WO2023218610A1 - 監視装置、監視方法 - Google Patents

監視装置、監視方法 Download PDF

Info

Publication number
WO2023218610A1
WO2023218610A1 PCT/JP2022/020092 JP2022020092W WO2023218610A1 WO 2023218610 A1 WO2023218610 A1 WO 2023218610A1 JP 2022020092 W JP2022020092 W JP 2022020092W WO 2023218610 A1 WO2023218610 A1 WO 2023218610A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
display device
data
viewers
monitoring
Prior art date
Application number
PCT/JP2022/020092
Other languages
English (en)
French (fr)
Inventor
優 佐々木
Original Assignee
シャープNecディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープNecディスプレイソリューションズ株式会社 filed Critical シャープNecディスプレイソリューションズ株式会社
Priority to PCT/JP2022/020092 priority Critical patent/WO2023218610A1/ja
Publication of WO2023218610A1 publication Critical patent/WO2023218610A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers

Definitions

  • the present invention relates to a monitoring device and a monitoring method.
  • Patent Document 1 there is a technique for detecting the line of sight of a viewer viewing a display (see, for example, Patent Document 1).
  • One aspect of the present invention includes an acquisition unit that acquires imaging data from a camera that images a place where the display device can be viewed;
  • This monitoring device includes a determination unit that determines whether or not there is a malfunction.
  • One aspect of the present invention provides an acquisition unit that acquires visibility data that is a position that is viewed by a plurality of viewers and that allows the position on a display screen of a display device to be grasped;
  • the visual recognition data acquired by the acquisition unit is applied to a trained model that has learned a condition representing the relationship between the visual recognition data and whether or not there is a defect in the display device using data indicating whether or not there is a problem.
  • the monitoring device includes a determination unit that obtains a determination result as to whether or not there is a problem with the display device by inputting the information.
  • One aspect of the present invention uses visual recognition data that is a position viewed by a plurality of viewers and that allows the position on the display screen of a display device to be grasped, and data that indicates whether or not there is a problem with the display device.
  • the present invention is a learning device that learns a condition representing a relationship between the visual recognition data and whether or not there is a defect in the display device.
  • One embodiment of the present invention acquires imaging data from a camera that images a place where the display device can be viewed, and determines whether the display device is malfunctioning based on the viewing behavior of a plurality of viewers determined from the imaging data. This is a monitoring method to determine whether or not there is.
  • One aspect of the present invention is to acquire visibility data that is a position that is viewed by a plurality of viewers and that allows the position on a display screen of a display device to be grasped, and to determine whether or not there is a problem with the display device based on the visibility data.
  • a trained model that has learned a condition representing the relationship between the visibility data and whether or not there is a problem with the display device using data indicating whether or not there is a problem with the display device.
  • This is a monitoring method that obtains a determination result as to whether or not there is a problem, and outputs an alert signal according to the determination result.
  • the present invention it is possible to determine whether or not there is a problem with the display device based on the viewing behavior of the viewer based on the imaging data, using imaging data obtained from a camera that images a place where the display device can be viewed. Therefore, it is possible to determine whether there is a problem using a method different from the sensor that detects the inside of the device.
  • FIG. 1 is a system configuration diagram showing the configuration of a remote control system S.
  • FIG. 3 is a schematic functional block diagram showing the configuration of a multi-display 30.
  • FIG. 1 is a schematic functional block diagram showing the configuration of a monitoring device 10.
  • FIG. 3 is a flowchart illustrating the operation of the monitoring device 10.
  • FIG. It is a schematic functional block diagram showing the composition of monitoring device 10A in other embodiments.
  • 2 is a schematic functional block diagram showing the functions of a learning device 50.
  • FIG. It is a flowchart explaining the operation of the monitoring device 10A.
  • It is a schematic functional block diagram showing the composition of monitoring device 10B in other embodiments.
  • It is a schematic functional block diagram showing the composition of monitoring device 10C in other embodiments.
  • FIG. 1 is a system configuration diagram showing the configuration of the remote control system S.
  • a monitoring device 10 a content supply device 20, and a multi-display 30 are communicably connected via a network N.
  • the monitoring device 10 controls the multi-display 30 via the network N and acquires information regarding the multi-display 30 via the network N.
  • a user using the monitoring device 10 can remotely monitor and control the multi-display 30 by using the monitoring device 10.
  • the content supply device 20 stores content and supplies the content to multiple displays.
  • the content may be an advertisement, a notice, a guide, or the like.
  • the multi-display 30 includes a plurality of displays installed adjacent to each other and displays video signals corresponding to content supplied from the content supply device 20.
  • the multi-display 30 is provided with a camera 31. This camera may be built into the multi-display 30 or may be provided outside the multi-display 30.
  • the multi-display 30 has a total of nine displays (display 30a, display 30b, display 30c, display 30d, display 30e, display 30f, display 30g, A display 30h and a display 30i) are arranged adjacent to each other.
  • the multi-display 30 can display content as one large display screen that includes the display screens of each of the plurality of displays.
  • the camera 31 captures an image of a visible range of the multi-display 30. More specifically, the camera 31 images the viewer near the display screen of the multi-display 30.
  • the camera 31 images the viewer near the display screen of the multi-display 30.
  • it is rare that the camera for capturing an image of the display screen of the display is installed in a different location from the display.
  • a camera is installed on the display and captures an image of the visible range of the display screen from the position of the display, that is, a camera that can capture images of the user viewing the display screen.
  • content in which the movements of a person (viewer) standing in front of a display are imaged using a camera, the movements of the imaged person are analyzed, and objects included in the displayed content are moved according to the movements.
  • a camera installed on the display captures an image of the viewer, estimates the age group based on the facial image of the person (viewer) obtained from the captured image, and displays advertisements according to the estimated age group on the display. Display solutions are also provided.
  • such a commonly used camera is used, and based on the captured image obtained from this camera, one of the images included in the multi-display is determined based on the viewing behavior of viewing the multi-display. Determine whether a problem has occurred with the display. Therefore, if a camera is installed on the display, by using that camera, there is no need to install a new camera. Additionally, by installing a camera to take images of the display screen in a location different from the display and monitoring the captured images obtained from the camera, there is no need to construct a system to monitor the display status. Therefore, there is no need to consider where the camera should be installed in a location different from the display, and there is no need for installation costs for installing the camera in a location different from the display.
  • the network N may be a LAN (local area network) or another communication network.
  • FIG. 2 is a schematic functional block diagram showing the configuration of the multi-display 30.
  • the multi-display 30 includes a communication section 301, a display section 302, a display control section 303, a camera 304, a line of sight detection section 305, a storage section 306, and a control section 307.
  • the communication unit 301 communicates with the monitoring device 10 and the content supply device 20 via the network N.
  • the display unit 302 displays content based on a video signal.
  • the display unit 302 is, for example, a liquid crystal display panel.
  • the multi-display 30 includes nine displays, but to simplify the explanation, the nine displays will be collectively described as one display unit 302.
  • the display control unit 303 reads content stored in the storage unit 306 and displays it on the display unit 302 by controlling a drive circuit that drives the liquid crystal display panel that is the display unit 302 .
  • the camera 304 captures an image of a visible range of the display screen of the multi-display 30.
  • the line of sight detection unit 305 extracts a person (viewer) included in the captured image based on the captured image captured by the camera 304, and detects the line of sight of the person. Furthermore, the line of sight detection unit 305 detects the movement of the person's line of sight and the position at which the person is gazing on the multi-display 30 based on the detected line of sight. Furthermore, the line-of-sight detection unit 305 generates line-of-sight data based on the result of detecting the line of sight, and transmits it to the monitoring device 10 via the communication unit 301.
  • the line of sight data represents the viewing behavior of a viewer who views content displayed on a display device by viewing the display screen of the display device.
  • line-of-sight data is data based on the results of detecting the line-of-sight of a person viewing the display screen, and includes data on the number of people visually recognized on the multi-display display screen between the start timing of line-of-sight detection and the measurement end timing. This is data representing the position.
  • the storage unit 306 stores the content supplied from the content supply device 20.
  • the control section 307 controls each section of the multi-display 30.
  • FIG. 3 is a schematic functional block diagram showing the configuration of the monitoring device 10.
  • the monitoring device 10 includes a communication section 101, an acquisition section 102, a storage section 103, a determination section 104, an output section 105, and a control section 106.
  • the communication unit 101 communicates with the multi-display 30 via the network N.
  • the acquisition unit 102 acquires line-of-sight data from the multi-display 30.
  • the storage unit 103 stores the line-of-sight data acquired by the acquisition unit 102.
  • the determination unit 104 determines whether or not there is a problem with the display device (multi-display 30) based on the viewing behavior of a plurality of viewers determined from the imaging data. For example, the determination unit 104 determines whether a problem has occurred in the multi-display 30 based on the viewing behavior indicated by the line-of-sight data received from the multi-display 30.
  • the display screen of one display (for example, display 30f) among the nine displays in the multi-display 30 is A, and a problem occurs on this display screen A, and the content is not displayed (for example, When there is no signal and the screen is completely black (black screen), screens other than display A can continue to display one content, so only display screen A is black, which makes it difficult for the viewer. In this case, only the display screen A looks peculiar. Therefore, one content is displayed on one large screen by eight displays, but only display screen A is a black screen due to a problem, so display screen A is the only one that is different from the others.
