RU2555520C2 - ШТАММ МИКРОВОДОРОСЛИ Desmodesmus sp. ДЛЯ КОНВЕРСИИ УГЛЕКИСЛОТЫ ИЗ ПРОМЫШЛЕННЫХ СБРОСНЫХ ГАЗОВ В СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА БИОТОПЛИВА И КОРМОВЫХ ДОБАВОК - Google Patents
ШТАММ МИКРОВОДОРОСЛИ Desmodesmus sp. ДЛЯ КОНВЕРСИИ УГЛЕКИСЛОТЫ ИЗ ПРОМЫШЛЕННЫХ СБРОСНЫХ ГАЗОВ В СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА БИОТОПЛИВА И КОРМОВЫХ ДОБАВОК Download PDFInfo
- Publication number
- RU2555520C2 RU2555520C2 RU2013137676/10A RU2013137676A RU2555520C2 RU 2555520 C2 RU2555520 C2 RU 2555520C2 RU 2013137676/10 A RU2013137676/10 A RU 2013137676/10A RU 2013137676 A RU2013137676 A RU 2013137676A RU 2555520 C2 RU2555520 C2 RU 2555520C2
- Authority
- RU
- Russia
- Prior art keywords
- microalgae
- strain
- desmodesmus
- carbon dioxide
- conversion
- Prior art date
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Fodder In General (AREA)
Abstract
Изобретение относится к фотобиотехнологии. Штамм микроводоросли Desmodesmus sp. 3Dp86E-1 обладает высокими показателями фиксации CO2 и толерантностью к высоким концентрациям CO2 в среде культивирования, а также высокой способностью к накоплению липидов, обогащенных полиненасыщенными жирными кислотами. Штамм депонирован в Коллекции культур микроводорослей Института физиологии растений им К.А. Тимирязева РАН (IPPAS) под регистрационным номером Desmodesmus sp. IPPAS S-2014 и может быть использован для конверсии углекислоты из промышленных сбросных газов в сырье для производства биотоплива и кормовых добавок. Изобретение позволяет повысить скорость фиксации CO2 в газовоздушной смеси. 4 ил., 1 табл.
Description
Область применения
Изобретение относится к фотобиотехнологии и представляет собой новый штамм микроводоросли Desmodesmus sp. 3Dp86E-1, предназначенный для конверсии углекислоты из промышленных сбросных газов в сырье для производства биотоплива и кормовых добавок.
Уровень техники
Согласно отчетам Межправительственной группы экспертов по изменению климата (IPCC), повышение содержания CO2 в атмосфере из-за техногенных выбросов - одна из основных причин глобального потепления, а биологическая (фотосинтетическая) фиксация - единственный на сегодня рентабельный и экологичный метод утилизации техногенного CO2 (М. Huntley, D. Redalje. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change. 2007, V.12-4, p.573-608; B. Wang, Y. Li, N. Wu, C. Lan. CO2 biomitigation using microalgae. Applied microbiology and biotechnology. 2008. V.79-5, p.707-718). Особенно эффективно биологическое изъятие с помощью микроводорослей. Существенное преимущество технологий биоизъятия CO2 с помощью микроводорослей - возможность их интеграции с существующими технологическими процессами генерации электроэнергии и очистки выбросов без существенной переделки этих технологий (М. Cuaresma, М. Janssen, С. Vilchez, R.Н. Wijffels. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology. 2011, V.102, №8, p.5129-5137). Тем не менее, одной из ключевых трудностей при разработке фотобиотехнологий для биоизъятия является недостаток информации о физиологических эффектах высоких концентраций CO2 и механизмов толерантности микроводорослей к этому фактору.
Одним из наиболее перспективных способов биологической конверсии CO2 в биомассу, содержащую биологически активные вещества, пигменты-антиоксиданты и исходные вещества для производства биотоплива, считается использование фотоавтотрофных микроорганизмов (микроводорослей). Известны некоторые эффекты широкого диапазона концентраций (от атмосферной до 100%) CO2 в газовоздушной смеси, которой продуваются культуры MB, преимущественно из родов Chlorella sp., Scenedesmus sp., Nannochloropsis sp. и Chlorococcum (M. Negoro, N. Shioji, K. Miyamoto, Y. Micira. Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX. Applied Biochemistry and Biotechnology. 1991, V.28-29, №1. p.877-886; M. Olaizola. Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnology and Bioprocess Engineering. 2003, V.8, №6, p.360-367; N. Kurano et all. Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Conversion and Management. 1995, V.36, №6-9, p.689-692; K. Maeda et all. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management. 1995, V.6, №6-9. p.717-720).
