WO2023221749A1 - 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法 - Google Patents

彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法 Download PDF

Info

Publication number
WO2023221749A1
WO2023221749A1 PCT/CN2023/090514 CN2023090514W WO2023221749A1 WO 2023221749 A1 WO2023221749 A1 WO 2023221749A1 CN 2023090514 W CN2023090514 W CN 2023090514W WO 2023221749 A1 WO2023221749 A1 WO 2023221749A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
glass
colored
wavelength conversion
color
Prior art date
Application number
PCT/CN2023/090514
Other languages
English (en)
French (fr)
Inventor
魏晓虎
谭小春
Original Assignee
隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基乐叶光伏科技有限公司 filed Critical 隆基乐叶光伏科技有限公司
Publication of WO2023221749A1 publication Critical patent/WO2023221749A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This application relates to the field of solar photovoltaic technology, specifically to a colored ink, colored photovoltaic glass, colored photovoltaic modules and preparation methods thereof.
  • the coating of traditional colored coated glass is prepared by compounding ordinary color-absorbing inorganic pigments and low-melting glass powder, which makes the glass have high hardness and weather resistance.
  • the color-absorbing principle of the selected pigments will cause some of the light energy to Converted into heat energy, resulting in low light energy utilization.
  • Patent Document 1 and Patent Document 2 select pearlescent pigments based on the interference color development principle, which reduces the absorption of light energy by the pigment and improves the utilization rate of light energy.
  • the main body of the ink coating is composed of polymer resin.
  • the cross-linked structure is added, Improve the mechanical properties of the coating, but compared to inorganic materials, the hardness, wear resistance, and weather resistance are still lacking.
  • the interference-colored pearlescent pigments have a certain transmittance to ultraviolet rays, which reduces the performance of the encapsulated film battery and causes an angular discoloration effect, making it unsuitable for building curtain walls.
  • Patent Document 3 combines UV curing and high-temperature sintering processes.
  • UV curing After UV curing, it is mechanically embossed to improve the light transmittance, and high-temperature sintering can ensure the weather resistance of the final inorganic coating.
  • high-temperature sintering requires UV curing and high-temperature sintering, which is a complicated process and poses a huge burden on the equipment. The requirements are high.
  • the organic content accounts for more than 30%, and defects are easily formed during high-temperature sintering.
  • the pressure holes in the coating may affect the impact resistance of the glass.
  • Patent Documents 4 and 5 add light wave conversion materials to the encapsulating film to improve the utilization rate of light energy by photovoltaic modules.
  • Patent Document 6 uses organic chromophores as light wave conversion materials and uses organic resin to fix them on the glass plate. None of the above patents involve colored glass and converted wavelength colors.
  • Patent document 1 CN110437676A published text
  • Patent document 2 CN110606668A published text
  • Patent document 3 CN113087406A published text
  • Patent document 4 CN107681015A published text
  • Patent document 5 CN107154442A published text
  • Patent document 6 CN104428907A published text
  • the purpose of this application is to provide an improved color ink with high hardness and strong weather resistance, which can reduce the absorption of light energy by pigments, improve the efficiency of light energy utilization, and alleviate the problem of discoloration with angle.
  • the purpose of this application is also to provide a method for preparing the above-mentioned colored ink, as well as a colored photovoltaic glass formed by coating the colored ink on the surface of ultra-white glass, and a method for preparing the colored photovoltaic glass.
  • the first aspect provides a color ink, including: low melting point glass powder, ink-adjusting oil, structural color pigment and inorganic wavelength conversion material.
  • the colored ink includes:
  • the low melting point glass powder has an initial melting temperature of 350 to 500°C;
  • the linear expansion coefficient of the low-melting glass powder is 85 ⁇ 10 -7 ⁇ 91 ⁇ 10 -7 /°C;
  • the particle size of the low melting point glass powder is less than or equal to 15 ⁇ m.
  • the ink-adjusting oil includes solvent and resin, preferably the ink-adjusting oil also includes auxiliaries;
  • the ink-adjusting oil includes: 70% to 90% solvent, 9% to 29% resin, and 0.5% to 4% auxiliary agents;
  • the solvent is selected from one, two or three types of terpineol, turpentine and diethylene glycol;
  • the resin is selected from one, two or three types of rosin-modified phenolic resin, aldehyde-ketone resin and ethyl cellulose;
  • the auxiliary agent is selected from one or both of oily dispersants and defoaming agents.
  • the structural color pigment is selected from one or more of pearlescent pigments, multi-layer metal oxide interference pigments and photonic crystal pigments;
  • each layer of metal oxides of the multi-layer metal oxide interference pigment is selected from one or more metal oxides of titanium, aluminum, silicon, tin, zirconium and zinc.
  • the structural color pigment is a pearlescent pigment
  • the pearlescent pigment includes a base material, and the base material is selected from one of natural mica, synthetic mica and synthetic borosilicate;
  • the pearlescent pigment further includes a coating material that covers the base material, and the coating material is selected from one, two or three types of titanium dioxide, ferric oxide and tin oxide;
  • the particle size of the pearlescent pigment is less than or equal to 200 ⁇ m.
  • the wavelength conversion material is a rare earth doped compound
  • the wavelength conversion material is selected from one or more than two of green wavelength conversion materials, red wavelength conversion materials, blue wavelength conversion materials and yellow wavelength conversion materials;
  • the green wavelength conversion material is selected from one, two or three types of CaAlSiN 3 :Eu 2+ , Ba 2 SiO 4 :Eu 2+ and Lu 3 Al 5 O 12 :Ce 3+ ;
  • the red wavelength conversion material is selected from one, two or three of Y 2 MoO 6 :Eu 3+ , Sr 2 Si 5 N 8 :Eu 2+ and Y 3 Al 5 O 12 :Mn 4+ . kind;
  • the blue wavelength conversion material is selected from LiSrPO 4 : Eu 2+ , Ba 3 Y 2 B 6 O 15 : Ce 3+ , SrLu 2 O 4 : Ce 3+ , Ca 3 ZrSi 2 O 9 : Ce 3 + , one or more of LiCaPO 4 :Eu 2+ and Ca 2 PO 4 Cl:Eu 2+ ;
  • the yellow wavelength conversion material is selected from one, two or three of Y 3 Al 5 O 12 : Ce 3+ , Tb 3 Al 5 O 12 : Ce 3+ and Sr 3 SiO 5 : Eu 2+. kind.
  • the second aspect provides a method for preparing color ink, including the following steps:
  • Preparing the ink-adjusting oil Dissolve the resin and additives in the solvent to obtain the ink-adjusting oil;
  • Preparing transparent ink mixing low melting point glass powder, the ink-adjusting oil and wavelength conversion material and grinding to a fineness of less than 10 ⁇ m to obtain transparent ink;
  • Adding structural color pigments adding structural color pigments to the transparent ink for mixing and dispersion to obtain the color ink.
  • the low melting point glass powder is 60 to 80 parts by weight, preferably 65 to 75 parts by weight;
  • the ink-adjusting oil is 18 to 30 parts by weight, preferably 22 to 28 parts by weight;
  • the structural color pigment is 1 to 10 parts by weight, preferably 1 to 5 parts by weight;
  • the inorganic wavelength conversion material is 1 to 10 parts by weight, preferably 1 to 4 parts by weight.
  • the resin, additives, low-melting glass powder, ink-adjusting oil, wavelength conversion material and structural color pigment are any of the previously described resins, additives, low-melting glass powder, ink-adjusting oil, and wavelength conversion. Materials and structural color pigments.
  • the third aspect provides a colored photovoltaic glass, including:
  • the color ink layer includes any of the aforementioned color inks or any of the color inks prepared by any of the aforementioned methods.
  • the glass body is ultra-white glass, preferably ultra-white float glass or ultra-white patterned glass;
  • the thickness of the glass body is 2 to 6 mm.
  • the fourth aspect provides a method for preparing colored photovoltaic glass, including the following steps: applying any of the previously described color inks or any of the color inks prepared by any of the previously described methods to the glass body, drying, and sintering Tempered to obtain colored photovoltaic glass;
  • the colored ink is applied to the glass body by screen printing, roller coating or spraying.
  • the mesh size of the screen used for screen printing is 100 to 350 mesh
  • the drying temperature is 140-200°C, and the drying time is 1-8 minutes;
  • the sintering and tempering temperature is 660 to 720°C, and the sintering and tempering time is 2 to 4 minutes;
  • the glass body is ultra-white glass, preferably ultra-white float glass or ultra-white patterned glass;
  • the thickness of the glass body is 2 to 6 mm.
  • the fifth aspect provides a colored photovoltaic module, including: colored front plate glass, first layer of encapsulation glue film, a photovoltaic cell array, a second layer of encapsulating film and a back glass, wherein the colored front glass is any of the aforementioned colored photovoltaic glasses.
  • Low melting point glass powder is added to the color ink of the present application, so that after the ink is sintered, it can form a dense inorganic coating on the surface of the glass body. Compared with the glass coating with polymer resin as the matrix, it has higher hardness and better performance. weather resistance.
  • Structural color pigments are added to the color ink of this application, and the color-forming principle is the interference color-forming principle, so that the light transmittance of the produced colored photovoltaic glass increases to more than 60%; while the traditional colored photovoltaic glass prepared by adding the same amount of chemical pigments has The light transmittance is only about 30%.
  • Inorganic wavelength conversion materials are added to the color ink of this application to convert ultraviolet rays into the visible light band.
  • the visible light band transmittance of colored photovoltaic glass prepared by using the color ink is increased.
  • the use of colored photovoltaic glass in photovoltaic components can improve the efficiency and service of the components. life.
  • the color ink of the present application due to the addition of wavelength conversion materials, also makes the color ink layer have a luminescent component, reducing the problem of angular discoloration of structural color pigments.
  • Figure 1 is a schematic diagram of a color photovoltaic module according to a specific embodiment of the present application.
  • the present application provides a color ink, which includes: low melting point glass powder, ink-adjusting oil, structural color pigment and inorganic wavelength conversion material.
  • This application aims at the problems of low hardness and poor weather resistance of traditional glass coatings based on polymer resins.
  • High-temperature color inks are prepared by adding low-melting point glass powder. After the ink is sintered, it can form a dense inorganic coating on the glass surface with better performance. High hardness and better weather resistance.
  • This application is aimed at the problems that chemical pigments in traditional glass coatings absorb color and cause low light energy utilization, and absorb heat and reduce battery efficiency.
