WO2023221020A1 - 功耗控制的方法和功耗控制系统 - Google Patents

功耗控制的方法和功耗控制系统 Download PDF

Info

Publication number
WO2023221020A1
WO2023221020A1 PCT/CN2022/093750 CN2022093750W WO2023221020A1 WO 2023221020 A1 WO2023221020 A1 WO 2023221020A1 CN 2022093750 W CN2022093750 W CN 2022093750W WO 2023221020 A1 WO2023221020 A1 WO 2023221020A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
storage device
energy storage
power consumption
data
Prior art date
Application number
PCT/CN2022/093750
Other languages
English (en)
French (fr)
Inventor
郑志民
周灵刚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280081977.3A priority Critical patent/CN118339526A/zh
Priority to PCT/CN2022/093750 priority patent/WO2023221020A1/zh
Publication of WO2023221020A1 publication Critical patent/WO2023221020A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties

Definitions

  • the present application relates to the field of power systems, and in particular to a power consumption control method and a power consumption control system.
  • the temperature of the energy storage device is crucial to the performance of the energy storage device. Therefore, how to provide a power consumption control method to reduce the power consumption of the energy storage device while ensuring the performance of the energy storage device is crucial.
  • This application provides a power consumption control method and power consumption control system, which can reduce the power consumption of the energy storage device while ensuring the performance of the energy storage device.
  • a method of power consumption control includes: acquiring first data, the first data being used to indicate power consumption information of the power grid; when an energy storage device is connected to the power grid, The temperature of the energy storage device is adjusted based on the first data.
  • a method of power consumption control is provided. First data indicating power consumption information of the power grid is obtained, and when the energy storage device is connected to the power grid, the temperature of the energy storage device is adjusted according to the first data.
  • the temperature of the energy storage device can be flexibly adjusted according to the power consumption information of the power grid in the first data, so that the power consumption of the energy storage device can be reduced while ensuring the performance of the energy storage device.
  • adjusting the temperature of the energy storage device according to the first data includes: controlling a thermal control module to adjust the temperature of the energy storage device according to the first data.
  • the thermal control module can be controlled according to the power consumption information of the power grid in the first data, thereby adjusting the temperature of the energy storage device according to the power consumption information, which is beneficial to reducing the power consumption of the thermal control module.
  • the power consumption information includes peak power consumption periods of the power grid and/or low power consumption periods of the power grid
  • the thermal control module is controlled according to the first data to adjust the
  • the temperature of the energy storage device includes: controlling the thermal control module during the peak power consumption period to adjust the temperature of the energy storage device to the first temperature; and/or controlling the thermal control module during the low power consumption period.
  • the thermal control module is used to adjust the temperature of the energy storage device to a second temperature, where the first temperature is different from the second temperature.
  • the thermal control module can be controlled to adjust the temperature of the energy storage device with a smaller amplitude; during the low period of electricity consumption, the thermal control module can be controlled to adjust the temperature of the energy storage device with a larger amplitude than during the peak period of electricity consumption. Regulate the temperature of the energy storage device.
  • it is helpful to reduce the power consumption of the thermal control module during peak hours of electricity consumption that is, it reduces the consumption of electricity in the energy storage device by the thermal control module, so that the energy storage device can deliver more power during the process of delivering power to the grid. More electric energy may cause the energy storage device to reduce the amount of electric energy it needs to obtain in the process of obtaining electric energy from the grid.
  • the first temperature when the energy storage device is cooled down, the first temperature is greater than the second temperature; or when the energy storage device is heated up, the first temperature is greater than the second temperature. A temperature is less than the second temperature.
  • the thermal control module when the outside temperature is high or the temperature of the energy storage device itself is high and the energy storage device needs to be cooled down, during the peak period of electricity consumption, the thermal control module is controlled to reduce the temperature of the energy storage device to the first level. temperature, during the period of low electricity consumption, the thermal control module is controlled to reduce the temperature of the energy storage device to a second temperature lower than the first temperature. In this way, the power consumption of the thermal control module during the peak period of electricity consumption can be reduced.
  • the thermal control module is controlled to raise the temperature of the energy storage device to the first temperature.
  • the thermal control module is controlled to raise the temperature of the energy storage device to a second temperature that is higher than the first temperature. In this way, the power consumption of the thermal control module during peak power consumption periods can be reduced.
  • the first temperature when the energy storage device is cooled down, the first temperature is 24-26°C; or, when the energy storage device is heated up, the first temperature The temperature is 16 ⁇ 18°C.
  • the temperature of the energy storage device is lowered to 24-26°C, which can keep the energy storage device in a more appropriate temperature range and maintain the normal operation of the energy storage device. operation to avoid overheating and causing the battery of the energy storage device to catch fire; when heating the energy storage device during peak hours of electricity consumption, raising the temperature of the energy storage device to 16 to 18°C can keep the energy storage device at a more appropriate temperature range to prevent the energy storage device from operating due to too low a temperature.
  • the method before controlling the thermal control module to adjust the temperature of the energy storage device according to the first data, the method further includes: obtaining the initial temperature of the energy storage device. In this way, subsequent operations can be performed based on the initial temperature of the energy storage device, such as whether to control the thermal control module to adjust the temperature of the energy storage device and to what temperature range the temperature of the energy storage device is adjusted.
  • the controlling thermal control module to adjust the temperature of the energy storage device includes: during the peak period of electricity consumption, when the initial temperature of the energy storage device is greater than a third temperature.
  • the thermal control module is controlled to adjust the temperature of the energy storage device to the first temperature, and the third temperature is greater than the first temperature and the second temperature; or, in the During peak power consumption periods, when the initial temperature of the energy storage device is less than a fourth temperature, the thermal control module is controlled to adjust the temperature of the energy storage device to the first temperature, The fourth temperature is less than the first temperature and the second temperature.
  • the thermal control is controlled.
  • the module adjusts the temperature of the energy storage device to the first temperature. In this way, it is possible to avoid the consumption of electric energy caused by controlling the thermal control module to adjust the temperature of the energy storage device during peak power consumption periods when the temperature of the energy storage device is within the normal temperature range, thereby further reducing the power consumption of the energy storage device.
  • the first data includes: historical power consumption information of the power grid.
  • the historical power consumption information can reflect the historical power consumption, so that the temperature of the energy storage device can be flexibly adjusted based on the historical power consumption information, which is beneficial to reducing the power consumption of the energy storage device.
  • the first data includes: predicted power consumption information of the power grid.
  • the predicted power consumption information can reflect the current or next moment's power consumption, so that a strategy for adjusting the temperature of the energy storage device can be determined in real time based on the predicted power usage information, which is beneficial to reducing the power consumption of the energy storage device.
  • the method before obtaining the first data, further includes: sending a prediction request to a server; and obtaining the first data includes: receiving the predicted power consumption information sent by the server. .
  • sending a prediction request to the server the server can calculate the predicted power consumption information according to the prediction request, and the server sends the predicted power consumption information, and then the power consumption can be controlled based on the predicted power consumption information.
  • the method before controlling the thermal control module to adjust the temperature of the energy storage device according to the first data, the method further includes: determining the usage of the power grid according to the first data. Electricity peak hours or power grid trough periods. In this way, the peak hours and valley hours of electricity consumption are simpler and more intuitive than complex electricity consumption information, making it easier to adjust the temperature of the energy storage device according to different power consumption periods.
  • controlling the thermal control module to adjust the temperature of the energy storage device according to the first data includes: controlling the initial temperature or flow rate of the fluid in the thermal control module according to the first data. .
  • the initial temperature or flow rate of the fluid can be flexibly set according to the power consumption information of the power grid in the first data to achieve different degrees of temperature adjustment.
  • controlling the thermal control module to adjust the temperature of the energy storage device according to the first data includes: sending a control instruction according to the first data, so that the thermal control module adjusts the temperature according to the first data.
  • the control instructions regulate the temperature of the energy storage device.
  • different control instructions can be sent according to the power consumption information of the power grid of the first data, so that the thermal control module heats up or cools down the energy storage device according to the different control instructions.
  • a power consumption control system including a control unit, the control unit being configured to: obtain first data, the first data being used to indicate power consumption information of the power grid; when the energy storage device is connected to the power grid; In this case, the temperature of the energy storage device is adjusted according to the first data.
  • a third aspect provides a readable storage medium for storing a computer program, the computer program being used to perform the power consumption control method of any one of the first aspect and possible implementations of the first aspect.
  • a control unit including a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call the computer program to execute the first aspect and possible implementations of the first aspect. Any method of power consumption control.
  • a method of power consumption control is provided. First data indicating power consumption information of the power grid is obtained, and when the energy storage device is connected to the power grid, the temperature of the energy storage device is adjusted according to the first data.
  • the temperature of the energy storage device can be flexibly adjusted according to the power consumption information of the power grid in the first data, so that the power consumption of the energy storage device can be reduced while ensuring the performance of the energy storage device.
  • Figure 1 is a schematic diagram of an energy storage device according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the interaction between the energy storage device and the power grid according to an embodiment of the present application
  • Figure 3 is a schematic diagram of a power consumption control method according to an embodiment of the present application.
  • Figure 4 is a flow chart of a power consumption control method according to an embodiment of the present application.
  • Figure 5 is a flow chart of a thermal control module for controlling power during peak hours according to an embodiment of the present application
  • Figure 6 is a flow chart of a thermal control module for controlling power during peak hours according to an embodiment of the present application
  • Figure 7 is a schematic diagram of a power consumption control system according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of information interaction between the server and the control unit according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a control unit according to an embodiment of the present application.
  • embodiments of the present application provide a method of power consumption control, obtaining first data indicating power consumption information of the power grid, and adjusting the energy storage device according to the first data when the energy storage device is connected to the power grid. temperature.
  • the temperature of the energy storage device can be flexibly adjusted according to the power consumption information of the power grid in the first data, so that the power consumption of the energy storage device can be reduced while ensuring the performance of the energy storage device.
  • FIG. 1 is a schematic diagram of an energy storage device according to an embodiment of the present application.
  • the energy storage device 100 includes a first control unit 110 , a thermal control module 120 , and a battery 130 .
  • the energy storage device 100 may also include a battery management system (Battery Management System, BMS).
  • BMS Battery Management System
  • the first control unit 110 can be used for data collection, network monitoring, energy scheduling, etc.
  • the status of the battery 130 is monitored through the BMS, and the first control unit 110 and the BMS can communicate, that is, exchange information, to obtain the temperature of the battery 130; for another example, the first control unit 110 can obtain the temperature of the battery through other sensors. 130, or obtain the temperature of the energy storage device from other sensors.
  • the battery 130 may be any type of battery, including but not limited to: lithium ion battery, lithium metal battery, lithium sulfur battery, lead-acid battery, nickel separator battery, nickel metal hydride battery, or lithium air battery, etc.
  • the battery 130 may be a battery cell, a battery module or a battery pack, and the battery module or battery pack may be formed by multiple batteries connected in series and parallel. In the embodiment of the present application, the specific type and scale of the battery 130 are not specifically limited.
  • the thermal control module 120 can be used to adjust the temperature of the battery 130 or the energy storage device 100.
  • the thermal control module 120 can communicate with the BMS, that is, exchange information.
  • the BMS may be integrated with the battery 130 and provided in the same equipment/device, or may be provided as an independent equipment/device outside the battery.
