WO2023217199A1 - 画面显示控制方法、装置、设备与介质 - Google Patents

画面显示控制方法、装置、设备与介质 Download PDF

Info

Publication number
WO2023217199A1
WO2023217199A1 PCT/CN2023/093347 CN2023093347W WO2023217199A1 WO 2023217199 A1 WO2023217199 A1 WO 2023217199A1 CN 2023093347 W CN2023093347 W CN 2023093347W WO 2023217199 A1 WO2023217199 A1 WO 2023217199A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
value
doubling
sequence unit
linear value
Prior art date
Application number
PCT/CN2023/093347
Other languages
English (en)
French (fr)
Inventor
朱强
周永业
Original Assignee
深圳市时代华影科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市时代华影科技股份有限公司 filed Critical 深圳市时代华影科技股份有限公司
Publication of WO2023217199A1 publication Critical patent/WO2023217199A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present application relates to the field of screen display technology, and in particular to a screen display control method, device, equipment and medium based on 3D frequency multiplication.
  • ultra-high refresh rate display technologies such as 120 frames, 144 frames, and 240 frames are increasingly sought after by professionals. Ultra-high refresh rate display technologies are used in theaters to improve the display quality of the picture. , bringing people an unprecedented audio-visual feast.
  • the main purpose of this application is to propose a screen display control method, device, equipment and medium, aiming to improve the screen display quality of the display device.
  • this application provides a screen display control method, which includes the following steps:
  • the sequence unit frame of the video signal is expanded to obtain a frequency doubling sequence unit frame for picture display.
  • this application also provides a screen display control device, the screen display control device includes:
  • the acquisition module is used to acquire the video signal to be displayed
  • a frequency multiplication module configured to perform a frequency multiplication operation on the video signal based on a preset frequency multiplication mode to obtain a frequency multiplication signal corresponding to the video signal;
  • a determination module configured to determine the grayscale linear value corresponding to the frequency multiplication signal based on the preset display parameter gamma table
  • a display module is configured to expand the sequence unit frame of the video signal based on the gray linear value and the frequency doubling mode to obtain a frequency doubling sequence unit frame for picture display.
  • the present application also provides a screen display control device, which includes: a memory, a processor, and a screen display control device stored on the memory and capable of running on the processor.
  • Program when the screen display control program is executed by the processor, the steps of the screen display control method as described above are implemented.
  • the present application also provides a medium, the medium is a computer-readable storage medium, the computer-readable storage medium stores a screen display control program, and the screen display control program is executed by a processor. The steps to implement the screen display control method as described above.
  • the screen display control method, device, equipment and medium proposed in this application obtain the video signal to be displayed; based on the preset frequency doubling mode, perform a frequency doubling operation on the video signal to obtain a multiplier corresponding to the video signal. frequency signal; based on the preset display parameter gamma table, determine the grayscale linear value corresponding to the frequency multiplication signal; based on the grayscale linear value and the frequency multiplication mode, expand the sequence unit frame of the video signal , obtain the doubling sequence unit frame for screen display.
  • This application provides a screen display control method, which performs frequency doubling processing on the acquired video signal, and obtains the frequency doubling processed signal to match the corresponding gray scale linear value in the display parameter gamma table.
  • the gray scale linear value The value is determined based on the frequency multiplied signal, and then driven and displayed in the sequence unit frame according to the gray linear value in a preset manner.
  • the above gray linear value is consistent with the gray linear value of the frequency multiplied video signal, using Frequency doubling technology increases the grayscale value of the display, thereby optimizing the display effect of the display device, improving the display quality under high refresh rate and ultra-high refresh rate display frame rates, and processing grayscale through settable preset methods
  • the display relationship between linear values and sequence unit frames improves the flexibility of screen display.
  • Figure 1 is a schematic diagram of the equipment structure of the hardware operating environment involved in the screen display control embodiment of the present application
  • Figure 2 is a schematic flow chart of the first embodiment of the screen display control method of the present application.