  • the use of structural color pigments based on the interference color forming principle to prepare colored inks can reduce the pigment's absorption of light energy.
  • This application aims at the problem that crystalline silicon cells have low photoelectric conversion efficiency for light in the ultraviolet band, and long-term ultraviolet irradiation will reduce cell efficiency and cause component power attenuation.
  • Inorganic wavelength conversion materials are added to maintain wavelength conversion performance after high-temperature sintering, and convert ultraviolet rays to the visible light band, which can not only improve the efficiency of light energy utilization, but also reduce the damage of ultraviolet rays to the packaging film and battery, and extend the service life of photovoltaic cells; this application also determines that it has certain random characteristics based on the interference color-forming principle of structural color pigments.
  • By adding wavelength conversion materials to make the ink coating have a luminescent component, and superimposing the reflected color of structural color pigments, it can not only improve the color saturation of colored photovoltaic glass products, but also alleviate the problem of angular discoloration.
  • the color ink of the present application is composed of low melting point glass powder, ink-adjusting oil, structural color pigments and inorganic wavelength conversion materials.
  • the color ink of the present application based on the total weight of the color ink, the color ink includes:
  • the color ink may include 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70 %, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, etc. of low melting point glass powder, preferably 65% to 75% of low melting point glass powder .
  • the color ink may include 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28% %, 29%, 30%, etc. of ink-adjusting oil, preferably 22% to 28% ink-adjusting oil.
  • the color ink may include 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, etc.
  • the structural color pigment is preferably 1% to 5% structural color pigment.
  • the color ink may include 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, etc.
  • the inorganic wavelength conversion material is preferably 1% to 4% of the inorganic wavelength conversion material.
  • the color ink of the present application based on the total weight of the color ink, includes: 65% to 75% low melting point glass powder, 22% to 28% ink-adjusting oil, 1% to 5% structural color pigments, and 1% to 4% inorganic wavelength conversion materials.
  • the color ink of the present application controls the weight percentage of low melting point glass powder, ink-adjusting oil, structural color pigment and inorganic wavelength conversion material within the above range, which can further improve the hardness of the color ink layer and enhance the weather resistance of the color ink layer. Reducing the absorption of light energy by pigments can further improve the efficiency of light energy utilization and extend the life of photovoltaic cells. It can also further reduce the angular discoloration of the final colored photovoltaic glass product.
  • the color ink of the present application based on the total weight of the color ink, consists of: 60% to 80% low melting point glass powder; 18% to 30% ink-adjusting oil; Composition of 1% to 10% structural color pigments; and 1% to 10% inorganic wavelength conversion materials.
  • the initial melting temperature of the low melting point glass powder is 350-500°C, for example, it can be 350°C, 360°C, 370°C, 380°C, 390°C, 400°C , 410°C, 420°C, 430°C, 440°C, 450°C, 460°C, 470°C, 480°C, 490°C, 500°C, etc.
  • the "initial melting temperature of low-melting-point glass powder” in this application refers to the temperature at which low-melting-point glass powder begins to melt. Selecting the initial melting temperature in this range can ensure that the low melting point glass powder is completely melted and has a certain strength during the glass tempering process.
  • the lines of the low melting point glass powder The sexual expansion coefficient is 85 ⁇ 10 -7 ⁇ 91 ⁇ 10 -7 /°C, for example, it can be 85 ⁇ 10 -7 /°C, 86 ⁇ 10 -7 /°C, 87 ⁇ 10 -7 /°C, 88 ⁇ 10 -7 /°C, 89 ⁇ 10 -7 /°C, 90 ⁇ 10 -7 /°C, 91 ⁇ 10 -7 /°C, etc.
  • linear expansion coefficient in this application, also known as the linear expansion coefficient, refers to the ratio of the change in the length of a solid substance to its length at the original temperature (not necessarily 0°C) every time the temperature of a solid material changes by 1°C. The unit is 1/°C.
  • the linear expansion coefficient within this range is consistent or similar to the linear expansion coefficient of the photovoltaic front glass. A large difference in linear expansion coefficient will cause cracks in the coating during coating preparation or outdoor use in environments with large temperature differences.
  • the particle size of the low melting point glass powder is less than or equal to 15 ⁇ m.
  • the particle size of the low melting point glass powder here refers to the particle size D90, and "particle size D90" refers to the particle size in nanometers, which divides the particle size distribution so that 90% of the particles have a particle size smaller than this value .
  • the particle size D90 value is measured by using water as the dispersion medium and using a laser particle size analyzer, such as the BT-9300ST laser particle size analyzer of Dandong Baite Instrument Co., Ltd. Glass powder with a particle size of 15 ⁇ m or less can reduce grinding time during ink preparation and improve the mixing effect of wavelength conversion materials and glass powder.
  • the ink-adjusting oil includes a solvent and a resin.
  • the ink-adjusting oil also includes an auxiliary agent.
  • the ink-adjusting oil includes: 70% to 90% solvent, 9% to 29% resin, and 0.5% to 0.5% 4% auxiliary agent; for example, it can be 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, etc. solvent, for example, it can be 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, etc. resin, for example, it can be 0.5%, 1%, 1.5%, 2%, 2.5% , 3%, 3.5%, 4% and other additives.
  • 70% to 90% solvent for example, it can be 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, etc.
  • solvent for example, it can be 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, etc.
  • resin for example, it can be 0.5%, 1%, 1.5%, 2%
  • the solvent, resin and auxiliary agent in the ink-adjusting oil are not specifically limited, and can be routinely selected according to needs.
  • the solvent can be selected from one, two or three types of terpineol, turpentine and diethylene glycol;
  • the resin can be selected from rosin-modified phenolic resin, aldehyde-ketone resin and ethyl cellulose.
  • the auxiliary agent is selected from one or two of oily dispersants and defoaming agents.
  • Terpineol in this application refers to an important spice with a molecular formula of C 10 H 18 O. It is a colorless viscous liquid with a boiling point of 217°C and a lilac fragrance. Its isomers are generally called ⁇ -terpineol, ⁇ -terpineol, and ⁇ -terpineol respectively. Terpineol is cheap and is one of the most widely produced synthetic flavors. It is widely used in the preparation of daily and edible flavors.
  • Turpentine in this application refers to an essential oil, which is an important industrial raw material.
  • Turpentine is A liquid extracted from the resin of coniferous plants by distillation or other methods. The main component is terpenes.
  • Turpentine can be mixed with chloroform, ether or acetic acid in any proportion, but it is insoluble in water.
  • Turpentine is a flammable liquid with a high flash point and is volatile, producing a large amount of thick smoke when burned.
  • Diethylene glycol in this application, also known as diethylene glycol, refers to a polyol with chemical formula C 4 H 10 O 3 , which is colorless, odorless, transparent, hygroscopic and viscous Liquid, which has a spicy and sweet taste, is non-corrosive and has low toxicity.
  • the "rosin-modified phenolic resin” in this application is the best resin currently used in offset printing inks. It is based on alkylphenols (phenols used in offset printing inks include phenol, bisphenol A, PTBP, p-tert-butylphenol, POP is a polymer product generated by chemical reaction with tert-octylphenol, PNP nonylphenol and PDDP dodecylphenol), formaldehyde, polyol and rosin.
  • alkylphenols phenols used in offset printing inks include phenol, bisphenol A, PTBP, p-tert-butylphenol, POP is a polymer product generated by chemical reaction with tert-octylphenol, PNP nonylphenol and PDDP dodecylphenol), formaldehyde, polyol and rosin.
  • aldehyde-ketone resin also known as polyketone resin
  • polyketone resin is a neutral, non-saponifiable cyclohexanone-formaldehyde resin with high brightness and light resistance.
  • Ethylcellulose in this application refers to the ethyl ether of cellulose, which is a long-chain polymer with ⁇ -anhydroglucose as the unit connected through acetal. It is the most widely used water-insoluble cellulose derivative. one.
  • oil dispersant in this application refers to a substance that can uniformly disperse pigment and filler particles in an organic sol.
  • it can be propylene glycol methyl ether, fatty alcohol polyoxyethylene ether, fatty alcohol ether phosphate ester salt, and alkylammonium salt.
  • Defoaming agent in this application refers to substances that can reduce the surface tension of water, solutions, suspensions, etc., prevent the formation of foam, or reduce or eliminate the original foam.
  • This application does not limit the type of defoaming agent.
  • it can be polysiloxanes, mineral oils, polyethers, etc.
  • Structural color in this application, also known as physical color, refers to the color produced by the interaction between light and a structure of the same magnitude as the wavelength of light.
  • Structural color pigment refers to the color derived from the interaction between light and the microstructure of the pigment. Pigments that interact (such as refraction, diffuse reflection, diffraction or interference).
  • Structural color pigments are added to the color ink of the present application, so that the color ink layer formed by coating the color ink on the surface of a rigid substrate, which is not limited to glass, can appear in different colors, such as red, blue, yellow, green, purple, etc. and its mixed colors.
  • the thickness of the color ink layer and the concentration of various structural color pigments can be varied to achieve the desired color effect. In particular, a large color range can be achieved through the combination of red, green, yellow and blue structural color pigments in different concentrations.
  • the structural color pigments of the present application are preferably red, blue, green or yellow structural color pigments.
  • the structural color pigments may also be other colors such as grey, white, purple or orange structural color pigments.
  • Structural color pigments of other colors or mixtures thereof may be used to produce specific colors and shades.
  • the color ink of the present application can contain different kinds of structural color pigments, so that special effects can be obtained, and each structural color pigment can be mixed in any proportion.
  • the structural color pigment is selected from one or more of pearlescent pigments, multi-layer metal oxide interference pigments and photonic crystal pigments.
  • the "pearlescent pigment” in this application refers to an optical effect pigment. Because it can exhibit a certain metallic luster, it is also called a non-metallic pigment with metallic luster. Pearlescent pigments have the glittering effect of metallic pigments and can produce the soft color of natural pearls. When exposed to sunlight, they can produce multi-level reflections. The reflected light interacts with each other to present soft, eye-catching or colorful luster and colors.
  • the "multilayer metal oxide interference pigment" of the present application has a multilayer metal oxide flake structure.
  • high refractive index metal oxides and low refractive index metal oxides are alternately distributed, thereby producing optical interference.
  • each layer of metal oxides of the multi-layer metal oxide interference pigment is selected from one, two or three metal oxides of titanium, aluminum, silicon, tin, zirconium and zinc. above.