  • the first control unit 110 may be an energy management system (Energy Management System, EMS).
  • EMS Energy Management System
  • FIG. 2 is a schematic diagram of the interaction between an energy storage device and the power grid according to an embodiment of the present application.
  • electric energy can be transmitted between the energy storage device 100 and the power grid 180. That is, when the energy storage device 100 is connected to the power grid 180, the energy storage device 100 can obtain electric energy from the power grid 180 or to the power grid 180. Transport electrical energy.
  • the energy storage device 100 can also communicate with the server 150, that is, exchange information.
  • the server 150 may include a cloud service system, and the cloud service system may be used for data acquisition, transmission, and calculation.
  • the energy storage device 100 can interact with the server 150 through the Internet.
  • the embodiments of this application do not specifically limit this, as long as the information interaction between the two can be achieved.
  • the energy storage device 100 may be an electric vehicle.
  • the energy storage device 100 transmits electric energy between the charging and discharging device and the power grid.
  • the charging and discharging device here can be a two-way charging pile or a charging pile that supports vehicle to grid 180 (vehicle to grid, V2G) mode.
  • the energy storage device 100 may be an electric vehicle, and the electric vehicle is connected to the power grid 180 through a charging pile.
  • the electric vehicle is connected to the grid 180 through a two-way charging pile, and can either transmit electric energy to the grid or obtain electric energy from the grid.
  • FIG. 3 is a schematic diagram of a power consumption control method according to an embodiment of the present application. As shown in Figure 3, the method 300 specifically includes the following steps.
  • Step 310 Obtain first data.
  • the first data is used to indicate the power consumption information of the power grid 180.
  • the first data is obtained before the energy storage device 100 is connected to the power grid 180, and the obtained first data is stored in the memory for use in subsequent processes.
  • the first data can also be obtained when the energy storage device 100 is connected to the power grid 180 , which is not specifically limited in the embodiment of the present application.
  • the first data is acquired when the energy storage device 100 is connected to the power grid 180 , that is, the connection between the energy storage device 100 and the power grid 180 serves as a trigger condition for acquiring the first data.
  • Step 320 When the energy storage device 100 is connected to the power grid 180, adjust the temperature of the energy storage device 100 according to the first data.
  • the adjustment of the temperature of the energy storage device 100 is related to the power consumption of the energy storage device 100 . For example, when the energy storage device 100 is cooled down, the more the energy storage device 100 is cooled, the greater the power consumption of the energy storage device 100 will be, and the less remaining power of the battery 130 of the energy storage device 100 will be.
  • the adjustment of the temperature of the energy storage device 100 is closely related to the power consumption of the energy storage device 100 and is also closely related to the power regulation of the power grid 180 .
  • the energy storage device 100 when the energy storage device 100 is connected to the power grid 180 , the energy storage device 100 can transmit electric energy to the power grid 180 , the energy storage device 100 can obtain electric energy from the power grid 180 , or the energy storage device 100 can neither supply power to the power grid 180 Electrical energy is delivered nor obtained from the grid 180 .
  • the first data includes power consumption information of the power grid 180.
  • the temperature of the energy storage device 100 is adjusted according to the first data.
  • the temperature of the energy storage device 100 can be adjusted to a suitable temperature range to ensure the performance of the energy storage device 100; on the other hand, the temperature of the energy storage device 100 can be adjusted to a suitable temperature range.
  • the temperature of the energy storage device 100 can be flexibly adjusted according to the power consumption information, which is beneficial to reducing the power consumption of the energy storage device 100 .
  • a method of power consumption control is provided. First data indicating power consumption information of the power grid is obtained, and when the energy storage device is connected to the power grid, the temperature of the energy storage device is adjusted according to the first data.
  • the temperature of the energy storage device can be flexibly adjusted according to the power consumption information of the power grid in the first data, so that the power consumption of the energy storage device can be reduced while ensuring the performance of the energy storage device.
  • adjusting the temperature of the energy storage device 100 according to the first data includes: controlling the thermal control module 120 to adjust the temperature of the energy storage device 100 according to the first data.
  • the thermal control module 120 can be used to adjust the temperature of the energy storage device 100 , that is, the thermal control module 120 can be used to heat up the energy storage device 100 or to cool down the energy storage device 100 . The more the thermal control module 120 cools down or heats up the energy storage device 100, the greater the power consumption of the thermal control module 120 and the greater the power consumption of the energy storage device 100.
  • the first data includes power usage information of the power grid 180.
  • the thermal control module 120 is controlled according to the first data, so that the thermal control module 120 can be flexibly controlled according to the power usage information, so that the thermal control module 120 performs different temperature adjustments on the energy storage device 100. , which is beneficial to reducing the power consumption of the thermal control module 120.
  • the thermal control module 120 is a thermal management system.
  • the thermal management system may include an air cooling system or a liquid cooling system, as long as the temperature of the energy storage device 100 can be adjusted. This is not specifically limited in the embodiment of the present application. .
  • the power consumption information includes the peak power consumption period of the power grid 180 and/or the low power consumption period of the power grid
  • the thermal control module 120 is controlled to adjust the temperature of the energy storage device 100 according to the first data, This includes: controlling the thermal control module 120 during peak power consumption periods to adjust the temperature of the energy storage device 100 to the first temperature; and/or controlling the thermal control module 120 during low power consumption periods to adjust the temperature of the energy storage device 100 to the first temperature. Adjust to a second temperature, the first temperature being different from the second temperature.
  • the thermal control module 120 can be controlled to adjust the temperature of the energy storage device 100 to a smaller extent; during the off-peak period of electricity consumption, the thermal control module 120 can be controlled to adjust the temperature of the energy storage device 100 to a larger extent than during the peak period of electricity consumption.
  • the temperature of the device 100 can be measured. In this way, it is beneficial to reduce the power consumption of the thermal control module 120 during peak hours of electricity consumption, that is, to reduce the consumption of electricity in the energy storage device 100 by the thermal control module 120, so that the energy storage device 100 can be used to transmit electric energy to the power grid. In the process, more electric energy is transmitted or the energy storage device reduces the amount of electric energy it needs to obtain in the process of obtaining electric energy from the grid.
  • thermal control module 120 By controlling the thermal control module 120 according to the peak period of power consumption and/or the low period of power consumption, it is not only conducive to reducing the power consumption of the thermal control module 120, but also conducive to improving the uniformity of the power load of the power grid 180, thereby conducive to improving the power grid. 120 operating efficiency and reliability.
  • the first temperature when the energy storage device 100 is cooled down, the first temperature is greater than the second temperature; when the energy storage device 100 is heated up, the first temperature is less than the second temperature.
  • FIG. 4 is a flow chart of a power consumption control method according to an embodiment of the present application. As shown in Figure 4, the method specifically includes the following steps.
  • Step 410 Determine whether it is the peak period of electricity consumption. If the current moment is during peak power consumption period, step 420 is executed. If the current time is not in the peak period of electricity consumption, step 430 is executed.
  • step 410 may be performed after step 310, and the first data obtained through step 310 includes the peak period of power consumption of the power grid and the low period of power consumption of the power grid.
  • Step 420 control the thermal control module 120 to adjust the temperature of the energy storage device 100 to the first temperature.
  • the temperature of the energy storage device 100 is adjusted to the first temperature. Since the first temperature is greater than the second temperature, compared with directly cooling the energy storage device 100, The temperature of the energy storage device 100 is lowered to a lower second temperature. Lowering the temperature of the energy storage device 100 to the first temperature can reduce the power consumed by the thermal control module 100 .
  • the energy storage device 100 when the energy storage device 100 is connected to the power grid 180 and the energy storage device 100 is obtaining electric energy from the power grid 180 at this time, the energy storage device consumes less power because the thermal control module 120 consumes less power.
  • the overall power consumption of 100 is reduced, and the power energy storage device 100 needs to obtain from the power grid 180 is also reduced accordingly. In this way, not only the power consumption of the energy storage device 100 is reduced, but also the load of the power grid 180 during peak power consumption hours is reduced, and the stability and reliability of the power grid 180 are maintained.
  • the temperature of the energy storage device 100 is adjusted to the first temperature. Since the first temperature is lower than the second temperature, the temperature of the energy storage device 100 can also be reduced. power consumption, while reducing the load on the power grid 180 during peak hours.
  • the thermal control module 120 consumes less power, thereby storing energy.
  • the overall power consumption of the device 100 is reduced, and the energy storage device 100 can retain more power to transmit power to the power grid 180 .
  • it is not only conducive to reducing the power consumption of the energy storage device 100, but also conducive to the energy storage device 100 transmitting more electric energy to the power grid 180, thereby being conducive to achieving peak shaving and valley filling of the power load of the power grid.
  • the temperature of the energy storage device 100 is adjusted to the first temperature. Since the first temperature is lower than the second temperature, the temperature of the energy storage device 100 can also be reduced. It also helps the energy storage device 100 to transmit more electric energy to the power grid 180, thereby helping to achieve peak shaving and valley filling of the power load of the power grid.
  • Step 430 Determine whether it is a low power consumption period. If the current moment is in a low power consumption period, step 440 is executed.
  • Step 440 control the thermal control module 120 to adjust the temperature of the energy storage device 100 to the second temperature.
  • the temperature of the energy storage device is lowered to the second temperature, and the second temperature is lower than the first temperature. This is beneficial to the energy storage device 100 before reaching the peak power consumption period. Maintaining the temperature of the energy storage device 100 within a lower and reasonable temperature range is conducive to reducing the power consumption of the thermal control module 120 during peak power consumption periods, and is also conducive to peak load shaving and valley filling of the power grid.
  • the energy storage device 100 is heated to a second temperature, and the second temperature is greater than the first temperature, which also has a similar effect and will not be described again here.
  • the thermal control module 120 can be controlled to adjust the temperature of the energy storage device 100 . That is to say, when the current moment is neither in the peak period of electricity consumption nor in the period of low electricity consumption, the thermal control module 120 can be controlled to adjust the temperature of the energy storage device 100 .
  • the thermal control module 120 can be controlled to adjust the temperature of the energy storage device 100 to a first temperature, the temperature of the energy storage device 100 can be adjusted to a second temperature, or the temperature of the energy storage device 100 can be adjusted to a temperature other than the first temperature. temperature and the second temperature, that is, as long as the temperature of the energy storage device 100 is adjusted to a temperature that allows the energy storage device 100 to operate normally.
  • the specific temperature value to which the temperature of the energy storage device 100 is adjusted can be set according to the actual situation and the specific conditions of the energy storage device.
  • the specific temperature value can be preset and stored in the memory for the first control unit 110 or other controllers. Automatic acquisition.
  • the first temperature when the energy storage device 100 is cooled down, the first temperature is 24-26°C; or, when the energy storage device 100 is heated up, the first temperature is 16°C. ⁇ 18°C.
  • the energy storage device 100 will generate heat during operation. When the temperature of the energy storage device 100 exceeds a certain value, fire or other phenomena may occur. Therefore, when cooling down the energy storage device 100 during peak hours of electricity consumption, lowering the temperature of the energy storage device 100 to 24-26°C can keep the energy storage device 100 in a more appropriate temperature range and maintain the temperature of the energy storage device 100. normal operation to prevent the battery of the energy storage device 100 from catching fire due to excessive temperature.
  • the temperature of the energy storage device 100 is also low due to the influence of the external environment.
  • the temperature of the energy storage device 100 is lower than a certain value, the normal operation of the energy storage device 100 will be affected. For example, the energy storage device 100 cannot charge and discharge, the charge and discharge rate is too slow, etc. Therefore, when the energy storage device 100 is heated up during the peak period of electricity consumption, raising the temperature of the energy storage device 100 to 16-18°C can keep the energy storage device 100 in a more appropriate temperature range and avoid excessively low temperature causing energy storage
  • the device 100's battery has difficulty operating.
  • the second temperature is 19-23°C; or, when the energy storage device 100 is heated, the second temperature is 20-24°C.
  • the specific values of the first temperature and the second temperature can be specifically set according to the actual environment or different energy storage devices, and the embodiments of the present application do not specifically limit this.
