WO2023220926A1 - 车用发光面板和发光装置 - Google Patents

车用发光面板和发光装置 Download PDF

Info

Publication number
WO2023220926A1
WO2023220926A1 PCT/CN2022/093347 CN2022093347W WO2023220926A1 WO 2023220926 A1 WO2023220926 A1 WO 2023220926A1 CN 2022093347 W CN2022093347 W CN 2022093347W WO 2023220926 A1 WO2023220926 A1 WO 2023220926A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
signal distribution
electrode
distribution line
Prior art date
Application number
PCT/CN2022/093347
Other languages
English (en)
French (fr)
Inventor
向炼
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001246.3A priority Critical patent/CN117546633A/zh
Priority to PCT/CN2022/093347 priority patent/WO2023220926A1/zh
Publication of WO2023220926A1 publication Critical patent/WO2023220926A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of lighting technology, and specifically to a vehicle light-emitting panel and a light-emitting device.
  • OLED organic electroluminescent diode
  • the purpose of this disclosure is to overcome the above-mentioned shortcomings of the prior art, provide a vehicle light-emitting panel and a light-emitting device, and improve the reliability of the vehicle light-emitting panel.
  • a light-emitting panel including at least one light-emitting unit disposed on one side of a substrate; the light-emitting unit includes a light-emitting device and a signal distribution line that drives the light-emitting device;
  • the light-emitting device includes a light-emitting electrode, a light-emitting area definition layer, an organic light-emitting layer and a common electrode that are sequentially stacked on one side of the base substrate;
  • the light-emitting unit further includes a transfer line, the signal distribution line and the light-emitting electrode of the light-emitting device are electrically connected through the transfer line, and the area resistance of the transfer line is greater than the area resistance of the signal distribution line.
  • the signal distribution line is arranged around the light-emitting electrode.
  • the width of the transfer line is smaller than the width of the signal distribution line.
  • the orthographic projection of the transfer line on the base substrate is located within the orthographic projection of the signal distribution line on the base substrate.
  • the transfer line and the light-emitting electrode are arranged in the same layer.
  • the vehicle light-emitting panel further includes an inorganic insulating layer covering the signal distribution line;
  • the inorganic insulating layer has an opening groove that exposes at least a part of the signal distribution line, and the adapter wire is electrically connected to the signal distribution line through the opening groove.
  • the length of the patch cord is not less than half the length of the signal distribution line.
  • the light-emitting unit includes a plurality of the adapter lines, the first end of each of the adapter lines is electrically connected to the signal distribution line, and the second end of each of the adapter lines is respectively It is electrically connected to different positions on the edge of the light-emitting electrode.
  • the first ends of at least two transfer lines are electrically connected to each other and to the same position of the signal distribution line.
  • each of the transfer lines is electrically connected to different positions of the signal distribution line.
  • the light-emitting unit further includes a tab connected to the light-emitting electrode; the connection size between the tab and the light-emitting electrode is greater than the width of the adapter line;
  • the adapter wire is electrically connected to the tab.
  • the tab and the light-emitting electrode are arranged in the same layer.
  • the edge of the tab includes a first edge connected to the adapter wire and a second edge connected to the light-emitting electrode; the first edge is not connected to the second edge. Adjacent.
  • the vehicle light-emitting panel further includes an inorganic insulating layer covering the signal distribution line;
  • the pole tabs overlap the signal distribution lines, and the pole tabs and the signal distribution lines are insulated by the inorganic insulating layer.
  • the number of the tabs connected to the light-emitting electrode is multiple; each of the tabs is connected to a different position on the edge of the light-emitting electrode.
  • each tab connected to the light-emitting electrode is distributed symmetrically about the center, and the center of symmetry coincides with the center of the light-emitting electrode.
  • each tab connected to the light-emitting electrode is distributed in rotational symmetry, and the center of rotational symmetry coincides with the center of the light-emitting electrode.
  • the number of tabs connected to the light-emitting electrode is 2 to 6.
  • At least one of the light-emitting electrodes is in a polygonal shape; the tab is disposed adjacent to a vertex corner of the light-emitting electrode.
  • the vehicle light-emitting panel further includes an inorganic insulating layer covering the signal distribution line;
  • the light-emitting area definition layer has a plurality of light-emitting openings exposing the light-emitting electrode; the inorganic insulating layer has a light-emitting groove;
  • the orthographic projection of the light-emitting opening on the base substrate is located in the orthographic projection of the light outlet groove on the base substrate.
  • the material of the signal distribution line is metal or conductive metal oxide; the material of the light-emitting electrode is conductive metal oxide.
  • a light-emitting device including the above-mentioned vehicle light-emitting panel.
  • Figure 1-1 is a schematic structural diagram of a vehicle light-emitting panel in an embodiment of the present disclosure.
  • 1-2 is a schematic structural diagram of a vehicle light-emitting panel in an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a light-emitting unit cut along the light-emitting electrodes, tabs and adapter wires in an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of the light-emitting unit cut along the light-emitting electrodes and tabs in an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of the relative positional relationship between light-emitting electrodes, light-emitting grooves, light-emitting openings and signal distribution lines in an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of the relative positional relationship between light-emitting electrodes, light-emitting grooves, light-emitting openings and signal distribution lines in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a light-emitting electrode layer and a signal distribution line in a light-emitting unit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a light-emitting electrode layer and a signal distribution line in a light-emitting unit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a light-emitting electrode layer and a signal distribution line in a light-emitting unit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a light-emitting electrode layer and a signal distribution line in a light-emitting unit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a light-emitting electrode layer and a signal distribution line in a light-emitting unit according to an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the structural layer A is located on the side of the structural layer B facing away from the base substrate. It can be understood that the structural layer A is formed on the side of the structural layer B facing away from the base substrate.
  • part of the structure of structural layer A may also be located at the same physical height of structural layer B or lower than the physical height of structural layer B, where the base substrate is the height reference.
  • the present disclosure provides a vehicle light-emitting panel, see FIGS. 1-1 and 1-2 .
  • the vehicle light-emitting panel includes at least one light-emitting unit PIX provided on one side of the substrate substrate BP.
  • any light-emitting unit PIX includes a light-emitting device DD and a signal distribution line DSW that drives the light-emitting device DD.
  • the light-emitting device DD includes a light-emitting electrode AND, a light-emitting area definition layer FPDL, an organic light-emitting layer EL and a common electrode COM that are stacked in sequence; the signal distribution line DSW is electrically connected to the light-emitting electrode AND to load the light-emitting device DD drive current.
  • the automotive light-emitting panel may also include drive wires DRW electrically connected to each signal distribution line DSW and a drive wire DRW electrically connected to each drive wire DRW.
  • the external control circuit such as a circuit board, a flexible circuit board
  • the driving pin PAD can be bound and connected to the driving pin PAD, and then load the driving current to the light-emitting device DD through the driving pin PAD, the driving trace DRW and the signal distribution line DSW, so as to The light-emitting device DD is driven to emit light.
  • the luminous brightness of each light-emitting device DD can be controlled by controlling the driving current loaded on each light-emitting device DD.
  • the macroscopic brightness of the light-emitting device DD can be controlled by controlling the duty cycle of each light-emitting device DD.
  • the driving current of each light-emitting device DD is substantially the same each time it emits light.
  • one driving wire DRW drives one light-emitting unit PIX. It can be understood that in other embodiments of the present disclosure, one driving line DRW can also drive multiple different light-emitting units PIX; for example, one driving line DRW can have multiple branch lines, and each branch line is connected to a Light-emitting unit PIX; for another example, one driving wire DRW may include multiple sub-wires, and the sub-wires are alternately connected to the light-emitting unit PIX, so that multiple light-emitting units PIX are connected in series through the driving wire DRW.
  • the driving wire DRW, the driving pin PAD and the signal distribution line DSW may be provided in the same layer, for example, obtained by patterning the same conductive material layer.
  • the automotive light-emitting panel may include a driving layer FSD provided on one side of the base substrate BP.
  • the driving layer FSD includes a driving wire DRW, a driving pin PAD and a signal distribution line DSW.
  • a conductive material layer can be first formed on one side of the base substrate BP, and then a patterning operation is performed on the conductive material layer to obtain the driving layer FSD.
  • the driving layer FSD has the above-mentioned driving wiring DRW. , drive pin PAD and signal distribution line DSW.
  • a seed layer can be formed first (for example, a copper metal layer no more than 1 micron thick is formed by sputtering) and then electroplating or electroless plating is performed based on the seed layer to form the required driving layer FSD, or through multiple deposition-etching processes Obtain multi-layer traces to form the final driving layer FSD, or directly form the driving layer FSD through a printing process.
  • the driving layer FSD can be made to have a larger thickness, so that the driving traces DRW, signal distribution lines DSW, etc. have smaller square resistance and larger current transmission capabilities, which can meet the requirements of the light-emitting unit PIX when emitting high brightness. The large current required for light.
  • the material of the driving layer FSD may be a metal material, which may include a sequentially stacked multi-layer metal structure, such as a titanium layer/aluminum layer/titanium layer structure, a molybdenum-niobium alloy layer/copper layer/molybdenum-niobium structure. Alloy layer and other structures.
  • the material of the driving layer FSD may be a conductive metal oxide, such as ITO (indium tin oxide).
  • the vehicle light-emitting panel may further include an inorganic insulating layer FCVD located on the side of the driving layer FSD away from the base substrate BP.
  • the inorganic insulating layer FCVD covers the signal distribution line DSW, and the inorganic insulating layer FCVD has an opening groove GG that exposes at least a part of the signal distribution line DSW; the light-emitting electrode AND is electrically connected to the signal distribution line DSW through the opening groove GG, for example, directly electrically connected or indirectly electrically connected through other structures.
  • the inorganic insulating layer FCVD covers each driving wire DRW to prevent short-circuit connection between each film layer of the light-emitting device DD and the driving wire DRW.
  • the inorganic insulating layer FCVD exposes each driving pin PAD, so that the external circuit can be bonded to the driving pin PAD.
  • the driving layer FSD can also be provided with a common electrode bonding line and a common voltage pin electrically connected to the common electrode bonding line, and the inorganic insulating layer FCVD can expose the common voltage pin and the common electrode bonding line. at least part of the area.
  • the automotive light-emitting panel is provided with a common electrode layer FCOM, and the common electrode layer FCOM has a common electrode COM of each light-emitting device DD; the edge of the common electrode layer FCOM can be directly or indirectly connected to the common electrode bonding line, for example, by setting The light-emitting electrode layer FAND having the light-emitting electrode AND is overlapped with the common electrode overlapping line.
  • the common voltage pin can be bound and connected with the external circuit; this allows the external circuit to load the common voltage to the common electrode layer FCOM through the common voltage pin and the common electrode bonding line.
  • the material of the inorganic insulating layer FCVD is an inorganic insulating material, such as silicon oxide, silicon nitride, silicon oxynitride and other inorganic materials.
  • the inorganic insulating layer FCVD can be prepared after the driving layer FSD is prepared.
  • an inorganic material layer covering the driving layer FSD may be formed first, and then a patterning operation is performed on the inorganic material layer to form the inorganic insulating layer FCVD.
  • a patterning operation is performed on the inorganic material layer to form the inorganic insulating layer FCVD.
  • it is mainly necessary to form each required groove for example, to form an opening groove GG that exposes the signal distribution line DSW.
  • a vehicle light-emitting panel may include a light-emitting electrode layer FAND, a light-emitting area definition layer FPDL, and a light-emitting electrode layer FAND, which are sequentially stacked on the side of the inorganic insulating layer FCVD away from the base substrate BP.
  • the light-emitting electrode layer FAND has the light-emitting electrode AND of the light-emitting device DD;
  • the light-emitting area definition layer FPDL has at least one light-emitting opening exposing the light-emitting electrode AND, and the FET can at least cover the light-emitting opening to form an organic structure of the light-emitting device DD.
  • the light-emitting layer EL and the common electrode layer FCOM may at least cover the light-emitting opening to form the common electrode COM of the light-emitting device DD.
