WO2023221574A1 - 用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品 - Google Patents

用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品 Download PDF

Info

Publication number
WO2023221574A1
WO2023221574A1 PCT/CN2023/075725 CN2023075725W WO2023221574A1 WO 2023221574 A1 WO2023221574 A1 WO 2023221574A1 CN 2023075725 W CN2023075725 W CN 2023075725W WO 2023221574 A1 WO2023221574 A1 WO 2023221574A1
Authority
WO
WIPO (PCT)
Prior art keywords
change rate
deviation
temperature
control
temperature deviation
Prior art date
Application number
PCT/CN2023/075725
Other languages
English (en)
French (fr)
Inventor
梁云
王瑶
郭志民
谢凯
牛晓晨
Original Assignee
国网智能电网研究院有限公司
国网河南省电力公司电力科学研究院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网智能电网研究院有限公司, 国网河南省电力公司电力科学研究院, 国家电网有限公司 filed Critical 国网智能电网研究院有限公司
Publication of WO2023221574A1 publication Critical patent/WO2023221574A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Definitions

  • Embodiments of the present disclosure relate to the field of optical fiber sensing technology, and in particular to temperature control methods, devices, equipment, storage media and computer program products for semiconductor light sources in optical fiber current transformers.
  • the all-fiber current transformer is an optical fiber sensor based on the Faraday magneto-optical effect and digital closed-loop detection technology. It can measure AC and DC currents, has the advantages of high precision, wide frequency band, and good insulation performance. It has been gradually applied.
  • the photoelectric module of all-fiber current transformers has a complex structure and is affected by the complex power system. Due to the influence of the environment, the long-term operational reliability and stability of all-fiber current transformers need to be improved.
  • the principle of the all-fiber current transformer comes from fiber optic gyroscope technology, which is a reflective fiber interferometer; the light emitted from the semiconductor light source forms linear polarization through the polarizer, and is transmitted through the fiber to the sensing fiber ring around the high-voltage conductor. A magnetic field is generated in space, which produces a magneto-optical effect in the sensing fiber. The plane of polarization of the linearly polarized light wave rotates. It enters the analyzer through the coupling lens and then reaches the photodetector. The intensity of the interference light is detected through signal processing to measure the current. , so the current measurement accuracy is closely related to the light source, and the stability of the light source output power directly affects the measurement results.
  • Semiconductor lasers have unique high monochromaticity and high energy density. The accuracy and stability of their output are mainly affected by two physical quantities: temperature and current. Due to various inevitable losses inside the laser, heat is deposited inside the device. Rising temperature will cause the threshold current to increase and the center wavelength to drift, which will affect the performance of the all-fiber current transformer and shorten the service life of the light source. Therefore, the operating temperature of the semiconductor light source must be accurately controlled and a stable current must be provided; commonly used The method is to use an active refrigeration device, such as a thermoelectric cooler (TEC, Thermo Electric Cooler), which uses the Peltier principle. When a current flows through the TEC, a temperature difference will occur on the two sides of the cooler, and its thermal response time will be shorter.
  • TEC thermoelectric cooler
  • NTC Negative Temperature Coefficient
  • the STM32 chip is used to control the ADN8830 temperature control chip.
  • the STM32 chip adjusts the voltage output to the ADN8830 temperature control chip. , control the current output to the TEC end of the laser.
  • Use the knob to control the input end to set the high current value, low current value of the laser TEC current and determine the limit when the temperature reaches the set value.
  • the temperature signal of the laser is fed back through the ADN8830 temperature control chip.
  • the current output is controlled according to the set high current to increase the temperature adjustment speed; when the laser temperature reaches the set value, the current output is controlled according to the set low current to increase the adjustment stability.
  • the above process is a proportional control method, and the proportional control method will have a certain steady-state error; currently, the Proportional-Integral-Differential (PID) algorithm is commonly used to overcome the steady-state error and achieve constant temperature control of semiconductor light sources.
  • PID Proportional-Integral-Differential
  • a laser constant current source drive and AC temperature control system a high-precision laser constant current source drive system based on power amplifier, and AC temperature modulation and demodulation detection are proposed
  • AC heating drive system and uses STM32 controller, combined with temperature fuzzy adaptive PID control algorithm for high-precision temperature control.
  • TEC Under different temperatures and different temperature differences, there are differences in the electrical characteristics and working efficiency of TEC.
  • temperature has an impact on the accuracy and temperature control range of temperature control.
  • a double closed-loop control strategy is introduced to improve performance.
  • the working characteristics of TEC are combined with the heat transfer rules in optical crystals, and the factors changing the controlled temperature and the TEC's own electrical characteristics are simultaneously included in the control link.
  • a temperature-current double closed-loop temperature control model was established.
  • the inner loop is a current feedback loop, which has small inertia and fast adjustment, and adopts PID control
  • the outer loop is a temperature feedback loop, which adopts PID control.
  • the all-fiber current transformer is a high-voltage electrical equipment with complex working conditions such as electromagnetic field and ambient temperature, it has higher requirements for the reliability of the semiconductor light source.
  • a timely constant light source applied to the fiber optic current transformer is proposed.
  • the power control device and method calculate the light source optical power, absolute optical power and signal-to-noise ratio parameter indicators. When any of the parameter indicators reaches a set threshold, based on the monitoring results of the optical path loss of the transformer, a pre-built semiconductor
  • the light source optical power and central wavelength feedback adjustment model can provide timely feedback adjustment of the light source drive current and die temperature, and perform timely constant power control of the semiconductor light source to improve the stability and reliability of the long-term operation of the transformer.
  • the above existing technology is still a proportional control method and may have steady-state errors; in the constant temperature control of the all-fiber current transformer light source, it is necessary to consider the nonlinear and time-varying characteristics of thermoelectric cooling temperature control, and adopt a double closed-loop control strategy , since the controller adopts analog PID control, it is necessary to establish an accurate mathematical model of the controlled object.
  • the parameters of the controller are in a fixed state and are difficult to adjust dynamically, and TEC has the characteristics of nonlinearity and large time delay.
  • the operating environment of the all-fiber current transformer is complex and the working status changes. If the parameter design is unreasonable, it will cause control instability, and even lead to failure of the all-fiber current transformer and malfunction of the power automation device.
  • the technical problem to be solved by the embodiments of the present disclosure is to overcome the shortcomings in the prior art that use a proportional control method to control the operating temperature of the semiconductor light source, which cannot ensure the safe and stable operation of the all-fiber current transformer, thereby providing a method for the optical fiber current transformer. Temperature control methods, devices, equipment, storage media and computer program products for semiconductor light sources.
  • a temperature control method for a semiconductor light source in an optical fiber current transformer including the following steps:
  • control parameter table corresponding to the controller and use the control parameter table to determine the controller operating parameters corresponding to the operating temperature deviation amount and the operating temperature deviation change rate;
  • the temperature of the semiconductor light source is controlled based on the controller operating parameters.
  • the temperature control method for the semiconductor light source in the optical fiber current transformer is aimed at the high reliability requirements of the all-fiber current transformer, as well as the nonlinear and time-varying characteristics of the thermoelectric cooler temperature control and the working environment temperature.
  • Use the control parameter table to obtain the operating parameters of the controller, and then adjust and control the temperature of the semiconductor light source in real time, ensuring the real-time and stability of the temperature control of the semiconductor light source, as well as the safe and stable operation of the all-fiber current transformer.
  • obtaining the control parameter table corresponding to the controller and using the control parameter table to determine the controller operating parameters corresponding to the operating temperature deviation amount and the operating temperature deviation change rate includes:
  • Obtain the measured temperature deviation amount and the measured temperature deviation change rate in the thermistor measured temperature library preprocess the measured temperature deviation amount and the measured temperature deviation change rate respectively, and generate the measured temperature deviation amount and the measured temperature deviation change rate.
  • the measured temperature deviation and the measured temperature deviation change rate are separately preprocessed to generate controller measurement parameters corresponding to the measured temperature deviation and the measured temperature deviation change rate, include:
  • the fuzzy control amount of the deviation value and the fuzzy control amount of the deviation change rate are respectively subjected to defuzzification processing to generate controller measurement parameters corresponding to the measured temperature deviation amount and the measured temperature deviation change rate.
  • the steady-state error is eliminated by setting fuzzy control rules and using fuzzification and defuzzification processing, making the controller measurement parameters more accurate.
