WO2023218700A1 - 発電機およびこれを用いた発電システム - Google Patents

発電機およびこれを用いた発電システム Download PDF

Info

Publication number
WO2023218700A1
WO2023218700A1 PCT/JP2023/002031 JP2023002031W WO2023218700A1 WO 2023218700 A1 WO2023218700 A1 WO 2023218700A1 JP 2023002031 W JP2023002031 W JP 2023002031W WO 2023218700 A1 WO2023218700 A1 WO 2023218700A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
period
coil
switching element
generator
Prior art date
Application number
PCT/JP2023/002031
Other languages
English (en)
French (fr)
Inventor
彰比古 田中
優位 田中
弘 宮城
Original Assignee
株式会社kaisei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社kaisei filed Critical 株式会社kaisei
Publication of WO2023218700A1 publication Critical patent/WO2023218700A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Definitions

  • the present invention relates to a generator and a power generation system using the same, and particularly to a cylindrical rotor having a plurality of permanent magnets, a cylindrical stator having a plurality of coils and arranged concentrically with the rotor. It is suitable for use in a generator that generates voltage by rotating a rotor and a power generation system using the same.
  • an electric circuit having a switching element, a drive circuit that turns on and off the switching element, and a position detection circuit is connected to the windings of the generator, and the position detection circuit detects the relative position of the stator and rotor.
  • a known generator in which the phase of the current flowing through the windings can be maintained in a state in which the device is operated with high efficiency by outputting the current to the drive circuit (see, for example, Patent Document 1). .
  • the drive circuit sequentially turns on and off the switching elements connected to the three-phase coils based on the signal from the position detection circuit, so that the current flowing through the three-phase coils is approximately equal to
  • the present invention was made to solve such problems, and includes a cylindrical rotor having a plurality of permanent magnets, and a cylindrical rotor having a plurality of coils arranged concentrically with the rotor.
  • An object of the present invention is to reduce electromagnetic resistance that occurs to prevent rotation of the rotor in a generator that generates voltage by rotating the rotor.
  • the generator of the present invention includes a cylindrical rotor having a plurality of permanent magnets, a cylindrical stator having a plurality of coils and arranged concentrically with the rotor. It generates voltage by rotating a rotor, and has the following configuration. That is, a rotational position detection section that detects the rotational position of the rotor, and a first switching element provided on a first path through which an induced current generated in the coil flows according to a change in the distance between the permanent magnet and the coil.
  • a control unit configured to control one switching element to be turned off and the first switching element to be turned on during periods other than the first period.
  • FIG. 1 is a diagram showing an example of the overall configuration of a power generation system according to the present embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a generator (excluding a circuit portion) according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of a circuit portion of a generator according to the present embodiment.
  • FIG. 3 is a diagram showing a first path through which an induced current flows.
  • FIG. 6 is a diagram showing a second path through which a current flows in a direction opposite to the direction in which an induced current flows.
  • FIG. 3 is a diagram showing an example of a control signal output by a control unit and a voltage waveform generated at both ends of a coil.
  • FIG. 1 is a diagram showing an example of the overall configuration of a power generation system according to the present embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a generator (excluding a circuit portion) according to the present embodiment.
  • FIG. 2 is a diagram showing
  • FIG. 7 is a diagram illustrating another example of a control signal output by a control unit and a voltage waveform generated at both ends of a coil.
  • FIG. 7 is a diagram illustrating another example of a control signal output by a control unit and a voltage waveform generated at both ends of a coil. It is a figure which shows the other example of a structure of the circuit part of the generator by this embodiment.
  • FIG. 3 is a diagram showing another overall configuration example of the power generation system according to the present embodiment. It is a figure which shows the other example of a structure of the circuit part of the generator by this embodiment. It is a figure showing an example of composition with which a control part by this embodiment is provided.
  • FIG. 1 is a diagram schematically showing an example of the overall configuration of a power generation system according to this embodiment.
  • the power generation system 100 of this embodiment includes a generator 10 and a motor 20 whose rotors are supported on the same rotating shaft 50, a DC-AC inverter 30, and a battery 40. It consists of
  • the generator 10 includes a cylindrical rotor having a plurality of permanent magnets, and a cylindrical stator having a plurality of coils and arranged concentrically with the rotor, and rotates the rotor.
  • a voltage is generated by electromagnetic induction between the permanent magnet and the coil when the coil is turned on.
  • the engine 20 provides rotational driving force to the rotor of the generator 10, and is, for example, a motor.
  • the battery 40 provides operating power for the engine 20.
  • the DC-AC inverter 30 converts the DC voltage generated by discharging the battery 40 into an AC voltage, and applies the AC voltage to the motor 20.
  • the power generation system 100 of the present embodiment drives the motor 20 to rotate its rotor, and rotates the rotor of the generator 10 through the rotating shaft 50 fixed to the rotor, so that the power generation system 100 is arranged on the rotor. Electric power is generated using electromagnetic induction between multiple permanent magnets and multiple coils arranged in the stator.
  • FIG. 2 is a diagram showing an example of the configuration of the generator 10 (excluding the circuit part).
  • the generator 10 of this embodiment includes a cylindrical rotor 2 attached to a rotating shaft 50 rotatably supported by the housing 1, and a rotor 2 fixed to the housing 1.
  • the rotor 2 is provided with a cylindrical stator 3 arranged concentrically inside the rotor 2.
  • the rotor 2 includes a plurality of permanent magnets 21 arranged annularly in the rotation direction.
  • the plurality of permanent magnets 21 are arranged such that their north poles and south poles are alternately in close contact with each other.
  • the permanent magnets 21 are fixed at equal angles with respect to the rotation center of the rotor 2, and are magnetized with parallel anisotropy with each polarity oriented in the radial direction.
  • the number of permanent magnets 21 is an even number greater than or equal to the number of teeth 31 (described later) (in this embodiment, the number is 12, which is the same number as teeth 31).
  • the stator 3 is arranged so as to face the surface of the permanent magnet 21, and is integrally formed with a cylindrical yoke (yoke) and protrudes along the outer peripheral surface. It has a plurality of teeth 31. In the example of FIG. 2(a), twelve teeth 31 are arranged radially at intervals of 30 degrees with respect to the rotation center of the rotor 2.
  • a coil 32 is wound around each tooth 31 along its outer periphery.
  • the teeth 31 are prisms with a rectangular cross section in the circumferential direction, and are formed in the shape of a plate with a short side of about 1 to 3 mm, and the magnetic flux from the outside of the teeth 31 is formed at the end facing the surface of the permanent magnet 21.
  • a thin plate-shaped magnetic flux leakage prevention cover member 33 is attached to prevent leakage.
  • the magnetic flux leakage prevention cover member 33 is made of, for example, stainless steel, which is a type of non-magnetic material.
  • Coils 32 are continuously connected to each of the four teeth 31 in three sets of every three teeth so that currents of the same phase are generated when receiving magnetic flux from the permanent magnets 21 of the rotor 2. This generates three-phase alternating current: U-phase, V-phase, and W-phase.