  • the light-emitting device DD is an OLED (organic electroluminescent diode).
  • the light-emitting electrode AND, the organic light-emitting layer EL and the common electrode COM are stacked in sequence.
  • the light-emitting area definition layer FPDL defines the actual light-emitting area in the light-emitting device DD by setting light-emitting openings; a sub-unit of the light-emitting device DD is formed at a position corresponding to a light-emitting opening.
  • the material of the light-emitting region definition layer FPDL may be selected from PS-PI (polystyrene-polyimide).
  • PS-PI polystyrene-polyimide
  • the material of the light-emitting region defining layer FPDL can also be selected from other photosensitive polymer materials.
  • the line PDLL is used to illustrate the edge of the light-emitting area definition layer FPDL when forming the light-emitting opening, and this edge is also the edge of the light-emitting opening.
  • the light-emitting area definition layer FPDL may form one light-emitting opening or multiple different light-emitting openings. When multiple light-emitting openings are formed, the regions corresponding to each light-emitting opening respectively form subunits of the light-emitting device DD.
  • the number of light-emitting openings in each light-emitting device DD can be set as needed, and the shape and size of each light-emitting opening can be set as needed.
  • the number of light-emitting openings of any two light-emitting devices DD may be the same or different; in the same light-emitting device DD, the shapes of any two light-emitting openings may be the same or different.
  • the number, shape, and arrangement of the light-emitting openings in each light-emitting device DD can be adjusted to achieve the desired effect in the vehicle. It can produce one or more specific patterns while luminous.
  • only one light-emitting opening is provided in at least one light-emitting device DD of the automotive light-emitting panel.
  • the shape of the light-emitting opening can match the shape of the light-emitting electrode AND.
  • the area of the light-emitting opening can be increased when the size of the light-emitting electrode AND is constant; in other words, this can increase the aperture ratio of the automotive light-emitting panel.
  • the light-emitting device DD to have a larger light-emitting area and exhibit higher light-emitting brightness, especially to improve the macro-brightness of the light-emitting device DD; in addition, a lower current density can be used to achieve better macro-brightness, thereby helping to improve the light-emitting The life of device DD.
  • the current density of the light-emitting device DD refers to the current density flowing through the organic light-emitting layer EL rather than the current density on the light-emitting electrode AND or the common electrode COM.
  • each light-emitting opening is provided in at least one light-emitting device DD of the automotive light-emitting panel; the edge of each light-emitting opening is a line PDLL in FIG. 5 .
  • each light-emitting opening is triangular in shape and arranged periodically. In this way, each light-emitting device DD can present a certain pattern or a specific texture while emitting light.
  • the light-emitting openings are illustrated in patterns of quadrilaterals and triangles.
  • the pattern of the light-emitting openings can be adjusted as needed, and can, for example, be square, rectangular, rhombus, pentagram, regular hexagon, bar, zigzag, star, crescent, or circle. shape, ellipse, flower shape, straight bar shape, curved bar shape, letter shape or other definable patterns, this disclosure does not impose special limitations on this.
  • the number of light-emitting openings in each light-emitting device DD is exemplified as 1 or 8. In other embodiments of the present disclosure, the number of light-emitting openings may be other numbers, such as between 1 and 1,000.
  • the light-emitting electrode AND may be a transparent electrode
  • the common electrode COM may be a reflective electrode with high reflectivity. In this way, the light from the light-emitting device DD can be emitted through the light-emitting electrode AND.
  • the substrate BP needs to be a transparent substrate BP, for example, inorganic transparent materials such as glass materials, organic transparent materials such as polyimide, or a composite of inorganic transparent materials and organic transparent materials.
  • the material of the substrate BP may be glass materials such as soda-lime glass, quartz glass, sapphire glass, etc.
  • the material of the substrate BP may be polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polyether Sulfone (Polyether sulfone, PES), polyimide, polyamide, polyacetal, polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate Diester (Polyethylene naphthalate, PEN) and other organic materials, or a combination of the above organic materials.
  • PMMA polymethyl methacrylate
  • PVA polyvinyl alcohol
  • PVP polyvinyl phenol
  • PES polyether Sulfone
  • PC polyethylene terephthalate
  • PET polyethylene naphthalate Diester
  • PEN polyethylene naphthalate
  • other organic materials or a combination of the above organic materials.
  • the substrate substrate BP may be a flexible substrate substrate BP having a polyimide layer
  • the vehicle light-emitting panel may be a flexible vehicle light-emitting panel.
  • the base substrate BP may include a stacked polyimide layer and an inorganic barrier layer (such as a silicon nitride layer or a silicon oxide layer), and the driving layer FSD is located on a side of the inorganic barrier layer away from the polyimide layer.
  • the substrate BP may include multiple polyimide layers, an inorganic barrier layer sandwiched between the polyimide layers, an inorganic buffer layer (such as a silicon oxide layer) on the topmost layer, and a driving layer.
  • the FSD is located on the side of the inorganic buffer layer away from the polyimide layer; in this way, the mechanical properties of the substrate BP can be improved, so that the substrate BP can meet the mechanical performance requirements of automotive light-emitting panels such as strength performance and stress performance.
  • the light-emitting electrode AND may be a transparent electrode with high light transmittance, such as ITO (indium tin oxide).
  • the common electrode COM may be a metal electrode with high reflectivity, such as a silver electrode, an aluminum electrode, or other thick electrodes.
  • the common electrodes COM can be connected to each other to form a full-surface electrode.
  • the common electrode layer FCOM is a full-surface electrode, and the overlapping portion of the common electrode layer FCOM and each light-emitting device DD can be used as the light-emitting device DD.
  • Common electrode COM Common electrode COM.
  • the light-emitting electrode AND can also use a reflective electrode
  • the common electrode COM can use a transparent electrode
  • the substrate BP does not need to use the transparent substrate BP.
  • its material can also be selected. From stainless steel, aluminum, nickel and other metal materials.
  • the light-emitting electrode AND may be the anode of the light-emitting device DD
  • the common electrode COM may be the cathode of the light-emitting device DD.
  • the light-emitting electrode AND can also be used as the cathode of the light-emitting device DD
  • the common electrode COM can be used as the anode of the light-emitting device DD.
  • the inorganic insulating layer FCVD may also be provided with a light outlet groove. At the light emitting trough, the inorganic insulating layer FCVD can be completely dug out or thinned.
  • the orthographic projection of the light emitting groove on the base substrate BP is located within the orthographic projection range of the light-emitting electrode AND on the base substrate BP.
  • the orthographic projection of the light-emitting opening on the base substrate BP can be within the orthographic projection of the light emitting groove on the base substrate BP.
  • the inorganic insulating layer FCVD between the subunit of the light-emitting device DD and the base substrate BP is thinned or dug out, which can reduce the impact of the inorganic insulating layer FCVD on the light extraction rate and improve the light extraction efficiency.
  • the edge of the light outlet is illustrated by line CVDL, that is, the edge of the inorganic insulating layer FCVD is adjacent to the light outlet.
  • the light-emitting trench is a through-hole trench, that is, the inorganic insulating layer FCVD in the light-emitting trench is completely dug out.
  • the line CVDL is used to illustrate the edge of the light outlet, that is, the edge of the inorganic insulating layer FCVD adjacent to the light outlet; the line PDLL is used to illustrate the edge of the light-emitting opening, and the line ANDL is used to illustrate the light-emitting opening.
  • the light-emitting electrode AND covers the light emitting groove, so that the light-emitting electrode AND overlaps the inorganic insulating layer FCVD.
  • the light-emitting opening is within the scope of the light outlet.
  • the light-emitting layer FEL may cover the light-emitting opening, thereby forming the organic light-emitting layer EL of the light-emitting device DD within the light-emitting opening.
  • the organic light-emitting layer EL may include an organic electroluminescent material layer, and may include one or more of a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer and an electron injection layer. .
  • Each film layer of the organic light-emitting layer EL can be prepared through an evaporation process, and a fine metal mask or an open mask can be used to define the pattern of each film layer during evaporation.
  • the vehicle light-emitting panel may be a single-color vehicle light-emitting panel, such as a red, blue, yellow, orange, white, or other single-color vehicle light-emitting panel.
  • the light-emitting layer FEL can be prepared using an open mask, and the light-emitting layer FEL covers the light-emitting area definition layer FPDL and the light-emitting opening; in this way, each subunit of the light-emitting device DD is a subunit of the same color.
  • a mask especially a fine metal mask
  • a stacked structure can be adopted, so that the subunit of the light-emitting device DD has multiple stacked different organic electroluminescent material layers, and the different light emitted by the different organic electroluminescent material layers can be mixed to achieve the purpose of emitting a single color. Light.
  • the vehicle light-emitting panel is a vehicle light-emitting panel that can emit light of multiple different colors, for example, it can emit red light or yellow light as needed, or it can be a vehicle light-emitting panel that can adjust the color temperature.
  • the automotive light-emitting panel requires at least two light-emitting units PIX of different colors, and then the light-emitting units PIX of different colors are controlled to emit light individually or to mix the light to obtain the required macro light.
  • multiple different positions of the edge of the light-emitting electrode AND are electrically connected to the signal distribution line DSW.
  • the signal distribution line DSW can load current to multiple different positions on the edge of the light-emitting electrode AND, thereby reducing the size of the current flowing into the light-emitting electrode AND at each position, reducing the current density at local positions of the light-emitting electrode AND, and thus It can avoid burning problems caused by excessive current density in local locations of the light-emitting electrode AND.
  • the current density of the light-emitting electrode AND refers to the density of the current at each position of the light-emitting electrode AND itself, for example, the density of the current at the edge of the light-emitting electrode AND.
  • the current density of the light-emitting device DD refers to the density of the current flowing through the organic light-emitting layer EL at different positions of the light-emitting device DD.
  • the light-emitting electrode AND is used as the anode for exemplary description; when the light-emitting electrode AND is used as the anode, the current flows from the signal distribution line DSW to the light-emitting electrode AND. It can be understood that when the light-emitting electrode AND serves as the cathode, current flows from the light-emitting electrode AND into the signal distribution line DSW.
  • only one edge of the light-emitting electrode AND may be electrically connected to the signal distribution line DSW, as long as the light-emitting electrode AND is electrically connected to the signal distribution line DSW.
  • the signal distribution line DSW may be disposed around the light-emitting electrode AND.
  • the signal distribution line DSW surrounds a closed accommodation cavity; the light-emitting electrode AND of the light-emitting device DD is accommodated in the accommodation cavity.
  • the signal distribution lines DSW are distributed in a four-sided annular shape, thereby forming a quadrilateral receiving cavity.
  • the accommodation cavity surrounded by the signal distribution line DSW can also be in other shapes.
  • the signal distribution line DSW can surround a square accommodation cavity (see Figure 1-2), a circular accommodation cavity, or a square accommodation cavity surrounded by the signal distribution line DSW. accommodating cavity (see Figure 9).
  • the accommodation cavity surrounded by the signal distribution line DSW may not be closed.
  • the signal distribution line DSW may be in a non-closed shape such as a U-shape or a Y-shape.
  • the edge of the light-emitting electrode AND of the light-emitting device DD and the signal distribution line DSW may be electrically connected through a transfer line WB.
  • the square resistance of the patch cord WB is greater than the signal distribution line DSW.
  • the transfer line WB can be connected in series between the signal distribution line DSW and the light-emitting device DD as an equivalent resistance.
  • the adapter wire WB can be used as a load, so that the automotive light-emitting panel can continue to be used instead of being discarded due to short circuit. This can Improve the reliability of the automotive light-emitting panel and make the automotive light-emitting panel meet vehicle regulatory requirements
  • the light-emitting unit PIX includes a plurality of the adapter wires WB, the first end of each of the adapter wires WB is electrically connected to the signal distribution line DSW, and the second end of each of the adapter wires WB is electrically connected to the signal distribution line DSW.
  • the terminals are respectively electrically connected to different positions on the edge of the light-emitting electrode AND.
  • the light-emitting unit PIX also includes a tab WA connected to the light-emitting electrode AND; the tab WA is electrically connected to the signal distribution line DSW. connect.
  • the current of the signal distribution line DSW can be first loaded onto the tab WA, redistributed on the tab WA, and then flowed into the light-emitting electrode AND, so as to reduce the current density at the current inlet of the light-emitting electrode AND and reduce the risk of burning.