  • the step of fuzzifying the deviation value set and the deviation change rate set respectively, and using fuzzy control rules to generate the deviation value fuzzy control amount and the deviation change rate fuzzy control rate includes:
  • the measured temperature deviation and the measured temperature deviation change rate are respectively divided into multiple levels based on the value range of the measured temperature deviation and the value range of the measured temperature deviation change rate;
  • the deviation value set and the deviation change rate set are respectively matched with the multiple levels to generate the deviation value fuzzy control amount and the deviation change rate fuzzy control rate.
  • the above method divides the measured temperature deviation and the measured temperature deviation change rate into multiple levels, and then matches the deviation value set and the deviation change rate set with multiple levels, that is, setting up fuzzy control rules to achieve steady-state error control. eliminate.
  • the number of elements in the deviation value set is equal to the deviation change rate set.
  • controlling the temperature of the semiconductor light source based on the controller operating parameters includes:
  • the voltage limiting signal is used to control the temperature of the semiconductor light source.
  • the above-mentioned output voltage is generated through the adjusted operating parameters of the controller and the output voltage is limited, ensuring the real-time and stability of the semiconductor light source temperature control.
  • it also includes:
  • the operating temperature deviation amount and the operating temperature deviation change rate are stored in the thermistor measurement temperature library.
  • a temperature control device for a semiconductor light source in an optical fiber current transformer including:
  • a determination module configured to collect the thermistor operating temperature, and determine the operating temperature deviation amount and the operating temperature deviation change rate based on the thermistor operating temperature value and the preset operating temperature value respectively;
  • An acquisition module configured to obtain a control parameter table corresponding to the controller, and use the control parameter table to determine the controller operating parameters corresponding to the operating temperature deviation amount and the operating temperature deviation change rate;
  • a control module configured to control the temperature of the semiconductor light source based on the controller operating parameters.
  • the acquisition module includes:
  • a preprocessing submodule configured to obtain the measured temperature deviation and the measured temperature deviation change rate in the thermistor measured temperature library, preprocess the measured temperature deviation and the measured temperature deviation change rate respectively, and generate the The measured temperature deviation amount corresponds to the controller measurement parameter corresponding to the measured temperature deviation change rate;
  • Constructing a submodule configured to construct a control parameter table based on the measured temperature deviation, the measured temperature deviation change rate, and the controller measurement parameters;
  • a matching submodule configured to respectively match the temperature deviation rate and the deviation change rate with the measured temperature deviation amount and the measured temperature deviation change rate in the control parameter table, and retrieve the data based on the matching results.
  • the controller measurement parameters are used as the controller operating parameters.
  • the preprocessing submodule includes:
  • a determination unit configured to determine a deviation value set and a deviation change rate set based on the measured temperature deviation amount and the measured temperature deviation change rate respectively;
  • a fuzzification processing unit configured to perform fuzzification processing on the deviation value set and the deviation change rate set respectively, and use fuzzy control rules to generate a deviation value fuzzy control amount and a deviation change rate fuzzy control rate;
  • a defuzzification processing unit configured to perform defuzzification processing on the deviation value fuzzy control amount and the deviation change rate fuzzy control amount respectively, and generate controller measurements corresponding to the measured temperature deviation amount and the measured temperature deviation change rate. parameter.
  • the fuzzification processing unit includes:
  • a dividing subunit configured to divide the measured temperature deviation and the measured temperature deviation change rate into multiple levels based on the value range of the measured temperature deviation and the value range of the measured temperature deviation change rate.
  • the matching subunit is configured to match the deviation value set and the deviation change rate set with the multiple levels respectively, and generate the deviation value fuzzy control amount and the deviation change rate fuzzy control rate.
  • the determining unit is further configured such that the number of elements in the deviation value set is equal to the number of elements in the deviation change rate set.
  • control module includes:
  • a limiting submodule configured to determine the controller output voltage based on the controller operating parameters, limit the output voltage signal, and generate a voltage limiting signal
  • a control submodule configured to use the voltage limiting signal to control the temperature of the semiconductor light source.
  • it also includes:
  • a storage module configured to store the operating temperature deviation amount and the operating temperature deviation change rate into the thermistor measurement temperature library.
  • a computer device including a processor and a memory, wherein the memory is used to store a computer program, the computer program includes a program, and the processor is configured to use Upon calling the computer program, the method of the first aspect is executed.
  • the embodiments of the present disclosure provide a computer-readable storage medium, the computer storage medium stores a computer program, and the computer program is executed by a processor to implement the above-mentioned first aspect. method.
  • an embodiment of the present disclosure provides a computer program product, including a computer-readable storage medium storing program code, and the program code includes instructions that are executed by a processor of a computer device.
  • Figure 1 is a flow chart of a temperature control method for a semiconductor light source in an optical fiber current transformer in Embodiment 1 of the present disclosure
  • Figure 2 is a flow chart of step S102 in Embodiment 1 of the present disclosure.
  • Figure 3 is a flow chart of step S1021 in Embodiment 1 of the present disclosure.
  • Figure 4 is a schematic diagram of the fuzzy control process based on the look-up table method in Embodiment 1 of the present disclosure
  • Figure 5 is a flow chart of step S10212 in Embodiment 1 of the present disclosure.
  • Figure 6 is a flow chart of step S103 in Embodiment 1 of the present disclosure.
  • Figure 7 is a schematic diagram of a temperature control method for a semiconductor light source in an optical fiber current transformer in Embodiment 1 of the present disclosure
  • FIG. 8 is a schematic block diagram of a temperature control device for a semiconductor light source in an optical fiber current transformer in Embodiment 2 of the present disclosure.
  • This embodiment provides a temperature control method for a semiconductor light source in an optical fiber current transformer, as shown in Figure 1, including the following steps:
  • S101 Collect the operating temperature of the thermistor, and determine the operating temperature deviation and the operating temperature deviation change rate based on the thermistor operating temperature value and the preset operating temperature value respectively.
  • the thermistor operating temperature value is measured through a temperature bridge, and the deviation of the generated temperature is calculated based on the thermistor operating temperature value T and the preset operating temperature value RT.
  • the operating temperature deviation and the operating temperature deviation change rate are stored in the thermistor measurement temperature library, and the preprocessing is continued as the measured temperature deviation and the measured temperature deviation change rate, thereby realizing the control parameter table. Continuously updated to make the control parameter table more consistent with actual operating scenarios.
  • the above temperature control method for the semiconductor light source in the optical fiber current transformer is obtained by using the control parameter table in view of the high reliability requirements of the all-fiber current transformer and the nonlinear and time-varying characteristics of the thermoelectric cooler temperature control and the working environment temperature.
  • the controller operating parameters can then adjust and control the temperature of the semiconductor light source in real time, ensuring the real-time and stability of the temperature control of the semiconductor light source and the safe and stable operation of the all-fiber current transformer.
  • step S102 the control parameter table corresponding to the controller is obtained, and the controller operating parameters corresponding to the operating temperature deviation amount and the operating temperature deviation change rate are determined using the control parameter table.
  • multiple groups of measured temperature deviations and measured temperature deviation change rates in the control parameter table are in one column, and their corresponding controller measurement parameters are in one column.
  • the controller measured parameters and multiple groups of measured temperature deviations and measured temperature deviation change rates are One-to-one correspondence.
  • step S1021 the above-mentioned measured temperature deviation amount and the above-mentioned measured temperature deviation change rate are separately preprocessed, and a controller corresponding to the above-mentioned measured temperature deviation amount and the above-mentioned measured temperature deviation change rate is generated.
  • Measurement parameters including:
  • the number of elements in the above-mentioned deviation value set is equal to the above-mentioned deviation change rate set.
  • an average distribution or a Gaussian distribution is used to form a deviation value set e[0,...,n], where n can be set to 127, or the correspondence can be based on experience. set up.
  • an average distribution or a Gaussian distribution is used to form a deviation change rate set ec[0,...,n], where n can be set to 127, or it can be based on experience Make settings.