  • FIG. 3 is a schematic diagram of the modules involved in the first embodiment of the screen display control method of the present application.
  • Figure 4 is a schematic flowchart of specific steps in the first embodiment of the screen display control method of the present application.
  • Figure 5 is a schematic flow chart of the second embodiment of the screen display control method of the present application.
  • Figure 6 is a schematic sub-flow diagram of step S22 in the second embodiment of the screen display control method of the present application.
  • Figure 7 is a schematic flow chart of the third embodiment of the screen display control method of the present application.
  • Figure 8 is a schematic flowchart of the fourth embodiment of the screen display control method of the present application.
  • Figure 9 is a schematic sub-flow diagram of step S42 in the fourth embodiment of the screen display control method of the present application.
  • Figure 10 is a schematic diagram of the functional modules of the screen display control device of the screen display control method of the present application.
  • Figure 1 is a schematic diagram of the equipment structure of the hardware operating environment involved in the embodiment of the present application.
  • the device in this embodiment of the present application may be a terminal or a server.
  • the device may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to realize connection communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface or a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may optionally be a storage device independent of the aforementioned processor 1001.
  • the device structure shown in Figure 1 does not constitute a limitation of the device, and may include more or fewer components than shown, or combine certain components, or arrange different components.
  • memory 1005 which is a computer storage medium, may include an operating system, a network communication module, a user interface module, and a screen display control program.
  • the operating system is a program that manages and controls screen display control equipment and software resources, and supports the operation of network communication modules, user interface modules, screen display control programs, and other programs or software;
  • the network communication module is used to manage and control the network interface 1002 ;
  • the user interface module is used to manage and control the user interface 1003.
  • the screen display control device calls the screen display control program stored in the memory 1005 through the processor 1001, and performs the operations in each embodiment of the following screen display control method.
  • Figure 2 is a schematic flowchart of the first embodiment of the screen display control method of the present application. The method includes:
  • Step S10 obtain the video signal to be displayed
  • Step S20 Perform a frequency multiplication operation on the video signal based on a preset frequency multiplication mode to obtain a frequency multiplication signal corresponding to the video signal;
  • Step S30 determine the grayscale linear value corresponding to the frequency multiplication signal based on the preset display parameter gamma table
  • Step S40 Expand the sequence unit frame of the video signal based on the gray linear value and the frequency doubling mode to obtain a frequency doubling sequence unit frame for picture display.
  • the screen display control method in this embodiment performs frequency doubling processing on the obtained video signal, and obtains the frequency multiplied signal after the frequency doubling process to match the corresponding gray scale linear value in the display parameter gamma table.
  • the gray scale linear value The value is determined based on the frequency doubling signal, and then the display is driven based on the gray scale linear value.
  • the above gray scale linear value is consistent with the gray scale linear value of the frequency multiplied video signal.
  • the frequency doubling technology is used to improve the gray scale of the display screen. degree value, thereby optimizing the display effect of the display device and improving the display quality under high refresh rate and ultra-high refresh rate display frame rates.
  • Step S10 obtain the video signal to be displayed
  • the display device receives the video signal to be played sent by the signal source, and performs video playback according to the video signal.
  • the video signal sent by the signal source includes : Television signal, still image signal and visual television image signal.
  • the principle of video signal formation is to use red, green, blue, and RGB to mix three colors in different proportions to represent different colors.
  • Different video signals have different video frame rates, and viewers will have different visual experiences with the same video at different video frame rates.
  • the above video frame rate is a measure of the number of video display frames, and the The unit of measurement for the measurement is frames per second (FPS) or Hertz (HZ).
  • the display frame refresh rate has From 24 frames, 48 frames, and 60 frames to high refresh rates such as 120 frames, 144 frames, and 240 frames, the user's viewing experience has been continuously improved.
  • Step S20 Perform a frequency multiplication operation on the video signal based on a preset frequency multiplication mode to obtain a frequency multiplication signal corresponding to the video signal;
  • the display effect of the theater display device is improved by increasing the refresh rate of the video frame.
