WO2023221671A1 - 一种电刺激按摩装置及其控制方法 - Google Patents

一种电刺激按摩装置及其控制方法 Download PDF

Info

Publication number
WO2023221671A1
WO2023221671A1 PCT/CN2023/085756 CN2023085756W WO2023221671A1 WO 2023221671 A1 WO2023221671 A1 WO 2023221671A1 CN 2023085756 W CN2023085756 W CN 2023085756W WO 2023221671 A1 WO2023221671 A1 WO 2023221671A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
impedance value
circuit
output
sampling
Prior art date
Application number
PCT/CN2023/085756
Other languages
English (en)
French (fr)
Inventor
银金袍
陈宏鸿
Original Assignee
未来穿戴健康科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210538945.3A external-priority patent/CN115282474A/zh
Priority claimed from CN202210539185.8A external-priority patent/CN114984448A/zh
Application filed by 未来穿戴健康科技股份有限公司 filed Critical 未来穿戴健康科技股份有限公司
Publication of WO2023221671A1 publication Critical patent/WO2023221671A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation

Definitions

  • the invention relates to the field of electric stimulation massage devices, and in particular to an electric stimulation massage device and a control method thereof.
  • the electric pulse electric stimulation massage device uses electrode pads to fit the human skin and output electric pulse energy to achieve a massage effect.
  • the tightness of the electric pulse electric stimulation massage device with human skin or the dryness of the surface of the human skin will affect the fit effect of the two.
  • the voltage should be adjusted according to the user's electrical withstand conditions to prevent the voltage from being too high and causing tingling when the fit is poor, or to prevent the voltage from being too low and causing a weak massage effect when the fit is good.
  • the human body impedance value can be obtained by obtaining the electrical energy information of the pulse modulation circuit to determine the fit effect.
  • the sampling circuit in the related art has the following problems:
  • the current electric stimulation massage devices especially the medium and low frequency massages, cannot avoid a certain amount of tingling.
  • the tingling problem can easily reduce the user experience. Under the existing product form and convenient usage, it is necessary to avoid tingling for users as much as possible to improve the user experience.
  • the technical problem to be solved by the present invention is to provide an electric stimulation massage device and a control method thereof in view of the above-mentioned defects of related technologies, so as to at least solve the problem of complex detection of the human body impedance value of the electric stimulation massage device.
  • an electric stimulation massage device which includes:
  • the boosting unit is connected to the control unit and the power supply respectively, and the boosting unit is under the control of the control unit. Boost the input voltage of the power supply to a preset voltage under control, and output it through the voltage output terminal of the boost unit;
  • Electrodes the electrodes are used to be attached to the parts to be massaged;
  • Pulse modulation circuit the power input end of the pulse modulation circuit is connected to the boosting unit, the first pulse transmission end and the second pulse transmission end of the pulse modulation circuit are respectively connected to an electrode, and the pulse modulation circuit has The control terminal is connected to the control unit;
  • a first detection circuit the first detection circuit is connected to the voltage output terminals of the control unit and the boost unit respectively, and the control unit obtains the output voltage of the boost unit through the first detection circuit;
  • a second detection circuit is connected to the control unit.
  • the sampling resistor of the second detection circuit is connected in series between the pulse modulation circuit and the ground terminal.
  • the control unit obtains the sample of the sampling resistor through the second detection circuit. voltage; where,
  • the control unit obtains the impedance value between the electrodes arranged in pairs according to the output voltage, the resistance value of the sampling resistor and the sampling voltage.
  • the sampling resistor has a value ranging from 130 to 170 ⁇ .
  • the second detection circuit also includes a first protection resistor, a first capacitor and a first voltage stabilizing diode
  • the control unit is connected between the pulse modulation circuit and the sampling resistor through the first protection resistor
  • the control unit is also connected between the sampling resistor and the ground terminal through a first capacitor and a first Zener diode, and the anode of the first Zener diode is grounded.
  • the second detection circuit further includes a second protection resistor, the second protection resistor is connected in series between the pulse modulation circuit and the sampling resistor; the resistance ratio of the sampling resistor to the second protection resistor The range is 1:22 to 1:38.
  • control unit stores a first model for calculating the impedance value between the electrodes, and the first model is
  • the R impedance is the impedance value between the electrodes arranged in pairs
  • the V is the sampling voltage
  • the R is the resistance value of the sampling resistor
  • the V output is the output voltage of the boost unit
  • the I Adjust the current to the output pulse of the pulse modulation circuit.
  • control unit stores a second model for calculating the impedance value between the electrodes, and the second model is
  • the R impedance is the impedance value between the electrodes arranged in pairs
  • the V is the sampling voltage
  • the R is the resistance value of the sampling resistor
  • the V output is the output voltage of the boost unit
  • the I Adjust the current to the output pulse of the pulse modulation circuit.
  • the electric stimulation massage device stores a third model for calculating the impedance value between the electrodes, and the third model is
  • the R impedance is the impedance value between the electrodes arranged in pairs
  • the V is the sampling voltage
  • the R is the resistance value of the sampling resistor
  • the V input is the output voltage of the boost unit
  • the I modulation is the current of the output pulse of the pulse modulation circuit
  • the R remainder is the preset error margin.
  • the first detection circuit includes a first voltage dividing resistor and a second voltage dividing resistor, and the first voltage dividing resistor is connected to the voltage output end of the boost unit and the second voltage dividing resistor respectively, The other end of the second voltage dividing resistor is grounded, and the control unit is connected to the connection node between the first voltage dividing resistor and the second voltage dividing resistor to obtain the divided voltage of the second voltage dividing resistor.
  • the control unit The output voltage of the boost unit is obtained according to the divided voltage of the second voltage dividing resistor, the resistance value of the first voltage dividing resistor and the resistance value of the second voltage dividing resistor.
  • control unit stores a fourth model for calculating the output voltage of the boost unit, and the fourth model is
  • V input is the output voltage of the boost unit
  • V divided by 2 is the divided voltage of the second voltage dividing resistor
  • the R divided by 1 is the resistance of the first voltage dividing resistor
  • the R divided by 2 is the second voltage dividing resistor.
  • the resistance of the voltage divider resistor is the resistance of the voltage divider resistor.
  • the first detection circuit includes a first voltage dividing resistor and a second voltage dividing resistor, and the first voltage dividing resistor is connected to the voltage output end of the boost unit and the second voltage dividing resistor respectively, The other end of the second voltage dividing resistor is grounded, and the control unit is connected to the connection node between the first voltage dividing resistor and the second voltage dividing resistor to obtain the divided voltage of the second voltage dividing resistor.
  • the control unit The output voltage of the boost unit is obtained according to the divided voltage of the second voltage dividing resistor, the resistance value of the first voltage dividing resistor and the resistance value of the second voltage dividing resistor.
  • control unit stores a fourth model for calculating the output voltage of the boost unit, and the fourth model is
  • V input is the output voltage of the boost unit
  • V divided by 2 is the divided voltage of the second voltage dividing resistor
  • the R divided by 1 is the resistance of the first voltage dividing resistor
  • the R divided by 2 is the second voltage dividing resistor.
  • the resistance of the voltage divider resistor is the resistance of the voltage divider resistor.
  • the resistance ratio of the second voltage dividing resistor and the first voltage dividing resistor ranges from 1:37 to 1:72.
  • the second detection circuit further includes a second capacitor, and the control unit is connected to the connection node between the second voltage dividing resistor and the ground through the second capacitor.
  • the pulse modulation circuit also includes:
  • At least one set of control arms including a first control switch and a second control switch
  • the control units are respectively connected to the control ends of the first control switch and the second control switch to respectively control the first control switch and the second control switch.
  • the second control switch is on and off.
  • the input end of the first control switch is connected to the power input end.
  • the output end of the second control switch is connected to the ground end.
  • the output end of the first control switch is connected to the first pulse
  • the transmission end is connected to one of the second pulse transmission end, and the input end of the second control switch is connected to the other of the first pulse transmission end and the second pulse transmission end.
  • the control arm is provided with two groups, the output terminals of the two first control switches are connected to the first pulse transmission terminal and the second pulse transmission terminal respectively, and the input terminals of the two second control switches The terminals are respectively connected to the first pulse transmission terminal and the second pulse transmission terminal.
  • both the first control switch and the second control switch are transistors.
  • the first pulse transmission terminal and the second pulse transmission terminal are both grounded through a bidirectional varistor diode.
  • each pulse modulation circuit is configured with two electrodes.
  • the voltage boosting unit includes a power input terminal connected to the power supply, a voltage boosting circuit, an energy storage circuit, a pressure relief circuit and a voltage output terminal connected to the pulse modulation circuit.
  • the input end of the voltage boost circuit is connected to the power input end, and the control end of the boost circuit is connected to the control unit for outputting the power supply.
  • the output voltage is boosted; the input end of the energy storage circuit is connected to the output end of the boost circuit, the output end of the energy storage circuit is connected to the power input end; the control end of the pressure relief circuit Connected to the control unit, the input end of the pressure relief circuit is connected to the voltage output end, and the control unit is used to control the boost circuit according to the preset voltage and the impedance value between the paired electrodes. and/or the energy storage circuit performs voltage boosting, or/and controls the pressure relief circuit to perform voltage reduction, so as to control the voltage output terminal to output a preset voltage to the pulse modulation circuit.
  • the boost circuit includes an inductor and a MOS transistor, one end of the inductor is connected to the input end of the boost circuit, and the other end is connected to the output end of the boost circuit; the MOS The gate of the tube is connected to the control unit, the drain of the MOS tube is connected between the inductor and the output end of the boost circuit, and the source of the MOS tube is grounded.
  • the boost circuit further includes a third capacitor, one end of the third capacitor is connected between the inductor and the input end of the boost circuit, and the other end is connected to ground.
  • the energy storage circuit is a capacitive energy storage circuit
  • the capacitive energy storage circuit includes a fourth capacitor and a fifth capacitor connected in parallel between the input end and the output end of the energy storage circuit. , the other ends of the fourth capacitor and the fifth capacitor are grounded.
  • the pressure relief circuit includes a first resistor, a fifth transistor, a second resistor and a third resistor, and the first resistor is connected in series between the control end of the pressure relief circuit and the third resistor.
  • the emitter of the fifth triode is grounded; one end of the third resistor is connected between the first resistor and the base of the fifth triode, and the other end is connected between the first resistor and the base of the fifth triode.
  • One end is connected to ground; the second resistor is connected in series between the input end of the pressure relief circuit and the collector of the fifth transistor.
  • the beneficial effect of the present invention is that, compared with related technologies, the present invention obtains the current information of the electrical stimulation pulse signal of the pulse modulation circuit through the first detection circuit, and then obtains the voltage information of the electrical stimulation pulse signal through the second detection circuit, quickly and Accurately obtain the impedance value between pairs of electrodes to determine the current state of the human body or the wearing state, and then adapt the next step required, such as adjusting the input voltage, to meet the user's sting-free electrical stimulation massage. Pain needs; at the same time, judgment is made through two-channel sampling, the sampling is accurate, and the circuit is simple, it can efficiently and accurately obtain the current entering the human body, and dynamically obtain the input voltage, improve the accuracy of abnormal monitoring, and effectively reduce complexity and cost.
  • the technical problem to be solved by other embodiments of the present invention is to provide an electric stimulation massage device and its control method and storage medium to solve the problem of tingling during use in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve its technical problems is to provide a control method, and the control method is applied in the electric stimulation massage device, and the electric stimulation massage device includes Electrodes arranged in pairs, a pulse modulation circuit connected to the electrodes, and a second detection circuit connected to the pulse modulation circuit, the electrodes are used to attach to the part to be massaged, and the pulse modulation circuit is used to generate The electrical stimulation pulse signal is output to the part to be massaged through the electrode, and the steps of the control method include:
  • the control unit controls the pulse modulation circuit to generate electrical stimulation pulse signals
  • the next cycle stops controlling the pair of electrodes corresponding to the abnormal impedance value to output electrical stimulation pulse signals.
  • the steps of the control method also include:
  • a preferred solution is to set an amplitude threshold or a safe value range, and the steps for determining abnormal impedance values include:
  • a preferred solution is that after the control unit controls the pulse modulation circuit to generate the electrical stimulation pulse signal, the method further includes: controlling the second detection circuit to periodically sample the electrical stimulation pulse signal to obtain sampling data; and based on the sampling data The impedance value between the electrodes arranged in pairs is periodically obtained; the input voltage to the pulse modulation circuit is adjusted according to the impedance value; wherein the sampling period T for sampling the electrical stimulation pulse signal satisfies the first model, and the first The model is T+t ⁇ A; the t is the preset response lag time of the electric stimulation massage device, and the A is the preset time required for the user to perceive the electric pain.
  • a preferred solution is that the ratio of the sampling period T to the period T1 of the electrical stimulation pulse signal is S, and S is an integer greater than or equal to 1 and less than or equal to (A-t)/T1.
  • the step of periodically sampling the electrical stimulation pulse signal includes: in one of the sampling periods T, when sampling the electrical stimulation pulse signal, sampling is performed multiple times within a preset time.
  • the sampling period T is equal to S times the period T1 of the electrical stimulation pulse signal, and S is an integer greater than or equal to 2 and less than or equal to (A-t)/T1; the preset
  • the steps of sampling multiple times within a time period include: sampling S high levels once to obtain multiple sampling data.
  • the sampling period T is equal to the period T1 of the electrical stimulation pulse signal
  • the step of sampling multiple times within a preset time includes: sampling a high level multiple times to obtain multiple sampling data.
  • the step of controlling the second detection circuit to periodically sample the electrical stimulation pulse signal includes: controlling the pulse modulation circuit to generate the electrical stimulation pulse signal, and then timing; when the timing time reaches the start time, The electrical stimulation pulse signal is sampled.
  • the t includes the time t1 for obtaining the impedance value between the paired electrodes based on the sampling data and/or the time t2 for adjusting the input voltage to the pulse modulation circuit based on the impedance value.
  • the preferred solution is that before the step of controlling the pulse modulation circuit to generate the electrical stimulation pulse signal, the steps of the control method further include: obtaining the massage gear and/or massage mode; determining according to the massage gear and/or massage mode.
  • the steps of the control method before the step of controlling the pulse modulation circuit to generate the electrical stimulation pulse signal, the steps of the control method further include: obtaining the massage gear and/or massage mode; determining according to the massage gear and/or massage mode.
  • the step of determining the A according to the massage gear and/or massage mode includes: determining the gear interval to which it belongs according to the massage gear, and determining the A according to the gear interval. ; Or, determine the mode type to which it belongs according to the massage mode, and determine the A according to the mode type; or determine the gear interval to which it belongs according to the massage gear, and determine the range to which it belongs according to the massage mode. Mode type, the A is determined according to the gear range and the mode type.
  • the steps of the control method also include: when the sampling period T for periodically sampling the electrical stimulation pulse signal does not meet the first model; reducing the input voltage to a safe voltage; or adjusting the electrical stimulation pulse The signal generation frequency is adjusted to the sampling period T.
  • the second detection circuit includes a sampling resistor connected in series between the pulse modulation circuit and the ground terminal, and in the step of obtaining the sampling data, the sampling data is the sampling voltage of the sampling resistor. ; In the step of periodically obtaining the impedance value between the paired electrodes based on the sampling data, the method of obtaining the impedance value between the paired electrodes based on the sampling data is based on the sampling voltage, the sampling The resistance value of the resistor and the input voltage obtain the impedance value between the electrodes arranged in pairs.
  • the step of periodically obtaining the impedance value between the paired electrodes according to the sampling data includes: obtaining the input voltage of the pulse modulation circuit; and periodically sampling the second detection circuit through the second detection circuit.
  • the resistor performs voltage sampling to obtain multiple sampling voltages as sampling data; the current value of the electrical stimulation pulse signal is obtained based on the sampling voltage and the resistance value of the sampling resistor; the impedance value between the paired electrodes is obtained based on the input voltage and current value.
  • the electric stimulation massage device further includes: a power supply and a control unit; a voltage boosting unit, the voltage boosting unit is connected to the power supply, and the voltage boosting unit boosts the input voltage of the power supply to a preset voltage.
  • a pulse modulation circuit the power input end of the pulse modulation circuit is connected to the voltage output end of the boost unit, and the first pulse transmission end of the pulse modulation circuit
  • the second pulse transmission end is connected to an electrode respectively
  • the control end of the pulse modulation circuit is connected to the control unit
  • the first detection circuit is connected to the voltage output end of the control unit and the voltage boosting unit respectively,
  • the control unit obtains the output voltage of the boost unit through the first detection circuit; wherein the control unit obtains the impedance value between the paired electrodes based on the output voltage of the boost unit, the resistance value of the sampling resistor and the sampling voltage.
  • the voltage boosting unit is connected to the control unit and the power supply respectively, and the voltage boosting unit boosts the input voltage of the power supply to a preset voltage under the control of the control unit; the adjustment direction according to the impedance value
  • the step of modulating the input voltage of the pulse modulating circuit includes: adjusting the preset voltage boosted by the boosting circuit according to the impedance value to output it as the input voltage to the pulse modulating circuit.
  • the voltage boosting unit includes a power input terminal connected to the power supply, a voltage boosting circuit, an energy storage circuit, a pressure relief circuit and a voltage output terminal connected to the pulse modulation circuit.
  • the input end of the voltage circuit is connected to the power input end, and the control end of the boost circuit is connected to the control unit; the input end of the energy storage circuit is connected to the output end of the boost circuit, and the storage circuit is connected to the output end of the boost circuit.
  • the output end of the energy circuit is connected to the voltage output end; the control end of the pressure relief circuit is connected to the control unit, and the input end of the pressure relief circuit is connected to the voltage output end; the adjustment according to the impedance value
  • the step of boosting the preset voltage by the boost circuit includes: controlling the boost circuit and/or the energy storage circuit to boost the voltage according to the preset voltage and the impedance value between the paired electrodes, or /And, control the pressure relief circuit to perform voltage reduction to control the voltage output terminal to output a preset voltage to the pulse modulation circuit.
  • the step of adjusting the input voltage to the pulse modulation circuit according to the impedance value includes: determining a preset voltage according to the impedance value; and adjusting the input voltage to the pulse modulation circuit according to the preset voltage. Voltage, the voltage value that makes the input voltage reach the preset voltage.
  • the step of adjusting the input voltage of the pulse modulation circuit according to the impedance value includes: when the impedance value is greater than the first impedance value and less than the second impedance value, according to the The impedance value and the preset mapping relationship are used to obtain a dynamic voltage, and the dynamic voltage is used as the preset voltage.
  • the dynamic voltage is smaller than the gear voltage of the current working gear of the electric stimulation massage device, so that the electric stimulation massage The device is in dynamic voltage output state.
  • the step of determining the preset voltage according to the impedance value includes: when the impedance value is greater than or equal to the second impedance value, obtain a safety voltage, and use the safety voltage as the preset voltage, So that the electric stimulation massage device is in a safe voltage output state.
  • the step of determining the preset voltage according to the impedance value further includes: when the impedance value is less than or equal to the first impedance value, using the gear voltage of the current working gear of the electric stimulation massage device as The preset voltage is so that the electric stimulation massage device is in a normal output state.
  • a preferred solution is that the preset mapping relationship satisfies: the smaller the difference between the impedance value and the first impedance value, the smaller the difference between the dynamic voltage and the gear voltage.
  • the step of obtaining the dynamic voltage according to the impedance value and the preset mapping relationship also includes:
  • V dynamic is the dynamic voltage
  • resval is the impedance value
  • R1 is the first impedance value
  • R2 is the second impedance value
  • V is preset to the safety voltage
  • the step of determining the preset voltage according to the impedance value also includes:
  • the gear voltage of the current working gear of the electric stimulation and massage device is used as the preset voltage, so that the electric stimulation and massage device is in a normal output state.
  • the step of adjusting the input voltage to the pulse generating circuit according to the impedance value includes: determining the target voltage according to the impedance value, and obtaining the difference between the impedance value and the last obtained impedance value. , if the difference is greater than or equal to the preset difference threshold, then the preset voltage is determined to be a safe voltage; according to the preset voltage, the input voltage to the pulse generating circuit is adjusted, and the input voltage to the pulse generating circuit is adjusted within the preset time. The output voltage corresponding to the last detected impedance value decreases to the safe voltage in a decreasing manner.
  • the technical solution adopted by the present invention to solve the technical problem is to provide an electric stimulation massage device.
  • the electric stimulation massage device includes a memory and a processor.
  • a computer program is stored in the memory, and the computer program is processed by the process.
  • the processor is executed, the processor is caused to implement the control method.
  • the technical solution adopted by the present invention to solve the technical problem is to provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the control method is implemented.
  • the beneficial effect of the present invention is that, compared with the prior art, the present invention limits the sampling period T, so that within the time perceived by the human body, the area to be massaged can always maintain a controllable electrical stimulation pulse signal during the massage process. , to prevent the parameters of the electrical stimulation pulse signal from being abnormal for a long time, resulting in strong electrical stimulation of the area to be massaged.
  • Figure 1 is a circuit schematic diagram of the electric stimulation massage device of the present invention
  • FIG. 2 is a circuit principle diagram of the pulse modulation circuit of the present invention.
  • Figure 3 is a circuit schematic diagram of the second detection circuit of the present invention.
  • Figure 4 is a schematic circuit structure diagram of the first detection circuit of the present invention.
  • FIG. 5 is a circuit principle diagram of the pulse modulation circuit of the present invention.
  • FIG. 6 is a circuit schematic diagram of the pulse modulation circuit of the present invention.
  • FIG. 7 is a circuit schematic diagram of the boost unit of the present invention.
  • Figure 8 is a schematic circuit diagram of the boost unit of the present invention.
  • Figure 9 is a flow chart of the control method of the present invention.
  • Figure 10 is a flow chart of the control method for notifying the user according to the present invention.
  • Figure 11 is a schematic flow chart of the control method of the electric stimulation massage device of the present invention.
  • Figure 12 is a schematic flowchart of the present invention for periodically acquiring impedance values between pairs of electrodes based on sampling data