  • photonic crystal pigment in this application refers to a pigment that uses the diffraction effect of light on the periodic arrangement of photonic crystals to show color when the crystal itself is completely colorless.
  • the structural color pigment is a pearlescent pigment
  • the pearlescent pigment includes a base material, and the base material is selected from natural mica, synthetic mica and synthetic borosilicate. A sort of.
  • the pearlescent pigment is composed of a base material, and the base material is selected from one of natural mica, synthetic mica and synthetic borosilicate.
  • the pearlescent pigment includes a base material and a coating material covering the base material, wherein the base material can be selected from the group consisting of natural mica, synthetic mica and synthetic boron.
  • the base material can be selected from the group consisting of natural mica, synthetic mica and synthetic boron.
  • the coating material can be selected from one, two or three kinds of titanium dioxide, ferric oxide and tin oxide.
  • the particle size of the pearlescent pigment is less than or equal to 200 ⁇ m, for example, it can be 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 40 ⁇ m, 60 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m etc.
  • the particle size of the pearlescent pigment here refers to the particle size D90.
  • the measurement method is: use water as the dispersion medium and use a laser particle size analyzer to test. For example, the BT-9300ST laser particle size analyzer of Dandong Baite Instrument Co., Ltd. can be used.
  • the “wavelength conversion material” in this application refers to a material that can convert ultraviolet light or infrared light into visible light.
  • the wavelength conversion material is a rare earth doped compound.
  • the wavelength conversion material is selected from the group consisting of green wavelength conversion materials (i.e., wavelength conversion materials that emit green light), red wavelength conversion materials (i.e., wavelength conversion materials that emit red light). material), one or two or three or four of the blue wavelength conversion material (ie, the wavelength conversion material that emits blue light) and the yellow wavelength conversion material (ie, the wavelength conversion material that emits yellow light).
  • the green wavelength conversion material is selected from the group consisting of CaAlSiN 3 :Eu 2+ , Ba 2 SiO 4 :Eu 2+ and Lu 3 Al 5 O 12 :Ce 3+ One or two or three kinds;
  • the red wavelength conversion material is selected from one of Y 2 MoO 6 :Eu 3+ , Sr 2 Si 5 N 8 :Eu 2+ and Y 3 Al 5 O 12 :Mn 4+ One or two or three kinds;
  • the blue wavelength conversion material is selected from LiSrPO 4 : Eu 2+ , Ba 3 Y 2 B 6 O 15 : Ce 3+ , SrLu 2 O 4 : Ce 3+ , Ca 3 ZrSi 2 One or more of O 9 : Ce 3+ , LiCaPO 4 : Eu 2+ and Ca 2 PO 4 Cl : Eu 2+ ;
  • the yellow wavelength conversion material is selected from Y 3 Al 5 O 12 : Ce 3+ , one, two or three of T
  • the structural color pigment is a green pigment
  • the wavelength conversion material is a green wavelength conversion material.
  • the green wavelength conversion material is selected from the group consisting of CaAlSiN 3 :Eu 2+ and Ba 2 One, two or three of SiO 4 :Eu 2+ and Lu 3 Al 5 O 12 :Ce 3+ .
  • the structural color pigment is a red pigment
  • the wavelength conversion material is a red wavelength conversion material.
  • the red wavelength conversion material is selected from Y 2 MoO 6 :Eu 3+ , One, two or three of Sr 2 Si 5 N 8 :Eu 2+ and Y 3 Al 5 O 12 :Mn 4+ .
  • the structural color pigment is a blue pigment
  • the wavelength conversion material is a blue wavelength conversion material.
  • the blue wavelength conversion material is selected from LiSrPO 4 :Eu 2+ , Ba 3 Y 2 B 6 O 15 : Ce 3+ , SrLu 2 O 4 : Ce 3+ , Ca 3 ZrSi 2 O 9 : Ce 3+ , LiCaPO 4 : Eu 2+ and Ca 2 PO 4 Cl: Eu 2+ one or more than two of them.
  • the structural color pigment is a yellow pigment
  • the wavelength conversion material is a yellow wavelength conversion material.
  • the yellow wavelength conversion material is selected from Y 3 Al 5 O 12 : Ce 3 + , one, two or three of Tb 3 Al 5 O 12 : Ce 3+ and Sr 3 SiO 5 : Eu 2+ .
  • this application also provides a method for preparing color ink, which method includes the following steps:
  • the low melting point glass powder is 60 to 80 parts by weight, preferably 65 to 75 parts by weight;
  • the ink-adjusting oil is 18 to 30 parts by weight, preferably 22 to 28 parts by weight;
  • the structural color pigment is 1 to 10 parts by weight, preferably 1 to 5 parts by weight;
  • the inorganic wavelength conversion material is 1 to 10 parts by weight, preferably 1 to 4 parts by weight.
  • the low melting point glass powder can be 60 parts by weight, 61 parts by weight, 62 parts by weight, 63 parts by weight, 64 parts by weight, 65 parts by weight, 66 parts by weight, 67 parts by weight, 68 parts by weight, 69 parts by weight, 70 parts by weight, 71 parts by weight, 72 parts by weight, 73 parts by weight, 74 parts by weight, 75 parts by weight, 76 parts by weight, 77 parts by weight, 78 parts by weight, 79 parts by weight, 80 parts by weight, etc.;
  • the ink-adjusting oil It can be 18 parts by weight, 19 parts by weight, 20 parts by weight, 21 parts by weight, 22 parts by weight, 23 parts by weight, 24 parts by weight, 25 parts by weight, 26 parts by weight, 27 parts by weight, 28 parts by weight, 29 parts by weight, 30 parts by weight, etc.
  • the structural color pigment can be 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by
  • the low melting point glass powder is 65 to 75 parts by weight
  • the ink-adjusting oil is 22 to 28 parts by weight
  • the structural color pigment is 1 to 5 parts by weight
  • the inorganic wavelength conversion material is 1 to 4 parts by weight.
  • the resin, auxiliary agent, low-melting point glass powder, ink-adjusting oil, wavelength conversion material and structural color pigment are any of the resins, auxiliary agents, low-melting point glass as mentioned above. powders, inks, wavelength conversion materials and structural color pigments.
  • this application also provides a colored photovoltaic glass, which includes:
  • the color ink layer includes any color ink as mentioned above or any color ink as mentioned above. Colored ink prepared by a method.
  • the glass body is ultra-white glass
  • the "ultra-white glass” of the present application refers to an ultra-transparent low-iron glass, also known as low-iron glass, high-transparent glass Glass. It is a high-quality, multi-functional new type of high-end glass with a light transmittance of over 91.5%. It is currently widely used in the front glass of photovoltaic modules.
  • the glass body is preferably ultra-white float glass or ultra-white patterned glass.
  • the thickness of the glass body is 2 to 6 mm, for example, it can be 2 mm, 3.2 mm, 4 mm, 5 mm, 6 mm, etc.
  • the colored ink layer is formed by applying the colored ink to the glass body through screen printing, roller coating or spraying, preferably applied to the glass through screen printing formed on the body.
  • the present application also provides a method for preparing colored photovoltaic glass, which is characterized in that it includes the following steps: applying the color ink as described in the preceding item or the color ink prepared by the method as described in the preceding item. On to the glass body, it is dried, sintered and tempered to obtain colored photovoltaic glass.
  • the colored ink is applied to the glass body by screen printing, roller coating or spraying, preferably by screen printing.
  • the colored ink is applied to the glass body through screen printing, and the mesh size of the screen used for screen printing is 100 to 350 mesh, for example It can be 100 mesh, 120 mesh, 140 mesh, 150 mesh, 170 mesh, 190 mesh, 200 mesh, 220 mesh, 250 mesh, 270 mesh, 290 mesh, 300 mesh, 330 mesh, 350 mesh, etc.
  • the drying temperature is 140-200°C, for example, it can be 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C etc.
  • the drying time is 1 to 8 min, for example, it can be 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, etc.
  • the sintering and tempering temperature is 660 to 720°C, for example, it can be 660°C, 670°C, 680°C , 690°C, 700°C, 710°C, 720°C, etc.
  • the sintering and tempering time is 2 to 4min, for example, it can be 2min, 2.5min, 3min, 3.5min, 4min, etc.
  • the glass body is ultra-white glass, preferably ultra-white float glass or ultra-white patterned glass, and the thickness of the glass body is 2 to 6mm, for example, it can be 2mm, 3.2mm, 4mm, 5mm, 6mm, etc.
  • this application also provides a color photovoltaic module, as shown in Figure 1, which includes: Colored front plate glass 1, first layer of encapsulating film 2, photovoltaic cell array 3, second layer of encapsulating film 4 and back plate glass 5, wherein the colored front plate glass 1 is any of the aforementioned colored photovoltaic glasses,
  • the colored front glass 1 includes a glass body 101 and a colored ink layer 102 .
  • the light transmittance of the colored front glass is above 60%, preferably above 70%, for example, it can be 60%, 65%, 70%, 75%, 80%, 85%, 88 %, 90%, etc.
  • the material of the first layer of encapsulating film can be selected from one of EVA, POE and PVB, and the material of the second layer of encapsulating film can be selected from EVA, POE and PVB. A sort of.
  • the cells used in the photovoltaic cell array may be P-type or N-type cells, and the backplane glass is float glass with a thickness of 2 to 6 mm.
  • the colored ink of this application is applied to the glass body, and after drying, sintering and tempering, the colored photovoltaic glass has both high light transmittance and high reflectivity, and the problem of discoloration with angle is effectively alleviated. Specifically, its light transmittance is above 60%, or even above 72%, or even up to 76%; at the same time, its reflectivity is above 17%, or even up to 19%; the visual angle difference between 45° viewing angle and 75° is less than 8, It can even be as low as 6.
  • the red wavelength conversion material Y 2 MoO 6 :Eu 3+ used below was prepared by referring to the method in "Sol-gel Method Synthesis of Y2MoO6:Eu3+ Fluorescent Materials and Research on its Photoluminescence Properties" by Zhang Jie et al.
  • Ba 3 Y 2 B 6 O 15 :Ce 3+ was prepared by referring to the method in "A High Symmetry, Narrow-Emitting Blue Phosphor for Wide-Gamut White Lighting” by AC Duke et al .
  • Preparation of color ink Stir and mix low-melting glass powder, ink-adjusting oil and wavelength conversion material evenly, then grind them with a grinder to a fineness of less than 10 ⁇ m to obtain a transparent ink; then mechanically stir and mix the transparent ink and pearlescent pigment to obtain the color ink.
