WO2023219458A1 - 미세조류를 활용한 이산화탄소 저감 방법 - Google Patents

미세조류를 활용한 이산화탄소 저감 방법 Download PDF

Info

Publication number
WO2023219458A1
WO2023219458A1 PCT/KR2023/006470 KR2023006470W WO2023219458A1 WO 2023219458 A1 WO2023219458 A1 WO 2023219458A1 KR 2023006470 W KR2023006470 W KR 2023006470W WO 2023219458 A1 WO2023219458 A1 WO 2023219458A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
medium
microalgae
biomineralization
culture
Prior art date
Application number
PCT/KR2023/006470
Other languages
English (en)
French (fr)
Inventor
심상준
유병선
양하은
시로히란지나
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023219458A1 publication Critical patent/WO2023219458A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method of reducing carbon dioxide using microalgae, and more specifically, to a technology that combines microalgae-based biomineralization and a semi-continuous culture process to maintain biomass and lipid productivity while improving carbon dioxide removal rate. will be.
  • CCS Carbon Capture & Sequestration
  • CCU Carbon Capture & Utilization
  • CCU Carbon Capture & Utilization
  • Microalgae called phytoplankton
  • the microalgae cultivation process has limitations as it grows to an industrial scale. With existing process systems, the culture scale per unit area is small, so for mass culture, a larger area is required, resulting in high initial costs and limitations in installing a corresponding incubator. In particular, when the area is small like in Korea, the culture scale per unit area is very important. In addition, when 5% of carbon dioxide is supplied to microalgae, 95% of it is dissolved in the culture medium in the form of bicarbonate, only 2 to 3% is utilized by the microalgae, and the rest is discharged unused, increasing the scale in terms of carbon dioxide reduction. Accordingly, there are limits to its legitimacy. Furthermore, depending on the species, even if they produce useful substances, their growth rate is very slow and their carbon dioxide removal efficiency is significantly reduced. Therefore, the need to introduce effective technologies that can maximize carbon dioxide reduction efficiency per area is emerging.
  • the present invention aims to provide a carbon dioxide reduction method using microalgae that maximizes biomass and lipid productivity and maximizes carbon dioxide reduction by performing a semi-continuous process while inducing biomineralization when culturing microalgae.
  • a carbon dioxide reduction method using microalgae includes the steps of (a) supplying carbon dioxide (CO 2 ) to a first medium in a reactor to generate hydrogen carbonate ions (HCO 3 - ); (b) inoculating microalgae into the first medium supplied with carbon dioxide and performing a first photoculture; (c) adding calcium ions (Ca 2+ ) to the first medium inoculated with the microalgae to generate calcium carbonate (CaCO 3 ) and performing a second photoculture ; and (d) performing a semi-continuous culture process by discharging a portion of the first medium from the reactor and adding a second medium to the reactor.
  • the microalgae include Dunaliella , Chlamydomonas , Scenedesmus , and Chlorella . , Ettlia , Micractinium , Coelastrum , Haematococcus , Cosmarium , Pediastrum , Pandorina , Eudorina, Euglena , Spirulina , Botryococcus , Tetraselmis , Nannochloropsis , Coccomyxa , Paeodactyrum ( Phaeodactylum , Schizochytrium , Arthrospira , Nitzschia , Isochrysis , Microcystis , Nannochloris , Synechococcus , Syne It may be one or more species selected from the group consisting of Synechocystis and Aurantiochytrium
  • the microalgae is Chlorella HS2 ( Chlorella HS2) with the deposit number KCTC 13108BP sp . HS2) may be a cell line.
  • the second photoculture step is performed. can do.
  • the concentration of the calcium ion added in step (c) may be 40 to 50 mM.
  • the calcium ions in step (c) may be added by supplying calcium chloride (CaCl 2 ) to the first medium.
  • the pH of the first medium may be maintained at 6.0 to 7.5.
  • the pH of the first medium may be maintained at 7.5 to 8.5.
  • step (d) when the second medium is added, the cell density of the microalgae remaining in the reactor is 1.0 to 1.5. It may be g/L.
  • Figure 1 is a schematic diagram schematically showing the microalgae cultivation process of the carbon dioxide reduction method according to the present invention.
  • Figure 2a shows CaCl 2 added to induce biomineralization in the induction step. This is a graph showing biomass production (g L -1 ) by concentration.
  • Figure 2b is a graph showing the production amount (g L - 1 ) of calcium carbonate (calcite) according to CaCl 2 concentration added to induce biomineralization in the induction stage.
  • Figure 2c is a graph showing the lipid content (mg L - 1 ) by CaCl 2 concentration added to induce biomineralization in the induction stage.
  • Figure 2d is a graph analyzing the precipitation effect over time of microalgae cells recovered through conventional culture and microalgae cells recovered in a culture process combining biomineralization using OD (optical density).
  • FIG. 3 shows Chlorella without biomineralization sp . Chlorella where biomineralization was performed with HS2 cells. sp . This is an SEM image of HS2 cells.
  • Figure 4a is an This is a graph analyzing the decision.
  • Figure 4b is an FT-IR analysis graph showing that the crystal produced through biomineralization is calcite, (A) is a graph analyzing general calcite, and (B) is a graph analyzing general calcite, and (B) is a graph showing that the crystal produced through biomineralization is calcite. This is a graph analyzing the decisions made.
  • Figure 5 is Chlorella sp . This is a graph showing the biomass concentration (g L -1 ) when HS2 cells were cultured for 4 cycles using a conventional semi-continuous process method for 19 days.
  • Figure 6 is Chlorella sp . This is a graph showing the biomass concentration (g L -1 ) when HS2 cells were cultured for 8 cycles by applying a semi-continuous process incorporating microalgae-based biomineralization for 19 days.
  • Figure 7 shows Chlorella fused with biomineralization sp . This is a graph showing the amount of calcium carbonate accumulated through the HS2 culture process.
  • Figure 8 is a graph comparing the carbon dioxide removal rate through a conventional culture process and a culture process combining biomineralization for 19 days.
  • Figure 9 is a photograph showing the results of staining cells and culture medium using nile red to confirm the presence of contaminants in the culture medium and confirming it with an optical microscope.
  • (a) shows Chlorella sp .
  • a photograph stained with HS2 is a photograph staining bacteria, which are generally a contaminant occurring in microalgae culture,
  • (c) is a photograph staining the culture medium, and
  • (d) is a photograph confirming only nile red.
  • Figure 10a shows the case where the first semi-continuous culture process is performed and the remaining culture medium is used immediately after microalgae recovery, and when the culture medium treated at medium temperature (75 degrees, 20 minutes) and high temperature (95 degrees, 20 minutes) is used. Chlorella sp . This is a graph showing HS2 biomass concentration.
  • Figure 10b shows the case where the first semi-continuous culture process is performed and the remaining culture medium is used immediately after microalgae recovery, and when the culture medium treated at medium temperature (75 degrees, 20 minutes) and high temperature (95 degrees, 20 minutes) is used.
  • Chlorella sp This is a graph showing the HS2 lipid content.
  • Figure 11a is a graph comparing the concentrations of calcium ions and chloride ions at the beginning and end of culture in a semi-continuous culture process that combines the existing culture process and biomineralization.
  • Figure 11b is a graph measuring O 2 evolution (mol mg chl -1 h -1 ) to compare photosynthetic efficiency in the induction stage in a semi-continuous culture process that combines the existing culture process and biomineralization.
  • Figure 11c is a graph showing the results of measuring the biomass growth inhibition rate (%) according to chlorine concentration in order to determine the final point of the semi-continuous culture process in the biomineralization fusion process.
  • Figure 12 is a table showing the results of a comparative analysis of biomass productivity, lipid productivity, calcium carbonate productivity, and carbon dioxide removal efficiency when a culture process combining the existing culture process and biomineralization was performed in a mass cylinder.
  • Figure 13a is Chlorella sp . This is a graph comparing biomass productivity in a conventional semi-continuous culture process and a semi-continuous culture process combining biomineralization over 19 days in the HS2 outdoor culture system.
  • Figure 13b is Chlorella sp . This is a graph comparing calcium carbonate productivity in a conventional semi-continuous culture process and a semi-continuous culture process combining biomineralization over 19 days in the HS2 outdoor culture system.
  • Figure 13c shows Chlorella sp . This is a graph measuring O 2 evolution (mol mg chl -1 h - 1 ) to compare photosynthetic efficiency in a conventional semi-continuous culture process and a semi-continuous culture process combining biomineralization for 19 days in the HS2 outdoor culture system. .
  • Figure 13d is Chlorella sp . This is a graph comparing the carbon dioxide removal efficiency in a conventional semi-continuous culture process and a semi-continuous culture process combining biomineralization over 19 days in the HS2 outdoor culture system.
  • Figure 14 is Chlorella sp . This is a photo showing a semi-continuous culture process that combines the conventional semi-continuous culture process and biomineralization that was carried out for 19 days in HS2's outdoor culture system.
  • Figure 15 is a table showing the results of calculating the size of the culture facility for processing 50,000 tons of carbon dioxide per year using a 1-ton incubator.
  • Figure 1 is a schematic diagram schematically showing the microalgae cultivation process of the carbon dioxide reduction method according to the present invention.
  • the method for reducing carbon dioxide according to the present invention includes supplying carbon dioxide (CO 2 ) to the first medium in the reactor to generate hydrogen carbonate ions (HCO 3 - ), and a first step to which carbon dioxide is supplied. Step of inoculating microalgae into a medium and performing a first photoculture, adding calcium ions (Ca 2+ ) to the first medium inoculated with microalgae to generate calcium carbonate (CaCO 3 ), and performing a second photoculture. It includes the step of discharging a part of the first medium from the reactor and adding the second medium to the reactor to perform a semi-continuous culture process.
  • the present invention relates to a method of reducing carbon dioxide using microalgae, and is a technology that improves carbon dioxide removal rate while maintaining biomass and lipid productivity by combining microalgae-based biomineralization and semi-continuous culture process.
  • the reality is that we are in a huge crisis.
  • the present invention proposes a technology that combines a biological conversion process using microalgae and a mineralization process.
  • the carbon dioxide reduction method using microalgae according to the present invention includes a carbon dioxide supply step, a first photoculture step, a second photoculture step, and a semi-continuous culture step.
  • the carbon dioxide supply step is a process of supplying carbon dioxide to the first medium for photo-culturing microalgae.
  • the first medium can be filled in a predetermined reactor, and there is no particular limitation as long as it enables the growth of microalgae.
  • a nitrogen-containing medium called TAP-C can be used.
  • Carbon dioxide can be supplied by supplying air containing 4 to 6% (v/v) carbon dioxide, or by using a CO 2 incubator. Additionally, carbon dioxide-containing exhaust gas emitted from industrial facilities such as power plants may be supplied to the first medium.
  • water and carbon dioxide react to generate hydrogen ions and hydrogen carbonate ions (HCO 3 - ).
  • the supply of carbon dioxide can be temporary or continuous. Therefore, carbon dioxide can be continuously supplied until the calcium ion addition and photoculture steps described later.
  • microalgae are inoculated into the first medium supplied with carbon dioxide and photocultured.
  • the microalgae include Dunaliella , Chlamydomonas , Scenedesmus , Chlorella , Ettlia , Micractinium , and Coelastrum ( Coelastrum , Haematococcus , Cosmarium , Pediastrum , Pandorina , Eudorina , Euglena , Spirulina , Botriococcus ( Botryococcus ), Tetraselmis , Nannochloropsis , Coccomyxa , Phaeodactylum , Schizochytrium , Arthrospira , Nitschia ( 1 selected from the group consisting of Nitzschia ), Isochrysis , Microcystis , Nannochloris , Synechococcus , Synechocystis and
  • Chlorella HS2 Chlorella sp . HS2
  • the photoculture process of microalgae is divided into a growth stage and an induction stage that begins when stress (salt, light, temperature, etc.) is applied.