  • the process of using Gaussian distribution to form a deviation change rate set is: based on the value range of the measured temperature deviation change rate, use Gaussian distribution to generate multiple cluster centers, and calculate the distance between the measured temperature deviation change rate and the cluster center.
  • the measured temperature deviation change rates are clustered into corresponding sets, thereby generating multiple deviation change rate sets.
  • S10212 Perform fuzzy processing on the above-mentioned deviation value set and the above-mentioned deviation change rate set respectively, and use fuzzy control rules to generate the deviation value fuzzy control amount and the deviation change rate fuzzy control amount.
  • fuzzy control rules i.e., the fuzzy rules shown in Figure 4
  • the fuzzy control rules can be established based on on-site operations and expert experience, and the fuzzy control rules can be used to control the measured temperature deviation amount and the measured temperature deviation change rate.
  • Carry out fuzzy reasoning to generate the deviation value control amount and the deviation change rate control rate; the method of generating fuzzy control rules may include: calculating the output voltage of the PID controller based on the deviation value set and the deviation change rate set respectively, and calculating the output voltage of the PID controller based on the different output voltages. , generate rules for setting PID control parameters (i.e.
  • fuzzy control rules for example: when the output voltage deviates greatly from the preset voltage value, in order to increase the response speed of the PID controller and reduce the deviation at the beginning of the PID controller's response A large change rate causes differential oversaturation in PID control.
  • the proportional constant should be increased and the differential constant should be reduced.
  • the integration constant can be set to zero.
  • the method of generating fuzzy control rules may include: dividing the input quantities of the PID controller, that is, the deviation value set, the deviation change rate set, and the output voltage, into seven levels, thereby generating fuzzy control rules.
  • a triangular membership function can also be first used to fuzzify each element in the deviation value set (e) and the deviation change rate set (ec) respectively, and the deviation value set and the deviation change rate set are transformed from the basic domain of discourse into the fuzzy domain, and then infer the fuzzified deviation value and deviation change rate according to the above fuzzy control rules, and use the minimum algorithm to obtain the corresponding output fuzzy control quantity, that is, the deviation value Fuzzy control quantity and deviation change rate fuzzy control quantity.
  • the deviation value fuzzy control quantity and the deviation change rate fuzzy control quantity obtained through fuzzy reasoning are defuzzified.
  • the above defuzzification processing can use the maximum membership method to calculate the controller. Measurement parameters.
  • step S10212 the above-mentioned deviation value set and the above-mentioned deviation change rate set are separately subjected to fuzzy processing, and fuzzy control rules are used to generate the deviation value fuzzy control amount and the deviation change rate fuzzy control rate.
  • the value range of the measured temperature deviation and the value range of the above-mentioned measured temperature deviation change rate are respectively divided into seven levels from large to small.
  • the above-mentioned deviation value set and deviation change rate set are respectively corresponded to the value ranges of the seven levels, and different measured temperature deviation amounts and measured temperature deviation change rates in the seven levels are generated, that is, deviations Value fuzzy control amount and deviation change rate fuzzy control rate.
  • the deviation value fuzzy control quantity and the deviation change rate fuzzy control quantity are bound in a one-to-one correspondence with the controller measurement parameters (ie, proportional constant, differential constant, and integral constant) to generate a control parameter table.
  • the above-mentioned control of the temperature of the semiconductor light source based on the above-mentioned controller operating parameters in step S103 includes:
  • the PID controller is adjusted based on the above controller operating parameters (i.e., the parameters shown in Figure 7).
  • the output signal of the PID controller is limited through the limiting circuit to generate a voltage limiting signal (corresponding to Output voltage limiting in Figure 7); among them, the limiting circuit uses two Zener diodes to form a bidirectional Zener diode to limit the positive and negative voltage signals, and an operational amplifier is added at the clamping point of the Zener diode.
  • the voltage follower provides a high input impedance to reduce the shunt effect of the subsequent circuit on the voltage stabilizing circuit.
  • the voltage limiting signal enters the drive circuit of the thermoelectric cooler, adjusts the working state of the thermoelectric cooler (i.e., becomes colder or hotter), and then measures the temperature of the semiconductor light source through the thermistor, and continuously adjusts the input deviation according to the input deviation. And its change rate adjusts the control parameters to achieve continuous constant temperature control.
  • the embodiment of the present disclosure discloses a temperature control method for a semiconductor light source in an all-fiber current transformer.
  • the all-fiber current transformer uses a semiconductor light source, and a thermoelectric cooler and a thermistor are attached to the light source.
  • the PID controller is connected to the thermoelectric cooler through the drive circuit.
  • the methods include:
  • the temperature of the thermistor is measured through a temperature bridge, and the temperature deviation is obtained based on the actual measured temperature value (i.e., the above-mentioned operating temperature value) and the temperature set value (the preset operating temperature shown in Figure 7, i.e., the above-mentioned preset operating temperature value).
  • control parameters are set by looking up the table (i.e., the control parameter table shown in Figure 7), and the PID controller is adjusted; after the output signal of the PID controller passes through the limiting circuit (corresponding to the output in Figure 7 Voltage limiting), enters the drive circuit of the thermoelectric cooler, adjusts the working state of the thermoelectric cooler, and then measures the temperature of the semiconductor light source through the thermistor to achieve continuous constant temperature control.
  • the table i.e., the control parameter table shown in Figure 7
  • the PID controller is adjusted; after the output signal of the PID controller passes through the limiting circuit (corresponding to the output in Figure 7 Voltage limiting), enters the drive circuit of the thermoelectric cooler, adjusts the working state of the thermoelectric cooler, and then measures the temperature of the semiconductor light source through the thermistor to achieve continuous constant temperature control.
  • the method of determining the control parameter table can be understood with reference to FIG. 4 .
  • Figure 4 includes two parts: one part is the parameter offline tuning, used to determine the control parameter table; the other part is the online control process, used to online based on the operating temperature deviation, deviation change rate and control parameter table, the semiconductor light source The temperature is adjusted and controlled (for the explanation of this part, please refer to the explanation of Figure 7).
  • the method of determining the control parameter table may include:
  • Step 1 Determine the deviation value set and the deviation change rate set based on the measured temperature deviation amount and the measured temperature deviation change rate respectively;
  • Step 2 Fuzzify the deviation value set (e) and the deviation change rate set (ec) respectively, and use fuzzy control rules (i.e. fuzzy rules) to fuzzify the deviation value set (e) and the deviation change rate set after fuzzification (ec) Perform fuzzy inference to generate the deviation value fuzzy control quantity and the deviation change rate fuzzy control quantity;
  • fuzzy control rules i.e. fuzzy rules
  • Step 3 Defuzzify the fuzzy control quantity of the deviation value and the fuzzy control quantity of the deviation change rate respectively, and generate the controller measurement parameters corresponding to the above-mentioned measured temperature deviation amount and the above-mentioned measured temperature deviation change rate to generate a control parameter table.
  • the disclosed embodiments address the need for constant temperature control of semiconductor light sources in all-fiber current transformers and consider the nonlinear and time-varying characteristics of thermoelectric refrigeration temperature control.
  • An incremental PID controller with adjustable parameters is designed to establish different input deviations and Fuzzy control rules of PID control parameters under the condition of deviation change rate; in order to realize real-time control of power equipment
  • the control and parameter setting adopts the offline table lookup (control parameter table) method to ensure the response speed of the control process, and the output signal is limited in the circuit link.
  • the embodiments of the present disclosure use incremental PID control to eliminate steady-state errors, and improve the real-time and stability of control based on dynamic parameter adjustment, output limiting and other methods to achieve fast, accurate, and reliable control.
  • Temperature control adapts to the influence of the power working environment on temperature and can better meet the reliability requirements of power equipment.
  • This embodiment provides a temperature control device for a semiconductor light source in an optical fiber current transformer, as shown in Figure 8, including:
  • the determination module 81 is configured to collect the thermistor operating temperature, and determine the operating temperature deviation and the operating temperature deviation change rate based on the thermistor operating temperature value and the preset operating temperature value, respectively.
  • the thermistor operating temperature value is measured through a temperature bridge, and the deviation of the generated temperature is calculated based on the thermistor operating temperature value T and the preset operating temperature value RT.
  • the acquisition module 82 is configured to obtain the control parameter table corresponding to the controller, and use the control parameter table to determine the controller operating parameters corresponding to the operating temperature deviation amount and the operating temperature deviation change rate;