  • Example of colored inks Example of colored inks.
  • Preparation of colored photovoltaic glass The prepared colored ink is printed on 3.2mm ultra-white float glass through a 300 mesh screen, the glass is dried at 160°C for 5 minutes, and the dried glass is tempered at 700°C for 2 minutes to obtain colored photovoltaics Glass.
  • Preparation of colored photovoltaic modules laminated and packaged colored photovoltaic glass, first layer of EVA encapsulating film, N-type cell array, second layer of EVA encapsulating film, and 3.2mm float glass to obtain colored photovoltaic modules.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Example 1 The method of preparing colored ink, colored photovoltaic glass and colored photovoltaic modules is the same as in Example 1.
  • Preparation of color ink Stir and mix low-melting glass powder and ink-adjusting oil evenly, then grind it with a grinder to a fineness of less than 10 ⁇ m to obtain transparent ink; then mechanically stir and mix the transparent ink and pearlescent pigment to obtain the color of this comparative example. ink.
  • Preparation of color ink Stir and mix low-melting glass powder and ink-adjusting oil evenly, then grind it with a grinder to a fineness of less than 10 ⁇ m to obtain a transparent ink; then mechanically stir and mix the transparent ink and the color-absorbing pigment titanium nickel yellow to obtain the color ink. Comparative color inks.
  • Preparation of color ink Stir and mix low-melting glass powder, ink-adjusting oil and wavelength conversion material evenly, then grind them with a grinder to a fineness of less than 10 ⁇ m to obtain transparent ink; then mechanically stir and mix the transparent ink and color-absorbing pigment titanium nickel yellow. After dispersion, the color ink of this comparative example was obtained.
  • the colored inks prepared in each example and comparative example were printed on 3.2mm ultra-white float glass through a 300-mesh screen.
  • Example 1 to 10 and Comparative Examples 1 to 3 the glass was dried at 160°C for 5 minutes, and the dried glass was tempered and sintered at 700°C for 2 minutes to obtain colored photovoltaic glass.
  • Comparative Example 4 Glass was cured by ultraviolet light to obtain colored glass. The ultraviolet light irradiation energy was 300 mJ/cm2.
  • the transmittance and reflectance were measured using PerkinElmer UV-Visible-Near Infrared Spectrophotometer LAMBDA1050, with the detection wavelength range being 380-1100nm.
  • the 45° viewing angle and 75° visual angle difference were tested using Konica Minolta multi-angle spectrophotometer CM-M6. During the test, there was a black background under the glass.
  • the viscosity is tested using a rotational viscometer NDJ-8S.
  • the test conditions are: (23 ⁇ 2)°C, 4# rotor, 12RPM.
  • the weather resistance test uses a ZN-PV vertical photovoltaic module UV aging test chamber to irradiate the glass.
  • the cumulative UVA irradiation amount is 150kwh/m 2 and the decrease in light transmittance of the glass is tested. Table 2
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本申请公开一种彩色油墨,包括:低熔点玻璃粉、调墨油、结构色颜料和无机波长转换材料。还公开一种制备彩色油墨的方法,包括:将树脂和助剂溶解于溶剂中,得到调墨油;将低熔点玻璃粉、调墨油和波长转换材料搅拌混合后研磨至细度为10μm以下,得到透明油墨;将结构色颜料加入透明油墨中进行混合分散,得到彩色油墨。还公开一种彩色光伏玻璃包括:玻璃本体;和在玻璃本体表面上的彩色油墨层;彩色油墨层由前述彩色油墨施加在玻璃本体表面形成。还公开一种制备前述彩色光伏玻璃的方法。还公开包括前述彩色光伏玻璃的彩色光伏组件。采用本申请的彩色油墨制备的彩色光伏玻璃硬度更高、耐候性更好,透光率好,且缓解了结构色颜料随角变色的问题。

Description

彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法
本申请要求在2022年5月16日提交中国专利局、申请号为202210528179.2、名称为“彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能光伏技术领域,具体涉及一种彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法。
背景技术
太阳能是一种可再生、不受地域限制的清洁能源,近年来随着光伏技术的发展,光伏发电成本快速下降,光伏发电技术被越来越大范围的使用,光伏与建筑相结合也成为光伏应用的领域之一。彩色光伏建筑一体化(Building Integrated Photovoltaic,BIPV)有助于实现光伏构件与多彩建筑环境的融合,符合建筑行业未来装配式、绿色低碳的发展趋势,具有推广前景。光伏组件上添加色彩有多种实现形式,如电池减反膜上色、彩色光电层、彩色封装胶膜、彩色前板玻璃。基于经济及效率考虑,目前商品化的彩色晶硅光伏产品多通过印刷涂层、玻璃镀膜等手段得到彩色前板玻璃实现需求色彩。
传统的彩色涂层玻璃,其涂层通过普通的吸收显色无机颜料与低熔点玻璃粉复合制备,使得玻璃具有较高的硬度及耐候性能,但所选颜料吸收显色原理会使部分光能转化为热能,导致光能利用率偏低。
专利文献1、专利文献2选取干涉显色原理的珠光颜料,降低了颜料对光能的吸收,提升光能利用率,但其油墨涂层的主体由高分子树脂组成,虽然通过加入交联结构提升涂层力学性能,但相对于无机材料,硬度,耐磨,耐候性能仍有欠缺。此外干涉显色的珠光颜料对紫外线具有一定的透过率,降低封装胶膜电池性能,还会带来随角变色效果不适用于建筑幕墙。专利文献3结合紫外固化与高温烧结工艺,UV固化后经过机械压纹提升透光性能、高温烧结能够保证最终无机涂层的耐候性能,但其需要经过紫外固化及高温烧结,工艺复杂,对设备要求高,有机物含量占比30%以上高温烧结时易形成缺陷,涂层上的压孔可能会影响玻璃的耐冲击性能。
此外为了提升太阳能利用效率,已有专利报道采用波长转换材料,将 400nm以下的光转化为可见光范围的光,其中专利文献4、专利文献5将光波转换材料加入封装胶膜中提升光伏组件对光能的利用率。专利文献6采用有机发色团为光波转换材料,利用有机树脂固定在玻璃板上。以上专利均未涉及彩色玻璃及转化后的波长颜色。
因此,有必要开发一种具有较高耐候性能、应用于太阳能电池、能够通过波长转换提升光能利用效率的彩色油墨及彩色光伏玻璃。
现有技术文献
专利文献1:CN110437676A公开文本
专利文献2:CN110606668A公开文本
专利文献3:CN113087406A公开文本
专利文献4:CN107681015A公开文本
专利文献5:CN107154442A公开文本
专利文献6:CN104428907A公开文本
发明内容
针对上述现有技术存在的缺点,本申请的目的在于提供一种改进的彩色油墨,具有高硬度、强耐候性,能降低颜料对光能的吸收,提升光能利用效率,减轻随角变色问题。本申请的目的还在于提供一种上述彩色油墨的制备方法,以及将所述彩色油墨涂覆在超白玻璃表面形成的一种彩色光伏玻璃和所述彩色光伏玻璃的制备方法。
本申请的具体技术方案如下:
第一方面提供一种彩色油墨,包括:低熔点玻璃粉、调墨油、结构色颜料和无机波长转换材料。
可选的,以所述彩色油墨的总重量为基础,所述彩色油墨包括:
60%~80%、优选为65%~75%低熔点玻璃粉;
18%~30%、优选为22%~28%调墨油;
1%~10%、优选为1%~5%结构色颜料;以及
1%~10%、优选为1%~4%无机波长转换材料。