  • the method 300 before controlling the thermal control module 120 to adjust the temperature of the energy storage device 100 according to the first data, the method 300 further includes: obtaining the initial temperature of the energy storage device 100 . In this way, subsequent operations can be performed based on the initial temperature of the energy storage device 100, such as whether to control the thermal control module 120 to adjust the temperature of the energy storage device and what temperature range to adjust the temperature of the energy storage device 100 to.
  • controlling the thermal control module 120 to adjust the temperature of the energy storage device 100 includes: during peak power consumption periods, when the initial temperature of the energy storage device 100 is greater than the third temperature, controlling the thermal The control module 120 is used to adjust the temperature of the energy storage device 100 to a first temperature, and the third temperature is greater than the first temperature and the second temperature; or, during peak power consumption periods, when the initial temperature of the energy storage device 100 is less than the fourth temperature In the case of , the thermal control module 120 is controlled to adjust the temperature of the energy storage device 100 to the first temperature, and the fourth temperature is smaller than the first temperature and the second temperature.
  • FIG. 5 is a flow chart of a thermal control module for controlling power during peak hours according to an embodiment of the present application. As shown in Figure 5, the method specifically includes the following steps.
  • Step 510 Obtain the initial temperature of the energy storage device 100.
  • the BMS is used to obtain the initial temperature of the battery 130 of the energy storage device 100 and send the initial temperature of the battery 130 to the first control unit 110 .
  • Step 520 Determine whether the initial temperature is greater than the third temperature or less than the fourth temperature. Wherein, the third temperature is greater than the first temperature and the second temperature, and the fourth temperature is less than the first temperature and the second temperature. If the initial temperature of the energy storage device 100 is greater than the third temperature or less than the fourth temperature, step 530 is performed.
  • the thermal control module 120 is controlled to cool down the energy storage device 100 .
  • the thermal control module 120 is controlled to adjust the temperature of the energy storage device 100 . That is to say, when the temperature of the energy storage device 100 is greater than or equal to the fourth temperature, the thermal control module 120 is controlled to adjust the temperature of the energy storage device 100 .
  • the thermal control module 120 is controlled not to adjust the temperature of the energy storage device 100 , thereby reducing the power consumption of the thermal control module 120 during peak power consumption periods.
  • the third temperature may be the highest temperature at which the energy storage device 100 maintains normal operation
  • the fourth temperature may be the lowest temperature at which the energy storage device 100 maintains normal operation
  • the third temperature may be 27-30°C
  • the fourth temperature may be 10-15°C.
  • the values of the third temperature and the fourth temperature can be specifically set according to the actual environment and the energy storage device, and the embodiments of the present application do not specifically limit this.
  • Step 530 control the thermal control module 120 to adjust the temperature of the energy storage device 100 to the first temperature.
  • Figure 6 is a flow chart of a thermal control module for controlling power during peak hours according to an embodiment of the present application. As shown in Figure 6, the method specifically includes the following steps.
  • Step 610 Obtain the current temperature of the energy storage device 100.
  • the BMS is used to obtain the current temperature of the battery 130 of the energy storage device 100 and send the current temperature of the battery 130 to the first control unit 110 .
  • step 610 may be performed after step 530.
  • Step 620 Determine whether the current temperature of the energy storage device 100 is greater than the fifth temperature.
  • step 630 is executed.
  • the fifth temperature may be the highest temperature at which the energy storage device 100 maintains normal operation.
  • the fifth temperature may be equal to the third temperature, or may be greater than the third temperature, which is not specifically limited in the embodiments of the present application.
  • Step 630 Control the thermal control module 120 to adjust the temperature of the energy storage device 100 to the first temperature.
  • the first data includes: historical power consumption information of the power grid.
  • the historical power consumption information may be the power consumption information of the previous day or the power consumption information of a given day.
  • the power consumption information on a given day may be the power consumption information on a specific date. For example, the given day and the current day are both Friday, or the given day and the current day are both April 1st.
  • the historical power consumption information can be obtained directly from the power trading center or the integrated energy service company trading center, or indirectly through the cloud service system.
  • the historical power usage information can reflect the historical power usage, which is similar to the current day's power usage. Therefore, the temperature of the energy storage device 100 can be adjusted according to the historical power usage, which is beneficial to reducing the power consumption of the energy storage device 100 .
  • the first data includes: predicted power consumption information of the power grid 180 .
  • the predicted power consumption information is calculated by the cloud service system based on historical power consumption information.
  • the predicted power usage information can reflect the current or next moment's power usage, so that the temperature of the energy storage device 100 can be adjusted in advance or in real time based on the predicted power usage information, which is beneficial to reducing the power consumption of the energy storage device 100 .
  • the method 300 before obtaining the first data, further includes: sending a prediction request to the server 150; obtaining the first data includes: receiving the predicted power consumption information sent by the server 150.
  • sending a prediction request to the server 150 the server 150 can calculate the predicted power consumption information according to the prediction request, and the server 150 sends the predicted power consumption information, and then the power consumption can be controlled based on the predicted power consumption information.
  • the method 300 before controlling the thermal control module 120 according to the first data, the method 300 further includes: determining the peak period of power consumption of the power grid 180 or the low period of power consumption of the power grid according to the first data.
  • the first data may be peak power consumption periods and low power consumption periods, or may be a power consumption curve.
  • the corresponding power consumption peak period and power consumption trough period in the power consumption curve can be calculated based on the power consumption curve analysis.
  • the power consumption peak period and the power consumption valley period are simpler and more intuitive than complex electricity consumption information such as power consumption curves, making it easier to adjust the temperature of the energy storage device 100 according to different power consumption periods.
  • controlling the thermal control module 120 to adjust the temperature of the energy storage device 100 according to the first data includes: controlling the initial temperature or flow rate of the fluid in the thermal control module 120 according to the first data.
  • the thermal control module 120 contains fluid, which is used to adjust the temperature of the energy storage device 100 .
  • the flow rate of the fluid can be increased.
  • the initial temperature of the fluid may be increased. In this way, the initial temperature or flow rate of the fluid can be flexibly set according to the power consumption information of the power grid in the first data to achieve different degrees of temperature adjustment.
  • controlling the thermal control module 120 to adjust the temperature of the energy storage device 100 according to the first data includes: sending a control instruction according to the first data, so that the thermal control module 120 adjusts the temperature of the energy storage device 100 according to the control instruction.
  • the temperature of the device 100 can be measured.
  • control instruction can be sent to the BMS, and the BMS sends the control instruction to the thermal control module 120, so that the thermal control module 120 adjusts the temperature of the energy storage device 100 according to the control instruction.
  • control instructions may include the following information: raising/lowering the temperature of the energy storage device 100 to the first temperature, raising/lowering the temperature of the energy storage device 100 to the second temperature, etc.
  • different control instructions can be sent according to the power consumption information of the power grid 180 of the first data, so that the thermal control module 120 heats up or cools down the energy storage device 100 according to the different control instructions.
  • the power consumption control method in the embodiment of the present application is executed by the first control unit 110 .
  • the power consumption control method in the embodiment of the present application is executed by a control unit other than the first control unit 110 .
  • the temperature of the energy storage device 100 can also be adjusted by means other than sending control instructions, which is not specifically limited in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a power consumption control system according to an embodiment of the present application.
  • the power consumption control system 200 includes a control unit 210 .
  • the control unit 210 is used to: obtain first data, the first data is used to indicate the power consumption information of the power grid 180; when the energy storage device 100 is connected to the power grid 180, adjust the temperature of the energy storage device 100 according to the first data.
  • control unit 210 is configured to control the thermal control module 120 to adjust the temperature of the energy storage device 100 according to the first data.
  • the power consumption information includes the peak power consumption period of the power grid 180 and/or the low power consumption period of the power grid
  • the control unit 210 is configured to: control the thermal control module 120 during the peak power consumption period, to adjust the temperature of the energy storage device 100 to the first temperature; and/or to control the thermal control module 120 during the low power consumption period to adjust the temperature of the energy storage device to a second temperature, where the first temperature is different from the second temperature.
  • control unit 210 is configured to obtain the initial temperature of the energy storage device 100 .
  • control unit 210 is configured to: during peak power consumption periods, when the initial temperature of the energy storage device 100 is greater than the third temperature, control the thermal control module 120 to store the energy.
  • the temperature of the device is adjusted to the first temperature, and the third temperature is greater than the first temperature and the second temperature; or, during peak power consumption periods, when the initial temperature of the energy storage device 100 is less than the fourth temperature, the thermal control module 120 is controlled , to adjust the temperature of the energy storage device 100 to the first temperature, and the fourth temperature is smaller than the first temperature and the second temperature.
  • the BMS detects the initial temperature of the battery 130 of the energy storage device 100 and sends the initial temperature to the control unit 210 .
  • the control unit 210 determines the relationship between the initial temperature and the third temperature or the fourth temperature, and controls the thermal control module 120 according to the relationship between the initial temperature and the third temperature or the fourth temperature.
  • control unit 210 determines that the initial temperature is greater than the third temperature
  • the control unit 210 sends a cooling instruction to the BMS, and the BMS sends the cooling instruction to the thermal control module 120.
  • the thermal control module 120 switches the energy storage device according to the cooling instruction.
  • the temperature of 100 is adjusted to the first temperature.
  • control unit 210 determines that the initial temperature is less than the fourth temperature
  • the control unit 210 sends a warming instruction to the BMS
  • the BMS sends the warming instruction to the thermal control module 120
  • the thermal control module 120 switches the energy storage device to the energy storage device according to the warming instruction.
  • the temperature of 100 is adjusted to the first temperature.
  • the power consumption control system 200 further includes a server 150 .
  • the server 150 is configured to receive the prediction request sent by the control unit 210 and calculate the predicted power consumption information according to the prediction request; the control unit 160 is configured to receive the predicted power usage information.
  • FIG. 8 is a schematic diagram of information interaction between a server and a control unit according to an embodiment of the present application.
  • the cloud service system 151 receives the prediction request from the control unit 210 and calculates the predicted power consumption information according to the prediction request.
  • the cloud service system is also used to obtain historical power consumption information from the power trading center or the comprehensive energy service company trading center, and calculate and predict power consumption information based on the historical power consumption information.
  • control unit 210 is configured to determine the peak power consumption period of the power grid 180 or the low power consumption period of the power grid 180 based on the first data.
  • control unit 210 is configured to control the initial temperature or flow rate of the fluid in the thermal control module according to the first data.
  • control unit 210 is configured to: send a control instruction according to the first data; and the thermal control module 120 is configured to: adjust the temperature of the energy storage device 100 according to the control instruction.
  • Embodiments of the present application provide a readable storage medium for storing a computer program, and the computer program is used to perform the power consumption control method in any one of the foregoing embodiments.
  • An embodiment of the present application provides a computer program.
  • the computer program includes instructions.
  • the computer program can perform any of the power consumption control methods in the foregoing embodiments.
  • FIG 9 is a schematic diagram of a control unit according to an embodiment of the present application.
  • the embodiment of the present application provides a control unit 210, including a processor 211 and a memory 212.
  • the memory 212 is used to store computer programs, and the processor 211 is used to call the computer program to execute any of the previous embodiments.
  • a method of power consumption control is used to control the embodiment of the present application.
  • the processor 211 in this embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 212 of the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the size of the sequence numbers of each process does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种功耗控制的方法(300)和功耗控制系统(200)。功耗控制的方法(300)包括:获取第一数据,第一数据用于指示电网(180)的用电信息(310);在储能装置(100)与电网(180)连接的情况下,根据第一数据调节储能装置(100)的温度(320)。可以在保证储能装置(100)的性能的同时减少储能装置(100)的功耗。