Рост и фотосинтез чувствительных штаммов при CO2 2-5% замедляется или прекращается. У толерантных штаммов рост и фотосинтез замедляются при существенно более высоких концентрациях CO2 и возобновляются после лаг-периода, длина которого зависит от концентрации CO2 и видовых особенностей (A. Satoh, N. Kurano, Н. Senger, S. Miyachi. Regulation of energy balance in photosystems in response to changes in CO2 concentrations and light intensities during growth in extremely-high-CO2-tolerant green microalgae. Plant and Cell Physiology. 2002, V.43, №4, p.440-451). У одних микроводорослей (например, у Chlorella) при акклимации к высоким уровням CO2 наблюдается существенное повышение скорости фотосинтеза, в то время как у других (Chlamydomonas) этого не происходит (М. Baba, I. Suzuki, Y. Shiraiwa. Proteomic Analysis of High-CO2-Inducible Extracellular Proteins in the Unicellular Green Alga, Chlamydomonas reinhardtii. Plant and Cell Physiology. 2011, V.52, №8, p.1302-1314).
Известна микроводоросль, толерантная к высоким уровням CO2 - Chlorococcum littorale, выделенная из солоноводного пруда и сохраняющая способность к быстрому росту при концентрации CO2 до 60% (S. Miyachi, I. Iwasaki, Y. Shiraiwa. Historical perspective on microalgal and cyanobacterial acclimation to low - and extremely high-CO2 conditions. Photosynthesis Research. 2003, V.77, №2. p.139-153).
Таблица 1 | ||
CO2-толерантность некоторых видов микроводорослей | ||
Вид | Макс. концентрация CO2 | Источник |
Cyanidium caldarium | 100% | Seckbach J, Baker FA, Shugarman PM (1970) Algae thrive under pure CO2. Nature 227 (5259): 744-745 |
Scenedesmus sp. | 80% | Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31 (10): 3345-3348. |
Chlorococcum littorale | 60% | Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolreant fast-growing marine microalga suitable for high-density culture. J Mar Biotechnol 1: 21-25 |
Synechococcus elongatus | 60% | Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy Convers Manage 36 (6): 763-766 |
Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag |
Вид | Макс. концентрация CO2 | Источник |
photobioreactors. J Appl Phycol 25 (2): 387-398 | ||
Euglena gracilis | 45% | Nakano Y, Miyatake K, Okuno H, Hamazaki K, Takenaka S, Honami N, Kiyota M, Aiga I, Kondo J Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. In: International Symposium on Plant Production in Closed Ecosystems 440, 1996. pp 49-54 |
Chlorella sp. | 40% | Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31 (10): 3345-3348. |
Eudorina spp. | 20% |
Кроме толерантности к высоким концентрациям CO2, для эффективного использования микроводорослей в промышленности, необходимо, чтобы биомасса содержала значительные количества ценных соединений, таких как жирные кислоты, каротиноиды, витамины и пр.
При культивировании микроводоросли Botryococcus braunii шт 765 удается получить биомассу, содержащую до 12% общих липидов и 8% жирных кислот, при этом продуктивность по жирным кислотам составляет 0,08 г/л за 15 суток культивирования при барботировании газовой смесью с содержанием в ней 20% CO2 (Ge, Y., J. Liu, et al. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology, 2011. 102 (1): p.130-134).
Известна микроводоросль Parietochloris incisa, содержащая в составе внутриклеточных липидов жирные кислоты, продуктивность по которым достигает 0,25 г/л (что составляет 12-14% ЖК от веса сухой биомассы), путем ее выращивания на минеральной среде, барботированной газовой смесью с повышенным содержанием углекислоты в ней в количестве не менее 1% по объему, не содержащей связанного азота, и освещенности порядка 400 мкЕ ФАР м-2 с-1 (Solovchenko, A., et al., Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology, 2008. 20 (3): p.245-251).
Наиболее близким аналогом (прототипом) является микроводоросль Scenedesmus sp., депонированная в Корейской Коллекции Культур (KCTC) под номером KCTC11336BP (US 20110076749 A1, 2010). Культура характеризуется скоростью фиксации CO2 0.88 мг/л/сут при максимальной концентрации CO2 в газовоздушной смеси 10% и требуемой освещенности 125 мкЕ/(м2*с). К недостаткам прототипа можно отнести недостаточно высокую скорость фиксации CO2, невысокие максимальные концентрации CO2 в газовоздушной смеси и необходимость в создании условий с достаточно высокой освещенностью культуры.