  • the images are displayed individually, and they stand out compared to the other eight display screens.
  • the determination unit 104 determines whether the viewer views the content on the multi-display 30 that is normally in operation, and the case where the multi-display 30 is in a state where a problem has occurred on the display screen A. 30 can be determined using the characteristics of each gaze movement.
  • determination unit 104 There are mainly two types of determinations made by the determination unit 104: (1) Determination using the line-of-sight characteristics of the viewer when the display is in normal operation; (2) Determination using the line-of-sight characteristics of the viewer when the display is in an abnormal state. These two determinations will be explained.
  • condition a1 for example, in the case of content where textual information such as the release date is displayed only on a specific display among multiple displays, and large characters etc. are displayed on other displays, the viewer who wants to check the release date If there are multiple viewers, there is a possibility that this problem may occur with multiple viewers gazing at the display displaying the release date.
  • the content is a video
  • some viewers look at the character and then shift their gaze to the display displaying the release date, while others change their gaze position relative to the character depending on the character's movements. Because of this, there are differences in the characteristics of changes in the gaze position. Therefore, based on condition a2, it is possible to distinguish whether the display is in normal operation or in a malfunction.
  • the determination unit 104 acquires gaze data including gaze points (positions to be gazed at) and gaze time (time spent gazing at the same position) from the detected gaze detection unit 305.
  • gaze data including gaze points (positions to be gazed at) and gaze time (time spent gazing at the same position)
  • the determination unit 104 acquires gaze data including gaze points (positions to be gazed at) and gaze time (time spent gazing at the same position) from the detected gaze detection unit 305.
  • a determination process is performed using the above-mentioned conditions and a reference value determined for the conditions. By performing this determination process, it is possible to estimate whether or not there is a problem with the display. If it is determined that there is a problem, an alert message is output from the output unit 105.
  • the determination unit 104 determines whether the position of the display device is concentrated in a specific area on the display screen regardless of changes in the image displayed on the display device, which is a position that is viewed by multiple viewers. Alternatively, it may be determined that there is a problem in a specific area.
  • the change in image is based on, for example, whether or not the image of the content displayed on the display screen changes during the playback time from when the content is played until it ends. For example, if the content is a still image, the image does not change while the still image is being displayed. In addition, if the content is a video, if there is no scene change during playback of the content, there may be no movement or color change of the people, scenery, products, character strings, etc.
  • the determination unit 104 may determine whether or not the images are concentrated in a specific area based on whether or not there is similarity. For example, if there is similarity, it may be determined that the data are concentrated in a specific area, and if there is no similarity, it may be determined that the content is not concentrated in the specific area.
  • the output unit 105 outputs the determination result. For example, the output unit 105 outputs an alert when it is determined that a problem has occurred in the display as a result of the determination. When outputting an alert, the output unit 105 displays a screen representing the alert on a display device built into the monitoring device 10A or a display device provided outside the monitoring device 10. Further, the output unit 105 transmits an alert to a terminal device (for example, a smartphone) carried by the display administrator or the display user, and displays an alert screen or emits an alert sound.
  • the control unit 106 controls each part of the monitoring device 10.
  • FIG. 4 is a flowchart illustrating the operation of the monitoring device 10.
  • the multi-display 30 captures an image using the camera 31.
  • the line-of-sight detection unit 305 detects the person's line-of-sight, and generates line-of-sight data representing the position of the line of sight between the timing of detecting the line of sight and the measurement target time (here, 15 seconds, for example). is generated and transmitted to the monitoring device 10.
  • the line-of-sight detection unit 305 performs line-of-sight detection processing for each person extracted from the captured image, and transmits line-of-sight data to the monitoring device 10 every time line-of-sight data is generated.
  • the acquisition unit 102 of the monitoring device 10 receives (acquires) the line-of-sight data (step S101).
  • the storage unit 103 stores the acquired line of sight data.
  • the determination unit 104 determines whether the number of received line-of-sight data has reached the number of people to be determined (step S102), and if it has not reached the number of people to be determined (step S102-NO), the process moves to step S101.
  • the number of people to be judged may be any number as long as it is 2 or more, but in this case, it is preferably a number of people that can grasp the tendency of viewing behavior of multiple viewers, for example, 10 people. .
  • step S102 if the number of received line-of-sight data has reached the number of people to be determined (step S102-YES), the determination unit 104 determines that there is line-of-sight data in which the time spent gazing at one display is longer than the reference time.
  • the reference time is preferably a time shorter than the measurement target time, and is a time that can be grasped by continuously directing the line of sight to any position on the display, for example, 1 second. If the line-of-sight data for 10 people does not include line-of-sight data indicating that the line of sight is directed to the same position for more than one second (step S103 - NO), the determination unit 104 determines that the display is in a normal operating state.
  • step S104 Determination is made (step S104). In such a case, it is estimated that no one among the 10 viewers gazed at a specific position on the display for more than 1 second. Moreover, in this case, it is estimated that the above-mentioned condition a1 is satisfied. In this case, the acquisition unit 102 performs gaze data acquisition processing (step S101).
  • step S103 if the determination unit 104 includes gaze data indicating that the gaze data of 10 people are directing their gaze to the same position for more than 1 second (step S103-YES), the determination unit 104 moves the process to step S105.
  • the determining unit 104 determines whether there is any similar visual line data regarding the visual line motion based on the visual line data (step S105). For example, the determination unit 104 compares the gaze data of 10 people with respect to the movement from the first gaze position to the gaze position after a certain period of time, and determines that the gaze position after at least a certain period of time is at the same position or within a certain range. If it is, it is determined that the line-of-sight data is similar, and if the line-of-sight position after a certain period of time is not at the same position, it is determined that there is no similarity.
  • the determination unit 104 determines that the display is in a normal operating state (step S104). In this case, it can be inferred that only a specific viewer was gazing at a specific position on the display, and that the gazing was not due to a malfunction or the like.
  • the determination unit 104 determines whether or not the similar gaze data exceeds the number of reference people.
  • the reference number of people may be a number smaller than the predetermined number of people in step S102, and may be a number of people that can be estimated to have a common viewing tendency, and is, for example, six people.
  • the determination unit 104 determines that the display is in a normal operating state (step S104). ). In this case, although several viewers were gazing at similar positions, it can be estimated that several viewers were gazing at a location where interesting content was being displayed.
  • step S106 if the similar line-of-sight data exceeds the reference number of people (step S106-YES), the determining unit 104 determines that a problem has occurred in the display (step S107). If it is determined that a problem has occurred in the display, the output unit 105 outputs an alert (step S108).
  • FIG. 5 is a schematic functional block diagram showing the configuration of a monitoring device 10A in another embodiment.
  • This monitoring device 10A can be provided in the remote control system S instead of the monitoring device 10 in FIG.
  • the acquisition unit 102A acquires image data from the camera 304 that images a location where the multi-display 30 can be viewed.
  • the storage unit 103A stores the trained model.
  • a trained model is a model created by performing supervised learning on a learning model.
  • the trained model uses visual recognition data that can be used to determine the position on the display screen of a display device that is visible to multiple viewers, and label data that indicates whether or not there is a problem with the display. This is a model that has learned the conditions that represent the relationship between data and whether there is a problem with the display.
  • the visual recognition data may be, for example, imaging data or stationary data representing a visual position and duration.
  • the imaging data is data obtained by imaging a location where the display can be viewed, and for example, imaging data obtained from the camera 31 is used.
  • This imaging data includes the viewer viewing the display, and it is possible to grasp which position of the display screen of the display the viewer is viewing.
  • the imaging data may be obtained from a camera attached to a multi-display of the same type as the multi-display to be monitored, or a multi-display having the same number of displays arranged in the vertical and horizontal directions.
  • the stationary data is data that includes a viewing position that is a position that is viewed by the viewer and indicates a position on the display screen of a display device, and a duration that is the time that the viewer continues to direct his or her line of sight to the viewing position.
  • a method for obtaining stationary data for example, there is a method of obtaining the retention data by measuring the duration of time for each visible position viewed by the viewer based on imaging data.
  • Another method for obtaining stationary data is to input the image data obtained from the camera 31 into a trained model that can obtain the visible position and duration by inputting the image data. There is a way to get the position and duration.
  • the learned model is trained to predict whether a problem has occurred in the monitored multi-display based on the input visual data.
  • the trained model uses image data obtained by capturing an image of a place where the display is visible and data indicating whether there is a problem with the display device, and calculates the relationship between the image data and whether there is a problem with the display device.
  • the trained model is a stationary model that is a combination of a viewing position, which is the position that the viewer views and indicates the position on the display screen of the display device, and a duration, which is the time that the viewer continues to direct his/her line of sight to the viewing position.
  • a second trained model that has learned conditions representing the relationship between the data and whether or not there is a problem with the display device. Note that the learned model may predict whether or not a problem has occurred, or may predict the degree to which a problem has occurred based on probability or the like.