Description

功耗控制的方法和功耗控制系统 技术领域
本申请涉及电力系统领域,特别是涉及一种功耗控制的方法和功耗控制系统。
背景技术
随着电网的用电量的日益增加,电网的电力调控越来越重要。在电网的电力调控中,储能装置可以在一定程度上缓解电网的用电负荷过大以及用电不均等问题。
储能装置的温度对于储能装置的性能至关重要,因此,如何提供一种功耗控制方法在保证储能装置的性能的同时减少储能装置的功耗至关重要。
发明内容
本申请提供一种功耗控制的方法和功耗控制系统,可以在保证储能装置的性能的同时减少储能装置的功耗。
第一方面,提供一种功耗控制的方法,所述方法包括:获取第一数据,所述第一数据用于指示电网的用电信息;在储能装置与所述电网连接的情况下,根据所述第一数据调节所述储能装置的温度。
在本申请实施例中,提供了一种功耗控制的方法。获取用于指示电网的用电信息的第一数据,在储能装置与电网连接的情况下,根据第一数据调节储能装置的温度。在该功耗控制的方法中,可以根据第一数据中的电网的用电信息灵活调整储能装置的温度,从而可以在保证储能装置的性能的同时减少储能装置的功耗。
在一种可能的实现方式中,所述根据所述第一数据调节所述储能装置的温度,包括:根据所述第一数据控制热控制模块调节所述储能装置的温度。这样,可以根据第一数据中的电网的用电信息控制热控制模块,从而根据用电信息调节储能装置的温度,有利于减少热控制模块的功耗。
在一种可能的实现方式中,所述用电信息包括所述电网的用电高峰时段和/或 所述电网的用电低谷时段,所述根据所述第一数据控制热控制模块调节所述储能装置的温度,包括:在所述用电高峰时段控制所述热控制模块,以将所述储能装置的温度调节至第一温度;和/或,在所述用电低谷时段控制所述热控制模块,以将所述储能装置的温度调节至第二温度,所述第一温度与所述第二温度不同。
该实施例中,在用电高峰时段,可以控制热控制模块以较小的幅度调节储能装置的温度;在用电低谷时段,可以控制热控制模块相对于用电高峰时段以较大的幅度调节储能装置的温度。这样,有利于减小热控制模块在用电高峰时段的功耗,即,减少热控制模块对储能装置中的电量的消耗,从而可以使储能装置在向电网输送电能的过程中输送更多的电能或使储能装置在从电网获取电能的过程中减少所需要获取的电能。
在一种可能的实现方式中,在对所述储能装置降温的情况下,所述第一温度大于所述第二温度;或,在对所述储能装置升温的情况下,所述第一温度小于所述第二温度。
该实施例中,在外界温度较高或储能装置本身的温度较高需要对储能装置降温的情况下,在用电高峰时段,控制热控制模块以使储能装置的温度降为第一温度,在用电低谷时段,控制热控制模块以使储能装置的温度降为相比于第一温度较低的第二温度,这样,可以减少热控制模块在用电高峰时段的功耗。在外界温度较低或储能装置本身的温度较低需要对储能装置升温的情况下,在用电高峰时段,控制热控制模块以使储能装置的温度升为第一温度,在用电低谷时段,控制热控制模块以使储能装置的温度升为相比于第一温度较高的第二温度,这样,可以减少热控制模块在用电高峰时段的功耗。
在一种可能的实现方式中,在对所述储能装置降温的情况下,所述第一温度为24~26℃;或,在对所述储能装置升温的情况下,所述第一温度为16~18℃。
该实施例中,在用电高峰时段对储能装置降温时,将储能装置的温度降为24~26℃,可以使储能装置处于一个较为合适的温度范围,能够保持储能装置的正常运行,避免温度过高发生储能装置的电池起火等现象;在用电高峰时段对储能装置升温时,将储能装置的温度升为16~18℃,可以使储能装置处于一个较为合适的温度范围,避免温度过低导致储能装置难以运行。
在一种可能的实现方式中,所述在根据所述第一数据控制热控制模块调节所述储能装置的温度之前,所述方法还包括:获取所述储能装置的初始温度。这样,可以基于储能装置的初始温度进行后续的操作,例如是否控制热控制模块调节储能装置的温度以及将储能装置的温度调至什么样的温度范围。
在一种可能的实现方式中,所述控制热控制模块调节所述储能装置的温度,包括:在所述用电高峰时段,在所述储能装置的所述初始温度大于第三温度的情况下,控制所述热控制模块,以将所述储能装置的温度调节至所述第一温度,所述第三温度大于所述第一温度和所述第二温度;或,在所述用电高峰时段,在所述储能装置的所述初始温度小于第四温度的情况下,控制所述热控制模块,以将所述储能装置的温度调节至所述第一温度,所述第四温度小于所述第一温度和所述第二温度。
该实施例中,在用电高峰时段,当储能装置的初始温度大于第三温度或小于第四温度的情况下,即当储能装置的初始温度不在正常的温度范围内时,控制热控制模块以将储能装置的温度调节至第一温度。这样,可以避免在储能装置的温度处于正常温度范围时,在用电高峰时段控制热控制模块调节储能装置的温度而导致的电能的消耗,从而可以进一步降低储能装置的功耗。
在一种可能的实现方式中,所述第一数据包括:所述电网的历史用电信息。历史用电信息可以反映历史用电情况,从而可以根据历史用电信息灵活调节储能装置的温度,有利于降低储能装置的功耗。
在一种可能的实现方式中,所述第一数据包括:所述电网的预测用电信息。预测用电信息可以反映当前或下一时刻的用电情况,从而可以根据预测用电信息实时确定调整储能装置的温度的策略,有利于降低储能装置的功耗。
在一种可能的实现方式中,在所述获取第一数据之前,所述方法还包括:向服务器发送预测请求;所述获取第一数据包括:接收所述服务器发送的所述预测用电信息。通过向服务器发送预测请求,服务器可以根据预测请求计算预测用电信息,服务器发送预测用电信息,进而可以根据预测用电信息实现功耗的控制。
在一种可能的实现方式中,在所述根据所述第一数据控制热控制模块调节所述储能装置的温度之前,所述方法还包括:根据所述第一数据确定所述电网的用电高峰时段或所述电网的用电低谷时段。这样,用电高峰时段和用电低谷时段相比于复杂的 用电信息更加简单直观,便于根据不同的用电时段调节储能装置的温度。
在一种可能的实现方式中,所述根据所述第一数据控制热控制模块调节所述储能装置的温度,包括:根据所述第一数据控制热控制模块中的流体的初始温度或流量。这样,可以根据第一数据的电网的用电信息,灵活地设置流体的初始温度或流量,以实现对于温度的不同程度的调节。
在一种可能的实现方式中,所述根据所述第一数据控制热控制模块调节所述储能装置的温度,包括:根据所述第一数据发送控制指令,以使所述热控制模块根据所述控制指令调节所述储能装置的温度。这样,可以根据第一数据的电网的用电信息发送不同的控制指令,以使热控制模块根据所述不同的控制指令对所述储能装置升温或降温处理。
第二方面,提供一种功耗控制系统,包括控制单元,所述控制单元用于:获取第一数据,所述第一数据用于指示电网的用电信息;在储能装置与电网连接的情况下,根据所述第一数据调节所述储能装置的温度。
第三方面,提供一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行第一方面及第一方面可能的实施方式中的任一项的功耗控制的方法。
第四方面,提供一种控制单元,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行第一方面及第一方面可能的实施方式中的任一项的功耗控制的方法。
在本申请实施例中,提供了一种功耗控制的方法。获取用于指示电网的用电信息的第一数据,在储能装置与电网连接的情况下,根据第一数据调节储能装置的温度。在该功耗控制的方法中,可以根据第一数据中的电网的用电信息灵活调整储能装置的温度,从而可以在保证储能装置的性能的同时减少储能装置的功耗。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的储能装置的示意图;
图2是本申请一实施例的储能装置与电网交互的示意图;
图3是本申请一实施例的功耗控制的方法的示意图;
图4是本申请一实施例的功耗控制的方法的流程图;
图5是本申请一实施例的用电高峰时段的控制热控制模块的流程图;
图6是本申请一实施例的用电高峰时段的控制热控制模块的流程图;
图7是本申请一实施例的功耗控制系统的示意图;
图8是本申请一实施例的服务器与控制单元进行信息交互的示意图;
图9是本申请一实施例的控制单元的示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着社会的发展,电网的负荷逐渐增加,并且负荷曲线的峰谷差值逐渐增大,因此,电网的电力调控越来越重要。储能装置可以实现电能的存储与电能的释放,在 电网的电力调控中,储能装置可以在一定程度上缓解电网的用电负荷过大以及用电不均等问题。储能装置的温度对于储能装置的性能至关重要,因此,如何提供一种功耗控制方法在保证储能装置的性能的同时减少储能装置的功耗至关重要。
鉴于此,本申请实施例提供了一种功耗控制的方法,获取用于指示电网的用电信息的第一数据,在储能装置与电网连接的情况下,根据第一数据调节储能装置的温度。在该功耗控制的方法中,可以根据第一数据中的电网的用电信息灵活地调节储能装置的温度,从而可以在保证储能装置的性能的同时减少储能装置的功耗。
图1为本申请一实施例的储能装置的示意图。可选地,如图1所示,储能装置100包括第一控制单元110,热控制模块120,和电池130。可选地,储能装置100还可以包括电池管理系统(Battery Management System,BMS)。
第一控制单元110可以用于数据采集,网络监控,能量调度等。例如通过BMS监控电池130的状态,而第一控制单元110与BMS之间可以进行通讯,即进行信息的交互,以获取电池130的温度;还例如,第一控制单元110可以通过其他传感器获得电池130的温度,或者从其他传感器获得储能装置的温度。
电池130可以是任意类型的电池,包括但不限于:锂离子电池、锂金属电池、锂硫电池、铅酸电池、镍隔电池、镍氢电池、或者锂空气电池等等。电池130可以是电池单体,也可以是电池模组或电池包,电池模组或电池包均可由多个电池串并联形成。在本申请实施例中,电池130的具体类型和规模均不做具体限定。
热控制模块120可以用于调节电池130或储能装置100的温度,热控制模块120可以和BMS之间通讯,即进行信息的交互。
可选地,BMS可以与电池130集成设置于同一设备/装置中,也可以作为独立的设备/装置设置于电池之外。
可选地,第一控制单元110可以为能量管理系统(Energy Management System,EMS)。