  • Figure 13 is a schematic flow chart of the present invention for periodically sampling electrical stimulation pulse signals
  • Figure 14 is a sampling diagram 1 of multiple sampling of electrical stimulation pulse signals according to the present invention.
  • Figure 15 is a sampling diagram 2 of multiple sampling of electrical stimulation pulse signals according to the present invention.
  • Figure 16 is a schematic flow chart of timing sampling according to the present invention.
  • Figure 17 is a schematic flowchart of the control method based on massage gears and/or massage modes according to the present invention.
  • Figure 18 is a schematic flow chart of adjusting the sampling period T according to the present invention.
  • Figure 19 is a schematic flow chart of the first embodiment of the control method of the electric stimulation massage device of the present invention.
  • Figure 20 is a schematic flow chart of the second embodiment of the control method of the electric stimulation massage device of the present invention.
  • Figure 21 is a schematic flow chart of the third embodiment of the control method of the electric stimulation massage device of the present invention.
  • Figure 22 is a schematic flow chart of the control method of the electric stimulation massage device of the present invention.
  • Figure 23 is a schematic flow chart of the present invention for monitoring the impedance value between electrodes arranged in pairs;
  • Figure 24 is a schematic flow chart 1 of the correlation between the voltage output and the current gear according to the present invention.
  • Figure 25 is a schematic flow chart 2 of the correlation between the voltage output and the current gear according to the present invention.
  • Figure 26 is a schematic flow chart of the present invention entering the fourth impedance region and the fifth impedance region;
  • Figure 27 is a schematic flow chart of the adjusting gears and non-adjusting gears of the present invention.
  • the present invention provides a preferred embodiment of an electrical stimulation massage device.
  • the electric stimulation massage device includes a power supply 100, a control unit 600, a voltage boosting unit 200, electrodes arranged in pairs, a pulse modulation circuit 300, a first detection circuit 400 and a second detection circuit 500.
  • the voltage boosting unit 200 is connected to the control unit 600 and the second detection circuit 500, respectively.
  • the power supply 100 is connected, and the boosting unit 200 boosts the input voltage of the power supply 100 to a preset voltage under the control of the control unit 600, and outputs it through the voltage output terminal of the boosting unit 200.
  • the electrodes are used to attach to the surface to be massaged.
  • the power input terminal 311 of the pulse modulation circuit 300 is connected to the voltage output terminal of the boost unit 200
  • the first pulse transmission terminal and the second pulse transmission terminal of the pulse modulation circuit 300 are respectively connected to an electrode
  • the control of the pulse modulation circuit 300 terminal is connected to the control unit 600
  • the first detection circuit 400 is connected to the voltage output terminals of the control unit 600 and the boost unit 200 respectively
  • the control unit 600 obtains the output voltage of the boost unit 200 through the first detection circuit 400
  • the second detection circuit 500 is connected to the control unit 600.
  • the sampling resistor R1 of the second detection circuit 500 is connected in series between the pulse modulation circuit 300 and the ground terminal.
  • the control unit 600 obtains the sampling voltage of the sampling resistor R1 through the second detection circuit 500; wherein, the control unit 600 According to the output voltage, the resistance value of the sampling resistor R1 and the sampling voltage, the impedance value between the electrodes arranged in pairs is obtained.
  • the boost unit 200 is provided with a power input terminal, a voltage output terminal and a control terminal
  • the pulse modulation circuit 300 is provided with a control terminal, an electric energy input terminal 311, a ground terminal 312, a first pulse transmission terminal and a second pulse transmission terminal
  • the first detection circuit 400 includes a transmission terminal 420 and a detection terminal 410.
  • the second detection circuit 500 also includes a transmission terminal 520 and a detection terminal 510.
  • the electrodes arranged in pairs include a first electrode 301 and a second electrode 302.
  • the voltage boosting unit 200 is connected to the power supply 100 through a power input terminal.
  • the power supply 100 supplies power to the voltage boosting unit 200.
  • the voltage boosting unit 200 is also connected to the power input terminal 311 of the pulse modulation circuit 300 through a voltage output terminal to connect the power supply to the power supply 100.
  • the input voltage of 100 is boosted to a preset voltage and transmitted to the pulse modulation circuit 300.
  • the boosting unit 200 is also connected to the control unit 600 through the control terminal, and is performed under the control of the control unit 600.
  • the boosting operation boosts the input voltage of the power supply 100 to a preset voltage.
  • the pulse modulation circuit 300 is first connected to the first electrode 301 and the second electrode 302 through the first pulse transmission terminal and the second pulse transmission terminal respectively.
  • the pulse modulation circuit 300 is also grounded through the ground terminal 312 to form a current loop. , which is equivalent to connecting the negative electrode of the power supply 100.
  • the control end of the pulse modulation circuit 300 is connected to the control unit 600. Under the control of the control unit 600, the electric energy provided by the boost unit 200 generates a pulse signal, that is, an electrical stimulation pulse signal.
  • the first pulse transmission terminal When the first electrode 301 and the second electrode 302 are connected, the first pulse transmission terminal outputs the electrical stimulation pulse signal through the first electrode 301, and the second pulse transmission terminal receives the electrical stimulation pulse signal through the second electrode 302, and then through the ground terminal 312 is derived to form a pulse cycle.
  • the first electrode 301 and the second electrode 302 are attached to the part to be massaged to achieve electrical conduction between them.
  • the electrical stimulation pulse signal is input to the part to be massaged through the electrodes, allowing the user to experience electrical stimulation and form a massage touch.
  • the first detection circuit 400 and the second detection circuit 500 are both connected to the control unit 600 through their own transmission terminals.
  • the first detection circuit 400 is connected to the voltage output terminal of the boost unit 200 through the detection terminal.
  • the detection circuit 500 is connected in parallel to the sampling resistor R1 through the detection terminal 510 .
  • the control unit 600 first obtains the voltage value at the voltage output end of the boost unit 200 through the first detection circuit 400, that is, the specific voltage value after the input voltage of the power supply 100 is boosted, thereby determining whether the preset voltage reaches the expected value.
  • control unit 600 Then, the second detection circuit 500 is used to obtain the sampling voltage on the sampling resistor R1. Finally, the control unit 600 obtains the output voltage of the boost unit 200 and the sampling voltage of the sampling resistor R1, and stores the resistance value of the sampling resistor R1.
  • the resistance value of the sampling resistor R1 and the sampling voltage obtain the impedance value between the electrodes set in pairs, that is, obtain the current flowing through the sampling resistor R1 through the resistance value and the sampling voltage of the sampling resistor R1, and obtain the current value of the electrical stimulation pulse signal of the pulse modulation circuit 300, through the output
  • the voltage obtains the voltage value of the electrical stimulation pulse signal of the pulse modulation circuit 300, obtains the entire total resistance value corresponding to the pulse modulation circuit 300 according to the current value and voltage value of the electrical stimulation pulse signal, and uses the total resistance value as the value of the electrodes arranged in pairs.
  • the error margin is used to obtain the impedance value between the electrodes arranged in pairs.
  • the preset error margin can be the internal resistance generated by the wires or components of the pulse modulation circuit 300, or it can be the internal resistance of the electrodes due to their own materials or shapes.
  • the internal resistance caused by the problem can also be the internal resistance caused by other different locations.
  • control unit 600 obtains the impedance value of the part to be massaged in real time through the above operations, and purposely adjusts the output voltage of the boosting unit 200 according to the impedance value, thereby adjusting the current condition of the electrical stimulation pulse signal of the pulse modulation circuit 300, so that the part to be massaged During the massage process, the current value of the electrical stimulation pulse signal can be consistently controlled and maintained to avoid strong electrical stimulation of the area to be massaged and achieve pain-free massage.
  • the control unit 600 preferably includes a MUC and peripheral circuits.
  • a microcontroller unit also known as a single chip microcomputer (Single Chip Microcomputer) or a single chip microcomputer, is a central processing unit (Central Process Unit); CPU) frequency and specifications are appropriately reduced, and peripheral interfaces such as memory (memory), counter (Timer), USB, A/D conversion, UART, PLC, DMA, and even LCD driver circuit are integrated on a single chip to form a Chip-level computers provide different combinations of controls for different applications.
  • Each pin of the MUC is connected to each functional module, such as the boost unit 200, the pulse modulation circuit 300, the first detection circuit 400 and the second detection circuit 500, to realize the control and detection of electrical pulses.
  • the boost unit 200 the pulse modulation circuit 300, the first detection circuit 400 and the second detection circuit 500
  • the present invention provides a preferred embodiment of the second detection circuit 500.
  • the second detection circuit 500 also includes a first protection resistor R3, a first capacitor C1 and a first zener diode D1.
  • the control unit 600 is connected between the pulse modulation circuit 300 and the sampling resistor R1 through the first protection resistor R3.
  • the control unit 600 The first capacitor C1 and the first Zener diode D1 are respectively connected between the sampling resistor R1 and the ground terminal, and the anode of the first Zener diode D1 is connected to the ground.
  • both ends of the sampling resistor R1 are connected to the ground terminal 312 and the ground terminal of the pulse modulation circuit 300 respectively, the electric energy output from the pulse modulation circuit 300 flows through the sampling resistor R1, and the voltage of the sampling resistor R1 is obtained by the control unit 600; by Set the first protection resistor R3 and connect the control unit 600 and the sampling resistor R1 respectively to prevent the input voltage to the control unit 600 from being too large, perform voltage division processing, and effectively protect the control unit 600; by setting the first capacitor C1, the sampling signal Filtering is performed to improve the accuracy of the sampling data; voltage stabilization is achieved by setting a first Zener diode D1, preferably a Zener diode.
  • the value range of the sampling resistor R1 is 130 to 170 ⁇ .
  • the larger resistance sampling resistor R1 facilitates the control unit 600 to recognize the sampling voltage and reduces the amplifier settings.
  • the general human body impedance is 300 to 1500 ⁇ , and the wearing condition of the electric stimulation massage device may cause the human body impedance to become larger or smaller, or even lower than 300 ⁇ , so the sampling resistor R1 should not be too large, and the resistance of the sampling resistor R1 If the value is too large, it will easily cause energy loss and weaken the electrical stimulation effect of the electrical stimulation pulse signal.
  • the sampling resistor R1 is preferably 150 ⁇ , and the error value is 1% to improve detection accuracy.
  • the preferred value of the first protection resistor R3 is 1K ⁇ , and the error value is 5%. Of course, it can also be other values.
  • the high resistance of the first protection resistor R3 realizes the control protection of the control unit 600. Of course, the specific value depends on the control unit. 600, especially regarding the chip selection of the control unit 600, depending on the chip Set by the voltage the pin withstands.
  • the first capacitor C1 is used for filtering and capacity selection. Since it is a small capacitor for filtering, 104 is preferred. For capacitor-to-ground filtering, a smaller capacitor is needed in parallel to the ground, and the voltage value will not be too high. , 50V is preferred, just for filtering, and an error value of 10% is used to save costs.
  • the first Zener diode D1 is preferably a Zener diode BZT52C3V3S 3.3V. Of course, it can also be other Zener diodes. It is connected in series with the first protection resistor R3. Through series connection, a higher stable voltage can be obtained and at the same time it can protect the circuit. Electronic components to prevent them from being broken down by high current.
  • three algorithm models for calculating impedance values between electrodes are provided.
  • the control unit 600 stores a first model for calculating the impedance value between the electrodes, and the first model is
  • the R impedance is the impedance value between the electrodes arranged in pairs
  • the V is the sampling voltage
  • the R is the resistance value of the sampling resistor R1
  • the V input is the output voltage of the boost unit 200
  • the I modulation is the pulse current output by the pulse modulation circuit 300.
  • the current flowing through the sampling resistor R1 is obtained through Vac and Rac, that is, the current I modulation of the output pulse of the pulse modulation circuit 300.
  • the pulse modulation is obtained through V out and I modulation .
  • the resistance value of the circuit 300 and the output pulse of the pulse modulation circuit 300 are the electrical stimulation pulse signals
  • the resistance value of the pulse modulation circuit 300 is the impedance value of the part to be massaged where the paired electrodes are attached.
  • the control unit 600 stores a second model for calculating the impedance value between the electrodes, and the second model is
  • the R impedance is the impedance value between the electrodes arranged in pairs
  • the V is the sampling voltage
  • the R is the resistance value of the sampling resistor R1
  • the V input is the output voltage of the boost unit 200
  • the I modulation is the pulse current output by the pulse modulation circuit 300.
  • the resistance value of the pulse modulation circuit 300 is not only composed of the impedance value of the part to be massaged by the paired electrodes, but also includes the resistance value R of the sampling resistor R1, which is mainly the sampling of the present invention.
  • the value of resistor R1 is relatively large, and the gap between it and the impedance value of the area to be massaged is not very large and difficult to ignore, in order to improve accuracy.
  • the control unit 600 stores a third model for calculating the impedance value between the electrodes, and the third model is
  • the R impedance is the impedance value between the electrodes arranged in pairs
  • the V is the sampling voltage
  • the R is the resistance value of the sampling resistor R1
  • the V input is the output voltage of the boost unit 200
  • the I modulation is the pulse current output by the pulse modulation circuit 300
  • the R remainder is a preset error margin.
  • a preset error margin is added.
  • the preset error margin can be the internal resistance generated by the wires or components of the pulse modulation circuit 300, or it can be caused by the electrode's own material or shape problems.
  • the internal resistance can also be the internal resistance generated at other different positions.
  • the preset error margin can be calculated through experiments or theoretical calculations to further improve the accuracy.
  • the second detection circuit 500 further includes a second protection resistor R2.
  • the second protection resistor R2 is connected in series between the pulse modulation circuit 300 and the sampling resistor R1.
  • the second protection resistor R2 By setting the second protection resistor R2, the voltage flowing into the control unit 600 is reduced.
  • the resistance ratio of the sampling resistor R1 to the second protection resistor R2 ranges from 1:22 to 1:38.
  • the resistance ratio range of the sampling resistor R1 and the second protection resistor R2 may not be limited by the specific resistance values of the sampling resistor R1 and the second protection resistor R2, and the resistance ratio of the two may be considered.
  • the present invention provides a preferred embodiment of a first detection circuit 400.
  • the first detection circuit 400 includes a first voltage dividing resistor R4 and a second voltage dividing resistor R5.
  • the first voltage dividing resistor R4 is connected to the voltage output terminal of the boost unit 200 and the second voltage dividing resistor R5 respectively.
  • the second voltage dividing resistor R5 The other end of R5 is grounded, and the control unit 600 is connected to the connection node between the first voltage dividing resistor R4 and the second voltage dividing resistor R5 to obtain the divided voltage of the second voltage dividing resistor R5.
  • the control unit 600 The output voltage of the boost unit 200 is obtained by the voltage division of the resistor R5, the resistance of the first voltage dividing resistor R4 and the resistance of the second voltage dividing resistor R5.
  • the first voltage dividing resistor R4 and the second voltage dividing resistor R5 are used to divide the voltage, so that the first voltage dividing resistor R4 and the second voltage dividing resistor R5 obtain the output voltage of the boost unit 200, and then divide the second voltage into The value of resistor R5 is reduced so that the main control unit can directly obtain the voltage of the second voltage dividing resistor R5 without adding other additional component protection or shunting.
  • the first voltage dividing resistor R4 should be much larger than the second voltage dividing resistor R5. resistance, reduce the voltage value of the second voltage dividing resistor R5.
  • the control unit 600 can directly obtain it.
  • the resistance values of the first voltage dividing resistor R4 and the second voltage dividing resistor R5 need to be considered on the one hand, the range of the output voltage of the boost unit 200, and on the other hand, the voltage limit of the value terminal of the control unit 600 needs to be considered.
  • the resistance ratio of the voltage dividing resistor R5 and the first voltage dividing resistor R4 ranges from 1:37 to 1:72; among them, the resistance of the second voltage dividing resistor R5 is preferably 10k ⁇ , and the value range can be between 9k ⁇ and 11k ⁇ .
  • the resistance of the first voltage dividing resistor R4 is preferably 510k ⁇ , and the value range may be between 450k ⁇ and 570k ⁇ .
  • an algorithmic solution for calculating the output voltage of the boost unit 200 is provided.
  • the control unit 600 stores a fourth model for calculating the output voltage of the boost unit 200, and the fourth model is
  • the V input is the output voltage of the boost unit 200
  • the V divided by 2 is the divided voltage of the second voltage dividing resistor R5
  • the R divided by 1 is the resistance of the first voltage dividing resistor R4
  • the R divided by 2 is the resistance of the second voltage dividing resistor R5.
  • the core idea is to obtain the voltage value of the first voltage dividing resistor R4 and the voltage boosting unit 200 according to the resistance ratio of the first voltage dividing resistor R4 and the second voltage dividing resistor R5, and according to the sampling voltage of the second voltage dividing resistor R5. the output voltage.
  • the second detection circuit 500 further includes a second capacitor, and the control unit 600 connects to the connection node between the second voltage dividing resistor R5 and the ground through the second capacitor.
  • the second capacitor is used for filtering. Capacity selection. Since it is a small capacitor for filtering, 103 is preferred. For capacitor-to-ground filtering, a smaller capacitor is needed in parallel to the ground, and the voltage value will not be too high. 50V is preferred, just for filtering, and an error value of 10% is used to save costs.
  • the present invention provides a preferred embodiment of a pulse modulation circuit 300.
  • the pulse modulation circuit 300 also includes at least one set of control arms.
  • the control arms include first control switches 321 and 2.
  • the control unit 600 is respectively connected to the control ends of the first control switch 321 and the second control switch 324 to respectively control the first control switch 321 and the second control switch 324.
  • the input end of the first control switch 321 is connected to the power input end 311
  • the output end of the second control switch 324 is connected to the ground end
  • the output end of the first control switch 321 is connected to the ground end.
  • One of the first pulse transmission terminal and the second pulse transmission terminal is connected, and the input terminal of the second control switch 324 is connected with the first pulse transmission terminal and the second pulse transmission terminal. The other of the two pulse transmission terminals is connected.
  • the control unit 600 controls the on and off of the first control switch 321 and the second control switch 324 to form a pulse.
  • the signal that is, the electrical stimulation pulse signal, the electric energy input by the boost circuit is sequentially output through the first control switch 321, the first electrode 301, the part to be massaged, the second electrode 302 and the second control switch 324, and then flows through the third
  • the sampling resistor R1 of the second detection circuit 500 stimulates the part to be massaged through pulse current, so that the part to be massaged experiences the feeling of massage.
  • the control unit 600 is connected to the first control switch 321 through the control terminal 331, and is connected to the second control switch 324 through the control terminal 334.
  • control arm is provided with two groups, the output ends of the two first control switches (321, 322) are connected to the first pulse transmission end and the second pulse transmission end respectively, and the two second control switches (323, 324 ) is connected to the first pulse transmission terminal and the second pulse transmission terminal respectively, and an H-bridge circuit is formed through four control switches to quickly control the interactive on and off of the two sets of control arms.
  • the control unit 600 is connected to the first control switch 322 through the control terminal 332, and is connected to the second control switch 323 through the control terminal 333.
  • the first control switch (321, 322) and the second control switch (323, 324) are triodes. Taking the H-bridge circuit as an example, reducing two of the triodes is a set of control arms. It includes a first transistor Q1, a second transistor Q2, a third transistor Q3 and a fourth transistor Q4. The first transistor Q1 and the second transistor Q2 serve as the first control switch (321, 322), the third transistor Q3 and the fourth transistor Q4 serve as the second control switch (323, 324), the emitters of the first transistor Q1 and the second transistor Q2 are both connected to the boost unit 200 The input terminal is connected as the power input terminal 311 of the pulse modulation circuit 300.
  • the bases of the first triode Q1 and the second triode Q2 are both connected to the control terminal of the control unit 600.
  • the first triode Q1 and the second triode Q2 are connected to the control terminal of the control unit 600.
  • the collector of transistor Q2 is connected to the two electrodes respectively, the emitters of the third transistor Q3 and the fourth transistor Q4 are connected to the two electrodes respectively, and the collectors of the third transistor Q3 and the fourth transistor Q4 Connected to the ground terminal 312 of the pulse modulation circuit 300, the bases of the third transistor Q3 and the fourth transistor Q4 are connected to the control terminal of the control unit 600.
  • the control unit 600 can control the first transistor Q1, Q4 respectively.
  • the on-off of the second transistor Q2, the third transistor Q3 and the fourth transistor Q4 is preferably controlled by simultaneously controlling the on-off of the first transistor Q1 and the fourth transistor Q4, and controlling the second and third transistors Q2, Q3 and Q4.
  • the transistor Q2 and the third transistor Q3 are turned on and off at the same time.
  • the input end of the boost unit 200 is connected to the control unit 600 through a pull-up resistor to provide a voltage that drives the transistors on and off.
  • a resistor is connected in series between the control unit 600 and the base of each transistor to control the control unit 600 . protection, and generates a driving voltage at the base to achieve conduction of the transistor.
  • the first pulse transmission end and the second pulse transmission end are both grounded through bidirectional varistor diodes (D2, D3) to achieve bidirectional blocking between the motor and the ground terminal, allowing current to flow back to the ground terminal.
  • the power input terminal 311 of the pulse modulation circuit 300 is connected to the control unit 600 through the resistor R10 and the control terminal 331, is connected to the control unit 600 through the resistor R11 and the control terminal 332, and is connected to the control unit 600 through the resistor R12 and the control terminal 333.
  • the control terminal 334 is connected to the control unit 600 through the resistor R13; and a resistor R6 is connected in series between the control terminal 331 and the base of the first transistor Q1, and between the control terminal 332 and the base of the second transistor Q2 A resistor R7 is connected in series, a resistor R8 is connected in series between the control terminal 333 and the base of the third transistor Q3, and a resistor R9 is connected in series between the control terminal 334 and the base of the fourth transistor Q4.
  • the present invention provides a preferred embodiment of the voltage boosting unit 200.
  • the boost unit 200 includes a power input terminal connected to the power supply 100, a boost circuit 210, an energy storage circuit 220, a pressure relief circuit 230 and a voltage output terminal 201 connected to the pulse modulation circuit 300.
  • the input terminal of the boost circuit 210 is connected to the power supply.
  • the input end is connected, the control end of the boost circuit 210 is connected to the control unit 600;
  • the input end of the energy storage circuit 220 is connected to the output end of the boost circuit 210, and the output end of the energy storage circuit 220 is connected to the voltage output end 201;
  • pressure relief The control end of the circuit 230 is connected to the control unit 600, and the input end of the pressure relief circuit 230 is connected to the voltage output end 201.
  • the control unit 600 is used to control the boost circuit 210 according to the preset voltage and the impedance value between the paired electrodes. and/or energy storage circuit 220 into The voltage is boosted or/and controlled to reduce the voltage by the voltage relief circuit 230 to control the voltage output terminal 201 to output the preset voltage to the pulse modulation circuit 300 .
  • the input terminal of the boost circuit 210 is connected to the power input terminal to obtain the voltage of the power supply 100, and the control terminal of the boost circuit 210 is connected to the control unit 600 to receive control instructions and boost the voltage of the power supply 100; store
  • the input terminal of the energy storage circuit 220 is connected to the output terminal of the boost circuit 210 to store energy for the boosted voltage.
  • the output terminal of the energy storage circuit 220 is connected to the voltage output terminal 201 to output the preset voltage to the voltage output terminal. 201;