  • the control module 83 is configured to control the temperature of the semiconductor light source based on the above-mentioned controller operating parameters.
  • the operating temperature deviation and the operating temperature deviation change rate are stored in the thermistor measured temperature library as the measured temperature deviation and the measured temperature deviation change rate continue to be preprocessed, thereby realizing continuous updating of the control parameter table. Updated to make the control parameter table more consistent with actual operating scenarios.
  • the above temperature control method for the semiconductor light source in the optical fiber current transformer is obtained by using the control parameter table in view of the high reliability requirements of the all-fiber current transformer and the nonlinear and time-varying characteristics of the thermoelectric cooler temperature control and the working environment temperature.
  • the controller operating parameters can then adjust and control the temperature of the semiconductor light source in real time, ensuring the real-time and stability of the temperature control of the semiconductor light source and the safe and stable operation of the all-fiber current transformer.
  • the above acquisition module 82 includes:
  • a preprocessing submodule configured to obtain the measured temperature deviation and the measured temperature deviation change rate in the thermistor measured temperature library, preprocess the measured temperature deviation and the measured temperature deviation change rate respectively, and generate the measured temperature deviation.
  • the controller measurement parameters corresponding to the above-mentioned measured temperature deviation change rate;
  • Construct a submodule configured to construct a control parameter table based on the above-mentioned measured temperature deviation, the above-mentioned measured temperature deviation change rate and the above-mentioned controller measurement parameters;
  • the matching submodule is configured to match the above-mentioned temperature deviation rate and the above-mentioned deviation change rate with the above-mentioned measured temperature deviation amount and the above-mentioned measured temperature deviation change rate in the above-mentioned control parameter table, and retrieve the above-mentioned controller measurement parameters based on the matching results. as the above controller operating parameters.
  • the above preprocessing sub-module includes:
  • the determining unit is configured to determine a deviation value set and a deviation change rate set based on the measured temperature deviation amount and the measured temperature deviation change rate respectively.
  • the number of elements in the above-mentioned deviation value set is equal to the above-mentioned deviation change rate set.
  • an average distribution or a Gaussian distribution is used to form a deviation value set e[0,...,n], where n can be set to 127, or the correspondence can be based on experience. set up.
  • an average distribution or a Gaussian distribution is used to form a deviation change rate set ec[0,...,n], where n can be set to 127, or it can be based on experience Make settings.
  • the specific process of using Gaussian distribution to form a deviation change rate set is: based on the value range of the measured temperature deviation change rate, use Gaussian distribution to generate multiple cluster centers, and calculate the distance between the measured temperature deviation change rate and the cluster center.
  • the measured temperature deviation change rate is clustered into the corresponding set, and then Generate multiple sets of bias change rates.
  • the fuzzification processing unit is configured to perform fuzzification processing on the above-mentioned deviation value set and the above-mentioned deviation change rate set respectively, and use fuzzy control rules to generate the deviation value fuzzy control amount and the deviation change rate fuzzy control rate.
  • fuzzy control rules are established based on on-site operations and expert experience, and fuzzy control rules are used to perform fuzzy reasoning on the measured temperature deviation amount and the measured temperature deviation change rate; wherein, the PID is calculated based on the deviation value set and the deviation change rate set respectively.
  • the output voltage of the controller generates rules for setting PID control parameters (i.e. fuzzy control rules) based on different output voltages. For example: when the output voltage deviates greatly from the preset voltage value, in order to increase the response speed of the PID controller , and to reduce the problem of differential oversaturation in PID control caused by the large deviation change rate at the beginning of the PID controller's response, the proportional constant should be increased and the differential constant should be reduced. In some embodiments, in order to avoid saturation in the integration process, the integration constant can be set to zero.
  • fuzzy control rules are established based on field operations and expert experience, in which the input quantities of the PID controller, that is, the deviation value set, the deviation change rate set, and the output voltage are each divided into 7 levels, thereby generating fuzzy control rules. Control rules.
  • a triangular membership function can be used to fuzzify each element in the deviation value set and the deviation change rate set respectively, and convert the deviation value set and the deviation change rate set from the basic domain of discourse into a fuzzy domain, Then, according to the above fuzzy control rules, a minimum algorithm is used to obtain the corresponding output fuzzy control quantity, that is, the deviation value fuzzy control quantity and the deviation change rate fuzzy control quantity.
  • the defuzzification processing unit is configured to perform defuzzification processing on the deviation value fuzzy control amount and the deviation change rate fuzzy control amount respectively, and generate controller measurement parameters corresponding to the measured temperature deviation amount and the measured temperature deviation change rate.
  • the above defuzzification process can use the maximum membership method to calculate the controller measurement parameters.
  • the above-mentioned fuzzification processing unit includes:
  • the dividing subunit is configured to divide the measured temperature deviation and the measured temperature deviation change rate into multiple levels respectively based on the value range of the measured temperature deviation and the value range of the measured temperature deviation change rate.
  • the value range of the measured temperature deviation and the value range of the above-mentioned measured temperature deviation change rate are respectively divided into seven levels from large to small.
  • the matching subunit is configured to match the deviation value set and the deviation change rate set with the plurality of levels respectively, and generate the deviation value fuzzy control amount and the deviation change rate fuzzy control rate.
  • the above-mentioned deviation value set and deviation change rate set are respectively corresponded to the value ranges of the seven levels, and different measured temperature deviation amounts and measured temperature deviation change rates in the seven levels are generated, that is, deviations Value fuzzy control amount and deviation change rate fuzzy control rate.
  • the deviation value fuzzy control quantity and the deviation change rate fuzzy control quantity are bound in a one-to-one correspondence with the controller measurement parameters (ie, proportional constant, differential constant, and integral constant) to generate a control parameter table.
  • control module 83 includes:
  • the limiting submodule is configured to determine the controller output voltage based on the above-mentioned controller operating parameters, limit the above-mentioned output voltage signal, and generate a voltage limiting signal.
  • the PID controller is adjusted based on the above controller operating parameters, and the output signal of the PID controller is limited through a limiting circuit to generate a voltage limiting signal; wherein, the limiting circuit uses two Zener diodes
  • a bidirectional voltage regulator is formed to limit the positive and negative voltage signals.
  • An operational amplifier is added to the clamping point of the voltage regulator tube to form a voltage follower, which provides a high input impedance and reduces the shunting of the voltage regulator circuit by the subsequent circuit. effect.
  • the control submodule is configured to use the voltage limiting signal to control the temperature of the semiconductor light source.
  • the voltage limiting signal enters the drive circuit of the thermoelectric cooler, adjusts the working state of the thermoelectric cooler (i.e., becomes colder or hotter), and then measures the temperature of the semiconductor light source through the thermistor, and continuously adjusts the input deviation according to the input deviation. And its change rate adjusts the control parameters to achieve continuous constant temperature control.
  • the device further includes:
  • a storage module configured to store the operating temperature deviation amount and the operating temperature deviation change rate into the thermal circuit Resistance measurement temperature library.
  • This embodiment provides a computer device, including a memory and a processor.
  • the processor is configured to read instructions stored in the memory to execute the temperature control method for a semiconductor light source in an optical fiber current transformer in any of the above method embodiments.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the disclosure are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the disclosure. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • Embodiments of the present disclosure provide a computer-readable storage medium.
  • the computer storage medium stores computer-executable instructions.
  • the computer-executable instructions can execute the temperature measurement of the semiconductor light source in the optical fiber current transformer in any of the above method embodiments. Control Method.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (Hard disk). Disk Drive (abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the above types of memories.
  • Embodiments of the present disclosure provide a computer program, which includes computer readable code.
  • the processor in the computer device executes a part for implementing the above method or All steps.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program. When the computer program is read and executed by a computer, some of the above methods are implemented or All steps.
  • the computer program product can be implemented specifically through hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium.
  • the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK) and so on.