  • Each coil 32 is preferably a high inductance coil, but is not particularly limited to this.
  • the stator 3 has a known configuration capable of collecting three-phase alternating current from the output portions of the coils 32 of the U-phase, V-phase, and W-phase teeth 31.
  • FIG. 3 is a diagram showing a configuration example of a circuit portion of the generator 10.
  • the generator 10 of this embodiment has a circuit configuration including a rotational position detection section 11, a control section 12, level shifters 13-1 , 13-2 , an inverter 14, a first switching element Tr11 , Tr 12 , second switching elements Tr 21 and Tr 22 and a power supply Vcc.
  • the rotational position detection section 11 and the control section 12 are shared circuits common to the U phase, V phase, and W phase.
  • the other configurations are examples of configurations related to one of the three phases, and similar configurations are provided for the other two phases.
  • the rotational position detection unit 11 has a pulse sensor, and detects the rotational position of the rotor 2 by the pulse sensor.
  • the pulse sensor is composed of, for example, a magnetic sensor or an optical sensor.
  • the pulse sensor is configured by a pair of a passive element attached to the rotor 2 of the generator 10 and an active element attached to the stator 3, for example.
  • the installation position of the active element (hereinafter referred to as the detection position) is the position where the passive element faces when the rotor 2 rotates and the passive element comes to a predetermined rotational position.
  • the pulse sensor when the pulse sensor is configured with a magnetic sensor, the pulse sensor uses a passive element to detect the magnitude of the magnetic field emitted from a detection magnet as an active element attached to a detection position of the stator 3, and then detects the detected magnetic field.
  • a pulse signal is output when maximum (when the passive element of the rotor 2 is closest to the active element of the stator 3).
  • the pulse sensor detects that each time the rotor 2 makes one revolution, the passive element attached to the rotor 2 is connected to the active element of the stator 3. It detects the rotational position closest to the installed detection position and outputs one pulse signal. The same applies when the pulse sensor is configured with an optical sensor.
  • a plurality of passive elements may be provided for the rotor 2.
  • the pulse signal is output multiple times each time the rotor 2 rotates once.
  • a plurality of passive elements are installed at equal intervals in the rotational direction of the rotor 2 so that a plurality of pulse signals are output at equal time intervals when the rotor 2 is in a steady state rotating at a constant speed. is preferable.
  • one passive element may be attached to the rotor 2, and a plurality of active elements may be provided to the stator 3.
  • a pulse sensor may be installed on the rotor (not shown) of the engine 20 or the rotating shaft 50.
  • the active element may be installed on the rotor side, and the passive element may be installed on the stator side.
  • the first switching elements Tr 11 and Tr 12 are provided on a first path through which an induced current generated in the coil 32 flows according to a change in the distance between the permanent magnet 21 of the rotor 2 and the coil 32 of the stator 3, and is It is turned on and off according to the control by section 12.
  • FIG. 4 is a diagram showing the first route. As shown by the thick dotted line in FIG. 4, the first path is a path passing through the power supply Vcc, the first switching elements Tr 11 and Tr 12 , and the coil 32. An induced current generated in the coil 32 by electromagnetic induction is output from both ends of the coil 32 to the load RL.
  • the second switching elements Tr 21 and Tr 22 are provided on a second path for causing current to flow in the coil 32 in a direction opposite to the direction in which the induced current flows, and are turned on and off under control by the control unit 12.
  • FIG. 5 is a diagram showing the second route. As shown by the thick dotted line in FIG. 5, the second path is a path passing through the power supply Vcc, the second switching elements Tr 21 and Tr 22 , and the coil 32. At this time, the current flowing through the coil 32 is output from both ends of the coil 32 to the load RL.
  • the first switching elements Tr 11 , Tr 12 and the second switching elements Tr 21 , Tr 22 are, for example, MOSFETs, etc. It is made up of a transistor and is turned on or off by a signal input to its gate terminal.
  • the two switching elements Tr 11 and Tr 21 on the upper side of the figure are n-channel MOSFETs, and the two switching elements Tr 12 and Tr 22 on the lower side are p-channel MOSFETs.
  • an H-bridge circuit is configured by these four switching elements Tr.
  • the control unit 12 outputs a control signal consisting of, for example, a rectangular wave. This control signal is input to the gate terminal of the switching element Tr via the level shifters 13 -1 , 13 -2 and the inverter 14. During the period in which the control unit 12 outputs a Low control signal, the first switching elements Tr 11 and Tr 12 are turned on, and the second switching elements Tr 21 and Tr 22 are turned off. On the other hand, during the period in which the control unit 12 outputs a Hi control signal, the first switching elements Tr 11 and Tr 12 are turned off, and the second switching elements Tr 21 and Tr 22 are turned on.
  • control unit 12 can be configured by any of hardware, DSP (Digital Signal Processor), and software.
  • DSP Digital Signal Processor
  • the control unit 12 is actually configured by a microcomputer having a computer CPU, RAM, ROM, etc., and a program stored in a storage medium such as the RAM, ROM, hard disk, or semiconductor memory operates. This is achieved by
  • the control unit 12 determines at least a period in which electromagnetic resistance is generated in the opposite direction to the rotational direction of the rotor 2 due to an induced current flowing through the coil 32.
  • the first switching elements Tr 11 and Tr 12 are controlled to be turned off during a part of the first period, and the first switching elements Tr 11 and Tr 12 are turned on during periods other than the first period. Further, the control unit 12 turns on the second switching elements Tr 21 and Tr 22 during at least a part of the second period of the first period in which the first switching elements Tr 11 and Tr 12 are turned off, and turns on the second switching elements Tr 21 and Tr 22 other than the second period. controls the second switching elements Tr 21 and Tr 22 to be turned off.
  • the period in which electromagnetic resistance occurs in the opposite direction to the rotational direction of the rotor 2 is the period in which the N-pole permanent magnet 21 moves away from the coil 32 and the period in which the S-pole permanent magnet 21 moves away from the coil 32. . That is, the period from the timing when the N-pole permanent magnet 21 comes closest to the coil 32 to the timing when the N-pole permanent magnet 21 is furthest from the coil 32, and from the timing when the S-pole permanent magnet 21 comes closest to the coil 32. These two periods include the period up to the timing when the S-pole permanent magnet 21 is farthest from the coil 32.
  • the pulse sensor of the rotational position detection section 11 when configured with a combination of one active element and one passive element, the pulse sensor is placed at a position where the relative positional relationship where the permanent magnet 21 and the coil 32 are closest can be detected.
  • the rotational position detection unit 11 By installing the active element and the passive element, it is possible for the rotational position detection unit 11 to detect the timing when the permanent magnet 21 and the coil 32 are closest to each other.
  • the rotation time required from when the permanent magnet 21 and the coil 32 are closest to each other until they are farthest from each other is calculated in advance. If so, it is also possible to specify the timing at which the permanent magnet 21 and the coil 32 are farthest from each other based on the timing detected by the rotational position detection section 11 and the rotation time calculated in advance.