  • the control terminal of the pressure relief circuit 230 is connected to the control unit 600, and the input terminal of the pressure relief circuit 230 is connected to the voltage output terminal 201 to step down the output voltage output by the boost circuit 210 to the voltage output terminal 201 according to the control instruction. .
  • the control unit 600 controls the pressure relief circuit 230 to reduce the voltage output by the voltage output terminal 201.
  • the control unit 600 controls the voltage boost circuit 210 to reduce the voltage of the power supply.
  • the voltage output by 100 is boosted to dynamically maintain the output power of the voltage output terminal 201 unchanged.
  • the boost circuit 210 includes an inductor L and a MOS transistor. One end of the inductor L is connected to the input end of the boost circuit 210, and the other end is connected to the output end of the boost circuit 210; the gate of the MOS transistor is connected to the boost circuit 210.
  • the control terminal of the voltage boost circuit 210 is connected, the drain of the MOS tube is connected between the inductor L and the output terminal of the boost circuit 210, and the source of the MOS tube is connected to ground.
  • the MOS tube is mainly used as a current on-off switch.
  • the gate of the MOS tube After the gate of the MOS tube is connected to the control terminal of the boost circuit 210, it can receive the control instructions of the control unit 600 and conduct on or off according to the control instructions of the control unit 600.
  • the MOS tube when the MOS tube is turned on, the current of the inductor L flows to the ground through the MOS tube, so that the power supply 100 charges the inductor L; when the MOS tube is turned off, the current of the inductor L flows to the energy storage circuit 220 to charge the power supply 100 The output voltage is boosted.
  • a capacitor C3 is connected between the power supply 100 and the inductor L and is grounded to implement filtering.
  • a resistor R14 is connected in series between the gate of the MOS tube and the control end of the boost circuit 210 to protect the control unit 600, and the gate of the MOS tube is also connected to a resistor R15 and grounded to make the control unit 600 unloaded. Ground to prevent MOS tube conduction.
  • the voltage output circuit further includes a diode D4 connected in series between the output end of the boost circuit 210 and the input end of the energy storage circuit 220; and/or the energy storage circuit 220 is a capacitive energy storage circuit 220.
  • the MOS transistor of the boost circuit 210 When the MOS transistor of the boost circuit 210 is turned off, the current of the voltage PL1 flows to the energy storage circuit 220 through the diode D4, so that the voltage output by the energy storage circuit 220 to the voltage output terminal 201 is the voltage output by the inductor L.
  • the energy storage circuit 220 The sum of energy storage voltages to achieve voltage boost.
  • the energy storage circuit 220 is a capacitive energy storage circuit 220.
  • the capacitive energy storage circuit 220 includes a fourth capacitor C4 and a fifth capacitor C5 connected in parallel between the input end and the output end of the energy storage circuit 220.
  • the fourth capacitor C4 The other end of the fifth capacitor C5 is connected to ground.
  • the fourth capacitor C4 and the fifth capacitor C5 are mainly used for energy storage.
  • the voltage output by the energy storage circuit 220 to the voltage output terminal 201 is the sum of the voltage output by the inductor L, the voltage of the fourth capacitor C4, and the fifth capacitor C5 to achieve voltage boosting. Among them, the energy storage capacity of the fourth capacitor C4 is greater than the energy storage capacity of the fifth capacitor C5.
  • the pressure relief circuit 230 includes a first resistor R16, a fifth transistor Q5, a second resistor R17, and a third resistor R18.
  • the first resistor R16 is connected in series between the control end of the pressure relief circuit 230 and the fifth triode Q5. Between the bases of the transistor Q5, the emitter of the fifth transistor Q5 is grounded; one end of the third resistor R18 is connected between the first resistor R16 and the base of the fifth transistor Q5, and the other end is grounded;
  • the resistor R17 is connected in series between the input terminal of the pressure relief circuit 230 and the collector of the fifth transistor Q5.
  • the control unit 600 controls the transistor to conduct, and the pressure relief circuit 230 relieves the voltage of the inductor L and the energy storage circuit 220. Therefore, the output voltage output by the energy storage circuit 220 to the voltage output terminal 201 is reduced to the preset voltage, and the preset voltage is output to the pulse modulation circuit 300 through the voltage output terminal 201 .
  • the present invention provides a preferred embodiment of a control method.
  • a control method is applied in an electric stimulation massage device.
  • the steps of the control method include:
  • Step S90 the control unit 600 controls the pulse modulation circuit 300 to generate an electrical stimulation pulse signal
  • Step S91 sequentially and cyclically control each pair of electrodes to output electrical stimulation pulse signals, and obtain the impedance value between the corresponding pairs of electrodes;
  • Step S92 When the impedance value is abnormal, the next cycle stops controlling the pair of electrodes corresponding to the abnormal impedance value to output electrical stimulation pulse signals.
  • the control unit 600 controls the pulse modulation circuit 300 to generate an electrical stimulation pulse signal to perform electrical stimulation massage on the part to be massaged, and controls the electrodes arranged in pairs to perform a preset massage method according to different massage modes. For example, each pair The electrodes all output electrical stimulation pulse signals in turn, or, within a certain period of time, at least two pairs of electrodes sequentially output electrical stimulation pulse signals. In step S91, each pair of electrodes is sequentially and cyclically controlled to output electrical stimulation pulses. The signal is output according to the preset mode, and the sequence is in the preset order. It is not that the electrodes set in pairs are outputted one by one in sequence. Of course, the electrodes set in pairs can also be outputted one by one in sequence.
  • the electrodes arranged in pairs do not only refer to the two electrodes of a single pulse modulation circuit 300, but may also be one electrode of one pulse modulation circuit 300 and one electrode of another matching pulse modulation circuit 300.
  • the impedance value between the electrodes arranged in pairs is obtained through the above-mentioned electric stimulation massage device, that is, the impedance value corresponding to each output of the electric stimulation pulse signal is obtained.
  • the impedance values should be close or consistent.
  • the impedance values may be due to wearing problems or internal circuit problems. This leads to abnormal impedance values, that is, there is a problem with a pair of electrodes and the electrical stimulation pulse signal cannot be output normally. If you insist on continuing to output the electrical stimulation pulse signal, it will easily cause tingling in the area to be massaged. Therefore, when the impedance value is abnormal, the next cycle stops controlling the pair of electrodes corresponding to the abnormal impedance value to output electrical stimulation pulse signals.
  • next cycle refers to the control unit 600 controlling the pulse modulation circuit 300 to disconnect the current loop before the two electrodes corresponding to the abnormal impedance value are connected at the same time, so as not to continue to participate in the next output of the electrical stimulation pulse signal. operation.
  • the steps of the control method further include:
  • Step S93 record the impedance value of each electrical stimulation circuit
  • Step S94 Notify the user when the impedance value of an electrical stimulation circuit is abnormal.
  • step S91 the impedance value between the paired electrodes is obtained and recorded, that is, the impedance value of each electrical stimulation circuit is recorded.
  • the impedance value of an electrical stimulation circuit is abnormal, that is, the paired electrodes are abnormal.
  • the user After executing the next cycle to stop the pair of electrodes corresponding to the abnormal impedance value output of the electrical stimulation pulse signal, the user needs to be notified to let the user decide whether to turn off the power supply 100 or reduce the output voltage, or even remind the user to re-wear the electrical stimulation massage device.
  • the present invention provides a preferred embodiment of a control method for an electric stimulation massage device.
  • a control method for an electric stimulation massage device includes electrodes arranged in pairs, a pulse modulation circuit connected to the electrodes, and a second detection circuit connected to the pulse modulation circuit.
  • the electrodes are used to attach to the part to be massaged.
  • the pulse modulation circuit is used to generate electrical stimulation pulse signals to be output to the area to be massaged through the electrodes; the steps of the control method include:
  • Step S10 control the pulse modulation circuit to generate electrical stimulation pulse signals
  • Step S20 Control the second detection circuit to periodically sample the electrical stimulation pulse signal to obtain sampling data
  • Step S30 Periodically obtain the impedance value between the electrodes arranged in pairs according to the sampling data
  • Step S40 Adjust the input voltage to the pulse modulation circuit according to the impedance value; wherein, the sampling period T for sampling the electrical stimulation pulse signal satisfies the first model, and the first model is T+t ⁇ A; t is the value of the electrical stimulation massage device.
  • the preset response lag time, A is the preset time required for the user to perceive the electric sting.
  • the voltage value of the input voltage is controlled to adjust the voltage corresponding to the electric energy input to the pulse modulation circuit.
  • the electrode is used to attach to the part to be massaged, and the pulse modulation circuit generates an electric stimulation pulse signal to pass through
  • the electrodes are output to the area to be massaged, causing the area to be massaged to feel electrical stimulation, forming a massage touch.
  • the impedance value of the part to be massaged is obtained in real time, and the input voltage is purposefully adjusted according to the impedance value, thereby adjusting the current of the electrical stimulation pulse signal of the pulse modulation circuit, so that the part to be massaged can always be controlled and maintained during the massage process.
  • the current value prevents the area to be massaged from receiving strong electrical stimulation and achieves pain-free massage.
  • the pulse modulation circuit converts the input electrical energy into pulse electrical energy, that is, an electrical stimulation pulse signal, through on-off operations.
  • the voltage value of the electrical stimulation pulse signal is the voltage value of the input voltage
  • the current value of the electrical stimulation pulse signal is It is related to the resistance value that the current passes through. That is, when the electric stimulation massage device is running normally by default, external parameters are not considered.
  • the resistance value that the current passes through is related to the state of the part to be massaged or/and the fit state of the electrode and the part to be massaged. .
  • the electrical stimulation pulse signal can be collected periodically through the second detection circuit to obtain relevant data about the electrical stimulation pulse signal to form sampling data, such as obtaining the current and voltage of the electrical stimulation pulse signal. Wait for data.
  • the sampled data is processed according to the preset algorithm. If the sampled data is the current data of the electrical stimulation pulse signal, the impedance value between the paired electrodes is obtained based on the voltage value of the current input voltage. If the sampling resistor is connected in series, the voltage of the sampling resistor is obtained when the electrical stimulation pulse signal flows through the sampling resistor. Through the known resistance value of the sampling resistor, the current when the electrical stimulation pulse signal flows through the sampling resistor is calculated, and then through the current By inputting the voltage value of the voltage, the impedance value between the electrodes arranged in pairs can be obtained. According to the impedance value, the input voltage to the pulse modulation circuit is adjusted through a preset adjustment strategy, thereby adjusting the current value of the electrical stimulation pulse signal, making the user's electrical stimulation experience stronger or weaker, or maintaining a certain intensity.
  • the above sampling and calculation processing all require a certain amount of time to execute, and the time A required for the user to perceive the electric sting is preset and can also be obtained based on a large number of simulation experiments.
  • the massaged area will feel tingling. Therefore, it is necessary to eliminate the negative impact of the abnormal current within the time required for the user to feel the electric tingling.
  • the "sampling" time is the sampling period T for sampling the electrical stimulation pulse signal
  • the “calculation processing” time is the preset response lag time t of the electrical stimulation massage device.
  • t is not limited to “calculation processing”, and there are other The lag time under known or unknown circumstances, such as the transmission time of electrical signals, the reaction of the chip, etc., the sum of T and t must be less than A, to achieve detection within the time A required for the user to perceive the electric sting. detect impedance anomalies and react to eliminate the negative effects of current anomalies.
  • the impedance abnormality is detected within the time A required for the user to perceive the electric sting, and a response is made to eliminate the negative impact caused by the abnormal current.
  • the value of t can be obtained based on a large number of simulation experiments and stored in advance.
  • the preset time required for users to perceive electric sting can be preset through at least four ways.
  • the first is determined by relevant hospital research data
  • the second is set by the average time of most people
  • the third is allowed to be modified by the user or Users have ways to suggest modifications
  • t includes the time t1 for obtaining the impedance value between the paired electrodes according to the sampling data and/or the time t2 for adjusting the input voltage to the pulse modulation circuit according to the impedance value.
  • both t1 and t2 should be taken into consideration, especially t2.
  • long calculation processing time is likely to occur. What t1 considers more is the final sampling time obtained by different sampling methods, and the time it takes to obtain the impedance value after analyzing and processing the sampling data is the final t1 time.
  • the step of periodically acquiring impedance values between pairs of electrodes according to sampling data includes:
  • Step S31 Obtain the output voltage of the pulse generating circuit
  • Step S32 Use the first sampling circuit to periodically sample the voltage of the sampling resistor to obtain multiple sampling resistor voltages as sampling data
  • Step S33 Obtain the current value of the electrical stimulation pulse signal according to the voltage of the sampling resistor and the resistance of the sampling resistor;
  • Step S341 Obtain the impedance value between the paired electrodes according to the output voltage and current value
  • Step S342 Obtain the total resistance value according to the output voltage and current value, and obtain the impedance value between the paired electrodes according to the total resistance value and the resistance value of the sampling resistor;
  • Step S343 Set the resistance value of the error margin, obtain the total resistance value based on the output voltage and current value, and then obtain the impedance between the paired electrodes based on the total resistance value, the resistance value of the difference margin and the resistance value of the sampling resistor. value.
  • the output voltage and the sampling resistor voltage are obtained, thereby obtaining the current value and voltage value of the electrical stimulation pulse signal, and the total resistance value of the pulse generating circuit is obtained based on the two. If the cost is taken into account
  • the impedance value between the set electrodes and the massaged part can be regarded as the total resistance value, and the impedance value between the paired electrodes is obtained according to the output voltage and current value; however, the resistance value of the pulse generating circuit is not only determined by the pair of The impedance value of the part to be massaged attached to the electrodes should also include the resistance value of the sampling resistor.
  • the value of the sampling resistor of the present invention is larger, and the gap with the impedance value of the part to be massaged is not Very large and difficult to ignore.
  • the total resistance value is obtained based on the output voltage and current value, and the impedance value between the paired electrodes is obtained based on the total resistance value and the resistance value of the sampling resistor; there is a preset error Margin, the preset error margin can be the internal resistance generated by the wires or components of the pulse generating circuit, or the internal resistance generated by the electrode due to its own material or shape, or it can be generated at other different locations. Internal resistance, among which, the preset error margin can be calculated through experiments or theoretical calculations to further improve the accuracy.
  • the resistance value of the error margin is set, and the total resistance value is obtained according to the output voltage and current value, and then based on The total resistance value, the resistance value of the differential margin and the resistance value of the sampling resistor obtain the impedance value between the electrodes arranged in pairs.
  • the control unit 600 stores a first model for calculating the impedance value between the electrodes 301, and the first model is R impedance is the impedance value between the paired electrodes 301, V is the sampling voltage, R is the resistance value of the sampling resistor R101, V input is the output voltage of the boost unit 200, and I is adjusted to the output of the pulse modulation circuit 300. pulsed current.
  • the current flowing through the sampling resistor R101 is obtained through Vac and Rac, that is, the current I modulation of the output pulse of the pulse modulation circuit 300.
  • the pulse modulation is obtained through V out and I modulation .
  • the resistance value of the circuit 300 and the output pulse of the pulse modulation circuit 300 are the electrical stimulation pulse signals, and the resistance value of the pulse modulation circuit 300 is the impedance value of the part to be massaged where the electrodes 301 arranged in pairs are attached.
  • the control unit 600 stores a second model for calculating the impedance value between the electrodes 301, and the second model is R impedance is the impedance value between the electrodes 301 arranged in pairs, V is the sampling voltage, and R is the sampling voltage.
  • the resistance value of resistor R101, V input is the output voltage of the boost unit 200, and I adjust is the current of the pulse output by the pulse modulation circuit 300.
  • the resistance value of the pulse modulation circuit 300 is not only composed of the impedance value of the part to be massaged by the paired electrodes 301, but also includes the resistance value R of the sampling resistor R101, which is mainly the present invention.
  • the value of the sampling resistor R101 is relatively large, and the gap with the impedance value of the area to be massaged is not very large and difficult to ignore, in order to improve accuracy.
  • the control unit 600 stores a third model for calculating the impedance value between the electrodes 301.
  • the third model is R impedance is the impedance value between the paired electrodes 301, V is the sampling voltage, R is the resistance value of the sampling resistor R101, V input is the output voltage of the boost unit 200, and I is adjusted to the output of the pulse modulation circuit 300.
  • the pulse current, R is the preset error margin.
  • the preset error margin can be the internal resistance generated by the wires or components of the pulse modulation circuit 300, or it can be the internal resistance of the electrode 301 due to its own material or shape.
  • the internal resistance generated can also be the internal resistance generated at other different positions.
  • the preset error margin can be calculated through experiments or theoretical calculations to further improve the accuracy.
  • the second detection circuit 500 further includes a second protection resistor R102.
  • the second protection resistor R102 is connected in series between the pulse modulation circuit 300 and the sampling resistor R1. By setting the second protection resistor R102, the amount of electric energy flowing into the control unit 600 is reduced, or The voltage dividing process reduces the voltage value input to the control unit 600 to protect the entire second detection circuit 500 .
  • the present invention provides a preferred embodiment in which the ratio of the sampling period T to the period T1 of the electrical stimulation pulse signal is S.
  • the ratio of the sampling period T to the period T1 of the electrical stimulation pulse signal is S, and S is an integer greater than or equal to 1 and less than or equal to (A-t)/T1.
  • the sampling period T is exactly One cycle of the electrical stimulation pulse signal, period T1.
  • Each sampling period T corresponds to the generation period T1 of the previous electrical stimulation pulse signal.
  • S must be greater than or equal to 1. If S is less than 1, it means that the sampling period T must be less than the electrical stimulation pulse signal.
  • the period T1 of the stimulation pulse signal is unnecessary. It cannot completely obtain the entire situation of the electrical stimulation pulse signal.
  • the sampling period T cannot be too large. If it is collected once for a long time, it is easy to exceed the time A, that is, S is less than or equal to the integer of (A-t)/T1. Among them, A-t expresses the remaining allowable sampling time. In fact, the sampling period T cannot Greater than the remaining allowable sampling time.
  • the step of periodically sampling the electrical stimulation pulse signal includes:
  • Step S211 In one of the sampling periods T, when sampling the electrical stimulation pulse signal, sample multiple times within a preset time;
  • Step S212 Obtain sampling data.
  • the sampling period T is equal to S times the period T1 of the electrical stimulation pulse signal.
  • S is an integer greater than or equal to 2 and less than or equal to (At)/T1.
  • the plurality of samples are sampled within the preset time.
  • the steps include: sampling S high levels once to obtain multiple sampling data; Scheme 2: the sampling period T is equal to the period T1 of the electrical stimulation pulse signal, and sampling multiple times within the preset time
  • the steps include: sampling a high level multiple times to obtain multiple sampling data.
  • Multiple electrical stimulation pulse signals are sequentially sampled to obtain multiple sampling data, and the multiple sampling data are averaged and used as new sampling data.
  • the new sampling data is substituted into step S30 in the control method to obtain paired sets of data.
  • the impedance value between the electrodes. This impedance value is the representative impedance value corresponding to multiple sampling data, which improves accuracy and improves the buffering of input voltage adjustment to prevent rapid and large adjustments, although it will not cause tingling. , will also lead to poor experience.
  • the sampling period T is equal to the period T1 of the electrical stimulation pulse signal.
  • multiple sampling refers to multiple sampling of the high level of an electrical stimulation pulse signal.
  • one electrical stimulation pulse signal is sampled multiple times.
  • the multiple sampling data will eventually form a pattern related to the electrical stimulation pulse signal.
  • the sampling data of the stimulation pulse signal pairing is to prevent the error situation in the second detection circuit or the error situation corresponding to the electric stimulation massage device circuit, so that the final sampling data tends to be accurate and real data to reflect The most realistic signal situation of the current electrical stimulation pulse signal.
  • the present invention provides a preferred embodiment of timing sampling.
  • the steps of controlling the second detection circuit to periodically sample the electrical stimulation pulse signal include:
  • Step S221 After controlling the pulse modulation circuit to generate the electrical stimulation pulse signal, perform timing;
  • Step S222 When the timing time reaches the start time, the electrical stimulation pulse signal is sampled.
  • the ADC sampling timer is started; when the timing time reaches the start time, the electrical stimulation pulse signal has been loaded to both ends of the part to be massaged and the sampling resistor. At this time, the ADC sampling is started.
  • the voltage of the sampling resistor can be collected accurately and promptly.
  • the present invention provides a preferred embodiment of a control method based on massage gears and/or massage modes.
  • the steps of the control method further include:
  • Step S51 Obtain the massage gear and/or massage mode
  • Step S52 Determine A according to the massage gear and/or massage mode.
  • the steps to determine A based on the massage gear and/or massage mode include:
  • Step S521 Determine the gear interval to which it belongs according to the massage gear, and determine A according to the gear interval;
  • Step S522 Determine the mode type it belongs to according to the massage mode, and determine A according to the mode type;
  • Step S523 Determine the gear interval to which it belongs according to the massage gear, and determine the mode category to which it belongs according to the massage mode.
  • Type, A is determined based on the gear range and mode type.
  • determining A includes three possibilities.
  • the first is to determine through the massage gear.
  • the massage gear has different preset voltage values. Different voltage values lead to changes in A, so that A is determined through the current gear;
  • the second is to determine by massage mode, such as acupuncture, cupping, scraping, massage, massage, acupressure, hammering, slimming, etc.
  • Different massage modes have the same changes in electrical stimulation pulse signal parameters, such as current, voltage and frequency. changes, thereby determining the mode type according to different massage modes, and determining A; the third is the combination of the first and the second. Since both the massage gear and the massage mode have an impact, both are determined.
  • the third is to set an A for the massage gear corresponding to each massage mode, and select the corresponding massage mode and massage gear to directly determine A; the second is to set A for each massage mode.
  • the mode is set with a preset point, and each massage gear is also set with a preset point.
  • the total number of points is obtained according to the selection to determine A, where A has a certain correlation with the total number of points.
  • steps S521 to S523 are not steps performed in sequence, and one of the steps may be selected according to specific circumstances.
  • the present invention provides a preferred embodiment of adjusting the sampling period T.
  • control method steps also include:
  • Step S61 When the sampling period T for periodically sampling the electrical stimulation pulse signal does not satisfy the first model
  • Step S62 reduce the input voltage to a safe voltage
  • Step S63 Adjust the generation frequency of the electrical stimulation pulse signal to adjust the sampling period T.
  • step S62 is implemented to reduce the input voltage to a safe voltage. As long as a safe voltage value is set, the occurrence of electric sting will be avoided from the source. The safe voltage is obtained through experiments or related research data and is acceptable to the human body and will not cause sting. voltage information.
  • step S63 is implemented to adjust the generation frequency of the electrical stimulation pulse signal to adjust the sampling period T. As long as the generation frequency of the electrical stimulation pulse signal becomes higher, the sampling period T can be reduced, so that the sampling period T can meet the requirements of the second step.
