WO2023221484A1 - 一种空调器的控制方法、装置及空调器 - Google Patents

一种空调器的控制方法、装置及空调器 Download PDF

Info

Publication number
WO2023221484A1
WO2023221484A1 PCT/CN2022/139118 CN2022139118W WO2023221484A1 WO 2023221484 A1 WO2023221484 A1 WO 2023221484A1 CN 2022139118 W CN2022139118 W CN 2022139118W WO 2023221484 A1 WO2023221484 A1 WO 2023221484A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
temperature
air conditioner
different areas
temperature values
Prior art date
Application number
PCT/CN2022/139118
Other languages
English (en)
French (fr)
Inventor
赵江龙
黄罡
张乃伟
Original Assignee
重庆海尔空调器有限公司
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海尔空调器有限公司, 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 重庆海尔空调器有限公司
Publication of WO2023221484A1 publication Critical patent/WO2023221484A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present application relates to the technical field of air conditioners, and in particular to a control method, device and air conditioner for an air conditioner.
  • Air conditioners have become one of the most commonly used electrical appliances.
  • Air conditioners are generally equipped with an air guide mechanism.
  • the air guide mechanism includes horizontal swing blades and vertical swing blades.
  • the air guide mechanism can be closed, swung, and stopped at a certain angle to supply air to the room.
  • the existing wind guide structure is generally an integrated structure.
  • the horizontal swing blades can only guide the wind all upward or downward, and the vertical swing blades can only guide the wind all to the left or all to the right. If the wind structure blows air in a certain direction, it is difficult to quickly achieve uniform indoor temperature. The adjustment efficiency of the air conditioner is poor, which affects people's comfort.
  • This application provides an air conditioner control method, device and air conditioner to solve the problem that existing air conditioners are difficult to quickly achieve uniform indoor temperature.
  • the present application provides a control method for an air conditioner.
  • the air conditioner has a first air outlet and a second air outlet.
  • the first air outlet and the second air outlet are arranged up and down along the height direction of the air conditioner.
  • the air conditioner is provided with a first vertical swing leaf corresponding to the first air outlet and a second vertical swing leaf corresponding to the second air outlet;
  • the control method includes: obtaining the action space of the air conditioner The temperature values of different areas at the first height and the temperature values of different areas at the second height; based on the temperature values of the different areas at the first height, determine among the temperature values of the different areas at the first height
  • the first maximum temperature of based on the temperature values of different areas at the second height, determine the second maximum temperature among the temperature values of the different areas at the second height; obtain the corresponding first maximum temperature
  • the first position information of the area corresponding to the second maximum temperature and the second position information of the area corresponding to the second maximum temperature based on the first position information, control the air guide direction of the first vertical swing
  • the method further includes: obtaining the operating status of the air conditioner; correspondingly, determining the temperature of the first height based on the temperature values of different areas of the first height.
  • the first maximum temperature among the temperature values in different areas includes: when the operating state of the air conditioner is the cooling mode, taking the maximum value among the temperature values in different areas at the first height as the third a maximum temperature; correspondingly, determining the second maximum temperature among the temperature values of different areas at the second height based on the temperature values of different areas at the second height includes: in the air conditioner When the operating state is the cooling mode, the maximum value among the temperature values of different areas at the second height is used as the second maximum temperature.
  • the method further includes: obtaining the operating status of the air conditioner; correspondingly, determining the temperature of the first height based on the temperature values of different areas of the first height.
  • the first maximum temperature among the temperature values in different areas includes: when the operating state of the air conditioner is in the heating mode, taking the minimum value among the temperature values in different areas at the first height as the said The first maximum temperature; correspondingly, determining the second maximum temperature among the temperature values of different areas at the second height based on the temperature values of different areas at the second height includes: in the air conditioner When the operating state of the heater is in the heating mode, the minimum value among the temperature values of different areas at the second height is used as the second maximum temperature.
  • the method further includes: based on the temperature values of different areas at the first height, determining a difference between the temperature values of different areas at the first height; If the temperature is lower than the preset temperature, control the first vertical swing blade to automatically swing; based on the temperature values of different areas at the second height, determine the difference in temperature values in different areas at the second height; When the difference is less than the preset temperature, the second vertical swing blade is controlled to automatically swing.
  • obtaining the temperature values of different areas at a first height and the temperature values of different areas at a second height within the action space of the air conditioner includes: obtaining The temperature values of the first, second and third positions at the first height within the action space of the air conditioner are obtained, and the fourth and fifth positions at the second height within the action space of the air conditioner are obtained. position and the temperature value of the sixth position.
  • the first position, the second position and the third position are distributed at a first height in the action space and are relative to the first outlet.
  • the air outlets are circumferentially distributed, and the fourth position, the fifth position and the sixth position are distributed at the second height in the action space and are circumferentially distributed relative to the second air outlet.
  • This application also provides a control device for an air conditioner, including: the air conditioner has a first air outlet and a second air outlet, and the first air outlet and the second air outlet are along the height direction of the air conditioner. Arranged up and down, the air conditioner is provided with a first vertical swing leaf corresponding to the first air outlet and a second vertical swing leaf corresponding to the second air outlet; the control device includes: a first acquisition module, for Obtain the temperature values of different areas at the first height and the temperature values of different areas at the second height within the action space of the air conditioner; determine the module for based on the temperature values of the different areas at the first height, Determine the first maximum temperature among the temperature values in different areas at the first height, and determine the second maximum temperature among the temperature values in different areas at the second height based on the temperature values in the different areas at the second height.
  • a second acquisition module used to obtain the first position information of the area corresponding to the first value temperature and the second position information of the area corresponding to the second value temperature; a control module, used to obtain Based on the first position information, the air guide direction of the first vertical swing blade is controlled to face the area corresponding to the first maximum temperature, and based on the second position information, the air guide direction of the second vertical swing blade is controlled The air guide direction is toward the area corresponding to the second maximum temperature; wherein, the first air outlet is used to discharge air to the area corresponding to the first height, and the second air outlet is used to discharge air to the area corresponding to the first height.
  • the area corresponding to the second height is exposed to wind.
  • the application also provides an air conditioner, including a first temperature sensor, a second temperature sensor, a controller, a first vertical swing blade and a second vertical swing blade; the first temperature sensor and the second temperature sensor are respectively connected with The controller is connected, and the controller is connected to the first vertical swing leaf and the second vertical swing leaf respectively; the controller stores a computer program, and the computer program is implemented when executed by the controller
  • the control method of the air conditioner according to any one of the above; wherein, the first temperature sensors include a plurality of first temperature sensors distributed in different areas of the first height, and the second temperature sensors include A plurality of second temperature sensors are distributed in different areas of the second height.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements any one of the above mentioned air conditioners. Control Method.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the control method of an air conditioner as described above is implemented.
  • the present application also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the control method of an air conditioner is implemented as described above.
  • the control method, device and air conditioner of the air conditioner provided by this application use the controller to control the first vertical swing blade to rotate to the direction of the maximum temperature at the first height to supply air, and at the same time control the second vertical swing blade to deliver air in a targeted manner.
  • the air supply can quickly reduce the temperature difference at different heights within the action space of the air conditioner, so that the indoor temperature can quickly reach uniformity.
  • Figure 1 is a schematic flow chart of the control method of the air conditioner provided by the present application.