Раскрытие изобретения
Задача изобретения - получение штамма микроводорослей для конверсии углекислоты из промышленных сбросных газов в сырье для производства биотоплива и кормовых добавок, характеризующегося высокой скоростью фиксации CO2 и толерантностью к высоким концентрациям CO2 в среде культивирования.
Эта задача была решена получением штамма микроводоросли Desmodesmus sp. 3Dp86E-1, выделенного авторами из Ругозергской губы Кандалашского залива Белого моря и депонированного в Российской Коллекции Микроводорослей при учреждении Российской Академии Наук Институте Физиологии Растений им. К.А. Тимирязева (IPPAS) с присвоенным идентификатором IPPAS C-2014.
Новизной настоящего изобретения является то, что впервые был получен штамм микроводоросли, способный к активному росту на средах с высокой концентрацией CO2 и способностью к высокой степени фиксации углекислого газа.
Сущность изобретения заключается в том, что для достижения цели используют зеленую микроводоросль Desmodesmus sp. штамм 3Dp86E-1, выделенный и идентифицированный авторами заявки, сиквенс которого зарегистрирован в международной базе данных GenBank (http://www.ncbi.nlm.nih.gov/genbank/) под номером JQ313132. В результате полученный штамм характеризуется способностью расти на средах, с высоким содержанием CO2 в газовоздушной смеси (до 99-100%), высокой способностью к фиксации CO2 (до 1,5-2 мг/л/сут) и обладает высокой продуктивностью. При этом биомасса микроводоросли Desmodesmus sp. штамм 3Dp86E-1 содержит значительное количество ценных соединений, в частности жирных кислот. Инокулят вносят в среду при конечной концентрации хлорофилла в смеси 4-6 мкг/мл, культивирование проводят в фотобиореакторе при постоянном освещении с интенсивностью 60-80 мкЕ ФАР м-2с-1 с помощью светодиодов при постоянном продувании среды газовоздушной смесью с концентрацией CO2 20-100%, при скорости продувания - 0,2-0,4 л/мин при температуре 25-27°C. После этого отделяют биомассу от среды центрифугированием. В результате получают накопление биомассы 60-80 г сухого веса/м2 в сутки; фиксацию CO2 со скоростью 2-3 г/л культуры в сутки и накопление жирных кислот 33-35%).
Краткое описание чертежей
На Фиг.1 представлен электронно-микроскопический снимок в режиме сканирующей микроскопии, отражающий морфологию микроводоросли Scenedesmus sp. 3Dp86E-1. Обозначения: Ас - автоспора; Сп - спорангий; Тр - трубочка.
На Фиг.2 показана характерная кинетика роста Scenedesmus sp. 3Dp86E-1 при продувании культуры атмосферным воздухом (светлые символы, Air+N) и газовоздушной смесью, содержащей 20 объемных % CO2 (темные символы, 20+N).
На Фиг.3 представлены данные о накоплении жирных кислот липидов биомассы Desmodesmus sp. 3Dp86E-1 во время роста при продувании 20% CO2 в атмосферном воздухе. Содержание линоленовой кислоты (18:3) в биомассе - 15-20% от суммы жирных кислот.
На Фиг.4 приводится частичная последовательность нуклеотидов гена 18S рРНК микроводоросли Scenedesmus sp. 3Dp86E-1.
Осуществление изобретения
Штамм Desmodesmus sp. 3Dp86E-1 выделен из фрагментов беспозвоночного животного гидроида Dynamena pumila, собранного в районе поселка Приморский Беломорской биологической станции им. Н.А. Перцова, Ругозергской губы Кандалакшского залива Белого моря. Отселектирован в результате скрининга по толерантности к сверхвысоким концентрациям CO2 и накоплению нейтральных липидов в биомассе культуры.
Способ выделения - из накопительной культуры, полученной из предварительно простерилизованных перекисью водородом фрагментов гидроида Dynamena pumila и помещенных на среду BG-11, с дальнейшим интенсивным культивированием на среде BG-11.
Морфологические признаки.