  • the generator 10 is configured as shown in FIG. 2 and two passive elements of pulse sensors are installed on the rotor 2 at 30° intervals, the timing at which the permanent magnet 21 approaches the coil 32 and the timing at which the permanent magnet 21 approaches the coil 32 are determined. It is possible for the rotational position detection unit 11 to detect the timing at which the coil 32 is farthest from the coil 32.
  • the first period and the second period are the same period. That is, the entire first period is the second period, and when the first switching elements Tr 11 and Tr 12 are turned on, the second switching elements Tr 21 and Tr 22 are turned off, and the first switching element Tr 11 and Tr 22 are turned off. When the elements Tr 11 and Tr 12 are off, the second switching elements Tr 21 and Tr 22 are on.
  • FIG. 6 is a diagram showing a control signal (FIG. 6(b)) outputted by the control unit 12 and a voltage waveform (FIG. 6(a)) generated at both ends of the coil 32.
  • FIG. 6 shows a period in which electromagnetic resistance occurs in the opposite direction to the rotational direction of the rotor 2 (a period in which the coil 32 moves away from the permanent magnet 21), and a first period in which the first switching elements Tr 11 and Tr 12 are turned off.
  • An example is shown in which the period and the second period in which the second switching elements Tr 21 and Tr 22 are turned on are all the same.
  • FIG. 6(c) shows a conventional voltage waveform for reference when the switching element Tr is not provided.
  • period T1 is a period in which the N-pole permanent magnet 21 approaches the coil 32.
  • the period T2 is a period during which the N-pole permanent magnet 21 moves away from the coil 32.
  • Period T3 is a period during which the S-pole permanent magnet 21 approaches the coil 32.
  • the period T4 is a period during which the S-pole permanent magnet 21 moves away from the coil 32.
  • the control unit 12 outputs a rectangular wave control signal that is Low in periods T1 and T3 and Hi in periods T2 and T4, as shown in FIG. 6(b).
  • the first switching elements Tr 11 and Tr 12 are turned off, and the second switching elements Tr 21 and Tr 22 are turned on, and the power is supplied from the power supply Vcc.
  • a current flows along the second path in FIG. At this time, current is output from both ends of the coil 32 to the load RL.
  • FIG. 6(a) and FIG. 6(c) during periods T2 and T4, no induced current flows, and the current flows in the opposite direction to the direction in which the induced current would normally flow. It has become.
  • This causes a current to flow in the coil 32 in a direction opposite to the direction in which the induced current flows.
  • the electromagnetic force generated by Fleming's left-hand rule due to the current in the opposite direction coincides with the rotational direction of the rotor 2, and an effect of assisting the rotation of the rotor 2 can be obtained.
  • FIG. 6 shows an example in which the period during which electromagnetic resistance occurs in the opposite direction to the rotational direction of the rotor 2 is the same as the first period during which the first switching elements Tr 11 and Tr 12 are turned off.
  • FIG. 7 shows an example in which the first period during which the first switching elements Tr 11 and Tr 12 are turned off is shorter than the period during which electromagnetic resistance occurs.
  • the permanent magnet 21 is farthest from the coil 32 from the timing after a predetermined time after entering the period in which electromagnetic resistance occurs (timing after a predetermined time after the permanent magnet 21 approaches the coil 32 most).
  • the period up to the timing is defined as the first period.
  • the first period may be a period up to a predetermined time before the timing when the permanent magnet 21 is farthest from the coil 32.
  • FIG. 6 an example is shown in which the second switching elements Tr 21 and Tr 22 are turned on during the second period, which is the same as the first period in which the first switching elements Tr 11 and Tr 12 are turned off.
  • FIG. 8 shows an example in which the second switching elements Tr 21 and Tr 22 are always turned off. In this case, the second switching elements Tr 21 and Tr 22 may be omitted and the circuit portion of the generator 10 may be configured as shown in FIG. 9.
  • FIG. 10 is a diagram illustrating a configuration example of a power generation system 100' having a function of charging the battery 40.
  • FIG. 11 is a diagram showing an example of the circuit configuration of a generator 10' used in a power generation system 100' having a function of charging the battery 40.
  • the same reference numerals as those shown in FIGS. 1 and 3 have the same functions, and therefore, duplicate explanation will be omitted here.
  • the power generation system 100' shown in FIG. 10 further includes an AC-DC inverter 60 and a charge/discharge switch 70 in addition to the configuration shown in FIG.
  • the generator 10' shown in FIG. 11 further includes a regulator 15 and a second control section 16.
  • the second control unit 16 can be configured by hardware, DSP, or software.
  • the second control unit 16 when configured by software, the second control unit 16 is actually configured by a microcomputer having a computer CPU, RAM, ROM, etc., and a program stored in a storage medium such as RAM, ROM, hard disk, or semiconductor memory. This is realized by the operation of Although a configuration in which the control unit 12 and the second control unit 16 are provided separately is shown here, a configuration in which the control unit 12 has the function of the second control unit 16 may be adopted.
  • AC-DC inverter 60 converts the AC voltage generated by generator 10' to DC voltage.
  • the AC voltage here is a voltage generated by a current flowing backward through the second switching element Tr21 .
  • the charge/discharge changeover switch 70 is a switch for switching between charging and discharging the battery 40. Switching of the charge/discharge changeover switch 70 is controlled by the second control section 16 of the generator 10'.
  • the regulator 15 is for restricting the current flowing backward through the second switching element Tr 21 so that it does not exceed a predetermined value.
  • the second control unit 16 monitors whether or not a current flowing backward through the second switching element Tr 21 occurs during the second period, and when detecting the occurrence of a reverse current, switches the charge/discharge changeover switch 70 to the discharge side. By switching from the charging side to the charging side, the battery 40 is controlled to be charged by the reverse current.
  • the control unit 12 changes the phase of the waveform shaping circuit 121 that shapes the pulse signal output from the rotational position detection unit 11 into a rectangular wave, and the rectangular wave shaped by the waveform shaping circuit 121.
  • a phase shifter 122 and a ring counter 123 that changes the duty width of the rectangular wave whose phase has been shifted by the phase shifter 122 may be provided, and the output signal of the ring counter 123 may be used as a control signal.
  • the amount of variation in the phase by the phase shifter 122 and the amount of variation in the duty width by the ring counter 123 are adjusted by arbitrarily settable parameters.
  • a PWM (Pulse Width Modulation) circuit may be used instead of the ring counter 123.
  • the first period and the second period are the same period, that is, the entire first period is the second period, but a part of the first period is the second period. You can do it like this. In this case, it is necessary to have a circuit configuration that can individually control on/off of the first switching elements Tr 11 and Tr 12 and on/off of the second switching elements Tr 21 and Tr 22 .
  • the engine 20 is a motor, but the invention is not limited to this.
  • it may be a motor that utilizes natural energy generation such as wind power generation, hydroelectric power generation, or solar power generation.
  • the battery 40 and the power supply Vcc are provided separately, but they may be shared.
  • Rotor (rotor) 3 Stator (stator) 10, 10' generator 11 rotational position detector 12 controller 16 second controller 20 engine 21 permanent magnet 32 coil 40 battery 70 charging/discharging switch 100, 100' power generation system Tr 11 , Tr 12 first switching Element Tr 21 , Tr 22 second switching element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