  • FIG. 2 is a schematic diagram of the distribution of temperature sensors provided by this application in the action space of the air conditioner
  • FIG. 3 is a schematic structural diagram of the control device of the air conditioner provided by the present application.
  • Figure 4 is a schematic structural diagram of an electronic device provided by this application.
  • 100 the first vertical swing leaf; 200: the second vertical swing leaf; 300: the first temperature sensor; 400: the second temperature sensor.
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “left”, “right”, etc. are based on the orientations or positional relationships shown in the drawings, and only It is intended to facilitate the description of the embodiments of the present application and simplify the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the embodiments of the present application.
  • the terms “first”, “second” and “third” are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the embodiments of this application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • Air conditioners are generally equipped with an air guide mechanism.
  • the air guide mechanism includes horizontal swing blades and vertical swing blades.
  • the air guide mechanism can be closed, swung, and stopped at a certain angle to supply air to the room.
  • the existing wind guide structure is generally an integrated structure.
  • the horizontal swing blades can only guide the wind all upward or downward, and the vertical swing blades can only guide the wind all to the left or all to the right. If the wind structure blows air in a certain direction, it is difficult to quickly achieve uniform indoor temperature. The adjustment efficiency of the air conditioner is poor, which affects people's comfort.
  • this application provides a control method, device and air conditioner for an air conditioner to solve the problem that existing air conditioners are difficult to quickly achieve uniform indoor temperature.
  • the air conditioner models to which the control method of the air conditioner can be applied include but are not limited to wall-mounted air conditioners, cabinet air conditioners, ceiling air conditioners, fresh air air conditioners and other air conditioning products equipped with indoor indoor units.
  • This application mainly uses a cabinet air conditioner for illustrative explanation, but it should be understood that those skilled in the art can apply the control method of the air conditioner through adaptive improvements based on the technical concepts disclosed in the embodiments of the present disclosure. Products in air conditioners and related fields should also be covered by the protection scope of the technical concept of this application.
  • the air conditioner provided by the present application includes a first temperature sensor 300, a second temperature sensor 400, a controller, a first vertical swing blade 100 and a second vertical swing blade 200; the first temperature sensor 300, the second vertical swing blade 200;
  • the temperature sensors 400 are respectively connected to the controller, and the controller is respectively connected to the first vertical swing blade 100 and the second vertical swing blade 200; the controller stores a computer program, and when the computer program is executed by the controller, the air conditioner provided by the present application is realized. Control Method.
  • the first temperature sensors 300 include a plurality of first temperature sensors 300 distributed in different areas of the first height.
  • the second temperature sensors 400 include a plurality of second temperature sensors 400 distributed in different areas of the second height. area.
  • the controller controls the first vertical swing blade 100 to rotate in a targeted manner to the direction of the maximum temperature at the first height to supply air, and simultaneously controls the second vertical swing blade 200 to rotate in a targeted manner to the second height.
  • the air is supplied in the direction of the maximum temperature of the height, which can quickly reduce the temperature difference at different heights within the action space of the air conditioner, so that the indoor temperature can quickly reach uniformity.
  • the air conditioner provided by the present application has a first air outlet and a second air outlet.
  • the first air outlet and the second air outlet are arranged up and down along the height direction of the air conditioner.
  • the air conditioner is provided with an air outlet corresponding to the first air outlet.
  • the first vertical swing blade 100 and the second vertical swing blade 200 corresponding to the second air outlet.
  • the number of air outlets arranged along the height direction of the air conditioner corresponds to the number of groups of vertical swing leaves, and the number of groups of vertical swing leaves corresponds to the number of height-divided layers of the action space of the air conditioner.
  • the number of height division layers corresponds to the number of groups of temperature sensors.
  • first vertical swing leaves 100 Corresponding to the air outlets, there are first vertical swing leaves 100, second vertical swing leaves 200 and third vertical swing leaves.
  • the height direction of the air conditioner divides the operating space of the air conditioner into the first height, the second height and the third height.
  • the first air outlet is used to discharge air to the area corresponding to the first height
  • the second air outlet is used to discharge air to the second height.
  • Air is discharged from the area corresponding to the height
  • the third air outlet is used to discharge air to the area corresponding to the third height.
  • Multiple first temperature sensors 300 are provided in different areas of the first height, and multiple first temperature sensors 300 are provided in different areas of the second height.
  • a second temperature sensor 400 is provided with a plurality of third temperature sensors in different areas of the third height.
  • the plurality of temperature sensors are used to obtain temperature values at different positions corresponding to the height, so that the controller controls the vertical swing blades based on the temperature information. direction of the wind.
  • the temperature sensor carries position information, and the temperature sensor can send its measured temperature value and position information to the controller.
  • This application mainly illustrates the installation of two air outlets and two sets of vertical swing blades.
  • control method of the air conditioner includes the following steps:
  • Step 110 Obtain the temperature values of different areas at the first height and the temperature values of different areas at the second height within the action space of the air conditioner.
  • Step 120 Determine the first maximum temperature among the temperature values of different areas at the first height based on the temperature values of the different areas at the first height, and determine the different areas at the second height based on the temperature values of the different areas at the second height. The second highest temperature among the temperature values.
  • Step 130 Obtain the first location information of the area corresponding to the first maximum temperature and the second location information of the area corresponding to the second maximum temperature.
  • Step 140 Based on the first position information, control the air guide direction of the first vertical swing blade 100 toward the area corresponding to the first maximum temperature, and based on the second position information, control the air guide direction of the second vertical swing blade 200 toward the area corresponding to the first maximum temperature. 2. The area corresponding to the maximum temperature.
  • the first air outlet is used to discharge air to the area corresponding to the first height
  • the second air outlet is used to discharge air to the area corresponding to the second height.
  • the control method of the air conditioner divides the action space of the air conditioner into a first height and a second height, and obtains the temperature values of different areas of the first height and the second height respectively.
  • the controller is based on multiple temperature values. Obtain the first maximum temperature among the temperature values of different areas at the first altitude and its corresponding first position information, and the controller obtains the second maximum temperature among the temperature values of different areas at the second altitude based on the multiple temperature values. and the corresponding second position information, thereby controlling the air guide direction of the first vertical swing blade 100 toward the area corresponding to the first maximum temperature, and controlling the air guide direction of the second vertical swing blade 200 toward the area corresponding to the second maximum temperature. corresponding area.
  • the control method of the air conditioner uses the controller to control the first vertical swing blade 100 to rotate in a targeted manner to supply air in the direction of the maximum temperature at the first height, and at the same time, control the second vertical swing blade 200 to rotate in a targeted manner.
  • Supplying air in the direction of the maximum temperature at the second height can quickly reduce the temperature difference at different heights within the action space of the air conditioner, so that the indoor temperature can quickly reach uniformity.
  • the first height and the second height can be set based on the height of the human body.
  • the first height can be a height range that can be felt by the human head.
  • the first height can be set to 1.8 ⁇ 2.1m
  • the second height can be set to 1.8-2.1m.
  • the height range that can be felt by human feet can be set to a second height of 0.1 to 0.3m.
  • Such a height setting allows the controller to control the air conditioner to quickly adjust the temperature in the height range that can be felt by the human body, so that the temperature in the height range that can be felt by the human body quickly reaches uniformity, improving the user experience. Save resources at the same time.