Abstract

用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品,光纤电流互感器中半导体光源的温度控制方法包括:采集热敏电阻运行温度,基于热敏电阻运行温度值与预设运行温度值分别确定运行温度偏差量和运行温度偏差变化率(S101);获取控制器对应的控制参数表,并利用控制参数表确定运行温度偏差量、运行温度偏差变化率对应的控制器运行参数(S102);基于控制器运行参数控制半导体光源的温度(S103)。光纤电流互感器中半导体光源的温度控制方法实现了对半导体光源温度的实时调整控制,保障了半导体光源温度控制的实时性和稳定性,以及全光纤电流互感器的安全稳定工作。

Description

用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品
相关申请的交叉引用
本公开基于申请号为202210557788.0、申请日为2022年05月19日、申请名称为“用于光纤电流互感器中半导体光源的温度控制方法及装置”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本公开。
技术领域
本公开实施例涉及光纤传感技术领域,尤其涉及用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品。
背景技术
随着特高压电网和智能电网的建设,对交直流大电流传感量测技术提出更高的要求;全光纤电流互感器是一种基于法拉第磁光效应和数字闭环检测技术的光纤传感器,具有可测量交直流电流、高精度、宽频带、绝缘性能好等优点,目前已经逐步得到应用,相比于传统的电磁式电流互感器,全光纤电流互感器的光电模块结构复杂,受电力系统复杂环境的影响,全光纤电流互感器的长期运行可靠性、稳定性尚需提升。
全光纤电流互感器的原理来源于光纤陀螺技术,属于反射式的光纤干涉仪;从半导体光源发出的光经起偏器形成线偏光,经过光纤传输到达高压导体周围的传感光纤环,导体周围空间产生磁场,在传感光纤中产生磁光效应,线偏光的光波偏振面发生旋转,经过耦合透镜进入检偏器后到达光电探测器,通过信号处理检测干涉光的强度来实现对电流的测量,因此电流测量精度和光源关系极为密切,光源输出功率的稳定性直接影响测量结果。
半导体激光器具备独特的高单色性、高能量密度,其输出的精准性和稳定性主要受温度、电流两个物理量的影响,由于激光器内部存在多种不可避免的损耗,热量在器件内部沉积,升温会导致阈值电流增大、中心波长漂移,影响全光纤电流互感器的性能,还会缩短光源的使用寿命,因此,必须对半导体光源的工作温度进行精确控制,并提供稳定的电流;常用的方法是使用主动制冷装置,如热电制冷器(TEC,Thermo Electric Cooler),利用帕尔帖原理,当TEC流过电流时,制冷器的两个面将产生温度差,其热响应时间较短,操作具有可逆性,改变工作电流方向即可实现制冷和制热模式的切换,再将负温度系数(NTC,Negative Temperature Coefficient)型热敏电阻用于温度控制的反馈测量,随着工艺进步,TEC和NTC元件都可以封装于光源模块内部。
目前,针对半导体光源的温度控制已进行了很多研究,例如,提出了一种激光器温度反馈调节控制电路及方法,采用STM32芯片控制ADN8830温控芯片,STM32芯片通过调节输出到ADN8830温控芯片的电压,控制输出到激光器TEC端的电流,通过旋钮控制输入端设置激光器TEC电流的高电流值、低电流值和判定温度到达设定值的界限,通过ADN8830温控芯片反馈激光器的温度信号,当激光器温度未达到设定值时,电流输出按照设定高电流进行控制,增大温度调节速度;当激光器温度到达设定值时,电流输出按照设定的低电流进行控制,增大调节稳定度。
上述过程是一种比例控制方式,而比例控制方式会存在一定的稳态误差;目前普遍采用比例-积分-微分(Proportional-Integral-Differential,PID)算法克服稳态误差,实现半导体光源的恒温控制,例如,针对高精度电流控制、温度控制和磁场干扰问题,提出了一种激光器恒流源驱动和交流控温系统,基于功放的高精度激光器恒流源驱动系统,以及交流温度调制解调检测和交流加热驱动系统,并采用STM32控制器,结合温度模糊自适应PID控制算法进行高精度温度控制。
在不同温度、不同温差下,TEC的电气特性和工作效率存在差异,在控制过程中把 温度作为单一的反馈参数,对温度控制的精度和控温范围存在影响。目前半导体光源温度控制中,引入双闭环控制策略提高性能,例如,将TEC的工作特性与光学晶体中热量传递规律相结合,将被控温度和TEC的自身电气特性变化因素同时纳入控制环节中,建立了温度-电流双闭环温度控制模型。其中,内环是电流反馈环,惯性小、调整快,采用PID控制;外环是温度反馈环,采用PID控制。
由于全光纤电流互感器是一种高压电气设备,电磁场、环境温度等工况复杂,对半导体光源可靠性的要求更高,现有技术中提出了一种应用于光纤电流互感器的光源适时恒功率控制装置及方法,对光源光功率、绝对光功率和信噪比参数指标进行计算,当其中任一项参数指标达到设定阈值时,根据互感器光路损耗的监测结果,利用预先构建的半导体光源光功率和中心波长反馈调节模型,适时反馈调节光源驱动电流和管芯温度,对半导体光源进行适时恒功率控制,提高互感器长期运行的稳定性和可靠性。
上述现有技术仍是一种比例控制方式,可能存在稳态误差;在全光纤电流互感器光源的恒温控制中,需要考虑热电制冷温度控制非线性、时变的特点,并采用双闭环控制策略,由于控制器采用模拟PID控制,需要对被控对象建立精确的数学模型,在实际控制过程中,控制器各参数处于固定状态,难以动态调整,而TEC又具有非线性、大时延的特点,全光纤电流互感器的运行环境复杂、工作状态存在变化,如果参数设计不合理,将引起控制失稳,甚至会导致全光纤电流互感器失效、电力自动化装置误动作等故障。
因此,需要针对全光纤电流互感器对高可靠性的需求,对半导体光源的恒温控制方法进行研究,保障全光纤电流互感器的安全稳定工作。
发明内容
本公开实施例要解决的技术问题在于克服现有技术中采用比例控制方式对半导体光源的工作温度进行控制,无法保障全光纤电流互感器的安全稳定工作缺陷,从而提供了用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品。
在本公开实施例的第一方面,提供了用于光纤电流互感器中半导体光源的温度控制方法,包括如下步骤:
采集热敏电阻运行温度,基于所述热敏电阻运行温度值与预设运行温度值分别确定运行温度偏差量和运行温度偏差变化率;
获取控制器对应的控制参数表,并利用所述控制参数表确定所述运行温度偏差量、所述运行温度偏差变化率对应的控制器运行参数;
基于所述控制器运行参数控制半导体光源的温度。
本公开实施例提供的用于光纤电流互感器中半导体光源的温度控制方法,针对全光纤电流互感器的高可靠性要求,以及热电制冷器温度控制和工作环境温度非线性、时变的特点,利用控制参数表获得控制器运行参数,进而实时调整控制半导体光源的温度,保障了半导体光源温度控制的实时性和稳定性,以及全光纤电流互感器的安全稳定工作。
在一些实施例中,所述获取控制器对应的控制参数表,并利用所述控制参数表确定所述运行温度偏差量、所述运行温度偏差变化率对应的控制器运行参数,包括:
获取热敏电阻测量温度库中的测量温度偏差量与测量温度偏差变化率,对所述测量温度偏差量与所述测量温度偏差变化率分别进行预处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数;
基于所述测量温度偏差量、所述测量温度偏差变化率与所述控制器测量参数构建控制参数表;
分别将所述温度偏差率与所述偏差变化率与所述控制参数表中的所述测量温度偏差量与所述测量温度偏差变化率进行匹配,并基于匹配结果调取所述控制器测量参数作为所述控制器运行参数。
在一些实施例中,所述对所述测量温度偏差量与所述测量温度偏差变化率分别进行预处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数,包括:
分别基于所述测量温度偏差量与所述测量温度偏差变化率确定偏差值集合与偏差变化率集合;
分别对所述偏差值集合与所述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率;
分别对所述偏差值模糊控制量和所述偏差变化率模糊控制量进行解模糊处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数。
上述通过设置模糊控制规则以及利用模糊化处理与解模糊化处理消除了稳态误差,使得控制器测量参数更加准确。
在一些实施例中,所述分别对所述偏差值集合与所述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率,包括:
基于所述测量温度偏差量的取值范围与所述测量温度偏差变化率的取值范围分别将所述测量温度偏差量与所述测量温度偏差变化率划分为多个等级;
分别将所述偏差值集合与所述偏差变化率集合与所述多个等级进行匹配,生成所述偏差值模糊控制量和所述偏差变化率模糊控制率。
上述通过将测量温度偏差量与测量温度偏差变化率划分为多个等级,进而将偏差值集合与偏差变化率集合与多个等级进行匹配,即设置了模糊控制规则,实现了对稳态误差的消除。
在一些实施例中,所述偏差值集合与所述偏差变化率集合中的元素个数相等。
在一些实施例中,所述基于所述控制器运行参数控制半导体光源的温度,包括:
基于所述控制器运行参数确定控制器输出电压,并对所述输出电压信号进行限幅,生成电压限幅信号;
利用所述电压限幅信号控制所述半导体光源的温度。
上述通过调整后的控制器运行参数生成输出电压,并对输出电压进行限幅处理,保障了半导体光源温度控制的实时性和稳定性。
在一些实施例中,还包括:
将所述运行温度偏差量和运行温度偏差变化率存储至所述热敏电阻测量温度库。
在本公开实施例的第二个方面,还提出了用于光纤电流互感器中半导体光源的温度控制装置,包括:
确定模块,配置为采集热敏电阻运行温度,基于所述热敏电阻运行温度值与预设运行温度值分别确定运行温度偏差量和运行温度偏差变化率;
获取模块,配置为获取控制器对应的控制参数表,并利用所述控制参数表确定所述运行温度偏差量、所述运行温度偏差变化率对应的控制器运行参数;
控制模块,配置为基于所述控制器运行参数控制半导体光源的温度。
在一些实施例中,所述获取模块,包括:
预处理子模块,配置为获取热敏电阻测量温度库中的测量温度偏差量与测量温度偏差变化率,对所述测量温度偏差量与所述测量温度偏差变化率分别进行预处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数;