  • the first photoculture takes place during the growth stage where cell division mainly occurs. You can.
  • the first photoculture may be performed under light conditions of 200 to 300 ⁇ E/m2/s.
  • the initial inoculation amount of microalgae may be 0.05 to 0.2 g/L, preferably 0.1 g/L, but is not necessarily limited thereto.
  • the pH of the first medium may be maintained at 6.0 to 7.5.
  • the second photoculture step is photoculture while inducing biomineralization through the addition of calcium ions (Ca 2+ ) to the first medium inoculated with microalgae.
  • Microalgae have carbon anhydrase (CA), which acts as a catalyst for the reaction where water and carbon dioxide react to produce hydrogen ions and hydrogen carbonate ions.
  • CA carbon anhydrase
  • the hydrogen carbonate ions generated in the carbon dioxide supply step and the calcium ions added to the first culture medium react to produce calcium carbonate (CaCO 3 ).
  • Calcium ions to induce biomineralization can be injected by supplying calcium chloride (CaCl 2 ). However, it is not necessary to supply calcium chloride to inject calcium ions, and Ca(OH) 2 , Ca(NO 3 ) 2 ⁇ 4H 2 O, Ca(CH 3 COO) 2 ⁇ H 2 O, CaSO 4 ⁇ 2H All known calcium salts that can supply calcium ions by dissolving in the medium, such as 2O , can be used. At this time, since the concentration of added calcium ions affects biomass, lipid productivity, and carbon dioxide reduction, the appropriate concentration is 40 to 50 mM, preferably 45 mM.
  • the second photoculture is an induction stage in which lipids, etc. accumulate, and can be performed under light conditions of 300 to 500 ⁇ E/m2/s.
  • the induction step can be performed when the cell density of microalgae in the medium is 1.0 g/L or more, so when the cell density of microalgae reaches 1.0 g/L or more in the first photoculture, preferably 1.25 g/L Calcium ions can be added at this time and the second photoculture step can be performed at the above light intensity.
  • the pH of the medium can be maintained at 7.5 to 8.5 by adding a basic solution to the medium.
  • the basic solution is selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonia (NH 4 OH), calcium hydroxide (Ca(OH) 2 ), and magnesium hydroxide (Mg(OH) 2 ). Any one or more may be dissolved in a solution.
  • a semi-continuous culture process is performed in which part of the first medium is discharged from the reactor, a second medium is added to the remaining first medium, and photoculture is performed.
  • a portion of the first medium is discharged from the bottom of the reactor, and at this time, microalgae and microalgae coated with calcium carbonate or calcite produced through biomineralization are discharged together with the first medium.
  • the first medium is not completely discharged, but only a portion is discharged, the remainder remains in the reactor, and some microalgae also remain in the remaining first medium.
  • the second medium is additionally injected into the first medium remaining in the reactor, and photoculture is performed.
  • photoculture may be performed as a growth step.
  • 90% is recovered, 10% is left in the reactor, and a nitrogen-containing medium called TAP-C is injected into the reactor to return to the growth stage and grow through cell division.
  • TAP-C nitrogen-containing medium
  • a semi-continuous process can be performed in a way that induces growth.
  • the cell density of microalgae remaining in the reactor when the second medium is added may be 1.0 to 1.5 g/L.
  • Chlorella a type of chlorella sp .
  • HS2 has higher biomass and lipid productivity than the previously widely used Chlorella sorokinia. It is important to produce biomass containing high lipids in the microalgae culture process, but carbon dioxide removal efficiency is also an essential factor to consider in terms of the biological conversion process of carbon dioxide. In general, in mass culture, it is difficult to inoculate new cells in each cycle, so a semi-continuous process can be used. Chlorella sorokinia can also be mass-cultured through a semi-continuous process, but HS2 is currently not being studied in mass culture using a semi-continuous process.
  • the present invention combines biomineralization with a semi-continuous process to generate calcite, thereby inducing double scattering of light.
  • Example 1 Manufacturing process of components for photosynthetic biological reaction and mineralization process
  • the inlet of the prepared mass cylinder was blocked and a multipurpose inlet/outlet made of silicone was used to allow gas injection and sampling.
  • a 2 to 3 mm hole was made in the silicone multi-purpose inlet/outlet, and two Teflon tubes were cut to match the height of the mass cylinder and inserted into the created hole.
  • a stone sparger was connected to the bottom of the Teflon tube through which gas was supplied, and air containing 5% carbon dioxide was supplied.
  • TAP-C was used as the medium, and 450 ml was injected into the mass cylinder and aeration was performed. Afterwards, 10mM KOH was injected and the pH was adjusted to between 7.5 and 8. As a result, the pH can be maintained between 7.5 and 8 even when carbon dioxide is continuously supplied due to the buffering effect of KOH.
  • Microalgae is Chlorella sp .
  • HS2 was used, and the initial inoculation amount was 0.1 g L - 1 based on biomass. It was 200 to 300 ⁇ E m -2 s - 1 in each 3-day growth stage in the mass cylinder, and 2 days in the process combining biomineralization.
  • light was irradiated at 300 to 500 ⁇ E m -2 s -1 .
  • the final culture volume in the mass cylinder was 500 mL.
  • FIG. 2a is a graph showing the biomass production (g L -1 ) by CaCl 2 concentration added to induce biomineralization in the induction stage
  • Figure 2b is a graph showing the CaCl added to induce biomineralization in the induction stage.
  • It is a graph showing the production of calcium carbonate (calcite) by concentration (g L - 1 )
  • Figure 2c shows the lipid content (mg L - 1 ) by CaCl 2 concentration added to induce biomineralization in the induction stage.
  • Figure 2D is a graph analyzing the precipitation effect over time of microalgae cells recovered through conventional culture and microalgae cells recovered in a culture process combining biomineralization using OD (optical density).
  • Figure 3 shows Chlorella without biomineralization sp . Chlorella where biomineralization was performed with HS2 cells. sp .
  • Figure 4a is an XRD analysis graph showing that the crystals generated through biomineralization are calcite
  • A is a graph analyzing general calcite
  • B is It is a graph analyzing crystals generated through biomineralization
  • Figure 4b is an FT-IR analysis graph showing that the crystals generated through biomineralization are calcite
  • A is general calcite
  • B is a graph analyzing crystals created through biomineralization.
  • biomineralization has an excellent aggregation effect, making cell recovery easy in mass culture.
  • the supernatant O.D. of cells in which mineralization occurred and cells in which mineralization did not occur was measured over time.
  • the wavelength was set to 800nm, which measures HS2, and as a result, it was confirmed that the O.D value of cells where biomineralization occurred converged to 0 within 10 minutes. It was confirmed that biomineralization has an excellent aggregation effect as there was no change in the value of cells through existing culture even after 20 minutes (see Figure 2d).
  • Figure 5 is Chlorella sp . It is a graph showing the biomass concentration (g L -1 ) when HS2 cells were cultured for 4 cycles using a conventional semi-continuous process method for 19 days, and Figure 6 shows Chlorella sp . This is a graph showing the biomass concentration (g L -1 ) when HS2 cells were cultured for 8 cycles by applying a semi-continuous process incorporating microalgae-based biomineralization for 19 days.
  • Figure 7 shows Chlorella fused with biomineralization sp . This is a graph showing the amount of calcium carbonate accumulated through the HS2 culture process, and Figure 8 is a graph comparing the carbon dioxide removal rate through a conventional culture process and a culture process combining biomineralization over 19 days.
  • Figure 9 is a photograph showing the results of staining cells and culture medium using nile red to confirm the presence of contaminants in the culture medium and confirming it with an optical microscope.
  • (a) is Chlorella sp .
  • a photograph stained with HS2 is a photograph staining bacteria, which are generally a contaminant occurring in microalgae culture
  • (c) is a photograph staining the culture medium
  • (d) is a photograph confirming only nile red.
  • Figure 10a shows the case where the first semi-continuous culture process is performed and the remaining culture medium is used immediately after microalgae recovery, and when the culture medium treated at medium temperature (75 degrees, 20 minutes) and high temperature (95 degrees, 20 minutes) is used. Chlorella sp .
  • Figure 11a is a graph comparing the concentrations of calcium ions and chloride ions at the beginning and end of cultivation in a semi-continuous culture process combining the existing culture process and biomineralization
  • Figure 11b is a graph comparing the concentration of calcium ions and chlorine ions at the beginning and end of cultivation in a semi-continuous culture process combining the existing culture process and biomineralization.
  • FIG. 11 is a graph measuring O 2 evolution (mol mg chl -1 h - 1 ) to compare the photosynthetic efficiency in the induction stage in the semi-continuous culture process
  • Figure 11c shows the semi-continuous culture process in the process combining biomineralization.
  • This is a graph showing the results of measuring biomass growth inhibition rate (%) according to chlorine concentration in order to determine the final point of .
  • Figure 12 is a table showing the results of a comparative analysis of biomass productivity, lipid productivity, calcium carbonate productivity, and carbon dioxide removal efficiency when a culture process combining the existing culture process and biomineralization was performed in a mass cylinder.
  • Example 6 Semi-continuous culture process using HS2 combined with biomineralization in outdoor culture
  • Figure 13a is Chlorella sp .
  • Figure 13b is a graph comparing biomass productivity in a conventional semi-continuous culture process and a semi-continuous culture process combining biomineralization for 19 days in the outdoor culture system of HS2, and
  • Figure 13b is a graph comparing the biomass productivity of Chlorella sp .
  • This is a graph comparing the calcium carbonate productivity in the conventional semi-continuous culture process and the semi-continuous culture process combining biomineralization for 19 days in the outdoor culture system of HS2, and
  • Figure 13c is Chlorella sp .
  • FIG. 13d is Chlorella sp .
  • Figure 14 is Chlorella sp .
  • This is a photo showing a semi-continuous culture process that combines the conventional semi-continuous culture process and biomineralization that was carried out for 19 days in HS2's outdoor culture system.
  • Figure 15 is a table showing the results of calculating the size of the culture facility for processing 50,000 tons of carbon dioxide per year using a 1-ton incubator.
  • a hybrid system was constructed and cultured at the Korea District Heating Corporation's outdoor culture facility in Pangyo. Cultivation was carried out in a 10-liter reactor, and exhaust gas containing 3 to 5% carbon dioxide supplied by the Korea District Heating Corporation was used in the reactor. As a result of cultivation for 19 days, it was confirmed that when biomineralization was combined, biomass concentration, calcium carbonate concentration, and carbon dioxide removal efficiency were all significantly improved by 2.3 times, 87 times, and 6.1 times, respectively. When biomineralization was applied, 6.01 g L -1 of biomass was produced each cycle, and 10.45 g L -1 of calcium carbonate was ultimately produced (see Figures 13a and 13b).
  • the semi-continuous culture process incorporating biomineralization is an essential culture technology in outdoor culture (see Figure 14).
  • the area can be reduced by more than 10 times compared to existing culture, so there will be sufficient justification for commercialization (see Figure 15) .
  • the present invention relates to a method of reducing carbon dioxide using microalgae. It is recognized for industrial applicability because it maximizes biomass and lipid productivity and carbon dioxide reduction by performing a semi-continuous process while inducing biomineralization during microalgae cultivation. do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 미세조류를 활용한 이산화탄소 저감 방법에 관한 것으로, 본 발명에 따른 이산화탄소 저감 방법은 반응기 내의 제1 배지에 이산화탄소(CO2)를 공급하여, 탄산수소 이온(HCO3 -)을 생성하는 단계, 이산화탄소가 공급되는 제1 배지에, 미세조류를 접종하고 제1 광배양하는 단계, 탄산칼슘(CaCO3)이 생성되도록, 미세조류가 접종된 제1 배지에, 칼슘 이온(Ca2 +)을 첨가하고, 제2 광배양하는 단계, 및 반응기에서 제1 배지의 일부를 배출하고, 반응기에 제2 배지를 추가하여 반연속 배양공정을 수행하는 단계를 포함한다.