  • the first maximum temperature and the second maximum temperature may be the maximum value among multiple temperature values, or may be the minimum value among multiple temperature values, specifically set according to the operating status of the air conditioner, for example, the When the operating state is in the cooling mode, the first maximum temperature and the second maximum temperature may be the maximum value among multiple temperature values.
  • the first maximum temperature and the second maximum temperature The temperature can be the minimum value among multiple temperature values.
  • control method of the air conditioner of the present application also includes: obtaining the operating status of the air conditioner.
  • the operating states of the air conditioner include cooling, heating, blowing, dehumidification, etc.
  • This application mainly illustrates the two commonly used operating states of air conditioners, cooling and heating.
  • step 120 includes: using the maximum value among the temperature values of different areas at the first altitude as the first maximum temperature, and using the temperature values of the different areas at the second altitude as the first maximum temperature.
  • the maximum value among them is regarded as the second maximum temperature.
  • the air conditioner in the cooling mode of the air conditioner, the air conditioner needs to cool down the indoor temperature, and the controller controls the air guide direction of the first vertical swing blade 100 to face the area corresponding to the maximum temperature value in the first height. , targeted air supply to this area can quickly cool down the area corresponding to the maximum temperature value at the first height.
  • the controller controls the air guide direction of the second vertical swing blade 200 to face the maximum temperature value at the second height.
  • the corresponding area can quickly cool down the area corresponding to the maximum temperature value at the second height, which can quickly reduce the temperature difference at different heights within the action space of the air conditioner, achieving rapid cooling and making the indoor temperature quickly reach uniformity. .
  • step 120 includes: taking the minimum value among the temperature values of different areas at the first height as the first maximum temperature; when the operating state of the air conditioner is in the heating mode, In the case of the thermal mode, the minimum value among the temperature values of different areas at the second height is used as the second maximum temperature.
  • the controller controls the air guide direction of the first vertical swing blade 100 to face the position corresponding to the minimum temperature value in the first height. area, targeted air supply to the area can quickly heat up the area corresponding to the minimum temperature value at the first height.
  • the controller controls the air guide direction of the second vertical swing blade 200 to face the minimum temperature value at the second height.
  • the corresponding area can quickly cool down the area corresponding to the minimum temperature value at the second height, quickly reduce the temperature difference at different heights within the action space of the air conditioner, and achieve rapid heating while making the indoor temperature quickly reach uniformity. .
  • the targeted air supply of the vertical swing blades of the air conditioner can quickly make the indoor temperature uniform. After the indoor temperature reaches uniformity, the directional air supply mode of the vertical swing blades of the air conditioner ends.
  • control method of the air conditioner of the present application also includes: based on the temperature values of different areas at the first height, determining the difference between the temperature values in different areas at the first height; when the difference is less than the preset temperature down, control the first vertical swing blade 100 to automatically swing; based on the temperature values of different areas at the second height, determine the difference in temperature values in different areas at the second height; when the difference is less than the preset temperature, control The second vertical swing leaf 200 swings automatically.
  • the controller stops the directional air supply mode of the vertical swing blades corresponding to the height, and at the same time turns on the vertical swing blades.
  • the controller controls the vertical swing blade to automatically swing air, which can ensure that the air supply outlet of the air conditioner at this height continues to supply air while maintaining indoor temperature uniformity at this height.
  • the controller controls the first vertical swing leaf 100 and the second vertical swing leaf 200 to swing automatically, that is, the controller can control the first vertical swing leaf 100 and the second vertical swing leaf 200 to reciprocate to the left or right to swing at a constant speed.
  • the first vertical swing blade 100 can reciprocate and circulate air at a constant speed to the first height
  • the second vertical swing blade 200 can reciprocate and circulate air at a constant speed to the second height to maintain uniform temperatures at the first and second heights.
  • the orientation of the first vertical swing leaf 100 and the second vertical swing leaf 200 The air guide directions of the blowing can be different. Therefore, the air guide directions of the first vertical swing blade 100 and the second vertical swing blade 200 after ending the directional blowing mode and entering the automatic swing mode can be different.
  • the first vertical swing blade 100 and the second vertical swing blade 200 are driven by different driving components, and the driving component may be a motor.
  • the preset temperature may be a certain temperature value set by the user.
  • the preset temperature may be 0.8-2.5°C, such as 1°C or 2°C.
  • step 110 includes: obtaining the temperature values of the first position, the second position and the third position at the first height within the action space of the air conditioner, and obtaining the temperature values at the second height within the action space of the air conditioner.
  • obtaining the temperature values of different areas may be to collect temperature values of multiple areas at different heights, and due to the diversity of indoor patterns, the number and location of the collected areas at different heights may be the same or different.
  • the number of areas for collecting temperature values at different heights can be set to 2 to 5.
  • Set a temperature sensor in the temperature collection area to collect the temperature value in this area.
  • this application mainly uses the indoor layout as a regular rectangular body, and three temperature collection areas are set up at the first height and the second height for exemplary explanation.
  • first position, the second position and the third position are distributed at the first height in the action space and are circumferentially distributed relative to the first air outlet
  • fourth position, the fifth position and the sixth position are distributed at the action space.
  • the second height in the space and is distributed circumferentially relative to the second air outlet.
  • first position, the second position and the third position are randomly distributed at the first height.
  • first position and the third position are distributed on the wind guide surface of the first vertical swing blade 100
  • the second position may be located within the fan-shaped area or outside the fan-shaped area.
  • the fourth position, the fifth position and the sixth position are randomly distributed at the second height.
  • the fourth position and the sixth position are distributed in the wind-guiding fan-shaped area of the second vertical swing blade 200 on both sides of the fan-shaped area, the fifth position can be located within the sector-shaped area or outside the sector-shaped area.
  • the temperature sensor when the temperature sensor is distributed in the temperature collection area, it can be installed on the wall of the area, or on the desk, bed board, or other location, and the selection can be made according to the specific situation.
  • the temperature collection areas of different heights are distributed in representative areas, so that the temperature of a specific indoor area can be collected more accurately and representatively, so that the first The vertical swing blades 100 and the second vertical swing blades 200 supply air in a more targeted manner, further increasing the indoor temperature to a uniform speed.
  • the indoor height is horizontally divided into a first height plane of 1.8m and a second height plane of 0.2m.
  • the first position, the second position and the third position are distributed at the first height in the action space and are circumferentially distributed relative to the first air outlet.
  • the first temperature is set at the first position, the second position and the third position respectively.
  • the fourth position, the fifth position and the sixth position are distributed at the second height in the action space and are circumferentially distributed relative to the second air outlet.
  • the second temperatures are respectively set at the fourth position, the fifth position and the sixth position.
  • the temperature values of 6 locations can be obtained through the above 6 temperature sensors.
  • the first vertical swing leaf 100 and the second vertical swing leaf 200 can adjust the temperature of each position according to the temperature of each position. Different directional air supply can quickly reduce the temperature difference at different heights within the action space of the air conditioner, so that the indoor temperature can quickly reach uniformity.
  • the controller controls the vertical swing blades to swing freely to maintain the indoor temperature. The temperature is uniform.
  • the controller controls the air guide direction of the first vertical swing blade 100 to face T1. area, the controller controls the air guide direction of the second vertical swing blade 200 toward the area where T2 is located to perform directional air supply.
  • the controller controls the first vertical swing leaf 100 to swing automatically.
  • the controller controls the second vertical swing blade.
  • Leaf 200 automatically swings the air to provide even air supply.