  • the above-mentioned method of increasing the refresh rate of video frames is to perform frequency doubling processing on the video signal to obtain high refresh rate and ultra-high refresh rate video signals.
  • the high refresh rate and ultra-high refresh rate video signals are compared to those before frequency doubling processing.
  • the video signals have very different frame rate values, which can directly optimize the display effect of the display device, thereby improving the user's viewing experience.
  • the preset doubling mode includes a doubling coefficient value and a doubling mode.
  • the doubling coefficient refers to the multiple by which the video frame rate in the original video signal is to be expanded.
  • the doubling mode refers to the frequency doubling process of the video. Set manually or automatically. According to frequency multiplication processing of the acquired video signal, a corresponding frequency multiplication signal is obtained.
  • the calculation method of the multiplication frame rate in the multiplication signal is: the original video frame rate x the multiplication coefficient value.
  • a video signal 1 is obtained.
  • the conventional frame refresh rate of the video signal 1 is 48 frames.
  • the display device automatically performs frequency doubling processing based on the 48-frame video signal 1 to obtain the corresponding 48-frame video signal 1.
  • 96 frames multiplied frame rate; another segment of video signal 2 is obtained.
  • the conventional frame refresh rate of this video signal 2 is 24 frames.
  • the operator performs manual three-step operation on the video signal 2 with a conventional frame refresh rate of 24 frames through the display device. Through frequency doubling processing, a multiplied frame rate of 72 frames corresponding to the 24-frame video signal 2 is obtained.
  • Step S30 determine the grayscale linear value corresponding to the frequency multiplication signal based on the preset display parameter gamma table
  • the display parameter gamma value refers to a special effect adjustment parameter for processing bitmaps.
  • the gamma value refers to the video brightness input value and the video output displayed by the display device when the image processing work is in progress. The relationship between brightness output values. This value directly affects the hue of the intermediate value of the image or video or the grayscale of the intermediate level.
  • the brightness value of the intermediate grayscale of the image can be changed to increase the intermediate level of the image.
  • users can adjust the gamma value of the monitor to simulate viewing conditions when comparing the contrast of the image on the monitor with that on the original.
  • the grayscale linear value of the multiplied frequency signal is matched to achieve a linear change in the image grayscale.
  • image grayscale transformation methods such as linear transformation, exponential transformation, Power transformation, logarithmic transformation, etc.
  • linear transformation uses straight line equations to achieve gray value transformation.
  • the display parameter gamma table preset by the video processing unit of the 15-bit display device is the original interval gray linear range of 0-32767 (2 15 ).
  • the corresponding The display parameter gamma table also extends from the original gray scale linear range of 0-32767 to the gray linear range of the doubling interval of 0-65535 (2 16 ).
  • the gamma interval range after doubling is from 0-32767 extends to 0-65535, but the gamma interval range of the sequence unit frame after frequency doubling is still the physical gamma interval range 0-32767 of the 15-bit display device. That is, a single frame of the video signal is expanded into two sequence unit frames after doubling the frequency.
  • On the 15-bit display device there are two sequence unit frames with a physical gamma interval ranging from 0 to 32767.
  • Step S40 Expand the sequence unit frame of the video signal based on the gray linear value and the frequency doubling mode to obtain a frequency doubling sequence unit frame for picture display.
  • the display power corresponding to the grayscale linear value is obtained, and the display device is driven to display.
  • Figure 3 shows the video signal processing module involved in the screen display control method in this embodiment, which specifically includes: a video signal acquisition module for acquiring a single frame (left and right frames) of the 3D video signal, a frequency multiplication setting module, and a display driver.
  • a video signal acquisition module for acquiring a single frame (left and right frames) of the 3D video signal
  • a frequency multiplication setting module for acquiring a single frame (left and right frames) of the 3D video signal
  • a display driver in which the above-mentioned octave interval grayscale is between 0-65535
  • the original interval grayscale of the left frame of the two sequence units each includes a octave interval grayscale of 0-32767.