Description

미세조류를 활용한 이산화탄소 저감 방법
본 발명은 미세조류를 활용한 이산화탄소 저감 방법에 관한 것으로, 보다 상세하게는 미세조류 기반 바이오광물화와 반연속 배양공정이 융합되어 바이오매스 및 지질 생산성을 유지함과 동시에 이산화탄소 제거율을 향상시키는 기술에 관한 것이다.
화석 연료의 사용에 따라 배출된 대규모 온실가스는 지구 온난화 현상을 야기하고 있다. 이에 이산화탄소 감축을 위한 이산화탄소 포집 및 저장 기술(CCS, Carbon Capture & Sequestration) 개발이 전 세계적으로 활발히 진행 중이다. CCS 기술은 화력발전소를 비롯한 다양한 탄소 배출원에서 방출되는 다량의 이산화탄소를 고농도로 포집한 후 지중이나 해저에 주입하여 대기로부터 격리시키는 방법이다. 이러한 CCS 기술은 단기간에 대량의 이산화탄소를 저감하는 효과가 있으나, 안정적인 저장 문제, 위치 선정 및 높은 설치비용 등으로 인해 실질적인 CCS의 현실화가 어려운 상황이다. 따라서 CCS 기술과 달리 이산화탄소를 저장이 아닌 산업적 용도로 직접 활용하거나 부가가치가 높은 물질로 전환하는 CCU(Carbon Capture & Utilization) 기술이 각광받고 있고, 국내에서도 이산화탄소를 다양한 고부가 물질로 전환하는 공정 개발이 시도되고 있다. 그 중에서도 광합성 미생물인 미세조류를 활용한 이산화탄소의 생물학적 전환 공정은 이산화탄소 감축과 동시에 바이오연료, 바이오플라스틱, 의약품 등 다양한 고부가 물질 생산이 가능한 경제적인 이산화탄소 저감 기술로 주목받고 있다. 식물성 플랑크톤이라 불리는 미세조류는 광합성을 하는 수중 단세포 생물로 에너지 및 산업 소재 생산과 동시에 온실가스 저감이 가능하기 때문에 그 잠재력이 매우 큰 바이오매스 자원으로 관심을 받고 있으며 에너지·화학·환경 분야를 중심으로 미래에 그 이용가치가 확대될 전망이다.
하지만, 미세조류 배양공정은 산업화 규모로 커짐에 따라 한계점들을 가진다. 기존의 공정시스템으로는 단위 면적당 배양 규모가 적어 대량배양을 위해서는 그 이상의 면적이 필요하여 초기 비용이 많이 들며 그에 따른 배양기를 설치하는 데도 한계가 있다. 특히, 우리나라와 같은 면적이 작은 경우 단위 면적당 배양 규모가 상당히 중요하다. 또한, 5%의 이산화탄소를 미세조류에 공급하였을 때, 그중 95%는 바이카보네이트 형태로 배양액 속에 용해되며 2 ~ 3%만 미세조류가 활용하고 나머지는 사용하지 않고 배출되므로 이산화탄소 저감 측면에서 스케일이 커짐에 따라 그 정당성에서 한계를 가진다. 더 나아가, 종에 따라서는 유용한 물질을 생산한다고 해도 성장성이 매우 더디어 이산화탄소 제거 효율이 상당히 감소한다. 따라서, 면적 당 이산화탄소 저감 효율을 극대화할 수 있는 효과적인 기술에 대한 도입의 필요성이 대두되고 있는 실정이다.
본 발명은 미세조류 배양 시 바이오광물화를 유도하면서 반연속 공정을 수행함으로써 바이오매스와 지질 생산성을 최대화하고 이산화탄소 저감량을 극대화하는 미세조류를 활용한 이산화탄소 저감 방법을 제공하는 데 있다.
본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법은 (a) 반응기 내의 제1 배지에 이산화탄소(CO2)를 공급하여, 탄산수소 이온(HCO3 -)을 생성하는 단계; (b) 상기 이산화탄소가 공급되는 상기 제1 배지에, 미세조류를 접종하고 제1 광배양하는 단계; (c) 탄산칼슘(CaCO3)이 생성되도록, 상기 미세조류가 접종된 상기 제1 배지에, 칼슘 이온(Ca2 +)을 첨가하고, 제2 광배양하는 단계; 및 (d) 상기 반응기에서 상기 제1 배지의 일부를 배출하고, 상기 반응기에 제2 배지를 추가하여 반연속 배양공정을 수행하는 단계;를 포함한다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 미세조류는, 두날리엘라(Dunaliella), 클라미도모나스(Chlamydomonas), 쎄네데스무스(Scenedesmus), 클로렐라(Chlorella), 에뜰리아(Ettlia), 마이크락티니움(Micractinium), 코엘라스트럼(Coelastrum), 헤마토코쿠스(Haematococcus), 코스마리움(Cosmarium), 페디아스트럼(Pediastrum), 판도리나(Pandorina), 유도리나(Eudorina), 유글레나(Euglena), 스피룰리나(Spirulina), 보트리오코커스(Botryococcus), 테르라셀미스(Tetraselmis), 나노클로롭시스(Nannochloropsis), 코코믹사(Coccomyxa), 패오닥티룸(Phaeodactylum), 시조키트리움(Schizochytrium), 아르스로피라(Arthrospira), 니츠시아(Nitzschia), 이소크리시스(Isochrysis), 마이크로시스티스(Microcystis), 나노클로리스(Nannochloris), 시네코코스(Synechococcus), 시네코시스티스(Synechocystis) 및 오란티오크리트리움(Aurantiochytrium)으로 구성된 군으로부터 선택되는 1종 이상일 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 미세조류는, 기탁번호가 KCTC 13108BP인 클로렐라 HS2(Chlorella sp . HS2) 세포주일 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 제1 광배양으로 상기 미세조류의 세포 밀도가 1.0 g/L 이상에 다다를 때에, 상기 제2 광배양 단계를 수행할 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 (c) 단계에서 첨가되는 상기 칼슘 이온의 농도는 40 ~ 50 mM일 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 (c) 단계의 상기 칼슘 이온은, 상기 제1 배지에 염화칼슘(CaCl2)이 공급되어 첨가될 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 (b) 단계에서, 상기 제1 배지의 pH는 6.0 ~ 7.5로 유지될 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 (c) 단계에서, 상기 제1 배지의 pH는 7.5 ~ 8.5로 유지될 수 있다.
또한, 본 발명의 실시예에 따른 미세조류를 활용한 이산화탄소 저감 방법에 있어서, 상기 (d) 단계에서, 상기 제2 배지가 추가된 때에 상기 반응기 내에 잔존하는 상기 미세조류의 세포 밀도는 1.0 ~ 1.5 g/L일 수 있다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따르면, 칼슘 매개 바이오광물화 기술을 통하여 미세조류로부터 고함량의 지질을 함유한 대량의 바이오매스를 생산함과 동시에 기존의 공정이 가지고 있는 낮은 이산화탄소 제거 효율이라는 한계를 극복할 수 있다.
연간 5만 톤의 이산화탄소를 감축한다고 하였을 때, 기존 배양공정보다 최소 10배 이상의 면적을 줄일 수 있을 뿐만 아니라 바이오디젤과 같은 유용물질의 생산 혹은 동시 생산되는 칼사이트(calcite)로 코팅된 바이오매스를 활용한 바이오 플라스틱으로의 활용을 통해 경제적인 효과를 얻을 수 있다.
도 1은 본 발명에 따른 이산화탄소 저감 방법의 미세조류 배양공정을 개략적으로 도시한 모식도이다.
도 2a는 유도단계에서 바이오광물화를 유도하기 위해 첨가되는 CaCl2 농도별 바이오매스의 생산량(g L-1)을 나타내는 그래프이다.
도 2b는 유도단계에서 바이오광물화를 유도하기 위해 첨가되는 CaCl2 농도별 탄산칼슘(calcite)의 생산량 (g L- 1)을 나타내는 그래프이다.
도 2c는 유도단계에서 바이오광물화를 유도하기 위해 첨가되는 CaCl2 농도별 지질 함량 (mg L- 1)을 나타내는 그래프이다.
도 2d은 종래 배양을 통해 회수된 미세조류 세포 및 바이오광물화가 융합된 배양 공정에서 회수된 미세조류 세포의 시간에 따른 침전 효과를 O.D (optical density)를 이용해 분석한 그래프이다.
도 3은 바이오광물화가 수행되지지 않은 Chlorella sp . HS2 세포와 바이오광물화가 수행된 Chlorella sp . HS2 세포의 SEM 이미지이다.
도 4a는 바이오광물화를 통해 생성된 결정이 칼사이트(calcite)임을 나타내는 XRD 분석 그래프로서, (A)는 일반적인 칼사이트(calcite)를 분석한 그래프이며 (B)는 바이오광물화를 통해 생성된 결정을 분석한 그래프이다.
도 4b는 바이오광물화를 통해 생성된 결정이 칼사이트(calcite)임을 나타내는 FT-IR 분석 그래프로서, (A)는 일반적인 칼사이트(calcite)를 분석한 그래프이며 (B)는 바이오광물화를 통해 생성된 결정을 분석한 그래프이다.
도 5는 Chlorella sp . HS2 세포를 19일 동안 종래 반연속 공정 방법으로 4 사이클 배양했을 때의 바이오매스 농도(g L-1)를 나타낸 그래프이다.
도 6은 Chlorella sp . HS2 세포를 19일 동안 미세조류 기반 바이오광물화가 융합된 반연속 공정을 적용하여 8 사이클을 배양했을 때의 바이오매스 농도(g L-1)를 나타낸 그래프이다.
도 7은 바이오광물화가 융합된 Chlorella sp . HS2 배양공정을 통해 축적된 탄산칼슘의 양을 나타내는 그래프이다.
도 8은 19일 동안의 종래 배양공정과 바이오광물화가 융합된 배양공정을 통한 이산화탄소 제거율을 비교한 그래프이다.
도 9는 배양액 내 오염원이 존재하는지를 확인하기 위해 nile red를 활용하여 세포와 배양액을 염색하여 광학현미경으로 확인한 결과를 나타내는 사진으로서, (a)는 Chlorella sp . HS2를 염색한 사진, (b)는 일반적으로 미세조류 배양에서 발생하는 오염원인 박테리아를 염색한 사진, (c)는 배양액을 염색한 사진, (d)는 nile red만을 확인한 사진이다.
도 10a는 1차 반연속 배양공정을 진행하고 미세조류 회수 후 남은 배양액을 바로 사용하는 경우 및 중온(75도, 20분), 고온(95도, 20분)으로 처리한 배양액을 활용하는 경우의 Chlorella sp . HS2 바이오매스 농도를 나타내는 그래프이다.