  • the controller controls the air guide direction of the first vertical swing blade 100 to face T3
  • the controller controls the air guide direction of the second vertical swing blade 200 to face the area where T4 is located to perform directional air supply.
  • the controller controls the first vertical swing leaf 100 to swing automatically.
  • the controller controls the second vertical swing blade.
  • Leaf 200 automatically swings the air to provide even air supply.
  • the control method of the air conditioner provided by the present application uses the controller to control the first vertical swing blade 100 in the cooling or heating mode of the air conditioner to rotate to the direction of the maximum temperature at the first height to supply air, and at the same time control
  • the second vertical swing blade 200 rotates to the direction of the maximum temperature at the second height to supply air, which can quickly reduce the temperature difference at different heights in the action space of the air conditioner, so that the indoor temperature can quickly reach uniformity.
  • this embodiment also provides a control device for an air conditioner, including: a first acquisition module 310 , a determination module 320 , a second acquisition module 330 and a control module 340 .
  • the first acquisition module 310 is used to acquire the temperature values of different areas at the first height and the temperature values of different areas at the second height within the action space of the air conditioner.
  • the determination module 320 is configured to determine the first maximum temperature among the temperature values of different areas at the first altitude based on the temperature values of different areas at the first altitude, and determine the second maximum temperature based on the temperature values of different areas at the second altitude. The second highest value temperature among the temperature values in different areas.
  • the second acquisition module 330 is used to acquire the first location information of the area corresponding to the first maximum temperature and the second location information of the area corresponding to the second maximum temperature.
  • the control module 340 is configured to control the air guide direction of the first vertical swing blade 100 toward the area corresponding to the first maximum temperature based on the first position information, and control the air guide direction of the second vertical swing blade 200 based on the second position information.
  • the direction is towards the area corresponding to the second maximum temperature.
  • the first air outlet is used to discharge air to the area corresponding to the first height
  • the second air outlet is used to discharge air to the area corresponding to the second height.
  • the control device of the air conditioner uses the controller to control the first vertical swing blade 100 to rotate in a targeted manner to the direction of the maximum temperature at the first height to supply air, and at the same time controls the second vertical swing blade 200 to rotate in a targeted manner.
  • Supplying air in the direction of the maximum temperature at the second height can quickly reduce the temperature difference at different heights within the action space of the air conditioner, so that the indoor temperature can quickly reach uniformity.
  • Figure 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 410, a communications interface (Communications Interface) 420, a memory (memory) 430 and a communication bus 440.
  • the processor 410, the communication interface 420, and the memory 430 complete communication with each other through the communication bus 440.
  • the processor 410 may call logical instructions in the memory 430 to execute a control method of the air conditioner.
  • the method includes: obtaining temperature values of different areas at a first height and different areas at a second height within the action space of the air conditioner.
  • the second maximum temperature among the temperature values of the region obtain the first position information of the region corresponding to the first maximum temperature and the second position information of the region corresponding to the second maximum temperature; based on the first position information, control
  • the air guide direction of the first vertical swing blade 100 is directed toward the area corresponding to the first maximum temperature.
  • the air guide direction of the second vertical swing blade 200 is controlled to face the area corresponding to the second maximum temperature.