回転子が有する複数の永久磁石と、回転子と同心状に配置された固定子が有する複数のコイルとの電磁誘導を利用して発電する発電機において、回転子の回転位置を検出する回転位置検出部11と、コイル32に発生する誘導電流が流れる第1経路上に設けられた第1のスイッチング素子Tr11,Tr12と、誘導電流が流れることによって回転子の回転方向とは逆向きに電磁抵抗が発生する期間の少なくとも一部の第1期間において第1のスイッチング素子Tr11,Tr12をオフし、第1期間以外は第1のスイッチング素子Tr11,Tr12をオンするように制御する制御部12とを備え、誘導電流が流れた場合に電磁抵抗が発生する第1期間に、電磁抵抗を誘起する方向の誘導電流が第1経路上を流れないようにする。

Description

発電機およびこれを用いた発電システム
 本発明は発電機およびこれを用いた発電システムに関し、特に、複数の永久磁石を有する円筒状の回転子と、複数のコイルを有し回転子と同心状に配置された円筒状の固定子とを備え、回転子を回転させることによって電圧を発生させる発電機およびこれを用いた発電システムに用いて好適なものである。
 従来、コイルを貫く磁束が変化するとコイル内に起電力(電圧)が発生し、コイル内に電流が流れるという電磁誘導を利用して、磁石のエネルギーを電気エネルギーに変換することで発電する発電機が知られている。例えば、N極の永久磁石とS極の永久磁石とが交互に環状に配置された円筒状の回転子(ロータ)と、当該永久磁石と対向する位置に複数のコイルを有し回転子と同心状に配置された円筒状の固定子(ステータ)とを備え、ロータを回転させて永久磁石とコイルとの距離を変化させることによって電圧を発生させる発電機が知られている。
 この種の発電機では、回転力を加えられたロータが有するN極の磁石がコイルに近づくと、コイルを貫く磁束が増加する。すると、コイル内の磁束を増加させまいとする向きに新たな磁束が発生して誘導電流が流れる。また、N極の磁石がコイルから遠ざかると、コイルを貫く磁束が減少する。すると、コイル内の磁束を減少させまいとする向きに新たな磁束が発生して誘導電流が流れる。コイルに流れる誘導電流の向きはレンツの法則に従い、N極の磁石がコイルに近づくときとコイルから遠ざかるときとで誘導電流の発生する向きは逆となる。S極の磁石がコイルに近くづくときとコイルから遠ざかるときに生じる誘導電流の向きは、N極の場合と逆向きとなる。
 ところで、ロータの回転によって永久磁石が変位し、その永久磁石と対向する位置に配置されたステータのコイルの真上を永久磁石が通過する際にコイル内に誘導電流が発生すると、コイルは永久磁石とは逆向きの磁極を有する電磁石となり、永久磁石がコイルから遠ざかるときに、永久磁石の回転方向に対してブレーキをかけることになってしまう。そのため、これが回転方向とは逆向きの電磁抵抗となり、発電機の発電効率の低下を招いているという問題があった。
 なお、スイッチング素子と、当該スイッチング素子をオンオフする駆動回路と、位置検知回路とを有する電気回路を発電機の巻線に接続し、位置検知回路が固定子と回転子との相対位置を検知して駆動回路に出力することにより、巻線に流れる電流の位相を、装置が高効率で運転される状態に保つことができるようにした発電機が知られている(例えば、特許文献1参照)。
 この特許文献1に記載の発電機では、駆動回路が位置検知回路からの信号に基づいて、3相のコイルに接続されたスイッチング素子を順次オンオフすることにより、3相のコイルに流れる電流がほぼq軸上となる(θ=0の位相で流される)ようにして、リラクタンストルクと誘導起電力(フレミングの左手の法則)で発生するトルクが、どちらともほぼθ=0にてほぼ最大のものとなるようにしている。しかしながら、これは電磁抵抗の発生自体を抑制するものではない。
特開2003-245000号公報
 本発明は、このような問題を解決するために成されたものであり、複数の永久磁石を有する円筒状の回転子と、複数のコイルを有し回転子と同心状に配置された円筒状の固定子とを備え、回転子を回転させることによって電圧を発生させる発電機において、回転子の回転を阻止するように発生する電磁抵抗を減少させることができるようにすることを目的とする。
 上記した課題を解決するために、本発明の発電機は、複数の永久磁石を有する円筒状の回転子と、複数のコイルを有し回転子と同心状に配置された円筒状の固定子とを備え、回転子を回転させることによって電圧を発生させるものであって、以下の構成を有する。すなわち、回転子の回転位置を検出する回転位置検出部と、永久磁石とコイルとの距離の変動に応じてコイルに発生する誘導電流が流れる第1経路上に設けられた第1のスイッチング素子と、回転位置検出部により検出される回転子の回転位置に基づいて、誘導電流が流れることによって回転子の回転方向とは逆向きに電磁抵抗が発生する期間の少なくとも一部の第1期間において第1のスイッチング素子をオフし、第1期間以外は第1のスイッチング素子をオンするように制御する制御部とを備える。
 上記のように構成した本発明によれば、誘導電流が流れた場合に電磁抵抗が発生する期間の少なくとも一部の第1期間には、誘導電流が流れる第1経路上に設けられた第1のスイッチング素子がオフすることにより、電磁抵抗を誘起する方向の誘導電流は流れなくなる。これにより、回転子の回転を阻止するように発生する電磁抵抗を減少させることができる。
本実施形態による発電システムの全体構成例を示す図である。 本実施形態による発電機(回路部分を除く)の構成例を示す図である。 本実施形態による発電機の回路部分の構成例を示す図である。 誘導電流が流れる第1経路を示す図である。 誘導電流が流れる方向とは逆向きの電流が流れる第2経路を示す図である。 制御部が出力する制御信号およびコイルの両端に生じる電圧波形の一例を示す図である。 制御部が出力する制御信号およびコイルの両端に生じる電圧波形の他の例を示す図である。 制御部が出力する制御信号およびコイルの両端に生じる電圧波形の他の例を示す図である。 本実施形態による発電機の回路部分の他の構成例を示す図である。 本実施形態による発電システムの他の全体構成例を示す図である。 本実施形態による発電機の回路部分の他の構成例を示す図である。 本実施形態による制御部が備える構成の一例を示す図である。
 以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による発電システムの全体構成例を概略的に示す図である。図1に示すように、本実施形態の発電システム100は、回転子が同一の回転軸50に軸支される発電機10および発動機20と、DC-ACインバータ30と、バッテリ40とを備えて構成される。