  • the original interval grayscale of the right frame of the two sequence units each includes Includes an octave interval grayscale of 0-32767.
  • the display driving module includes sequence unit left frame 1, sequence unit left frame 2, sequence unit right frame 1 and sequence unit right frame 2.
  • Figure 4 is a specific flow chart of this embodiment.
  • the quotient is the original grayscale linear value in the sequence unit frame after doubling, and the modulus is the number of sequence unit frames that need to add 1 grayscale linear value; display device video processing
  • the unit drives the display screen to display according to the calculated gray value of the sequence unit frame.
  • the screen display control method in this embodiment performs frequency doubling processing on the acquired video signal, and obtains the multiplied frequency signal after the frequency doubling process to match the corresponding gray scale linear value in the display parameter gamma table.
  • the gray scale linear value is It is determined based on the frequency doubling signal, and then the display is driven based on the gray scale linear value.
  • the above gray scale linear value is consistent with the gray scale linear value of the frequency multiplied video signal.
  • the frequency doubling technology is used to improve the gray scale value of the display screen. , thereby optimizing the display effect of the display device, improving the grayscale value of the display device when displaying, and optimizing the display quality of the display device.
  • the difference between the second embodiment of the screen display control method and the first embodiment of the screen display control method is that this embodiment performs a frequency multiplication operation on the video signal based on the preset frequency multiplication mode in step S20.
  • Obtaining the refinement of the frequency doubled signal corresponding to the video signal referring to Figure 5, specifically includes:
  • Step S21 obtain the original frame rate and original sequence unit in the video signal
  • Step S22 Perform a doubling operation based on the doubling mode on the original frame rate and the original sequence unit to obtain the corresponding doubling frame rate and doubling sequence unit.
  • the doubling mode at least includes a doubling parameter value
  • step S22 specifically includes:
  • Step S221 through the preset operation mode in the frequency multiplication mode, enhance the signal source of the original frame rate according to the preset refresh rate to obtain the corresponding frequency multiplication frame rate, the refresh rate and the frequency multiplication
  • the multiplier parameter values in the modes are consistent;
  • Step S222 Expand the sequence unit in the video signal according to a preset expansion multiple through the preset operation mode in the frequency doubling mode to obtain a corresponding frequency doubling sequence unit.
  • the preset expansion multiple is the same as the preset expansion multiple.
  • the octave parameter values in octave mode are consistent.
  • the display device receives the video signal according to a preset mode including automatic frequency multiplication or manual frequency multiplication.
  • the original gamma table of the video processing unit of the display device is the original interval gray linear range of 0-32767 (2 15 )
  • the gamma table of the 48-frame 3D video signal is expanded from the original interval gray linear range of 0-32767 at the same time.
  • the gamma interval range extends from 0-32767 to 0-65535 after frequency doubling
  • the gamma interval range of the sequence unit frame after frequency doubling is still the physical gamma interval range of the 15-bit display device.
  • 0-32767 That is, a single frame of the video signal is expanded into two sequence unit frames after doubling the frequency.
  • On the 15-bit display device there are two sequence unit frames with a physical gamma interval ranging from 0 to 32767.
  • the screen flicker during playback is reduced, and the screen refresh rate is increased to improve the screen display quality of the display device.
  • step S30 the frequency multiplication signal is determined based on the preset display parameter gamma table.
  • the corresponding refinement of grayscale linear values refer to Figure 7, specifically includes:
  • Step S31 obtain the image code value corresponding to the frequency doubled signal
  • Step S32 Convert the image code value into a grayscale linear value based on the gamma table, and the image code value is a nonlinear value.
  • the video processing unit of the display device converts the video signal code value into a gray linear value within the gray linear range of the frequency octave interval.
  • the grayscale value in the octave interval is a linear value of 1027.
  • the quotient obtained by dividing 1027 by 4 is 256, and the modulus is 3. That is, the gray linear value of the original interval gray linear range corresponding to the above video signal code value is 256, and 1 needs to be added to the three sequence unit frames.