构建子模块,配置为基于所述测量温度偏差量、所述测量温度偏差变化率与所述控制器测量参数构建控制参数表;
匹配子模块,配置为分别将所述温度偏差率与所述偏差变化率与所述控制参数表中的所述测量温度偏差量与所述测量温度偏差变化率进行匹配,并基于匹配结果调取所述控制器测量参数作为所述控制器运行参数。
在一些实施例中,所述预处理子模块,包括:
确定单元,配置为分别基于所述测量温度偏差量与所述测量温度偏差变化率确定偏差值集合与偏差变化率集合;
模糊化处理单元,配置为分别对所述偏差值集合与所述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率;
解模糊处理单元,配置为分别对所述偏差值模糊控制量和所述偏差变化率模糊控制量进行解模糊处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数。
在一些实施例中,所述模糊化处理单元,包括:
划分子单元,配置为基于所述测量温度偏差量的取值范围与所述测量温度偏差变化率的取值范围分别将所述测量温度偏差量与所述测量温度偏差变化率划分为多个等级;
匹配子单元,配置为分别将所述偏差值集合与所述偏差变化率集合与所述多个等级进行匹配,生成所述偏差值模糊控制量和所述偏差变化率模糊控制率。
在一些实施例中,所述确定单元,还配置为所述偏差值集合与所述偏差变化率集合中的元素个数相等。
在一些实施例中,所述控制模块,包括:
限幅子模块,配置为基于所述控制器运行参数确定控制器输出电压,并对所述输出电压信号进行限幅,生成电压限幅信号;
控制子模块,配置为利用所述电压限幅信号控制所述半导体光源的温度。
在一些实施例中,还包括:
存储模块,配置为将所述运行温度偏差量和运行温度偏差变化率存储至所述热敏电阻测量温度库。
在本公开实施例的第三个方面,还提出了一种计算机设备,包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序,所述处理器被配置用于调用所述计算机程序,执行上述第一方面的方法。
在本公开实施例的第四个方面,本公开实施例提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行以实现上述第一方面的方法。
在本公开实施例的第五个方面,本公开实施例提供了一种计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令被计算机设备的处理器运行时实现上述第一方面的方法。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例1中用于光纤电流互感器中半导体光源的温度控制方法的流程图;
图2为本公开实施例1中步骤S102的流程图;
图3为本公开实施例1中步骤S1021的流程图;
图4为本公开实施例1中基于查表法的模糊控制过程示意图;
图5为本公开实施例1中步骤S10212的流程图;
图6为本公开实施例1中步骤S103的流程图;
图7为本公开实施例1中用于光纤电流互感器中半导体光源的温度控制方法的示意图;
图8为本公开实施例2中用于光纤电流互感器中半导体光源的温度控制装置的原理框图。
具体实施方式
下面将结合附图对本公开实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开实施例保护的范围。
在本公开实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本公开实施例不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供用于光纤电流互感器中半导体光源的温度控制方法,如图1所示,包括如下步骤:
S101、采集热敏电阻运行温度,基于上述热敏电阻运行温度值与预设运行温度值分别确定运行温度偏差量和运行温度偏差变化率。
在一些实施例中,在全光纤电流互感器的运行过程中,通过温度电桥测量热敏电阻运行温度值,基于热敏电阻运行温度值T与预设运行温度值RT计算生成温度的偏差量Te和偏差变化率Tec,其中,温度的偏差量Te的计算方法见如下公式(1):
Te=T-RT     (1);
偏差变化率Tec的计算方法见如下公式(2):
Tec=dTe/dt       (2);
S102、获取控制器对应的控制参数表,并利用上述控制参数表确定上述运行温度偏差量、上述运行温度偏差变化率对应的控制器运行参数。
S103、基于上述控制器运行参数控制半导体光源的温度。
在一些实施例中,将运行温度偏差量和运行温度偏差变化率存储至上述热敏电阻测量温度库,作为测量温度偏差量与测量温度偏差变化率继续进行预处理,进而实现对控制参数表的不断更新,使得控制参数表更加符合运行实际场景。
上述用于光纤电流互感器中半导体光源的温度控制方法,针对全光纤电流互感器的高可靠性要求,以及热电制冷器温度控制和工作环境温度非线性、时变的特点,利用控制参数表获得控制器运行参数,进而实时调整控制半导体光源的温度,保障了半导体光源温度控制的实时性和稳定性,以及全光纤电流互感器的安全稳定工作。
在一些实施例中,如图2所示,步骤S102中上述获取控制器对应的控制参数表,并利用上述控制参数表确定上述运行温度偏差量、上述运行温度偏差变化率对应的控制器运行参数,包括:
S1021、获取热敏电阻测量温度库中的测量温度偏差量与测量温度偏差变化率,对上述测量温度偏差量与上述测量温度偏差变化率分别进行预处理,生成上述测量温度偏差量与上述测量温度偏差变化率对应的控制器测量参数。
S1022、基于上述测量温度偏差量、上述测量温度偏差变化率与上述控制器测量参数构建控制参数表。
其中,控制参数表中多组测量温度偏差量和测量温度偏差变化率为一列,其对应的控制器测量参数为一列,其中,控制器测量参数与多组测量温度偏差量和测量温度偏差变化率一一对应。
S1023、分别将上述温度偏差率与上述偏差变化率与上述控制参数表中的上述测量 温度偏差量与上述测量温度偏差变化率进行匹配,并基于匹配结果调取上述控制器测量参数作为上述控制器运行参数。
在一些实施例中,如图3所示,步骤S1021中对上述测量温度偏差量与上述测量温度偏差变化率分别进行预处理,生成上述测量温度偏差量与上述测量温度偏差变化率对应的控制器测量参数,包括:
S10211、分别基于上述测量温度偏差量与上述测量温度偏差变化率确定偏差值集合与偏差变化率集合。
其中,上述偏差值集合与上述偏差变化率集合中的元素个数相等。
在一些实施例中,在测量温度偏差量的取值范围中,利用平均分布或高斯分布,形成偏差值集合e[0,…,n],其中n可以设置为127,也可以基于经验进行对应设置。
在一些实施例中,在测量温度偏差变化率的取值范围中,利用平均分布或高斯分布,形成偏差变化率集合ec[0,…,n],其中n可以设置为127,也可以基于经验进行设置。
例如,利用高斯分布形成偏差变化率集合的过程为:基于测量温度偏差变化率的取值范围,利用高斯分布生成多个聚类中心,计算测量温度偏差变化率与聚类中心的距离,当该距离符合预设阈值时,将该测量温度偏差变化率聚类至对应的集合中,进而生成多个偏差变化率集合。
S10212、分别对上述偏差值集合与上述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制量。
在一些实施例中,如图4所示,可以基于现场操作和专家经验建立模糊控制规则(即图4中所示的模糊规则),利用模糊控制规则对测量温度偏差量与测量温度偏差变化率进行模糊推理,生成偏差值控制量和偏差变化率控制率;其中,模糊控制规则的生成方法可以包括:基于偏差值集合与偏差变化率集合分别计算PID控制器的输出电压,根据不同的输出电压,生成整定PID控制参数的规则(即模糊控制规则),例如:当输出电压与预设电压值的偏差较大时,为增加PID控制器的响应速度,且降低PID控制器响应起始时偏差变化率较大造成PID控制中的微分过饱和的问题,应加大比例常数,减小微分常数。在一些实施例中,为避免积分环节出现饱和,可以令积分常数为零。
在一些实施例中,模糊控制规则的生成方法可以包括:将PID控制器的输入量,即偏差值集合与偏差变化率集合以及输出电压各分为7个等级,由此生成模糊控制规则。
在一些实施例中,如图4所示,还可以先采用三角形隶属函数,分别对偏差值集合(e)与偏差变化率集合(ec)中的每个元素进行模糊化处理,将偏差值集合与偏差变化率集合从基本论域转化为模糊域,然后根据上述模糊控制规则对模糊化后的偏差值和偏差变化率进行推理,采用极小运算法得到对应的输出模糊控制量,即偏差值模糊控制量和偏差变化率模糊控制量。
S10213、分别对上述偏差值模糊控制量和上述偏差变化率模糊控制量进行解模糊处理,生成上述测量温度偏差量与上述测量温度偏差变化率对应的控制器测量参数。
继续参考图4,在完成模糊推理之后,对经过模糊推理得到的偏差值模糊控制量和偏差变化率模糊控制量进行解模糊处理,其中,上述解模糊化处理可以采用最大隶属度法计算控制器测量参数。
在一些实施例中,如图5所示,步骤S10212中分别对上述偏差值集合与上述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率,包括:
S102121、基于上述测量温度偏差量的取值范围与上述测量温度偏差变化率的取值范围分别将上述测量温度偏差量与上述测量温度偏差变化率划分为多个等级。
在一些实施例中,将测量温度偏差量的取值范围与上述测量温度偏差变化率的取值范围分别从大到小分为7个等级。
S102122、分别将上述偏差值集合与上述偏差变化率集合与上述多个等级进行匹配, 生成上述偏差值模糊控制量和上述偏差变化率模糊控制率。
在一些实施例中,将上述偏差值集合与偏差变化率集合分别与7个等级的取值范围进行一一对应,生成7个等级中不同的测量温度偏差量与测量温度偏差变化率,即偏差值模糊控制量和偏差变化率模糊控制率。
在一些实施例中,将偏差值模糊控制量和偏差变化率模糊控制量与控制器测量参数(即比例常数、微分常数和积分常数)进行一一对应绑定,生成控制参数表。
在一些实施例中,如图6所示,步骤S103中上述基于上述控制器运行参数控制半导体光源的温度,包括:
S1031、基于上述控制器运行参数确定控制器输出电压,并对上述输出电压信号进行限幅,生成电压限幅信号。
如图7所示,基于上述控制器运行参数(即图7中所示的参数)对PID控制器进行调整,PID控制器的输出信号通过限幅电路进行限幅,生成电压限幅信号(对应图7中的输出电压限幅);其中,限幅电路采用两个稳压二极管组成双向稳压管,实现对正负电压信号的限幅,在稳压管钳制点位处加入一个运放组成电压跟随器,提供一个高输入阻抗,减小后级电路对稳压电路的分流作用。
S1032、利用上述电压限幅信号控制上述半导体光源的温度。