  • the tab WA and the adapter wire WB can be set at the same time; the tab WA is connected to the edge of the light-emitting electrode AND, and one end of the adapter wire WB is connected to the electrode ear WA, and the other end is connected to the signal distribution line DSW. In this way, the light emitting unit PIX can have high reliability and low burn risk.
  • connection size between the tab WA and the light-emitting electrode AND is larger than the width of the connecting line WB.
  • the current inlet of the light-emitting electrode AND can be made to have a larger width, thereby reducing the risk of burning; at the same time, it can also ensure that the adapter wire WB has a large equivalent resistance, thereby further improving the reliability of the automotive light-emitting panel.
  • the edge of the tab WA includes a first edge connected to the adapter wire WB and a second edge connected to the light-emitting electrode AND; the first edge Not adjacent to the second edge.
  • the first edge is the current inlet of the tab WA
  • the second edge is the current outlet of the tab WA and the current inlet of the light-emitting electrode AND
  • the current inlet of the tab WA is not adjacent to the current outlet of the tab WA, so, After the current flows into the tab WA from the first edge, there is enough space for the current to be redistributed. The redistributed current flows into the light-emitting electrode AND through the second edge, thereby ensuring that the current density flowing into the light-emitting electrode AND is reduced.
  • the light-emitting unit PIX includes a plurality of tabs WA connected to the light-emitting electrode AND, and the plurality of tabs WA are respectively connected to the signal distribution lines.
  • DSW is electrically connected, for example, directly electrically connected to the signal distribution line DSW or transferred to the signal distribution line DSW through a transfer line WB.
  • the tab WA and the light-emitting electrode AND are arranged in the same layer, that is, the light-emitting electrode layer FAND includes the light-emitting electrode AND and the tab WA connected to the light-emitting electrode AND.
  • the tab WA can protrude from the light-emitting electrode AND to electrically connect with the signal distribution line DSW, and redistribute the current entering the light-emitting electrode AND, reducing the current density entering the light-emitting electrode AND, and reducing the risk of burning of the light-emitting electrode AND; not only In this way, this can improve the uniformity of the current density at different positions of the light-emitting device DD, at least to a certain extent, thereby improving the brightness uniformity of the light-emitting device DD.
  • each tab WA is evenly or symmetrically distributed along the edge of the light-emitting electrode AND to further improve the brightness uniformity of the light-emitting device DD.
  • each tab WA connected to the light-emitting electrode AND is distributed centrally symmetrically.
  • the center of symmetry coincides with the center of the light-emitting electrode AND.
  • each tab WA connected to the light-emitting electrode AND is rotationally symmetrically distributed.
  • the center of rotational symmetry coincides with the center of the light-emitting electrode AND.
  • the tabs WA may not be uniformly distributed.
  • the adjacent tabs WA can be separated by a relatively long distance, for example, they can be basically opposite to each other or adjacent to different vertex angles of the light-emitting electrode AND, which can also have a greater impact on the uniformity of the luminance of the light-emitting device DD. An obvious improvement.
  • the number of tabs WA connected to the same light-emitting electrode AND is 2 to 6.
  • At least one of the light-emitting electrodes AND is in a polygonal shape; the tab WA is arranged adjacent to a vertex corner of the light-emitting electrode AND. In this way, the problem of small current density at the top corners can be effectively avoided and the uniformity of current distribution can be improved.
  • the light-emitting unit PIX further includes a patch cord WB corresponding to each of the tabs WA; the patch cord WB is electrically connected to the signal distribution line DSW, and is connected to the corresponding patch cord WB.
  • the tabs WA are electrically connected; the width of the tabs WA is greater than the width of the adapter wire WB.
  • the width of the tab WA refers to the size of the edge connected to the light-emitting electrode AND among the edges of the tab WA.
  • the width of the transfer line WB refers to the dimension of the orthographic projection of the transfer line WB on the base substrate BP in the direction perpendicular to its extension.
  • the adapter line WB has a small width and a certain resistance; in case of a short circuit failure between the light-emitting electrode AND and the common electrode COM of the light-emitting device DD, the adapter line WB can be used as a load because it has a certain resistance. This prevents the entire automotive light-emitting panel from becoming unusable due to a short circuit of one light-emitting device DD.
  • the width of the tab WA is larger than that of the adapter wire WB, so that the current of the adapter wire WB can be redistributed on the tab WA, so that the current density is reduced and then flows into the light-emitting electrode AND of the light-emitting device DD, thus preventing the large current from burning the light-emitting electrode AND.
  • the width of the tab WA is 2 to 10 times the width of the adapter wire WB. In this way, it can be ensured that the tab WA has a larger width and the adapter wire WB has a larger resistance, thus achieving a balance between improving the tolerance of the automotive light-emitting panel to the short-circuit failure of the light-emitting device DD and reducing the risk of burning of the light-emitting electrode AND. balance.
  • the square resistance of the transfer line WB is more than 8 times the square resistance of the signal distribution line DSW.
  • the square resistance of the signal distribution line DSW is 0.05 ⁇ / ⁇
  • the square resistance of the transfer line WB is 0.5 ⁇ / ⁇ .
  • the transfer line WB and the light-emitting electrode AND are arranged in the same layer, that is, they are both arranged on the light-emitting electrode layer FAND.
  • the tab WA, the connecting wire WB and the light-emitting electrode AND are arranged on the same layer, that is, they are all arranged on the light-emitting electrode layer FAND.
  • the light-emitting electrode layer FAND includes the light-emitting electrode AND, the tab WA and the connecting wire WB.
  • the tab WA overlaps the signal distribution line DSW, and the tab WA and the signal distribution line DSW are insulated by the FCVD.
  • the tab WA is provided on the side of the inorganic insulating layer FCVD away from the base substrate BP, and can extend to overlap with the signal distribution line DSW; the tab WA and the transfer line WB The connection location overlaps the signal distribution line DSW.
  • the terminal ear WA and the signal distribution line DSW are insulated by the inorganic insulating layer FCVD; the position where the current on the adapter wire WB flows into the terminal ear WA is at a certain distance from the light-emitting electrode AND, which makes the current flowing into the terminal ear WA have sufficient
  • the current is redistributed in the space to avoid current concentration when the current flows from the pole ear WA into the light-emitting electrode AND.
  • the inorganic insulating layer FCVD is provided with an opening groove GG that exposes the signal distribution line DSW; the adapter line WB is provided on a side of the inorganic insulating layer FCVD away from the base substrate BP and passes through the opening groove GG is electrically connected to the signal distribution line DSW.
  • the width of the transfer line WB is smaller than the width of the signal distribution line DSW, thereby making the resistance of the transfer line WB greater, further increasing the short circuit failure of the automotive light-emitting panel to the light-emitting device DD. tolerance.
  • the orthographic projection of the transfer line WB on the base substrate BP is within the orthographic projection of the signal distribution line DSW on the base substrate BP. In this way, the patch cord WB can be distributed along the distribution track of the signal distribution line DSW.
  • each of the transfer lines WB is connected to different positions of the signal distribution line DSW.
  • a transfer line WB extending along the extension track of the signal distribution line DSW is provided between two adjacent tabs WA.
  • One end of the transfer line WB is electrically connected to one of the tabs WA, and the other end of the transfer line WB is electrically connected to one of the tabs WA.
  • One end is adjacent to the other tab WA and is electrically connected to the signal distribution line DSW through the opening slot GG.
  • each pole ear WA is electrically connected to the signal distribution line DSW through a transfer wire WB and the open slot GG, which makes the current flowing out of the single open slot GG not too large; the transfer wire WB passes through the open slot GG and is connected to the signal distribution line DSW.
  • One end of the DSW connection is adjacent to the other lug WA, which makes the length of the adapter line WB as long as possible, thereby making the resistance of the adapter line WB as large as possible.
  • the distribution track of each connecting wire WB surrounds the light-emitting electrode AND as a whole.
  • the light-emitting electrode layer FAND includes a light-emitting electrode AND and two tabs WA connected to the light-emitting electrode AND, and includes a light-emitting electrode layer FAND connected to the two tabs WA in a one-to-one correspondence.
  • Two transfer wires WB; the inorganic insulation layer FCVD is provided with opening slots GG corresponding to the two tabs WA.
  • the adapter wire WB corresponding to the tab WA extends along the extension track of the signal distribution line DSW, one end of which is connected to the corresponding tab WA, and the other end is connected to the signal distribution line DSW through the corresponding opening slot GG.
  • the opening slot GG corresponding to the pole ear WA is arranged close to the other pole ear WA.
  • the first ends of at least two transfer lines WB are electrically connected to each other and to the same position of the signal distribution line DSW.
  • two adjacent transfer lines WB can be connected to the signal distribution line DSW through the same open slot GG.
  • the distribution track of each connecting wire WB does not necessarily surround the entire light-emitting electrode AND.
  • the density of the current flowing out of the open groove GG can be reduced by increasing the size of the open groove GG.
  • the light-emitting electrode layer FAND includes a light-emitting electrode AND and two tabs WA connected to the light-emitting electrode AND, and includes a one-to-one correspondence with the two tabs WA.
  • the two connecting patch cords WB extend along the extension track of the signal distribution line DSW.
  • the inorganic insulating layer FCVD has an opening groove GG.
  • the two adapter wires WB are electrically connected to respective tabs WA, and the two adapter wires WB are electrically connected to each other and merged into one adapter wire WB.
  • the merged patch cord WB is electrically connected to the signal distribution line DSW through the opening slot GG.
  • the light-emitting electrode AND in the light-emitting unit PIX can also be connected to the signal distribution line DSW through a tab WA, and the inflow into the light-emitting electrode can be reduced by increasing the width of the tab WA.
  • the current density of AND is such that, for example, the width of the tab WA is greater than the width of the adapter wire WB.
  • the specific width of the tab WA can be set according to actual needs. The larger the width of the tab WA, the better the effect of reducing the current density.
  • the length of the patch cord WB can be extended to increase the equivalent resistance of the patch cord WB, for example, so that the length of the patch cord WB is greater than half the length of the signal distribution line DSW; preferably, the patch cord WB is substantially Arranged around the light-emitting electrode AND, for example, so that the length of the transfer line WB is 90% of the length of the signal distribution line DSW.
  • the extension trace of the transfer line WB is the same as the signal distribution line DSW, and the transfer line WB is basically arranged around the light-emitting electrode AND; this makes the transfer line WB have the maximum length.
  • the tab WA can be designed with a larger width to reduce the current density flowing into the signal distribution line DSW. In one example, the width of the tab WA is 5 to 10 times the width of the adapter wire WB.
  • the automotive light-emitting panel may further include an encapsulation layer FEE to protect each light-emitting device DD.
  • the encapsulation layer FEE can be a thin film encapsulation layer, a packaging cover or a packaging filter.
  • each light-emitting unit PIX of the automotive light-emitting panel can be specifically defined.
  • the shape of each light-emitting device DD can be directly defined or each sub-section of each light-emitting device DD can be directly defined.
  • the automotive light-emitting panel can present a more delicate pattern while emitting light, overcoming the problem that the pattern composed of scattered high-brightness light sources (such as scattered light-emitting diodes) is not delicate enough, the resolution is not high enough, and the brightness distribution is not uniform. Uniformity and other issues, thereby achieving better luminous effects, especially better visual effects.
  • the size of a single light-emitting unit PIX is 0.5-2 cm.
  • the size of the light-emitting unit PIX may be the maximum value among the length, width, diameter and other dimensions of the light-emitting unit PIX.
  • the size of a single light emitting unit PIX is 1 cm.
  • a single light-emitting device DD may include multiple subunits, and the size of each subunit may be between 200 and 400 microns.
  • the size of the subunit of the light emitting device DD may be the maximum value among the length, width, diameter and other dimensions of the subunit. In one example, the size of the subunits may be 300 microns.
  • An embodiment of the present disclosure also provides a light-emitting device.
  • the light-emitting device includes any of the vehicle light-emitting panels described in the above vehicle light-emitting panel embodiments.
  • the light-emitting device may be a car interior ambient light, a car taillight, or other types of vehicle or vehicle-mounted light-emitting devices. Since the light-emitting device has any of the vehicle light-emitting panels described in the above-mentioned vehicle light-emitting panel embodiments, it has the same beneficial effects, and the disclosure will not be repeated here.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种车用发光面板和发光装置。车用发光面板包括设置于衬底基板(BP)一侧的至少一个发光单元(PIX);发光单元(PIX)包括发光器件(DD)和驱动发光器件(DD)的信号分布线(DSW);发光器件(DD)包括依次层叠设置于衬底基板(BP)一侧的发光电极(AND)、发光区域定义层(FPDL)、有机发光层(EL)和公共电极(COM);发光单元(PIX)还包括转接线(WB),信号分布线(DSW)与发光器件(DD)的发光电极(AND)之间通过转接线(WB)电连接,且转接线(WB)的方阻大于信号分布线(DSW)的方阻。