  • the model to be trained into the trained model may be a model to which any machine learning method is applied.
  • the learning model may be a deep learning model using DNN (Deep Neural Network), CNN (Convolutional Neural Network), etc., which are known as image classification models that recognize and classify images.
  • the determining unit 104A obtains a determination result as to whether or not there is a defect in the multi-display 30 by inputting the captured data to the trained model stored in the storage unit 103A. That is, the determination unit 104A uses visual recognition data that is a position visible to a plurality of viewers and that allows the position on the display screen of the display device to be grasped, and data that indicates whether or not there is a problem with the display device. By inputting the visual recognition data into a trained model that has learned the conditions representing the relationship between the visual recognition data and whether or not there is a problem with the display device, a result of determining whether or not there is a problem with the display device is obtained. .
  • the determining unit 104A may determine whether there is a problem with the display device using either the first trained model or the second trained model.
  • the determination unit 104A inputs imaging data obtained from the outside into the first trained model and obtains a result as to whether or not there is a problem with the display device. Determine whether there is a problem.
  • the determination unit 104A inputs stationary data obtained based on the imaging data to the second trained model to obtain a result as to whether or not there is a problem with the display device. Then, it is determined whether or not there is a problem with the display device.
  • the determination unit 104A may acquire the dwell data from a measuring device that is provided outside the monitoring device 10A and obtains the dwell data from the imaging data. Further, a measurement function of such a measurement device may be provided in the monitoring device 10A, and the stationary data may be obtained from the measurement function.
  • the determination unit 104A obtains the stationary data by inputting it into a third trained model that can obtain the visible position and duration by inputting the imaging data. You can do it like this.
  • the third learned model is a learned model that has learned the relationship between the imaging data, the visible position, and the duration.
  • the function of obtaining stationary data using the third trained model may be provided in an external device, and the determination unit 104A may acquire the stationary data, or the function may be provided inside the monitoring device 10A, and the function may be provided inside the monitoring device 10A to make a determination.
  • the unit 104A may obtain stationary data from the third learned model.
  • the monitoring device 10A determines whether or not there is a problem with the display device by acquiring stationary data from the imaged data using the third trained model and inputting the stationary data to the second trained model. do. Therefore, in the monitoring device 10A, it is determined whether or not there is a problem with the display device by using the learned model in two stages.
  • the output unit 105A outputs an alert signal based on the determination result of the determination unit 104A.
  • FIG. 6 is a schematic functional block diagram showing the functions of the learning device 50.
  • the learning device 50 includes an input section 501, a learning section 502, and an output section 503.
  • the input unit 501 acquires teacher data in which image data obtained by capturing an image of a place where the display device can be visually recognized is associated with label data indicating whether or not there is a problem with the display device.
  • This training data includes, for example, a first set of data in which the viewer's viewing behavior (such as movement of the line of sight) when a problem occurs on a multi-display is associated with label data indicating that a problem has occurred.
  • the teacher data includes second teacher data in which the viewer's viewing behavior when no problem occurs in the multi-display is associated with label data indicating that no problem occurs. It is preferable that the first teacher data and the second teacher data are large amounts of data obtained in different scenes and at different times.
  • the input unit 501 of the learning device 50 can capture an image of a place where the display device can be viewed with a camera in a state where no malfunction has occurred in the display device, so that the viewer can watch the viewing in a state where no malfunction has occurred. Collect imaging data that captures the behavior. Then, the learning unit 502 assigns label data indicating that no defect has occurred to this imaging data.
  • the input unit 501 extracts image data of the viewer's viewing behavior captured by the camera during the period in which the problem occurs.
  • the learning unit 502 adds label data indicating that a defect has occurred to this imaging data, and generates teacher data. The learning unit 502 then learns using the generated teacher data.
  • the learning unit 502 uses visibility data that is a position visible to a plurality of viewers and that allows the position on the display screen of a display device to be grasped, and data that indicates whether or not there is a problem with the display.
  • a trained model is generated by learning conditions that express the relationship between the display and whether or not there is a problem with the display.
  • the trained model generated by the learning unit 502 may be one or more of the above-described first trained model, second trained model, and third trained model.
  • the output unit 503 outputs the trained model generated by the learning unit 502 to an external device.
  • the output unit 503 outputs the trained model to the monitoring device 10A.
  • the output section 503 of the learning device 50 and the monitoring device 10A are communicably connected via a communication cable or a communication network, and the learned model is transmitted from the output section 503 of the learning device 50 to the monitoring device 10A. Output by sending certain data.
  • FIG. 7 is a flowchart illustrating the operation of the monitoring device 10A.
  • the acquisition unit 102A of the monitoring device 10A acquires imaging data from the camera 31 of the multi-display 30 (step S201).
  • the determination unit 104A inputs the acquired imaging data to the learned model (step S202), and acquires a determination result from the learned model (step S203).
  • the determination unit 104A determines whether the determination result indicates that a problem has occurred in the display (step S204).
  • step S204-NO If the determination result obtained from the trained model does not indicate that a malfunction has occurred in the display (step S204-NO), the determination unit 104A advances the process to step S201, and determines whether the determination result obtained from the trained model If the determined result indicates that a problem has occurred in the display (step S204-YES), the output unit 105A outputs an alert (step S205).
  • the monitoring target is the multi-display 30
  • the monitoring target is not limited to the multi-display, and as long as it is equipped with a camera, a plurality of display devices are adjacent to each other.
  • it may be a group of displays arranged in close proximity, or it may be digital signage.
  • each display may display one content.
  • the present invention can also be applied to a multi-display system in which screens projected by a plurality of projectors are arranged adjacent to each other and one content is displayed using the plurality of projection screens.
  • FIG. 8 is a schematic functional block diagram showing the configuration of a monitoring device 10B in another embodiment.
  • the monitoring device 10B includes an acquisition section 102B and a determination section 104B.
  • the acquisition unit 102B acquires visual recognition data that is a position that is viewed by a plurality of viewers and that allows the position on the display screen of the display device to be grasped.
  • a camera attached to the display device can be used as the camera.
  • the determination unit 104B uses visibility data that is a position that is visible to a plurality of viewers and that allows the position on the display screen of the display device to be grasped, and data that indicates whether or not there is a problem with the display device, By inputting the visibility data acquired by the acquisition unit into a trained model that has learned a condition representing the relationship between the visibility data and whether or not there is a problem with the display device, it is possible to determine whether there is a problem with the display device. Obtain the determination result whether or not.
  • the visual recognition data includes, for example, data that makes it possible to ascertain which position on the display screen of the display device the viewer is directing his/her line of sight to or which position the viewer is looking at. For example, if a plurality of viewers tend to be looking at the same position on the display screen, it can be determined that a problem is occurring at that position on the display screen.
  • FIG. 9 is a schematic functional block diagram showing the configuration of a monitoring device 10C in another embodiment.
  • the monitoring device 10C includes an acquisition section 102C, a determination section 104C, and an output section 105C.
  • the acquisition unit 102C acquires visual recognition data that is a position that is viewed by a plurality of viewers and that allows the position on the display screen of the display device to be grasped.
  • the determination unit 104C determines the visibility data using visibility data that is a position that is viewed by a plurality of viewers and that allows the position on the display screen of the display device to be grasped, and data that indicates whether or not there is a problem with the display device.
  • the output unit 105C outputs an alert signal according to the determination result.
  • the storage unit 103, the storage unit 103A, and the storage unit 306 each include a storage medium such as an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), or a RAM (Rapid Memory). ndom Access read /write Memory), ROM (Read Only Memory), or any combination of these storage media.
  • nonvolatile memory can be used for these storage units.
  • the acquisition unit 102, the acquisition unit 102A, the determination unit 104, the determination unit 104A, the control unit 106, the display control unit 303, the line of sight detection unit 305, the control unit 307, the input unit 501, the learning unit 502 may be constituted by a processing device such as a CPU (central processing unit) or a dedicated electronic circuit, for example.
  • a processing device such as a CPU (central processing unit) or a dedicated electronic circuit, for example.
  • construction management is performed by recording a program for realizing the functions of the processing section shown in Fig. 1 on a computer-readable recording medium, and having the computer system read and execute the program recorded on this recording medium. It's okay.
  • the "computer system” herein includes hardware such as an OS and peripheral devices.
  • the term "computer system” includes the homepage providing environment (or display environment) if a WWW system is used.
  • the term “computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • the term “computer-readable recording medium” includes a medium that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • the above program may be stored in a predetermined server, and the program may be distributed (downloaded, etc.) via a communication line in response to a request from another device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得する取得部(102B)と、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データと、表示装置に不具合があるか否かを示すデータとを用いて、視認データと表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、取得部によって取得された視認データを入力することで、表示装置に不具合があるか否かの判定結果を得る判定部(104B)と、を有する。