图2为本申请一实施例的储能装置与电网交互的示意图。如图2所示,储能装置100与电网180之间可以进行电能的传输,即在储能装置100与电网180连接的情况下,储能装置100可以从电网180获取电能也可以向电网180输送电能。储能装置100还可以与服务器150通讯,即信息交互。服务器150可以包括云服务系统,云服务系统可以用于数据的获取、发送与计算。可选地,储能装置100可以通过互联网与服 务器150进行信息交互,本申请实施例对此不作具体限制,只要可以实现二者之间的信息交互即可。
可选地,储能装置100可以为电动汽车,此时,储能装置100通过充放电装置与电网之间进行电能的传输。这里的充放电装置可以为双向充电桩或支持汽车对电网180(vehicle to grid,V2G)模式的充电桩。
可选地,储能装置100可以为电动汽车,电动汽车通过充电桩与电网180连接。可选地,电动汽车通过双向充电桩与电网180连接,既可以向电网输送电能,也可以从电网获取电能。
图3为本申请一实施例的功耗控制的方法的示意图。如图3所示,该方法300具体包括以下步骤。
步骤310,获取第一数据,第一数据用于指示电网180的用电信息。
可选地,在储能装置100与电网180连接之前获取第一数据,并将获取的第一数据存储在存储器中,以便在后续过程中使用。
可选地,也可以在储能装置100与电网180连接的情况下,获取第一数据,本申请实施例对此不作具体限制。例如,在储能装置100与电网180连接时获取第一数据,也就是说,储能装置100与电网180连接作为获取第一数据的触发条件。
步骤320,在储能装置100与电网180连接的情况下,根据第一数据调节储能装置100的温度。
储能装置100的温度的调节与储能装置100的功耗有关。例如,在对储能装置100降温的情况下,对储能装置100降温越多,储能装置100的功耗就越大,储能装置100的电池130的剩余电量就越少。在储能装置100与电网180连接的情况下,当储能装置100需要从电网180获取电能时,储能装置100剩余的电量越多,储能装置100需要从电网180获取的电量就越少;或者在储能装置100与电网180连接的情况下,在储能装置100向电网180输送电能时,储能装置100剩余的电量越多,储能装置100可以向电网输送的电量就越多。因此,储能装置100的温度的调节与储能装置100的功耗密切相关,与电网180的电力调控也密切相关。
可选地,在储能装置100与电网180连接的情况下,储能装置100可以向电网180输送电能,储能装置100可以从电网180获取电能,储能装置100也可以既不向电网180输送电能也不从电网180获取电能。
第一数据包括电网180的用电信息,根据第一数据调节储能装置100的温度,一方面,可以将储能装置100的温度调节至合适的温度范围,保证储能装置100的性能;另一方面,可以根据用电信息灵活地调节储能装置100的温度,从而有利于降低储能装置100的功耗。
在本申请实施例中,提供了一种功耗控制的方法。获取用于指示电网的用电信息的第一数据,在储能装置与电网连接的情况下,根据第一数据调节储能装置的温度。在该功耗控制的方法中,可以根据第一数据中的电网的用电信息灵活调整储能装置的温度,从而可以在保证储能装置的性能的同时减少储能装置的功耗。
可选地,在本申请一实施例中,根据第一数据调节储能装置100的温度包括:根据第一数据控制热控制模块120调节储能装置100的温度。
热控制模块120可以用于调节储能装置100的温度,即,热控制模块120可以用于为储能装置100升温也可以用于为储能装置100降温。热控制模块120对储能装置100降温越多或升温越多,热控制模块120的功耗就越大,储能装置100的功耗也就越大。
第一数据包括电网180的用电信息,根据第一数据控制热控制模块120,从而可以根据用电信息灵活控制热控制模块120,以使热控制模块120对储能装置100进行不同的温度调节,有利于减少热控制模块120的功耗。
可选地,热控制模块120为热管理系统,热管理系统可以包括风冷系统或液冷系统,只要可以实现对储能装置100的温度的调节就可以,本申请实施例对此不作具体限制。
可选地,在本申请一实施例中,用电信息包括电网180的用电高峰时段和/或电网的用电低谷时段,根据第一数据控制热控制模块120调节储能装置100的温度,包括:在用电高峰时段控制热控制模块120,以将储能装置100的温度调节至第一温度;和/或,在用电低谷时段控制热控制模块120,以将储能装置100的温度调节至第二温度,第一温度与第二温度不同。
在用电高峰时段,可以控制热控制模块120以较小的幅度调节储能装置100的温度;在用电低谷时段,可以控制热控制模块120相对于用电高峰时段以较大的幅度调节储能装置100的温度。这样,有利于减小热控制模块120在用电高峰时段的功耗,即,减少热控制模块120对储能装置100中的电量的消耗,从而可以使储能装置 100在向电网输送电能的过程中输送更多的电能或使储能装置在从电网获取电能的过程中减少所需要获取的电能。
通过根据用电高峰时段和/或用电低谷时段控制热控制模块120,不仅有利于降低热控制模块120的功耗,而且有利于提高电网180的用电负荷的均匀性,进而有利于提高电网120的运行效率和可靠性。
可选地,在本申请一实施例中,在对储能装置100降温的情况下,第一温度大于第二温度;在对储能装置100升温的情况下,第一温度小于第二温度。
图4为本申请一实施例的功耗控制的方法的流程图。如图4所示,该方法具体包括以下步骤。
步骤410,判断是否为用电高峰时段。若当前时刻处于用电高峰时段,执行步骤420。若当前时刻不处于用电高峰时段,执行步骤430。
具体地,步骤410可以在步骤310之后执行,通过步骤310获取第一数据包括电网的用电高峰时段和电网的用电低谷时段。
步骤420,控制热控制模块120,以将储能装置100的温度调节至第一温度。
具体地,在用电高峰时段,在对储能装置100降温的情况下,将储能装置100的温度调至第一温度,由于第一温度大于第二温度,相比于直接将储能装置100的温度降至温度较低的第二温度,将储能装置100的温度降为第一温度可以减少热控制模块100所消耗的电量。
在一种应用场景下,例如,在储能装置100与电网180连接的情况下,若此时储能装置100正在从电网180获取电能,由于热控制模块120消耗的电量减少,从而储能装置100整体消耗的电量减少,储能装置100需要从电网180获取的电能也相应减少。这样,不仅减少了储能装置100的功耗,还有利于减小电网180的用电高峰时段的负荷,有利于维持电网180的稳定性和可靠性。
类似的,在用电高峰时段,在对储能装置100升温的情况下,将储能装置100的温度调至第一温度,由于第一温度小于第二温度,也可以减少储能装置100的功耗,同时减小电网180的用电高峰时段的负荷。
在另一种应用场景下,例如,在储能装置100与电网180连接的情况下,若此时储能装置100正在向电网180输送电能,由于热控制模块120消耗的电量减少,从而储能装置100整体消耗的电量减少,储能装置100可以留有更多的电量以向电网180 输送电能。这样,不仅有利于减少储能装置100的功耗,还有利于储能装置100向电网180输送更多的电能,从而有利于实现电网的用电负荷的削峰填谷。
类似的,在用电高峰时段,在对储能装置100升温的情况下,将储能装置100的温度调至第一温度,由于第一温度小于第二温度,也可以减少储能装置100的功耗,同时还有利于储能装置100向电网180输送更多的电能,从而有利于实现电网的用电负荷的削峰填谷。
步骤430,判断是否为用电低谷时段。若当前时刻处于用电低谷时段,执行步骤440。
步骤440,控制热控制模块120,以将储能装置100的温度调节至第二温度。
具体地,在用电低谷时段,当对储能装置100降温时,将储能装置的温度降低至第二温度,第二温度低于第一温度,这样有利于在到达用电高峰时段前,将储能装置100的温度维持在一个较低的合理的温度范围内,有利于减少热控制模块120在用电高峰时段的功耗,同时也有利于电网的用电负荷的削峰填谷。
类似的,在用电低谷时段,对储能装置100升温至第二温度,第二温度大于第一温度,也具有类似的效果,在此不再赘述。
可选地,若当前时刻不处于用电低谷时段,执行以下步骤:控制热控制模块120,以调节储能装置100的温度。也就是说,在当前时刻既不处于用电高峰时段也不处于用电低谷时段的情况下,可以控制热控制模块120调节储能装置100的温度。其中,可以控制热控制模块120将储能装置100的温度调节至第一温度,也可以将储能装置100的温度调节至第二温度,也可以将储能装置100的温度调节至除了第一温度和第二温度以外的温度,即,只要将储能装置100的温度调节至可以使储能装置100正常运行的温度即可。储能装置100的温度调节至的具体温度值可以根据实际情况和储能装置的具体状况设置,该具体的温度值可以预先设置并存储在存储器中,以供第一控制单元110或其他控制器自动获取。
可选地,在本申请一实施例中,在对储能装置100降温的情况下,第一温度为24~26℃;或,在对储能装置100升温的情况下,第一温度为16~18℃。
储能装置100在运行的过程中会产生热量,当储能装置100的温度超过一定值后,可能会发生起火等现象。因此,在用电高峰时段对储能装置100降温时,将储能装置100的温度降为24~26℃,可以使储能装置100处于一个较为合适的温度范围,能 够保持储能装置100的正常运行,避免温度过高发生储能装置100的电池起火等现象。
当外界环境温度过低时,储能装置100受外界环境的影响温度也较低。当储能装置100的温度低于一定值后,会影响储能装置100的正常运行,例如储能装置100无法充放电,充放电速率过慢等。因此,在用电高峰时段对储能装置100升温时,将储能装置100的温度升为16~18℃,可以使储能装置100处于一个较为合适的温度范围,避免温度过低导致储能装置100的电池难以运行。
可选地,在对储能装置100降温的情况下,第二温度为19~23℃;或,在对储能装置100升温的情况下,第二温度为20~24℃。第一温度和第二温度的具体数值可以根据实际环境或不同储能装置具体设置,本申请实施例对此不作具体限制。
可选地,在本申请一实施例中,在根据第一数据控制热控制模块120调节储能装置100的温度之前,方法300还包括:获取储能装置100的初始温度。这样,可以基于储能装置100的初始温度进行后续的操作,例如是否控制热控制模块120调节储能装置的温度以及将储能装置100的温度调至什么样的温度范围。