Description

车用发光面板和发光装置 技术领域
本公开涉及照明技术领域,具体而言,涉及一种车用发光面板和发光装置。
背景技术
OLED(有机电致发光二极管)器件在照明领域具有广阔的应用前景。然而,OLED器件应用于车用发光领域时,OLED器件的信赖性难以满足汽车对信赖性的要求。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于克服上述现有技术的不足,提供一种车用发光面板和发光装置,提高车用发光面板的信赖性。
根据本公开的一个方面,提供一种发光面板,包括设置于衬底基板一侧的至少一个发光单元;所述发光单元包括发光器件和驱动所述发光器件的信号分布线;
所述发光器件包括依次层叠设置于所述衬底基板一侧的发光电极、发光区域定义层、有机发光层和公共电极;
所述发光单元还包括转接线,所述信号分布线与所述发光器件的发光电极之间通过所述转接线电连接,且所述转接线的方阻大于所述信号分布线的方阻。
根据本公开的一种实施方式,所述信号分布线环绕所述发光电极设置。
根据本公开的一种实施方式,所述转接线的宽度小于所述信号分布线的宽度。
根据本公开的一种实施方式,所述转接线在所述衬底基板上的正投影,位于所述信号分布线在所述衬底基板上的正投影内。
根据本公开的一种实施方式,所述转接线与所述发光电极同层设置。
根据本公开的一种实施方式,所述车用发光面板还包括无机绝缘层,所述无机绝缘层覆盖所述信号分布线;
所述无机绝缘层具有暴露所述信号分布线至少部分区域的开口槽,所述转接线通过所述开口槽与所述信号分布线电连接。
根据本公开的一种实施方式,所述转接线的长度不小于所述信号分布线的长度的一半。
根据本公开的一种实施方式,所述发光单元包括多个所述转接线,各个所述转接线的第一端与所述信号分布线电连接,且各个所述转接线的第二端分别与所述发光电极的边缘的不同位置电连接。
根据本公开的一种实施方式,至少两个所述转接线的第一端相互电连接,且与所述信号分布线的同一位置电连接。
根据本公开的一种实施方式,各个所述转接线与所述信号分布线的不同位置电连接。
根据本公开的一种实施方式,所述发光单元还包括与所述发光电极连接的极耳;所述极耳与所述发光电极之间的连接尺寸大于所述转接线的宽度;
所述转接线与所述极耳电连接。
根据本公开的一种实施方式,所述极耳与所述发光电极同层设置。
根据本公开的一种实施方式,所述极耳的边缘包括与所述转接线连接的第一边缘和与所述发光电极连接的第二边缘;所述第一边缘与所述第二边缘不相邻。
根据本公开的一种实施方式,所述车用发光面板还包括无机绝缘层,所述无机绝缘层覆盖所述信号分布线;
所述极耳与所述信号分布线交叠,且所述极耳与所述信号分布线之间通过所述无机绝缘层绝缘。
根据本公开的一种实施方式,与所述发光电极连接的所述极耳的数量为多个;各个所述极耳与所述发光电极的边缘的不同位置连接。
根据本公开的一种实施方式,所述发光电极所连接的各个极耳呈中心对称分布,且对称中心与所述发光电极的中心重合。
根据本公开的一种实施方式,所述发光电极所连接的各个极耳呈旋转对称分布,且旋转对称中心与所述发光电极的中心重合。
根据本公开的一种实施方式,所述发光电极所连接的极耳的数量为2~6个。
根据本公开的一种实施方式,至少一个所述发光电极呈多边形;所述极耳临近所述发光电极的顶角设置。
根据本公开的一种实施方式,所述车用发光面板还包括无机绝缘层,所述无机绝缘层覆盖所述信号分布线;
所述发光区域定义层具有多个暴露所述发光电极的发光开口;所述无机绝缘层具有出光槽;
所述发光开口在所述衬底基板上的正投影,位于所述出光槽在所述衬底基板上的正投影中。
根据本公开的一种实施方式,所述信号分布线的材料为金属或者导电金属氧化物;所述发光电极的材料为导电金属氧化物。
根据本公开的另一个方面,提供一种发光装置,包括上述的车用发光面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1为本公开一种实施方式中,车用发光面板的结构示意图。
图1-2为本公开一种实施方式中,车用发光面板的结构示意图。
图2为本公开一种实施方式中,发光单元沿发光电极、极耳和转接线进行剖切时的结构示意图。
图3为本公开一种实施方式中,发光单元沿发光电极和极耳进行剖 切时的结构示意图。
图4为本公开一种实施方式中,发光电极、出光槽、发光开口和信号分布线之间的相对位置关系的结构示意图。
图5为本公开一种实施方式中,发光电极、出光槽、发光开口和信号分布线之间的相对位置关系的结构示意图。
图6为本公开一种实施方式中,在一个发光单元中,发光电极层和信号分布线的结构示意图。
图7为本公开一种实施方式中,在一个发光单元中,发光电极层和信号分布线的结构示意图。
图8为本公开一种实施方式中,在一个发光单元中,发光电极层和信号分布线的结构示意图。
图9为本公开一种实施方式中,在一个发光单元中,发光电极层和信号分布线的结构示意图。
图10为本公开一种实施方式中,在一个发光单元中,发光电极层和信号分布线的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
结构层A位于结构层B背离衬底基板的一侧,可以理解为,结构层A在结构层B背离衬底基板的一侧形成。当结构层B为图案化结构时, 结构层A的部分结构也可以位于结构层B的同一物理高度或低于结构层B的物理高度,其中,衬底基板为高度基准。
本公开提供一种车用发光面板,参见图1-1和图1-2,该车用发光面板包括设于衬底基板BP一侧的至少一个发光单元PIX。其中,任意一个发光单元PIX包括发光器件DD和驱动发光器件DD的信号分布线DSW。参见图2和图3,发光器件DD包括依次层叠设置的发光电极AND、发光区域定义层FPDL、有机发光层EL和公共电极COM;信号分布线DSW与发光电极AND电连接以向发光器件DD加载驱动电流。
参见图1-1和图1-2,在本公开的实施方式中,车用发光面板还可以包括与各个信号分布线DSW一一对应电连接的驱动走线DRW和与各个驱动走线DRW一一对应电连接的驱动引脚PAD。如此,外部的控制电路(例如电路板、柔性电路板)可以与驱动引脚PAD绑定连接,进而通过驱动引脚PAD、驱动走线DRW和信号分布线DSW向发光器件DD加载驱动电流,以驱动发光器件DD发光。
在一种示例中,可以通过控制加载至各个发光器件DD上的驱动电流,进而可以控制各个发光器件DD的发光亮度。
在另一种示例中,可以通过控制各个发光器件DD发光的占空比,进而控制发光器件DD的宏观亮度。在该示例中,各个发光器件DD在每次发光时的驱动电流基本一致。
当然的,在本公开的其他示例中,也可以采用其他方式来控制发光器件DD的发光亮度,例如同时应用变驱动电流和变占空比的策略,来控制发光器件DD的宏观亮度。
在图1-1和图1-2的示例中,一个驱动走线DRW驱动一个发光单元PIX。可以理解的是,在本公开的其他实施方式中,一个驱动走线DRW也可以驱动多个不同的发光单元PIX;例如一个驱动走线DRW可以具有多个分支线,且各个分支线分别连接一个发光单元PIX;再例如,一个驱动走线DRW可以包括多个子走线,子走线和发光单元PIX交替连接,以使得多个发光单元PIX通过驱动走线DRW串联。
在本公开的一种实施方式中,驱动走线DRW、驱动引脚PAD和信号分布线DSW可以同层设置,例如由同一导电材料层通过图案化而获得。 换言之,车用发光面板可以包括设于衬底基板BP一侧的驱动层FSD,驱动层FSD包括驱动走线DRW、驱动引脚PAD和信号分布线DSW。举例而言,在一种示例中,可以在衬底基板BP的一侧先形成导电材料层,然后对导电材料层进行图案化操作而获得驱动层FSD,驱动层FSD具有上述的驱动走线DRW、驱动引脚PAD和信号分布线DSW。当然的,在本公开的其他实施方式中,也可以采用其他方式来获得具有驱动走线DRW、驱动引脚PAD和信号分布线DSW的驱动层FSD。例如,可以先形成种子层(例如通过溅射形成不超过1微米厚的铜金属层)然后基于种子层进行电镀或者化学镀以形成所需的驱动层FSD,或者通过多次沉积-刻蚀工艺获得多层走线,以形成最终的驱动层FSD,或者通过印刷工艺直接形成驱动层FSD。可选的,可以使得驱动层FSD具有较大的厚度,进而使得驱动走线DRW、信号分布线DSW等具有较小的方阻和较大的电流传输能力,能够满足发光单元PIX在发出高亮度光线时所需的大电流。
在一种示例中,驱动层FSD的材料可以为金属材料,其可以包括依次层叠的多层金属结构,例如可以为钛层/铝层/钛层结构、钼铌合金层/铜层/钼铌合金层等结构。在另一种示例中,驱动层FSD的材料可以为导电金属氧化物,例如可以为ITO(氧化铟锡)。
参见图2、图3和与4,在本公开的一种实施方式中,车用发光面板还可以包括位于驱动层FSD远离衬底基板BP一侧的无机绝缘层FCVD。无机绝缘层FCVD覆盖信号分布线DSW,所述无机绝缘层FCVD具有暴露所述信号分布线DSW至少部分区域的开口槽GG;发光电极AND通过开口槽GG与信号分布线DSW电连接,例如直接电连接或者通过其他结构间接电连接。
在一种示例中,无机绝缘层FCVD覆盖各驱动走线DRW,以避免发光器件DD的各个膜层与驱动走线DRW短路连接。
在一种示例中,无机绝缘层FCVD暴露各个驱动引脚PAD,以便于外部电路与驱动引脚PAD绑定连接。
在一种示例中,驱动层FSD还可以设置有公共电极搭接线和与公共电极搭接线电连接的公共电压引脚,无机绝缘层FCVD可以暴露公共电压引脚以及暴露公共电极搭接线的至少部分区域。其中,车用发光面板设置 有公共电极层FCOM,公共电极层FCOM具有各个发光器件DD的公共电极COM;公共电极层FCOM的边缘可以直接或者间接的搭接至公共电极搭接线,例如通过设置有发光电极AND的发光电极层FAND搭接至公共电极搭接线。这样,公共电压引脚可以与外部电路绑定连接;这使得外部电路可以通过公共电压引脚、公共电极搭接线向公共电极层FCOM加载公共电压。
可选的,无机绝缘层FCVD的材料为无机绝缘材料,例如可以为氧化硅、氮化硅、氮氧化硅等无机材料。
可选的,在制备车用发光面板时,可以在制备完成驱动层FSD后,然后制备无机绝缘层FCVD。在一种示例中,可以先形成覆盖驱动层FSD的无机材料层,然后对无机材料层进行图案化操作以形成无机绝缘层FCVD。在对无机材料层进行图案化操作时,主要是形成所需的各个槽,例如形成暴露信号分布线DSW的开口槽GG。
参见图2和图3,在本公开的一种实施方式中,车用发光面板可以包括依次层叠于无机绝缘层FCVD远离衬底基板BP一侧的发光电极层FAND、发光区域定义层FPDL、发光层FEL和公共电极层FCOM;发光电极层FAND具有发光器件DD的发光电极AND;发光区域定义层FPDL具有暴露发光电极AND的至少一个发光开口,FET可以至少覆盖发光开口而形成发光器件DD的有机发光层EL,公共电极层FCOM可以至少覆盖发光开口而形成发光器件DD的公共电极COM。如此本公开示例的车用发光面板中,发光器件DD为一种OLED(有机电致发光二极管)。在发光开口范围内依次层叠设置有发光电极AND、有机发光层EL和公共电极COM。这样,发光区域定义层FPDL通过设置发光开口,定义了发光器件DD中实际发光的区域;在一个发光开口对应的位置形成一个发光器件DD的亚单元。