  • the above-mentioned logical instructions in the memory 430 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program can be stored on a non-transitory computer-readable storage medium.
  • the computer can Executing the control method of the air conditioner provided by the above methods, the method includes: obtaining the temperature values of different areas at the first height and the temperature values of different areas at the second height within the action space of the air conditioner; based on the first The temperature values of different areas at different heights are used to determine the first maximum temperature among the temperature values of different areas at the first height. Based on the temperature values of different areas at the second height, the first maximum temperature among the temperature values at different areas at the second height is determined.
  • the air guide direction is directed toward the area corresponding to the first maximum temperature.
  • the air guide direction of the second vertical swing blade 200 is controlled to be directed toward the area corresponding to the second maximum temperature.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by the processor to execute the control method of the air conditioner provided by each of the above methods.
  • the method includes: obtaining the temperature values of different areas at the first height and the temperature values of different areas at the second height within the action space of the air conditioner; determining the different areas at the first height based on the temperature values of the different areas at the first height.
  • the first maximum temperature among the temperature values based on the temperature values in different areas at the second height, determine the second maximum temperature among the temperature values in different areas at the second height; obtain the area corresponding to the first maximum temperature
  • the first position information of the area corresponding to the second maximum temperature and the second position information of the area corresponding to the second maximum temperature based on the first position information, the air guide direction of the first vertical swing blade 100 is controlled toward the area corresponding to the first maximum temperature, based on The second position information controls the air guide direction of the second vertical swing blade 200 to face the area corresponding to the second maximum temperature.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供一种空调器的控制方法、装置及空调器,控制方法包括: 获取空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;基于第一高度的不同区域的温度值,确定第一最值温度,基于第二高度的不同区域的温度值,确定第二最值温度;获取第一最值温度所对应的区域的第一位置信息和第二最值温度所对应的区域的第二位置信息;基于第一位置信息,控制第一竖摆叶(100)的导风方向朝向第一最值温度所对应的区域,基于第二位置信息,控制第二竖摆叶(200)的导风方向朝向第二最值温度所对应的区域。本申请可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀。

Description

一种空调器的控制方法、装置及空调器
相关申请的交叉引用
本申请要求于2022年05月16日提交的申请号为202210529543.7,发明名称为“一种空调器的控制方法、装置及空调器”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器的控制方法、装置及空调器。
背景技术
随着科技的发展,空调成为最常用的电器之一。空调器一般设有导风机构,导风机构包括横摆叶和竖摆叶,导风机构可以关闭、摆动和停止在某个角度对室内送风。
现有的导风结构一般为一体式结构,导风结构在导风时,横摆叶只能全部向上或全部向下导风,竖摆叶只能全部向左或全部向右导风,导风结构朝向某一方向送风,难以快速使室内的温度达到均匀,空调的调节效率较差,影响人们的舒适性。
发明内容
本申请提供一种空调器的控制方法、装置及空调器,用以解决现有的空调难以快速使室内的温度达到均匀的问题。
本申请提供一种空调器的控制方法,所述空调器具有第一出风口与第二出风口,所述第一出风口与所述第二出风口沿所述空调器的高度方向上、下布置,所述空调器设有对应所述第一出风口的第一竖摆叶与对应所述第二出风口的第二竖摆叶;所述控制方法包括:获取所述空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,基于所述第二高度的不同区域的温度值, 确定所述第二高度的不同区域的温度值当中的第二最值温度;获取所述第一最值温度所对应的区域的第一位置信息和所述第二最值温度所对应的区域的第二位置信息;基于所述第一位置信息,控制所述第一竖摆叶的导风方向朝向所述第一最值温度所对应的区域,基于所述第二位置信息,控制所述第二竖摆叶的导风方向朝向所述第二最值温度所对应的区域;其中,所述第一出风口用于向所述第一高度所对应的区域出风,所述第二出风口用于向所述第二高度所对应的区域出风。
根据本申请提供的一种空调器的控制方法,还包括:获取所述空调器的运行状态;相应地,所述基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,包括:在所述空调器的运行状态为制冷模式的情况下,将所述第一高度的不同区域的温度值当中的最大值作为所述第一最值温度;相应地,所述基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度,包括:在所述空调器的运行状态为制冷模式的情况下,将所述第二高度的不同区域的温度值当中的最大值作为所述第二最值温度。
根据本申请提供的一种空调器的控制方法,还包括:获取所述空调器的运行状态;相应地,所述基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,包括:在所述空调器的运行状态为制热模式的情况下,将所述第一高度的不同区域的温度值当中的最小值作为所述第一最值温度;相应地,所述基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度,包括:在所述空调器的运行状态为制热模式的情况下,将所述第二高度的不同区域的温度值当中的最小值作为所述第二最值温度。
根据本申请提供的一种空调器的控制方法,还包括:基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值的差值;在所述差值小于预设温度的情况下,控制所述第一竖摆叶自动摆风;基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值的差值;在所述差值小于预设温度的情况下,控制所述第二竖摆叶自动摆风。
根据本申请提供的一种空调器的控制方法,所述获取所述空调器的作 用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值,包括:获取所述空调器的作用空间内的处于第一高度的第一位置、第二位置及第三位置的温度值,获取所述空调器的作用空间内的处于第二高度的第四位置、第五位置及第六位置的温度值。
根据本申请提供的一种空调器的控制方法,所述第一位置、所述第二位置及所述第三位置分布于所述作用空间内的第一高度,并相对于所述第一出风口呈周向分布,所述第四位置、所述第五位置及所述第六位置分布于所述作用空间内的第二高度,并相对于所述第二出风口呈周向分布。