可选地,在本申请一实施例中,控制热控制模块120调节储能装置100的温度包括:在用电高峰时段,在储能装置100的初始温度大于第三温度的情况下,控制热控制模块120,以将储能装置100的温度调节至第一温度,第三温度大于第一温度和第二温度;或,在用电高峰时段,在储能装置100的初始温度小于第四温度的情况下,控制热控制模块120,以将储能装置100的温度调节至第一温度,第四温度小于第一温度和第二温度。
图5为本申请一实施例的用电高峰时段的控制热控制模块的流程图。如图5所示,该方法具体包括以下步骤。
步骤510,获取储能装置100的初始温度。
可选地,BMS用于获取储能装置100的电池130的初始温度,并将电池130的初始温度发送至第一控制单元110。
步骤520,判断初始温度是否大于第三温度或小于第四温度。其中,第三温度大于第一温度和第二温度,第四温度小于第一温度和第二温度。若储能装置100的初始温度大于第三温度或小于第四温度,执行步骤530。
具体地,在用电高峰时段,当储能装置100的温度大于第三温度或小于第四温度时,才控制热控制模块120对储能装置100降温。这样,在储能装置100的温度大于第三温度或小于第四温度时,控制热控制模块120,以调节储能装置100的温度,也就是说,在储能装置100的温度大于等于第四温度并小于等于第三温度时,控制热控制模块120不对储能装置100的温度进行调节,从而可以降低热控制模块120在用电高峰时段的功耗。
可选地,第三温度可以为储能装置100维持正常运行的最高温度,第四温度可以为维持储能装置100正常运行的最低温度。
可选地,第三温度可以为27~30℃,第四温度可以为10~15℃。第三温度和第四温度的值可以根据实际环境以及储能装置具体设置,本申请实施例对此不作具体限制。
步骤530,控制热控制模块120,以将储能装置100的温度调节至第一温度。
在该实施例中,可以避免在储能装置100的温度处于正常温度范围时,在用电高峰时段控制热控制模块120调节储能装置100的温度而导致的电能的消耗,从而可以进一步降低储能装置100的功耗。
图6为本申请一实施例的用电高峰时段控制热控制模块的流程图。如图6所示,该方法具体包括以下步骤。
步骤610,获取储能装置100的当前温度。
可选地,BMS用于获取储能装置100的电池130的当前温度,并将电池130的当前温度发送至第一控制单元110。
可选地,步骤610可以在步骤530之后执行。
步骤620,判断储能装置100的当前温度是否大于第五温度。
在储能装置100的温度调节至第一温度后,随着储能装置100的运行,储能装置100的温度可能继续上升。若储能装置100的温度大于第五温度,执行步骤630。
可选地,第五温度可以为储能装置100维持正常运行的最高温度。第五温度可以等于第三温度,也可以大于第三温度,本申请实施例对此不作具体限制。
步骤630,控制热控制模块120,以将储能装置100的温度调节至第一温度。
可选地,在本申请一实施例中,第一数据包括:电网的历史用电信息。
可选地,历史用电信息可以为前一天的用电信息或既定日的用电信息。既定日的用电信息可以为某一特定日期的用电信息,例如,既定日和当前日均为周五,或既定日和当前日均为4月1日。该历史用电信息可以直接从电力交易中心或综合能源服务公司交易中心获得,也可以通过云服务系统间接从电力交易中心或综合能源服务公司交易中心获得。
历史用电信息可以反映历史用电情况,历史用电情况与当日的用电情况相似,从而可以根据历史用电情况调节储能装置100的温度,有利于降低储能装置100的功耗。
可选地,在本申请一实施例中,第一数据包括:电网180的预测用电信息。
可选地,预测用电信息为云服务系统根据历史用电信息通过计算得到的。预测用电信息可以反映当前或下一时刻的用电情况,从而可以根据预测用电信息提前或实时调节储能装置100的温度,有利于实现储能装置100的功耗的降低。
可选地,在本申请一实施例中,在获取第一数据之前,方法300还包括:向服务器150发送预测请求;获取第一数据包括:接收服务器150发送的预测用电信息。通过向服务器150发送预测请求,服务器150可以根据预测请求计算预测用电信息,服务器150发送预测用电信息,进而可以根据预测用电信息实现功耗的控制。
可选地,在本申请一实施例中,在根据第一数据控制热控制模块120之前,方法300还包括:根据第一数据确定电网180的用电高峰时段或电网的用电低谷时段。
可选地,第一数据可以为用电高峰时段和用电低谷时段,也可以为用电曲线。在第一数据为用电曲线的情况下,可以根据用电曲线分析计算该用电曲线中相应的用电高峰时段和用电低谷时段。这样,用电高峰时段和用电低谷时段相比于用电曲线等复杂的用电信息更加简单直观,便于根据不同的用电时段进调节储能装置100的温度。
可选地,在本申请一实施例中,根据第一数据控制热控制模块120调节储能装置100的温度,包括:根据第一数据控制热控制模块120中的流体的初始温度或流量。
可选地,热控制模块120中容纳有流体,该流体用于调节储能装置100的温度。例如,当对储能装置100的温度的调节程度比较大时,可以增大流体的流量。再例如,当对储能装置100进行升温并且升温的程度比较大时,可以增加流体的初始温度。这样,可以根据第一数据的电网的用电信息,灵活地设置流体的初始温度或流量,以实现对于温度的不同程度的调节。
可选地,在本申请一实施例中,根据第一数据控制热控制模块120调节储能装置100的温度,包括:根据第一数据发送控制指令,以使热控制模块120根据控制指令调节储能装置100的温度。
可选地,可以将控制指令发送至BMS,BMS将该控制指令发送至热控制模块120,以使热控制模块120根据控制指令调节储能装置100的温度。
可选地,控制指令可以包括以下信息:将储能装置100的温度升高/降低至第一温度、将储能装置100的温度升高/降低至第二温度等。
在该实施例中,可以根据第一数据的电网180的用电信息发送不同的控制指令,以使热控制模块120根据所述不同的控制指令对储能装置100升温或降温处理。
可选地,本申请实施例中的功耗控制的方法由第一控制单元110执行。
可选地,本申请实施例的功耗控制的方法由除了第一控制单元110之外的控制单元执行。
可选地,还可以通过除了发送控制指令之外的其他方式调节储能装置100的温度,本申请实施例对此不作具体限制。
上文结合图1至图6,详细描述了本申请的方法实施例,下文将详细描述本申请的功耗控制系统的实施例。应理解,方法实施例与系统的实施例相互对应,类似的描述可以参照方法实施例。
图7为本申请一实施例的功耗控制系统的示意图。如图7所示,功耗控制系统200包括控制单元210。控制单元210用于:获取第一数据,第一数据用于指示电网180的用电信息;在储能装置100与电网180连接的情况下,根据第一数据调节储能装置100的温度。
可选地,在本申请一实施例中,控制单元210用于:根据第一数据控制热控制模块120调节储能装置100的温度。
可选地,在本申请一实施例中,用电信息包括电网180的用电高峰时段和/或电 网的用电低谷时段,控制单元210用于:在用电高峰时段控制热控制模块120,以将储能装置100的温度调节至第一温度;和/或,在用电低谷时段控制热控制模块120,以将储能装置的温度调节至第二温度,第一温度与第二温度不同。
可选地,在本申请一实施例中,控制单元210用于:获取储能装置100的初始温度。
可选地,在本申请一实施例中,控制单元210用于:在用电高峰时段,在储能装置100的初始温度大于第三温度的情况下,控制热控制模块120,以将储能装置的温度调节至第一温度,第三温度大于第一温度和第二温度;或,在用电高峰时段,在储能装置100的初始温度小于第四温度的情况下,控制热控制模块120,以将储能装置100的温度调节至第一温度,第四温度小于第一温度和第二温度。
具体地,BMS检测储能装置100的电池130的初始温度,并将初始温度发送至控制单元210。控制单元210判断初始温度与第三温度或第四温度的关系,并根据初始温度与第三温度或第四温度的关系,控制热控制模块120。
可选地,在控制单元210确定初始温度大于第三温度的情况下,控制单元210发送降温指令至BMS,BMS将降温指令发送至热控制模块120,热控制模块120根据降温指令将储能装置100的温度调节至第一温度。
可选地,在控制单元210确定初始温度小于第四温度的情况下,控制单元210发送升温指令至BMS,BMS将升温指令发送至热控制模块120,热控制模块120根据升温指令将储能装置100的温度调节至第一温度。
可选地,在本申请一实施例中,功耗控制系统200还包括服务器150。服务器150用于接收控制单元210发送的预测请求并根据预测请求计算预测用电信息;控制单元160用于接收预测用电信息。
图8为本申请一实施例的服务器与控制单元进行信息交互的示意图。如图8所示,云服务系统151接收控制单元210的预测请求,并根据预测请求计算预测用电信息。云服务系统还用于从电力交易中心或综合能源服务公司交易中心获取历史用电信息,并根据历史用电信息计算预测用电信息。
可选地,在本申请一实施例中,控制单元210用于:根据第一数据确定电网180的用电高峰时段或电网180的用电低谷时段。
可选地,在本申请一实施例中,控制单元210用于:根据第一数据控制热控制 模块中的流体的初始温度或流量。
可选地,在本申请一实施例中,控制单元210用于:根据第一数据发送控制指令;热控制模块120用于:根据控制指令调节储能装置100的温度。
本申请实施例提供了一种可读存储介质,用于存储计算机程序,计算机程序用于执行前述实施例中的任一项的功耗控制的方法。
本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被执行时,使得计算机可以执行前述实施例中的任一项功耗控制的方法。
图9为本申请一实施例的控制单元的示意图。如图9所示,本申请实施例提供了一种控制单元210,包括处理器211和存储器212,存储器212用于存储计算机程序,处理器211用于调用计算机程序,执行前述实施例中的任一项的功耗控制的方法。
本申请实施例的处理器211可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法和步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例的存储器212可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的 RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (28)