在一种示例中,发光区域定义层FPDL的材料可以选自PS-PI(聚苯乙烯-聚酰亚胺)。当然的,在本公开的其他实施方式中,发光区域定义层FPDL的材料也可以选自其他光敏的高分子材料。
在图2~图5的示例中,用线条PDLL示意了发光区域定义层FPDL在形成发光开口时的边缘,该边缘也是发光开口的边缘。参见图4和图5, 在每个发光器件DD中,发光区域定义层FPDL可以形成一个发光开口,也可以形成多个不同的发光开口。当形成多个发光开口时,各个发光开口对应的区域分别形成发光器件DD的亚单元。
在本公开的一种实施方式中,每个发光器件DD中的发光开口的数量可以根据需求设置,各个发光开口的形状和尺寸可以根据需要进行设置。车用发光面板中,任意两个发光器件DD的发光开口的数量可以相同,也可以不相同;同一个发光器件DD中,任意两个发光开口的形状可以相同,也可以不相同。根据设计目的,例如根据在车用发光面板发光时所需呈现的图案或者所能够呈现的多种不同的图案,可以对各个发光器件DD中发光开口的数量、形状、排列方式进行调整,以在满足发光的同时能够呈现特定的一种或者多种图案。
在一种示例中,参见图4,车用发光面板的至少一个发光器件DD中仅设置一个发光开口。该发光开口的形状可以与发光电极AND的形状相匹配,例如发光开口的边缘(在图4中为线条PDLL)与发光电极AND的边缘(在图4中为线条ANDL)之间具有预设的间距。这样可以在发光电极AND的尺寸一定的情况下,提高发光开口的面积;换言之,这可以提高车用发光面板的开口率。这可以使得发光器件DD具有较大的发光面积而能够呈现较高的发光亮度,尤其是提高发光器件DD的宏观亮度;另外可以使用较低的电流密度实现较佳的宏观亮度,进而利于提高发光器件DD的寿命。在本公开中,发光器件DD的电流密度是指,流经有机发光层EL的电流密度而非发光电极AND或者公共电极COM上的电流密度。
在另一种示例中,参见图5,车用发光面板的至少一个发光器件DD中设置多个发光开口;各个发光开口的边缘在图5中为线条PDLL。在图5的示例中,各个发光开口的形状为三角形且周期性排列。这样,可以使得各个发光器件DD在发光的同时能够呈现一定的图案或者呈现特定的质感。
可以理解的是,在图4和图5中,发光开口被示意的图案为四边形和三角形。在本公开的其他实施方式中,发光开口的图案可以根据需要进行调整,例如可以呈现为正方形、矩形、菱形、五角星形、正六边形、条形、锯齿形、星形、月牙形、圆形、椭圆形、花朵形、直线条形、弯曲的条形、 字母形或者其他可定义的图案,本公开对此不作特殊的限定。
可以理解的是,在图4和图5中,每个发光器件DD中发光开口的数量被示例为1个或者8个。在本公开的其他实施方式中,发光开口的数量可以为其他数量,例如在1~1000之间。
在本公开示例的实施方式中,发光电极AND可以采用透明电极,公共电极COM可以采用具有高反射率的反射电极。这样,发光器件DD的光线可以通过发光电极AND进行出射。在该示例中,衬底基板BP需要采用透明衬底基板BP,例如采用玻璃材料等无机透明材料,或者采用聚酰亚胺等有机透明材料,或者可以采用无机透明材料和有机透明材料的复合。
在一种示例中,衬底基板BP的材料可以为钠钙玻璃(soda-lime glass)、石英玻璃、蓝宝石玻璃等玻璃材料。在另一示例中,衬底基板BP的材料可以为聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚乙烯基苯酚(Polyvinyl phenol,PVP)、聚醚砜(Polyether sulfone,PES)、聚酰亚胺、聚酰胺、聚缩醛、聚碳酸酯(Poly carbonate,PC)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚萘二甲酸乙二酯(Polyethylene naphthalate,PEN)等有机材料,或者上述有机材料的组合。
在另一示例中,衬底基板BP可以为具有聚酰亚胺层的柔性衬底基板BP,则该车用发光面板可以为一种柔性的车用发光面板。例如衬底基板BP可以包括层叠的聚酰亚胺层和无机阻挡层(例如氮化硅层或者氧化硅层),驱动层FSD位于无机阻挡层远离聚酰亚胺层的一侧。再例如,衬底基板BP可以包括多层聚酰亚胺层,以及夹设于聚酰亚胺层之间的无机阻挡层,以及位于最顶层的无机缓冲层(例如氧化硅层),驱动层FSD位于无机缓冲层远离聚酰亚胺层的一侧;这样,可以提高衬底基板BP的机械性能,使得衬底基板BP满足车用发光面板对强度性能、应力性能等机械性能方面的要求。
在本公开示例的实施方式中,发光电极AND可以为具有高透光率的透明电极,例如可以为ITO(氧化铟锡)。在本公开示例的实施方式中,公共电极COM可以为具有高反射率的金属电极,例如可以为银电极、铝 电极或者其他厚电极。在该示例中,各个公共电极COM可以相互连接而成整面电极,换言之,公共电极层FCOM为整面电极,该公共电极层FCOM与各个发光器件DD交叠的部分可以作为该发光器件DD的公共电极COM。
当然的,在本公开的其他实施方式中,发光电极AND也可以采用反射电极,且公共电极COM可以采用透明电极,衬底基板BP也可以不采用透明衬底基板BP,例如其材料还可以选自不锈钢、铝、镍等金属材料。
在本公开的示例中,发光电极AND可以为发光器件DD的阳极,公共电极COM可以为发光器件DD的阴极。当然的,通过改变有机发光层EL的膜层结构以及车用发光面板的驱动方式,也可以使得发光电极AND作为发光器件DD的阴极,以及使得公共电极COM作为发光器件DD的阳极。
在本公开的示例的实施方式中,参见图2~图5,无机绝缘层FCVD还可以开设有出光槽。在该出光槽处,无机绝缘层FCVD可以被完全挖除或者被减薄。出光槽在衬底基板BP上的正投影,位于发光电极AND在衬底基板BP上的正投影范围内。发光开口在衬底基板BP上的正投影,可以在出光槽在衬底基板BP上的正投影内。这样,发光器件DD的亚单元与衬底基板BP之间的无机绝缘层FCVD被减薄或者挖除,可以降低无机绝缘层FCVD对出光率的影响,提高出光效率。
在一种示例中,参见图2和图3,用线条CVDL示意了出光槽的边缘,即无机绝缘层FCVD临近出光槽的边缘。在该示例中,出光槽为通孔槽,即出光槽中的无机绝缘层FCVD被完全挖除。
在一种示例中,参见图4和图5,用线条CVDL示意了出光槽的边缘,即无机绝缘层FCVD临近出光槽的边缘;用线条PDLL示意了发光开口的边缘,用线条ANDL示意了发光电极AND的边缘。在该示例中,发光电极AND覆盖出光槽,使得发光电极AND搭接于无机绝缘层FCVD上。发光开口在出光槽的范围内。
在本公开示例的实施方式中,参见图2和图3,发光层FEL可以覆盖发光开口,进而在发光开口内形成发光器件DD的有机发光层EL。有机发光层EL可以包括有机电致发光材料层,以及可以包括有空穴注入层、 空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的一种或者多种。可以通过蒸镀工艺制备有机发光层EL的各个膜层,且在蒸镀时可以采用精细金属掩模版或者开放式掩膜板(Open Mask)定义各个膜层的图案。
在一种示例中,车用发光面板可以为单色的车用发光面板,例如为红色、蓝色、黄色、橘色、白色等单色的车用发光面板。可以采用开放式掩膜制备发光层FEL,发光层FEL覆盖发光区域定义层FPDL和发光开口;这样,发光器件DD的各个亚单元为同一种颜色的亚单元。当然的,也可以借助掩膜版(尤其是精细金属掩模版)使得发光器件DD具有不同颜色的亚单元;通过调整不同颜色亚单元之间的比例,进而调整发光器件DD中不同光线的混光比例,进而出射所需的单色光。或者,可以采用堆叠结构,使得发光器件DD的亚单元具有多个堆叠的不同的有机电致发光材料层,借助不同的有机电致发光材料层发出的不同光线实现混光,进而达成发出单色光。
在另一种示例中,车用发光面板为可以发出多种不同颜色光线的车用发光面板,例如可以根据需要发出红光或者黄光,或者为可以调节色温的车用发光面板。此时,车用发光面板需要至少两种不同颜色的发光单元PIX,进而通过控制不同颜色的发光单元PIX单独发光或者进行混光以获得所需的宏观光线。
在本公开的一些实施方式中,参见图1-1和图1-2,所述发光电极AND的边缘的多个不同位置均与所述信号分布线DSW电连接。这样,信号分布线DSW可以向发光电极AND的边缘的多个不同位置加载电流,进而减小了每个位置处流入发光电极AND的电流的大小,降低了发光电极AND局部位置的电流密度,进而可以避免发光电极AND局部位置电流密度太大而出现灼烧问题。不仅如此,这还可以降低发光电极AND的电流入口(即发光电极AND流入电流的位置)近端处和远端处之间的距离,进而可以使得发光器件DD的不同位置的电流密度更均一,提高发光器件DD在不同位置出亮度的均一性。在本公开中,发光电极AND的电流密度是指,发光电极AND本身各个位置的电流的密度,例如发光电极AND的边缘处的电流的密度。发光器件DD的电流密度是指,发光器件DD的 不同位置处流经有机发光层EL的电流的密度。在本公开上述的实施方式中,是以发光电极AND作为阳极来进行示例性描述的;在发光电极AND作为阳极时,电流从信号分布线DSW流入发光电极AND。可以理解的是,当发光电极AND作为阴极时,电流从发光电极AND流入信号分布线DSW。
当然的,在本公开的其他实施方式中,发光电极AND的边缘也可以仅有一个位置与信号分布线DSW电连接,以能够使得发光电极AND与信号分布线DSW电连接为准。
在本公开的一些实施方式中,信号分布线DSW可以环绕发光电极AND设置。示例性的,参见图4和图5,所述信号分布线DSW环绕出封闭的容置腔;所述发光器件DD的发光电极AND容置于所述容置腔中。在图4和图5的示例中,信号分布线DSW呈四边环形分布,进而形成呈四边形的容置腔。在本公开的另外一些实施方式中,信号分布线DSW所环绕出的容置腔也可以呈其他形状,例如信号分布线DSW可以环绕出正方形的容置腔(参见图1-2)、圆形的容置腔(参见图9)。在本公开的其他示例中,信号分布线DSW所环绕出的容置腔也可以不封闭,例如信号分布线DSW可以呈U型、Y型等非封闭形状。
在本公开的一种实施方式中,参见图1-1,在发光单元PIX中,发光器件DD的发光电极AND的边缘与信号分布线DSW之间可以通过转接线WB电连接。进一步的,转接线WB的方阻大于信号分布线DSW。这样,转接线WB可以作为等效电阻而串联在信号分布线DSW和发光器件DD之间。在发光器件DD不出现短路不良时,电流能够正常流过转接线WB而不影响发光器件DD的发光。一旦发光器件DD出现短路不良,即发光器件DD的公共电极COM和发光电极AND短路,则该转接线WB可以作为负载,进而使得该车用发光面板可以继续使用而非因短路被废弃,这样可以提高该车用发光面板的信赖性,使得该车用发光面板达到车规级要求
在一种示例中,所述发光单元PIX包括多个所述转接线WB,各个所述转接线WB的第一端与所述信号分布线DSW电连接,且各个所述转接线WB的第二端分别与所述发光电极AND的边缘的不同位置电连接。