可选的,所述低熔点玻璃粉的始融温度为350~500℃;
优选地,所述低熔点玻璃粉的线性膨胀系数为85×10-7~91×10-7/℃;
优选地,所述低熔点玻璃粉的粒径小于等于15μm。
可选的,所述调墨油包括溶剂和树脂,优选所述调墨油还包括助剂;
优选地,以所述调墨油的总重量为基础,所述调墨油包括:70%~90%溶剂、9%~29%树脂以及0.5%~4%助剂;
优选地,所述溶剂选自松油醇、松节油和一缩二乙二醇中的一种或两种或三种;
优选地,所述树脂选自松香改性酚醛树脂、醛酮树脂和乙基纤维素中的一种或两种或三种;
优选地,所述助剂选自油性分散剂和消泡剂中的一种或两种。
可选的,所述结构色颜料选自珠光颜料、多层金属氧化物干涉颜料和光子晶体颜料中的一种或两种以上;
优选地,所述多层金属氧化物干涉颜料的各层金属氧化物分别选自钛、铝、硅、锡、锆、锌的金属氧化物中的一种或两种以上。
可选的,所述结构色颜料为珠光颜料,所述珠光颜料包括基材,所述基材选自天然云母、合成云母和合成硼硅酸盐中的一种;
优选地,所述珠光颜料还包括包覆所述基材的包覆材料,所述包覆材料选自二氧化钛、三氧化二铁和氧化锡中的一种或两种或三种;
优选地,所述珠光颜料的粒径小于等于200μm。
可选的,所述波长转换材料为稀土掺杂化合物;
优选地,所述波长转换材料选自绿色波长转换材料、红色波长转换材料、蓝色波长转换材料和黄色波长转换材料中的一种或两种以上;
优选地,所述绿色波长转换材料选自CaAlSiN3:Eu2+、Ba2SiO4:Eu2+和Lu3Al5O12:Ce3+中的一种或两种或三种;
优选地,所述红色波长转换材料选自Y2MoO6:Eu3+、Sr2Si5N8:Eu2+和Y3Al5O12:Mn4+中的一种或两种或三种;
优选地,所述蓝色波长转换材料选自LiSrPO4:Eu2+、Ba3Y2B6O15:Ce3+、SrLu2O4:Ce3+、Ca3ZrSi2O9:Ce3+、LiCaPO4:Eu2+和Ca2PO4Cl:Eu2+中的一种或两种以上;
优选地,所述黄色波长转换材料选自Y3Al5O12:Ce3+、Tb3Al5O12:Ce3+和Sr3SiO5:Eu2+中的一种或两种或三种。
第二方面提供一种制备彩色油墨的方法,包括下述步骤:
制备调墨油:将树脂和助剂溶解于溶剂中,得到调墨油;
制备透明油墨:将低熔点玻璃粉、所述调墨油和波长转换材料混合后研磨至细度为10μm以下,得到透明油墨;
加入结构色颜料:将结构色颜料加入所述透明油墨中进行混合分散,得到所述彩色油墨。
可选的,所述低熔点玻璃粉为60~80重量份,优选为65~75重量份;
所述调墨油为18~30重量份,优选为22~28重量份;
所述结构色颜料为1~10重量份,优选为1~5重量份;
所述无机波长转换材料为1~10重量份,优选为1~4重量份。
可选的,所述树脂、助剂、低熔点玻璃粉、调墨油、波长转换材料和结构色颜料为任一前所述的树脂、助剂、低熔点玻璃粉、调墨油、波长转换材料和结构色颜料。
第三方面提供一种彩色光伏玻璃,包括:
玻璃本体;以及
在所述玻璃本体表面上的彩色油墨层;
其中,所述彩色油墨层包括任一前述的彩色油墨或任一前述的方法制备的彩色油墨。
可选的,所述玻璃本体为超白玻璃,优选为超白浮法玻璃或超白压花玻璃;
优选地,所述玻璃本体的厚度为2~6mm。
第四方面提供一种制备彩色光伏玻璃的方法,包括下述步骤:将任一前所述的彩色油墨或任一前所述的方法制备的彩色油墨施加至玻璃本体上,经过烘干、烧结钢化得到彩色光伏玻璃;
优选地,将所述彩色油墨通过丝网印刷、辊涂或喷涂施加至玻璃本体上。
可选的,丝网印刷采用的网版的目数为100~350目;
优选地,烘干温度为140~200℃,烘干时间为1~8min;
优选地,烧结钢化温度为660~720℃,烧结钢化时间为2~4min;
优选地,所述玻璃本体为超白玻璃,优选为超白浮法玻璃或超白压花玻璃;
优选地,所述玻璃本体的厚度为2~6mm。
第五方面提供一种彩色光伏组件,包括:彩色前板玻璃、第一层封装胶 膜、光伏电池阵列、第二层封装胶膜和背板玻璃,其中,所述彩色前板玻璃为任一前述的彩色光伏玻璃。
发明的效果
本申请的彩色油墨中添加低熔点玻璃粉,使得油墨完成烧结后能够在玻璃本体表面形成致密的无机涂层,相对于具有以高分子树脂为基体的玻璃涂层具有更高的硬度和更好的耐候性。
本申请的彩色油墨中添加结构色颜料,其成色原理为干涉成色原理,使得制得的彩色光伏玻璃的透光率增至60%以上;而添加相同量的化学颜料制备的传统彩色光伏玻璃的透光率仅为30%左右。
本申请的彩色油墨中添加无机波长转换材料,将紫外线转换到可见光波段,利用所述彩色油墨制备的彩色光伏玻璃的可见光波段透光率增加,彩色光伏玻璃用于光伏组件能提升组件效率和服役寿命。本申请的彩色油墨,由于其添加波长转换材料,也使得彩色油墨层具有发光成分,降低结构色颜料的随角变色问题。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个具体实施方式的彩色光伏组件示意图。
符号说明
1彩色前板玻璃 2第一层封装胶膜 3光伏电池阵列
4第二层封装胶膜 5背板玻璃 101玻璃本体
102彩色油墨层
具体实施例
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中 自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
需要说明的是,在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
一方面,本申请提供一种彩色油墨,所述彩色油墨包括:低熔点玻璃粉、调墨油、结构色颜料和无机波长转换材料。
本申请针对以聚合物树脂为基体的传统玻璃涂层硬度低、耐候性差的问题,通过加入低熔点玻璃粉而制备高温彩色油墨,油墨完成烧结后能够在玻璃表面形成致密的无机涂层具有更高的硬度和更好的耐候性。
本申请针对传统玻璃涂层中的化学颜料吸收显色造成光能利用率低、吸收发热降低电池效率的问题,采用干涉成色原理的结构色颜料制备彩色油墨,能降低颜料对光能的吸收。
本申请针对晶硅电池对紫外波段的光线光电转化效率低、长期紫外线照射会降低电池效率而造成组件功率衰减的问题,添加无机波长转换材料,在高温烧结后能保持波长转换性能,将紫外线转换到可见光波段,不仅能提升光能利用效率,还降低了紫外线对封装胶膜和电池的损害,提升了光伏电池服役寿命;本申请还针对结构色颜料的干涉成色原理决定了其具有一定的随角变色问题,从而通过添加波长转换材料使油墨涂层具有发光成分,与结构色颜料反射颜色叠加,不仅能提升彩色光伏玻璃产品颜色的饱和度,还能减轻其随角变色问题。
在一个具体实施方式中,本申请的彩色油墨由低熔点玻璃粉、调墨油、结构色颜料和无机波长转换材料组成。
在一个具体实施方式中,本申请的彩色油墨中,以所述彩色油墨的总重量为基础,所述彩色油墨包括:
60%~80%低熔点玻璃粉;
18%~30%调墨油;
1%~10%结构色颜料;以及
1%~10%无机波长转换材料。
例如,以所述彩色油墨的总重量为基础,所述彩色油墨可包括60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%等的低熔点玻璃粉,优选为65%~75%的低熔点玻璃粉。
例如,以所述彩色油墨的总重量为基础,所述彩色油墨可包括18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%等的调墨油,优选为22%~28%的调墨油。
例如,以所述彩色油墨的总重量为基础,所述彩色油墨可包括1%、2%、3%、4%、5%、6%、7%、8%、9%、10%等的结构色颜料,优选为1%~5%的结构色颜料。
例如,以所述彩色油墨的总重量为基础,所述彩色油墨可包括1%、2%、3%、4%、5%、6%、7%、8%、9%、10%等的无机波长转换材料,优选为1%~4%的无机波长转换材料。
在一个具体实施方式中,本申请的彩色油墨中,以所述彩色油墨的总重量为基础,所述彩色油墨包括:65%~75%低熔点玻璃粉,22%~28%调墨油,1%~5%结构色颜料,以及1%~4%无机波长转换材料。
本申请的彩色油墨,将低熔点玻璃粉、调墨油、结构色颜料和无机波长转换材料的重量百分比控制在上述范围内,能够进一步提高彩色油墨层的硬度、增强彩色油墨层的耐候性、降低颜料对光能的吸收,还能够进一步提升光能利用效率,提升光伏电池寿命,同时也能够进一步降低最终的彩色光伏玻璃产品的随角变色现象。
在一个具体实施方式中,本申请的彩色油墨中,以所述彩色油墨的总重量为基础,所述彩色油墨由:60%~80%低熔点玻璃粉;18%~30%调墨油;1%~10%结构色颜料;以及1%~10%无机波长转换材料的组成。
在一个具体实施方式中,本申请的彩色油墨中,所述低熔点玻璃粉的始融温度为350~500℃,例如可为350℃、360℃、370℃、380℃、390℃、400℃、410℃、420℃、430℃、440℃、450℃、460℃、470℃、480℃、490℃、500℃等。本申请的“低熔点玻璃粉的始融温度”是指低熔点玻璃粉开始熔融的温度。选取此范围的始融温度能保证低熔点玻璃粉在玻璃钢化过程中完全熔融并具有一定强度。
在一个具体实施方式中,本申请的彩色油墨中,所述低熔点玻璃粉的线 性膨胀系数为85×10-7~91×10-7/℃,例如可为85×10-7/℃、86×10-7/℃、87×10-7/℃、88×10-7/℃、89×10-7/℃、90×10-7/℃、91×10-7/℃等。本申请中的“线性膨胀系数”,亦称线胀系数,是指固体物质的温度每改变1℃时,其长度的变化与其在原温度(不一定为0℃)时的长度之比,单位为1/℃。此范围内的线性膨胀系数与光伏前板玻璃的线性膨胀系数一致或相近,相差较大的线性膨胀系数会导致涂层制备或户外温差较大环境使用时涂层产生裂纹。
在一个具体实施方式中,本申请的彩色油墨中,所述低熔点玻璃粉的粒径小于等于15μm。此处低熔点玻璃粉的粒径是指粒径D90,“粒径D90”是指以纳米为单位的粒径,其划分粒径分布,使得90%的颗粒具有低于该值的粒径尺寸。在一个具体实施方式中,粒径D90的值的测定方法为:以水为分散介质,采用激光粒度仪测试,例如可为丹东百特仪器有限公司BT-9300ST激光粒度分析仪。粒径小于等于15μm的玻璃粉能够保证在油墨制备时减少研磨时间,提升波长转换材料与玻璃粉的混合效果。
在一个具体实施方式中,所述调墨油包括溶剂和树脂,优选所述调墨油还包括助剂。
在一个具体实施方式中,本申请的彩色油墨中,以所述调墨油的总重量为基础,所述调墨油包括:70%~90%溶剂、9%~29%树脂以及0.5%~4%助剂;例如可为70%、72%、74%、76%、78%、80%、82%、84%、86%、88%、90%等的溶剂,例如可为10%、12%、14%、16%、18%、20%、22%、24%、26%、28%、30%等的树脂,例如可为0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%等的助剂。
在一个具体实施方式中,本申请的彩色油墨,对调墨油中的溶剂、树脂以及助剂不做具体限定,可根据需要进行常规选择。例如,所述溶剂可选自松油醇、松节油和一缩二乙二醇中的一种或两种或三种;所述树脂选自松香改性酚醛树脂、醛酮树脂和乙基纤维素中的一种或两种或三种;所述助剂选自油性分散剂和消泡剂中的一种或两种。
本申请中的“松油醇”是指一种重要的香料,分子式为C10H18O,其为无色黏稠液体,沸点217℃,具有紫丁香花香。其异构体一般分别称作α-松油醇、β-松油醇、γ-松油醇。松油醇价格低廉,是合成香料中产量较大的品种之一,广泛应用于配制日用和食用香精。