  1. 一种功耗控制的方法,其特征在于,所述方法包括:
    获取第一数据,所述第一数据用于指示电网的用电信息;
    在储能装置与所述电网连接的情况下,根据所述第一数据调节所述储能装置的温度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一数据调节所述储能装置的温度,包括:
    根据所述第一数据控制热控制模块调节所述储能装置的温度。
  3. 根据权利要求2所述的方法,其特征在于,所述用电信息包括所述电网的用电高峰时段和/或所述电网的用电低谷时段,所述根据所述第一数据控制热控制模块调节所述储能装置的温度,包括:
    在所述用电高峰时段控制所述热控制模块,以将所述储能装置的温度调节至第一温度;和/或,
    在所述用电低谷时段控制所述热控制模块,以将所述储能装置的温度调节至第二温度,所述第一温度与所述第二温度不同。
  4. 根据权利要求3所述的方法,其特征在于,在对所述储能装置降温的情况下,所述第一温度大于所述第二温度;或,
    在对所述储能装置升温的情况下,所述第一温度小于所述第二温度。
  5. 根据权利要求4所述的方法,其特征在于,在对所述储能装置降温的情况下,所述第一温度为24~26℃;或,
    在对所述储能装置升温的情况下,所述第一温度为16~18℃。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述在根据所述第一数据控制热控制模块之前,所述方法还包括:
    获取所述储能装置的初始温度。
  7. 根据权利要求6所述的方法,其特征在于,所述控制热控制模块调节所述储能装置的温度,包括:
    在所述用电高峰时段,在所述储能装置的所述初始温度大于第三温度的情况下,控制所述热控制模块,以将所述储能装置的温度调节至所述第一温度,所述第三温度 大于所述第一温度和所述第二温度;或,
    在所述用电高峰时段,在所述储能装置的所述初始温度小于第四温度的情况下,控制所述热控制模块,以将所述储能装置的温度调节至所述第一温度,所述第四温度小于所述第一温度和所述第二温度。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一数据包括:所述电网的历史用电信息。
  9. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一数据包括:所述电网的预测用电信息。
  10. 根据权利要求9所述的方法,其特征在于,在所述获取第一数据之前,所述方法还包括:
    向服务器发送预测请求;
    所述获取第一数据包括:
    接收所述服务器发送的所述预测用电信息。
  11. 根据权利要求2至10中任一项所述的方法,其特征在于,在所述根据所述第一数据控制热控制模块调节所述储能装置的温度之前,所述方法还包括:
    根据所述第一数据确定所述电网的用电高峰时段或所述电网的用电低谷时段。
  12. 根据权利要求2至11中任一项所述的方法,其特征在于,所述根据所述第一数据控制热控制模块调节所述储能装置的温度,包括:
    根据所述第一数据控制所述热控制模块中的流体的初始温度或流量。
  13. 根据权利要求2至12中任一项所述的方法,其特征在于,所述根据所述第一数据控制热控制模块调节所述储能装置的温度,包括:
    根据所述第一数据发送控制指令,以使所述热控制模块根据所述控制指令调节所述储能装置的温度。
  14. 一种功耗控制系统,其特征在于,包括:控制单元;
    其中,所述控制单元用于:
    获取第一数据,所述第一数据用于指示电网的用电信息;
    在储能装置与电网连接的情况下,根据所述第一数据调节所述储能装置的温度。
  15. 根据权利要求14所述的功耗控制系统,其特征在于,所述控制单元用于:
    根据所述第一数据控制热控制模块调节所述储能装置的温度。
  16. 根据权利要求15所述的功耗控制系统,其特征在于,所述用电信息包括所述电网的用电高峰时段和/或所述电网的用电低谷时段,所述控制单元用于:
    在所述用电高峰时段控制所述热控制模块,以将所述储能装置的温度调节至第一温度;和/或,
    在所述用电低谷时段控制所述热控制模块,以将所述储能装置的温度调节至第二温度,所述第一温度与所述第二温度不同。
  17. 根据权利要求16所述的功耗控制系统,其特征在于,在对所述储能装置降温的情况下,所述第一温度大于所述第二温度;或,
    在对所述储能装置升温的情况下,所述第一温度小于所述第二温度。
  18. 根据权利要求17所述的功耗控制系统,其特征在于,在对所述储能装置降温的情况下,所述第一温度为24~26℃;或,
    在对所述储能装置升温的情况下,所述第一温度为16~18℃。
  19. 根据权利要求16至18中任一项所述的功耗控制系统,其特征在于,所述控制单元用于:
    获取所述储能装置的初始温度。
  20. 根据权利要求19所述的功耗控制系统,其特征在于,所述控制单元用于:
    在所述用电高峰时段,在所述储能装置的所述初始温度大于第三温度的情况下,控制所述热控制模块,以将所述储能装置的温度调节至所述第一温度,所述第三温度大于所述第一温度和所述第二温度;或,
    在所述用电高峰时段,在所述储能装置的所述初始温度小于第四温度的情况下,控制所述热控制模块,以将所述储能装置的温度调节至所述第一温度,所述第四温度小于所述第一温度和所述第二温度。
  21. 根据权利要求14至20中任一项所述的功耗控制系统,其特征在于,所述第一数据包括:所述电网的历史用电信息。
  22. 根据权利要求14至20中任一项所述的功耗控制系统,其特征在于,所述第一数据包括:所述电网的预测用电信息。
  23. 根据权利要求22所述的功耗控制系统,其特征在于,所述功耗控制系统还包括服务器;
    其中,
    所述服务器用于接收所述控制单元发送的预测请求并根据所述预测请求计算所述预测用电信息;
    所述控制单元用于接收所述预测用电信息。
  24. 根据权利要求14至23中任一项所述的功耗控制系统,其特征在于,所述控制单元用于:
    根据所述第一数据确定所述电网的用电高峰时段或所述电网的用电低谷时段。
  25. 根据权利要求15至24中任一项所述的功耗控制系统,其特征在于,所述控制单元用于:
    根据所述第一数据控制所述热控制模块中的流体的初始温度或流量。
  26. 根据权利要求15至25中任一项所述的功耗控制系统,其特征在于,所述控制单元用于:
    根据所述第一数据发送控制指令;
    所述热控制模块用于:
    根据所述控制指令调节所述储能装置的温度。
  27. 一种可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序用于执行如权利要求1至13中任一项所述的功耗控制的方法。
  28. 一种控制单元,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行如权利要求1至13中任一项所述的功耗控制的方法。
PCT/CN2022/093750 2022-05-19 2022-05-19 功耗控制的方法和功耗控制系统 WO2023221020A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280081977.3A CN118339526A (zh) 2022-05-19 2022-05-19 功耗控制的方法和功耗控制系统
PCT/CN2022/093750 WO2023221020A1 (zh) 2022-05-19 2022-05-19 功耗控制的方法和功耗控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093750 WO2023221020A1 (zh) 2022-05-19 2022-05-19 功耗控制的方法和功耗控制系统