도 10b는 1차 반연속 배양공정을 진행하고 미세조류 회수 후 남은 배양액을 바로 사용하는 경우 및 중온(75도, 20분), 고온(95도, 20분)으로 처리한 배양액을 활용하는 경우의 Chlorella sp . HS2 지질 함량을 나타내는 그래프이다.
도 11a는 기존 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 배양 초기와 최종 시점에서의 칼슘이온 및 염소 이온의 농도를 비교한 그래프이다.
도 11b는 기존 배양공정과 바이오광물화가 융합된 반연속 배양공정에서의 유도단계에서의 광합성 효율을 비교하기 위하여 O2 evolution (mol mg chl-1 h- 1)을 측정한 그래프이다.
도 11c는 바이오광물화가 융합된 공정에서의 반연속 배양 공정의 최종 시점을 정하기 위해 염소 농도에 따른 바이오매스 성장 저해율(%)을 염소 농도에 따라 측정한 결과를 나타내는 그래프이다.
도 12는 매스실린더에서 기존 배양공정 및 바이오광물화가 융합된 배양공정을 수행하였을 때의 바이오매스 생산성, 지질 생산성, 탄산칼슘 생산성, 이산화탄소 제거 효율을 비교 분석한 결과를 나타내는 표이다.
도 13a는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 바이오매스 생산성을 비교한 그래프이다.
도 13b는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 탄산칼슘 생산성을 비교한 그래프이다.
도 13c는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 광합성 효율을 비교하기 위해 O2 evolution (mol mg chl-1 h- 1)을 측정한 그래프이다.
도 13d는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 이산화탄소 제거 효율을 비교한 그래프이다.
도14는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 진행된 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정을 나타내는 사진이다.
도 15는 1톤 배양기를 활용하여 연간 5만 톤의 이산화탄소 처리를 위한 배양시설 규모를 계산한 결과에 대한 표이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다.이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.
도 1은 본 발명에 따른 이산화탄소 저감 방법의 미세조류 배양공정을 개략적으로 도시한 모식도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 이산화탄소 저감 방법은 반응기 내의 제1 배지에 이산화탄소(CO2)를 공급하여, 탄산수소 이온(HCO3 -)을 생성하는 단계, 이산화탄소가 공급되는 제1 배지에, 미세조류를 접종하고 제1 광배양하는 단계, 탄산칼슘(CaCO3)이 생성되도록, 미세조류가 접종된 제1 배지에, 칼슘 이온(Ca2 +)을 첨가하고, 제2 광배양하는 단계, 및 반응기에서 제1 배지의 일부를 배출하고, 반응기에 제2 배지를 추가하여 반연속 배양공정을 수행하는 단계를 포함한다.
본 발명은 미세조류를 활용한 이산화탄소 저감 방법에 관한 것으로서, 미세조류 기반 바이오광물화 및 반연속 배양공정을 융합함으로써, 바이오매스 및 지질 생산성을 유지함과 동시에 이산화탄소 제거율을 향상시키는 기술이다. 지구온난화로 인해 세계 곳곳에서 이상기후 현상이 더 빈번하고 강하게 발생하여 식량, 수자원, 생태계 등에 상당한 피해를 일으키고 있으며 자연재해 (허리케인, 사이클론, 우림 파괴, 가뭄, 장마 등)들 또한 빈번하게 발생하여 인류는 엄청난 위기에 놓여있는 게 현실이다. 이러한 이유로 이산화탄소 저감을 위한 수많은 연구가 진행되고 있으며 그중에서도 미세조류를 활용한 이산화탄소의 생물학적 전환이 이산화탄소 감축과 동시에 바이오디젤, 오메가-3 그리고 아스타잔틴과 같은 유용물질을 생산해낸다는 측면에서 각광을 받고 있다. 하지만 광합성 생물이 가진 광합성 효율 및 이산화탄소 전환 효율이 낮은 한계성으로 인해 일반적으로 5% 이내의 이산화탄소를 배양에 활용 가능하고, 공급되는 양의 최대 10 ~ 20%만 바이오매스화 시킬 수 있다는 단점이 있다. 이러한 한계를 해결하기 위해 본 발명은 미세조류를 활용한 생물학적 전환 공정과 광물화 공정을 융합한 기술을 제안한다.
구체적으로, 본 발명에 따른 미세조류를 활용한 이산화탄소 저감 방법은 이산화탄소 공급단계, 제1 광배양 단계, 제2 광배양 단계, 반연속 배양단계를 포함한다.
이산화탄소 공급단계는 미세조류를 광배양하기 위해서 제1 배지에 이산화탄소를 공급하는 공정이다. 여기서, 제1 배지는 소정의 반응기에 채워질 수 있고, 미세조류의 생장을 가능하게 하는 한 특별한 제한은 없고, 일례로 TAP-C라는 질소를 함유한 배지를 사용할 수 있다. 이산화탄소 공급은 4 ~ 6 %(v/v) 이산화탄소가 포함된 공기(air)를 공급하거나, CO2 인큐베이터를 이용할 수 있다. 또한, 발전소 등의 산업시설로부터 배출되는 이산화탄소 함유 배기가스를 제1 배지에 공급할 수도 있다. 이렇게 이산화탄소가 제1 배지에 공급되면, 물과 이산화탄소가 반응하므로 수소 이온과 탄산수소 이온(HCO3 -)이 생성된다. 이산화탄소의 공급은 일시적, 또는 지속적으로 이루어질 수 있다. 따라서, 후술하는 칼슘 이온 첨가 및 광배양 단계에까지 이산화탄소가 계속적으로 공급될 수 있다.
제1 광배양 단계에서는 이산화탄소가 공급된 제1 배지에 미세조류를 접종하고 광배양한다. 여기서, 미세조류는 두날리엘라(Dunaliella), 클라미도모나스(Chlamydomonas), 쎄네데스무스(Scenedesmus), 클로렐라(Chlorella), 에뜰리아(Ettlia), 마이크락티니움(Micractinium), 코엘라스트럼(Coelastrum), 헤마토코쿠스(Haematococcus), 코스마리움(Cosmarium), 페디아스트럼(Pediastrum), 판도리나(Pandorina), 유도리나(Eudorina), 유글레나(Euglena), 스피룰리나(Spirulina), 보트리오코커스(Botryococcus), 테르라셀미스(Tetraselmis), 나노클로롭시스(Nannochloropsis), 코코믹사(Coccomyxa), 패오닥티룸(Phaeodactylum), 시조키트리움(Schizochytrium), 아르스로피라(Arthrospira), 니츠시아(Nitzschia), 이소크리시스(Isochrysis), 마이크로시스티스(Microcystis), 나노클로리스(Nannochloris), 시네코코스(Synechococcus), 시네코시스티스(Synechocystis) 및 오란티오크리트리움(Aurantiochytrium)으로 구성된 군으로부터 선택되는 1종 이상일 수 있다. 또한, 미세조류로서 한국생명공학연구원에서 개발한 기탁번호가 KCTC 13108BP인 클로렐라 HS2(Chlorella sp . HS2) 세포주(한국공개특호공보 제10-2018-0037520호 참조)를 접종할 수 있다. 미세조류의 광배양 공정은 성장기(growth stage), 및 스트레스(염, 빛, 온도 등)가 가해질 때에 개시되는 유도기(induction stage)로 나누어지는데, 제1 광배양은 세포분열이 주로 일어나는 성장단계에서 진행될 수 있다. 이때, 제1 광배양은 200 ~ 300 μ E/㎡/s 광량 조건하에서 수행될 수 있다.
미세조류의 초기 접종량은 0.05 ~ 0.2 g/L, 바람직하게는 0.1 g/L일 수 있으나, 반드시 이에 한정되는 것은 아니다.
한편, 제1 광배양 단계에서, 제1 배지의 pH는 6.0 ~ 7.5로 유지될 수 있다.
제2 광배양 단계는 미세조류가 접종된 제1 배지에 칼슘 이온(Ca2 +)의 첨가를 통해 바이오광물화를 유도하면서, 광배양한다. 미세조류는 탄산탈수소 효소(Carbon Anhydrase, CA)를 가지는데, CA는 물과 이산화탄소가 반응하여 수소 이온과 탄산수소 이온을 생성하는 반응의 촉매제로 작용한다. 여기서, 이산화탄소 공급 단계에서 생성된 탄산수소 이온과 제1 배양액에 첨가된 칼슘 이온이 반응하여 탄산칼슘(CaCO3)을 생성하게 된다.
바이오광물화를 유도하기 위한 칼슘 이온은 염화칼슘(CaCl2)을 공급함으로써 주입될 수 있다. 다만, 칼슘 이온을 주입하기 위해서 반드시 염화칼슘을 공급해야 하는 것은 아니고, Ca(OH)2, Ca(NO3)2·4H2O, Ca(CH3COO)2·H2O, CaSO4·2H2O 등과 같이 배지에 용해되어 칼슘 이온을 공급할 수 있는 공지의 모든 칼슘염을 사용할 수 있다. 이때, 첨가되는 칼슘 이온의 농도는 바이오매스, 지질의 생산성, 및 이산화탄소 저감에 영향을 미치므로, 그 농도는 40 ~ 50 mM, 바람직하게는 45 mM이 적절하다.
제2 광배양은 지질 등이 축적되는 유도단계로서, 300 ~ 500 μ E/㎡/s의 광조건하에서 수행될 수 있다.
칼슘 이온은 유도단계에서 주입되는데, 성장단계에서 유도단계로의 진입은 미세조류의 형태적 변화 내지 배지 내 질소원 고갈 여부로서 판단할 수 있다. 또한, 배지 내 미세조류의 세포 밀도가 1.0 g/L 이상일 때에 유도단계를 진행할 수 있으므로, 제1 광배양으로 미세조류의 세포 밀도가 1.0 g/L 이상에 다다를 때에, 바람직하게는 1.25 g/L일 때에 칼슘 이온을 첨가하고 상기 광도로 제2 광배양 단계를 수행할 수 있다.
칼슘 이온을 첨가하는 경우에 탄산칼슘과 물이 생성되므로 배양액의 pH가 감소하게 되고, 이산화탄소가 용해되어 탄산수소 이온과 수소 이온이 지속적으로 생성되므로, pH가 3 ~ 4.5 정도로 감소하게 된다. 바이오광물화는 pH 7.5 ~ 8.5, 바람직하게는 pH 7.8 ~ 8.2에서 진행되므로, 배지에 염기성 용액을 첨가하여 배지의 pH를 7.5 ~ 8.5로 유지할 수 있다. 여기서, 염기성 용액으로는 수산화나트륨(NaOH), 수산화칼륨(KOH), 암모니아(NH4OH), 수산화칼슘(Ca(OH)2), 및 수산화마그네슘(Mg(OH)2)으로 이루어진 군으로부터 선택되는 어느 하나 이상이 용해된 용액일 수 있다.