本申请中的“松节油”是指一种精油,它是一种重要的工业原料。松节油是 通过蒸馏或其他方法从松柏科植物的树脂所提取的液体,主要成分是萜烯。松节油能以任意比例与氯仿、乙醚或醋酸混合,但不溶于水。松节油属于高闪点可燃液体,具有挥发性,燃烧时会产生大量浓烟。
本申请中的“一缩二乙二醇”,又名二甘醇,是指一种多元醇类,化学式C4H10O3,其为无色、无臭、透明、吸湿性的粘稠液体,其有辛辣的甜味,无腐蚀性,低毒。
本申请中的“松香改性酚醛树脂”是现在应用于胶印油最好的树脂,其是以烷基酚(用于胶印油墨的酚类有苯酚、双酚A、PTBP对叔丁基酚、POP对特辛基苯酚、PNP壬基酚及PDDP十二烷基苯酚)、甲醛、多元醇及松香进行化学反应生成的高分子产物。
本申请中的“醛酮树脂”(又称聚酮树脂)是一种具有高亮度、耐光性的中性、非皂化型的环已酮-甲醛树脂。
本申请中的“乙基纤维素”是指纤维素的乙基醚,是通过乙缩醛连接的以β-脱水葡萄糖为单元的长链聚合物,是应用最广泛的水不溶性纤维素衍生物之一。
本申请中的“油性分散剂”是指能够在有机溶胶中将颜填料颗粒均匀分散的物质,例如可为丙二醇甲醚、脂肪醇聚氧乙烯醚、脂肪醇醚磷酸酯盐、烷基铵盐共聚物、含胺基的嵌段共聚物等。
本申请中的“消泡剂”是指能降低水、溶液、悬浮液等的表面张力,防止泡沫形成,或使原有泡沫减少或消灭的物质。本申请对消泡剂的种类不做限定,例如可为聚硅氧烷类、矿物油类、聚醚类等。
本申请的“结构色”又称物理色,是指光和与光波长量级相当的结构相互作用而产生的颜色,“结构色颜料”是指颜色源自光和颜料的微结构之间的相互作用(如:折射、漫反射、衍射或干涉)的颜料。
本申请的彩色油墨中加入结构色颜料,使得彩色油墨涂覆在不限于玻璃等的刚性基板的表面形成的彩色油墨层可以呈现为不同的颜色,例如红色、蓝色、黄色、绿色、紫色等及其混合色。可以改变彩色油墨层的厚度以及各种结构色颜料的浓度以实现所需的颜色效果。尤其是通过不同浓度的红色、绿色、黄色和蓝色的结构色颜料的组合,可以实现较大的色彩范围。
本申请的结构色颜料优选为红色、蓝色、绿色或黄色结构色颜料。然而,所述结构色颜料还可以为其他颜色例如灰色、白色、紫色或橙色结构色颜料。 可以使用其他颜色的结构色颜料或他们的混合来产生特定的颜色和色调。
本申请的彩色油墨可以包含不同种类的结构色颜料,使得能够获得特殊的效果,且各结构色颜料可以以任何比例混合。
在一个具体实施方式中,所述结构色颜料选自珠光颜料、多层金属氧化物干涉颜料和光子晶体颜料中的一种或两种以上。
本申请的“珠光颜料”是指是一种光学效应颜料,因为它能呈现一定的金属光泽,故又称为具有金属光泽的非金属颜料。珠光颜料具有金属颜料的闪光效果,又能产生天然珍珠的柔和色泽,在受到阳光照射时,能产生多层次的反射,反射光相互作用而呈现出柔和夺目或五彩缤纷光泽及色彩。
本申请的“多层金属氧化物干涉颜料”具有多层金属氧化物片状结构,所述片状结构中,高折射率金属氧化物和低折射率金属氧化物交替分布,从而产生光学干涉。
在一个具体实施方式中,所述多层金属氧化物干涉颜料的各层金属氧化物分别选自钛、铝、硅、锡、锆、锌的金属氧化物中的一种或两种或三种以上。
本申请的“光子晶体颜料”是指利用光子晶体的周期性排列对光的衍射作用,在晶体本身完全无色的情况下,呈现出颜色的颜料。
在一个具体实施方式中,本申请的彩色油墨中,所述结构色颜料为珠光颜料,所述珠光颜料包括基材,所述基材选自天然云母、合成云母和合成硼硅酸盐中的一种。
在一个具体实施方式中,本申请的彩色油墨中,所述珠光颜料由基材组成,所述基材选自天然云母、合成云母和合成硼硅酸盐中的一种。
在一个具体实施方式中,本申请的彩色油墨中,所述珠光颜料包括基材以及包覆所述基材的包覆材料,其中,所述基材可选自天然云母、合成云母和合成硼硅酸盐中的一种;所述包覆材料可选自二氧化钛、三氧化二铁和氧化锡中的一种或两种或三种。
在一个具体实施方式中,本申请的彩色油墨中,所述珠光颜料的粒径小于等于200μm,例如可为5μm、10μm、20μm、40μm、60μm、80μm、100μm、120μm、140μm、160μm、180μm、200μm等。此处珠光颜料的粒径是指粒径D90,测定方法为:以水为分散介质,采用激光粒度仪测试,例如可采用丹东百特仪器有限公司BT-9300ST激光粒度分析仪。
本申请的“波长转换材料”是指能将紫外光或红外光转化为可见光的材料。在一个具体实施方式中,本申请的彩色油墨中,所述波长转换材料为稀土掺杂化合物。
在一个具体实施方式中,本申请的彩色油墨中,所述波长转换材料选自绿色波长转换材料(即,发射绿色光的波长转换材料)、红色波长转换材料(即,发射红色光的波长转换材料)、蓝色波长转换材料(即,发射蓝色光的波长转换材料)和黄色波长转换材料(即,发射黄色光的波长转换材料)中的一种或两种或三种或四种。
在一个具体实施方式中,本申请的彩色油墨中,所述绿色波长转换材料选自CaAlSiN3:Eu2+、Ba2SiO4:Eu2+和Lu3Al5O12:Ce3+中的一种或两种或三种;所述红色波长转换材料选自Y2MoO6:Eu3+、Sr2Si5N8:Eu2+和Y3Al5O12:Mn4+中的一种或两种或三种;所述蓝色波长转换材料选自LiSrPO4:Eu2+、Ba3Y2B6O15:Ce3+、SrLu2O4:Ce3+、Ca3ZrSi2O9:Ce3+、LiCaPO4:Eu2+和Ca2PO4Cl:Eu2+中的一种或两种以上;所述黄色波长转换材料选自Y3Al5O12:Ce3+、Tb3Al5O12:Ce3+和Sr3SiO5:Eu2+中的一种或两种或三种。
在一个具体实施方式中,本申请的彩色油墨中,所述结构色颜料为绿色颜料,所述波长转换材料为绿色波长转换材料,优选绿色波长转换材料选自CaAlSiN3:Eu2+、Ba2SiO4:Eu2+和Lu3Al5O12:Ce3+中的一种或两种或三种。
在一个具体实施方式中,本申请的彩色油墨中,所述结构色颜料为红色颜料,所述波长转换材料为红色波长转换材料,优选红色波长转换材料选自Y2MoO6:Eu3+、Sr2Si5N8:Eu2+和Y3Al5O12:Mn4+中的一种或两种或三种。
在一个具体实施方式中,本申请的彩色油墨中,所述结构色颜料为蓝色颜料,所述波长转换材料为蓝色波长转换材料,优选蓝色波长转换材料选自LiSrPO4:Eu2+、Ba3Y2B6O15:Ce3+、SrLu2O4:Ce3+、Ca3ZrSi2O9:Ce3+、LiCaPO4:Eu2+和Ca2PO4Cl:Eu2+中的一种或两种以上。
在一个具体实施方式中,本申请的彩色油墨中,所述结构色颜料为黄色颜料,所述波长转换材料为黄色波长转换材料,优选黄色波长转换材料选自Y3Al5O12:Ce3+、Tb3Al5O12:Ce3+和Sr3SiO5:Eu2+中的一种或两种或三种。
另一方面,本申请还提供一种制备彩色油墨的方法,所述方法包括下述步骤:
(1)制备调墨油:将树脂和助剂溶解于溶剂中,得到调墨油;
(2)制备透明油墨:将低熔点玻璃粉、所述调墨油和波长转换材料混合后研磨至细度为10μm以下,得到透明油墨;
(3)加入结构色颜料:将结构色颜料加入所述透明油墨中进行混合分散,得到所述彩色油墨。
在一个具体实施方式中,本申请的制备彩色油墨的方法中,
所述低熔点玻璃粉为60~80重量份,优选为65~75重量份;
所述调墨油为18~30重量份,优选为22~28重量份;
所述结构色颜料为1~10重量份,优选为1~5重量份;
所述无机波长转换材料为1~10重量份,优选为1~4重量份。
例如,所述低熔点玻璃粉可为60重量份、61重量份、62重量份、63重量份、64重量份、65重量份、66重量份、67重量份、68重量份、69重量份、70重量份、71重量份、72重量份、73重量份、74重量份、75重量份、76重量份、77重量份、78重量份、79重量份、80重量份等;所述调墨油可为18重量份、19重量份、20重量份、21重量份、22重量份、23重量份、24重量份、25重量份、26重量份、27重量份、28重量份、29重量份、30重量份等;所述结构色颜料可为1重量份、2重量份、3重量份、4重量份、5重量份、6重量份、7重量份、8重量份、9重量份、10重量份等;所述无机波长转换材料可为1重量份、2重量份、3重量份、4重量份、5重量份、6重量份、7重量份、8重量份、9重量份、10重量份等。
在一个具体实施方式中,本申请的制备彩色油墨的方法中,
所述低熔点玻璃粉为65~75重量份;
所述调墨油为22~28重量份;
所述结构色颜料为1~5重量份;
所述无机波长转换材料为1~4重量份。
本申请的制备彩色油墨的方法中,所述树脂、助剂、低熔点玻璃粉、调墨油、波长转换材料和结构色颜料为如前所述的任一种树脂、助剂、低熔点玻璃粉、调墨油、波长转换材料和结构色颜料。
又一方面,本申请还提供一种彩色光伏玻璃,其包括:
玻璃本体;以及
在所述玻璃本体表面上的彩色油墨层;
其中,所述彩色油墨层包括如前所述的任一种彩色油墨或如前所述的任 一种方法制备的彩色油墨。
在一个具体实施方式中,本申请的彩色光伏玻璃中,所述玻璃本体为超白玻璃,本申请的“超白玻璃”是指一种超透明低铁玻璃,也称低铁玻璃、高透明玻璃。它是一种高品质、多功能的新型高档玻璃品种,透光率可达91.5%以上,目前广泛应用于光伏组件的前板玻璃。
在一个具体实施方式中,本申请的彩色光伏玻璃中,所述玻璃本体优选为超白浮法玻璃或超白压花玻璃。
在一个具体实施方式中,本申请的彩色光伏玻璃中,所述玻璃本体的厚度为2~6mm,例如可为2mm、3.2mm、4mm、5mm、6mm等。
在一个具体实施方式中,本申请的彩色光伏玻璃中,所述彩色油墨层由所述彩色油墨通过丝网印刷、辊涂或喷涂施加至玻璃本体上而形成,优选通过丝网印刷施加至玻璃本体上而形成。
再一方面,本申请还提供一种制备彩色光伏玻璃的方法,其特征在于,包括下述步骤:将如前任一项所述的彩色油墨或如前任一项所述的方法制备的彩色油墨施加至玻璃本体上,经过烘干、烧结钢化得到彩色光伏玻璃。
在一个具体实施方式中,将所述彩色油墨通过丝网印刷、辊涂或喷涂施加至玻璃本体上,优选通过丝网印刷施加至玻璃本体上。
在一个具体实施方式中,本申请的制备彩色光伏玻璃的方法中,将所述彩色油墨通过丝网印刷施加至玻璃本体上,丝网印刷采用的网版的目数为100~350目,例如可为100目、120目、140目、150目、170目、190目、200目、220目、250目、270目、290目、300目、330目、350目等。
在一个具体实施方式中,本申请的制备彩色光伏玻璃的方法中,烘干温度为140~200℃,例如可为140℃、150℃、160℃、170℃、180℃、190℃、200℃等,烘干时间为1~8min,例如可为1min、2min、3min、4min、5min、6min、7min、8min等;烧结钢化温度为660~720℃,例如可为660℃、670℃、680℃、690℃、700℃、710℃、720℃等,烧结钢化时间为2~4min,例如可为2min、2.5min、3min、3.5min、4min等。
在一个具体实施方式中,本申请的制备彩色光伏玻璃的方法中,所述玻璃本体为超白玻璃,优选为超白浮法玻璃或超白压花玻璃,所述玻璃本体的厚度为2~6mm,例如可为2mm、3.2mm、4mm、5mm、6mm等。
另一方面,本申请还提供一种彩色光伏组件,如图1所示,其包括:彩 色前板玻璃1、第一层封装胶膜2、光伏电池阵列3、第二层封装胶膜4和背板玻璃5,其中,所述彩色前板玻璃1为前述任一种彩色光伏玻璃,所述彩色前板玻璃1包括玻璃本体101和彩色油墨层102。
在一个具体实施方式中,所述彩色前板玻璃的透光率在60%以上,优选为70%以上,例如可为60%、65%、70%、75%、80%、85%、88%、90%等。
在一个具体实施方式中,所述第一层封装胶膜的材质可选自EVA、POE和PVB中的一种,所述第二层封装胶膜的材质可选自EVA、POE和PVB中的一种。
