
  23. 根据权利要求22所述的制备方法,其特征在于,所述方法还包括:
    在所述第一凹槽的顶面制备第一沉槽,或者,在所述第二凹槽的顶面制备第二沉槽。
PCT/CN2023/093625 2022-05-19 2023-05-11 一种传输线、传输线缆、传输线的制备方法和电子设备 WO2023221872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210555053.4 2022-05-19
CN202210555053.4A CN117133502A (zh) 2022-05-19 2022-05-19 一种传输线、传输线缆、传输线的制备方法和电子设备

Publications (1)

Publication Number Publication Date
WO2023221872A1 true WO2023221872A1 (zh) 2023-11-23

Family

ID=88834570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093625 WO2023221872A1 (zh) 2022-05-19 2023-05-11 一种传输线、传输线缆、传输线的制备方法和电子设备

Country Status (2)

Country Link
CN (1) CN117133502A (zh)
WO (1) WO2023221872A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080265919A1 (en) * 2007-04-02 2008-10-30 Izadian Jamal S Scalable wideband probes, fixtures, and sockets for high speed ic testing and interconnects
CN110311205A (zh) * 2019-07-04 2019-10-08 中国电子科技集团公司第三十八研究所 一种微同轴传输线的制作方法
CN113540729A (zh) * 2021-07-21 2021-10-22 中国电子科技集团公司第三十八研究所 一种基于3d打印的微型同轴传输线及其制作方法
CN114040672A (zh) * 2021-11-30 2022-02-11 赛莱克斯微系统科技(北京)有限公司 一种射频芯片屏蔽装置及其制作方法
CN114188286A (zh) * 2021-11-30 2022-03-15 赛莱克斯微系统科技(北京)有限公司 一种射频模块、制作方法及电子设备
CN114203629A (zh) * 2021-12-12 2022-03-18 赛莱克斯微系统科技(北京)有限公司 一种微同轴及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080265919A1 (en) * 2007-04-02 2008-10-30 Izadian Jamal S Scalable wideband probes, fixtures, and sockets for high speed ic testing and interconnects
CN110311205A (zh) * 2019-07-04 2019-10-08 中国电子科技集团公司第三十八研究所 一种微同轴传输线的制作方法
CN113540729A (zh) * 2021-07-21 2021-10-22 中国电子科技集团公司第三十八研究所 一种基于3d打印的微型同轴传输线及其制作方法
CN114040672A (zh) * 2021-11-30 2022-02-11 赛莱克斯微系统科技(北京)有限公司 一种射频芯片屏蔽装置及其制作方法
CN114188286A (zh) * 2021-11-30 2022-03-15 赛莱克斯微系统科技(北京)有限公司 一种射频模块、制作方法及电子设备
CN114203629A (zh) * 2021-12-12 2022-03-18 赛莱克斯微系统科技(北京)有限公司 一种微同轴及其制备方法

Also Published As

Publication number Publication date
CN117133502A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
EP2311134B1 (en) Waveguides and transmission lines in gaps between parallel conducting surfaces
EP1592082B1 (en) Contact-free element of transition between a waveguide and a microstrip line
JP3241139B2 (ja) フィルムキャリア信号伝送線路
JP3346752B2 (ja) 高周波パッケージ
JP4980306B2 (ja) 無線通信装置
US20140285277A1 (en) Dielectric Waveguide Manufactured Using Printed Circuit Board Technology
WO2023185843A9 (zh) 波导天线组件、雷达、终端和波导天线组件的制备方法
WO2008053886A1 (fr) Structure de connexion de guide d'onde
US20230318166A1 (en) Radio frequency chip, signal transceiver, and communication device
CN112038319A (zh) 基于htcc工艺的三维垂直互联结构及其制备方法
TWI776601B (zh) 具有波導管的線路板結構及其製作方法
CN210111019U (zh) 一种新型双脊集成基片间隙波导
WO2023221872A1 (zh) 一种传输线、传输线缆、传输线的制备方法和电子设备
WO2024046276A1 (zh) 三模介质谐振器及介质滤波器
WO2024093310A1 (zh) 全息天线、通信设备及全息天线的制备方法
CN116014400A (zh) 一种矩形波导、喇叭天线及片上系统
CN212908021U (zh) 基于htcc工艺的三维垂直互联结构及t/r组件
JP4794616B2 (ja) 導波管・ストリップ線路変換器
JP2007124201A (ja) アンテナモジュール
JP3347640B2 (ja) 高周波用伝送線路
CN114050407B (zh) 波导模式激励结构、方法及其应用
WO2021168735A1 (zh) 耦合部件、微波器件及电子设备
CN218414574U (zh) 电路器件
CN112164847B (zh) 一种毫米波滤波器
CN114284672B (zh) 波导转换装置、电路模块及电磁波转换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806824

Country of ref document: EP

Kind code of ref document: A1