Клетки округлой формы, размером от 4 до 6 мкм. Пиреноид присутствует, размер 1-1,5 мкм, хроматофор многолопастной, окраска зеленая, жгутик отсутствует, на поверхности клеточной стенки выраженные эпиструктуры в виде бородавок и розеток (Фиг.1).
Физиологические свойства штамма.
Оптимальные условия культивирования
Для культивирования используют жидкую питательную среду BG-11 следующего состава:
K2HPO4 - 0,04 г/л,
NaNO3 - 1,5 г/л,
MgSO4·7H2O - 0,075 г/л,
CaCl2·2H2O - 0,037 г/л,
лимонная кислота - 0,006 г/л,
FeSO4·7H2O - 0,006 г/л,
Na2CO3 - 0,2 г/л,
ЭДТА - 0,001 г/л,
раствор FeSO4·7H2O (7,45 г/л)+ЭДТА (5,57 г/л) - 1 мл/л,
раствор микроэлементов (H3BO3 - 2,86 г/л, MnCl2·4H2O - 1,86 г/л, ZnSO4·7H2O - 0,22 г/л, CuSO4·5H2O - 0,08 г/л, Na2MoO4·7H2O - 0,39 г/л, Co(NO3)2·6H2O - 0,05 г/л) - 1 мл/л,
pH - 7,0-7,2,
содержание CO2 в ГВС - 2-100%,
скорость барботажа 0,3 л/мин,
температура 27°C,
освещение круглосуточное,
освещенность: 5-12 Вт/м2, 60-80 мкмоль квантов ФАР на м2 в с,
тип ламп: люминесцентные либо белые светодиодные.
Продуктивность в оптимальных условиях культивирования:
по накоплению биомассы (сухой вес, мг/мл в сутки): 200-250;
скорость роста 0,2-0,3 млн/мл в сутки;
выход полезного продукта (липиды) 20-40 мг/сутки на мг биомассы.
Для данной культуры отсутствует сезонность, отмечается высокая бактерицидность, не выявлен автолиз, характерная слабая агглютинация.
Характеристика роста культуры при повышенных концентрациях CO2:
хорошо растет при высоких концентрациях CO2, ингибирующих рост большинства других микроводорослей (характерная кривая роста представлена на Фиг.2). При этом культура фиксирует до 3 г/л в сутки углекислоты при содержании хлорофилла 100 мкг/л.
Биотехнологическая характеристика штамма.
Штамм Desmodesmus sp. 3Dp86E-1 обладает следующими ценными биотехнологическими характеристиками: интенсивный рост (Фиг.2 при высоких (20-100 об.%) концентрациях CO2 в газовоздушной смеси; биомассой, обогащенной нейтральными липидами, содержащими полиненасыщенные жирные кислоты (Фиг.3), и каротиноидами (до 90 мкг/г сухого веса клеток), пригодной для производства кормовых добавок.
Генотипирование.
Выделение ДНК.
Для выделения ДНК отбирали 5-10 мг биомассы культуры микроводоросли. Выделение ДНК проводили методом фенол-хлороформной экстракции. Перед выделением проводили трехкратное замораживание образцов при -4°C с последующим оттаиванием. Это было необходимо для разрушения прочных клеточных стенок водорослей. Образцы инкубировали в течение часа в 300 мкл TE буфера (10 mM Tris-Cl (pH 7.5), 1 mM EDTA), содержащего 10 мг/мл лизоцима при 37°C. Затем добавляли 2% додецилсульфата натрия и инкубировали в течение часа при 40°C и интенсивном перемешивании. Далее добавляли 1 М NaCl и оставляли на ночь на льду для высаливания белков. После чего проводили процедуру фенол-хлороформной экстракции. Чистоту образцов ДНК оценивали методом электрофореза в 1,5% агарозном геле. Полученные образцы ДНК хранили в TE-буфере при -4°C.
Множественное выравнивание.
Проведено множественное выравнивание известных нуклеотидных последовательностей Desmodesmus для участка генов 18S рибосомальной РНК, включающих в себя последовательности ITS1, ITS2 с использованием программы ClustalW.
Проведена ПЦР амплификация соответствующих участков геномной ДНК исследуемых изолятов. Продукты ПЦР очищены с использованием набора для очистки Cleanup Standard (Евроген, Россия) и отсеквенированы с использованием автоматического секвенатора. Для культуры получена последовательность нуклеотидов указанного участка как смысловой (Фиг.4), так и антисмысловой цепи ДНК.