在一个具体实施方式中,所述光伏电池阵列所用的电池可为P型或N型电池,所述背板玻璃为厚度为2~6mm的浮法玻璃。
本申请的彩色油墨施加至玻璃本体上,经过烘干、烧结钢化得到彩色光伏玻璃同时具备高透光率以及高反射率,并且其随角变色的问题得到有效缓解。具体的,其透光率在60%以上,甚至在72%以上,甚至可达76%;同时,反射率在17%以上,甚至可高达19%;45°视角与75°视角色差小于8,甚至可低至6。
实施例
本申请对试验中所用到的材料以及试验方法进行一般性和/或具体的描述,在下面的实施例中,所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品,本申请中部分原料来源如下表1所示。
表1
参考陈伟等人的《用微波加热法制备Ba2SiO4:Eu2+绿色荧光粉》中的方法制备下述使用的绿色波长转换材料Ba2SiO4:Eu2+
参考张捷等人的《溶胶-凝胶法合成Y2MoO6:Eu3+荧光材料及其光致发光性质研究》中的方法制备下述使用的红色波长转换材料Y2MoO6:Eu3+
参考AC Duke等人的“A High Symmetry,Narrow-Emitting Blue Phosphor for Wide-Gamut White Lighting”中的方法制备Ba3Y2B6O15:Ce3+
参考牟中飞等人的《Y3Al5O12:Ce3+的余辉和热释光特性》中的方法制备下述使用的黄色波长转换材料Y3Al5O12:Ce3+
首先,将1080g醛酮树脂、120g乙基纤维素、150g油性分散剂和30g消泡剂溶解于由4200g松油醇和420g松节油组成的混合溶剂中,制备得到6000g调墨油,用于下述实施例1~10以及对比例1~2。
实施例1
准备原料:1380g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g天然云母为基材,粒径45μm的绿色珠光颜料、40g绿色波长转换材料 Ba2SiO4:Eu2+
制备彩色油墨:将低熔点玻璃粉、调墨油和波长转换材料搅拌混合均匀后经研磨机研磨至细度10μm以下,得到透明油墨;再将透明油墨和珠光颜料经过机械搅拌混合分散后得到本实施例的彩色油墨。
制备彩色光伏玻璃:将所配制的彩色油墨通过300目丝网印刷到3.2mm超白浮法玻璃上,将玻璃在160℃烘干5min,将烘干后的玻璃在700℃钢化2min得到彩色光伏玻璃。
制备彩色光伏组件:将彩色光伏玻璃、第一层EVA封装胶膜、N型电池阵列、第二层EVA封装胶膜、3.2mm浮法玻璃层压封装得到彩色光伏组件。
实施例2
准备原料:1380g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g天然云母为基材,粒径为45μm的红色珠光颜料、40g红色波长转换材料Y2MoO6:Eu3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例3
准备原料:1380g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g天然云母为基材,粒径为45μm的蓝色珠光颜料、40g蓝色波长转换材料Ba3Y2B6O15:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例4
准备原料:1380g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g天然云母为基材,粒径为45μm的黄色珠光颜料、40g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例5
准备原料:1300g始融温度为450℃的低熔点玻璃粉、480g调墨油、140g天然云母为基材,粒径为45μm的黄色珠光颜料、80g黄色波长转换材料 Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例6
准备原料:1260g始融温度为450℃的低熔点玻璃粉、500g调墨油、200g天然云母为基材,粒径为45μm的黄色珠光颜料、40g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例7
准备原料:1440g始融温度为450℃的低熔点玻璃粉、500g调墨油、20g天然云母为基材,粒径为45μm的黄色珠光颜料、40g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例8
准备原料:1220g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g天然云母为基材,粒径为45μm的黄色珠光颜料、200g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例9
准备原料:1200g始融温度为450℃的低熔点玻璃粉、580g调墨油、20g天然云母为基材,粒径为45μm的黄色珠光颜料、200g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
实施例10
准备原料:1600g始融温度为450℃的低熔点玻璃粉、360g调墨油、20g天然云母为基材,粒径为45μm的黄色珠光颜料、20g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨、彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
对比例1
准备原料:1420g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g天然云母为基材,粒径为45μm的黄色珠光颜料。
制备彩色油墨:将低熔点玻璃粉和调墨油搅拌混合均匀后经研磨机研磨至细度10μm以下,得到透明油墨;再将透明油墨和珠光颜料经过机械搅拌混合分散后得到本对比例的彩色油墨。
制备彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
对比例2
准备原料:1420g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g吸收色颜料钛镍黄。
制备彩色油墨:将低熔点玻璃粉和调墨油搅拌混合均匀后经研磨机研磨至细度10μm以下,得到透明油墨;再将透明油墨和吸收色颜料钛镍黄经过机械搅拌混合分散后得到本对比例的彩色油墨。
制备彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
对比例3
准备原料:1380g始融温度为450℃的低熔点玻璃粉、500g调墨油、80g吸收色颜料钛镍黄、40g黄色波长转换材料Y3Al5O12:Ce3+
制备彩色油墨:将低熔点玻璃粉、调墨油和波长转换材料搅拌混合均匀后经研磨机研磨至细度10μm以下,得到透明油墨;再将透明油墨和吸收色颜料钛镍黄经过机械搅拌混合分散后得到本对比例的彩色油墨。
制备彩色光伏玻璃以及彩色光伏组件的方法与实施例1相同。
对比例4
准备原料:1920g透明UV玻璃油墨,80g黄色珠光颜料。
制备彩色油墨:将透明UV玻璃油墨和黄色珠光颜料经过机械搅拌混合分散后得到本对比例的彩色油墨。
彩色光伏组件的方法与实施例1相同。
将各实施例和对比例所制备的彩色油墨通过300目丝网印刷到3.2mm超白浮法玻璃上。
实施例1~10和对比例1~3将玻璃在160℃烘干5min,将烘干后的玻璃在700℃钢化烧结2min得到彩色光伏玻璃。对比例4将玻璃经过紫外光固化得到彩色玻璃,紫外光照射能量为300毫焦/平方厘米。
测定各彩色光伏玻璃的参数,结果如表2、表3所示。
其中,透光率及反射率采用珀金埃尔默紫外-可见-近红外分光光度计LAMBDA1050检测,检测波长范围为380~1100nm。
45°视角与75°视角色差采用柯尼卡美能达多角度分光测色计CM-M6测试,测试时玻璃下垫黑色背底。
粘度采用旋转粘度计NDJ-8S测试,测试条件为:(23±2)℃,4#转子,12RPM。
耐候性测试采用ZN-PV立式光伏组件紫外老化试验箱对玻璃进行辐照处理,累计UVA辐照量为150kwh/m2,测试玻璃透光率下降值。 表2
表3
以上结合具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。对于本领域的技术人员来说,对上述内容的某些细节进行多种更改和变化不需要做出创造性劳动。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例” 意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种彩色油墨,其特征在于,其包括:低熔点玻璃粉、调墨油、结构色颜料和无机波长转换材料。
  2. 根据权利要求1所述的彩色油墨,其特征在于,以所述彩色油墨的总重量为基础,所述彩色油墨包括:
    60%~80%、优选为65%~75%低熔点玻璃粉;
    18%~30%、优选为22%~28%调墨油;
    1%~10%、优选为1%~5%结构色颜料;以及
    1%~10%、优选为1%~4%无机波长转换材料。
  3. 根据权利要求1或2所述的彩色油墨,其特征在于,所述低熔点玻璃粉的始融温度为350~500℃;
    优选地,所述低熔点玻璃粉的线性膨胀系数为85×10-7~91×10-7/℃;
    优选地,所述低熔点玻璃粉的粒径小于等于15μm。
  4. 根据权利要求1~3中任一项所述的彩色油墨,其特征在于,所述调墨油包括溶剂和树脂,优选所述调墨油还包括助剂;
    优选地,以所述调墨油的总重量为基础,所述调墨油包括:70%~90%溶剂、9%~29%树脂以及0.5%~4%助剂;
    优选地,所述溶剂选自松油醇、松节油和一缩二乙二醇中的一种或两种或三种;
    优选地,所述树脂选自松香改性酚醛树脂、醛酮树脂和乙基纤维素中的一种或两种或三种;
    优选地,所述助剂选自油性分散剂和消泡剂中的一种或两种。
  5. 根据权利要求1~4中任一项所述的彩色油墨,其特征在于,所述结构色颜料选自珠光颜料、多层金属氧化物干涉颜料和光子晶体颜料中的一种或两种以上;
    优选地,所述多层金属氧化物干涉颜料的各层金属氧化物分别选自钛、铝、硅、锡、锆、锌的金属氧化物中的一种或两种以上。
  6. 根据权利要求1~5中任一项所述的彩色油墨,其特征在于,所述结构色颜料为珠光颜料,所述珠光颜料包括基材,所述基材选自天然云母、合成云母和合成硼硅酸盐中的一种;
    优选地,所述珠光颜料还包括包覆所述基材的包覆材料,所述包覆材料选自二氧化钛、三氧化二铁和氧化锡中的一种或两种或三种;
    优选地,所述珠光颜料的粒径小于等于200μm。
  7. 根据权利要求1~6中任一项所述的彩色油墨,其特征在于,所述波长转换材料为稀土掺杂化合物;
    优选地,所述波长转换材料选自绿色波长转换材料、红色波长转换材料、蓝色波长转换材料和黄色波长转换材料中的一种或两种以上;
    优选地,所述绿色波长转换材料选自CaAlSiN3:Eu2+、Ba2SiO4:Eu2+和Lu3Al5O12:Ce3+中的一种或两种或三种;
    优选地,所述红色波长转换材料选自Y2MoO6:Eu3+、Sr2Si5N8:Eu2+和Y3Al5O12:Mn4+中的一种或两种或三种;
    优选地,所述蓝色波长转换材料选自LiSrPO4:Eu2+、Ba3Y2B6O15:Ce3+、SrLu2O4:Ce3+、Ca3ZrSi2O9:Ce3+、LiCaPO4:Eu2+和Ca2PO4Cl:Eu2+中的一种或两种以上;