 発電機10は、複数の永久磁石を有する円筒状の回転子(ロータ)と、複数のコイルを有しロータと同心状に配置された円筒状の固定子(ステータ)とを備え、ロータを回転させたときの永久磁石とコイルとの電磁誘導によって電圧を発生させるものである。発動機20は、発電機10の回転子に回転駆動力を与えるものであり、例えばモータである。バッテリ40は、発動機20の動作電源を与えるものである。DC-ACインバータ30は、バッテリ40からの放電によって発生されたDC電圧をAC電圧に変換し、AC電圧を発動機20に印加する。
 本実施形態の発電システム100は、発動機20を駆動してその回転子を回転させ、当該回転子に固着された回転軸50を通じて発電機10のロータを回転させることにより、ロータに配置された複数の永久磁石とステータに配置された複数のコイルとの間の電磁誘導を利用して発電を行う。
 図2は、発電機10の構成例(回路部分を除く)を示す図である。図2(a)に示すように、本実施形態の発電機10は、ハウジング1に回転可能に支持された回転軸50に取り付けられた円筒状のロータ2と、ハウジング1に固定されてロータ2の内側にロータ2と同心状に配置された円筒状のステータ3とを備えている。
 図2(a)に示すように、ロータ2は、回転方向に環状に並べて配置された複数の永久磁石21を備えている。複数の永久磁石21は、N極とS極とが交互に密着して配置されている。各永久磁石21は、ロータ2の回転中心に対して等間隔の角度に固定されており、各極性を径方向に向けたパラレル異方性をもって着磁されている。永久磁石21の個数は、後述するティース31の個数以上の偶数個である(本実施形態では、ティース31と同数の12個としている)。
 図2(a)に示すように、ステータ3は、永久磁石21の面に対峙するように配置されており、円筒状のヨーク(継鉄)に一体に形成されて外周面に沿って突設された複数のティース31を有している。図2(a)の例では、12個のティース31がロータ2の回転中心に対して30°間隔で放射状に配置されている。
 図2(b)に示すように、各ティース31には、その外周に沿ってコイル32が巻き付けられている。ティース31は、周方向断面が長方形状の角柱であって、短辺が1~3mm程度のプレート状に形成されており、永久磁石21の面に対峙する端部にティース31の外側からの磁束漏れを防止する薄板状の磁束漏れ防止覆い部材33が装着されている。磁束漏れ防止覆い部材33は、例えば、非磁性体の一種であるステンレスで構成されている。
 3個おきの3組の各4個のティース31には、ロータ2の永久磁石21からの磁束を受けたときに同一位相の電流が発生するようにコイル32が連続的に接続されている。これによりU相、V相、W相の3相の交流が発生される。各コイル32は、高インダクタンスコイルが好ましいが、特にこれに限定されるものではない。ステータ3は、U相、V相、W相の各ティース31のコイル32の出力部から三相交流電流を集電可能な公知の構成となっている。
 図3は、発電機10の回路部分の構成例を示す図である。図3に示すように、本実施形態の発電機10は、回路構成として、回転位置検出部11、制御部12、レベルシフタ13-1,13-2、インバータ14、第1のスイッチング素子Tr11,Tr12、第2のスイッチング素子Tr21,Tr22および電源Vccを備えている。この図3に示す構成のうち、回転位置検出部11および制御部12についてはU相、V相、W相に共通の共有回路である。それ以外の構成は、3相のうち1相に関する構成例を示したものであり、同様の構成が他の2相についても設けられる。
 回転位置検出部11は、パルスセンサを有しており、当該パルスセンサによってロータ2の回転位置を検出する。パルスセンサは、例えば磁気センサまたは光センサで構成される。パルスセンサは、例えば発電機10のロータ2に取り付けられる受動素子と、ステータ3に取り付けられる能動素子との対により構成される。能動素子の設置位置(以下、これを検出位置という)は、ロータ2が回転して受動素子が所定の回転位置に来たときに対峙する位置である。
 例えば、パルスセンサを磁気センサで構成する場合、パルスセンサは、ステータ3の検出位置に取り付けられた能動素子としての検出用磁石から発する磁界の大きさを受動素子にて検出し、当該検出した磁界が最大化したとき(ロータ2の受動素子がステータ3の能動素子に最近接して対峙したとき)にパルス信号を出力する。ロータ2の受動素子とステータ3の能動素子とが1つずつ設置されている場合、パルスセンサは、ロータ2が1回転するごとに、ロータ2に取り付けられた受動素子がステータ3の能動素子が設置された検出位置に最も近づいたときの回転位置を検出してパルス信号を1つ出力する。パルスセンサを光センサで構成する場合も同様である。
 なお、ロータ2に対して複数の受動素子を設けてもよい。この場合、ロータ2が1回転するごとにパルス信号が複数回出力される。ここで、ロータ2が定速で回転している定常状態のときに複数回のパルス信号が等時間間隔で出力されるように、複数の受動素子をロータ2の回転方向に等間隔で設置するのが好ましい。逆に、ロータ2に取り付ける受動素子を1つとし、ステータ3に対して複数の能動素子を設けるようにしてもよい。
 また、発電機10のロータ2にパルスセンサを設置することに代えて、発動機20の回転子(図示せず)または回転軸50にパルスセンサを取り付けるようにしてもよい。また、回転子の方に能動素子を設置し、固定子の方に受動素子を設置するようにしてもよい。
 第1のスイッチング素子Tr11,Tr12は、ロータ2の永久磁石21とステータ3のコイル32との距離の変動に応じてコイル32に発生する誘導電流が流れる第1経路上に設けられ、制御部12による制御に従ってオンオフする。図4は、第1経路を示す図である。図4において太い点線で示すように、第1経路は、電源Vccと、第1のスイッチング素子Tr11,Tr12と、コイル32とを通る経路である。電磁誘導によってコイル32に発生した誘導電流は、コイル32の両端から負荷RLに出力される。
 第2のスイッチング素子Tr21,Tr22は、誘導電流が流れる方向とは逆向きの電流をコイル32に流すための第2経路上に設けられ、制御部12による制御に従ってオンオフする。図5は、第2経路を示す図である。図5において太い点線で示すように、第2経路は、電源Vccと、第2のスイッチング素子Tr21,Tr22と、コイル32とを通る経路である。このときコイル32に流れる電流は、コイル32の両端から負荷RLに出力される。