Description

監視装置、監視方法
 本発明は、監視装置、監視方法に関する。
 公共の施設や店舗において、モニタやプロジェクタ等の映像表示機器(以下ディスプレイ)を使用し、広告などや通知事項を写す様々なソリューションがある。この場合、表示デバイスに不具合が生じた場合や、表示デバイスに入力信号を供給する供給機器に不具合が生じた場合には、意図した映像を正しく表示できないことがある。
 映像を正しく表示できない場合、広告主などのディスプレイ使用者(以下ユーザ)にとっては不利益となる。そのため、ディスプレイの表示内容に不具合が生じているか否かを検出し、不具合が生じている場合には、直ちに交換や、機器確認などのメンテナンスを促す必要があるが、ディスプレイが設置された現場に赴き、表示状態を確認しようとするとコストがかかる。そのため、使用者や管理者は、遠隔のアプリケーションなどを用いて、表示内容に異常が起きているか否かを把握したいというニーズがある。
 ここで、ディスプレイを視聴する視聴者の視線を検出する技術がある(例えば特許文献1参照)。
特開2009-244949号公報
 しかしながら、ディスプレイの表示状態を監視する場合、ディスプレイに内蔵されたセンサなどを用いて、ディスプレイの内部状態を監視することで、ディスプレイ側だけで不具合の発生有無を検出する方法がある。しかし、この方法では、「映像機器側の不備」、「センサで検出できない最後段パネルなどの表示デバイスのみの不調」、というように、不具合内容によっては、検出できない種類の不具合がある。
 本開示における、解決しようとする問題点は、機器の内部を検出するセンサを用いる場合には、検出できる対象の不具合が十分ではないという点である。
 本発明の一態様は、表示装置を視認可能な場所を撮像するカメラから撮像データを取得する取得部と、前記撮像データから判定される、複数の視聴者の視聴行動に基づいて、前記表示装置に不具合があるか否かを判定する判定部と、を有する監視装置である。
 本発明の一態様は、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得する取得部と、前記視認データと、前記表示装置に不具合があるか否かを示すデータとを用いて、前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、前記取得部によって取得された視認データを入力することで、前記表示装置に不具合があるか否かの判定結果を得る判定部とを有する監視装置である。
 本発明の一態様は、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データと、前記表示装置に不具合があるか否かを示すデータとを用いて、前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習する学習装置である。
 本発明の一態様は、表示装置を視認可能な場所を撮像するカメラから撮像データを取得し、前記撮像データから判定される、複数の視聴者の視聴行動に基づいて、前記表示装置に不具合があるか否かを判定する監視方法である。
 本発明の一態様は、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得し、前記視認データと、前記表示装置に不具合があるか否かを示すデータとを用いて前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、前記視認データを入力することで、前記表示装置に不具合があるか否かの判定結果を取得し、前記判定結果に応じてアラート信号を出力する監視方法である。
 本発明によれば、表示装置を視認可能な場所を撮像するカメラから得られる撮像データを用い、撮像データに基づく視聴者の視聴行動から前記表示装置に不具合があるか否かを判定することができるため、機器の内部を検出するセンサとは別の手法によって不具合をあるか否かを把握することができる。
遠隔制御システムSの構成を示すシステム構成図である。 マルチディスプレイ30の構成を示す概略機能ブロック図である。 監視装置10の構成を示す概略機能ブロック図である。 監視装置10の動作を説明するフローチャートである。 他の実施形態における監視装置10Aの構成を示す概略機能ブロック図である。 学習装置50の機能を表す概略機能ブロック図である。 監視装置10Aの動作を説明するフローチャートである。 他の実施形態における監視装置10Bの構成を示す概略機能ブロック図である。 他の実施形態における監視装置10Cの構成を示す概略機能ブロック図である。
 以下、本発明の一実施形態による遠隔監視システムSについて図面を参照して説明する。
 図1は、遠隔制御システムSの構成を示すシステム構成図である。
 遠隔監視システムSは、監視装置10と、コンテンツ供給装置20と、マルチディスプレイ30とがネットワークNを介して通信可能に接続される。
 監視装置10は、マルチディスプレイ30についてネットワークNを介して制御すること、マルチディスプレイ30に関する情報についてネットワークNを介して取得する。
 監視装置10を使用する使用者は、監視装置10を利用することで、マルチディスプレイ30を遠隔から監視したり、制御することができる。
コンテンツ供給装置20は、コンテンツを記憶しており、マルチディスプレイにコンテンツを供給する。コンテンツは、広告、お知らせ、案内等であってもよい。
 マルチディスプレイ30は、複数のディスプレイが隣接して設置され、コンテンツ供給装置20から供給されるコンテンツに対応する映像信号を表示する。
 マルチディスプレイ30は、カメラ31が設けられている。このカメラは、マルチディスプレイ30に内蔵されていてもよいし、マルチディスプレイ30の外部に設けられていてもよい。マルチディスプレイ30は、ここでは、縦方向に3台、横方向に3台並ぶようにして合計9台のディスプレイ(ディスプレイ30a、ディスプレイ30b、ディスプレイ30c、ディスプレイ30d、ディスプレイ30e、ディスプレイ30f、ディスプレイ30g、ディスプレイ30h、ディスプレイ30i)が隣接して配置されている。
 マルチディスプレイ30は、このような複数のディスプレイのそれぞれの表示画面を含む1つの大きな表示画面として、コンテンツを表示することができる。
 カメラ31は、マルチディスプレイ30を視認可能な範囲を撮像する。より具体的に、カメラ31は、マルチディスプレイ30の表示画面の近傍にいる視聴者を撮像する。
 ここで、ディスプレイにカメラを設置する場合、ディスプレイの表示画面を撮像するカメラをディスプレイとは異なる場所に設置するケースは稀である。一方、ディスプレイにカメラを設置し、ディスプレイの位置から、ディスプレイの表示画面を視認可能な範囲を撮像するカメラすなわち、ディスプレイの表示画面を視認するユーザを撮像可能なカメラが設置されるケースは増えつつある。例えば、ディスプレイの前に立つ人物(視聴者)の動作をカメラで撮像し、撮像された人物の動作を解析し、その動作に応じて、表示されるコンテンツに含まれるオブジェクトを動かすコンテンツが提供されている。また、ディスプレイに設けられたカメラによって視聴者を撮像し、撮像画像から得られる人物(視聴者)の顔画像に基づいて年齢層を推定し、その推定された年齢層に応じた広告をディスプレイに表示させるソリューションについても提供されている。
 本実施形態においては、このような一般に利用されているカメラを利用し、このカメラから得られる撮像画像をもとに、マルチディスプレイを視聴する視聴行動に基づいて、マルチディスプレイに含まれるいずれかのディスプレイに不具合が発生しているか否かを判定する。そのため、ディスプレイにカメラが設置されている場合には、そのカメラを利用することで、新たにカメラを設置する必要がない。また、ディスプレイの表示画面を撮像するためのカメラをディスプレイとは異なる場所に設置し、カメラから得られる撮像画像を監視することで、ディスプレイの表示状態を監視するようなシステムを構築する必要がないため、ディスプレイとは異なる場所のいずれの場所にカメラを設置すればよいかを検討する必要がなく、また、ディスプレイとは異なる場所にカメラを設置するための設置コストも不要である。
 ネットワークNは、LAN(ローカルアリアネットワーク)であってもよいし、他の通信網であってもよい。
 図2は、マルチディスプレイ30の構成を示す概略機能ブロック図である。
 マルチディスプレイ30は、通信部301、表示部302、表示制御部303、カメラ304、視線検知部305、記憶部306、制御部307を有する。
 通信部301は、ネットワークNを介して、監視装置10、コンテンツ供給装置20と通信を行う。
 表示部302は、映像信号に基づくコンテンツを表示する。表示部302は、例えば、液晶表示パネルである。ここでは、マルチディスプレイ30には9台のディスプレイが含まれるが、説明を簡単にするために、1つの表示部302として9台のディスプレイをまとめて説明する。
 表示制御部303は、表示部302である液晶表示パネルを駆動する駆動回路を制御することで、記憶部306に記憶されるコンテンツを読み出して表示部302に表示する。