  • the present invention provides a preferred embodiment 1 of the output strategy of setting electrode output voltages in pairs.
  • control method of the electric stimulation massage device includes the following steps:
  • the current impedance value between pairs of electrodes is obtained according to a preset period or in real time. For example, if the impedance values between pairs of electrodes are obtained multiple times continuously according to a preset period, the current impedance value between pairs of electrodes will be obtained. The average of the impedance values is used as the current impedance value. Since the human body's response time to tingling is between 300ms and 1200ms, in order to prevent the adjustment of the electrical stimulation device from lagging behind the time when the human body feels the tingling, in this implementation scenario, the cycle time is set to less than 300ms, for example, it can be 100ms or 50ms.
  • S712 Control the output voltage output to the electrodes set in pairs according to the current impedance value.
  • the output voltage output to the paired electrodes is controlled according to the current impedance value.
  • the current impedance value can reflect the wearing state of the wearable device. If the wearable device is in a normal wearing state, the output voltage can Output is performed based on the working gear set by the actual user. If the wearable device is in an abnormal wearing state, the output voltage output to the electrode needs to be reduced. Specifically, it can be directly reduced to 0 or another preset lower voltage value, or it can be based on the current impedance value. Adjust in real time to avoid lowering the voltage value too much at one time, resulting in poor massage effect and users not being able to feel the electrical stimulation.
  • the output voltage when the output voltage is reduced, it is reduced in a decreasing manner to avoid sudden changes in the output voltage that the user cannot adapt to. Specifically, it can be reduced in a stepwise manner, with each preset time interval (eg. 100ms) to reduce the output voltage by several voltages. The voltage values lowered each time can be equal or unequal (including increasing and decreasing). Further, the difference between the current impedance value and the last detected impedance value obtained is obtained.
  • each preset time interval eg. 100ms
  • the difference is greater than or equal to the preset difference threshold, it means that the difference between the impedance values obtained twice is large, and the corresponding output voltage The gap between them is relatively large, so reducing the output voltage corresponding to the last detected impedance value in a decremental manner within a preset time (for example, 2s) can effectively prevent voltage sudden changes from causing discomfort to the user.
  • a preset time for example, 2s
  • the difference is less than the preset difference threshold, it means that the difference between the two obtained impedance values is small, and the voltage can be adjusted directly, effectively improving the efficiency of voltage adjustment.
  • step S712 includes step S7121.
  • S7121 When the current impedance value is greater than the first impedance value and less than the second impedance value, the dynamic voltage is obtained according to the current impedance value and the preset mapping relationship, and the dynamic voltage is used as the output voltage to be output to the paired electrodes. The dynamic voltage is less than the electric The gear voltage of the current working gear of the stimulation device, so that the electrical stimulation device is in a dynamic voltage output state.
  • the first impedance value is smaller than the second impedance value.
  • the first impedance value is any value between 1000 ⁇ and 2000 ⁇ .
  • the second impedance value is any value between 4500 ⁇ and 5500 ⁇ .
  • the first impedance value is 1500 ⁇ and the second impedance value is 5000 ⁇ .
  • the dynamic voltage is smaller than the current output voltage.
  • the output voltage may be the gear voltage obtained based on the current working gear of the electrical stimulation device, or it may be the last dynamic voltage adjusted based on the body impedance.
  • the electrical stimulation device is in a dynamic voltage output state at this time, and the output voltage output to the electrode changes dynamically.
  • the output voltage is lower, because the greater the current impedance value means that the electrode fits the human body. In bad condition, lowering the output voltage can effectively reduce the tingling.
  • the adjustment value of the current output voltage can be obtained based on the current human body impedance. The smaller the difference between the current human body impedance and the first impedance value, the larger the adjustment value. The difference between the dynamic voltage and the current output voltage is The smaller the difference.
  • the dynamic voltage is obtained according to the following formula:
  • V dynamic is the dynamic voltage
  • resval is the current human body impedance
  • R1 is the first impedance value
  • R2 is the second impedance value
  • V is preset to a safe voltage
  • V gear is the gear voltage obtained according to the current working gear.
  • the gear voltage is the voltage value corresponding to the working gear corresponding to the adjustment gear value input by the user, or the gear voltage obtained from the real-time working gear of the electrical stimulation device.
  • the current impedance value when the current impedance value is greater than the first impedance value and less than the second impedance value, it means that the electrode and the human body fit poorly.
  • the dynamic voltage is obtained according to the current impedance value and the preset mapping relationship. Using dynamic voltage as the output voltage to the electrodes arranged in pairs can maintain a certain massage effect and massage experience while reducing the output voltage to avoid tingling.
  • a control method for an electrical stimulation massage device including the following steps:
  • step S721 is basically consistent with step S711 in the control method of the electric stimulation massage device provided by the present invention, and will not be described again here.
  • S722 Control the output voltage output to the electrodes set in pairs according to the current impedance value.
  • step 722 includes steps S7221, S7222 and S7223.
  • step S7221 is basically consistent with step S7121 in the control method of the electric stimulation massage device provided by the present invention, and will not be described again here.
  • the current human body impedance when the current human body impedance is greater than or equal to the second impedance value, it means that the electrode and the human body fit extremely poorly, the contact area is extremely small, and there is a high probability of tip discharge, and the output needs to be reduced immediately.
  • voltage to avoid stinging Obtain a safe voltage, and use the safe voltage as the output voltage to output to the electrodes arranged in pairs, so that the electrical stimulation device is in a safe voltage output state.
  • the safe voltage is any value between 8V and 12V. Due to the low safety voltage, even when the contact area between the electrode and the skin is extremely small, a large current will not be generated. Therefore, users will not feel a stinging sensation when using it.
  • the current human body impedance when the current human body impedance is less than or equal to the first impedance value, it means that the electrode and the human body fit well.
  • the gear voltage corresponding to the working gear of the electrical stimulation device set by the user is used as the output voltage to be output to the paired electrodes, and the user can use the wearable massage device normally.
  • the output voltage output to the paired electrodes does not exceed the safe voltage.
  • the human body impedance is divided into three areas and different countermeasures are adopted, which not only effectively avoids The occurrence of tingling can also effectively ensure that the user can feel the corresponding electrical stimulation when using it without harming the user. The user will not be unable to feel the electrical stimulation due to poor wearing, which will affect the massage effect.
  • a control method for an electrical stimulation massage device including the following steps:
  • step S731 Determine whether the electric stimulation massage device is in an adjustment state. If not, execute step S732; if yes, execute step S735.
  • an adjustment status parameter is set.
  • the adjustment status parameter is 0, it means that the electric stimulation massage device is not in the adjustment state.
  • the adjustment status parameter is 1, it means that the electric stimulation massage device is in the adjustment state.
  • Whether the electric stimulation massage device is in an adjustment state can be obtained by reading the value of the adjustment state parameter.
  • the initial value of the adjustment status parameter is 0, and can be subsequently set according to the user's instructions or the size of the current impedance value. For example, when the current impedance value is greater than the first impedance value, the adjustment status parameter is set to 1. When the current impedance value is less than or equal to the first impedance value, the adjustment status parameter is set to 0.
  • step S732 Determine whether the current impedance value is less than or equal to the first impedance value. If yes, execute step S733. If not, execute step S734.
  • S733 Use the gear voltage of the current working gear of the electrical stimulation device as the output voltage and output it to the paired electrodes, so that the electrical stimulation device is in a normal output state.
  • step S733 is basically consistent with step S7223 in the second embodiment of the control method of the electric stimulation massage device provided by the present invention, and will not be described again here.
  • S736 Obtain the safe voltage, and use the safe voltage as the output voltage to output to the electrodes arranged in pairs, so that the electrical stimulation device is in a safe voltage output state.
  • step S736 is basically consistent with step S7222 in the second embodiment of the control method of the electric stimulation massage device provided by the present invention, and will not be described again here.
  • S737 Obtain the dynamic voltage according to the current impedance value and the preset mapping relationship, and use the dynamic voltage as the output voltage to output to the paired electrodes.
  • the dynamic voltage is smaller than the gear voltage of the current working gear of the electrical stimulation device, so that the electrical stimulation device In dynamic voltage output state.
  • step S737 is basically consistent with step S7221 in the second embodiment of the control method of the electric stimulation massage device provided by the present invention, and will not be described again here.
  • the current impedance value is continuously preset a number of times (for example, 3 times) less than or equal to the first impedance value, it can be determined that the wearable device is currently in a normal wearing state and does not need to reduce the output voltage and can function normally. Use, so exit the adjustment state, so that after the current impedance value is obtained next time, you can directly determine whether it is smaller than the first impedance value without comparing it with the second impedance value.
  • the calculation speed is faster and the processing efficiency is improved.
  • S7310: 2 controls the output voltage to incrementally return to the gear voltage of the current working gear of the electrical stimulation device within a preset time period.
  • the output voltage needs to be restored to the working gear voltage of the electric stimulation device set by the user.
  • the gear voltage is restored incrementally within a preset time period.
  • the output level can be increased by a certain amount of voltage in a step-by-step manner at a preset interval (for example, 100ms).
  • the voltage value of each increase can be equal or unequal (including increment and decrement). .
  • the current impedance value if the current impedance value is not less than or equal to the first impedance value for a preset number of consecutive times, for example, the current impedance value is always greater than the first impedance value, or the number of times it is less than the first impedance value is less than the preset number of times, then the current impedance value will continue to be in the Adjustment of status.
  • the present invention provides a preferred embodiment of a control method for an electric stimulation massage device.
  • a control method for an electric stimulation massage device see Figure 22.
  • the specific steps include:
  • the electric stimulation massage device is a wearable electric stimulation massage device such as a neck massager, waist massager or leg massager.
  • the electric stimulation massage device adjusts the voltage corresponding to the output electric stimulation pulse signal by controlling the voltage value of the input voltage.
  • the electrode 301 is used to fit the human skin of the part to be massaged and output the electric stimulation pulse signal.
  • the human skin that is attached to the electrode 301 produces an electrical stimulation effect to form a massage.
  • step S8100 when the electrode 301 is attached to the human skin and outputs the electrical stimulation pulse signal, the relevant electrical parameters of the electrical stimulation pulse signal are obtained through the relevant detection circuit, including the current value after flowing through the human skin and the voltage of the electrical stimulation pulse signal. value, the error value generated by flowing through the circuit of the electric stimulation massage device or/and the resistance value generated by components and wires, thereby calculating the impedance value generated during the process of the electrode 301 being attached to the human skin, and it is necessary to detect the resistance value in real time. Set the impedance value between the electrodes 301 to perform subsequent related operations.
  • the step of monitoring the impedance value between the electrodes 301 arranged in pairs includes:
  • step S8111 the current value corresponding to the electrical stimulation pulse signal is obtained through the sampling resistor connected in series after flowing through the human skin. That is, the real-time current flowing through the sampling resistor is calculated by detecting the real-time voltage of the sampling resistor.
  • the voltage value of the pulse signal that is, the voltage output of the electrode 301, is used to obtain the total impedance value of the electrode 301 based on the current value and voltage output.
  • the total impedance value has two judgment methods to monitor the impedance value between the paired electrodes 301. The first is step S8112, using the total impedance value as the impedance value, and the second step S8113, deducting the total impedance value.
  • the internal resistance value of the internal components refers to the resistance value of the sampling resistor. It can also be the resistance value of other components and wires. Of course, it can also be obtained through theory. Preset resistance value.
  • step S8220 and step S8230 first there should be a judgment step between step S8100 and step S8220, that is, step S8210.
  • step S8210 a judgment is made based on the impedance value monitored in step S8100 to determine whether the impedance value is in the first impedance value region and the second impedance value region. If the impedance value is in the first impedance value range, proceed to step S8220; if the impedance value is in the second impedance value range, proceed to step S8230.
  • the first impedance value area and the second impedance value area are preset to reflect that the impedance value is in a region prone to stinging.
  • the output voltage of the electrode 301 needs to be modified according to the change in the impedance value to adjust the pulse.
  • the current condition of the output electrical stimulation pulse signal of the modulation circuit 100 prevents the human skin from being strongly electrically stimulated during the massage process, thereby achieving massage without stinging.
  • the impedance value when the impedance value is in the first impedance value region, the impedance value is continuously detected, and when the impedance value drops, the voltage output of the electrode 301 is also reduced.
  • the impedance value when the impedance value is in the second impedance value region , and continuously detects the impedance value, and when the impedance value increases, the voltage output of the electrode 301 also decreases.
  • the impedance value is in the first impedance value area, it means that the fit between the human skin and the electrode 301 is good.
  • the output voltage remains unchanged and the human body's impedance changes suddenly due to sweating or other reasons, the massage intensity will also change. In sudden changes, it is easy to suddenly lose strength, or the strength suddenly increases. The current passing through the skin tissue exceeds the tolerance limit, causing uncomfortable experiences such as muscle spasms. Therefore, in this case, when the impedance value further decreases, the output voltage needs to be reduced. This allows users to experience pulse physiotherapy under safe and comfortable electrical stimulation pulse signal voltage.
  • the impedance value is in the second impedance value area, it means that the fit between the human skin and the electrode 301 is average, or the skin is dry. The higher the impedance value, the worse the fit of the electrode 301. In this range It is necessary to ensure the massage intensity while also paying attention to the output voltage not being too high, which may cause tingling sensation on the local skin; therefore, in this case, when the impedance value further increases, the output voltage needs to be reduced to prevent irritation. The generation of pain.
  • the maximum value of the first impedance value region is less than or equal to the minimum value of the second impedance value region.
  • the first impedance value area and the second impedance value area are exactly two areas where the fit situation changes slowly. They can be two adjacent areas. At this time, the maximum value of the first impedance value area is equal to the second impedance value. The minimum value of the area.
  • the present invention provides a preferred embodiment of the correlation between voltage output and current gear.
  • control method steps also include:
  • the voltage output of the electrode 301 is less than the voltage output corresponding to the current gear.
  • the impedance value if it is within a safe value or range, it can be output according to the voltage of the current gear.
  • the massage gear is a preset voltage gear to meet the different needs of different users for massage intensity. Since the first The impedance value area and the second impedance value area just deal with the two areas where the fit situation changes slowly. According to the above description, use the local The voltage output of the previous gear is likely to have adverse effects, so when the impedance value is in the first impedance value region and the second impedance value region, the voltage output of the electrode 301 needs to be smaller than the voltage output corresponding to the current gear.
  • a third impedance value region is also provided. If the impedance value is in the third impedance value region, the counter electrode 301 outputs a voltage output corresponding to the current gear; the third impedance value region is between the first impedance value region and between the second impedance value areas.
  • the third impedance value area can be considered as a safe area.
  • the impedance value is detected to be in the third impedance value area, it means that the fit between the human skin and the electrode 301 is normal. At this time, there is no need to adjust the voltage, and it only needs to meet the user's needs.
  • the voltage of the gear is enough.
  • the voltage of the electrical stimulation pulse signal is in a stable stage, and there will be no sudden change in current, or the current will be too small and weak, or the current will be too large to cause stinging.
  • the impedance value will gradually change according to the user's wearing condition or skin condition. If the impedance value gradually becomes smaller after wearing it for a long time, it will gradually approach the first resistance value area or even enter the first resistance value area. value area; and if it is worn abnormally or out of specification, it will be close to the second impedance value area or even enter the second resistance value area. Therefore, the specific control method is as follows:
  • the method of controlling the voltage output of the counter electrode 301 is: according to the voltage output corresponding to the current gear, do Pressure reduction treatment.
  • the first impedance value area and the second impedance value area are exactly two areas where the fit situation changes slowly. Before entering the first impedance value area and the second impedance value area, you should be in the third impedance value area. Since The impedance value is constantly changing, and will slowly enter the first impedance value area or the second impedance value area with time or changes in the wearing state of the human body. In the third impedance value area, the output voltage is determined by the current gear, ensuring that the user can Experience the massage techniques brought by different gears. Therefore, when the impedance value changes from the first resistance value area or the second resistance value area to the third resistance value area, the voltage output of the electrode 301 gradually returns to the voltage corresponding to the current gear.
  • the massage intensity should not be significantly adjusted. Therefore, when the impedance value changes from the third resistance value area to the first resistance value area or the second resistance value area, first obtain current gear, and adjust the voltage according to the output voltage of the current gear.
  • the voltage output of the counter electrode 301 is increased. In the entire first impedance value region, as the impedance value changes, the voltage output of the electrode 301 also changes.
  • the specific changes are as follows:
  • the voltage output of the counter electrode 301 complies with the formula:
  • V11 is the voltage value of the voltage output of the electrode 301 when the impedance value is in the first impedance value region
  • V12 is the voltage value of the current gear
  • a1 is the safe voltage value
  • R1 is the voltage value in the first impedance value range.
  • X21 is the minimum value of the third impedance value area
  • k1 is the adjustment coefficient.
  • This formula indicates that the voltage value of the voltage output of the electrode 301 will first set a safe voltage value to ensure that the electrode 301 can also output under extreme conditions to avoid making noise without output and reducing the user experience; at the same time, the voltage of the electrode 301 The output voltage value will change positively as the impedance value changes.
  • the specific change depends on three points. The first is that the current impedance value and the minimum value of the third impedance value area form a decreasing coefficient, as the wearing change process is different from normal wearing. The change trend of the relative state; the second is to set an adjustment coefficient. According to the different materials, sizes, shapes of the electrodes 301, and even the different changes in the degree of compression due to the type of massager, there will be different optimal change trends.
  • V12 is the current gear voltage.
  • the safe voltage value a1 is 8V-16V.
  • the voltage output of the counter electrode 301 is increased. In the entire second impedance value region, as the impedance value changes, the voltage output of the electrode 301 also changes.
  • the voltage output of the counter electrode 301 complies with the formula
  • V21 is the voltage value of the electrical stimulation pulse signal output when the impedance value is in the second impedance value area
  • V22 is the voltage value of the current gear
  • a2 is the safe voltage value
  • R2 is the second impedance value
  • X22 is the maximum value of the third impedance value area
  • k2 is the adjustment coefficient.
  • the principle of the above formula is similar to that of the first impedance value area. It is still necessary to set a safe voltage value. At the same time, the voltage value of the voltage output of the electrode 301 will change in the opposite direction as the impedance value changes. The specific change depends on three points. The principles of b2 and k2 are consistent with the former. The main difference is that they are adjusted for reverse changes, that is, the maximum value of the third impedance value area and the current impedance value form a decreasing coefficient, which is the change trend of the wearing change process compared with the normal wearing state. Among them, the safe voltage value a2 is 8V-16V.
  • the present invention provides preferred embodiments of the fourth impedance value region and the fifth impedance value region.
  • the steps of the control method include:
  • the fifth impedance value region is entered; at this time, the voltage value output by the counter electrode 301 is determined to be a preset safe voltage value.
  • the impedance value is in the fourth impedance value area, indicating that the skin fit is very good.
  • the output voltage is not limited, the human body will bear a large current, which will easily cause discomfort.
  • the electric stimulation massage device will output a lower value corresponding to the current gear to ensure the user's comfortable experience.
  • the above-mentioned lower value should be obtained through the preset setting.
  • This embodiment also provides another adjustment method, which is to set the voltage level into an adjustment gear and a non-adjustment gear. Refer to Figure 27. The specific steps are:
  • Each adjustment gear corresponds to a first fixed voltage value, and the first fixed voltage value is lower than the voltage value of the voltage gear.
  • some low-voltage adjustment gears can directly output the current gear voltage, that is, the second fixed voltage value, without voltage adjustment.
  • the current gear voltage that is, the second fixed voltage value
  • some high-voltage adjustment gears are still prone to tingling or uncomfortable massage when the impedance value is very low. Therefore, these high-voltage adjustment gears must be voltage adjusted. Adjust to a relatively small range as the adjustment gear.
  • the first fixed voltage value corresponding to each adjustment gear needs to be set in advance. After entering the fourth impedance value area, the voltage output by the electrode 301 is directly adjusted to the corresponding first fixed voltage value, and the adjustment process can be carried out slowly. So that users will not feel the gap of instant changes. Among them, any gear voltage between 8V and 16V can be considered a non-adjustable gear, and the maximum value of the first fixed voltage value corresponding to the adjustment gear should also be within 8V-16V.
  • the impedance value is in the fifth impedance value region, indicating that the electrode 301 fits well with the skin.
  • the dryness of the skin begins to worsen, and the state at this time is no longer suitable for pulse output.
  • the voltage is too high, the current will flow through the part of the skin with only a small amount of contact, resulting in a stinging experience. In this state, it is recommended that electrode 301 outputs a safe
  • the rated low voltage ensures that users will not experience any tingling sensation.
  • the safe rated low voltage can be selected when the voltage value of the output voltage of the electrode 301 is the lowest in the second impedance value area. At this time, it is determined that the voltage value of the voltage output of the electrode 301 is a preset safe voltage value, That is, the preset safe voltage value can be the safe voltage value a2. Of course, you can also choose another preset safe voltage value, which is smaller than a2. Among them, the preset safe voltage value is 8V-16V.
  • the present invention also provides an electric stimulation massage device.
  • the electric stimulation massage device includes a memory and a processor.
  • a computer program is stored in the memory.
  • the processor implements The gear adjustment method described.
  • the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the gear adjustment method is implemented.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明涉及电刺激按摩仪领域,具体涉及一种电刺激按摩装置及其控制方法。电刺激按摩装置包括电源、控制单元、升压单元、成对设置的电极、脉冲调制电路、第一检测电路和第二检测电路,控制单元根据输出电压、采样电阻的电阻值和采样电压,获取成对设置的电极之间的阻抗值。本发明通过第一检测电路获取脉冲调制电路的电刺激脉冲信号的电流信息,再通过第二检测电路获取电刺激脉冲信号的电压信息,快速、准确获取成对设置的电极之间的阻抗值,从而判断出人体当前状态或者佩戴状态,再适配所需要做的下一步操作,如对输入电压的调整,满足用户的电刺激按摩的无刺痛需求。