 第1のスイッチング素子Tr11,Tr12および第2のスイッチング素子Tr21,Tr22(以下、これら4つをまとめていうときは単に「スイッチング素子Tr」と記すことがある)は、例えばMOSFETなどのトランジスタにより構成されており、そのゲート端子に入力される信号によりオンまたはオフとなる。ここで、図の上側の2つのスイッチング素子Tr11,Tr21がnチャンネルMOSFET、下側の2つのスイッチング素子Tr12,Tr22がpチャンネルMOSFETである。図3に示すように、これら4つのスイッチング素子TrによりHブリッジ回路が構成されている。
 制御部12は、例えば矩形波から成る制御信号を出力する。この制御信号がレベルシフタ13-1,13-2およびインバータ14を介してスイッチング素子Trのゲート端子に入力される。制御部12がLowの制御信号を出力している期間では、第1のスイッチング素子Tr11,Tr12がオンとなり、第2のスイッチング素子Tr21,Tr22がオフとなる。一方、制御部12がHiの制御信号を出力している期間では、第1のスイッチング素子Tr11,Tr12がオフとなり、第2のスイッチング素子Tr21,Tr22がオンとなる。
 なお、制御部12は、ハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、制御部12は、実際にはコンピュータのCPU、RAM、ROMなどを有するマイコンにより構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記憶媒体に記憶されたプログラムが動作することによって実現される。
 制御部12は、回転位置検出部11により検出されるロータ2の回転位置に基づいて、コイル32に誘導電流が流れることによってロータ2の回転方向とは逆向きに電磁抵抗が発生する期間の少なくとも一部の第1期間において第1のスイッチング素子Tr11,Tr12をオフし、第1期間以外は第1のスイッチング素子Tr11,Tr12をオンするように制御する。また、制御部12は、第1のスイッチング素子Tr11,Tr12をオフする第1期間の少なくとも一部の第2期間において第2のスイッチング素子Tr21,Tr22をオンし、第2期間以外は第2のスイッチング素子Tr21,Tr22をオフするように制御する。
 本実施形態において、ロータ2の回転方向とは逆向きに電磁抵抗が発生する期間は、N極の永久磁石21がコイル32から遠ざかる期間およびS極の永久磁石21がコイル32から遠ざかる期間である。すなわち、N極の永久磁石21がコイル32に最も近づくタイミングから、N極の永久磁石21がコイル32から最も遠ざかるタイミングまでの期間と、S極の永久磁石21がコイル32に最も近づくタイミングから、S極の永久磁石21がコイル32から最も遠ざかるタイミングまでの期間との2つの期間である。
 例えば、回転位置検出部11のパルスセンサを1つの能動素子と1つの受動素子との組み合わせで構成する場合、永久磁石21とコイル32とが最も近くなる相対位置関係を検出可能な位置にパルスセンサの能動素子と受動素子とを設置することにより、永久磁石21とコイル32とが最も近くなるタイミングを回転位置検出部11により検出することが可能である。また、ロータ2の定常状態における回転速度と永久磁石21の大きさとの関係をもとに、永久磁石21とコイル32とが最も近くなったときから最も遠ざかるまでに要する回転時間をあらかじめ計算しておけば、回転位置検出部11により検出されたタイミングとあらかじめ計算しておいた回転時間とをもとに、永久磁石21とコイル32とが最も遠くなるタイミングを特定することも可能である。
 なお、図2のように発電機10を構成するとともに、ロータ2にパルスセンサの2つの受動素子を30°間隔で設置した場合は、永久磁石21がコイル32に最も近づくタイミングおよび永久磁石21がコイル32から最も遠ざかるタイミングをそれぞれ回転位置検出部11により検出することが可能である。
 本実施形態において、第1期間と第2期間は同じ期間である。すなわち、第1期間の全てが第2期間であり、第1のスイッチング素子Tr11,Tr12がオンとなっているときは第2のスイッチング素子Tr21,Tr22がオフとなり、第1のスイッチング素子Tr11,Tr12がオフとなっているときは第2のスイッチング素子Tr21,Tr22がオンとなる。
 制御部12は、ロータ2の回転に応じて回転位置検出部11より逐次出力される検出結果のパルス信号に基づいて、ロータ2が定速回転の定常状態に達したか否かを監視し、定常状態に達したことを検知した後に、スイッチング素子Trのオンオフを制御するようにしてもよい。このようにすれば、第1期間(=第2期間)をより正確に検出して、スイッチング素子Trのオンオフをより精度よく制御することが可能となる。
 図6は、制御部12が出力する制御信号(図6(b))と、コイル32の両端に生じる電圧波形(図6(a))とを示す図である。この図6は、ロータ2の回転方向とは逆向きに電磁抵抗が発生する期間(永久磁石21からコイル32が遠ざかる期間)と、第1のスイッチング素子Tr11,Tr12をオフする第1期間と、第2のスイッチング素子Tr21,Tr22をオンする第2期間とを全て同じとした場合の例を示している。なお、図6(c)は、スイッチング素子Trを設けない場合における従来型の電圧波形を参考用として示すものである。
 図6において、期間T1は、N極の永久磁石21がコイル32に近づく期間である。期間T2は、N極の永久磁石21がコイル32から遠ざかる期間である。期間T3は、S極の永久磁石21がコイル32に近づく期間である。期間T4は、S極の永久磁石21がコイル32から遠ざかる期間である。制御部12は、図6(b)に示すように、期間T1,T3においてLow、期間T2,T4においてHiとなる矩形波の制御信号を出力する。
 これにより、期間T1,T3において、第1のスイッチング素子Tr11,Tr12がオン、第2のスイッチング素子Tr21,Tr22がオフし、コイル32に発生した誘導電流が図4の第1経路に沿って流れる。このとき、電磁誘導によってコイル32に発生した誘導電流がコイル32の両端から負荷RLに出力される。
 また、期間T2,T4(=第1期間および第2期間)において、第1のスイッチング素子Tr11,Tr12がオフ、第2のスイッチング素子Tr21,Tr22がオンし、電源Vccから供給される電流が図5の第2経路に沿って流れる。このとき、コイル32の両端から負荷RLに電流が出力される。図6(a)と図6(c)とを比較すると分かる通り、期間T2,T4においては、誘導電流は流れず、通常であれば誘導電流が流れる方向とは逆方向に電流が流れる状態となっている。
 以上のように構成した本実施形態の発電機10によれば、コイル32に誘導電流が流れた場合に電磁抵抗が発生する期間(=期間T2,T4の第1期間)には、誘導電流が流れる第1経路上に設けられた第1のスイッチング素子Tr11,Tr12がオフすることにより、電磁抵抗を誘起する方向の誘導電流は流れなくなる。これにより、ロータ2の回転を阻止するように発生する電磁抵抗を減少させることができる。