在本公开的一种实施方式中,参见图1-2,在发光单元PIX中,所述 发光单元PIX还包括与所述发光电极AND连接的极耳WA;极耳WA与信号分布线DSW电连接。这样,信号分布线DSW的电流可以先加载至极耳WA上,在极耳WA上进行再分布后流入发光电极AND中,以降低发光电极AND电流入口处的电流密度,降低灼烧风险。
在本公开的一些实施方式中,参见图6~图10,在发光单元PIX中,可以同时设置极耳WA和转接线WB;极耳WA与发光电极AND的边缘连接,转接线WB一端连接极耳WA,另一端连接信号分布线DSW。这样,该发光单元PIX可以具有高信赖性和底灼烧风险。
在一种示例中,参见图6~图10,所述极耳WA与所述发光电极AND之间的连接尺寸大于所述转接线WB的宽度。这样,可以使得发光电极AND的电流入口具有较大的宽度,进而降低灼烧风险;同时,还可以保证转接线WB具有较大的等效电阻,进而进一步提高车用发光面板的信赖性。
在一种示例中,参见图6~图10,所述极耳WA的边缘包括与所述转接线WB连接的第一边缘和与所述发光电极AND连接的第二边缘;所述第一边缘与所述第二边缘不相邻。换言之,第一边缘为极耳WA的电流入口,第二边缘为极耳WA的电流出口和发光电极AND的电流入口;极耳WA的电流入口与极耳WA的电流出口不相邻,这样,电流从第一边缘处流入极耳WA后,具有足够的空间进行电流再分布,再分布后的电流通过第二边缘流入发光电极AND,进而确保流入发光电极AND的电流密度降低。
如下,结合附图对本公开实施方式中的极耳WA和转接线WB做进一步的解释和说明。
在本公开的一些实施方式中,参见图6~图9,所述发光单元PIX包括与所述发光电极AND连接的多个极耳WA,多个所述极耳WA分别与所述信号分布线DSW电连接,例如直接电连接至信号分布线DSW或者通过转接线WB转接至信号分布线DSW。在一种示例中,极耳WA与发光电极AND同层设置,即发光电极层FAND包括发光电极AND和与发光电极AND连接的极耳WA。极耳WA可以凸出于发光电极AND以便与信号分布线DSW电连接,并对进入发光电极AND的电流进行再分布,降 低进入发光电极AND的电流密度,降低发光电极AND的灼烧风险;不仅如此,这可以在至少一定程度上提高发光器件DD不同位置处的电流密度的均一性,进而改善发光器件DD的亮度均一性。
可选地,各个极耳WA沿发光电极AND的边缘均匀分布或者对称分布,以进一步提高发光器件DD的亮度均一性。在一种示例中,参见图6,所述发光电极AND所连接的各个极耳WA呈中心对称分布。可选的,对称中心与发光电极AND的中心重合。在另一种示例中,参见图10,所述发光电极AND所连接的各个极耳WA呈旋转对称分布。可选的,旋转对称中心与发光电极AND的中心重合。这些示例能够使得电流较为均匀地流入发光电极AND,进而能够更为有效的改善发光器件DD不同位置处的电流密度的均一性,改善发光器件DD的亮度均一性。
当然的,在本公开的其他实施方式中,如图8所示,极耳WA也可以不呈现均匀分布。在该示例中,相邻极耳WA之间可以间隔较远的距离,例如可以基本相对设置或者分别临近发光电极AND的不同顶角,进而也可以对发光器件DD的发光亮度的均一性产生较为明显的提升。
可选的,连接至同一所述发光电极AND的所述极耳WA的数量为2~6个。连接至发光电极AND上的极耳WA的数量越多,极耳WA的分布越均匀,则改善发光器件DD的发光亮度均一性越好。
在本公开的一种实施方式中,参见图6~图8,至少一个所述发光电极AND呈多边形;所述极耳WA临近所述发光电极AND的顶角设置。这样,可以有效避免顶角处的电流密度较小的问题,提高电流分布的均一性。
在本公开的一种实施方式中,所述发光单元PIX还包括与各个所述极耳WA一一对应的转接线WB;所述转接线WB与所述信号分布线DSW电连接,且与对应的所述极耳WA电连接;所述极耳WA的宽度大于所述转接线WB的宽度。在本公开实施方式中,极耳WA的宽度是指极耳WA的各个边缘中,与发光电极AND连接的边缘的尺寸。转接线WB的宽度是指,转接线WB在衬底基板BP上的正投影在沿垂直于其延伸方向上的尺寸。
这样,转接线WB具有较小的宽度而具有一定的电阻;万一发光器件DD的发光电极AND和公共电极COM之间出现短路不良,则该转接线 WB可以因具有一定的电阻而作为负载,避免整个车用发光面板因一个发光器件DD的短路不良而无法使用。极耳WA的宽度大于转接线WB,这样可以使得转接线WB的电流在极耳WA上再分配,使得电流密度降低后流入发光器件DD的发光电极AND,避免大电流对发光电极AND的烧灼。
在一种示例中,所述极耳WA的宽度为所述转接线WB的宽度的2~10倍。如此,可以保证极耳WA具有较大的宽度和转接线WB具有较大的电阻,进而在提高车用发光面板对发光器件DD短路不良的耐受性和降低发光电极AND的烧灼风险之间达成平衡。
在一种示例中,转接线WB的方阻为信号分布线DSW的方阻的8倍以上。示例性的,信号分布线DSW的方阻为0.05Ω/□,转接线WB的方阻为0.5Ω/□。
在一种示例中,所述转接线WB与所述发光电极AND同层设置,即均设置于发光电极层FAND。
举例而言,极耳WA、转接线WB和发光电极AND同层设置,即均设置于发光电极层FAND。这样,发光电极层FAND包括发光电极AND、极耳WA和转接线WB。
在本公开的一种实施方式中,所述极耳WA与所述信号分布线DSW交叠,且所述极耳WA与所述信号分布线DSW之间通过所述FCVD绝缘。
在一种示例中,参见图3和图6,极耳WA设于无机绝缘层FCVD远离衬底基板BP的一侧,且可以延伸至与信号分布线DSW交叠;极耳WA与转接线WB连接的位置,与信号分布线DSW交叠。这样,极耳WA与信号分布线DSW之间通过无机绝缘层FCVD绝缘;转接线WB上的电流流入极耳WA的位置与发光电极AND具有一定的距离,这使得流入极耳WA的电流具有足够的空间进行电流再分布,进而避免电流从极耳WA流入发光电极AND时出现电流集中。
在一种示例中,参见图2和图6,无机绝缘层FCVD设置有暴露信号分布线DSW的开口槽GG;转接线WB设于无机绝缘层FCVD远离衬底基板BP的一侧且通过开口槽GG与信号分布线DSW电连接。
在一种示例中,参见图6~8,所述转接线WB的宽度小于信号分布线DSW的宽度,进而使得转接线WB的电阻更大,进一步提高车用发光面 板对发光器件DD的短路不良的耐受。
在一种示例中,所述转接线WB在所述衬底基板BP上的正投影,在所述信号分布线DSW在所述衬底基板BP上的正投影内。如此,转接线WB可以沿着信号分布线DSW的分布轨迹进行分布。
在本公开的一种实施方式中,各个所述转接线WB与所述信号分布线DSW的不同位置连接。
在一种示例中,相邻两个极耳WA之间设置有沿信号分布线DSW的延伸轨迹延伸的转接线WB,转接线WB的一端与其中一个极耳WA电连接,转接线WB的另一端临近另一个极耳WA且通过开口槽GG与信号分布线DSW电连接。这样,每个极耳WA均通过一个转接线WB和开口槽GG与信号分布线DSW电连接,这使得单个开口槽GG处流出的电流不太大;转接线WB通过开口槽GG与信号分布线DSW连接的一端临近另一个极耳WA,这使得转接线WB的长度可以尽可能长,进而使得转接线WB的电阻尽可能大。可选的,各个转接线WB的分布轨迹,在整体上环绕发光电极AND。
举例而言,参见图6,在一个发光单元PIX中,发光电极层FAND包括一个发光电极AND以及与发光电极AND连接的两个极耳WA,以及包括与两个极耳WA一一对应连接的两个转接线WB;无机绝缘层FCVD开设有与两个极耳WA一一对应的开口槽GG。极耳WA对应的转接线WB沿信号分布线DSW的延伸轨迹延伸,其一端与对应的极耳WA连接,且另一端通过对应的开口槽GG与信号分布线DSW连接。其中,极耳WA对应的开口槽GG,靠近另一个极耳WA设置。
在本公开的另一种实施方式中,至少两个所述转接线WB的第一端相互电连接,且与所述信号分布线DSW的同一位置电连接。例如,相邻的两个转接线WB可以通过同一个开口槽GG连接至信号分布线DSW。这样,各个转接线WB的分布轨迹,可以不必然围绕整个发光电极AND。在该实施方式中,可以通过增大开口槽GG的方式,来降低从开口槽GG流出的电流的密度。
在一种示例中,参见图8,在一个发光单元PIX中,发光电极层FAND包括一个发光电极AND以及与发光电极AND连接的两个极耳WA,以及 包括与两个极耳WA一一对应连接的两个转接线WB,转接线WB沿信号分布线DSW的延伸轨迹延伸。无机绝缘层FCVD开设有一个开口槽GG。两个转接线WB分别与各自的极耳WA电连接,且两个转接线WB相互电连接而合并为一条转接线WB。合并后的转接线WB通过开口槽GG与信号分布线DSW电连接。
在本公开的另外一些实施方式中,参见图10,发光单元PIX中的发光电极AND也可以通过一个极耳WA与信号分布线DSW连接,可以通过增大极耳WA的宽度来降低流入发光电极AND的电流密度,例如使得极耳WA的宽度大于转接线WB的宽度。极耳WA的具体宽度可以根据实际需要来设置,极耳WA的宽度越大,则降低电流密度的效果越好。在该示例中,可以延长转接线WB的长度,以提高转接线WB的等效电阻,例如使得转接线WB的长度大于所述信号分布线DSW的长度的一半;优选的,使得转接线WB基本围绕发光电极AND设置,例如使得转接线WB的长度为信号分布线DSW的长度的90%。
在一种示例中,参见图10,转接线WB的延伸轨迹与信号分布线DSW相同,且转接线WB基本环绕发光电极AND设置;这使得转接线WB具有最大的长度。在此情况下,极耳WA可以被设计成更大的宽度,以降低流入信号分布线DSW的电流密度。在一种示例中,极耳WA的宽度为转接线WB宽度的5~10倍。
在一种示例中,参见图2和图3,车用发光面板还可以包括封装层FEE,以便保护各个发光器件DD。封装层FEE可以为薄膜封装层,也可以为封装盖板或者封装滤光片。
在本公开的一些实施方式中,车用发光面板的各个发光单元PIX的位置和形状可以被专门的定义,例如可以直接定义出各个发光器件DD的形状或者直接定义出各个发光器件DD的各个亚单元的形状。这样,可以使得车用发光面板在发光的同时,能够呈现出更为细腻的图案,克服了散布的高亮度光源(例如散布的发光二极管)组成的图案不够细腻、分辨率不够高、亮度分布不均匀等问题,进而实现更佳的发光效果,尤其是达成更佳的视觉效果。
在本公开的一种实施方式中,单个发光单元PIX的尺寸为0.5~2cm。 可选的,发光单元PIX的尺寸可以是,发光单元PIX的长度、宽度、直径等尺寸中的最大值。在一种示例中,单个发光单元PIX的尺寸为1cm。
在本公开的一种实施方式中,单个发光器件DD可以包括多个亚单元,各个亚单元的尺寸可以在200~400微米之间。可选的,发光器件DD的亚单元的尺寸可以是,亚单元的长度、宽度、直径等尺寸中的最大值。在一种示例中,亚单元的尺寸可以为300微米。
本公开实施方式还提供一种发光装置,该发光装置包括上述车用发光面板实施方式所描述的任意一种车用发光面板。该发光装置可以为汽车内氛围灯、汽车尾灯或者其他类型的车用或者车载发光装置。由于该发光装置具有上述车用发光面板实施方式所描述的任意一种车用发光面板,因此具有相同的有益效果,本公开在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (22)