При помощи программы BLAST в базе данных GenBank был проведен поиск ближайших гомологов исследуемых последовательностей. Наибольшее сходство наблюдалось с последовательностями генов 18S pРНК водорослей из родов Desmodesmus. При помощи полученного множественного выравнивания в программе ClustalW было построено филогенетическое дерево.
Филогенетический анализ.
В результате анализа, полученного в работе множественного выравнивания, имеющуюся последовательность можно отнести к роду Desmodesmus.
В результате проведенного филогенетического анализа установлена видовая принадлежность исследуемого изолята. Изолят идентифицирован как Desmodesmus sp. и получил идентификатор 3Dp86E-1; после депонирования в Российской Коллекции Микроводорослей при учреждении Российской Академии Наук Институте Физиологии Растений им. К.А. Тимирязева (IPPAS) ему присвоен идентификатор IPPAS C-2014.
Полученный сиквенс зарегистрирован в международной базе данных GenBank (http://www.ncbi.nlm.nih.gov/genbank/) под номером JQ313132.
Следующие материалы иллюстрируют достижение цели.
Скорость фиксации CO2 у культуры микроводорослей Desmodesmus sp. штамм 3Dp86E-1 составляет 2-3 г/л культуры в сутки, что в несколько раз превышает аналогичный показатель у прототипа при равной плотности инокулята, максимальная концентрация CO2 в газовоздушной среде составляет 100%, что в 10 раз выше, чем у прототипа, необходимая освещенность составляет 80 мкЕ/(м2*c), что приблизительно на 35% ниже, чем у прототипа, что также показывает экономическую привлекательность использования данного штамма по сравнению с аналогами.
Штамм микроводоросли Desmodesmus sp. 3Dp86E-1 успешно прошел предварительное тестирование и этап пробного культивирования в экспериментальных и полупромышленных фотобиореакторах объемом до 50 л. Таким образом, можно считать степень готовности штамма к масштабированию культуры для промышленного применения высокой.
В результате получен штамм микроводоросли Desmodesmus sp. 3Dp86E-1, депонированный в Российской Коллекции Микроводорослей при учреждении Российской Академии Наук Институте Физиологии Растений им. К.А. Тимирязева (IPPAS) с присвоенным идентификатором IPPAS C-2014, который обладает более высокими показателями фиксации CO2 и толерантностью к высоким концентрациям CO2 в среде культивирования, а также более высокой способностью к накоплению нейтральных липидов по сравнению с известными аналогами.
Claims (1)
- Штамм микроводорослей Desmodesmus sp., депонированный в Коллекции культур микроводорослей Института физиологии растений им К.А. Тимирязева РАН (IPPAS) под регистрационным номером IPPAS S-2014, для конверсии углекислоты из промышленных сбросных газов в сырье для производства биотоплива и кормовых добавок.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013137676/10A RU2555520C2 (ru) | 2013-08-12 | 2013-08-12 | ШТАММ МИКРОВОДОРОСЛИ Desmodesmus sp. ДЛЯ КОНВЕРСИИ УГЛЕКИСЛОТЫ ИЗ ПРОМЫШЛЕННЫХ СБРОСНЫХ ГАЗОВ В СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА БИОТОПЛИВА И КОРМОВЫХ ДОБАВОК |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013137676/10A RU2555520C2 (ru) | 2013-08-12 | 2013-08-12 | ШТАММ МИКРОВОДОРОСЛИ Desmodesmus sp. ДЛЯ КОНВЕРСИИ УГЛЕКИСЛОТЫ ИЗ ПРОМЫШЛЕННЫХ СБРОСНЫХ ГАЗОВ В СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА БИОТОПЛИВА И КОРМОВЫХ ДОБАВОК |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013137676A RU2013137676A (ru) | 2015-02-20 |
RU2555520C2 true RU2555520C2 (ru) | 2015-07-10 |
Family
ID=53282006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013137676/10A RU2555520C2 (ru) | 2013-08-12 | 2013-08-12 | ШТАММ МИКРОВОДОРОСЛИ Desmodesmus sp. ДЛЯ КОНВЕРСИИ УГЛЕКИСЛОТЫ ИЗ ПРОМЫШЛЕННЫХ СБРОСНЫХ ГАЗОВ В СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА БИОТОПЛИВА И КОРМОВЫХ ДОБАВОК |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2555520C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2661116C1 (ru) * | 2017-12-13 | 2018-07-11 | Общество с ограниченной ответственностью "СОЛИКСАНТ" | Штамм одноклеточной микроводоросли Eustigmatos magnus - продуцент эйкозапентаеновой кислоты |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110076749A1 (en) * | 2008-05-22 | 2011-03-31 | Mi Kyung Kim | Microalgae with high-efficient ability to remove carbon dioxide and use thereof |