 カメラ304は、マルチディスプレイ30の表示画面を視認可能な範囲を撮像する。
 視線検知部305は、カメラ304によって撮像された撮像画像に基づいて、撮像画像に含まれる人物(視聴者)を抽出し、その人物の視線を検知する。また、視線検知部305は、検知した視線に基づいて、人物の視線の動きや、マルチディスプレイ30において人物が注視している位置を検出する。また、視線検知部305は、視線を検出した結果に基づいて、視線データを生成し、通信部301を介して監視装置10に送信する。視線データは、表示装置の表示画面を視認することで表示装置に表示されたコンテンツを視聴する視聴者の視聴行動を表す。具体的には、視線データは、表示画面を視認する人物の視線を検知した結果に基づくデータであり、視線を検知した開始タイミングから測定終了タイミングまでの間におけるマルチディスプレイの表示画面における視認された位置を表すデータである。
 記憶部306は、コンテンツ供給装置20から供給されたコンテンツを記憶する。
 制御部307は、マルチディスプレイ30の各部を制御する。
 図3は、監視装置10の構成を示す概略機能ブロック図である。
 監視装置10は、通信部101、取得部102、記憶部103、判定部104、出力部105、制御部106を有する。
 通信部101は、ネットワークNを介して、マルチディスプレイ30と通信を行う。
 取得部102は、マルチディスプレイ30から視線データを取得する。
 記憶部103は、取得部102が取得した視線データを記憶する。
 判定部104は、撮像データから判定される、複数の視聴者の視聴行動に基づいて、表示装置(マルチディスプレイ30)に不具合があるか否かを判定する。例えば判定部104は、マルチディスプレイ30から受信した視線データが示す視聴行動に基づいて、マルチディスプレイ30に不具合が発生しているか否かを判定する。
 ここで、マルチディスプレイ30における9台のディスプレイのうち1つのディスプレイ(例えば、ディスプレイ30f)の表示画面をAとし、この表示画面Aにおいて不具合が発生した場合し、コンテンツが非表示の状態(例えば、無信号状態となり全体的に黒い画面(黒画面))となった場合、表示画面A以外については、1つのコンテンツを継続して表示できているため、表示画面Aだけが黒いため、視聴者にとっては、表示画面Aのみが特異に見える。そのため、大きな1つの画を8台のディスプレイの画面によって1つのコンテンツが表示されているのに対し、表示画面Aのみが不具合によって黒画面となっているため、表示画面Aが、唯一他と違う画像が個別で表示しており、他の8台の表示画面に比べて目立つ。
 そして、ディスプレイシステムの前を横切るように移動しながらマルチディスプレイ30を視聴している視聴者は、このような表示状態のマルチディスプレイ30を視認すると、表示画面Aが目立つため、特別に表示画面Aを注視してしまうことが予測される。これは、プレグナンツの法則の「類同の要因」に該当するともいえる。
 判定部104は、このような視聴者の視聴行動に基づいて、閲覧者が通常稼働中であるマルチディスプレイ30によってコンテンツを閲覧するケースと、表示画面Aに不具合が発生している状態のマルチディスプレイ30によってコンテンツを閲覧するケースとを区別する方法について、それぞれの視線動作の特徴を利用して判定することができる。
 判定部104が行う判定には、主に次の2つがある。
(1)ディスプレイが通常稼働中のケースの閲覧者の視線特徴を用いた判定
(2)ディスプレイに異常状態が生じているケースの視聴者の視線特徴を用いた判定
 この2つの判定について説明する。
(1)ディスプレイが通常稼働中のケースの視聴者の視線特徴を用いた判定について
 ディスプレイが通常の稼働をしているケース(不具合が生じていないケース)における視聴者の視線の動きについては、例えば次のa1、a2のような特徴がある。
(a1)1点を注視しない。コンテンツとして表示されたテロップや映像にあわせて、視聴者の視線は微動する。例えば、テロップの文字列を読み進めると、視線は移動する。また、コンテンツとして表示された映像において興味に応じて注視する点が変わる。
(a2)コンテンツを異なる視聴者が視聴する場合、初回の視線位置(最初に注視する位置)と一定時間後の視線位置とについては、視聴者毎に異なるため類似性がない。特に、コンテンツが動画である場合には、表示されたコンテンツに対して最初に注視した位置が異なるとともに、最初に注視した開始位置によっては、その後の視線の動きが異なる。
(2)ディスプレイに異常状態が生じているケースの視聴者の視線特徴を用いた判定について
 マルチディスプレイを構成する少なくとも1つのディスプレイに不具合が生じたケースにおける視聴者の視線の動きについては、例えば次のb1、b2のような特徴がある。
(b1)1点を注視する。
(b2)コンテンツを異なる視聴者が視聴する場合、初回の視線位置(最初に注視する位置)と一定時間後の視線位置とについて、異なる視聴者において類似性がある。例えば、最初に注視する位置については、視聴者によって異なるものの、表示態様が特異なディスプレイが気になるため、その特異なディスプレイに視線を向けてしまう。そのため、一定時間後の視線位置は、異なる視聴者において類似性がある。
(b3)上述のb1において、注視されるディスプレイは、不具合が生じているディスプレイである割合が高い。
 上述した条件a1について、たとえばマルチディスプレイのうち特定のディスプレイにだけ発売日などの文字情報が表示され、他のディスプレイに大きなキャラクターなどが表示されているコンテンツの場合などは、発売日を確認したい視聴者が複数人いる場合には、発売日が表示されたディスプレイを注視する視聴者の複数人について生じる可能性はある。しかし、コンテンツが動画である場合、キャラクターに視線を向けた後で発売日が表示されたディスプレイに視線を移す視聴者と、当該キャラクターの動きに応じてキャラクターに対して注視する位置が変わる視聴者などがいるため、注視する位置の変化の特徴に違いが生じる。そのため条件a2に基づいて、ディスプレイが通常稼働中であるか不具合が生じているかについて区別することができる。
 このような条件を考慮し、判定部104は、注視箇所(注視する位置)と、注視時間(同じ位置を継続して注視している時間)を含む視線データを検出した視線検知部305から取得し、視線データが取得された視聴者の人数が一定の数に到達した場合に、上述の条件および、条件に対して定められた基準値を用いて判定処理を行う。この判定処理を行うことで、ディスプレイに不具合が生じているか否かの状況を推定することができる。不具合があると判断された場合には、出力部105からにアラートメッセージを出力する。
 また、判定部104は、複数の視聴者が視認する位置であって、表示装置の表示画面における位置が、表示装置に表示する画像の変化にかかわらず、表示画面における特定の領域に集中する場合に、特定の領域に不具合があると判定してもよい。画像の変化とは、例えば、コンテンツを再生してから終了するまでの再生時間において、表示画面に表示されるコンテンツの画像が変化するか否かに基づくものである。例えば、コンテンツが静止画である場合、その静止画が表示されている間においては画像の変化はない。また、コンテンツが動画である場合、コンテンツの再生中においてシーンの切り替わりがない場合、コンテンツとして表示画面に表示された人物、景色、商品、文字列等について、動きがない、色の変化がない、ほとんど動かない場合等については、画像の変化がないといえる。
 また、特定の領域に集中する場合であるか否かについては、判定部104が、類似性があるか否かに基づいて判定してもよい。例えば、類似性がある場合には、特定の領域に集中していると判定し、類似性がない場合には、特定の領域に集中していないと判定してもよい。
 出力部105は、判定結果を出力する。例えば、出力部105は、判定結果においてディスプレイに不具合が発生していると判定された場合には、アラートを出力する。出力部105は、アラートを出力する場合、監視装置10Aに内蔵された表示装置または監視装置10の外部に設けられた表示装置に、アラートを表す画面を表示する。また、出力部105は、ディスプレイの管理者またはディスプレイの使用者が携帯する端末装置(例えば、スマートフォン等)にアラートを送信し、アラート画面を表示させる、または、アラート音を放音させる。
 制御部106は、監視装置10の各部を制御する。
 図4は、監視装置10の動作を説明するフローチャートである。
 マルチディスプレイ30は、カメラ31によって撮像する。視線検知部305は、撮像画像から人物が抽出されると、その人物の視線を検知し、視線を検知したタイミングから測定対象時間(ここでは例えば15秒)の間の視線の位置を表す視線データを生成し、監視装置10に送信する。視線検知部305は、撮像画像から抽出される人物のそれぞれについて、視線検知処理を行い、視線データが生成される毎に、視線データを監視装置10に送信する。