 また、本実施形態の発電機10では、第1期間と同一の第2期間(=期間T2,T4)において、第2経路上に設けられた第2のスイッチング素子Tr21,Tr22がオンすることにより、誘導電流が流れる方向とは逆向きの電流をコイル32に流すようにしている。これにより、当該逆向きの電流を起因としてフレミングの左手の法則により発生する電磁力は、ロータ2の回転方向と一致することとなり、ロータ2の回転をアシストする作用を得ることができる。
 なお、図6では、ロータ2の回転方向とは逆向きに電磁抵抗が発生する期間と、第1のスイッチング素子Tr11,Tr12をオフする第1期間とが同じである場合の例を示したが、これに限定されない。図7は、電磁抵抗が発生する期間よりも、第1のスイッチング素子Tr11,Tr12をオフする第1期間が短い場合の例を示している。ここでは、電磁抵抗が発生する期間に入った後の所定時間後のタイミング(永久磁石21がコイル32に最も近づいた後の所定時間後のタイミング)から、永久磁石21がコイル32から最も遠ざかったタイミングまでの期間を第1期間としている。なお、永久磁石21がコイル32から最も遠ざかるタイミングよりも所定時間前までの期間を第1期間としてもよい。
 また、図6では、第1のスイッチング素子Tr11,Tr12をオフする第1期間と同じ第2期間中に第2のスイッチング素子Tr21,Tr22をオンする例について示したが、これに限定されない。図8は、第2のスイッチング素子Tr21,Tr22を常時オフとした場合の例を示している。この場合、第2のスイッチング素子Tr21,Tr22を省略し、発電機10の回路部分を図9のように構成してもよい。
 なお、図5のように第2経路を用いて電流を流している期間中に、コイル32に発生する誘導電流が流れる方向の第1経路は形成されていないので、フレミングの右手の法則に従って発生する誘導電流がコイル32を流れることはない。すなわち、電源Vccからの電流がコイル32に流れるのみである。しかしながら、コイル32に生じる起電圧が電源Vccの電圧を上回る場合には、コイル32から第2のスイッチング素子Tr21に誘導電流が逆流していく可能性がある。
 そこで、この逆流していく電流を利用してバッテリ40を充電するようにしてもよい。図10は、バッテリ40の充電機能を備えた発電システム100’の構成例を示す図である。また、図11は、バッテリ40の充電機能を備えた発電システム100’に用いられる発電機10’の回路構成例を示す図である。これらの図10および図11において、図1および図3に示した符号と同一の符号を付したものは同一の機能を有するものであるので、ここでは重複する説明を省略する。
 図10に示す発電システム100’は、図1に示した構成に加えて、AC-DCインバータ60および充放電切替スイッチ70を更に備えている。また、図11に示す発電機10’は、図3に示した構成に加えて、レギュレータ15および第2の制御部16を更に備えている。
 第2の制御部16は、ハードウェア、DSP、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、第2の制御部16は、実際にはコンピュータのCPU、RAM、ROMなどを有するマイコンにより構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記憶媒体に記憶されたプログラムが動作することによって実現される。ここでは制御部12と第2の制御部16とを別に設ける構成を示しているが、制御部12が第2の制御部16の機能を備える構成としてもよい。
 AC-DCインバータ60は、発電機10’により発生されたAC電圧をDC電圧に変換する。ここでいうAC電圧とは、第2のスイッチング素子Tr21を逆流する電流によって生じる電圧である。充放電切替スイッチ70は、バッテリ40の充電または放電を切り替えるためのスイッチである。充放電切替スイッチ70の切り替えは、発電機10’の第2の制御部16により制御される。
 レギュレータ15は、第2のスイッチング素子Tr21を逆流する電流が所定値を超えて流れないように制限をかけるためのものである。第2の制御部16は、第2期間において第2のスイッチング素子Tr21を逆流する電流が発生したか否かを監視し、逆流の発生を検知した場合に、充放電切替スイッチ70を放電側から充電側に切り替えることにより、当該逆流する電流によってバッテリ40を充電するように制御する。
 なお、上記実施形態では、制御部12がHiの制御信号を出力する期間、つまり第1期間と第2期間があらかじめ設定されている例を示したが、これを任意に調整可能な構成とすることも可能である。例えば、図12に示すように、制御部12が、回転位置検出部11より出力されるパルス信号を矩形波に成形する波形成形回路121、波形成形回路121により成形された矩形波の位相を変える位相シフタ122、位相シフタ122により位相シフトされた矩形波のデューティ幅を変えるリングカウンタ123を備え、リングカウンタ123の出力信号を制御信号として用いるようにしてもよい。この場合、位相シフタ122による位相の変動量およびリングカウンタ123によるデューティ幅の変動量を、任意に設定可能なパラメータによって調整するようにする。なお、リングカウンタ123に代えてPWM(Pulse Width Modulation)回路を用いてもよい。
 また、上記実施形態では、第1期間と第2期間とが同じ期間、すなわち、第1期間の全てが第2期間である例について説明したが、第1期間の一部を第2期間とするようにしてもよい。この場合は、第1のスイッチング素子Tr11,Tr12のオンオフと第2のスイッチング素子Tr21,Tr22のオンオフとを個別に制御可能な回路構成とする必要がある。
 また、上記実施形態では、発動機20がモータであると説明したが、これに限定されるものではない。例えば、風力発電、水力発電、太陽光発電といった自然エネルギー発電を利用した発動機であってもよい。
 また、上記実施形態では、バッテリ40と電源Vccとを別に設ける構成を示したが、共用するようにしてもよい。
 その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 2 ロータ(回転子)
 3 ステータ(固定子)
 10,10’ 発電機
 11 回転位置検出部
 12 制御部
 16 第2の制御部
 20 発動機
 21 永久磁石
 32 コイル
 40 バッテリ
 70 充放電切替スイッチ
 100,100’ 発電システム
 Tr11,Tr12 第1のスイッチング素子
 Tr21,Tr22 第2のスイッチング素子