-
2013
- 2013-08-12 RU RU2013137676/10A patent/RU2555520C2/ru active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110076749A1 (en) * | 2008-05-22 | 2011-03-31 | Mi Kyung Kim | Microalgae with high-efficient ability to remove carbon dioxide and use thereof |
Non-Patent Citations (1)
Title |
---|
VASATO BABA, IWANE SUZUKI, YOSHIHIRO SHIRAIWA. Proteonic analysis of high-CO2- -inducible extracellular proteins in the. unicellular green alga, Chlamydomonas reinhardtii, Plant cell physiol. 52(8), 2011, p. 1302-1314. Т.Р. КРАВЦОВА, и др., Фототрофные микроорганизмы. изолированные из беломорских ассоциаций с колониальным. гидроидом, Тезисы докладов международной конференции. посвященной 80 годовщине И.Е. Семененко, 16-19.10.2012. ЛОБАКОВА Е.С., и др. Микроводоросли, ассоциированные с. беспозвоночными белого моря (Россия): Рост и накопление. биомассы в различных условиях культивирования, Альгология. Тезисы докладов IV Международной конференции. Актуальные. проблемы современной альгологии, Киев, 23-25 мая 2012 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2661116C1 (ru) * | 2017-12-13 | 2018-07-11 | Общество с ограниченной ответственностью "СОЛИКСАНТ" | Штамм одноклеточной микроводоросли Eustigmatos magnus - продуцент эйкозапентаеновой кислоты |
Also Published As
Publication number | Publication date |
---|---|
RU2013137676A (ru) | 2015-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yadav et al. | Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research | |
Tripathi et al. | Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production | |
Janssen et al. | Microalgae based production of single-cell protein | |
Varshney et al. | Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide | |
Ketheesan et al. | Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor | |
Raeesossadati et al. | CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature | |
De Morais et al. | Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor | |
Zhao et al. | Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae | |
Chen et al. | Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium | |
ES2421355T3 (es) | Procedimiento para la producción de bioproductos | |
US20100021968A1 (en) | Novel chlorella species and uses therefor | |
Khadim et al. | Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting | |
US20100255541A1 (en) | Advanced Algal Photosynthesis-Driven Bioremediation Coupled with Renewable Biomass and Bioenergy Production | |
Sato et al. | Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors | |
US8679508B2 (en) | Microalgae with high-efficient ability to remove carbon dioxide and use thereof | |
Kumari et al. | Cultivation of Spirulina platensis using NPK-10: 26: 26 complex fertilizer and simulated flue gas in sintered disk chromatographic glass bubble column | |
Liu et al. | Growth and nutrient utilization of green algae in batch and semicontinuous autotrophic cultivation under high CO 2 concentration | |
Chu et al. | Improvement of Thermosynechococcus sp. CL-1 performance on biomass productivity and CO2 fixation via growth factors arrangement | |
Salbitani et al. | Effect of bicarbonate on growth of the oleaginous microalga Botryococcus braunii | |
WO2015041349A1 (ja) | 底面の微細藻類を種藻として用いる、微細藻類の液面浮遊培養方法、藻類バイオマスの製造方法、及び微細藻類 | |
Li et al. | Effective CO2 capture by the fed-batch culture of Chlorella vulgaris | |
Raeesossadati et al. | CO 2 environmental bioremediation by microalgae | |
RU2555520C2 (ru) | ШТАММ МИКРОВОДОРОСЛИ Desmodesmus sp. ДЛЯ КОНВЕРСИИ УГЛЕКИСЛОТЫ ИЗ ПРОМЫШЛЕННЫХ СБРОСНЫХ ГАЗОВ В СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА БИОТОПЛИВА И КОРМОВЫХ ДОБАВОК | |
Kativu | Carbon dioxide absorption using fresh water algae and identifying potential uses of algal biomass | |
RU2555519C2 (ru) | ШТАММ МИКРОВОДОРОСЛИ Chlorella vulgaris, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД СЕЛЬСКОХОЗЯЙСТВЕННЫХ И СПИРТОВЫХ ПРОИЗВОДСТВ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HZ9A | Changing address for correspondence with an applicant |