반연속 배양단계에서는 반응기에서 제1 배지의 일부를 배출하고, 나머지 제1 배지에 제2 배지를 추가하여 광배양하는 반영속 배양공정을 수행한다. 여기서, 반응기의 하부에서 제1 배지의 일부를 배출하는데, 이때 제1 배지와 함께 미세조류, 및 바이오광물화를 통해 생성된 탄산칼슘 내지 칼사이트(calcite)로 코팅된 미세조류가 배출된다. 여기서, 제1 배지가 완전히 배출되는 것은 아니고, 일부만 배출되고, 나머지는 반응기 내에 잔존하고, 잔존하는 제1 배지에 미세조류도 일부 남게 된다. 이렇게 반응기 내에 잔존하는 제1 배지에 제2 배지를 추가 주입하고, 광배양한다. 이때, 광배양은 성장단계로서 수행될 수 있다. 예를 들어, 반응기 내 미세조류들을 회수할 때 90%는 회수하고, 10%는 반응기에 남겨 놓고, 그 반응기에 TAP-C라는 질소를 함유한 배지를 주입하여 다시 성장단계로 돌아가 세포분열을 통한 성장을 유도하는 방식으로 반연속 공정을 수행할 수 있다. 여기서, 제2 배지가 추가된 때에 반응기 내에 잔존하는 미세조류의 세포 밀도는 1.0 ~ 1.5 g/L일 수 있다.
클로렐라의 한 종류인 Chlorella sp . HS2는 기존에 많이 사용되던 클로렐라 소로키니아 보다 바이오매스와 지질 생산성이 높다. 미세조류 배양공정에서 높은 지질을 함유한 바이오매스를 생산하는 것은 중요하지만 이산화탄소의 생물학적 전환 공정이라는 측면에서 이산화탄소 제거 효율 역시 고려해야 할 필수 요소이다. 일반적으로 대량배양에서는 매 사이클마다 새로운 세포를 접종하는 데 어려움이 있으므로 반연속 공정을 활용할 수 있다. 클로렐라 소로키니아 역시 반연속 공정을 통해 대량배양할 수 있으나, HS2는 현재 대량배양에서 반연속 공정으로 배양하는 연구들이 진행되지 못하고 있다. 일반적으로 세포는 빛을 받을 때 반응기 내 모든 세포들이 같은 최적의 빛을 받지 못하고 세포의 위치에 따라 강한 빛이 조사되거나 빛이 조사되지 않는 경우가 발생하므로 노화된 세포들이 많아지게 된다. 이로 인해, 사멸하는 세포가 발생하며 이때 내부 물질들이 밖으로 나와 상층액에 거품을 형성한다. 이전 연구에 따르면 몇 가지 균주들은 클로렐린 같은 독성이 있는 물질들을 배출한다고 보고하고 있다. HS2를 반연속 배양을 하였을 때, 첫 사이클부터 바이오매스와 지질 생산성이 현저하게 감소하므로, 바이오매스 생산성을 높임으로써 이산화탄소 제거량을 동시에 늘리는 것은 한계가 있다. 이에, 본 발명은 반연속 공정에 바이오광물화를 융합함으로써, 칼사이트(calcite)를 생성하여 이에 의해 빛의 이중산란을 유도한다. 이에 따라 모든 세포에게 빛이 골고루 조사되도록 하고, 배양 기간을 단축하여 배양 기간 내에 노화되는 세포들을 현저하게 감소시킬 수 있다. 나아가 반연속 공정을 시작하기 이전 배양에서부터 바이오매스와 지질 생산성이 높으며 최소 8 사이클까지 바이오매스와 지질 생산성이 꾸준하게 유지될 수 있다. 염소 농도에 의한 스트레스가 존재하기 때문에, 45mM CaCl2를 매 사이클 주입하여 바이오광물화를 진행하여 8 사이클을 진행하였을 때에 각 사이클이 끝날 때 칼사이트(calcite)가 코팅된 바이오매스를 회수하고, 세포들을 1.25 g L-1의 농도로 주입하여 바이오광물화를 진행한 결과, 질소원이 공급되는 상황에서도 바이오매스가 증가하는 것을 통해 바이오광물화를 통한 광합성 효율이 얼마나 중요하진 또한 확인하였다. 바이오광물화와 함께 반연속 공정을 진행하였을 때 이산화탄소 제거 효율은 기존 공정과 비교하면 19배 이상 증가하였으며 연간 이산화탄소 5만 톤을 1톤 광합성생물배양기로 활용하여 저감한다고 하였을 때 기존 공정은 축구 경기장(0.7 ha)이 29개가 필요하지만, 바이오광물화 공정이 융합될 경우 3개로 9배 이상 필요 면적을 줄일 수 있을 만큼 엄청난 경제적 효과뿐만 아니라 환경적 효과까지 얻을 수 있다.
이하에서는 구체적인 실시예를 통해 본 발명을 보다 상세하게 설명한다.
실시예 1. 광합성 생물 반응과 광물화 공정을 위한 구성 요소들의 제작 과정
이산화탄소의 용해될 수 있는 양을 최대화하고 바이오광물화를 위해 5% 이산화탄소를 함유한 가스를 직접 배양액 내에 공급해야 하므로 500mL(가로 : 5cm, 높이 : 60cm) 매스실린더 8개를 준비하였다.
실시예 2. 구성 요소들의 세부 제작 과정
준비된 매스실린더의 주입구를 막고 가스 주입과 샘플링을 할 수 있도록 실리콘 재질의 다용도 입/출구를 사용하였다. 가스라인과 샘플링 라인을 설치하기 위해 실리콘 재질의 다용도 입/출구에 2 ~ 3mm의 구멍을 내고, 2개의 테플론 튜브를 매스실린더 높이에 맞게 절단하여 만들어진 구멍 안으로 넣어주었다. 가스가 공급되는 테플론 튜브의 하단에는 stone 스파저를 연결하여 이산화탄소가 5% 포함된 air를 공급하였다.
실시예 3. 미세조류 광배양 과정
배지는 TAP-C를 사용하였으며 450 ml 씩 매스실린더에 주입한 후 aeration을 진행하였다. 이후 10mM의 KOH를 주입한 후 pH를 7.5 ~ 8 사이로 맞추었는데 이에 의해 KOH의 완충 효과로 이산화탄소가 지속적으로 공급되어도 pH는 7.5에서 8 사이로 유지가 될 수 있다. 미세조류는 Chlorella sp . HS2를 사용하였으며 초기 접종량은 바이오매스 기준 0.1 g L- 1으로 하였으며 매스실린더에서 각각 3일간의 성장단계에서는 200 ~ 300 μ E m-2 s- 1으로, 바이오광물화가 융합된 공정에서의 2일간, 종래 배양공정에서의 4일간의 유도단계에서는 300 ~ 500 μ E m-2 s- 1으로 광을 조사하였다. 매스실린더에서의 최종 배양 부피는 500mL로 하였다.
실시예 4. 유도단계(Induction stage)에서의 바이오매스 공정
조건마다 2개의 매스실린더를 사용하였으며, 바이오매스 농도가 1.25 g L-1에 도달함과 동시에 바이오광물화를 유도하기 위해 최적의 CaCl2 농도를 도출하는 실험을 진행하였다. 도 2a는 유도단계에서 바이오광물화를 유도하기 위해 첨가되는 CaCl2 농도별 바이오매스의 생산량(g L-1)을 나타내는 그래프이고, 도 2b는 유도단계에서 바이오광물화를 유도하기 위해 첨가되는 CaCl2 농도별 탄산칼슘(calcite)의 생산량 (g L- 1)을 나타내는 그래프이며, 도 2c는 유도단계에서 바이오광물화를 유도하기 위해 첨가되는 CaCl2 농도별 지질 함량 (mg L- 1)을 나타내는 그래프이고, 도 2d은 종래 배양을 통해 회수된 미세조류 세포 및 바이오광물화가 융합된 배양 공정에서 회수된 미세조류 세포의 시간에 따른 침전 효과를 O.D (optical density)를 이용해 분석한 그래프이다. 도 3은 바이오광물화가 수행되지지 않은 Chlorella sp . HS2 세포와 바이오광물화가 수행된 Chlorella sp . HS2 세포의 SEM 이미지이고, 도 4a는 바이오광물화를 통해 생성된 결정이 칼사이트(calcite)임을 나타내는 XRD 분석 그래프로서, (A)는 일반적인 칼사이트(calcite)를 분석한 그래프이며 (B)는 바이오광물화를 통해 생성된 결정을 분석한 그래프이며, 도 4b는 바이오광물화를 통해 생성된 결정이 칼사이트(calcite)임을 나타내는 FT-IR 분석 그래프로서, (A)는 일반적인 칼사이트(calcite)를 분석한 그래프이며 (B)는 바이오광물화를 통해 생성된 결정을 분석한 그래프이다.
최적의 CaCl2 농도를 찾기 위해 매스실린더에서 0 M부터 0.045 M까지 넣어주면서 바이오광물화를 진행하며 배양을 19일 동안 진행해본 결과 0.045 M에서 가장 높은 biomass concentration (g L- 1)을 가진다는 것을 확인하였고, 그 이상 주입할 경우 오히려 성장에 저해가 된다는 것 역시 확인할 수 있었다. 0.045 M CaCl2를 주입하여 바이오광물화를 유도하였을 때, 기존 공정보다 바이오매스 농도가 57.9% 향상되는 것을 확인할 수 있었다 (도 2a 참조). 바이오광물화를 통해 생산되는 탄산칼슘 생산량도 CaCl2 0.045 M을 주입하였을 때 3.68 g L-1로 바이오매스 손실 없이 가장 효율적으로 생성되었다 (도 2b 참조). 지질 함량 또한 0.045 M CaCl2를 주입하여 바이오광물화를 진행하였을 때 기존 배양공정 대비 46.43% 향상된 것을 통해 가장 최적의 조건임을 알 수 있었다 (도 2c 참조).
바이오광물화의 또 다른 이점은 응집 효과가 우수하여 대량배양에서의 세포 회수가 용이하다는 것이다. 실제로 응집 효과를 비교하기 위해 광물화가 일어난 세포와 일어나지 않은 세포의 시간별 상등액 O.D를 측정하였다. 파장은 HS2를 측정하는 800nm로 하였으며, 그 결과 바이오광물화가 일어난 세포는 10분 안에 O.D 값이 0으로 수렴하는 것을 확인할 수 있었다. 기존 배양을 통한 세포는 20분이 지나도 값에 변화가 없는 것을 통해 바이오광물화가 응집 효과가 우수하다는 것을 확인했다 (도 2d 참조).
최종적으로 실제 바이오광물화가 효과적으로 일어났는지를 확인하기 위해 SEM 이미지 분석을 진행하였으며 세포 표면에 결정이 만들어져 세포를 코팅시키는 바이오광물화가 일어난 것을 알 수 있었으며 (도 3 참조) 생성된 결정이 탄산칼슘 그중에서도 calcite인지 확인하기 위해 XRD (X-Ray diffraction)와 FT-IR 분석을 동시에 진행하여 calcite임을 확인하였다 (도 4a 및 도 4b 참조).
실시예 5. HS2의 바이오광물화 공정이 융합된 반연속 공정