Description

一种电刺激按摩装置及其控制方法
本申请要求于2022年5月18日提交中国专利局,申请号为202210539185.8,申请名称为“一种电刺激按摩装置及其控制方法”的中国专利申请,和2022年5月18日提交中国专利局,申请号为202210538945.3申请名称为“一种电刺激按摩装置及其控制方法和存储介质”的中国申请专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电刺激按摩仪领域,具体涉及一种电刺激按摩装置及其控制方法。
背景技术
电脉冲电刺激按摩装置是通过电极片贴合人体皮肤,并输出电脉冲电能,达到按摩效果。
相关技术中,电脉冲电刺激按摩装置由于与人体皮肤的贴合紧密程度,或者人体皮肤的表面干燥,均会影响两者的贴合效果。不同的贴合效果应该根据用户的电受耐情况进行电压的调整,预防贴合效果差时电压偏高导致刺痛的产生,或者预防贴合效果好时电压偏低导致按摩效果弱。
可通过获取脉冲调制电路的电能信息获取人体阻抗值,从而判定贴合效果。但是,相关技术中的采样电路存在以下问题:
1、利用采用运算放大器进行采用,通过供电端和接地端的电压差获取配电情况,虽然可以提高佩戴状态检测的准确性,但是对于贴合效果的检测精确度低,且电路复杂;
2、利用固定电压作为参考电压,无法进行准确判断处理。
此外,目前现有的电刺激按摩装置,特别是中低频按摩,都不可能避免的存在一定的刺痛,刺痛问题非常容易降低用户的使用体验。在现有的产品形态和便捷化的使用方式下,必须尽可能避免用户出现刺痛,以提高用户的使用体验。
相关技术中,研究表明,人体肌肉对刺痛是具有感知敏感度,肌肉在一定时间持续刺激,且刺激的电流强度也超过一定数值,产生刺痛概率大。
需要说明的是,以上说明仅为了表明本申请的发明构思,而不代表以上相关技术为现有技术。
发明内容
本发明要解决的技术问题在于,针对相关技术的上述缺陷,提供一种电刺激按摩装置及其控制方法,以至少解决电刺激按摩装置人体阻抗值检测复杂的问题。
本发明解决其技术问题所采用的技术方案是:提供一种电刺激按摩装置,所述电刺激按摩装置包括:
电源和控制单元;
升压单元,所述升压单元分别与控制单元和电源连接,所述升压单元在控制单元的控 制下将电源的输入电压升压至预设电压,并通过升压单元的电压输出端向外输出;
电极,所述电极用于贴附于待按摩部位;
脉冲调制电路,所述脉冲调制电路的电能输入端与所述升压单元连接,所述脉冲调制电路的第一脉冲传输端和第二脉冲传输端分别与一电极连接,所述脉冲调制电路的控制端与控制单元连接;
第一检测电路,所述第一检测电路分别与控制单元和升压单元的电压输出端连接,所述控制单元通过第一检测电路获取升压单元的输出电压;
第二检测电路,所述第二检测电路与控制单元连接,所述第二检测电路的采样电阻串联至脉冲调制电路和地端之间,所述控制单元通过第二检测电路获取采样电阻的采样电压;其中,
所述控制单元根据输出电压、采样电阻的电阻值和采样电压,获取成对设置的电极之间的阻抗值。
其中,较佳方案是,所述采样电阻的取值范围为130至170Ω。
其中,较佳方案是:所述第二检测电路还包括第一保护电阻、第一电容和第一稳压二极管,所述控制单元通过第一保护电阻接入脉冲调制电路与采样电阻之间,所述控制单元还分别通过第一电容和第一稳压二极管接入采样电阻和地端之间,所述第一稳压二极管的阳极接地。
其中,较佳方案是:所述第二检测电路还包括第二保护电阻,所述第二保护电阻串联至脉冲调制电路和采样电阻之间;所述采样电阻与第二保护电阻的阻值比范围为1:22至1:38。
其中,较佳方案是:所述控制单元存储有计算电极之间的阻抗值的第一模型,所述第一模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻的电阻值,所述V为升压单元的输出电压,所述I为脉冲调制电路输出脉冲的电流。
其中,较佳方案是:所述控制单元存储有计算电极之间的阻抗值的第二模型,所述第二模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻的电阻值,所述V为升压单元的输出电压,所述I为脉冲调制电路输出脉冲的电流。
其中,较佳方案是:根据权利要求1或2所述的电刺激按摩装置,所述控制单元存储有计算电极之间的阻抗值的第三模型,所述第三模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻的电阻值,所述 V为升压单元的输出电压,所述I为脉冲调制电路输出脉冲的电流,所述R为预设的误差余量。
其中,较佳方案是:所述第一检测电路包括第一分压电阻和第二分压电阻,所述第一分压电阻分别与升压单元的电压输出端和第二分压电阻连接,所述第二分压电阻的另一端接地,所述控制单元接入第一分压电阻和第二分压电阻之间的连接节点,以获取第二分压电阻的分压,所述控制单元根据第二分压电阻的分压、第一分压电阻的阻值和第二分压电阻的阻值获取升压单元的输出电压。
其中,较佳方案是:所述控制单元存储有计算升压单元的输出电压的第四模型,所述第四模型为所述V为升压单元的输出电压,所述V分2为第二分压电阻的分压,所述R分1为第一分压电阻的阻值,所述R分2为第二分压电阻的阻值。
其中,较佳方案是:所述第一检测电路包括第一分压电阻和第二分压电阻,所述第一分压电阻分别与升压单元的电压输出端和第二分压电阻连接,所述第二分压电阻的另一端接地,所述控制单元接入第一分压电阻和第二分压电阻之间的连接节点,以获取第二分压电阻的分压,所述控制单元根据第二分压电阻的分压、第一分压电阻的阻值和第二分压电阻的阻值获取升压单元的输出电压。
其中,较佳方案是:所述控制单元存储有计算升压单元的输出电压的第四模型,所述第四模型为所述V为升压单元的输出电压,所述V分2为第二分压电阻的分压,所述R分1为第一分压电阻的阻值,所述R分2为第二分压电阻的阻值。
其中,较佳方案是:所述第二分压电阻和第一分压电阻的阻值比范围1:37至1:72。
其中,较佳方案是:所述第二检测电路还包括第二电容,控制单元通过第二电容接入第二分压电阻和地端之间的连接节点。
其中,较佳方案是,所述脉冲调制电路还包括:
至少一组控制臂,所述控制臂包括第一控制开关和第二控制开关,所述控制单元分别与第一控制开关和第二控制开关均的控制端连接,以分别控制第一控制开关和第二控制开关的通断,所述第一控制开关的输入端与电能输入端连接,所述第二控制开关的输出端与地端连接,所述第一控制开关的输出端与第一脉冲传输端和第二脉冲传输端中的一者连接,所述第二控制开关的输入端与第一脉冲传输端和第二脉冲传输端中的另一者连接。
其中,较佳方案是:所述控制臂设置有两组,两所述第一控制开关的输出端分别与第一脉冲传输端和第二脉冲传输端连接,两所述第二控制开关的输入端分别与第一脉冲传输端和第二脉冲传输端连接。
其中,较佳方案是:所述第一控制开关和第二控制开关均为三极管。
其中,较佳方案是:所述第一脉冲传输端和第二脉冲传输端均通过一双向变阻二极管接地。
其中,较佳方案是:所述脉冲调制电路设置有多个,每个所述脉冲调制电路均配置有两个电极。
其中,较佳方案是,所述升压单元包括与所述电源连接的电源输入端、升压电路、储能电路、泄压电路以及与所述脉冲调制电路连接的电压输出端,所述升压电路的输入端与所述电源输入端连接,所述升压电路的控制端与所述控制单元连接,以用于将所述电源输 出的电压进行升压;所述储能电路的输入端与所述升压电路的输出端连接,所述储能电路的输出端与所述电源输入端连接;所述泄压电路的控制端与所述控制单元连接,所述泄压电路的输入端与所述电压输出端连接,所述控制单元用于根据预设电压和成对设置电极之间的阻抗值来控制所述升压电路和/或所述储能电路进行升压、或/和、控制所述泄压电路进行降压,以控制所述电压输出端输出预设电压至所述脉冲调制电路。
其中,较佳方案是,所述升压电路包括电感和MOS管,所述电感的一端与所述升压电路的输入端连接,另一端与所述升压电路的输出端连接;所述MOS管的栅极与所述控制单元连接,所述MOS管的漏极连接于所述电感与所述升压电路的输出端之间,所述MOS管的源极接地。
其中,较佳方案是:所述升压电路还包括第三电容,所述第三电容一端连接于所述电感与所述升压电路的输入端之间,另一端接地。
其中,较佳方案是:所述储能电路为电容式储能电路,所述电容式储能电路包括并联于所述储能电路的输入端与输出端之间的第四电容和第五电容,所述第四电容与所述第五电容的另一端接地。
其中,较佳方案是:所述泄压电路包括第一电阻、第五三极管、第二电阻以及第三电阻,所述第一电阻串联于所述泄压电路的控制端与所述第五三极管的基极之间,所述第五三极管的发射极接地;所述第三电阻一端连接于所述第一电阻与所述第五三极管的基极之间,另一端接地;所述第二电阻串联于所述泄压电路的输入端与所述第五三极管的集电极之间。
本发明的有益效果在于,与相关技术相比,本发明通过第一检测电路获取脉冲调制电路的电刺激脉冲信号的电流信息,再通过第二检测电路获取电刺激脉冲信号的电压信息,快速、准确获取成对设置的电极之间的阻抗值,从而判断出人体当前状态或者佩戴状态,再适配所需要做的下一步操作,如对输入电压的调整,满足用户的电刺激按摩的无刺痛需求;同时,通过两路采样进行判断,采样精准,以及电路也简单,高效准确获取进入人体电流情况,同时动态获取输入电压的情况,提高异常监控的准确性,有效降低复杂度和成本。
本发明的其他实施例要解决的技术问题在于,针对现有技术的上述缺陷,提供一种电刺激按摩装置及其控制方法和存储介质,解决使用过程中产生刺痛的问题。
在本发明的其他实施例中,本发明解决其技术问题所采用的技术方案是:提供一种控制方法,所述控制方法应用在所述的电刺激按摩装置中,所述电刺激按摩装置包括成对设置的电极、与所述电极连接的脉冲调制电路,以及与所述脉冲调制电路连接的第二检测电路,所述电极用于贴附于待按摩部位,所述脉冲调制电路用于产生电刺激脉冲信号以通过所述电极输出给待按摩部位,所述控制方法的步骤包括:
控制单元控制脉冲调制电路产生电刺激脉冲信号;
依序循环控制各成对设置的电极输出电刺激脉冲信号,并获取对应成对设置的电极之间的阻抗值;
当阻抗值异常时,下一次循环停止控制阻抗值异常所对应的成对设置的电极输出电刺激脉冲信号。
其中,较佳方案是,所述控制方法的步骤还包括:
记录每一电刺激回路的阻抗值;
当一电刺激回路的阻抗值异常时,通知用户。
其中,较佳方案是,设置有幅度阈值或安全数值范围,所述阻抗值异常的判定步骤包括:
当所记录的阻抗值处于安全数值范围外,判定对应的电刺激回路异常;
或者,当任一两阻抗值的幅度超过幅度阈值,判定至少一对应的电刺激回路异常。
其中,较佳方案是,所述控制单元控制脉冲调制电路产生电刺激脉冲信号之后,所述方法还包括:控制第二检测电路周期性对电刺激脉冲信号进行采样,获取采样数据;根据采样数据周期性获取成对设置的电极之间的阻抗值;根据阻抗值调整向所述脉冲调制电路的输入电压;其中,对电刺激脉冲信号进行采样的采样周期T满足第一模型,所述第一模型为T+t<A;所述t为电刺激按摩装置的预设反应滞后时间,所述A为预设的用户感知到电刺痛所需要的时间。
其中,较佳方案是,所述采样周期T与所述电刺激脉冲信号的周期T1的比值为S,S为大于或等于1,且小于或等于(A-t)/T1的整数。
其中,较佳方案是,所述周期性对电刺激脉冲信号进行采样的步骤包括:在其中一个采样周期T中,对电刺激脉冲信号进行采样时,在预设时间内采样多次。
其中,较佳方案是,所述采样周期T等于S倍的所述电刺激脉冲信号的周期T1,S为大于或等于2,且小于或等于(A-t)/T1的整数;所述在预设时间内采样多次的步骤包括:对S个高电平均进行一次采样,以获取多个采样数据。
其中,较佳方案是,所述采样周期T等于所述电刺激脉冲信号的周期T1,所述在预设时间内采样多次的步骤包括:对一个高电平进行采样多次,以获取多个采样数据。
其中,较佳方案是,所述控制第二检测电路周期性对电刺激脉冲信号进行采样的步骤包括:控制脉冲调制电路产生电刺激脉冲信号后,进行计时;当计时时间到达启动时间后,对电刺激脉冲信号进行采样。
其中,较佳方案是,所述t包括根据采样数据获取成对设置的电极之间的阻抗值的时间t1和/或根据阻抗值调整向所述脉冲调制电路输入电压的时间t2。
其中,较佳方案是,在控制脉冲调制电路产生电刺激脉冲信号的步骤之前,所述控制方法的步骤还包括:获取按摩档位和/或按摩模式;根据按摩档位和/或按摩模式确定所述A。
其中,较佳方案是,所述根据按摩档位和/或按摩模式确定所述A的步骤包括:根据所述按摩档位确定其所属的挡位区间,根据所述挡位区间确定所述A;或者,根据所述按摩模式确定其所属的模式类型,根据所述模式类型确定所述A;或者,根据所述按摩档位确定其所属的挡位区间,根据所述按摩模式确定其所属的模式类型,根据所述挡位区间和所述模式类型确定所述A。
其中,较佳方案是,所述控制方法的步骤还包括:当周期性对电刺激脉冲信号进行采样的采样周期T不满足第一模型时;降低输入电压至安全电压;或者,调整电刺激脉冲信号的产生频率,以调整采样周期T。
其中,较佳方案是,所述第二检测电路包括串联在脉冲调制电路与地端之间的采样电阻,在获取所述采样数据的步骤中,所述采样数据为所述采样电阻的采样电压;在所述根据采样数据周期性获取成对设置的电极之间的阻抗值的步骤中,根据采样数据获取成对设置的电极之间的阻抗值的方式为根据所述采样电压、所述采样电阻的阻值与所述输入电压获取成对设置的电极之间的阻抗值。
其中,较佳方案是,所述根据采样数据周期性获取成对设置的电极之间的阻抗值的步骤包括:获取所述脉冲调制电路的输入电压;通过所述第二检测电路周期性对采样电阻进行电压采样,获取多个作为采样数据的采样电压;根据采样电压和采样电阻的阻值获取电刺激脉冲信号的电流值;根据输入电压和电流值获取成对设置的电极之间的阻抗值;或者,根据输入电压和电流值获取总阻值,根据总阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值;或者,设置误差余量的阻值,根据输入电压和电流值获取总阻值,再根据总 阻值、差余量的阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值。
其中,较佳方案是,所述电刺激按摩装置还包括:电源和控制单元;升压单元,所述升压单元与电源连接,所述升压单元将电源的输入电压升压至预设电压,并通过升压单元的电压输出端向外输出;脉冲调制电路,所述脉冲调制电路的电能输入端与所述升压单元的电压输出端连接,所述脉冲调制电路的第一脉冲传输端和第二脉冲传输端分别与一电极连接,所述脉冲调制电路的控制端与控制单元连接;第一检测电路,所述第一检测电路分别与控制单元和升压单元的电压输出端连接,所述控制单元通过第一检测电路获取升压单元的输出电压;其中,所述控制单元根据升压单元的输出电压、采样电阻的电阻值和采样电压,获取成对设置电极之间的阻抗值。
其中,较佳方案是,所述升压单元分别与控制单元和电源连接,所述升压单元在控制单元的控制下将电源的输入电压升压至预设电压;所述根据阻抗值调整向所述脉冲调制电路的输入电压的步骤包括:根据阻抗值调整所述升压电路升压后的预设电压,以作为输入电压向所述脉冲调制电路输出。
其中,较佳方案是,所述升压单元包括与所述电源连接的电源输入端、升压电路、储能电路、泄压电路以及与所述脉冲调制电路连接的电压输出端,所述升压电路的输入端与所述电源输入端连接,所述升压电路的控制端与所述控制单元连接;所述储能电路的输入端与所述升压电路的输出端连接,所述储能电路的输出端与所述电压输出端连接;所述泄压电路的控制端与所述控制单元连接,所述泄压电路的输入端与所述电压输出端连接;所述根据阻抗值调整所述升压电路升压后的预设电压的步骤包括:根据预设电压和成对设置电极之间的阻抗值来控制所述升压电路和/或所述储能电路进行升压、或/和、控制所述泄压电路进行降压,以控制所述电压输出端输出预设电压至所述脉冲调制电路。
其中,较佳方案是,所述根据阻抗值调整向所述脉冲调制电路的输入电压的步骤包括:根据阻抗值确定预设电压;根据所述预设电压,调整向所述脉冲调制电路的输入电压,使输入电压达到预设电压的电压值。
其中,较佳方案是,所述根据阻抗值调整所述脉冲调制电路的输入电压的步骤包括:当所述阻抗值大于所述第一阻抗值且小于所述第二阻抗值时,根据所述阻抗值与预设映射关系获取动态电压,以所述动态电压作为所述预设电压,所述动态电压小于所述电刺激按摩装置当前工作档位的档位电压,以使得所述电刺激按摩装置处于动态电压输出状态。
其中,较佳方案是,根据阻抗值确定预设电压的步骤包括:当所述阻抗值大于或等于所述第二阻抗值时,获取安全电压,以所述安全电压作为所述预设电压,以使得所述电刺激按摩装置处于安全电压输出状态。
其中,较佳方案是,根据阻抗值确定预设电压的步骤,还包括:当所述阻抗值小于或等于第一阻抗值时,以所述电刺激按摩装置当前工作档位的档位电压作为所述预设电压,以使所述电刺激按摩装置处于正常输出状态。
其中,较佳方案是,所述预设映射关系满足:所述阻抗值与所述第一阻抗值的差值越小,所述动态电压与所述档位电压的差值越小。
其中,较佳方案是,根据阻抗值与预设映射关系获取动态电压的步骤还包括:
其中,V动态为所述动态电压,resval为所述阻抗值,R1为所述第一阻抗值,R2为所述第二阻抗值V预设为所述安全电压。
其中,较佳方案是,所述根据阻抗值确定预设电压的步骤,还包括:
当所述阻抗值小于或等于第一阻抗值时,以所述电刺激按摩装置当前工作档位的档位电压作为所述预设电压,以使所述电刺激按摩装置处于正常输出状态。
其中,较佳方案是,所述根据阻抗值调整向所述脉冲发生电路的输入电压的步骤包括:根据阻抗值确定目标电压,获取所述阻抗值与上一次获取的阻抗值之间的差值,若所述差值大于或等于预设差值阈值,则确定所述预设电压为安全电压;根据所述预设电压,调整向所述脉冲发生电路的输入电压,在预设时间内将上一次的检测阻抗值所对应的输出电压以递减的方式降低至所述安全电压。
本发明解决其技术问题所采用的技术方案是:提供一种电刺激按摩装置,所述电刺激按摩装置包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现所述的控制方法。
本发明解决其技术问题所采用的技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的控制方法。
本发明的有益效果在于,与现有技术相比,本发明通过限制采样周期T的情况,使在人体感知的时间内,待按摩部位在按摩过程中一直可控维持可控的电刺激脉冲信号,以防止电刺激脉冲信号的参数长时间异常,导致待按摩部位的受到强烈电刺激。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明电刺激按摩装置的电路原理图;
图2是本发明脉冲调制电路的电路原理图;
图3是本发明第二检测电路的电路示意图;
图4是本发明第一检测电路的电路结构示意图;
图5是本发明脉冲调制电路的电路原理图;
图6是本发明脉冲调制电路的电路示意图;
图7是本发明升压单元的电路原理图;
图8是本发明升压单元的电路示意图;
图9是本发明控制方法的流程图;
图10是本发明通知用户的控制方法的流程图;
图11是本发明电刺激按摩装置的控制方法的流程示意图;
图12是本发明根据采样数据周期性获取成对设置的电极之间的阻抗值的流程示意图;
图13是本发明周期性对电刺激脉冲信号进行采样的流程示意图;
图14是本发明电刺激脉冲信号多次采样的采样示意图一;
图15是本发明电刺激脉冲信号多次采样的采样示意图二;
图16是本发明计时采样的流程示意图;
图17是本发明基于按摩档位和/或按摩模式的控制方法的流程示意图;
图18是本发明调整采样周期T的流程示意图;
图19是本发明电刺激按摩装置的控制方法的第一实施例的流程示意图;
图20是本发明电刺激按摩装置的控制方法的第二实施例的流程示意图;
图21是本发明电刺激按摩装置的控制方法的第三实施例的流程示意图;
图22是本发明电刺激按摩装置的控制方法的流程示意图;
图23是本发明监测成对设置的电极之间的阻抗值的流程示意图;
图24是本发明电压输出和当前档位的关联的流程示意图一;
图25是本发明电压输出和当前档位的关联的流程示意图二;
图26是本发明进入第四阻抗区域和第五阻抗区域的流程示意图;
图27是本发明调节档位和非调节档位的流程示意图。
具体实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1至图8所示,本发明提供一种电刺激按摩装置的优选实施例。
电刺激按摩装置包括电源100、控制单元600、升压单元200、成对设置的电极、脉冲调制电路300、第一检测电路400和第二检测电路500,升压单元200分别与控制单元600和电源100连接,升压单元200在控制单元600的控制下将电源100的输入电压升压至预设电压,并通过升压单元200的电压输出端向外输出,电极用于贴附于待按摩部位,脉冲调制电路300的电能输入端311与升压单元200的电压输出端连接,脉冲调制电路300的第一脉冲传输端和第二脉冲传输端分别与一电极连接,脉冲调制电路300的控制端与控制单元600连接,第一检测电路400分别与控制单元600和升压单元200的电压输出端连接,控制单元600通过第一检测电路400获取升压单元200的输出电压,第二检测电路500与控制单元600连接,第二检测电路500的采样电阻R1串联至脉冲调制电路300和地端之间,控制单元600通过第二检测电路500获取采样电阻R1的采样电压;其中,控制单元600根据输出电压、采样电阻R1的电阻值和采样电压,获取成对设置的电极之间的阻抗值。
具体地,升压单元200设置有电源输入端、电压输出端和控制端,脉冲调制电路300设置有控制端、电能输入端311、接地端312、第一脉冲传输端和第二脉冲传输端,第一检测电路400包括传输端420和检测端410,第二检测电路500也包括传输端520和检测端510,成对设置的电极包括第一电极301和第二电极302。
在一个实施例中,升压单元200通过电源输入端连接电源100,电源100为升压单元200供电,升压单元200还通过电压输出端与脉冲调制电路300的电能输入端311连接,将电源100的输入电压升压至预设电压并传输至脉冲调制电路300中,作为电刺激脉冲信号的电压值,升压单元200还通过控制端与控制单元600连接,在控制单元600的控制下进行升压操作,将电源100的输入电压升压至预设电压。
在一个实施例中,脉冲调制电路300先通过第一脉冲传输端和第二脉冲传输端分别连接第一电极301和第二电极302,脉冲调制电路300还通过接地端312接地,形成一电流回路,相当于接入电源100的负极,脉冲调制电路300的控制端与控制单元600连接,在控制单元600的控制下将升压单元200所提供的电能产生脉冲信号,即电刺激脉冲信号,在第一电极301和第二电极302导通时,第一脉冲传输端通过第一电极301输出电刺激脉冲信号,第二脉冲传输端分通过第二电极302接收电刺激脉冲信号,再通过接地端312导出,形成一个脉冲循环。此时,第一电极301和第二电极302贴附于待按摩部位,实现两者的电导通,电刺激脉冲信号经过电极输入至待按摩部位,让用户体验到电刺激,形成按摩触感。
在一个实施例中,第一检测电路400和第二检测电路500均通过自身的传输端与控制单元600连接,第一检测电路400通过检测端接入升压单元200的电压输出端,第二检测电路500通过检测端510并联至采样电阻R1上。为了降低甚至放置电刺激脉冲信号的电流过大导致待按摩部位产生刺痛现象,让用户在无刺痛中进行整个电刺激按摩流程,控制单 元600先通过第一检测电路400获取升压单元200的电压输出端处的电压值,即电源100的输入电压升压后的具体电压值,从而确定预设电压是否达到预期数值,控制单元600再通过第二检测电路500获取采集采样电阻R1上的采样电压。最终,控制单元600获取到升压单元200的输出电压和采样电阻R1的采样电压,且存储有采样电阻R1的电阻值,根据预设算法,根据输出电压、采样电阻R1的电阻值和采样电压,获取成对设置的电极之间的阻抗值,即通过采样电阻R1的电阻值和采样电压获取流经采样电阻R1的电流,可得到脉冲调制电路300的电刺激脉冲信号的电流值,通过输出电压获取脉冲调制电路300的电刺激脉冲信号的电压值,根据电刺激脉冲信号的电流值和电压值获取脉冲调制电路300所对应的整个总电阻值,将总电阻值作为成对设置的电极之间的阻抗值,或者将总电阻值减去采样电阻R1的阻值获得成对设置的电极之间的阻抗值,或者将总电阻值减去采样电阻R1的阻值,再减去预设的误差余量,获得成对设置的电极之间的阻抗值,其中,预设的误差余量可以是脉冲调制电路300的导线或元器件所产生的内阻,也可以是电极由于自身材质或形状问题所产生的内阻,也可以是其他不同位置所产生的内阻。
以及,控制单元600通过上述操作实时获取待按摩部位的阻抗值,根据阻抗值有目的调节升压单元200的输出电压,从而调节脉冲调制电路300的电刺激脉冲信号的电流情况,使待按摩部位在按摩过程中一致可控维持电刺激脉冲信号的电流值,避免待按摩部位的受到强烈电刺激,实现按摩无刺痛。
在一个实施例中,控制单元600优选包括MUC和外围电路,微控制单元(Microcontroller Unit;MCU),又称单片微型计算机(Single Chip Microcomputer)或者单片机,是把中央处理器(Central Process Unit;CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。MUC的各引脚分别与各功能模块连接,如升压单元200、脉冲调制电路300、第一检测电路400和第二检测电路500,实现电脉冲的控制和检测。当然,可以采用市面上常用的MCU单片机都可以实现,对单片机性能要求不高。
如图3所示,本发明提供第二检测电路500的较佳实施例。
第二检测电路500还包括第一保护电阻R3、第一电容C1和第一稳压二极管D1,控制单元600通过第一保护电阻R3接入脉冲调制电路300与采样电阻R1之间,控制单元600还分别通过第一电容C1和第一稳压二极管D1接入采样电阻R1和地端之间,第一稳压二极管D1的阳极接地。具体地,采样电阻R1的两端分别与脉冲调制电路300的接地端312和地端连接,从脉冲调制电路300输出的电能流经采样电阻R1,采样电阻R1的电压被控制单元600获取;通过设置第一保护电阻R3,分别连接控制单元600和采样电阻R1,防止输入至控制单元600电压过大,进行分压处理,对控制单元600进行有效保护;通过设置第一电容C1,对采样信号进行滤波,提高采样数据的准确性;通过设置第一稳压二极管D1,优选为稳压管,实现稳压。