  • the gray scale linear values corresponding to the 1-4 sequence frames of the method of increasing the gray scale of the display device by 4 times the frequency are 256, 257, 257, 257, which constitutes a linear value with a gray scale value of 1027 in the frequency octave interval.
  • the default gamma table is a value calculated according to a formula, which may or may not be a multiple of n. If it is a multiple of n, the remainder is 0, and if it is not a multiple of n, the remainder is 1 to A value between n-1.
  • the linear values corresponding to the octave interval grayscale values assigned to the multiplied sequence unit frames can be the same or different, but the differences are still within the octave interval and correspond to the original interval grayscale of the video signal. The difference in linear values is within a preset threshold (such as 1 or 2).
  • the display device can play the video signal, achieving high refresh rate to a certain extent. rate and ultra-high refresh rate screen display.
  • the difference between the fourth embodiment of the screen display control method and the first, second, and third embodiments of the screen display control method is that in this embodiment, based on the gray linear value corresponding to the frequency multiplication signal in step S40, Determine the corresponding display power, and refine the display control of the screen based on the display power.
  • Figure 8 which specifically includes:
  • Step S41 obtain the frequency doubling parameter value of the frequency doubling mode
  • Step S42 Based on the grayscale linear value and the doubling parameter value, obtain the doubling sequence unit frame and the doubling interval grayscale linear value.
  • step S42 specifically includes:
  • Step S421 Divide the grayscale linear value by the frequency multiplication parameter value, and calculate the modulus of the grayscale linear value divided by the frequency multiplication parameter value and the grayscale linear value divided by the multiplication parameter value. Quotient of frequency parameter value;
  • Step S422 based on the modulus of the grayscale linear value divided by the frequency doubling parameter value, determine the increased number of sequence unit frames, and add sequence unit frames according to the increased number to determine the multiplied frequency sequence unit frame for display;
  • Step S423 Determine the original interval gray linear value of the sequence unit frame based on the quotient of the gray linear value divided by the multiplication parameter value, and determine the frequency doubling interval for display based on the original interval gray linear value. Grayscale linear value.
  • the video processing unit of the display device divides the gray scale linear range of the octave interval by the octave number and obtains the modulus (remainder), where the value of the modulus obtained after the operation is that which needs to be increased by 1
  • the number of sequence unit frames with grayscale linear values is the original interval grayscale linear value of the sequence unit frame.
  • the video processing unit of the display device converts the video signal code value into a gray linear value within the gray linear range of the frequency octave interval.
  • the grayscale value in the octave interval is a linear value of 1025.
  • the quotient obtained by dividing 1025 by 2 is 512, and the modulus is 1. That is, the grayscale linear value of the original interval grayscale linear range corresponding to the above video signal code value is 512.
  • One sequence unit frame needs to be added by 1.
  • the gray linear values corresponding to the 1-2 sequence unit frames of the above-mentioned method of increasing the gray scale of the display device through 2 times the frequency are 512 and 513, which constitutes the gray scale value of the octave interval with a gray scale value of 1025. linear value.
  • the video processing unit of the display device converts the video signal code value into a gray linear value within the gray linear range of the frequency octave interval.
  • the grayscale value in the octave interval is the linear value of 1027.
  • the quotient obtained by dividing 1027 by 4 is 256, and the modulus is 3. That is, the grayscale linear value of the original interval grayscale linear range corresponding to the above video signal code value is 256.
  • Three sequence unit frames need to be added by 1.
  • the gray linear values corresponding to the 1-4 sequence unit frames of the above method of improving the grayscale of the display device through 4 times the frequency are 256, 257, 257, 257, which constitute the octave interval grayscale.
  • Step S43 Determine the octave interval gray linear value to be displayed in the octave sequence unit frame based on the octave interval gray linear value, and display the picture based on the octave interval gray linear value.
  • Steps include:
  • the octave interval gray linear value inserted into the octave sequence unit frame in a preset manner determine the octave interval gray linear value to be displayed in the octave sequence unit frame, and based on the doubling sequence unit frame
  • the grayscale linear value in the frequency range controls the display of the screen.