如图7所示,电压限幅信号进入热电制冷器的驱动电路,调整热电制冷器的工作状态(即变冷或变热),进而通过热敏电阻测量半导体光源的温度,不断根据输入偏差量及其变化率调整控制参数,实现连续的恒温控制。
本公开实施例公开了一种用于全光纤电流互感器中半导体光源的温度控制方法,其中,如图7所示,全光纤电流互感器采用半导体光源,热电制冷器和热敏电阻附着在光源两侧,PID控制器通过驱动电路与热电制冷器连接。所述方法包括:
通过温度电桥测量热敏电阻的温度,基于温度实测值(即上述运行温度值)与温度设定值(图7中所示的预设运行温度,即上述预设运行温度值)获得温度偏差量(即上述运行温度偏差量)和偏差变化率(即上述运行温度偏差变化率);基于现场操作和专家经验建立模糊控制规则,根据偏差量和偏差变化率,采用离线方式确定控制参数表,在运行过程中通过查表(即图7中所示的控制参数表)方式整定控制参数,并对PID控制器进行调整;PID控制器的输出信号经过限幅电路后(对应图7中的输出电压限幅),进入热电制冷器的驱动电路,调整热电制冷器的工作状态,再通过热敏电阻测量半导体光源的温度,实现连续的恒温控制。
在一些实施例中,确定控制参数表的方法可参见图4进行理解。其中,图4包括两部分:一部分为参数离线整定,用于确定控制参数表;另一部分为在线控制过程,用于在线的根据运行的温度偏差量、偏差变化率和控制参数表,对半导体光源的温度进行调整和控制(该部分内容的解释可参见图7的解释)。
如图4所示,确定控制参数表的方法可以包括:
步骤1:分别基于测量温度偏差量与测量温度偏差变化率确定偏差值集合与偏差变化率集合;
步骤2:分别对偏差值集合(e)与偏差变化率集合(ec)进行模糊化处理,并利用模糊控制规则(即模糊规则)对模糊化之后的偏差值集合(e)与偏差变化率集合(ec)进行模糊推理,生成偏差值模糊控制量和偏差变化率模糊控制量;
步骤3:分别对偏差值模糊控制量和偏差变化率模糊控制量进行解模糊处理,生成上述测量温度偏差量与上述测量温度偏差变化率对应的控制器测量参数,以生成控制参数表。
本公开实施例针对全光纤电流互感器中半导体光源恒温控制的需求,考虑热电制冷温度控制非线性、时变的特点,设计了一种参数可调节的增量PID控制器,建立不同输入偏差和偏差变化率情况下,PID控制参数的模糊控制规则;为了实现电力设备实时控 制,参数整定采用离线查表(控制参数表)的方式,保证了控制过程的响应速度,并在电路环节对输出信号进行限幅。与现有的方法相比,本公开实施例采用增量PID控制方式消除稳态误差,并基于参数动态调整、输出限幅等方法提高控制的实时性、稳定性,实现快速、准确、可靠的温度控制,适应电力工作环境对温度的影响,能更好满足电力设备在可靠性方面的要求。
实施例2
本实施例提供用于光纤电流互感器中半导体光源的温度控制装置,如图8所示,包括:
确定模块81,配置为采集热敏电阻运行温度,基于上述热敏电阻运行温度值与预设运行温度值分别确定运行温度偏差量和运行温度偏差变化率。
在一些实施例中,在全光纤电流互感器的运行过程中,通过温度电桥测量热敏电阻运行温度值,基于热敏电阻运行温度值T与预设运行温度值RT计算生成温度的偏差量Te和偏差变化率Tec,其中,温度的偏差量Te的计算方法见如下公式(3):
Te=T-RT        (3);
偏差变化率Tec的计算方法见如下公式(4):
Tec=dTe/dt         (4);
获取模块82,配置为获取控制器对应的控制参数表,并利用上述控制参数表确定上述运行温度偏差量、上述运行温度偏差变化率对应的控制器运行参数;
控制模块83,配置为基于上述控制器运行参数控制半导体光源的温度。
在一些实施例中,将运行温度偏差量和运行温度偏差变化率存储至上述热敏电阻测量温度库作为测量温度偏差量与测量温度偏差变化率继续进行预处理,进而实现对控制参数表的不断更新,使得控制参数表更加符合运行实际场景。
上述用于光纤电流互感器中半导体光源的温度控制方法,针对全光纤电流互感器的高可靠性要求,以及热电制冷器温度控制和工作环境温度非线性、时变的特点,利用控制参数表获得控制器运行参数,进而实时调整控制半导体光源的温度,保障了半导体光源温度控制的实时性和稳定性,以及全光纤电流互感器的安全稳定工作。
在一些实施例中,上述获取模块82,包括:
预处理子模块,配置为获取热敏电阻测量温度库中的测量温度偏差量与测量温度偏差变化率,对上述测量温度偏差量与上述测量温度偏差变化率分别进行预处理,生成上述测量温度偏差量与上述测量温度偏差变化率对应的控制器测量参数;
构建子模块,配置为基于上述测量温度偏差量、上述测量温度偏差变化率与上述控制器测量参数构建控制参数表;
匹配子模块,配置为分别将上述温度偏差率与上述偏差变化率与上述控制参数表中的上述测量温度偏差量与上述测量温度偏差变化率进行匹配,并基于匹配结果调取上述控制器测量参数作为上述控制器运行参数。
在一些实施例中,上述预处理子模块,包括:
确定单元,配置为分别基于上述测量温度偏差量与上述测量温度偏差变化率确定偏差值集合与偏差变化率集合。
其中,上述偏差值集合与上述偏差变化率集合中的元素个数相等。
在一些实施例中,在测量温度偏差量的取值范围中,利用平均分布或高斯分布,形成偏差值集合e[0,…,n],其中n可以设置为127,也可以基于经验进行对应设置。
在一些实施例中,在测量温度偏差变化率的取值范围中,利用平均分布或高斯分布,形成偏差变化率集合ec[0,…,n],其中n可以设置为127,也可以基于经验进行设置。
例如,利用高斯分布形成偏差变化率集合的具体过程为:基于测量温度偏差变化率的取值范围,利用高斯分布生成多个聚类中心,计算测量温度偏差变化率与聚类中心的距离,当该距离符合预设阈值时,将该测量温度偏差变化率聚类至对应的集合中,进而 生成多个偏差变化率集合。
模糊化处理单元,配置为分别对上述偏差值集合与上述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率。
在一些实施例中,基于现场操作和专家经验建立模糊控制规则,利用模糊控制规则对测量温度偏差量与测量温度偏差变化率进行模糊推理;其中,基于偏差值集合与偏差变化率集合分别计算PID控制器的输出电压,根据不同的输出电压,生成整定PID控制参数的规则(即模糊控制规则),例如:当输出电压与预设电压值的偏差较大时,为增加PID控制器的响应速度,且降低PID控制器响应起始时偏差变化率较大造成PID控制中的微分过饱和的问题,应加大比例常数,减小微分常数。在一些实施例中,为避免积分环节出现饱和,可以令积分常数为零。
在一些实施例中,基于现场操作和专家经验建立模糊控制规则,其中,将PID控制器的输入量,即偏差值集合与偏差变化率集合以及输出电压各分为7个等级,由此生成模糊控制规则。
在一些实施例中,可以采用三角形隶属函数,分别对偏差值集合与偏差变化率集合中的每个元素进行模糊化处理,将偏差值集合与偏差变化率集合从基本论域转化为模糊域,进而根据上述模糊控制规则,采用极小运算法得到对应的输出模糊控制量,即偏差值模糊控制量和偏差变化率模糊控制量。
解模糊处理单元,配置为分别对上述偏差值模糊控制量和上述偏差变化率模糊控制量进行解模糊处理,生成上述测量温度偏差量与上述测量温度偏差变化率对应的控制器测量参数。
其中,上述解模糊化处理可以采用最大隶属度法计算控制器测量参数。
在一些实施例中,上述模糊化处理单元,包括:
划分子单元,配置为基于上述测量温度偏差量的取值范围与上述测量温度偏差变化率的取值范围分别将上述测量温度偏差量与上述测量温度偏差变化率划分为多个等级。
在一些实施例中,将测量温度偏差量的取值范围与上述测量温度偏差变化率的取值范围分别从大到小分为7个等级。
匹配子单元,配置为分别将上述偏差值集合与上述偏差变化率集合与上述多个等级进行匹配,生成上述偏差值模糊控制量和上述偏差变化率模糊控制率。
在一些实施例中,将上述偏差值集合与偏差变化率集合分别与7个等级的取值范围进行一一对应,生成7个等级中不同的测量温度偏差量与测量温度偏差变化率,即偏差值模糊控制量和偏差变化率模糊控制率。
在一些实施例中,将偏差值模糊控制量和偏差变化率模糊控制量与控制器测量参数(即比例常数、微分常数和积分常数)进行一一对应绑定,生成控制参数表。
在一些实施例中,上述控制模块83,包括:
限幅子模块,配置为基于上述控制器运行参数确定控制器输出电压,并对上述输出电压信号进行限幅,生成电压限幅信号。
在一些实施例中,基于上述控制器运行参数对PID控制器进行调整,PID控制器的输出信号通过限幅电路进行限幅,生成电压限幅信号;其中,限幅电路采用两个稳压二极管组成双向稳压管,实现对正负电压信号的限幅,在稳压管钳制点位处加入一个运放组成电压跟随器,提供一个高输入阻抗,减小后级电路对稳压电路的分流作用。
控制子模块,配置为利用上述电压限幅信号控制上述半导体光源的温度。
在一些实施例中,电压限幅信号进入热电制冷器的驱动电路,调整热电制冷器的工作状态(即变冷或变热),进而通过热敏电阻测量半导体光源的温度,不断根据输入偏差量及其变化率调整控制参数,实现连续的恒温控制。
在一些实施例中,所述装置还包括:
存储模块,配置为将所述运行温度偏差量和运行温度偏差变化率存储至所述热敏电 阻测量温度库。
实施例3
本施例提供一种计算机设备,包括存储器和处理器,处理器用于读取存储器中存储的指令,以执行上述任意方法实施例中的用于光纤电流互感器中半导体光源的温度控制方法。
本领域内的技术人员应明白,本公开实施例的实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
实施例4
本公开实施例提供一种计算机可读存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的用于光纤电流互感器中半导体光源的温度控制方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
实施例5
本公开实施例提供一种计算机程序,包括计算机可读代码,在所述计算机可读代码在计算机设备中运行的情况下,所述计算机设备中的处理器执行用于实现上述方法中的部分或全部步骤。
本公开实施例提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序被计算机读取并执行时,实现上述方法中的部分或全部步骤。该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一些实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一些实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本公开实施例创造的保护范围之中。