具体的,采样电阻R1的取值范围为130至170Ω,一方面通过较大阻值的采样电阻R1,便于控制单元600识别到采样电压,减少放大器的设置,另一方面,由于电极作用在人体,人体一般的人体阻抗为300至1500Ω,而电刺激按摩装置的佩戴情况可能导致人体阻抗变大或变小,甚至低于300Ω,故采样电阻R1不应去太大,且采样电阻R1的阻值太大也容易造成能量的损耗,也容易弱化电刺激脉冲信号的电刺激效果。采样电阻R1优选为150Ω,且误差值为1%,提高检测精确度。第一保护电阻R3优选取值为1KΩ,且误差值为5%,当然也是其他取值,第一保护电阻R3的高电阻,实现控制单元600的控制保护,当然具体取值还要视控制单元600而定,特别是关于控制单元600的芯片选择,根据芯片的 引脚所承受的电压来设定。第一电容C1用于过滤滤波,容量选择,由于是小电容滤波,故优先采用104即可,且电容对地滤波,需要一个较小的电容并联对地即可,而电压值不会太高,优先采用50V,只是为了滤波,采用10%的误差值,节约成本。第一稳压二极管D1优先采用稳压管二极管BZT52C3V3S 3.3V,当然还可以是其他稳压管二极管,与第一保护电阻R3串联起来,通过串联可获得更高的稳定电压,同时保护电路中的电子元器件,防止其被高电流击穿。
在一个实施例中,提供三个计算电极之间的阻抗值的算法模型。
方案一,所述控制单元600存储有计算电极之间的阻抗值的第一模型,所述第一模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻R1的电阻值,所述V为升压单元200的输出电压,所述I为脉冲调制电路300输出脉冲的电流。首先,通过V和R获取流经采样电阻R1的电流,即脉冲调制电路300输出脉冲的电流I,通过获取升压单元200的输出电压V,通过V和I获取脉冲调制电路300的阻值,脉冲调制电路300输出脉冲就是电刺激脉冲信号,而脉冲调制电路300的阻值就是成对设置的电极所贴贴附待按摩部位的阻抗值。
方案二,所述控制单元600存储有计算电极之间的阻抗值的第二模型,所述第二模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻R1的电阻值,所述V为升压单元200的输出电压,所述I为脉冲调制电路300输出脉冲的电流。相对于方案一,脉冲调制电路300的阻值不单单由成对设置的电极所贴贴附待按摩部位的阻抗值构成,还应包括采样电阻R1的电阻值R,主要是本发明的采样电阻R1取值较大,且与待按摩部位的阻抗值之间的差距也并非非常大,难以忽略,为了提高精确度。
方案三,所述控制单元600存储有计算电极之间的阻抗值的第三模型,所述第三模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻R1的电阻值,所述V为升压单元200的输出电压,所述I为脉冲调制电路300输出脉冲的电流,所述R为预设的误差余量。相对于方案二,又增加了预设的误差余量,预设的误差余量可以是脉冲调制电路300的导线或元器件所产生的内阻,也可以是电极由于自身材质或形状问题所产生的内阻,也可以是其他不同位置所产生的内阻,其中,预设的误差余量可以通过实验算出,也可以通过理论计算得到,进一步提高准确性。
在一个实施例中,第二检测电路500还包括第二保护电阻R2,第二保护电阻R2串联至脉冲调制电路300和采样电阻R1之间,通过设置第二保护电阻R2降低流入控制单元600的电能大小,或者分压处理,降低输入控制单元600的电压值,实现对整个第二检测电路500的保护,因此,第二保护电阻R2优选取值为5.1Ω,当然接近此阻值也行,精确度也需要在1%。
由于采样电阻R1的取值范围为130至170Ω,而第二保护电阻R2取值也可以在4.5至5.7Ω之间,采样电阻R1与第二保护电阻R2的阻值比范围为1:22至1:38。当然,采样电阻R1与第二保护电阻R2的阻值比范围可以不受采样电阻R1与第二保护电阻R2的具体阻值限制,至考虑两者的阻值比。
如图4所示,本发明提供第一检测电路400的较佳实施例。
第一检测电路400包括第一分压电阻R4和第二分压电阻R5,第一分压电阻R4分别与升压单元200的电压输出端和第二分压电阻R5连接,第二分压电阻R5的另一端接地,控制单元600接入第一分压电阻R4和第二分压电阻R5之间的连接节点,以获取第二分压电阻R5的分压,控制单元600根据第二分压电阻R5的分压、第一分压电阻R4的阻值和第二分压电阻R5的阻值获取升压单元200的输出电压。
具体地,利用第一分压电阻R4和第二分压电阻R5的分压,实现第一分压电阻R4和第二分压电阻R5获取升压单元200的输出电压,再将第二分压电阻R5取值降低,实现主控单元能直接获取第二分压电阻R5的电压情况,不需要额外增加其他元器件保护或分流,第一分压电阻R4应远大于第二分压电阻R5的阻值,降低第二分压电阻R5的电压值,通过已知第一分压电阻R4和第二分压电阻R5的阻值和第二分压电阻R5的分压,控制单元600可直接获取升压单元200的输出电压。第一分压电阻R4和第二分压电阻R5的电阻取值,一方面需要考虑升压单元200的输出电压的大小范围,另一方方面需要考虑控制单元600取值端的电压极限情况,第二分压电阻R5和第一分压电阻R4的阻值比范围1:37至1:72;其中,第二分压电阻R5的阻值优选为10kΩ,取值范围可以是9kΩ至11kΩ之间,第一分压电阻R4的阻值优选为510kΩ,取值范围可以是450kΩ至570kΩ之间。
在一个实施例中,提供计算升压单元200的输出电压的算法方案。
所述控制单元600存储有计算升压单元200的输出电压的第四模型,所述第四模型为所述V为升压单元200的输出电压,所述V分2为第二分压电阻R5的分压,所述R分1为第一分压电阻R4的阻值,所述R分2为第二分压电阻R5的阻值。
核心思路是,根据第一分压电阻R4和第二分压电阻R5的阻值比,以及根据第二分压电阻R5的采样电压,获取第一分压电阻R4的电压值以及升压单元200的输出电压。
在一个实施例中,第二检测电路500还包括第二电容,控制单元600通过第二电容接入第二分压电阻R5和地端之间的连接节点。第二电容用于过滤滤波,容量选择,由于是小电容滤波,故优先采用103即可,且电容对地滤波,需要一个较小的电容并联对地即可,而电压值不会太高,优先采用50V,只是为了滤波,采用10%的误差值,节约成本。
如图5和图6所示,本发明提供脉冲调制电路300的较佳实施例。
脉冲调制电路300还包括至少一组控制臂,控制臂包括第一控制开关321和2,控制单元600分别与第一控制开关321和第二控制开关324均的控制端连接,以分别控制第一控制开关321和第二控制开关324的通断,第一控制开关321的输入端与电能输入端311连接,第二控制开关324的输出端与地端连接,第一控制开关321的输出端与第一脉冲传输端和第二脉冲传输端中的一者连接,第二控制开关324的输入端与第一脉冲传输端和第 二脉冲传输端中的另一者连接。
具体地,在升压电路稳定输入一输入电压值时,且在两电极均贴附于待按摩部位后,控制单元600通过控制第一控制开关321和第二控制开关324的通断,形成脉冲信号,即电刺激脉冲信号,升压电路输入的电能,依次经过第一控制开关321、第一电极301、待按摩部位、第二电极302和第二控制开关324向外输出,后流经第二检测电路500的采样电阻R1,通过脉冲电流刺激待按摩部位,使待按摩部位体验按摩的感觉,通过调整输入电压,从而调节经过待按摩部位的电流,实现不同的按摩力度,再配合不同的脉冲频率,实现不同的按摩手法。其中,控制单元600通过控制端331与第一控制开关321连接,通过控制端334与第二控制开关324连接。
在一个实施例中,控制臂设置有两组,两第一控制开关(321、322)的输出端分别与第一脉冲传输端和第二脉冲传输端连接,两第二控制开关(323、324)的输入端分别与第一脉冲传输端和第二脉冲传输端连接,通过四个控制开关形成H桥电路,实现快速控制两组控制臂的交互通断。其中,控制单元600通过控制端332与第一控制开关322连接,通过控制端333与第二控制开关323连接。
在一个实施例中,第一控制开关(321、322)和第二控制开关(323、324)均为三极管,以H桥电路为例,而减少其中两个三极管就是一组控制臂。包括第一三极管Q1、第二三极管Q2、第三三极管Q3和第四三极管Q4,第一三极管Q1和第二三极管Q2作为第一控制开关(321、322),第三三极管Q3和第四三极管Q4作为第二控制开关(323、324),第一三极管Q1和第二三极管Q2的发射极均与升压单元200的输入端连接,作为脉冲调制电路300的电能输入端311,第一三极管Q1和第二三极管Q2基极均与控制单元600的控制端连接,第一三极管Q1和第二三极管Q2的集电极分别与两电极连接,第三三极管Q3和第四三极管Q4的发射极分别与两电极连接,第三三极管Q3和第四三极管Q4的集电极与脉冲调制电路300的接地端312连接,第三三极管Q3和第四三极管Q4的基极均与控制单元600的控制端连接,控制单元600可分别控制第一三极管Q1、第二三极管Q2、第三三极管Q3和第四三极管Q4的通断,优选,控制第一三极管Q1和第四三极管Q4的同时通断,以及控制第二三极管Q2和第三三极管Q3的同时通断。
更具体的,升压单元200的输入端通过上拉电阻接入控制单元600中,提供驱动三极管通断的电压,控制单元600与各三极管之间的基极串联有电阻,对控制单元600进行保护,且在基极处产生驱动电压,实现三极管的导通。第一脉冲传输端和第二脉冲传输端均通过一双向变阻二极管接地(D2、D3),实现电机与地端之间的双向阻挡,便于电流回流至地端。其中,脉冲调制电路300的电能输入端311通过电阻R10、控制端331与控制单元600连接,通过电阻R11、控制端332与控制单元600连接,通过电阻R12、控制端333与控制单元600连接,通过电阻R13、控制端334与控制单元600连接;以及,控制端331与第一三极管Q1的基极之间串联有电阻R6,控制端332与第二三极管Q2的基极之间串联有电阻R7,控制端333与第三三极管Q3的基极之间串联有电阻R8,控制端334与第四三极管Q4的基极之间串联有电阻R9。
如图7和图8所示,本发明提供升压单元200的较佳实施例。
升压单元200包括与电源100连接的电源输入端、升压电路210、储能电路220、泄压电路230以及与脉冲调制电路300连接的电压输出端201,升压电路210的输入端与电源输入端连接,升压电路210的控制端与控制单元600连接;储能电路220的输入端与升压电路210的输出端连接,储能电路220的输出端与电压输出端201连接;泄压电路230的控制端与控制单元600连接,泄压电路230的输入端与电压输出端201连接,控制单元600用于根据预设电压和成对设置电极之间的阻抗值来控制升压电路210和/或储能电路220进 行升压、或/和、控制泄压电路230进行降压,以控制电压输出端201输出预设电压至脉冲调制电路300。
具体地,升压电路210的输入端与电源输入端连接,以获取电源100电压,升压电路210的控制端与控制单元600连接,以接收控制指令并对电源100的电压进行升压;储能电路220的输入端与升压电路210的输出端连接,以对升压之后的电压进行储能,储能电路220的输出端与电压输出端201连接,以输出预设电压至电压输出端201;泄压电路230的控制端与控制单元600连接,泄压电路230的输入端与电压输出端201连接,以根据控制指令对升压电路210输出至电压输出端201的输出电压进行降压。
当成对设置电极之间的阻抗值升高时,控制单元600控制泄压电路230对电压输出端201所输出的电压进行降压,当阻抗值降低时,控制单元600控制升压电路210对电源100所输出的电压进行升压,以动态维持电压输出端201的输出功率不变。
在一个实施例中,升压电路210包括电感L和MOS管,电感L的一端与升压电路210的输入端连接,另一端与升压电路210的输出端连接;MOS管的栅极与升压电路210的控制端连接,MOS管的漏极连接于电感L与升压电路210的输出端之间,MOS管的源极接地。其中,MOS管主要用作电流通断开关,MOS管的栅极与升压电路210的控制端连接后能够接收控制单元600的控制指令,并根据控制单元600的控制指令进行导通或断开,当MOS管导通时,电感L的电流通过MOS管流向地端,以使得电源100对电感L充电;当MOS管断开时,电感L的电流流向储能电路220,以实现对电源100输出的电压进行升压。其中,电源100与电感L之间接入以电容C3,并接地,实现滤波。
其中,MOS管的栅极与升压电路210的控制端之间串联有一电阻R14,以保护控制单元600,以及,MOS管的栅极还接入一电阻R15并接地,进行控制单元600空载接地,预防MOS管导通。
在一个实施例中,电压输出电路还包括串联于升压电路210的输出端与储能电路220的输入端之间的二极管D4;和/或,储能电路220为电容式储能电路220。当升压电路210的MOS管断开时,电PL1的电流通过二极管D4流向储能电路220,并使得储能电路220输出至电压输出端201的电压为电感L输出的电压、储能电路220的储能电压之和,以实现升压。
其中,储能电路220为电容式储能电路220,电容式储能电路220包括并联于储能电路220的输入端与输出端之间的第四电容C4和第五电容C5,第四电容C4与第五电容C5的另一端接地,第四电容C4和第五电容C5主要用于储能。储能电路220输出至电压输出端201的电压为电感L输出的电压、第四电容C4的电压、第五电容C5之和,以实现升压。其中,第四电容C4的储能大于第五电容C5的储能能力。
在一个实施例中,泄压电路230包括第一电阻R16、第五三极管Q5、第二电阻R17以及第三电阻R18,第一电阻R16串联于泄压电路230的控制端与第五三极管Q5的基极之间,第五三极管Q5的发射极接地;第三电阻R18一端连接于第一电阻R16与第五三极管Q5的基极之间,另一端接地;第二电阻R17串联于泄压电路230的输入端与第五三极管Q5的集电极之间。具体的,当储能电路220输出至电压输出端201的输出电压高于预设电压时,控制单元600控制三极管导通,泄压电路230对电感L和储能电路220的电压进行泄压,以使得储能电路220输出至电压输出端201的输出电压降为预设电压,并通过电压输出端201输出预设电压至脉冲调制电路300。
如图9和图10所示,本发明提供一种控制方法的优选实施例。
一种控制方法,控制方法应用在的电刺激按摩装置中,控制方法的步骤包括:
步骤S90、控制单元600控制脉冲调制电路300产生电刺激脉冲信号;
步骤S91、依序循环控制各成对设置的电极输出电刺激脉冲信号,并获取对应成对设置的电极之间的阻抗值;
步骤S92、当阻抗值异常时,下一次循环停止控制阻抗值异常所对应的成对设置的电极输出电刺激脉冲信号。
具体地,通过控制单元600控制脉冲调制电路300产生电刺激脉冲信号,以对待按摩部位进行电刺激按摩,根据不同的按摩模式控制各成对设置的电极进行预设的按摩方式,例如,每对电极均轮流输出电刺激脉冲信号,或者,在一定时间内,至少有两对以上的电极依序输出电刺激脉冲信号,在步骤S91中,依序循环控制各成对设置的电极输出电刺激脉冲信号是根据预设模式进行输出,依序是依照预设的顺序,并非是各成对设置的电极按顺序一个个分别输出,当然也可以各成对设置的电极按顺序一个个分别输出,这里的各成对设置的电极不仅仅是指单个脉冲调制电路300的两电极,也可以是以一脉冲调制电路300的一个电极以及配套的另一个脉冲调制电路300的一电极。最终,通过上述电刺激按摩装置获取成对设置的电极之间的阻抗值,即获取每次输出电刺激脉冲信号所对应的阻抗值。
正常而言,由于贴合区域靠近,且输出电压一致,电极的形状材质也一致或接近,理论上而言,各阻抗值应是接近或一致,但是阻抗值可能由于佩戴问题,内部电路问题,导致阻抗值异常,即一对电极出现了问题,不能正常输出电刺激脉冲信号,若执意继续输出电刺激脉冲信号,容易导致待按摩部位的刺痛。因此,当阻抗值异常时,下一次循环停止控制阻抗值异常所对应的成对设置的电极输出电刺激脉冲信号。
其中,这里的下一次循环是指继续轮到阻抗值异常所对应的两电极同时连通前,通过控制单元600控制脉冲调制电路300断开电流回路,不让其继续参与下一次输出电刺激脉冲信号的操作。
在一个实施例中,参考图10,控制方法的步骤还包括:
步骤S93、记录每一电刺激回路的阻抗值;
步骤S94、当一电刺激回路的阻抗值异常时,通知用户。
在步骤S91处所获取成对设置的电极之间的阻抗值,进行记录,即记录每一次电刺激回路的阻抗值,当一电刺激回路的阻抗值异常时,即成对设置的电极出现异常,在执行下一次循环停止控制阻抗值异常所对应的成对设置的电极输出电刺激脉冲信号后,还需要通知用户,让用户决定是否关闭电源100或降低输出电压,甚至提醒用户重新佩戴电刺激按摩装置。
如图11所示,本发明提供一种电刺激按摩装置的控制方法的优选实施例。
一种电刺激按摩装置的控制方法,电刺激按摩装置包括成对设置的电极、与电极连接的脉冲调制电路,以及与脉冲调制电路连接的第二检测电路,电极用于贴附于待按摩部位,脉冲调制电路用于产生电刺激脉冲信号以通过电极输出给待按摩部位;控制方法的步骤包括:
步骤S10、控制脉冲调制电路产生电刺激脉冲信号;
步骤S20、控制第二检测电路周期性对电刺激脉冲信号进行采样,获取采样数据;
步骤S30、根据采样数据周期性获取成对设置的电极之间的阻抗值;
步骤S40、根据阻抗值调整向脉冲调制电路的输入电压;其中,对电刺激脉冲信号进行采样的采样周期T满足第一模型,第一模型为T+t<A;t为电刺激按摩装置的预设反应滞后时间,A为预设的用户感知到电刺痛所需要的时间。
具体地,关于电刺激按摩装置,控制输入电压的电压值,从而调整输入至脉冲调制电路的电能所对应的电压,电极用于贴附于待按摩部位,脉冲调制电路产生电刺激脉冲信号以通过电极输出给待按摩部位,使待按摩部位感受到电刺激,形成按摩触感。通过上述实施 例实时获取待按摩部位的阻抗值,根据阻抗值有目的调节输入电压,从而调节脉冲调制电路的电刺激脉冲信号的电流情况,使待按摩部位在按摩过程中一直可控维持电刺激脉冲信号的电流值,避免待按摩部位的受到强烈电刺激,实现按摩无刺痛。
关于步骤S10至步骤S40,脉冲调制电路通过通断操作,将输入电能转化为脉冲电能,即电刺激脉冲信号,电刺激脉冲信号的电压值为输入电压的电压值,电刺激脉冲信号的电流值与电流所经过的电阻值有关,即默认电刺激按摩装置正常运行时,也不考虑外部参数,电流所经过的电阻值与待按摩部位的状态或/和电极与待按摩部位的贴合状态有关。
每次电刺激脉冲信号的产生,通过第二检测电路可周期性地对电刺激脉冲信号进行采集,获取关于电刺激脉冲信号的相关数据,形成采样数据,例如获取电刺激脉冲信号的电流、电压等数据。
根据预设算法对采样数据进行处理,若采样数据为电刺激脉冲信号的电流数据,根据当前输入电压的电压值,获取成对设置的电极之间的阻抗值。若通过采样电阻的串联,是获取电刺激脉冲信号流经采样电阻时,采样电阻的电压,通过已知采样电阻的阻值,计算得到电刺激脉冲信号流经采样电阻时的电流,再通过当前输入电压的电压值,可获取成对设置的电极之间的阻抗值。根据阻抗值,通过预设的调整策略,调整向脉冲调制电路的输入电压,从而调整电刺激脉冲信号电流值,使用户电刺激感受变强或变弱,或者维持一定的力度。
上述采样、计算处理执行均需要一定时间,而用户感知到电刺痛所需要的时间A是预设好的,也可根据大量模拟实验获取,当用户感知到电刺痛所需要的时间内持续感受到大脉冲电流冲击,带按摩部位会感觉到刺痛,故需要在用户感知到电刺痛所需要的时间内消除电流异常所带来的负面影响。
因此,“采样”时间就是对电刺激脉冲信号进行采样的采样周期T,“计算处理”的时间为电刺激按摩装置的预设反应滞后时间t,当然t不仅限于“计算处理”,还有其他已知或未知情况下所滞后的时间,例如电信号传送时间,例如芯片的反应施加等等,T与t的和值必须小于A,实现在用户感知到电刺痛所需要的时间A内检测到阻抗异常,并作出反应,以消除电流异常所带来的负面影响。
即是说,本申请,通过对采样周期T进行控制,以实现在用户感知到电刺痛所需要的时间A内检测到阻抗异常,并作出反应,以消除电流异常所带来的负面影响。
其中,t的值可根据大量模拟实验获取到,并进行预先存储。
当然,T与t的和值最好与A的差值较大,因为A的设定是根据大部分人群的平均感知到电刺痛所需要的时间设定的,考虑到特殊人群,不同年龄、性别、人种甚至胖瘦程度、肌肉锻炼程度都会有较大的影响。同时,预设的用户感知到电刺痛所需要的时间可通过至少四个途径预设,第一通过相关医院研究资料确定,第二通过大部分人群的平均时间设置,第三允许用户修改或用户具有建议修改的途径,第四根据机器学习或者用户反映,从而不断优化调节A,甚至为特定人员或特定某位用户设置最适合的A。
在一个实施例中,t包括根据采样数据获取成对设置的电极之间的阻抗值的时间t1和/或根据阻抗值调整向脉冲调制电路输入电压的时间t2。优选地,t1和t2要全部考虑进去,特别是t2,在复杂调整策略中,容易产生较长的计算处理时间。而t1更多考虑的是不同的采样方式所得到最终的采样时间,以及对采样数据进行分析处理所等得到的阻抗值的时间才是最终t1的时间。
在一个实施例中,参考图12,根据采样数据周期性获取成对设置的电极之间的阻抗值的步骤包括:
步骤S31、获取脉冲产生电路的输出电压;
步骤S32、通过第一采样电路周期性对采样电阻进行电压采样,获取多个作为采样数据的采样电阻电压;
步骤S33、根据采样电阻电压和采样电阻的阻值获取电刺激脉冲信号的电流值;
步骤S341、根据输出电压和电流值获取成对设置的电极之间的阻抗值;
步骤S342、根据输出电压和电流值获取总阻值,根据总阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值;
步骤S343、设置误差余量的阻值,根据输出电压和电流值获取总阻值,再根据总阻值、差余量的阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值。
具体地,在正常脉冲产生电路的运行中,获取输出电压和采样电阻电压,从而获取电刺激脉冲信号的电流值和电压值,根据两者获取脉冲产生电路的总总阻值,若考虑到成对设置的电极与带按摩部位之间的阻抗值可看作总阻值,根据输出电压和电流值获取成对设置的电极之间的阻抗值;但是脉冲产生电路的阻值不单单由成对设置的电极所贴贴附待按摩部位的阻抗值构成,还应包括采样电阻的电阻值,主要是本发明的采样电阻取值较大,且与待按摩部位的阻抗值之间的差距也并非非常大,难以忽略,为了提高精确度,实现根据输出电压和电流值获取总阻值,根据总阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值;存在预设的误差余量,预设的误差余量可以是脉冲产生电路的导线或元器件所产生的内阻,也可以是电极由于自身材质或形状问题所产生的内阻,也可以是其他不同位置所产生的内阻,其中,预设的误差余量可以通过实验算出,也可以通过理论计算得到,进一步提高准确性,因而设置误差余量的阻值,根据输出电压和电流值获取总阻值,再根据总阻值、差余量的阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值。
进一步的,提供三个计算电极301之间的阻抗值的算法模型。
方案一,控制单元600存储有计算电极301之间的阻抗值的第一模型,第一模型为R阻抗为成对设置的电极301之间的阻抗值,V为采样电压,R为采样电阻R101的电阻值,V为升压单元200的输出电压,I为脉冲调制电路300输出脉冲的电流。首先,通过V和R获取流经采样电阻R101的电流,即脉冲调制电路300输出脉冲的电流I,通过获取升压单元200的输出电压V,通过V和I获取脉冲调制电路300的阻值,脉冲调制电路300输出脉冲就是电刺激脉冲信号,而脉冲调制电路300的阻值就是成对设置的电极301所贴贴附待按摩部位的阻抗值。
方案二,控制单元600存储有计算电极301之间的阻抗值的第二模型,第二模型为R阻抗为成对设置的电极301之间的阻抗值,V为采样电压,R为采样 电阻R101的电阻值,V为升压单元200的输出电压,I为脉冲调制电路300输出脉冲的电流。相对于方案一,脉冲调制电路300的阻值不单单由成对设置的电极301所贴贴附待按摩部位的阻抗值构成,还应包括采样电阻R101的电阻值R,主要是本发明的采样电阻R101取值较大,且与待按摩部位的阻抗值之间的差距也并非非常大,难以忽略,为了提高精确度。
方案三,控制单元600存储有计算电极301之间的阻抗值的第三模型,第三模型为R阻抗为成对设置的电极301之间的阻抗值,V为采样电压,R为采样电阻R101的电阻值,V为升压单元200的输出电压,I为脉冲调制电路300输出脉冲的电流,R为预设的误差余量。
相对于方案二,又增加了预设的误差余量,预设的误差余量可以是脉冲调制电路300的导线或元器件所产生的内阻,也可以是电极301由于自身材质或形状问题所产生的内阻,也可以是其他不同位置所产生的内阻,其中,预设的误差余量可以通过实验算出,也可以通过理论计算得到,进一步提高准确性。
其中,第二检测电路500还包括第二保护电阻R102,第二保护电阻R102串联至脉冲调制电路300和采样电阻R1之间,通过设置第二保护电阻R102降低流入控制单元600的电能大小,或者分压处理,降低输入控制单元600的电压值,实现对整个第二检测电路500的保护。
如图13至图15所示,本发明提供采样周期T与电刺激脉冲信号的周期T1的比值为S的较佳实施例。
采样周期T与电刺激脉冲信号的周期T1的比值为S,S为大于或等于1,且小于或等于(A-t)/T1的整数。
通过采样周期T与电刺激脉冲信号的周期T1的比值为S,可以得到采样操作和产生电刺激脉冲信号的操作可以同步进行,也可以非同步进行,若S为1,表述采样周期T恰好为电刺激脉冲信号的一个周期,周期T1,每个采样周期T均对应上一个电刺激脉冲信号的产生周期T1,但是,S必须大于或等于1,若S小于1,表述采样周期T要小于电刺激脉冲信号的周期T1,这是没必要的,并不能完整获取电刺激脉冲信号的全部情况,只能获取局部情况,最终使需要对电刺激脉冲信号的检测,从而进行确定阻抗值;以及,采样周期T不能太大,若长时间才采集一次,容易超过时间A,即S小于或等于(A-t)/T1的整数,其中,A-t表述剩余可允许的采样时间,实际就是,采样周期T不能大于剩余可允许的采样时间。
在一个实施例中,周期性对电刺激脉冲信号进行采样的步骤包括:
步骤S211、在其中一个采样周期T中,对电刺激脉冲信号进行采样时,在预设时间内采样多次;
步骤S212、获取采样数据。
具体地,为了提高采样准确性,或者提高采样效率,在一个采样周期T中,需要对电刺激脉冲信号的高电平进行采样,以提高数据精准性或提高采样高效性,因此,采样可以划 分为两个方案。方案一、所述采样周期T等于S倍的所述电刺激脉冲信号的周期T1,S为大于或等于2,且小于或等于(A-t)/T1的整数,所述在预设时间内采样多次的步骤包括:对S个高电平均进行一次采样,以获取多个采样数据;方案二、所述采样周期T等于所述电刺激脉冲信号的周期T1,所述在预设时间内采样多次的步骤包括:对一个高电平进行采样多次,以获取多个采样数据。
关于方案一,参考图14,在电刺激脉冲信号的产生过程中,对每一个电刺激脉冲信号的高电平进行采样,获取一个采样数据,直至达到采样周期T。