本申请还提供一种空调器的控制装置,包括:所述空调器具有第一出风口与第二出风口,所述第一出风口与所述第二出风口沿所述空调器的高度方向上下布置,所述空调器设有对应所述第一出风口的第一竖摆叶与对应所述第二出风口的第二竖摆叶;所述控制装置包括:第一获取模块,用于获取所述空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;确定模块,用于基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度;第二获取模块,用于获取所述第一最值温度所对应的区域的第一位置信息和所述第二最值温度所对应的区域的第二位置信息;控制模块,用于基于所述第一位置信息,控制所述第一竖摆叶的导风方向朝向所述第一最值温度所对应的区域,基于所述第二位置信息,控制所述第二竖摆叶的导风方向朝向所述第二最值温度所对应的区域;其中,所述第一出风口用于向所述第一高度所对应的区域出风,所述第二出风口用于向所述第二高度所对应的区域出风。
本申请还提供一种空调器,包括第一温度传感器、第二温度传感器、控制器、第一竖摆叶及第二竖摆叶;所述第一温度传感器、所述第二温度传感器分别与所述控制器连接,所述控制器分别与所述第一竖摆叶、所述第二竖摆叶连接;所述控制器存储有计算机程序,所述计算机程序被所述控制器执行时实现上述任一项所述空调器的控制方法;其中,所述第一温度传感器包括多个,多个所述第一温度传感器分布于所述第一高度的不同区域,所述第二温度传感器包括多个,多个所述第二温度传感器分布于所 述第二高度的不同区域。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述空调器的控制方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述空调器的控制方法。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述空调器的控制方法。
本申请提供的空调器的控制方法、装置及空调器,通过控制器控制第一竖摆叶针对性地转动至第一高度的最值温度的方向送风,同时控制第二竖摆叶针对性地转动至第二高度的最值温度的方向送风,可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的空调器的控制方法的流程示意图;
图2是本申请提供的温度传感器在空调器的作用空间内的分布示意图;
图3是本申请提供的空调器的控制装置的结构示意图;
图4是本申请提供的电子设备的结构示意图。
附图标记:
100:第一竖摆叶;200:第二竖摆叶;300:第一温度传感器;400:第二温度传感器。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实 施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
空调器一般设有导风机构,导风机构包括横摆叶和竖摆叶,导风机构可以关闭、摆动和停止在某个角度对室内送风。
现有的导风结构一般为一体式结构,导风结构在导风时,横摆叶只能全部向上或全部向下导风,竖摆叶只能全部向左或全部向右导风,导风结构朝向某一方向送风,难以快速使室内的温度达到均匀,空调的调节效率较差,影响人们的舒适性。
针对上述问题,本申请提供一种空调器的控制方法、装置及空调器,用以解决现有的空调难以快速使室内的温度达到均匀的问题。
下面结合图1-图4描述本申请的提供的空调器的控制方法、装置及空调器。
可选的,该空调器的控制方法可以适用的空调机型包括但不限于挂壁式空调、柜式空调、吊顶空调、新风空调及其它配置有室内侧室内机的空调产品。本申请主要是以柜式空调进行示例性说明,但应当理解的是,本领域技术人员能够在本公开实施例公开的技术构思的基础上,通过适应性 改进将该空调器的控制方法应用于空调及相关领域的产品中,应当也被涵盖在本申请技术构思的保护范围之内。
如图2所示,本申请提供的空调器包括第一温度传感器300、第二温度传感器400、控制器、第一竖摆叶100及第二竖摆叶200;第一温度传感器300、第二温度传感器400分别与控制器连接,控制器分别与第一竖摆叶100、第二竖摆叶200连接;控制器存储有计算机程序,计算机程序被控制器执行时实现本申请提供的空调器的控制方法。
其中,第一温度传感器300包括多个,多个第一温度传感器300分布于第一高度的不同区域,第二温度传感器400包括多个,多个第二温度传感器400分布于第二高度的不同区域。
本申请的提供的空调器,通过控制器控制第一竖摆叶100针对性地转动至第一高度的最值温度的方向送风,同时控制第二竖摆叶200针对性地转动至第二高度的最值温度的方向送风,可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀。
进一步的,本申请提供的空调器具有第一出风口与第二出风口,第一出风口与第二出风口沿空调器的高度方向上、下布置,空调器设有对应第一出风口的第一竖摆叶100与对应第二出风口的第二竖摆叶200。
需要说明的是,沿空调器的高度方向布置的出风口的数量与竖摆叶的组数相对应,竖摆叶的组数与空调器的作用空间的高度划分层数相对应,作用空间的高度划分层数与温度传感器的组数相对应。
例如,沿空调器的高度方向布置的出风口设置为上、中、下三个,对应出风口的设置有第一竖摆叶100、第二竖摆叶200和第三竖摆叶,沿空调器的高度方向将空调器的作用空间划分为第一高度、第二高度及第三高度,第一出风口用于向第一高度所对应的区域出风,第二出风口用于向第二高度所对应的区域出风,第三出风口用于向第三高度所对应的区域出风,在第一高度的不同区域设置多个第一温度传感器300,在第二高度的不同区域设置多个第二温度传感器400,在第三高度的不同区域设置多个第三温度传感器,多个温度传感器用于获取对应高度的不同位置的温度值,以使控制器基于该温度信息控制竖摆叶的导风方向。
其中,温度传感器带有位置信息,温度传感器可以将其测量的温度值 和位置信息发送至控制器。
本申请主要是以设置两个出风口、两组竖摆叶进行示例性说明。
如图1所示,本申请的提供的空调器的控制方法包括如下步骤:
步骤110,获取空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值。
步骤120,基于第一高度的不同区域的温度值,确定第一高度的不同区域的温度值当中的第一最值温度,基于第二高度的不同区域的温度值,确定第二高度的不同区域的温度值当中的第二最值温度。
步骤130,获取第一最值温度所对应的区域的第一位置信息和第二最值温度所对应的区域的第二位置信息。
步骤140,基于第一位置信息,控制第一竖摆叶100的导风方向朝向第一最值温度所对应的区域,基于第二位置信息,控制第二竖摆叶200的导风方向朝向第二最值温度所对应的区域。
其中,第一出风口用于向第一高度所对应的区域出风,第二出风口用于向第二高度所对应的区域出风。
本申请的提供的空调器的控制方法,将空调器的作用空间划分为第一高度和第二高度,并分别获取第一高度和第二高度不同区域的温度值,控制器基于多个温度值获取第一高度的不同区域的温度值当中的第一最值温度和其对应的第一位置信息,控制器基于多个温度值获取第二高度的不同区域的温度值当中的第二最值温度和其对应的第二位置信息,从而控制第一竖摆叶100的导风方向朝向第一最值温度所对应的区域,控制第二竖摆叶200的导风方向朝向第二最值温度所对应的区域。
本申请的提供的空调器的控制方法,通过控制器控制第一竖摆叶100针对性地转动至第一高度的最值温度的方向送风,同时控制第二竖摆叶200针对性地转动至第二高度的最值温度的方向送风,可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀。
进一步的,第一高度和第二高度的设置可以基于人体高度设置,第一高度可以为人体头部所能感受到的高度区间,例如可以设置第一高度为1.8~2.1m,第二高度为人体脚部所能感受到的高度区间,可以设置第二高度为0.1~0.3m。这样的高度设置可以使控制器控制空调器快速对人体高度 所能感受到的高度区间内的温度进行调节,从而使人体高度所能感受到的高度区间内的温度快速达到均匀,提高用户体验的同时节约资源。
其中,第一最值温度和第二最值温度可以为多个温度值中的最大值,也可以为多个温度值中的最小值,具体根据空调器的运行状态设定,例如空调器的运行状态在制冷模式时,第一最值温度和第二最值温度可以为多个温度值中的最大值,空调器的运行状态在制热模式时,第一最值温度和第二最值温度可以为多个温度值中的最小值。
可以理解的是,本申请的空调器的控制方法还包括:获取空调器的运行状态。
其中,空调器的运行状态包括制冷、制热、吹风、除湿等,本申请主要是以空调器常用的制冷、制热两个运行状态进行示例性说明。
例如,在空调器的运行状态为制冷模式的情况下,步骤120包括:将第一高度的不同区域的温度值当中的最大值作为第一最值温度,将第二高度的不同区域的温度值当中的最大值作为第二最值温度。
在本实施例中,在空调器的制冷模式的情况下,空调器需要对室内温度进行降温,控制器控制第一竖摆叶100的导风方向朝向第一高度中温度最大值所对应的区域,对该区域有针对性的送风,可以快速对第一高度的温度最大值所对应的区域进行降温,控制器控制第二竖摆叶200的导风方向朝向第二高度中温度最大值所对应的区域,可以快速对第二高度的温度最大值所对应的区域进行降温,可以快速减小空调器的作用空间内不同高度的温度差较,实现快速制冷的同时使室内的温度快速达到均匀。
同样的,在空调器的运行状态为制热模式的情况下,步骤120包括:将第一高度的不同区域的温度值当中的最小值作为第一最值温度;在空调器的运行状态为制热模式的情况下,将第二高度的不同区域的温度值当中的最小值作为第二最值温度。
在本实施例中,在空调器的制热模式的情况下,空调器需要对室内温度进行升温,控制器控制第一竖摆叶100的导风方向朝向第一高度中温度最小值所对应的区域,对该区域有针对性的送风,可以快速对第一高度的温度最小值所对应的区域进行升温,控制器控制第二竖摆叶200的导风方向朝向第二高度中温度最小值所对应的区域,可以快速对第二高度的温度 最小值所对应的区域进行降温,快速减小空调器的作用空间内不同高度的温度差,实现快速制热的同时使室内的温度快速达到均匀。
需要说明的是,空调器的竖摆叶针对性送风可以使室内的温度快速达到均匀,在室内温度达到均匀后,空调器的竖摆叶的定向送风模式结束。
可以理解的是,本申请的空调器的控制方法还包括:基于第一高度的不同区域的温度值,确定第一高度的不同区域的温度值的差值;在差值小于预设温度的情况下,控制第一竖摆叶100自动摆风;基于第二高度的不同区域的温度值,确定第二高度的不同区域的温度值的差值;在差值小于预设温度的情况下,控制第二竖摆叶200自动摆风。
本申请的空调器的控制方法,在不同高度的不同区域的温度值的差值小于预设温度的情况下,控制器停止对应高度的竖摆叶的定向送风模式,同时开启该竖摆叶的自动摆风模式,控制器控制该竖摆叶自动摆风,这样可以保证该高度的空调器的送风口持续送风,同时维持该高度的室内的温度均匀性。