도 5는 Chlorella sp . HS2 세포를 19일 동안 종래 반연속 공정 방법으로 4 사이클 배양했을 때의 바이오매스 농도(g L-1)를 나타낸 그래프이고, 도 6은 Chlorella sp . HS2 세포를 19일 동안 미세조류 기반 바이오광물화가 융합된 반연속 공정을 적용하여 8 사이클을 배양했을 때의 바이오매스 농도(g L-1)를 나타낸 그래프이다. 도 7은 바이오광물화가 융합된 Chlorella sp . HS2 배양공정을 통해 축적된 탄산칼슘의 양을 나타내는 그래프이며, 도 8은 19일 동안의 종래 배양공정과 바이오광물화가 융합된 배양공정을 통한 이산화탄소 제거율을 비교한 그래프이다. 도 9는 배양액 내 오염원이 존재하는지를 확인하기 위해 nile red를 활용하여 세포와 배양액을 염색하여 광학현미경으로 확인한 결과를 나타내는 사진으로서, (a)는 Chlorella sp . HS2를 염색한 사진, (b)는 일반적으로 미세조류 배양에서 발생하는 오염원인 박테리아를 염색한 사진, (c)는 배양액을 염색한 사진, (d)는 nile red만을 확인한 사진이다. 도 10a는 1차 반연속 배양공정을 진행하고 미세조류 회수 후 남은 배양액을 바로 사용하는 경우 및 중온(75도, 20분), 고온(95도, 20분)으로 처리한 배양액을 활용하는 경우의 Chlorella sp . HS2 바이오매스 농도를 나타내는 그래프이고, 도 10b는 1차 반연속 배양공정을 진행하고 미세조류 회수 후 남은 배양액을 바로 사용하는 경우 및 중온(75도, 20분), 고온(95도, 20분)으로 처리한 배양액을 활용하는 경우의 Chlorella sp . HS2 지질 함량을 나타내는 그래프이다. 도 11a는 기존 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 배양 초기와 최종 시점에서의 칼슘이온 및 염소 이온의 농도를 비교한 그래프이고, 도 11b는 기존 배양공정과 바이오광물화가 융합된 반연속 배양공정에서의 유도단계에서의 광합성 효율을 비교하기 위하여 O2 evolution (mol mg chl-1 h- 1)을 측정한 그래프이며, 도 11c는 바이오광물화가 융합된 공정에서의 반연속 배양 공정의 최종 시점을 정하기 위해 염소 농도에 따른 바이오매스 성장 저해율(%)을 염소 농도에 따라 측정한 결과를 나타내는 그래프이다. 도 12는 매스실린더에서 기존 배양공정 및 바이오광물화가 융합된 배양공정을 수행하였을 때의 바이오매스 생산성, 지질 생산성, 탄산칼슘 생산성, 이산화탄소 제거 효율을 비교 분석한 결과를 나타내는 표이다.
배양에 공급되는 대부분 이산화탄소는 배양액 내에 바이카보네이트 이온으로 존재하므로 이산화탄소 저감을 위해서는 특히 스케일업 측면에서 배양액의 재사용은 필수적이다. 또한, scale-up에 따라 모든 세포를 회수 후 새롭게 배양을 다시 시작하는 것은 생산성 측면에서 손해이기 때문에 반연속 공정을 도입하는 것이 가장 효율적인 공정시스템이다. 이를 위해 HS2를 반연속 공정으로 배양하였을 때 배지를 재활용한 2번째 사이클부터 HS2의 바이오매스 손실이 확연하게 발생한다는 것을 확인할 수 있었으며 처음 바이오매스 농도와 비교하면 사이클이 진행될수록 손실은 증가하여 4 사이클부터는 바이오매스에서의 변화가 없다(손실률 68.7%)는 점을 알 수 있었다 (도 5 참조). 하지만, 반연속 공정에 바이오광물화를 융합하였을 때는 바이오매스 생산성이 1 사이클에서의 기존 배양공정에서 보다도 높은 바이오매스를 매 사이클 일정하게 유지하는 것을 확인할 수 있었다 (도 6 참조). 동시에 탄산칼슘 또한 23.86 g L- 1으로 축적하여 기존 배양공정보다 더 높은 경제적 효과까지 얻을 수 있었다 (도 7 참조). 바이오매스에서의 향상은 이산화탄소 제거율을 높일 뿐만 아니라 탄산칼슘의 추가적인 생산을 통해 더 많은 양의 이산화탄소 제거율을 확보할 수 있었다. 기존 배양공정은 1 사이클 이후로 바이오매스 농도가 현저하게 감소하므로 이산화탄소 제거율은 바이오광물화를 활용하였을 때 기존 배양공정보다 19.34배 높은 것을 확인할 수 있었다 (도 8 참조).
중요한 것은 기존 반연속 배양공정에서 사이클이 진행될수록 바이오매스 생산성이 감소하는 이유를 밝히는 것이다. 우선적으로, 배양액내에 오염원이 있을 가능성을 고려하여 nile red를 활용하여 배양액과 세포들을 모두 염색을 시켜보았다. 그 결과, 도 9의 (a)에서 볼 수 있듯이 HS2 세포는 염색이 되어 형광을 띄었다. 일반적으로 클로렐라 배양에서 발생하는 박테리아를 따로 염색하여 관찰한 결과 도 9의 (b)에서처럼 염색이 일어나는 것을 확인하였고 이를 토대로 배양액을 염색하였을 때 도 9의 (c)에서처럼 어떠한 염색된 물질이 발견되지 않는다는 것을 확인할 수 있었다. 추가로 Nile red만을 광학현미경을 통해 관찰하여도 도 9의 (d)처럼 어떠한 형광도 발견이 되지 않은 것을 통해 배양액 내에는 오염원이 존재하지 않는 것을 확인하였다 (도 9 참조). 이전에 밝혀진 연구에 따르면, 몇 가지 미세조류 종은 세포가 노화되어 터질 때 클로렐린과 같은 anti-biotic을 내보낸다고 알려져 있다. 클로렐린과 같은 물질이라 생각하고 이들은 열에 약하기 때문에 오토클레이브를 활용하여 배지를 중온과 고온으로 전처리를 하여 세포를 배양을 하였다. 그 결과, 고온으로 전처리를 하였을 때 전처리를 하지 않았을 때보다 바이오매스가 2.77배 증가하였으며 (도 10a 참조) 지질 함량 역시 1.93배 향상되었다 (도 10b 참조). 이를 통해, 클로렐린과 같은 물질이 바이오매스의 손실을 초래한다는 것을 확인하였다. 기존 배양공정은 조사되는 빛을 모든 세포가 활용하는 것이 어렵고 배양 기간이 길어서 노화되어 터지는 세포들이 많지만, 바이오광물화 공정은 calcite로 인한 이중산란 효과로 빛에 대한 활용도가 높아져 광합성 효율이 향상될 뿐만 아니라 배양 기간이 단축되어 최적의 세포 상태로 회수할 수 있으므로 바이오매스에서의 저해가 없다. 광합성 효율은 O2 evolution (mol mg Chl-1h-1)으로 측정을 하였으며 바이오광물화가 진행되었을 때 빛의 세기가 증가할수록 값이 커지는 것을 확인하였으며 (도 11b 참조), 마지막으로 광물화가 진행됨에 따른 칼슘과 염소 이온의 농도를 확인해본 결과 주입되는 CaCl2에서 칼슘은 95% 이상 소비를 하고 염소 이온은 감소 없이 일정하게 유지되었다 (도 11a 참조). 염소 이온이 계속해서 축적되면 세포 성장에 유해인자로 작용할 수 있고 해당하는 농도가 축적되기 전까지를 최대 반연속 배양이 가능한 시점으로 정해야 하므로 염소 농도에 따른 바이오매스 농도 변화를 플라스크에서 실험을 진행하였다. 그 결과, 염소 농도가 360 mM을 넘는 순간 inhibition rate가 급격하게 증가하는 것을 통해 바이오광물화가 융합된 반연속 배양공정은 8 사이클이 최대임을 알 수 있었다 (도 11c 참조). 결론적으로 기존의 반연속 배양공정과 비교하여 바이오광물화를 도입하였을 때 바이오매스 농도, 지질 농도, 탄산칼슘 생산량, 이산화탄소 제거율 모두 각각 6.7배, 2.41배, 465배, 19.29배 향상되었다 (도 12 참조).
실시예 6. 옥외배양에서의 바이오광물화가 융합된 HS2를 활용한 반연속 배양 공정
도 13a는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 바이오매스 생산성을 비교한 그래프이고, 도 13b는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 탄산칼슘 생산성을 비교한 그래프이며, 도 13c는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 광합성 효율을 비교하기 위해 O2 evolution (mol mg chl-1 h- 1)을 측정한 그래프이고, 도 13d는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정에서의 이산화탄소 제거 효율을 비교한 그래프이다. 도14는 Chlorella sp . HS2의 옥외배양 시스템에서 19일 동안 진행된 종래 반연속 배양공정 및 바이오광물화가 융합된 반연속 배양공정을 나타내는 사진이다. 도 15는 1톤 배양기를 활용하여 연간 5만 톤의 이산화탄소 처리를 위한 배양시설 규모를 계산한 결과에 대한 표이다.
판교 한국지역난방공사 옥외배양시설에서 하이브리드 시스템을 구축하여 배양을 진행하였다. 10 리터 반응기에서 배양은 진행되었으며 반응기 안으로는 한국지역난방공사에서 공급되는 3 ~ 5% 이산화탄소가 포함된 배가스를 활용하였다. 19일 동안의 배양 결과 바이오광물화를 융합하였을 때 바이오매스 농도, 탄산칼슘 농도, 이산화탄소 제거 효율 모두 각각 2.3배, 87배, 6.1배로 현저하게 향상되는 것을 확인하였다. 바이오광물화를 적용하였을 때 바이오매스는 매 사이클 6.01 g L-1의 바이오매스를 생산하였으며 탄산칼슘은 최종적으로 10.45 g L-1 가 생성되었다 (도 13a 및 도 13b 참조). 하지만 사이클이 늘어날수록 기존 배양공정과 차이는 더욱 벌어질 것이며 이산화탄소 제거량 역시 기하급수적으로 증가할 것이다. 광합성 효율 또한 O2 evolution (mol mg Chl-1h-1)으로 측정하였을 때, 바이오광물화를 적용하였을 때 우수한 것을 확인하였다 (도 13c 참조). 이산화탄소 제거율은 10.54 g L-1 day-1로 기존 배양공정보다 6배 이상 향상되었다 (도 13d 참조). 한 가지 중요한 것은 매스실린더에서 배양을 하였을 때는 기존 배양공정이 사이클을 진행하면서도 바이오매스가 저해를 받았을 뿐 사멸에 이르지는 않았지만, 옥외배양에서는 2번째 사이클을 진행하였을 때 세포가 사멸에 이르는 것을 확인할 수 있었다. 따라서, 바이오광물화가 융합된 반연속 배양공정은 옥외배양에서는 필수적인 배양 기술임을 알 수 있다 (도 14 참조). 실제로 1톤 배양기를 활용해 연간 5만 톤의 이산화탄소 처리를 위한 배양시설 규모를 측정하였을 때, 기존 배양과 비교하였을 때 10배 이상의 면적을 줄일 수 있으므로 상용화에 대한 정당성은 충분할 것이다 (도 15 참조).
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
본 발명은 미세조류를 활용한 이산화탄소 저감 방법에 관한 것으로서, 미세조류 배양 시 바이오광물화를 유도하면서 반연속 공정을 수행함으로써 바이오매스와 지질 생산성을 최대화하고 이산화탄소 저감량을 극대화하므로 산업상 이용가능성이 인정된다.