将多个电刺激脉冲信号依序采样获取多个采样数据,将多个采样数据进行平均值计算,作为新的采样数据,通过新的采样数据代入控制方法中的步骤S30,获取成对设置的电极之间的阻抗值,此阻抗值为多个采样数据所对应的代表阻抗值,提高精准性,同时提高输入电压调整的缓冲性,以防快速、大幅度的调整,虽然不会产生刺痛,也会导致体验感差。
当然,也可以先对每个高电平进行采样后的采样数据进行阻抗值计算,获取多个电刺激脉冲信号所对应的阻抗值,再进行平均数计算,作为采样周期T的采样数据。
关于方案二,参考图15,相对于方案一,所述采样周期T等于所述电刺激脉冲信号的周期T1,同时,多次采样是指对一个电刺激脉冲信号的高电平的多次采样,以获取多个反应该高电平不同时间点的数据的采样数据,是对一个电刺激脉冲信号进行多次采样,虽然也能获得多个采样数据,但是多个采样数据最终会形成与电刺激脉冲信号配对的采样数据,这是为了防止第二检测电路所存在的误差情况,或者电刺激按摩装置电路所对应的误差情况,从而使最终的采样数据趋向于精确、真实的数据,以反映当前电刺激脉冲信号的最真实信号情况。当然,同理可知,不仅是多个采样数据最终会形成与电刺激脉冲信号配对的采样数据,还可以先将多个采样数据分别计算得到阻抗值,再对多个阻抗值进行平均数计算,作为采样周期T的采样数据。
其中,采样次数越多,采样数据越精确。
如图16所示,本发明提供计时采样的较佳实施例。
控制第二检测电路周期性对电刺激脉冲信号进行采样的步骤包括:
步骤S221、控制脉冲调制电路产生电刺激脉冲信号后,进行计时;
步骤S222、当计时时间到达启动时间后,对电刺激脉冲信号进行采样。
控制脉冲调制电路产生电刺激脉冲信号的时候,启动ADC采样定时器计时;当计时时间到达启动时间后,电刺激脉冲信号已经加载到了待按摩部位和采样电阻的两端,这个时候启动ADC采样就可准确且及时采集到采样电阻的电压。
如图17所示,本发明提供基于按摩档位和/或按摩模式的控制方法的较佳实施例。
在控制脉冲调制电路产生电刺激脉冲信号的步骤之前,控制方法的步骤还包括:
步骤S51、获取按摩档位和/或按摩模式;
步骤S52、根据按摩档位和/或按摩模式确定A。
具体地,由于不同的按摩档位存在不同的输入电压,对A存在一定的影响,例如会导致皮肤状态变化、电刺激脉冲信号的参数发生变化,从而导致采样或数据处理受到一定的影响;同时,按摩模式也是同样道理,按摩模式不仅存在电压输出的变化,同时还存在电刺激脉冲信号的频率变化,均会对A造成一定影响。故,当根据按摩档位和/或按摩模式确定A,实现A的自动调节,进一步降低无刺痛发送的概率。
根据按摩档位和/或按摩模式确定A的步骤包括:
步骤S521、根据按摩档位确定其所属的挡位区间,根据挡位区间确定A;
步骤S522、根据按摩模式确定其所属的模式类型,根据模式类型确定A;
步骤S523、根据按摩档位确定其所属的挡位区间,根据按摩模式确定其所属的模式类 型,根据挡位区间和模式类型确定A。
其中,确定A包括三种可能,第一是通过按摩档位进行确定,按摩档位具有不同的预设电压值,不同的电压值导致A的变化,从而通过当前档位实现A的确定;第二是通过按摩模式进行确定,按摩模式例如针灸、拔罐、刮痧、推拿、按摩、指压、锤击、瘦身等,不同的按摩模式具有同的电刺激脉冲信号参数变化,例如电流、电压和频率的变化,从而根据不同的按摩模式确定其所属的模式类型,确定A;第三是第一和第二的结合,由于按摩档位和按摩模式均存在影响,故将两者进行确定。
第三的确定方式可以至少有两种,第一是对每个按摩模式所对应的按摩档位均设置一个A,选中对应的按摩模式和按摩档位直接确定A;第二是每一种按摩模式设置一预设积分,每一种按摩档位也设置一预设积分,最终根据选择获取积分总和,以确定A,其中,A与积分总和具有一定的关联。
在一个实施例中,步骤S521至步骤S523并非按顺序执行的步骤,根据具体情况可以选择其中一个步骤。
如图18所示,本发明提供调整采样周期T的较佳实施例。
控制方法的步骤还包括:
步骤S61、当周期性对电刺激脉冲信号进行采样的采样周期T不满足第一模型;
步骤S62、降低输入电压至安全电压;
步骤S63、调整电刺激脉冲信号的产生频率,以调整采样周期T。
具体地,若A确定,且当通过计算获取周期性对电刺激脉冲信号进行采样的采样周期T不满足第一模型时,例如采样周期T出现问题或者时间t出现问题,又或者电刺激按摩装置存在异常,如损坏或电量低等情况,需要进行对应处理,以防止电刺痛的产生。例如实现步骤S62,降低输入电压至安全电压,只要设置有安全电压值,就从源头上避免电刺痛的产生,安全电压是通过实验或相关研究数据所得到人体能接受且不会产生刺痛的电压信息。又例如实现步骤S63,调整电刺激脉冲信号的产生频率,以调整采样周期T,只要电刺激脉冲信号的产生频率变高,即可实现采样周期T的缩小,从而使采样周期T又可满足第一模型。
如图所示,本发明提供成对设置电极输出电压的输出策略的较佳实施例一。
参考图19,电刺激按摩装置的控制方法包括如下步骤:
S711:获取成对设置的电极之间的当前阻抗值。
在一个具体的实施场景中,按照预设周期或者实时获取成对设置的电极之间的当前阻抗值,例如,按照预设周期连续多次获取成对设置的电极之间的阻抗值,将获取到阻抗值的均值作为当前阻抗值。由于人体对刺痛的反应时间在300ms-1200ms,为了避免对电刺激装置的调节滞后于人体感受到刺痛的时间,在本实施场景中,将周期时间设置为小于300ms,例如可以是100ms或者50ms。
S712:根据当前阻抗值控制输出给成对设置的电极的输出电压。
在一个具体的实施场景中,根据当前阻抗值控制输出给成对设置的电极的输出电压,当前阻抗值能够反映出可穿戴设备的穿戴状态,若可穿戴设备处于正常穿戴状态,则输出电压可以根据实际用户设置的工作档位进行输出。若可穿戴设备处于非正常佩戴状态,则需要降低输出给电极的输出电压,具体地说,可以是直接降低至0或者其他一个预设的较低的电压值,也可以是根据当前阻抗值进行实时调整,以避免一次性降低电压值过多导致按摩效果较差,用户感受不到电刺激。
在一个实施场景中,在对输出电压进行降低时,以递减的方式进行降低,以免输出电压发生突变,用户不能适应。具体地说,可以以阶梯式方式递减,每间隔预设时长(例如。 100ms)将输出电压降低若干电压,每次降低的电压值可以是相等的,也可以是不等的(包括递增和递减)。进一步地,获取当前阻抗值与上一次获取的检测阻抗值之间的差值,若差值大于或等于预设差值阈值,则表示两次获取的阻抗值差距较大,则对应的输出电压之间的差距较大,因此在预设时间内(例如,2s)将上一次的检测阻抗值所对应的输出电压以递减的方式进行降低,能够有效避免电压突变给用户带来不适感。若差值小于预设差值阈值,则表示两次获取的阻抗值差距较小,可以直接进行电压调整,有效提升电压调整的效率。
在本实施场景中,步骤S712包括步骤S7121。S7121:当当前阻抗值大于第一阻抗值且小于第二阻抗值时,根据当前阻抗值与预设映射关系获取动态电压,以动态电压作为输出电压输出给成对设置的电极,动态电压小于电刺激装置当前工作档位的档位电压,以使得电刺激装置处于动态电压输出状态。
设置第一阻抗值和第二阻抗值,第一阻抗值小于第二阻抗值,第一阻抗值为1000Ω-2000Ω中的任一值,第二阻抗值为4500Ω-5500Ω中的任一值。例如,第一阻抗值为1500Ω,第二阻抗值为5000Ω。当当前的人体阻抗大于第一阻抗值且小于第二阻抗值时,表示电极与人体贴合不良,接触面积较小,需要降低输出电压避免发生刺痛。根据当前的人体阻抗与预设映射关系获取动态电压,以动态电压作为输出电压输出给成对设置的电极,动态电压小于当前的输出电压。输出电压可以是根据电刺激装置当前工作档位获取的档位电压,还可以是上一次根据人体阻抗调节后的动态电压。电刺激装置此时处于动态电压输出状态,输出给电极的输出电压是动态的变化的,当当前阻抗值大的时候,输出电压就较低,因为当前阻抗值越大意味着电极和人体贴合状态不良,降低输出电压能够有效降低出现刺痛的情况。
在一个实施场景中,可以根据当前的人体阻抗获取对当前的输出电压的调节值,当前的人体阻抗与第一阻抗值的差值越小,调节值越大,动态电压与当前的输出电压的差值越小。
在一个具体的实施场景中,根据以下公式获取动态电压:
其中,V动态为动态电压,resval为当前的人体阻抗,R1为第一阻抗值,R2为第二阻抗值V预设为安全电压,V挡位为根据当前工作档位获取的档位电压。
档位电压为根据用户输入的调节档位值对应的工作档位对应的电压值,或者是电刺激装置实时的工作档位获取的档位电压。
通过上述描述可知,在本实施例中,当前阻抗值大于第一阻抗值且小于第二阻抗值时,表示电极与人体贴合情况较差,根据当前阻抗值与预设映射关系获取动态电压,以动态电压作为输出电压输出给成对设置的电极,可以在降低输出电压避免出现刺痛的情况下,维持一定的按摩效果和按摩体验。
在一个实施例中,参考图20,再提供的电刺激按摩装置的控制方法,包括如下步骤:
S721:获取成对设置的电极之间的当前阻抗值。
在一个具体的实施场景中,步骤S721与本发明提供的电刺激按摩装置的控制方法的中的步骤S711基本一致,此处不再进行赘述。
S722:根据当前阻抗值控制输出给成对设置的电极的输出电压。
在本实施场景中,步骤722包括步骤S7221、S7222和S7223。
S7221:当当前阻抗值大于第一阻抗值且小于第二阻抗值时,根据当前阻抗值与预设映射关系获取动态电压,以动态电压作为输出电压输出给成对设置的电极,动态电压小于电 刺激装置当前工作档位的档位电压,以使得电刺激装置处于动态电压输出状态。
在一个具体的实施场景中,步骤S7221与本发明提供的电刺激按摩装置的控制方法的中的步骤S7121基本一致,此处不再进行赘述。
S7222:当当前阻抗值大于或等于第二阻抗值时,获取安全电压,以安全电压作为输出电压输出给成对设置的电极,以使得电刺激装置处于安全电压输出状态。
在一个具体的实施场景中,当当前的人体阻抗大于或等于第二阻抗值时,表示电极与人体贴合极度不良,接触面积极小,有很大概率发生尖端放电的现象,需要立刻降低输出电压避免发生刺痛。获取安全电压,以安全电压作为输出电压输出给成对设置的电极,以使电刺激装置处于安全电压输出状态。安全电压为8V-12V中的任一值。由于安全电压较低,即使在电极与皮肤接触面积极小的情况下,也不会产生很大的电流。从而用户在使用时不会有刺痛的感觉。
S7223:当当前阻抗值小于或等于第一阻抗值时,以电刺激装置当前工作档位的档位电压作为输出电压输出给成对设置的电极,以使电刺激装置处于正常输出状态。
在一个具体的实施场景中,当当前的人体阻抗小于或等于第一阻抗值时,表示电极与人体贴合良好。以用户设置的电刺激装置的工作档位对应的档位电压作为输出电压输出给成对设置的电极,用户可以正常使用可穿戴按摩装置。
通过上述描述可知,在本实施例中,根据当前的人体阻抗控制输出给成对设置的电极的输出电压不超过安全电压,将人体阻抗分为三个区域采用不同的应对措施,不仅能有效避免刺痛情况的产生,也能在不伤害用户的前提下,有效确保用户使用时能感受到对应的电刺激,不会由于佩戴不良就感受不到电刺激,影响按摩效果。
在一个实施例中,参考图21,再提供的电刺激按摩装置的控制方法,包括如下步骤:
S731:判断电刺激按摩装置是否处于调整状态。若否,执行步骤S732,若是,执行步骤S735。
在一个具体的实施场景中,设置一个调整状态参数,当调整状态参数为0时表示电刺激按摩装置不处于调整状态,当调整状态参数为1时,表示电刺激按摩装置处于调整状态。通过读取调整状态参数的值可以获取电刺激按摩装置是否处于调整状态。调整状态参数的初始值为0,后续可以根据用户的指示或者当前阻抗值的大小来进行设置,例如,当当前阻抗值大于第一阻抗值时,调整状态参数被设置为1。当当前阻抗值小于或等于第一阻抗值时,调整状态参数被设置为0。
S732:判断当前阻抗值是否小于或等于第一阻抗值,若是,执行步骤S733,若否,执行步骤S734。
S733:以电刺激装置当前工作档位的档位电压作为输出电压输出给成对设置的电极,以使电刺激装置处于正常输出状态。
在一个具体的实施场景中,步骤S733与本发明提供的电刺激按摩装置的控制方法的第二实施例中的步骤S7223基本一致,此处不再进行赘述。
S734:使电刺激按摩装置进入调整状态。
S735:判断当前阻抗值是否大于或等于第二阻抗值。若是,执行步骤S736,若否,执行步骤S737。
S736:获取安全电压,以安全电压作为输出电压输出给成对设置的电极,以使得电刺激装置处于安全电压输出状态。
在一个具体的实施场景中,步骤S736与本发明提供的电刺激按摩装置的控制方法的第二实施例中的步骤S7222基本一致,此处不再进行赘述。
S737:根据当前阻抗值与预设映射关系获取动态电压,以动态电压作为输出电压输出给成对设置的电极,动态电压小于电刺激装置当前工作档位的档位电压,以使得电刺激装置 处于动态电压输出状态。
在一个具体的实施场景中,步骤S737与本发明提供的电刺激按摩装置的控制方法的第二实施例中的步骤S7221基本一致,此处不再进行赘述。
S738:判断当前阻抗值是否连续预设次数小于或等于第一阻抗值,若是,执行步骤S739。
S739:使电刺激按摩装置退出调整状态。
在一个具体的实施场景中,当前阻抗值连续预设次数(例如,3次)小于或等于第一阻抗值,则可以判定可穿戴设备当前处于正常佩戴的状态,不需要降低输出电压,可以正常使用,因此退出调整状态,这样下一次获取当前阻抗值后,可以直接判断是否小于第一阻抗值,而无需与第二阻抗值比较,运算速度更快,提升处理效率。
S7310:2控制输出电压在预设时长内以递增的方式恢复至电刺激装置当前工作档位的档位电压。
在一个具体的实施场景中,电刺激按摩装置退出调整状态后,需要将输出电压恢复至电刺激装置被用户设置的工作档位的档位电压,为了避免输出电压突变,用户无法适应的情况出现,在本实施场景中,在预设时长内以递增的方式恢复档位电压。例如,可以以阶梯式方式递增,每间隔预设时长(例如。100ms)将输出档位提升若干电压,每次提升的电压值可以是相等的,也可以是不等的(包括递增和递减)。
在其他实施场景中,若当前阻抗值没有连续预设次数小于或等于第一阻抗值,例如当前阻抗值一直大于第一阻抗值,或者小于第一阻抗值的次数小于预设次数,则继续处于调整状态。
通过上述描述可知,在本实施例中判断电刺激按摩装置是否处于调整状态,从而能够有效减少需要比较的次数,若是,仅需要与第二阻抗值比较,若否,仅需要与第一阻抗值比较,能够有效减少比较时间。
如图22至图27所示,本发明提供一种电刺激按摩装置的控制方法的较佳实施例。
一种电刺激按摩装置的控制方法,参阅图22,具体步骤包括:
S8100、在电极301贴合人体皮肤并输出电刺激脉冲信号时,监测成对设置的电极301之间的阻抗值;
S8220、若阻抗值处于第一阻抗值区域,当监测到阻抗值降低时,则降低对电极301的电压输出;
S8230、若阻抗值处于第二阻抗值区域,当监测到阻抗值升高时,则降低对电极301的电压输出;
其中,第一阻抗值区域的最大值小于或等于第二阻抗值区域的最小值。电刺激按摩装置为颈部按摩仪、腰部按摩仪或腿部按摩仪等可穿戴式电刺激按摩仪。
在本实施例中,电刺激按摩装置通过控制输入电压的电压值,调整输出电刺激脉冲信号所对应的电压,电极301用于贴合于待按摩部位的人体皮肤,并输出电刺激脉冲信号,与电极301贴合的人体皮肤处产生电刺激效果,形成按摩。
在步骤S8100中,在电极301贴合人体皮肤并输出电刺激脉冲信号时,通过相关检测电路获取电刺激脉冲信号的相关电参数,包括流经人体皮肤后的电流值,电刺激脉冲信号的电压值,流经电刺激按摩装置电路所产生的误差值或/和元器件、导线所产生的阻值,从而计算出电极301贴合的人体皮肤过程中所产生的阻抗值,且需要实时检测对设置的电极301之间的阻抗值,进行后续相关操作。
其中,并参考图23,监测成对设置的电极301之间的阻抗值的步骤包括:
S8111、获取电刺激脉冲信号所对应的电流值,并根据电流值获取电极301的总阻抗值;
S8112、将总阻抗值作为阻抗值;
S8113、将总阻抗值在扣除内部元器件的内阻值后,作为阻抗值。
在步骤S8111中,通过串联在流经人体皮肤后的采样电阻获取电刺激脉冲信号所对应的电流值,即通过检测采样电阻的实时电压计算得到流经采样电阻的实时电流,也由于知晓电刺激脉冲信号的电压值,即电极301的电压输出,根据电流值、电压输出获取电极301的总阻抗值。而通过总阻抗值具有两种判断方式以监测成对设置的电极301之间的阻抗值,第一是步骤S8112,将总阻抗值作为阻抗值,第二是步骤S8113,将总阻抗值在扣除内部元器件的内阻值后,作为阻抗值,上述的内部元器件的内阻值是指采样电阻的阻值,也可以是其他元器件、导线的阻值,当然也可以是通过理论得到的预设阻值。
在步骤S8220和步骤S8230中,首先在步骤S8100到步骤S8220之间应还存在一个判断步骤,即步骤S8210。在步骤S8210中,根据上述步骤S8100中所监控得到的阻抗值,进行判断,判断阻抗值是否处于第一阻抗值区域和第二阻抗值区域中。若阻抗值处于第一阻抗值区域进入步骤S8220,若阻抗值处于第二阻抗值区域进入步骤S8230。其中,第一阻抗值区域和第二阻抗值区域是预先设置的,用于反映阻抗值正处于一个容易产生刺痛的区域,需要根据阻抗值变化对电极301的输出电压进行修改,从而调节脉冲调制电路100的输出电刺激脉冲信号的电流情况,使人体皮肤在按摩过程中避免受到强烈电刺激,实现按摩无刺痛。
以及,当阻抗值处于第一阻抗值区域中时,还不断检测阻抗值,并在阻抗值下降时,将电极301的电压输出也降低,同理,当阻抗值处于第二阻抗值区域中时,还不断检测阻抗值,并在阻抗值上升时,将电极301的电压输出也降低。
若阻抗值处于在第一阻抗值区域中,表示人体皮肤与电极301的贴合状态良好,此时若输出电压不变,人体由于出汗等其他原因造成阻抗的突变时,则按摩力度也会突变,容易突然无力度,或力度突然增强,皮肤组织经过的电流超过耐受限,出现类似者肌肉痉挛等不适体验;因此,在此情况下,阻抗值在进一步降低时,需要降低输出电压,从而使用户在安全、舒适的电刺激脉冲信号电压下体验脉冲理疗。
若阻抗值处于在第二阻抗值区域中,表示人体皮肤与电极301的贴合状态一般,或者皮肤出现干燥情况,且阻抗值越高,代表电极301片的贴合状态越差,在此区间需要在保证按摩力度的同时,也需要注意输出电压不要过高,从而带来局部皮肤的刺痛感受;因此,在此情况下,阻抗值在进一步升高时,需要降低输出电压,从而预防刺痛的产生。
如此,通过以上控制,可以实现按摩设备的智能控制调节。
在一个实施例中,第一阻抗值区域的最大值小于或等于第二阻抗值区域的最小值。首先,第一阻抗值区域和第二阻抗值区域正好处理两个贴合情况缓慢变化的区域中,可以是相邻的两个区域,此时第一阻抗值区域的最大值等于第二阻抗值区域的最小值。其次,两个区域之间应还有一个安全区域,让用户在此安全区域中享受不同档位电压的按摩手法,故第一阻抗值区域的最大值小于第二阻抗值区域的最小值。
如图24和图25所示,本发明提供电压输出和当前档位的关联的较佳实施例。
控制方法的步骤还包括:
S8221、当阻抗值处于第一阻抗值区域时,电极301的电压输出小于当前档位所对应的电压输出;
S8231、当阻抗值处于第二阻抗值区域时,电极301的电压输出小于当前档位所对应的电压输出。
在本实施例中,阻抗值处于一个安全数值或范围可根据当前档位的电压进行输出,按摩档位是预设的电压档位,以满足不同用户对按摩力度的不同需求,并且由于第一阻抗值区域和第二阻抗值区域正好处理两个贴合情况缓慢变化的区域中,根据上文描述直接使用当 前档位的电压输出容易产生不良影响,故当阻抗值处于第一阻抗值区域和第二阻抗值区域时,电极301的电压输出均需要小于当前档位所对应的电压输出。
在一个实施例中,还设置有第三抗值区域,若阻抗值处于第三抗值区域,对电极301输出当前档位所对应电压输出;第三阻抗值区域介于第一阻抗值区域与第二阻抗值区域之间。第三抗值区域可认为是安全区域,当监测到阻抗值处于第三抗值区域,表示人体皮肤与电极301的贴合状态正常,此时不需要对电压进行调整,只需要满足用户所需档位的电压即可,电刺激脉冲信号的电压处于平稳阶段,并不会出现电流骤变,或者电流过小无力度,电流过大产生刺痛的现象。
以及,在第三抗值区域中,根据用户佩戴情况或皮肤情况,会逐渐使阻抗值产生变化,如佩戴久后阻抗值逐渐变小,会慢慢靠近第一抗值区域甚至进入第一抗值区域;又如佩戴异常或不合规范,会靠近第二阻抗值区域甚至进入第二抗值区域。因此,具体的控制方式如下:
S8241、在监测到阻抗值从第一抗值区域或第二抗值区域变化到第三抗值区域时,则控制对电极301的电压输出逐渐恢复至当前档位所对应电压输出;
S8242、在监测到阻抗值从第三抗值区域变化到第一抗值区域或第二抗值区域时,则控制对电极301的电压输出的方式为:根据当前档位所对应电压输出,作降压处理。
首先,第一阻抗值区域和第二阻抗值区域正好处理两个贴合情况缓慢变化的区域中,在进入第一阻抗值区域和第二阻抗值区域前,应处于第三抗值区域,由于阻抗值不断变化,会随着时间或人体佩戴状态变化,慢慢进入第一阻抗值区域或第二阻抗值区,在第三抗值区域中,输出电压的由当前档位确定,确保用户能体验不同档位所带来的按摩手法,故当阻抗值从第一抗值区域或第二抗值区域变化到第三抗值区域时,电极301的电压输出逐渐恢复至当前档位所对应电压输出,重新回归到根据当前档位进行输出电压的确定。为了确保按摩力度的平稳和维持用户喜欢的按摩力度,不应对按摩力度进行大幅度调整,故当阻抗值从第三抗值区域变化到第一抗值区域或第二抗值区域时,先获取当前档位,并根据当前档位的输出电压进行电压调整。
在一个实施例中,若阻抗值处于第一阻抗值区域,当监测到阻抗值升高时,则提高对电极301的电压输出。在整个第一阻抗值区域中,随着阻抗值的变化使电极301的电压输出也发生变化,具体变化如下:
若阻抗值处于第一阻抗值区域,对电极301的电压输出符合公式:
其中,a1+b1=V12;V11为阻抗值处于第一阻抗值区域时,对电极301的电压输出的电压值;V12为当前档位的电压值;a1为安全电压值;R1为处于第一阻抗值区域时的阻抗值;X21为第三阻抗值区域的最小值;k1为调节系数。
此公式表示,电极301的电压输出的电压值首先会设置一个安全电压值,确保在极限情况下电极301也能向外输出,避免无输出情况的发声,降低用户体验;同时,电极301的电压输出的电压值会随着阻抗值的变化而正向变化,具体变化取决于三点,第一是当前阻抗值与第三阻抗值区域的最小值构成一个下降系数,作为佩戴变化过程与正常佩戴状态相对比的变化趋势;第二是设置一个调节系数,根据电极301的不同材质、尺寸、形状,甚至由于按摩器的类型导致压紧程度出现不同变化,会导致存在不同最佳的变化趋势,根据与一个公认标准电刺激按摩装置,将调节系数k1设置为1,其余电刺激按摩装置根据对比试验,或用户反馈,进行调节系数k1的调整,以缓解或加剧变化趋势;第三是设置一个可调节的电压值,而a1+b1=V12,即调整区间的两个极限分别为安全电压值a1和最大输出值 V12,即当前档位电压。其中,安全电压值a1为8V-16V。
在一个实施例中,若阻抗值处于第二阻抗值区域,当监测到阻抗值降低时,则提高对电极301的电压输出。在整个第二阻抗值区域中,随着阻抗值的变化使电极301的电压输出也发生变化,具体变化如下:
若阻抗值处于第二阻抗值区域,对电极301的电压输出符合公式
其中,a2+b2=V22;V21为阻抗值处于第二阻抗值区域时,输出电刺激脉冲信号的电压值;V22为当前档位的电压值;a2为安全电压值;R2为处于第二阻抗值区域时的阻抗值;X22为第三阻抗值区域的最大值;k2为调节系数。
上述公式原理与第一阻抗值区域的公式原理相似,还是设置一个安全电压值,同时电极301的电压输出的电压值会随着阻抗值的变化而反向向变化,具体变化取决于三点,b2和k2的原理与前者一致,主要区别在于为反向变化调节,即第三阻抗值区域的最大值与当前阻抗值构成一个下降系数,作为佩戴变化过程与正常佩戴状态相对比的变化趋势。其中,安全电压值a2为8V-16V。
如图26所示,本发明提供第四阻抗值区域和第五阻抗值区域的较佳实施例。
控制方法的步骤包括:
S8300、当阻抗值低于第一阻抗值区域的最低阻抗值时,进入第四阻抗值区域;此时,根据当前档位和预设对应关系,确定对电极301的电压输出为对应的固定电压值;
S8400、当阻抗值高于第二阻抗值区域的最高阻抗值时,进入第五阻抗值区域;此时,确定对电极301的电压输出的电压值为预设安全电压值。
在本实施例的步骤S8300中,阻抗值处于第四阻抗值区域中,表示皮肤贴合非常良好,此时若输出电压不做限制,人体会承受较大的电流,容易带来不适感,在此状态下,电刺激按摩装置会输出当前档位所对应的一个较低值,来保证用户的舒适体验。而上述的较低值,应该是通过预设设置得到,设置不同档位和电极301的电压输出存在对应的关联数据,根据当前档位和预设对应关系,确定对电极301的电压输出为对应的固定电压值。
本实施例还提供另一种调节方式,将电压档位设置为调节档位和非调节档位,参阅图27所示,具体步骤是:
S8311、获取当前档位,当电压档位为调节档位,根据当前的电压档位调节电刺激脉冲信号的第一固定电压值;
S8312、当电压档位为非调节档位,调节电刺激脉冲信号的电压值为第二固定电压值;
其中,每一调节档位对应一第一固定电压值,第一固定电压值的数值低于电压档位的电压值。
具体而言,由于低电压的调节档位所对应的电压值对人体影响不大,故一些低电压的调节档位可以不进行电压调整,直接输出当前档位电压,即第二固定电压值,作为非调节档位,但是一些高电压的调节档位,在阻抗值非常低的情况下,还是容易产生刺痛现象或不舒服的按摩情况,故这些高电压的调节档位必须进行电压调整,调节到比较小的区间范围内,作为调节档位。
以及,每个调节档位所对应的第一固定电压值,需要预先设置,进入第四阻抗值区域后,电极301输出的电压直接调节为对应的第一固定电压值,调节过程可以缓慢进行,让用户不会感受到瞬间变化的落差。其中,档位电压为8V-16V均可被认为非调节档位,而调节档位所对应第一固定电压值的最大值也应在8V-16V内。
在本实施例的步骤S8400中,阻抗值处于第五阻抗值区域,表示电极301贴合度与皮 肤干燥情况开始变差,此时的状态已不适合进行脉冲输出,电压过高时,电流会流过仅少量接触的部分皮肤,导致刺痛体验,在此状态下,建议电极301输出一个安全的额定低电压,保证用户不会出现刺痛感受。
优选地,安全的额定低电压可以选择在第二阻抗值区域中,电极301输出电压的电压值为最低的情况,此时,确定对电极301的电压输出的电压值为预设安全电压值,即预设安全电压值可以为安全电压值a2。当然也可以选择其他另一个预设安全电压值,此预设安全电压值是小于a2的。其中,预设安全电压值为8V-16V。
本发明还提供一种电刺激按摩装置,所述电刺激按摩装置包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现所述的档位调节方法。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的档位调节方法。
以上所述者,仅为本发明最佳实施例而已,并非用于限制本发明的范围,凡依本发明申请专利范围所作的等效变化或修饰,皆为本发明所涵盖。