 監視装置10の取得部102は、マルチディスプレイ30から視線データが送信されると、視線データを受信(取得)する(ステップS101)。記憶部103は、取得された視線データを記憶する。判定部104は、受信した視線データの数が判定対象人数に到達したかを判定し(ステップS102)、判定対象人数に達していなければ(ステップS102-NO)、処理をステップS101に移行する。ここで判定対象人数は、2以上であれば任意の数であってよいが、ここでは、複数の視聴者の視聴行動の傾向を把握できる程度の人数であることが好ましく、例えば10人である。
 ステップS102において、判定部104は、受信した視線データの数が判定対象人数に達している場合には(ステップS102-YES)、1つのディスプレイを注視した時間が基準時間以上である視線データがあるかを判定する(ステップS103)。基準時間は、測定対象時間よりも短い時間であって、ディスプレイのいずれかの位置に継続して視線を向けていると把握可能な程度の時間であることが好ましく、例えば1秒である。
 判定部104は、10人分の視線データに、1秒以上同じ位置に視線を向けていることを示す視線データが無い場合(ステップS103-NO)、ディスプレイが通常稼働している状態であると判定する(ステップS104)。このようなケースは、10人の視聴者の中に、ディスプレイの特定の位置を1秒以上継続して注視する人がいなかったと推定される。また、この場合、上述の条件a1を満たすと推定される。この場合、取得部102は、視線データの取得処理を行う(ステップS101)。
 ステップS103において、判定部104は、10人分の視線データに、1秒以上同じ位置に視線を向けていることを示す視線データがある場合(ステップS103-YES)、処理をステップS105に移す。そして判定部104は、視線データに基づく視線動作について、類似性がある視線データがあるか否かを判定する(ステップS105)。例えば、判定部104は、最初に注視した位置から一定時間後の視線位置への動きについて、10人分の視線データをそれぞれ比較し、少なくとも一定時間後の視線位置が同じ位置または一定の範囲内にある場合には、類似性がある視線データであると判定し、一定時間後の視線位置が同じ位置にはない場合には、類似性がないと判定する。
 判定部104は、視線データに基づく視線動作について、類似性がある視線データがない場合(ステップS105-NO)、ディスプレイが通常稼働している状態であると判定する(ステップS104)。この場合、特定の視聴者のみがディスプレイの特定位置を注視しただけであり、不具合等に起因して注視したものではないと推できる。
 一方、判定部104は、視線データに基づく視線動作について、類似性がある視線データがある場合(ステップS105-YES)、類似性のある視線データが基準人数の数を超えているか否かを判定する(ステップS106)。基準人数は、ステップS102における所定人数よりも少ない数であって、視聴傾向に共通性があると推定可能な程度の人数であればよく、例えば6人である。
 ステップS106において、判定部104は、類似性のある視線データが基準人数の数を超えていない場合には(ステップS106-NO)、ディスプレイが通常稼働している状態であると判定する(ステップS104)。この場合、数人の視聴者が同じような位置を注視したが、興味を引くような内容が表示されていた箇所を注視する視聴者が数人いたと推定できる。
 ステップS106において、判定部104は、類似性のある視線データが基準人数の数を超えている場合には(ステップS106-YES)、ディスプレイに不具合が発生したと判定する(ステップS107)。
 ディスプレイに不具合が発生したと判定されると、出力部105は、アラートを出力する(ステップS108)。
 このようにして、マルチディスプレイ30に設けられたカメラから視聴者を撮影し、マルチディスプレイ30に対する視聴者の視聴行動に基づいて、ディスプレイに不具合が発生しているか否かを判定することができる。
 次に、他の実施形態における監視装置10Aについて説明する。
 図5は、他の実施形態における監視装置10Aの構成を示す概略機能ブロック図である。この図において、図3の監視装置10と同じ機能については図3と同じ符号を付し、その説明を省略する。この監視装置10Aは、図1における監視装置10の代わりに遠隔制御システムSに設けることができる。
 取得部102Aは、マルチディスプレイ30を視認可能な場所を撮像するカメラ304から撮像データを取得する。
 記憶部103Aは、学習済みモデルを記憶する。
 学習済モデルは、学習モデルに教師あり学習を実行することにより作成されたモデルである。学習済モデルは、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データと、ディスプレイに不具合があるか否かを示すラベルデータとを用いて、視認データとディスプレイに不具合があるか否かとの関係性を表す条件を学習したモデルである。
 視認データは、例えば、撮像データであってもよいし、視認位置と継続時間とを表す停留データであってもよい。
 撮像データは、ディスプレイを視認可能な場所を撮像したデータであり、例えば、カメラ31から得られる撮像データが用いられる。この撮像データには、ディスプレイを視認する視聴者が含まれており、視聴者がディスプレイの表示画面のうちどの位置を視認しているかを把握することが可能である。
 撮像データは、監視する対象のマルチディスプレイと同じ型式、または縦方向と横方向に並べられたディスプレイの数が同じマルチディスプレイに取り付けられたカメラから得られる撮像データであってもよい。
 停留データは、視聴者が視認する位置であり表示装置の表示画面における位置を示す視認位置と、当該視認位置に視線を継続して向けた時間である継続時間とを含むデータである。
 停留データを得る方法としては、例えば、撮像データに基づいて、視聴者が視認する視認位置が継続する時間を視認位置毎に計測することで得る方法がある。また、停留データを得る他の方法としては、撮像データを入力することで、視認位置と継続時間とを得ることができる学習済みモデルに、カメラ31から得られる撮像データを入力することで、視認位置と継続時間とを得る方法がある。
 学習済モデルは、入力された視認データに基づいて、監視対象のマルチディスプレイにおいて不具合が発生したか否かを予測できるように学習する。
 学習済みモデルは、ディスプレイを視認可能な場所を撮像した撮像データと、表示装置に不具合があるか否かを示すデータとを用いて、撮像データと表示装置に不具合があるか否かとの関係性を表す条件を学習した第1学習済みモデルがある。
 また、学習済みモデルは、視聴者が視認する位置であり表示装置の表示画面における位置を示す視認位置と、当該視認位置に視線を継続して向けた時間である継続時間との組み合わせである停留データと、表示装置に不具合があるか否かとの関係性を表す条件を学習した第2学習済みモデルとがある。
 なお、学習済モデルは、不具合が発生したか否かを予測してもよいし、不具合が発生した度合いを確率などにより予測してもよい。
 学習済モデルへ学習させるモデル(学習モデル)は、任意の機械学習の手法が適用されたモデルであってよい。例えば、学習モデルは、画像を認識して分類する画像分類モデルとして知られているDNN(Deep Neural Network)、CNN(Convolutional Neural Network)等による深層学習(ディープラーニング)のモデルであってもよい。
 判定部104Aは、撮像データを記憶部103Aに記憶された学習済みモデルに入力することで、マルチディスプレイ30に不具合があるか否かの判定結果を得る。すなわち、判定部104Aは、複数の視聴者が視認する位置であって、前記表示装置の表示画面における位置を把握可能な視認データと、表示装置に不具合があるか否かを示すデータとを用いて前記視認データと表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、視認データを入力することで、表示装置に不具合があるか否かの判定結果を得る。
 判定部104Aは、第1学習済みモデルまたは、第2学習済みモデルのいずれか一方を用いて、表示装置に不具合があるか否かを判定してもよい。
 判定部104Aは、第1学習済みモデルを用いる場合、外部から得られる撮像データを、第1学習済みモデルに入力し、表示装置に不具合があるか否かの結果を得ることで、表示装置に不具合があるか否かを判定する。
 また、判定部104Aは、第2学習済みモデルを用いる場合、撮像データに基づいて得られる停留データを、第2学習済みモデルに入力し、表示装置に不具合があるか否かの結果を得ることで、表示装置に不具合があるか否かを判定する。
 第2学習済みモデルを用いる場合、判定部104Aは、監視装置10Aの外部に設けられる計測装置であって、撮像データから停留データを得る計測装置から、停留データを取得してもよい。また、このような計測装置の計測機能が監視装置10Aに設け、その計測機能から停留データを得るようにしてもよい。