  • the grayscale linear values in the octave interval are inserted into the octave sequence unit frame in a preset manner.
  • the grayscale linear values in the octave interval corresponding to the above-mentioned octave sequence unit frame are 256, 257, and 257. , 257, or 256, 256, 257, 257.
  • the gamma linear value corresponding to the sequence unit frame of the ordinary frequency doubling technology is the same fixed value, but the gamma linear value corresponding to the frequency doubling sequence unit frame after the frequency doubling process of the picture control method proposed in the application embodiment of this solution can be different. .
  • the obtained video signal is subjected to frequency doubling processing, and the multiplied frequency signal is obtained to match the corresponding grayscale linear value in the display parameter gamma table.
  • the grayscale linear value is based on the multiplier.
  • the frequency signal is determined, and then the display is driven based on the gray linear value.
  • the above gray linear value is consistent with the gray linear value of the frequency multiplied video signal.
  • the frequency doubling technology is used to improve the gray value of the display screen, and then Optimize the display effect of the display device and improve the display quality under high refresh rate and ultra-high refresh rate display frame rates.
  • the screen display control device of the present application includes:
  • Acquisition module 10 used to acquire the video signal to be displayed
  • the frequency multiplication module 20 is configured to perform a frequency multiplication operation on the video signal based on a preset frequency multiplication mode to obtain a frequency multiplication signal corresponding to the video signal;
  • the determination module 30 is used to determine the grayscale linear value corresponding to the frequency multiplication signal based on the preset display parameter gamma table;
  • the display module 40 is configured to expand the sequence unit frame of the video signal based on the gray linear value and the frequency doubling mode to obtain a frequency doubling sequence unit frame for picture display.
  • the frequency multiplication module 20 is also used to obtain the original frame rate and the original sequence unit in the video signal; perform a frequency multiplication operation based on the frequency multiplication mode on the original frame rate and the original sequence unit to obtain the corresponding
  • the octave frame rate and the octave sequence unit, the octave mode at least includes the octave parameter value.
  • the determination module 30 is further configured to: obtain the image code value corresponding to the frequency multiplication signal; convert the image code value into a grayscale linear value based on the gamma table, and the image code value is nonlinear value.
  • the display module 40 is further configured to: obtain the doubling parameter value of the doubling mode; calculate the doubling sequence unit frame and the doubling interval gray based on the gray linear value and the doubling parameter value. degree linear value; based on the octave interval gray linear value, determine the octave interval gray linear value displayed in the octave sequence unit frame, and display the picture based on the octave interval gray linear value.
  • the frequency multiplication module 20 is also used to: enhance the signal source of the original frame rate according to the preset refresh rate through the preset operation mode in the frequency multiplication mode to obtain the corresponding frequency multiplication frame rate, so The refresh rate is consistent with the frequency multiplication parameter value in the frequency multiplication mode; through the preset operation mode in the frequency multiplication mode, the sequence unit in the video signal is expanded according to the preset expansion multiple to obtain the corresponding Frequency multiplication sequence unit, the preset expansion multiple is consistent with the frequency multiplication parameter value in the frequency multiplication mode.
  • the determination module 30 is further configured to: divide the grayscale linear value by the frequency multiplication parameter value, and calculate the modulus of the grayscale linear value divided by the frequency multiplication parameter value and the grayscale The quotient of the linear value divided by the multiplication parameter value; based on the gray linear value divided by the modulus of the multiplication parameter value, determine the increased number of sequence unit frames, and add the sequence unit frame according to the increased number, Determine the doubling sequence unit frame for display; determine the original interval gray linear value of the sequence unit frame based on the quotient of the gray linear value divided by the doubling parameter value, and determine the original interval gray linear value according to the original interval gray linear value Determine the grayscale linear value of the octave interval for display.