  1. 一种车用发光面板,包括设置于衬底基板一侧的至少一个发光单元;所述发光单元包括发光器件和驱动所述发光器件的信号分布线;
    所述发光器件包括依次层叠设置于所述衬底基板一侧的发光电极、发光区域定义层、有机发光层和公共电极;
    所述发光单元还包括转接线,所述信号分布线与所述发光器件的发光电极之间通过所述转接线电连接,且所述转接线的方阻大于所述信号分布线的方阻。
  2. 根据权利要求1所述的车用发光面板,其中,所述信号分布线环绕所述发光电极设置。
  3. 根据权利要求1所述的车用发光面板,其中,所述转接线的宽度小于所述信号分布线的宽度。
  4. 根据权利要求1所述的车用发光面板,其中,所述转接线在所述衬底基板上的正投影,位于所述信号分布线在所述衬底基板上的正投影内。
  5. 根据权利要求1所述的车用发光面板,其中,所述转接线与所述发光电极同层设置。
  6. 根据权利要求1所述的车用发光面板,其中,所述车用发光面板还包括无机绝缘层,所述无机绝缘层覆盖所述信号分布线;
    所述无机绝缘层具有暴露所述信号分布线至少部分区域的开口槽,所述转接线通过所述开口槽与所述信号分布线电连接。
  7. 根据权利要求1~6任意一项所述的车用发光面板,其中,所述转接线的长度不小于所述信号分布线的长度的一半。
  8. 根据权利要求1~6任意一项所述的车用发光面板,其中,所述发光单元包括多个所述转接线,各个所述转接线的第一端与所述信号分布线电连接,且各个所述转接线的第二端分别与所述发光电极的边缘的不同位置电连接。
  9. 根据权利要求8所述的车用发光面板,其中,至少两个所述转接线的第一端相互电连接,且与所述信号分布线的同一位置电连接。
  10. 根据权利要求8所述的车用发光面板,其中,各个所述转接线与所述信号分布线的不同位置电连接。
  11. 根据权利要求1~10任意一项所述的车用发光面板,其中,所述发光单元还包括与所述发光电极连接的极耳;所述极耳与所述发光电极之间的连接尺寸大于所述转接线的宽度;
    所述转接线与所述极耳电连接。
  12. 根据权利要求11所述的车用发光面板,其中,所述极耳与所述发光电极同层设置。
  13. 根据权利要求11所述的车用发光面板,其中,所述极耳的边缘包括与所述转接线连接的第一边缘和与所述发光电极连接的第二边缘;所述第一边缘与所述第二边缘不相邻。
  14. 根据权利要求11所述的车用发光面板,其中,所述车用发光面板还包括无机绝缘层,所述无机绝缘层覆盖所述信号分布线;
    所述极耳与所述信号分布线交叠,且所述极耳与所述信号分布线之间通过所述无机绝缘层绝缘。
  15. 根据权利要求11~14任意一项所述的车用发光面板,其中,与所述发光电极连接的所述极耳的数量为多个;各个所述极耳与所述发光电极的边缘的不同位置连接。
  16. 根据权利要求15所述的车用发光面板,其中,所述发光电极所连接的各个极耳呈中心对称分布,且对称中心与所述发光电极的中心重合。
  17. 根据权利要求15所述的车用发光面板,其中,所述发光电极所连接的各个极耳呈旋转对称分布,且旋转对称中心与所述发光电极的中心重合。
  18. 根据权利要求15所述的车用发光面板,其中,所述发光电极所连接的极耳的数量为2~6个。
  19. 根据权利要求15所述的车用发光面板,其中,至少一个所述发光电极呈多边形;所述极耳临近所述发光电极的顶角设置。
  20. 根据权利要求1~19任意一项所述的车用发光面板,其中,所述车用发光面板还包括无机绝缘层,所述无机绝缘层覆盖所述信号分布线;
    所述发光区域定义层具有多个暴露所述发光电极的发光开口;所述无机绝缘层具有出光槽;
    所述发光开口在所述衬底基板上的正投影,位于所述出光槽在所述衬 底基板上的正投影中。
  21. 根据权利要求1~19任意一项所述的车用发光面板,其中,所述信号分布线的材料为金属或者导电金属氧化物;所述发光电极的材料为导电金属氧化物。
  22. 一种发光装置,包括权利要求1~21任意一项所述的车用发光面板。
PCT/CN2022/093347 2022-05-17 2022-05-17 车用发光面板和发光装置 WO2023220926A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001246.3A CN117546633A (zh) 2022-05-17 2022-05-17 车用发光面板和发光装置
PCT/CN2022/093347 WO2023220926A1 (zh) 2022-05-17 2022-05-17 车用发光面板和发光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093347 WO2023220926A1 (zh) 2022-05-17 2022-05-17 车用发光面板和发光装置