 また、第2学習済みモデルを用いる場合、判定部104Aは、停留データを、撮像データを入力することで、視認位置と継続時間とを得ることができる第3学習済みモデルに入力することで得るようにしてもよい。第3学習済みモデルは、撮像データと、視認位置及び継続時間との関係を学習した学習済みモデルである。第3学習済みモデルを用いて停留データを得る機能は、外部の装置に設けられ、判定部104Aが、その停留データを取得するようにしてもよいし、監視装置10Aの内部に設けられ、判定部104Aがその第3学習済みモデルから停留データを得るようにしてもよい。この場合、監視装置10Aでは、撮像データから第3学習済みモデルを用いて停留データを取得し、停留データを第2学習済みモデルに入力することで、表示装置に不具合があるか否かの判定をする。そのため、監視装置10Aにおいては、学習済みモデルを2段階で利用することで、表示装置に不具合があるか否かを判定する。
 出力部105Aは、判定部104Aの判定結果に基づいてアラート信号を出力する。
 図6は、学習装置50の機能を表す概略機能ブロック図である。
 学習装置50は、入力部501、学習部502、出力部503を有する。
 入力部501は、表示装置を視認可能な場所を撮像した撮像データと、表示装置に不具合があるか否かを表すラベルデータとが対応付けられた教師データを取得する。この教師データは、例えば、マルチディスプレイにおいて不具合が発生している場合における視聴者の視聴行動(視線の動きなど)と、不具合が発生していることを表すラベルデータとが対応付けられた第1教師データ、マルチディスプレイにおいて不具合が発生していない場合における視聴者の視聴行動と、不具合が発生していないことを表すラベルデータとが対応付けられた第2教師データとが含まれる。第1教師データと第2教師データは、それぞれ、異なる場面や異なる時刻における得られた大量のデータであることが望ましい。
 例えば、学習装置50の入力部501は、表示装置に不具合が発生していない状態において、表示装置を視認可能な場所をカメラによって撮像することで、不具合が発生していない状態における視聴者の視聴行動を撮像した撮像データを収集する。そして、学習部502は、この撮像データに対し、不具合が発生していないことを示すラベルデータを付与する。ここでは、視聴者毎に異なる撮像データを取得することで、複数の撮像データを収集し、それぞれにラベルデータを付与し、教師データを生成する。
 そして不具合が発生した場合には、入力部501は、不具合が発生している期間においてカメラによって撮像された視聴者の視聴行動を撮像した撮像データを抽出する。学習部502は、この撮像データに対して、不具合が発生していることを示すラベルデータを付与し、教師データを生成する。
 そして学習部502は、生成された教師データを用いて学習する。
 学習部502は、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データと、ディスプレイに不具合があるか否かを示すデータとを用いて、視認データとディスプレイに不具合があるか否かとの関係性を表す条件を学習することによって学習済みモデルを生成する。学習部502が生成する学習済みモデルは、上述の第1学習済みモデル、第2学習済みモデル、第3学習済みモデル、のいずれか1つまたは複数であってもよい。
 出力部503は、学習部502によって生成された学習済みモデルを外部の装置に出力する。例えば、出力部は503、学習済みモデルを、監視装置10Aに出力する。この場合、学習装置50の出力部503と監視装置10Aとが、通信ケーブルまたは通信ネットワーク等を介して通信可能に接続されており、学習装置50の出力部503から監視装置10Aに学習済みモデルであるデータを送信することで出力する。
 図7は、監視装置10Aの動作を説明するフローチャートである。
 監視装置10Aの取得部102Aは、マルチディスプレイ30のカメラ31から撮像データを取得する(ステップS201)。
 判定部104Aは、取得した撮像データを学習済みモデルに入力し(ステップS202)、学習済みモデルから判定結果を取得する(ステップS203)。そして判定部104Aは、判定結果が、ディスプレイに不具合が発生していることを表しているか否かを判定する(ステップS204)。
 判定部104Aは、学習済みモデルから得られた判定結果が、ディスプレイに不具合が発生していることを表していない場合に(ステップS204-NO)、処理をステップS201に進め、学習済みモデルから得られた判定結果が、ディスプレイに不具合が発生していることを表す場合に(ステップS204-YES)、出力部105Aによって、アラートを出力させる(ステップS205)。
 以上説明した実施形態では、監視対象が、マルチディスプレイ30である場合について説明したが、監視対象は、マルチディスプレイに限られるものではなく、カメラが備えられるものであれば、複数の表示装置が隣接または近い位置に並べられたディスプレイ群であってもよいし、デジタルサイネージであってもよい。この場合のディスプレイ群は、それぞれのディスプレイが1つのコンテンツを表示していてもよい。また、複数のプロジェクタによって投射される画面が隣接するようにし、これら複数の投射画面を用いて1つのコンテンツを表示するマルチ表示システムにも適用することができる。
 図8は、他の実施形態における監視装置10Bの構成を示す概略機能ブロック図である。
 監視装置10Bは、取得部102B、判定部104Bを含む。
 取得部102Bは、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得する。この場合のカメラとしては、表示装置に取り付けられカメラを用いることができる。判定部104Bは、複数の視聴者が視認する位置であって、前記表示装置の表示画面における位置を把握可能な視認データと、表示装置に不具合があるか否かを示すデータとを用いて、前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、前記取得部によって取得された視認データを入力することで、前記表示装置に不具合があるか否かの判定結果を得る。視認データは、例えば、表示装置の表示画面におけるどの位置に視聴者が視線を向けているか、または、どの位置を見ているかを把握可能なデータを含む。例えば、複数の視聴者が表示画面の同じ位置を見ている傾向がある場合には、表示画面におけるその位置において不具合が発生していると判定することができる。
 図9は、他の実施形態における監視装置10Cの構成を示す概略機能ブロック図である。
 監視装置10Cは、取得部102C、判定部104C、出力部105Cを有する。
 取得部102Cは、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得する。
 判定部104Cは、複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データと、表示装置に不具合があるか否かを示すデータとを用いて視認データと表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、視認データを入力することで、表示装置に不具合があるか否かの判定結果を得る。
 出力部105Cは、判定結果に応じてアラート信号を出力する。
 以上説明した実施形態において、記憶部103、記憶部103A、記憶部306は、記憶媒体、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。
 これらの記憶部は、例えば、不揮発性メモリを用いることができる。
 また、以上説明した実施形態において、取得部102、取得部102A、判定部104、判定部104A、制御部106、表示制御部303、視線検知部305、制御部307、入力部501、学習部502は、例えばCPU(中央処理装置)等の処理装置若しくは専用の電子回路で構成されてよい。
 また、図1における処理部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより施工管理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、サーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、上記のプログラムを所定のサーバに記憶させておき、他の装置からの要求に応じて、当該プログラムを通信回線を介して配信(ダウンロード等)させるようにしてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 10,10A,10B,10C・・・監視装置、20・・・コンテンツ供給装置、30・・・マルチディスプレイ、30a,30b,30c,30d,30e,30f,30g,30h,30i・・・ディスプレイ、31・・・カメラ、50・・・学習装置、101・・・通信部、102,102A,102B,102C・・・取得部、103,103A,306・・・記憶部、104,104A,104B,104C・・・判定部、105,105A,105C,503・・・出力部、106,307・・・制御部、301・・・通信部、302・・・表示部、303・・・表示制御部、304・・・カメラ、305・・・視線検知部、501・・・入力部、502・・・学習部