Claims (11)

  1. 用于光纤电流互感器中半导体光源的温度控制方法,包括:
    采集热敏电阻运行温度,基于所述热敏电阻运行温度值与预设运行温度值分别确定运行温度偏差量和运行温度偏差变化率;
    获取控制器对应的控制参数表,并利用所述控制参数表确定所述运行温度偏差量、所述运行温度偏差变化率对应的控制器运行参数;
    基于所述控制器运行参数控制半导体光源的温度。
  2. 根据权利要求1所述的用于光纤电流互感器中半导体光源的温度控制方法,其中,所述获取控制器对应的控制参数表,并利用所述控制参数表确定所述运行温度偏差量、所述运行温度偏差变化率对应的控制器运行参数,包括:
    获取热敏电阻测量温度库中的测量温度偏差量与测量温度偏差变化率,对所述测量温度偏差量与所述测量温度偏差变化率分别进行预处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数;
    基于所述测量温度偏差量、所述测量温度偏差变化率与所述控制器测量参数构建控制参数表;
    分别将所述温度偏差率与所述偏差变化率与所述控制参数表中的所述测量温度偏差量与所述测量温度偏差变化率进行匹配,并基于匹配结果调取所述控制器测量参数作为所述控制器运行参数。
  3. 根据权利要求2所述的用于光纤电流互感器中半导体光源的温度控制方法,其中,所述对所述测量温度偏差量与所述测量温度偏差变化率分别进行预处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数,包括:
    分别基于所述测量温度偏差量与所述测量温度偏差变化率确定偏差值集合与偏差变化率集合;
    分别对所述偏差值集合与所述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率;
    分别对所述偏差值模糊控制量和所述偏差变化率模糊控制量进行解模糊处理,生成所述测量温度偏差量与所述测量温度偏差变化率对应的控制器测量参数。
  4. 根据权利要求3所述的用于光纤电流互感器中半导体光源的温度控制方法,其中,所述分别对所述偏差值集合与所述偏差变化率集合进行模糊化处理,并利用模糊控制规则生成偏差值模糊控制量和偏差变化率模糊控制率,包括:
    基于所述测量温度偏差量的取值范围与所述测量温度偏差变化率的取值范围分别将所述测量温度偏差量与所述测量温度偏差变化率划分为多个等级;
    分别将所述偏差值集合与所述偏差变化率集合与所述多个等级进行匹配,生成所述偏差值模糊控制量和所述偏差变化率模糊控制率。
  5. 根据权利要求3所述的用于光纤电流互感器中半导体光源的温度控制方法,其中,所述偏差值集合与所述偏差变化率集合中的元素个数相等。
  6. 根据权利要求1至5任一项所述的用于光纤电流互感器中半导体光源的温度控制方法,其中,所述基于所述控制器运行参数控制半导体光源的温度,包括:
    基于所述控制器运行参数确定控制器输出电压,并对所述输出电压信号进行限幅,生成电压限幅信号;
    利用所述电压限幅信号控制所述半导体光源的温度。
  7. 根据权利要求1至5任一项所述的用于光纤电流互感器中半导体光源的温度控制方法,其中,还包括:
    将所述运行温度偏差量和运行温度偏差变化率存储至所述热敏电阻测量温度库。
  8. 用于光纤电流互感器中半导体光源的温度控制装置,包括:
    确定模块,配置为采集热敏电阻运行温度,基于所述热敏电阻运行温度值与预设运 行温度值分别确定运行温度偏差量和运行温度偏差变化率;
    获取模块,配置为获取控制器对应的控制参数表,并利用所述控制参数表确定所述运行温度偏差量、所述运行温度偏差变化率对应的控制器运行参数;
    控制模块,配置为基于所述控制器运行参数控制半导体光源的温度。
  9. 一种计算机设备,包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述处理器被配置用于调用所述计算机程序,执行如权利要求1-7中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求1-7中任一项所述方法的步骤。
  11. 一种计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令被计算机设备的处理器运行时,实现权利要求1-7中任一项所述方法中的步骤。
PCT/CN2023/075725 2022-05-19 2023-02-13 用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品 WO2023221574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210557788.0 2022-05-19
CN202210557788.0A CN114860002A (zh) 2022-05-19 2022-05-19 用于光纤电流互感器中半导体光源的温度控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023221574A1 true WO2023221574A1 (zh) 2023-11-23

Family

ID=82639953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075725 WO2023221574A1 (zh) 2022-05-19 2023-02-13 用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品

Country Status (2)

Country Link
CN (1) CN114860002A (zh)
WO (1) WO2023221574A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114860002A (zh) * 2022-05-19 2022-08-05 国网智能电网研究院有限公司 用于光纤电流互感器中半导体光源的温度控制方法及装置
CN116804885B (zh) * 2023-08-18 2023-11-21 福建省杭氟电子材料有限公司 一种用于八氟环丁烷加温反应控制系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575244B1 (ko) * 2004-12-07 2006-05-02 엘에스산전 주식회사 광섬유 격자를 이용한 온도 보상 광 변류기
CN101692401A (zh) * 2009-09-04 2010-04-07 北京齐瑞得电力技术有限公司 一种具有光纤温度采集和温度补偿的光纤电流互感器
CN205246735U (zh) * 2015-12-17 2016-05-18 常州市旭飞天成光电科技有限公司 一种光纤电流互感器sled光源控制系统
CN111198289A (zh) * 2018-11-20 2020-05-26 许继集团有限公司 一种光纤式电流测量装置的控制方法
CN111398651A (zh) * 2020-04-15 2020-07-10 哈尔滨理工大学 一种可主动温度补偿的全光纤电流互感器传感装置及温度补偿方法
CN111613965A (zh) * 2020-05-20 2020-09-01 太原理工大学 一种面向混沌半导体激光器的高精度高稳定温度控制系统
CN113945744A (zh) * 2021-12-21 2022-01-18 国网江苏省电力有限公司营销服务中心 一种全光纤直流电流互感器温度补偿系统及方法
CN114860002A (zh) * 2022-05-19 2022-08-05 国网智能电网研究院有限公司 用于光纤电流互感器中半导体光源的温度控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144612B2 (ja) * 1994-04-06 2001-03-12 理化工業株式会社 ファジイ推論によるpid制御方法
CN105629720A (zh) * 2015-12-30 2016-06-01 常州联德电子有限公司 宽域氧传感器温度控制方法
CN112713503A (zh) * 2020-12-29 2021-04-27 深圳市利拓光电有限公司 半导体激光器的温度控制方法、装置及设备
CN113311696A (zh) * 2021-04-28 2021-08-27 哈尔滨工业大学 一种基于模糊控制的光纤电流互感器闭环控制系统的设计方法
CN114288502A (zh) * 2021-12-31 2022-04-08 江苏鱼跃医疗设备股份有限公司 呼吸治疗装置的温度和湿度控制方法及呼吸治疗装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575244B1 (ko) * 2004-12-07 2006-05-02 엘에스산전 주식회사 광섬유 격자를 이용한 온도 보상 광 변류기
CN101692401A (zh) * 2009-09-04 2010-04-07 北京齐瑞得电力技术有限公司 一种具有光纤温度采集和温度补偿的光纤电流互感器
CN205246735U (zh) * 2015-12-17 2016-05-18 常州市旭飞天成光电科技有限公司 一种光纤电流互感器sled光源控制系统
CN111198289A (zh) * 2018-11-20 2020-05-26 许继集团有限公司 一种光纤式电流测量装置的控制方法
CN111398651A (zh) * 2020-04-15 2020-07-10 哈尔滨理工大学 一种可主动温度补偿的全光纤电流互感器传感装置及温度补偿方法
CN111613965A (zh) * 2020-05-20 2020-09-01 太原理工大学 一种面向混沌半导体激光器的高精度高稳定温度控制系统
CN113945744A (zh) * 2021-12-21 2022-01-18 国网江苏省电力有限公司营销服务中心 一种全光纤直流电流互感器温度补偿系统及方法
CN114860002A (zh) * 2022-05-19 2022-08-05 国网智能电网研究院有限公司 用于光纤电流互感器中半导体光源的温度控制方法及装置

Also Published As

Publication number Publication date
CN114860002A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023221574A1 (zh) 用于光纤电流互感器中半导体光源的温度控制方法、装置、设备、存储介质及计算机程序产品
CN103078249B (zh) 生成光模块温度查找表的方法及装置
CN109449740B (zh) 光模块消光比自适应调整装置及其控制方法
CN103551218B (zh) 一种基于pid控制的恒温箱
CN109462142A (zh) 光模块消光比自适应调整的控制方法
CN105762635B (zh) 一种可调光模块的波长控制装置及方法
EP3419136A1 (en) Direct current power grid voltage control method
CN101216316A (zh) 降低光纤陀螺标度因数温度灵敏度的光源非制冷方法
CN101860322A (zh) 自动跟随温度控制晶体振荡器
CN103401607A (zh) 获取光模块监测温度的方法及装置
WO2022121446A1 (zh) 控制系统、无功电压控制方法和装置、介质以及计算装置
WO2019062023A1 (zh) 一种变步长定速降额限功率mppt扰动方法
CN109947170A (zh) 一种电水壶的功率稳定方法
CN104682192B (zh) 生成光模块温度查找表的方法及装置
CN201985425U (zh) 激光发生装置
WO2022198758A1 (zh) 一种光模块波长控制方法、装置及存储介质
CN113687684B (zh) 引入改进步长因子的光伏mppt控制方法、系统、介质及设备
CN103064447B (zh) 基于窄域论的激光器pid温控参数近似三维整定方法
CN103557950A (zh) 一种效率稳定的单光子探测器及控制方法
CN205375227U (zh) 高敏检测系统
CN113809370A (zh) 燃料电池电堆运行温度控制方法、装置及系统
CN104682193A (zh) 生成光模块温度查找表的方法及装置
CN107579581A (zh) 一种自适应快速充电装置
CN104734004A (zh) 生成光模块温度查找表的方法及装置
CN113960346A (zh) 应用于光纤电流互感器的光源适时恒功率控制装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806536

Country of ref document: EP

Kind code of ref document: A1