    优选地,所述黄色波长转换材料选自Y3Al5O12:Ce3+、Tb3Al5O12:Ce3+和Sr3SiO5:Eu2+中的一种或两种或三种。
  8. 一种制备彩色油墨的方法,其特征在于,包括下述步骤:
    制备调墨油:将树脂和助剂溶解于溶剂中,得到调墨油;
    制备透明油墨:将低熔点玻璃粉、所述调墨油和波长转换材料混合后研磨至细度为10μm以下,得到透明油墨;
    加入结构色颜料:将结构色颜料加入所述透明油墨中进行混合分散,得到所述彩色油墨。
  9. 根据权利要求8所述的方法,其特征在于,
    所述低熔点玻璃粉为60~80重量份,优选为65~75重量份;
    所述调墨油为18~30重量份,优选为22~28重量份;
    所述结构色颜料为1~10重量份,优选为1~5重量份;
    所述无机波长转换材料为1~10重量份,优选为1~4重量份。
  10. 根据权利要求8或9所述的方法,其特征在于,所述树脂、助剂、低熔点玻璃粉、调墨油、波长转换材料和结构色颜料为权利要求1~7中任一项所述的树脂、助剂、低熔点玻璃粉、调墨油、波长转换材料和结构色颜料。
  11. 一种彩色光伏玻璃,其特征在于,其包括:
    玻璃本体;以及
    在所述玻璃本体表面上的彩色油墨层;
    其中,所述彩色油墨层包括权利要求1~7中任一项所述的彩色油墨或权利要求8~10中任一项所述的方法制备的彩色油墨。
  12. 根据权利要求11的彩色光伏玻璃,其特征在于,所述玻璃本体为超白玻璃,优选为超白浮法玻璃或超白压花玻璃;
    优选地,所述玻璃本体的厚度为2~6mm。
  13. 一种制备彩色光伏玻璃的方法,其特征在于,包括下述步骤:将权利要求1~7中任一项所述的彩色油墨或权利要求8~10中任一项所述的方法制备的彩色油墨施加至玻璃本体上,经过烘干、烧结钢化得到彩色光伏玻璃;
    优选地,将所述彩色油墨通过丝网印刷、辊涂或喷涂施加至玻璃本体上。
  14. 根据权利要求13所述的方法,其特征在于,丝网印刷采用的网版的目数为100~350目;
    优选地,烘干温度为140~200℃,烘干时间为1~8min;
    优选地,烧结钢化温度为660~720℃,烧结钢化时间为2~4min;
    优选地,所述玻璃本体为超白玻璃,优选为超白浮法玻璃或超白压花玻璃;
    优选地,所述玻璃本体的厚度为2~6mm。
  15. 一种彩色光伏组件,其特征在于,其包括:彩色前板玻璃、第一层封装胶膜、光伏电池阵列、第二层封装胶膜和背板玻璃,其中,所述彩色前板玻璃为权利要求11或12所述的彩色光伏玻璃。
PCT/CN2023/090514 2022-05-16 2023-04-25 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法 WO2023221749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210528179.2A CN115044243A (zh) 2022-05-16 2022-05-16 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法
CN202210528179.2 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221749A1 true WO2023221749A1 (zh) 2023-11-23

Family

ID=83158166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090514 WO2023221749A1 (zh) 2022-05-16 2023-04-25 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法

Country Status (2)

Country Link
CN (1) CN115044243A (zh)
WO (1) WO2023221749A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044243A (zh) * 2022-05-16 2022-09-13 隆基乐叶光伏科技有限公司 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法
CN115642185B (zh) * 2022-11-04 2024-02-23 新源劲吾(北京)科技有限公司 提高光穿透率的彩色光伏组件及其制备方法和应用
CN116239312B (zh) * 2023-03-17 2024-07-02 江西盛富莱光学科技股份有限公司 一种环保型光伏玻璃用高反射油墨涂层及其制备方法
CN117683400A (zh) * 2023-11-16 2024-03-12 东莞南玻太阳能玻璃有限公司 光伏玻璃彩色油墨、镀膜玻璃和光伏组件
CN117659768A (zh) * 2023-12-08 2024-03-08 江西锦石达美新能源有限公司 一种彩色溶剂型玻璃油墨及其制备方法和彩色光伏玻璃

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105543A (zh) * 2008-06-30 2011-06-22 学校法人庆应义塾 油墨组合物
KR20120113115A (ko) * 2011-04-04 2012-10-12 엘지전자 주식회사 광원 장치 및 그 제조 방법
CN103421489A (zh) * 2013-08-13 2013-12-04 吉林大学 一种超高量子产率的荧光材料及其应用
JP2017111214A (ja) * 2015-12-15 2017-06-22 日本電気硝子株式会社 波長変換部材の製造方法
CN111742419A (zh) * 2017-12-11 2020-10-02 Agc株式会社 光学层、光学层的制造方法、带光学层的太阳能电池组件、建筑用外壁材料及建筑
CN114455853A (zh) * 2022-01-25 2022-05-10 武汉理工大学 一种微晶玻璃油墨及其制备方法和应用
CN115044243A (zh) * 2022-05-16 2022-09-13 隆基乐叶光伏科技有限公司 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046121A (zh) * 2014-07-04 2014-09-17 繁昌县朱氏印务有限责任公司 一种钢化玻璃油墨配方
CN114031306B (zh) * 2020-07-21 2023-03-28 杭州玻美文化艺术有限公司 一种彩色太阳能玻璃面板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105543A (zh) * 2008-06-30 2011-06-22 学校法人庆应义塾 油墨组合物
KR20120113115A (ko) * 2011-04-04 2012-10-12 엘지전자 주식회사 광원 장치 및 그 제조 방법
CN103421489A (zh) * 2013-08-13 2013-12-04 吉林大学 一种超高量子产率的荧光材料及其应用
JP2017111214A (ja) * 2015-12-15 2017-06-22 日本電気硝子株式会社 波長変換部材の製造方法
CN111742419A (zh) * 2017-12-11 2020-10-02 Agc株式会社 光学层、光学层的制造方法、带光学层的太阳能电池组件、建筑用外壁材料及建筑
CN114455853A (zh) * 2022-01-25 2022-05-10 武汉理工大学 一种微晶玻璃油墨及其制备方法和应用
CN115044243A (zh) * 2022-05-16 2022-09-13 隆基乐叶光伏科技有限公司 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法

Also Published As

Publication number Publication date
CN115044243A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2023221749A1 (zh) 彩色油墨、彩色光伏玻璃、彩色光伏组件及其制备方法
Zhao et al. Zero‐dimensional perovskite nanocrystals for efficient luminescent solar concentrators
CN101707223B (zh) 光谱下转移彩色电池组件
EP3244238B1 (en) Diffuse reflection material, diffuse reflection layer, wavelength conversion device and light source system
CN102633440B (zh) 包含荧光体的玻璃涂层及其制造方法、发光器件及其制造方法
US3679451A (en) Nonglare coating for surfaces of tv tubes and the like and such coated surfaces
Debije et al. Thirty years of luminescent solar concentrator research: solar energy for the built environment
Reisfeld et al. Photostable solar concentrators based on fluorescent glass films
CN110256897B (zh) 一种无机油墨、光伏背板玻璃及其制备方法
WO2015024330A1 (zh) 彩色滤光层、彩膜基板、显示装置
CN105093776A (zh) 波长转换装置、光源系统及投影系统
CN102945914B (zh) 一种用于光学波长转换的荧光玻璃涂层及白光发光装置
CN104595852A (zh) 一种波长转换装置、漫反射层、光源系统及投影系统
TW201216481A (en) Translucent laminate and solar cell module using same
CN102153292A (zh) 一种高透过纳米二氧化硅减反射薄膜及其制备方法和应用
CN109337673B (zh) 一种二氧化钒基荧光复合材料及其应用
CN101024742B (zh) 具有光致变色和阳光控制性能的纳米涂料及其制法和用途
WO2023221679A1 (zh) 一种油墨和彩色光伏组件
CN109387896A (zh) 一种基于局域表面等离子体共振的量子点彩色滤光膜
CN102446998A (zh) 光伏器件
CN107342348A (zh) 一种led器件的制备方法
CN209182545U (zh) 一种量子点玻璃导光板和背光模组
CN109762555A (zh) 一种量子点胶水组合物及一种量子点膜及其制备方法
KR20160096561A (ko) 파장변환유리를 구비하는 태양전지 및 이의 제조 방법
CN101886745A (zh) 一种长余辉荧光光源及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806701

Country of ref document: EP

Kind code of ref document: A1