Claims (9)

  1. (a) 반응기 내의 제1 배지에 이산화탄소(CO2)를 공급하여, 탄산수소 이온(HCO3 -)을 생성하는 단계;
    (b) 상기 이산화탄소가 공급되는 상기 제1 배지에, 미세조류를 접종하고 제1 광배양하는 단계;
    (c) 탄산칼슘(CaCO3)이 생성되도록, 상기 미세조류가 접종된 상기 제1 배지에, 칼슘 이온(Ca2 +)을 첨가하고, 제2 광배양하는 단계; 및
    (d) 상기 반응기에서 상기 제1 배지의 일부를 배출하고, 상기 반응기에 제2 배지를 추가하여 반연속 배양공정을 수행하는 단계;를 포함하는 이산화탄소 저감 방법.
  2. 청구항 1에 있어서,
    상기 미세조류는,
    두날리엘라(Dunaliella), 클라미도모나스(Chlamydomonas), 쎄네데스무스(Scenedesmus), 클로렐라(Chlorella), 에뜰리아(Ettlia), 마이크락티니움(Micractinium), 코엘라스트럼(Coelastrum), 헤마토코쿠스(Haematococcus), 코스마리움(Cosmarium), 페디아스트럼(Pediastrum), 판도리나(Pandorina), 유도리나(Eudorina), 유글레나(Euglena), 스피룰리나(Spirulina), 보트리오코커스(Botryococcus), 테르라셀미스(Tetraselmis), 나노클로롭시스(Nannochloropsis), 코코믹사(Coccomyxa), 패오닥티룸(Phaeodactylum), 시조키트리움(Schizochytrium), 아르스로피라(Arthrospira), 니츠시아(Nitzschia), 이소크리시스(Isochrysis), 마이크로시스티스(Microcystis), 나노클로리스(Nannochloris), 시네코코스(Synechococcus), 시네코시스티스(Synechocystis) 및 오란티오크리트리움(Aurantiochytrium)으로 구성된 군으로부터 선택되는 1종 이상인 이산화탄소 저감 방법.
  3. 청구항 1에 있어서,
    상기 미세조류는,
    기탁번호가 KCTC 13108BP인 클로렐라 HS2(Chlorella sp . HS2) 세포주인 이산화탄소 저감 방법.
  4. 청구항 1에 있어서,
    상기 제1 광배양으로 상기 미세조류의 세포 밀도가 1.0 g/L 이상에 다다를 때에, 상기 제2 광배양 단계를 수행하는 이산화탄소 저감 방법.
  5. 청구항 1에 있어서,
    상기 (c) 단계에서 첨가되는 상기 칼슘 이온의 농도는 40 ~ 50 mM인 이산화탄소 저감 방법.
  6. 청구항 1에 있어서,
    상기 (c) 단계의 상기 칼슘 이온은, 상기 제1 배지에 염화칼슘(CaCl2)이 공급되어 첨가되는 이산화탄소 저감 방법.
  7. 청구항 1에 있어서,
    상기 (b) 단계에서, 상기 제1 배지의 pH는 6.0 ~ 7.5로 유지되는 이산화탄소 저감 방법.
  8. 청구항 1에 있어서,
    상기 (c) 단계에서, 상기 제1 배지의 pH는 7.5 ~ 8.5로 유지되는 이산화탄소 저감 방법.
  9. 청구항 1에 있어서,
    상기 (d) 단계에서, 상기 제2 배지가 추가된 때에 상기 반응기 내에 잔존하는 상기 미세조류의 세포 밀도는 1.0 ~ 1.5 g/L인 이산화탄소 저감 방법.
PCT/KR2023/006470 2022-05-13 2023-05-12 미세조류를 활용한 이산화탄소 저감 방법 WO2023219458A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0059201 2022-05-13
KR20220059201 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219458A1 true WO2023219458A1 (ko) 2023-11-16