Claims (11)

  1.  表示装置を視認可能な場所を撮像するカメラから撮像データを取得する取得部と、
     前記撮像データから判定される、複数の視聴者の視聴行動に基づいて、前記表示装置に不具合があるか否かを判定する判定部と、
     を有する監視装置。
  2.  前記判定部は、
     前記複数の視聴者の視聴行動として判定される、前記複数の視聴者が視認する位置であって、前記表示装置の表示画面における位置に基づいて、前記表示装置に不具合があるか否かを判定する
     請求項1に記載の監視装置。
  3.  前記判定部は、
     前記複数の視聴者が視認する位置であって、前記表示装置の表示画面における位置が、前記表示装置に表示する画像の変化にかかわらず、前記表示画面における特定の領域に集中する場合に、前記特定の領域に不具合があると判定する
     請求項2に記載の監視装置。
  4.  前記判定部は、前記視聴者が視認する前記表示画面の位置の履歴に基づいて、類似性があるか否かを判定し、その判定結果に基づいて、前記表示装置に不具合があるか否かを判定する
     請求項2に記載の監視装置。
  5.  前記判定部は、前記視聴者によって第1の位置が視認された後に視認される第2の位置に類似性があるか否かを判定する
     請求項4に記載の監視装置。
  6.  前記判定部は、前記類似性があるとされた視聴者の人数が基準人数に達したか否かに基づいて前記表示装置に不具合があるか否かを判定する
     請求項5に記載の監視装置。
  7.  前記取得部は、前記表示装置に取り付けられたカメラから当該表示装置の表示画面に表示されるコンテンツを視認する視聴者が撮像された画像を取得する
     請求項1から請求項6のうちいずれか1項に記載の監視装置。
  8.  複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得する取得部と、
     前記視認データと、前記表示装置に不具合があるか否かを示すデータとを用いて、前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、前記取得部によって取得された視認データを入力することで、前記表示装置に不具合があるか否かの判定結果を得る判定部と
     を有する監視装置。
  9.  複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データと、前記表示装置に不具合があるか否かを示すデータとを用いて、前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習する学習装置。
  10.  表示装置を視認可能な場所を撮像するカメラから撮像データを取得し、
     前記撮像データから判定される、複数の視聴者の視聴行動に基づいて、前記表示装置に不具合があるか否かを判定する
     監視方法。
  11.  複数の視聴者が視認する位置であって、表示装置の表示画面における位置を把握可能な視認データを取得し、
     前記視認データと、前記表示装置に不具合があるか否かを示すデータとを用いて前記視認データと前記表示装置に不具合があるか否かとの関係性を表す条件を学習した学習済みモデルに、前記視認データを入力することで、前記表示装置に不具合があるか否かの判定結果を取得し、
     前記判定結果に応じてアラート信号を出力する
     監視方法。
PCT/JP2022/020092 2022-05-12 2022-05-12 監視装置、監視方法 WO2023218610A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020092 WO2023218610A1 (ja) 2022-05-12 2022-05-12 監視装置、監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020092 WO2023218610A1 (ja) 2022-05-12 2022-05-12 監視装置、監視方法

Publications (1)

Publication Number Publication Date
WO2023218610A1 true WO2023218610A1 (ja) 2023-11-16

Family

ID=88730142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020092 WO2023218610A1 (ja) 2022-05-12 2022-05-12 監視装置、監視方法

Country Status (1)

Country Link
WO (1) WO2023218610A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173442A (ja) * 2011-02-21 2012-09-10 Nec Computertechno Ltd 表示装置
JP2012175183A (ja) * 2011-02-17 2012-09-10 Denso Corp 表示器の表示状態評価システム
JP2015158550A (ja) * 2014-02-24 2015-09-03 三菱電機株式会社 マルチディスプレイ用表示制御装置およびマルチディスプレイシステム
US20170301271A1 (en) * 2015-10-28 2017-10-19 Knowck Co., Ltd. Digital signage abnormality detection method and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175183A (ja) * 2011-02-17 2012-09-10 Denso Corp 表示器の表示状態評価システム
JP2012173442A (ja) * 2011-02-21 2012-09-10 Nec Computertechno Ltd 表示装置
JP2015158550A (ja) * 2014-02-24 2015-09-03 三菱電機株式会社 マルチディスプレイ用表示制御装置およびマルチディスプレイシステム
US20170301271A1 (en) * 2015-10-28 2017-10-19 Knowck Co., Ltd. Digital signage abnormality detection method and apparatus therefor

Similar Documents

Publication Publication Date Title
JP6863488B2 (ja) 画像処理装置、異常検知方法、及びプログラム
JP4794453B2 (ja) インタラクティブ・ビデオ・ディスプレイ・システムを管理する方法及びシステム
JP5217922B2 (ja) 電子広告システム、電子広告配信装置、及びプログラム
JP6930421B2 (ja) 情報処理システム、情報処理方法、記録媒体、および、プログラム
US20100060713A1 (en) System and Method for Enhancing Noverbal Aspects of Communication
US20100253778A1 (en) Media displaying system and method
JP2008112401A (ja) 広告効果測定装置
US20110175992A1 (en) File selection system and method
WO2016084304A1 (ja) 撮像装置、録画装置および映像出力制御装置
JP6661856B2 (ja) 装置およびプログラム
JP2010140164A (ja) 作業モニタリング方法、作業モニタリング装置、及びサーバ
JP2006260275A (ja) コンテンツ管理システム、表示制御装置、表示制御方法、および表示制御プログラム
JPWO2018235595A1 (ja) 情報提供装置、情報提供方法及びプログラム
KR20210034035A (ko) 라이브 스트림 또는 라이브 렌더링되는 컨텐츠에서 b-롤 조건을 식별하는 시스템 및 방법
JP2007180829A (ja) 監視システム、監視方法、及び該方法を実行させるためのプログラム
CN110709857A (zh) 人数管理设备、人数管理方法以及程序
WO2023218610A1 (ja) 監視装置、監視方法
JP2007312271A (ja) 監視システム
JP6519157B2 (ja) 情報評価装置、情報評価方法、及びプログラム
CN108234941A (zh) 监控设备、监控方法及计算机可读介质
JP2008020981A (ja) 監視システム
JP5511361B2 (ja) 画像表示装置およびその制御方法、プログラム
JP6176619B2 (ja) 撮像装置、録画装置、映像表示方法およびコンピュータプログラム
JP4955239B2 (ja) 監視方法並びに監視システム、監視装置及びセンター監視装置
JP4687850B2 (ja) 監視カメラシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941690

Country of ref document: EP

Kind code of ref document: A1