Publications (1)

Publication Number Publication Date
WO2023220926A1 true WO2023220926A1 (zh) 2023-11-23

Family

ID=88834392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093347 WO2023220926A1 (zh) 2022-05-17 2022-05-17 车用发光面板和发光装置

Country Status (2)

Country Link
CN (1) CN117546633A (zh)
WO (1) WO2023220926A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164829A (zh) * 2013-04-29 2015-12-16 株式会社Lg化学 有机发光器件及其制造方法
CN112864218A (zh) * 2021-04-16 2021-05-28 京东方科技集团股份有限公司 发光基板和发光装置
CN216488409U (zh) * 2021-08-19 2022-05-10 湖南立方新能源科技有限责任公司 一种二次电池用防短路极耳、电极极片和二次电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164829A (zh) * 2013-04-29 2015-12-16 株式会社Lg化学 有机发光器件及其制造方法
CN112864218A (zh) * 2021-04-16 2021-05-28 京东方科技集团股份有限公司 发光基板和发光装置
CN216488409U (zh) * 2021-08-19 2022-05-10 湖南立方新能源科技有限责任公司 一种二次电池用防短路极耳、电极极片和二次电池

Also Published As

Publication number Publication date
CN117546633A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
JP5718461B2 (ja) 発光装置、照明装置および発光装置の製造方法
CN107565043A (zh) 有机发光显示装置
US20080121899A1 (en) Transparent electrode for LED array
KR20220024354A (ko) Mjt led를 이용한 백라이트 모듈 및 이를 포함하는 백라이트 유닛
US20200058631A1 (en) Micro led display panel with narrowed border area and method for making same
WO2022217919A1 (zh) 发光基板和发光装置
CN107994061A (zh) 一种盖板及其制备方法、显示装置
WO2023220926A1 (zh) 车用发光面板和发光装置
CN111312744B (zh) 显示面板及显示装置
CN112397487B (zh) 发光器件及制作方法和含该发光器件的显示屏和照明器材
CN1449228A (zh) 使用有机发光显示器件来显示被选择的图像
KR20170015145A (ko) 발광 소자 및 이를 이용한 발광 장치
CN217983349U (zh) 显示基板、显示装置、车灯
US20220209081A1 (en) Led module
CN115513247A (zh) 显示背板及显示装置
CN111354763B (zh) 电致发光照明装置
CN101964354B (zh) 有机发光装置、照明装置以及液晶显示器
CN101552268B (zh) 发光二极管模块
KR20030017686A (ko) Led 램프
US9496469B2 (en) Method of fabricating an optical device package with an adhesive having a reflective material
CN111384122A (zh) 具有高孔径比的电致发光照明装置
US10764972B2 (en) Electroluminescent lighting device
CN111384123A (zh) 电致发光照明装置
US20190165229A1 (en) Configurable circuit layout for leds
CN219959038U (zh) 一种发光芯片封装结构和发光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001246.3

Country of ref document: CN