Claims (5)

  1.  複数の永久磁石を有する円筒状の回転子と、複数のコイルを有し上記回転子と同心状に配置された円筒状の固定子とを備え、上記回転子を回転させることによって電圧を発生させる発電機であって、
     上記回転子の回転位置を検出する回転位置検出部と、
     上記永久磁石と上記コイルとの距離の変動に応じて上記コイルに発生する誘導電流が流れる第1経路上に設けられた第1のスイッチング素子と、
     上記回転位置検出部により検出される上記回転子の回転位置に基づいて、上記誘導電流が流れることによって上記回転子の回転方向とは逆向きに電磁抵抗が発生する期間の少なくとも一部の第1期間において上記第1のスイッチング素子をオフし、上記第1期間以外は上記第1のスイッチング素子をオンするように制御する制御部とを備えた
    ことを特徴とする発電機。
  2.  上記誘導電流が流れる方向とは逆向きの電流を上記コイルに流すための第2経路上に設けられた第2のスイッチング素子を更に備え、
     上記制御部は、上記第1のスイッチング素子をオフする上記第1期間の少なくとも一部の第2期間において上記第2のスイッチング素子をオンし、上記第2期間以外は上記第2のスイッチング素子をオフするように制御する
    ことを特徴とする請求項1に記載の発電機。
  3.  上記第1のスイッチング素子および上記第2のスイッチング素子によりHブリッジ回路を構成したことを特徴とする請求項2に記載の発電機。
  4.  上記制御部は、上記回転子の回転に応じて上記回転位置検出部より逐次出力される検出結果の信号に基づいて、上記回転子が定速回転の定常状態に達したか否かを監視し、上記定常状態に達したことを検知した後に、スイッチング素子のオンオフを制御することを特徴とする請求項1~3の何れか1項に記載の発電機。
  5.  請求項2または3に記載の発電機と、
     上記回転子に回転駆動力を与える発動機と、
     上記発動機の動作電源を与えるバッテリと、
     上記バッテリの充電または放電を切り替えるための充放電切替スイッチと、
     上記第2期間において上記第2のスイッチング素子を逆流する電流が発生した場合に、上記充放電切替スイッチを放電側から充電側に切り替えることにより、当該逆流する電流によって上記バッテリを充電するように制御する第2の制御部とを備えた
    ことを特徴とする発電システム。
     
PCT/JP2023/002031 2022-05-12 2023-01-24 発電機およびこれを用いた発電システム WO2023218700A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-078815 2022-05-12
JP2022078815A JP7501927B2 (ja) 2022-05-12 2022-05-12 発電機およびこれを用いた発電システム

Publications (1)

Publication Number Publication Date
WO2023218700A1 true WO2023218700A1 (ja) 2023-11-16

Family

ID=88729874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002031 WO2023218700A1 (ja) 2022-05-12 2023-01-24 発電機およびこれを用いた発電システム

Country Status (2)

Country Link
JP (1) JP7501927B2 (ja)
WO (1) WO2023218700A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121406A (ja) * 1992-08-20 1994-04-28 Nippondenso Co Ltd エンジン駆動発電装置
JPH08214470A (ja) * 1994-07-19 1996-08-20 Nippondenso Co Ltd 交流発電装置
JP2005354897A (ja) * 1997-07-25 2005-12-22 Kokusan Denki Co Ltd 発電装置
JP2011125206A (ja) * 2009-12-08 2011-06-23 Kyoshin Denki:Kk 複合蓄電装置とコントローラーによる循環型発電システム
JP2015035942A (ja) * 2013-07-08 2015-02-19 ヤマハ発動機株式会社 発電装置、移動体および発電制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121406A (ja) * 1992-08-20 1994-04-28 Nippondenso Co Ltd エンジン駆動発電装置
JPH08214470A (ja) * 1994-07-19 1996-08-20 Nippondenso Co Ltd 交流発電装置
JP2005354897A (ja) * 1997-07-25 2005-12-22 Kokusan Denki Co Ltd 発電装置
JP2011125206A (ja) * 2009-12-08 2011-06-23 Kyoshin Denki:Kk 複合蓄電装置とコントローラーによる循環型発電システム
JP2015035942A (ja) * 2013-07-08 2015-02-19 ヤマハ発動機株式会社 発電装置、移動体および発電制御方法

Also Published As

Publication number Publication date
JP2023167545A (ja) 2023-11-24
JP7501927B2 (ja) 2024-06-18

Similar Documents

Publication Publication Date Title
EP2489118B1 (en) Method and system for measuring a characteristic of an electric motor
KR100757060B1 (ko) 저속에서의 발전 효율이 개선된 에스알 발전기
JP2008545363A (ja) 電動機
MX2007001881A (es) Motor-generador de energia para vehiculo.
JP2000209891A (ja) 内燃機関用スタ―タジェネレ―タ
JP6262336B2 (ja) モジュール式多相電動機
US9071179B2 (en) Single-phase brushless motor
WO2008032384A1 (fr) Générateur
Riyadi et al. Analysis and design of BLDC motor control in regenerative braking
JP4107614B2 (ja) モータ駆動システム
WO2023218700A1 (ja) 発電機およびこれを用いた発電システム
JP5885423B2 (ja) 永久磁石式回転電機
JP5219871B2 (ja) 回転位置センサ、及びブラシレスモータ
US8427090B2 (en) Magnetic-drive-pulsation motor
JP5795170B2 (ja) 発電システム
Sankar et al. Simulation and implementation of sensored control of three-phase BLDC motor using FPGA
RU2802788C1 (ru) Двухфазная синхронная вентильно-индукторная электрическая машина
RU2241298C1 (ru) Электрическая машина
KR100754448B1 (ko) 영구 자석의 슬릿 현상으로 인한 역기전력이 감소되는발전기 및 모터
JP2004222418A (ja) 回転機の回転位置検出装置、およびそれを備えた回転機
WO2009048292A2 (en) Control apparatus and method for bldc hub motor
JP2021064997A (ja) 三相交流発電機
KR100715217B1 (ko) 하이브리드형 고효율 발전장치
JP2006158166A (ja) センサレス同期電動機とその駆動方法及び装置
RU2420851C1 (ru) Бесконтактный электродвигатель постоянного тока

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23801674

Country of ref document: EP

Kind code of ref document: A1