Family

ID=88730776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006470 WO2023219458A1 (ko) 2022-05-13 2023-05-12 미세조류를 활용한 이산화탄소 저감 방법

Country Status (2)

Country Link
KR (1) KR20230159313A (ko)
WO (1) WO2023219458A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319059A1 (en) * 2010-12-09 2013-12-05 Washington State University Integrated carbon capture and algae culture
KR20150106725A (ko) * 2014-03-12 2015-09-22 재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단 수산화나트륨과 이산화탄소를 이용한 미세조류용 배지에 탄소고정방법 및 이를 이용한 미세조류의 배양방법
KR20150122542A (ko) * 2014-04-23 2015-11-02 포항공과대학교 산학협력단 해양 박테리아 유래의 재조합 생물촉매를 포함하는 이산화탄소 포집용 조성물, 이의 제조방법 및 이를 이용한 이산화탄소의 포집방법
KR20200092641A (ko) * 2019-01-25 2020-08-04 고려대학교 산학협력단 탄소자원화 방법
KR20210106112A (ko) * 2020-02-20 2021-08-30 고려대학교 산학협력단 바이오광물화를 이용한 헤마토코쿠스 플루비알리스 생산방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122986B1 (ko) 2010-10-27 2012-03-12 한국환경공단 미세조류를 이용한 배기가스 중의 이산화탄소 제거방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319059A1 (en) * 2010-12-09 2013-12-05 Washington State University Integrated carbon capture and algae culture
KR20150106725A (ko) * 2014-03-12 2015-09-22 재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단 수산화나트륨과 이산화탄소를 이용한 미세조류용 배지에 탄소고정방법 및 이를 이용한 미세조류의 배양방법
KR20150122542A (ko) * 2014-04-23 2015-11-02 포항공과대학교 산학협력단 해양 박테리아 유래의 재조합 생물촉매를 포함하는 이산화탄소 포집용 조성물, 이의 제조방법 및 이를 이용한 이산화탄소의 포집방법
KR20200092641A (ko) * 2019-01-25 2020-08-04 고려대학교 산학협력단 탄소자원화 방법
KR20210106112A (ko) * 2020-02-20 2021-08-30 고려대학교 산학협력단 바이오광물화를 이용한 헤마토코쿠스 플루비알리스 생산방법

Also Published As

Publication number Publication date
KR20230159313A (ko) 2023-11-21

Similar Documents

Publication Publication Date Title
Suh et al. Photobioreactor engineering: design and performance
US20240109028A1 (en) Device and Method for the Sequestration of Atmospheric Carbon Dioxide
US20130319059A1 (en) Integrated carbon capture and algae culture
Li et al. How to enhance carbon capture by evolution of microalgal photosynthesis?
ITMI20072343A1 (it) Processo per la produzione di biomassa algale ad alto contenuto lipidico
WO2019172501A1 (ko) 배기가스 내 이산화탄소 포집 및 자원화 시스템
Xiao et al. Microalgae Scenedesmus quadricauda grown in digested wastewater for simultaneous CO2 fixation and nutrient removal
Rendón et al. Effect of carbon dioxide concentration on the growth response of Chlorella vulgaris under four different LED illumination
WO2023219458A1 (ko) 미세조류를 활용한 이산화탄소 저감 방법
KR20180000427A (ko) 이산화탄소 대량 저감 및 고부가 유용물질 생산을 위한 광물화-미세조류 광배양 연속식 융합 공정 시스템
CN109097283B (zh) 一种微藻碱性絮凝收获及循环培养的方法
SE540112C2 (sv) Metod och anordning för att producera energi genom att återvinna material under en bränsleförbränningsprocess
TW201311141A (zh) 微藻養殖模組
US11193100B2 (en) Method for carbon resource utilization
Manjre et al. Screening of thermotolerant microalgal species isolated from Western Ghats of Maharashtra, India for CO2 sequestration
Tomei et al. Interactions in syntrophic associations of endospore-forming, butyrate-degrading bacteria and H2-consuming bacteria
Hou et al. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation
KR102434347B1 (ko) 바이오광물화를 이용한 헤마토코쿠스 플루비알리스 생산방법
WO2021221281A1 (ko) 도심발전소 적용 이산화탄소 컴팩트 분리막 및 탄소 자원화 하이브리드 시스템
WO2021033950A1 (ko) 호기성 미생물의 바이오매스 생산방법
EP4146780A1 (en) Plant and process for the production of photosynthetic microorganisms
Yu et al. Novel effective bioprocess for optimal CO2 fixation via microalgae-based biomineralization under semi-continuous culture
CN106635815B (zh) 原多甲藻的培养基与培养方法
WO2024019516A1 (ko) 미세조류 배양방법
DE50306844D1 (de) Verfahren und vorrichtung zur kultivierung von zellen in hohen dichten und zur gewinnung von produkten aus diesen zellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803881

Country of ref document: EP

Kind code of ref document: A1