Claims (20)

  1. 一种电刺激按摩装置,其特征在于,所述电刺激按摩装置包括:
    电源和控制单元;
    升压单元,所述升压单元分别与控制单元和电源连接,所述升压单元在控制单元的控制下将电源的输入电压升压至预设电压,并通过升压单元的电压输出端向外输出;
    电极,所述电极用于贴附于待按摩部位;
    脉冲调制电路,所述脉冲调制电路的电能输入端与所述升压单元的电压输出端连接,所述脉冲调制电路的第一脉冲传输端和第二脉冲传输端分别与一电极连接,所述脉冲调制电路的控制端与控制单元连接;
    第一检测电路,所述第一检测电路分别与控制单元和升压单元的电压输出端连接,所述控制单元通过第一检测电路获取升压单元的输出电压;
    第二检测电路,所述第二检测电路与控制单元连接,所述第二检测电路的采样电阻串联至脉冲调制电路和地端之间,所述控制单元通过第二检测电路获取采样电阻的采样电压;其中,
    所述控制单元根据输出电压、采样电阻的电阻值和采样电压,获取成对设置电极之间的阻抗值。
  2. 根据权利要求1所述的电刺激按摩装置,其特征在于,所述采样电阻的取值范围为130至170Ω。
  3. 根据权利要求1所述的电刺激按摩装置,其特征在于:所述第二检测电路还包括第一保护电阻、第一电容、第一稳压二极管和第二保护电阻,所述控制单元通过第一保护电阻接入脉冲调制电路与采样电阻之间,所述控制单元还分别通过第一电容和第一稳压二极管接入采样电阻和地端之间,所述第一稳压二极管的阳极接地;所述第二保护电阻串联至脉冲调制电路和采样电阻之间;所述采样电阻与第二保护电阻的阻值比范围为1:22至1:38。
  4. 根据权利要求1所述的电刺激按摩装置,其特征在于:所述控制单元存储有计算电极之间的阻抗值的第一模型,所述第一模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻的电阻值,所述V为升压单元的输出电压,所述I为脉冲调制电路输出脉冲的电流。
  5. 根据权利要求1所述的电刺激按摩装置,其特征在于:所述控制单元存储有计算电极之间的阻抗值的第二模型,所述第二模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻的电阻值,所述V为升压单元的输出电压,所述I为脉冲调制电路输出脉冲的电流。
  6. 根据权利要求1所述的电刺激按摩装置,其特征在于:所述控制单元存储有计算电 极之间的阻抗值的第三模型,所述第三模型为所述R阻抗为成对设置的电极之间的阻抗值,所述V为采样电压,所述R为采样电阻的电阻值,所述V为升压单元的输出电压,所述I为脉冲调制电路输出脉冲的电流,所述R为预设的误差余量。
  7. 根据权利要求1所述的电刺激按摩装置,其特征在于:所述第一检测电路包括第一分压电阻和第二分压电阻,所述第一分压电阻分别与升压单元的电压输出端和第二分压电阻连接,所述第二分压电阻的另一端接地,所述控制单元接入第一分压电阻和第二分压电阻之间的连接节点,以获取第二分压电阻的分压,所述控制单元根据第二分压电阻的分压、第一分压电阻的阻值和第二分压电阻的阻值获取升压单元的输出电压。
  8. 根据权利要求7所述的电刺激按摩装置,其特征在于:所述控制单元存储有计算升压单元的输出电压的第四模型,所述第四模型为所述V为升压单元的输出电压,所述V分2为第二分压电阻的分压,所述R分1为第一分压电阻的阻值,所述R分2为第二分压电阻的阻值。
  9. 根据权利要求8所述的电刺激按摩装置,其特征在于:所述第二分压电阻和第一分压电阻的阻值比范围1:37至1:72。
  10. 根据权利要求8所述的电刺激按摩装置,其特征在于:所述第二检测电路还包括第二电容,控制单元通过第二电容接入第二分压电阻和地端之间的连接节点。
  11. 根据权利要求1所述的电刺激按摩装置,其特征在于,所述脉冲调制电路还包括:
    至少一组控制臂,所述控制臂包括第一控制开关和第二控制开关,所述控制单元分别与第一控制开关和第二控制开关均的控制端连接,以分别控制第一控制开关和第二控制开关的通断,所述第一控制开关的输入端与电能输入端连接,所述第二控制开关的输出端与地端连接,所述第一控制开关的输出端与第一脉冲传输端和第二脉冲传输端中的一者连接,所述第二控制开关的输入端与第一脉冲传输端和第二脉冲传输端中的另一者连接,所述第一控制开关和第二控制开关均为三极管,所述第一脉冲传输端和第二脉冲传输端均通过一双向变阻二极管接地,所述脉冲调制电路设置有多个,每个所述脉冲调制电路均配置有两个电极。
  12. 根据权利要求1所述的电刺激按摩装置,其特征在于,所述升压单元包括与所述电源连接的电源输入端、升压电路、储能电路、泄压电路以及与所述脉冲调制电路连接的电压输出端,所述升压电路的输入端与所述电源输入端连接,所述升压电路的控制端与所述控制单元连接;所述储能电路的输入端与所述升压电路的输出端连接,所述储能电路的输出端与所述电压输出端连接;所述泄压电路的控制端与所述控制单元连接,所述泄压电路的输入端与所述电压输出端连接,所述控制单元用于根据预设电压和成对设置电极之间的阻抗值来控制所述升压电路和/或所述储能电路进行升压、或/和、控制所述泄压电路进行降压,以控制所述电压输出端输出预设电压至所述脉冲调制电路,其中,所述升压电路包括电感和MOS管,所述电感的一端与所述升压电路的输入端连接,另一端与所述升压电路的输出端连接;所述MOS管的栅极与所述升压电路的控制端连接,所述MOS管的漏极连接于所述电感与所述升压电路的输出端之间,所述MOS管的源极接地;所述电压输出电路还包括串联于所述升压电路的输出端与所述储能电路的输入端之间的二极管;和/或,所述储 能电路为电容式储能电路;所述储能电路为电容式储能电路,所述电容式储能电路包括并联于所述储能电路的输入端与输出端之间的第四电容和第五电容,所述第四电容与所述第五电容的另一端接地;所述泄压电路包括第一电阻、第五三极管、第二电阻以及第三电阻,所述第一电阻串联于所述泄压电路的控制端与所述第五三极管的基极之间,所述第五三极管的发射极接地;所述第三电阻一端连接于所述第一电阻与所述第五三极管的基极之间,另一端接地;所述第二电阻串联于所述泄压电路的输入端与所述第五三极管的集电极之间。
  13. 一种电刺激按摩装置的控制方法,其特征在于,所述电刺激按摩装置包括成对设置的电极、与所述电极连接的脉冲调制电路,以及与所述脉冲调制电路连接的第二检测电路,所述电极用于贴附于待按摩部位,所述脉冲调制电路用于产生电刺激脉冲信号以通过所述电极输出给待按摩部位,所述控制方法的步骤包括:
    控制单元控制脉冲调制电路产生电刺激脉冲信号;
    依序循环控制各成对设置的电极输出电刺激脉冲信号,并获取对应成对设置的电极之间的阻抗值;
    当阻抗值异常时,下一次循环停止控制阻抗值异常所对应的成对设置的电极输出电刺激脉冲信号。
  14. 根据权利要求13所述的控制方法,其特征在于,所述控制单元控制脉冲调制电路产生电刺激脉冲信号之后,所述方法还包括:
    控制第二检测电路周期性对所述电刺激脉冲信号进行采样,获取采样数据;
    根据所述采样数据周期性获取成对设置的电极之间的阻抗值;
    根据所述阻抗值调整向所述脉冲调制电路的输入电压;其中,
    对所述电刺激脉冲信号进行采样的采样周期T满足第一模型,所述第一模型为T+t<A;所述t为电刺激按摩装置的预设反应滞后时间,所述A为预设的用户感知到电刺痛所需要的时间,所述采样周期T与所述电刺激脉冲信号的周期T1的比值为S,S为大于或等于1,且小于或等于(A-t)/T1的整数。
  15. 根据权利要求14所述的控制方法,其特征在于,所述采样周期T等于S倍的所述电刺激脉冲信号的周期T1,S为大于或等于2,且小于或等于(A-t)/T1的整数;在预设时间内采样多次的步骤包括:对S个高电平均进行一次采样,以获取多个采样数据。
  16. 根据权利要求14所述的控制方法,其特征在于,所述A的确定步骤包括:
    根据所述按摩档位确定其所属的挡位区间,根据所述挡位区间确定所述A;或者,
    根据所述按摩模式确定其所属的模式类型,根据所述模式类型确定所述A;或者,
    根据所述按摩档位确定其所属的挡位区间,根据所述按摩模式确定其所属的模式类型,根据所述挡位区间和所述模式类型确定所述A。
  17. 根据权利要求14所述的控制方法,其特征在于,所述第二检测电路包括串联在脉冲调制电路与地端之间的采样电阻,在获取所述采样数据的步骤中,所述采样数据为所述采样电阻的采样电压;
    在所述根据采样数据周期性获取成对设置的电极之间的阻抗值的步骤中,根据采样数据获取成对设置的电极之间的阻抗值的方式为根据所述采样电压、所述采样电阻的阻值与所述输入电压获取成对设置的电极之间的阻抗值,其中,所述根据采样数据周期性获取成对设置的电极之间的阻抗值的步骤包括:
    获取所述脉冲调制电路的输入电压;
    通过所述第二检测电路周期性对采样电阻进行电压采样,获取多个作为采样数据的采样电压;
    根据采样电压和采样电阻的阻值获取电刺激脉冲信号的电流值;
    根据输入电压和电流值获取成对设置的电极之间的阻抗值;或者,根据输入电压和电流值获取总阻值,根据总阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值;或者,设置误差余量的阻值,根据输入电压和电流值获取总阻值,再根据总阻值、差余量的阻值和采样电阻的阻值获取成对设置的电极之间的阻抗值。
  18. 根据权利要求14所述的控制方法,其特征在于,所述根据所述阻抗值调整所述脉冲调制电路的输入电压的步骤包括:当所述阻抗值大于第一阻抗值且小于第二阻抗值时,根据所述阻抗值与预设映射关系获取动态电压,以所述动态电压作为所述预设电压,所述动态电压小于所述电刺激按摩装置当前工作档位的档位电压,以使得所述电刺激按摩装置处于动态电压输出状态;当所述阻抗值大于或等于所述第二阻抗值时,获取安全电压,以所述安全电压作为所述预设电压,以使得所述电刺激按摩装置处于安全电压输出状态;当所述阻抗值小于或等于第一阻抗值时,以所述电刺激按摩装置当前工作档位的档位电压作为所述预设电压,以使所述电刺激按摩装置处于正常输出状态。
  19. 根据权利要求18所述的控制方法,其特征在于,所述预设映射关系满足:所述阻抗值与所述第一阻抗值的差值越小,所述动态电压与所述档位电压的差值越小。
  20. 根据权利要求14所述的控制方法,其特征在于,所述根据所述阻抗值调整向所述脉冲发生电路的输入电压的步骤包括:根据所述阻抗值确定目标电压,获取所述阻抗值与上一次获取的阻抗值之间的差值,若所述差值大于或等于预设差值阈值,则确定所述预设电压为安全电压;根据所述预设电压,调整向所述脉冲发生电路的输入电压,在预设时间内将上一次的检测阻抗值所对应的输出电压以递减的方式降低至所述安全电压。
PCT/CN2023/085756 2022-05-18 2023-03-31 一种电刺激按摩装置及其控制方法 WO2023221671A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210538945.3 2022-05-18
CN202210539185.8 2022-05-18
CN202210538945.3A CN115282474A (zh) 2022-05-18 2022-05-18 一种电刺激按摩装置及其控制方法和存储介质
CN202210539185.8A CN114984448A (zh) 2022-05-18 2022-05-18 一种电刺激按摩装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2023221671A1 true WO2023221671A1 (zh) 2023-11-23

Family

ID=88834619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085756 WO2023221671A1 (zh) 2022-05-18 2023-03-31 一种电刺激按摩装置及其控制方法

Country Status (1)

Country Link
WO (1) WO2023221671A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093501A1 (en) * 2010-06-07 2013-04-18 The University Of Electro-Communications Electrical stimulation device and electrical stimulation method
CN111760189A (zh) * 2020-06-12 2020-10-13 未来穿戴(深圳)有限公司 佩戴检测方法及装置、低频电刺激装置、电子设备
CN111991695A (zh) * 2020-07-31 2020-11-27 深圳京柏医疗科技股份有限公司 电刺激电路及其控制方法、装置及治疗设备
CN112823740A (zh) * 2019-11-20 2021-05-21 苏州景昱医疗器械有限公司 神经刺激器及其人体负载阻抗检测模块和检测方法
CN114984448A (zh) * 2022-05-18 2022-09-02 未来穿戴健康科技股份有限公司 一种电刺激按摩装置及其控制方法
CN115282474A (zh) * 2022-05-18 2022-11-04 未来穿戴健康科技股份有限公司 一种电刺激按摩装置及其控制方法和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093501A1 (en) * 2010-06-07 2013-04-18 The University Of Electro-Communications Electrical stimulation device and electrical stimulation method
CN112823740A (zh) * 2019-11-20 2021-05-21 苏州景昱医疗器械有限公司 神经刺激器及其人体负载阻抗检测模块和检测方法
CN111760189A (zh) * 2020-06-12 2020-10-13 未来穿戴(深圳)有限公司 佩戴检测方法及装置、低频电刺激装置、电子设备
CN111991695A (zh) * 2020-07-31 2020-11-27 深圳京柏医疗科技股份有限公司 电刺激电路及其控制方法、装置及治疗设备
CN114984448A (zh) * 2022-05-18 2022-09-02 未来穿戴健康科技股份有限公司 一种电刺激按摩装置及其控制方法
CN115282474A (zh) * 2022-05-18 2022-11-04 未来穿戴健康科技股份有限公司 一种电刺激按摩装置及其控制方法和存储介质

Similar Documents

Publication Publication Date Title
US9776006B2 (en) Systems and methods for adjusting electrical therapy based on impedance changes
CN106604760B (zh) 电刺激设备
CN115282474A (zh) 一种电刺激按摩装置及其控制方法和存储介质
JP7463659B2 (ja) 電気刺激装置
CN105744984B (zh) 电疗设备
CN109125921B (zh) 一种基于诱发脑电信号的脉冲针灸治疗仪
WO2023221672A1 (zh) 一种电刺激按摩装置及其控制方法和存储介质
WO2023221671A1 (zh) 一种电刺激按摩装置及其控制方法
WO2023221670A1 (zh) 一种电脉冲按摩仪
CN111111008A (zh) 一种多通道电刺激装置及其波形输出方法
JP7434430B2 (ja) 電源回路、電源装置及びマイクロカレントフェイスマスク
JP7236522B1 (ja) 生物電気フィードバックに基づくインテリジェントな加熱調節可能な物理療法器
CN114984448A (zh) 一种电刺激按摩装置及其控制方法
CN211751816U (zh) 一种多通道电刺激装置
CN110038217B (zh) 一种可穿戴型无线智能胫后神经电刺激系统
CN111097103A (zh) 一种可产生任意波形的电刺激装置及其波形输出方法
CN113679951A (zh) 一种多功能生物电治疗仪
CN108815700B (zh) 一种经颅电神经调控治疗抽动症仪器及防止误操作的方法
CN113134159A (zh) 一种体外电刺激治疗系统
CN211751815U (zh) 一种可产生任意波形的电刺激装置
CN218420665U (zh) 一种电刺激按摩装置
CN213666659U (zh) 一种带痛感调节的理疗装置
LU504049B1 (en) Sacral nerve electrical stimulation system
RU2128529C1 (ru) Многоканальный электростимулятор
EP3883639B1 (en) Electrical stimulation device for applying frequency and peak voltage having inverse relationship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806628

Country of ref document: EP

Kind code of ref document: A1