其中,控制器控制第一竖摆叶100和第二竖摆叶200自动摆风,即控制器可以控制第一竖摆叶100和第二竖摆叶200向左或向右往复循环匀速摆动,第一竖摆叶100可以向第一高度进行往复循环匀速送风,第二竖摆叶200可以向第二高度进行往复循环匀速送风,维持第一高度和第二高度的温度均匀。
可以理解的是,由于不同高度的不同区域达到温度均匀的时间点可能不同,不同高度的不同区域的最值温度对应的区域也可能不同,第一竖摆叶100和第二竖摆叶200定向吹风的导风方向可以不同,因此,第一竖摆叶100和第二竖摆叶200结束定向吹风模式进入自动摆风模式后的导风方向可以不同。
因此,在某实施例中,第一竖摆叶100和第二竖摆叶200由不同的驱动部件进行驱动,驱动部件可以为电机。
其中,预设温度可以为用户设定的某一温度值,例如,预设温度可以为0.8~2.5℃,例如1℃或2℃。
在一些实施例中,步骤110包括:获取空调器的作用空间内的处于第一高度的第一位置、第二位置及第三位置的温度值,获取空调器的作用空 间内的处于第二高度的第四位置、第五位置及第六位置的温度值。
可以理解的是,获取不同区域的温度值可以为采集不同高度的多个区域的温度值,且由于室内格局的多样性,不同高度的采集的区域的数量的位置可以相同也可以不同。
例如,考虑采集温度的代表性和设备成本因素,不同高度的采集温度值的区域的数量可以设置为2~5个。在温度采集区设置温度传感器,以采集该区域的温度值。
如图2所示,本申请主要以室内格局为规整矩形体,在第一高度和第二高度均设置3个温度采集区进行示例性说明。
具体地,第一位置、第二位置及第三位置分布于作用空间内的第一高度,并相对于第一出风口呈周向分布,第四位置、第五位置及第六位置分布于作用空间内的第二高度,并相对于第二出风口呈周向分布。
可以理解的是,第一位置、第二位置及第三位置在第一高度的位置随机分布,在某些实施例中,第一位置和第三位置分布于第一竖摆叶100导风的扇形区域的两侧,第二位置可以位于该扇形区域内也可以位于该扇形区域外。
同样的,第四位置、第五位置及第六位置在第二高度的位置随机分布,在某些实施例中,第四位置和第六位置分布于第二竖摆叶200导风的扇形区域的两侧,第五位置可以位于该扇形区域内也可以位于该扇形区域外。
在实际使用中,温度传感器分布于该温度采集区时,可以设置于该区域的墙壁上,也可以设置于书桌、床板或其他位置,根据具体情况进行选择。
在本实施例中,通过该温度采集区的位置分布方式,将不同高度的温度采集区分布于具有代表性的区域,可以较为准确且具有代表性的采集室内特定区域的温度,以使第一竖摆叶100和第二竖摆叶200更有针对性的送风,进一步提高室内的温度达到均匀的速度。
如图2所示,在一个实施例中,将室内高度水平划分为1.8m的第一高度平面和0.2m的第二高度平面。
第一位置、第二位置及第三位置分布于作用空间内的第一高度,并相对于第一出风口呈周向分布,在第一位置、第二位置及第三位置分别设置 第一温度传感器a1、第一温度传感器b1及第一温度传感器c3。
第四位置、第五位置及第六位置分布于作用空间内的第二高度,并相对于第二出风口呈周向分布,在第四位置、第五位置及第六位置分别设置第二温度传感器a2、第二温度传感器b2、第二温度传感器c2。
本实施例通过上述6个温度传感器可以得到6个位置的温度值,当用户对空调器设置全屋均匀温度模式时,第一竖摆叶100和第二竖摆叶200可以根据各位置温度的不同进行定向送风,可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀,在室内温度较为均匀时,控制器控制竖摆叶自由摆风,维持室内的温度均匀。
具体控制方式如下:
一、在空调器制冷模式时,获取max(a1,b1,c1)的温度T1和max(a2,b2,c2)的温度T2,控制器控制第一竖摆叶100的导风方向朝向T1所在区域,控制器控制第二竖摆叶200的导风方向朝向T2所在区域,进行定向送风。
当(a1,b1,c1)的温差小于t℃时,控制器控制第一竖摆叶100自动摆风,当(a2,b2,c2)的温差小于t℃时,控制器控制第二竖摆叶200自动摆风,进行均匀送风。
二、在空调器制热模式时,获取min(a1,b1,c1)的温度T3和min(a2,b2,c2)的温度T4,控制器控制第一竖摆叶100的导风方向朝向T3所在区域,控制器控制第二竖摆叶200的导风方向朝向T4所在区域,进行定向送风。
当(a1,b1,c1)的温差小于t℃时,控制器控制第一竖摆叶100自动摆风,当(a2,b2,c2)的温差小于t℃时,控制器控制第二竖摆叶200自动摆风,进行均匀送风。
本申请的提供的空调器的控制方法,通过控制器在空调器的制冷或制热模式下控制第一竖摆叶100针对性地转动至第一高度的最值温度的方向送风,同时控制第二竖摆叶200针对性地转动至第二高度的最值温度的方向送风,可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀。
优选地,如图3所示,本实施例还提供一种空调器的控制装置,包括: 第一获取模块310、确定模块320、第二获取模块330及控制模块340。
第一获取模块310,用于获取空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值。
确定模块320,用于基于第一高度的不同区域的温度值,确定第一高度的不同区域的温度值当中的第一最值温度,基于第二高度的不同区域的温度值,确定第二高度的不同区域的温度值当中的第二最值温度。
第二获取模块330,用于获取第一最值温度所对应的区域的第一位置信息和第二最值温度所对应的区域的第二位置信息。
控制模块340,用于基于第一位置信息,控制第一竖摆叶100的导风方向朝向第一最值温度所对应的区域,基于第二位置信息,控制第二竖摆叶200的导风方向朝向第二最值温度所对应的区域。
其中,第一出风口用于向第一高度所对应的区域出风,第二出风口用于向第二高度所对应的区域出风。
本申请的提供的空调器的控制装置,通过控制器控制第一竖摆叶100针对性地转动至第一高度的最值温度的方向送风,同时控制第二竖摆叶200针对性地转动至第二高度的最值温度的方向送风,可以快速减小空调器的作用空间内不同高度的温度差,以使室内的温度快速达到均匀。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行空调器的控制方法,该方法包括:获取空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;基于第一高度的不同区域的温度值,确定第一高度的不同区域的温度值当中的第一最值温度,基于第二高度的不同区域的温度值,确定第二高度的不同区域的温度值当中的第二最值温度;获取第一最值温度所对应的区域的第一位置信息和第二最值温度所对应的区域的第二位置信息;基于第一位置信息,控制第一竖摆叶100的导风方向朝向第一最值温度所对应的区域,基于第二位置信息,控制第二竖摆叶200的导风方向朝向第二最值温度所对应的区域。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的空调器的控制方法,该方法包括:获取空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;基于第一高度的不同区域的温度值,确定第一高度的不同区域的温度值当中的第一最值温度,基于第二高度的不同区域的温度值,确定第二高度的不同区域的温度值当中的第二最值温度;获取第一最值温度所对应的区域的第一位置信息和第二最值温度所对应的区域的第二位置信息;基于第一位置信息,控制第一竖摆叶100的导风方向朝向第一最值温度所对应的区域,基于第二位置信息,控制第二竖摆叶200的导风方向朝向第二最值温度所对应的区域。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的空调器的控制方法,该方法包括:获取空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;基于第一高度的不同区域的温度值,确定第一高度的不同区域的温度值当中的第一最值温度,基于第二高度的不同区域的温度值,确定第二高度的不同区域的温度值当中的第二最值温度;获取第一最值温度所对应的区域的第一位置信息和第二最值温度所对应的区域的第二位置信息;基于第一位置信息,控制第一竖摆叶100的导风方向朝向第一最值温度所对应的区域,基于第二位置信息,控制第二竖摆叶200的导风方向朝向第二最值温度所对应的 区域。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空调器的控制方法,所述空调器具有第一出风口与第二出风口,所述第一出风口与所述第二出风口沿所述空调器的高度方向上、下布置,所述空调器设有对应所述第一出风口的第一竖摆叶与对应所述第二出风口的第二竖摆叶;所述控制方法包括:
    获取所述空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;
    基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度;
    获取所述第一最值温度所对应的区域的第一位置信息和所述第二最值温度所对应的区域的第二位置信息;
    基于所述第一位置信息,控制所述第一竖摆叶的导风方向朝向所述第一最值温度所对应的区域,基于所述第二位置信息,控制所述第二竖摆叶的导风方向朝向所述第二最值温度所对应的区域;
    其中,所述第一出风口用于向所述第一高度所对应的区域出风,所述第二出风口用于向所述第二高度所对应的区域出风。
  2. 根据权利要求1所述的空调器的控制方法,其中,还包括:获取所述空调器的运行状态;
    相应地,所述基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,包括:
    在所述空调器的运行状态为制冷模式的情况下,将所述第一高度的不同区域的温度值当中的最大值作为所述第一最值温度;
    相应地,所述基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度,包括:
    在所述空调器的运行状态为制冷模式的情况下,将所述第二高度的不同区域的温度值当中的最大值作为所述第二最值温度。
  3. 根据权利要求1所述的空调器的控制方法,其中,还包括:获取所述空调器的运行状态;
    相应地,所述基于所述第一高度的不同区域的温度值,确定所述第一 高度的不同区域的温度值当中的第一最值温度,包括:
    在所述空调器的运行状态为制热模式的情况下,将所述第一高度的不同区域的温度值当中的最小值作为所述第一最值温度;
    相应地,所述基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度,包括:
    在所述空调器的运行状态为制热模式的情况下,将所述第二高度的不同区域的温度值当中的最小值作为所述第二最值温度。
  4. 根据权利要求1至3任一所述的空调器的控制方法,其中,还包括:
    基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值的差值;在所述差值小于预设温度的情况下,控制所述第一竖摆叶自动摆风;
    基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值的差值;在所述差值小于预设温度的情况下,控制所述第二竖摆叶自动摆风。
  5. 根据权利要求1至3任一所述的空调器的控制方法,其中,所述获取所述空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值,包括:
    获取所述空调器的作用空间内的处于第一高度的第一位置、第二位置及第三位置的温度值,获取所述空调器的作用空间内的处于第二高度的第四位置、第五位置及第六位置的温度值。
  6. 根据权利要求5所述的空调器的控制方法,其中,所述第一位置、所述第二位置及所述第三位置分布于所述作用空间内的第一高度,并相对于所述第一出风口呈周向分布,所述第四位置、所述第五位置及所述第六位置分布于所述作用空间内的第二高度,并相对于所述第二出风口呈周向分布。
  7. 一种空调器的控制装置,其中,所述空调器具有第一出风口与第二出风口,所述第一出风口与所述第二出风口沿所述空调器的高度方向上下布置,所述空调器设有对应所述第一出风口的第一竖摆叶与对应所述第二出风口的第二竖摆叶;所述控制装置包括:
    第一获取模块,用于获取所述空调器的作用空间内的处于第一高度的不同区域的温度值和处于第二高度的不同区域的温度值;
    确定模块,用于基于所述第一高度的不同区域的温度值,确定所述第一高度的不同区域的温度值当中的第一最值温度,基于所述第二高度的不同区域的温度值,确定所述第二高度的不同区域的温度值当中的第二最值温度;
    第二获取模块,用于获取所述第一最值温度所对应的区域的第一位置信息和所述第二最值温度所对应的区域的第二位置信息;
    控制模块,用于基于所述第一位置信息,控制所述第一竖摆叶的导风方向朝向所述第一最值温度所对应的区域,基于所述第二位置信息,控制所述第二竖摆叶的导风方向朝向所述第二最值温度所对应的区域;
    其中,所述第一出风口用于向所述第一高度所对应的区域出风,所述第二出风口用于向所述第二高度所对应的区域出风。
  8. 一种空调器,包括第一温度传感器、第二温度传感器、控制器、第一竖摆叶及第二竖摆叶;
    所述第一温度传感器、所述第二温度传感器分别与所述控制器连接,所述控制器分别与所述第一竖摆叶、所述第二竖摆叶连接;
    所述控制器存储有计算机程序,所述计算机程序被所述控制器执行时实现如权利要求1至6任一项所述空调器的控制方法;
    其中,所述第一温度传感器包括多个,多个所述第一温度传感器分布于所述第一高度的不同区域,所述第二温度传感器包括多个,多个所述第二温度传感器分布于所述第二高度的不同区域。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述空调器的控制方法。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述空调器的控制方法。
PCT/CN2022/139118 2022-05-16 2022-12-14 一种空调器的控制方法、装置及空调器 WO2023221484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210529543.7A CN115077042A (zh) 2022-05-16 2022-05-16 一种空调器的控制方法、装置及空调器
CN202210529543.7 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221484A1 true WO2023221484A1 (zh) 2023-11-23

Family

ID=83246558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139118 WO2023221484A1 (zh) 2022-05-16 2022-12-14 一种空调器的控制方法、装置及空调器

Country Status (2)

Country Link
CN (1) CN115077042A (zh)
WO (1) WO2023221484A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115077042A (zh) * 2022-05-16 2022-09-20 重庆海尔空调器有限公司 一种空调器的控制方法、装置及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762614A (zh) * 2018-07-09 2020-02-07 青岛海尔空调器有限总公司 立式空调器室内机
CN110779088A (zh) * 2018-07-12 2020-02-11 青岛海尔空调器有限总公司 空调器的送风控制方法与空调器
CN113551377A (zh) * 2021-07-31 2021-10-26 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN113566378A (zh) * 2021-07-31 2021-10-29 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及介质
CN113819529A (zh) * 2021-08-31 2021-12-21 青岛海尔空调器有限总公司 一种空调柜机出风控制方法、装置及空调柜机
CN115077042A (zh) * 2022-05-16 2022-09-20 重庆海尔空调器有限公司 一种空调器的控制方法、装置及空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323441B (zh) * 2018-11-09 2020-08-25 青岛海尔空调器有限总公司 用于空调器的防凝露控制方法
CN112325451B (zh) * 2019-08-05 2022-03-29 青岛海尔空调器有限总公司 空调器的控制方法及空调器
CN110749063B (zh) * 2019-10-31 2021-08-31 广东美的制冷设备有限公司 空调器的送风方法、空调器及计算机可读存储介质
CN113639394A (zh) * 2021-07-31 2021-11-12 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762614A (zh) * 2018-07-09 2020-02-07 青岛海尔空调器有限总公司 立式空调器室内机
CN110779088A (zh) * 2018-07-12 2020-02-11 青岛海尔空调器有限总公司 空调器的送风控制方法与空调器
CN113551377A (zh) * 2021-07-31 2021-10-26 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN113566378A (zh) * 2021-07-31 2021-10-29 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及介质
CN113819529A (zh) * 2021-08-31 2021-12-21 青岛海尔空调器有限总公司 一种空调柜机出风控制方法、装置及空调柜机
CN115077042A (zh) * 2022-05-16 2022-09-20 重庆海尔空调器有限公司 一种空调器的控制方法、装置及空调器

Also Published As

Publication number Publication date
CN115077042A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN107013978B (zh) 空调室内机及其送风方法
US10690372B2 (en) Interactive occupant-tracking fan for indoor comfort and energy conservation
US11188103B2 (en) Microzone HVAC system with precision air device and precision air aggregator
CN108518803A (zh) 空调器的控制方法、空调器和计算机可读存储介质
CN105222271A (zh) 一种舒适性控制方法、控制器及空调系统
CN204555023U (zh) 空调室内机
WO2023221484A1 (zh) 一种空调器的控制方法、装置及空调器
WO2010000132A1 (zh) 空调器的智能控制方法
CN107388493A (zh) 湿度调节的控制方法及系统、服务器及存储介质
CN109945441A (zh) 空调器、空调器的控制方法及计算机可读存储介质
CN110986168A (zh) 空调室内机
JP2018194224A (ja) 空気調和機および端末装置
CA2839568A1 (en) A hvac system configured based on atmospheric data, an interface for receiving the atmospheric data and a controller configured to setup the hvac system based on the atmospheric data
CN108050644A (zh) 空调器控制方法和空调器
CN110715428A (zh) 空调器及其控制方法、控制装置
CN109855223A (zh) 湿膜供水系统及其水温控制方法、装置、空调器
CN110081569A (zh) 空调器的控制方法
CN113983648A (zh) 新风空调系统的控制方法、装置及新风空调系统
CN108375177B (zh) 空调器的恒温除湿方法
CN110715427B (zh) 空调器及其控制方法、控制装置
WO2023087690A1 (zh) 空调送风的控制方法、控制系统、电子设备和储存介质
JP7283157B2 (ja) 空調制御装置
CN211400026U (zh) 空调室内机
CN110779089B (zh) 空调器的送风控制方法与空调器
CN113685993B (zh) 空调控制方法、装置、设备及储存介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942504

Country of ref document: EP

Kind code of ref document: A1