Publications (1)

Publication Number Publication Date
WO2023221020A1 true WO2023221020A1 (zh) 2023-11-23

Family

ID=88834230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093750 WO2023221020A1 (zh) 2022-05-19 2022-05-19 功耗控制的方法和功耗控制系统

Country Status (2)

Country Link
CN (1) CN118339526A (zh)
WO (1) WO2023221020A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124692A (zh) * 2014-08-19 2014-10-29 国家电网公司 一种电暖气错峰调参控制系统及方法
KR20170104763A (ko) * 2016-03-08 2017-09-18 한국전력공사 배터리 온도 관리 장치 및 방법
CN209514433U (zh) * 2019-06-04 2019-10-18 上海采日能源科技有限公司 功耗控制装置及储能系统
CN111641004A (zh) * 2020-06-24 2020-09-08 阳光电源股份有限公司 一种储能系统温控方法和能量管理系统
CN112531232A (zh) * 2020-12-01 2021-03-19 阳光电源股份有限公司 一种储能系统及其热管理方法
CN112859956A (zh) * 2021-01-22 2021-05-28 合肥阳光新能源科技有限公司 温度调节设备的控制方法和装置
CN113394800A (zh) * 2021-05-11 2021-09-14 华为技术有限公司 一种储能系统、温度控制方法及光伏发电系统
CN114183928A (zh) * 2021-12-16 2022-03-15 美的集团武汉暖通设备有限公司 热水器、热水器的控制方法和相关设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124692A (zh) * 2014-08-19 2014-10-29 国家电网公司 一种电暖气错峰调参控制系统及方法
KR20170104763A (ko) * 2016-03-08 2017-09-18 한국전력공사 배터리 온도 관리 장치 및 방법
CN209514433U (zh) * 2019-06-04 2019-10-18 上海采日能源科技有限公司 功耗控制装置及储能系统
CN111641004A (zh) * 2020-06-24 2020-09-08 阳光电源股份有限公司 一种储能系统温控方法和能量管理系统
CN112531232A (zh) * 2020-12-01 2021-03-19 阳光电源股份有限公司 一种储能系统及其热管理方法
CN112859956A (zh) * 2021-01-22 2021-05-28 合肥阳光新能源科技有限公司 温度调节设备的控制方法和装置
CN113394800A (zh) * 2021-05-11 2021-09-14 华为技术有限公司 一种储能系统、温度控制方法及光伏发电系统
CN114183928A (zh) * 2021-12-16 2022-03-15 美的集团武汉暖通设备有限公司 热水器、热水器的控制方法和相关设备

Also Published As

Publication number Publication date
CN118339526A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
EP3780249B1 (en) Battery temperature control device and method, controller, storage medium, and battery charging and swapping station
CN110768273B (zh) 一种储能联合火电参与电网二次调频的控制方法
JP2019115249A (ja) 電力網に周波数変調を行う方法、装置及びそのシステム
CN115832532B (zh) 液冷储能系统的控制方法、装置及系统
WO2013023415A1 (zh) 液流电池系统及其控制方法和装置
WO2022213858A1 (zh) 一种储能系统及其荷电状态值的校正方法
JP2020517082A (ja) 並列接続構造のバッテリーパックのヒーターの制御システム及びその方法
CN115296361A (zh) 一种设备的电量阈值动态调整方法、装置、设备及介质
CN110429684A (zh) 充电控制方法和装置、电子设备、计算机可读存储介质
WO2023206266A1 (zh) 电池系统的充电控制方法和充电控制装置
WO2023155220A1 (zh) 一种基于云端数据的储能系统sop优化方法及装置
WO2023221020A1 (zh) 功耗控制的方法和功耗控制系统
CN113097597B (zh) 储能系统的热管理方法、控制器及储能系统
WO2020017428A1 (ja) 電力管理サーバ、エネルギー蓄積装置及び電力管理方法
CN110281808A (zh) 一种基于电池温度与健康状态的v2g安全控制方法及系统
WO2023221018A1 (zh) 电力控制的方法和充放电系统
CN113131044A (zh) 一种浸没式液态调温固态电池储能系统
EP4367768A1 (en) Decentralized frequency control with packet-based energy management
WO2023245931A1 (zh) 储能系统的控制方法和储能系统
WO2024000138A1 (zh) 储能系统热管理的方法和储能系统
WO2023221019A1 (zh) 检测方法和储能系统
US20210234210A1 (en) Control apparatus of storage battery and control method for storage battery
CN118693412A (zh) 热管理系统、方法、电子设备、存储介质及程序产品
CN215680783U (zh) 一种光伏储能电池冷却系统
WO2023092416A1 (zh) 动力电池充电的方法和电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280081977.3

Country of ref document: CN