  • the display module 40 is further configured to: insert the octave interval gray linear value into the octave sequence unit frame in a preset manner; insert the octave sequence unit frame into the octave sequence unit frame in a preset manner.
  • the octave interval grayscale linear value is determined to determine the octave interval grayscale linear value displayed in the octave sequence unit frame, and the display control of the picture is performed based on the octave interval grayscale linear value.
  • the present application also provides a computer-readable storage medium.
  • the medium is preferably a computer-readable storage medium on which a screen display control program is stored.
  • the screen display control program is executed by a processor, the above-mentioned steps are implemented.
  • the screen shows the steps of the control method.
  • the embodiments of the screen display control device and medium of the present application include all the technical features of the above embodiments of the screen display control method.
  • the description and explanation content are basically the same as the above embodiments of the screen display control method, and will not be described again here. .
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM) as mentioned above. , magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种画面显示控制方法、装置、设备与介质。该方法包括如下步骤:获取待显示的视频信号(S10);基于预设的倍频模式,对视频信号进行倍频操作,得到与视频信号对应的倍频信号(S20);基于预设的显示器参数gamma表格,确定倍频信号对应的灰度线性值(S30);基于灰度线性值和倍频模式,对视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示(S40)。通过对3D视频信号进行倍频处理,获取对应的灰度线性值,利用了倍频技术提高了显示屏的灰度值,根据倍频后的灰度线性值进行驱动显示,从而优化显示设备的显示效果,提高了显示设备画面显示的显示质量。

Description

画面显示控制方法、装置、设备与介质
本申请要求于2022年5月10日提交至国家知识产权局中国专利局、申请号为202210500595.1、申请名称为“画面显示控制方法、装置、设备与介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及画面显示技术领域,尤其涉及一种基于3D倍频增加的画面显示控制方法、装置、设备与介质。
背景技术
在影院显示技术领域,随着显示技术的不断发展,观众进入影院观剧观影的过程中,现有的绝大部分的片源都是24帧、48帧和60帧的刷新率,而为了追求更高的画面显示质量,120帧、144帧、240帧等超高刷新率的显示技术越来越受到专业人士的追捧,在影院中用超高刷新率的显示技术来提高画面的显示质量,给人们带来了前所未有的视听盛宴。
然而,现有技术中大多数的显示设备都只是简单地对常规帧率的信号进行简单地倍频,将低刷新率的显示帧提高到高刷新率、超高刷新率的显示帧,仍会出现画面闪烁的现象,造成高刷新率、超高刷新率显示屏的画面显示质量低的问题。
技术问题
本申请的主要目的在于提出一种画面显示控制方法、装置、设备与介质,旨在提高显示设备的画面显示质量。
技术解决方案
为实现上述目的,本申请提供一种画面显示控制方法,所述画面显示控制方法包括如下步骤:
获取待显示的视频信号;
基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
此外,为实现上述目的,本申请还提供一种画面显示控制装置,所述画面显示控制装置包括:
获取模块,用于获取待显示的视频信号;
倍频模块,用于基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
确定模块,用于基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
显示模块,用于基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
此外,为实现上述目的,本申请还提供一种画面显示控制设备,所述画面显示控制设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的画面显示控制程序,所述画面显示控制控程序被所述处理器执行时实现如上所述的画面显示控制方法的步骤。
此外,为实现上述目的,本申请还提供一种介质,所述介质为计算机可读存储介质,所述计算机可读存储介质上存储有画面显示控制程序,所述画面显示控制程序被处理器执行时实现如上所述的画面显示控制方法的步骤。
有益效果
本申请提出的画面显示控制方法、装置、设备与介质,通过获取待显示的视频信号;基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。本申请提供一种画面显示控制方法,通过对获取到的视频信号进行倍频处理,并获取倍频处理后的倍频信号在显示器参数gamma表格中匹配对应的灰度线性值,该灰度线性值是根据倍频信号确定,进而依据该灰度线性值按照预设方式在序列单元帧中进行驱动显示,上述灰度线性值与进行倍频的视频信号的灰度线性值相一致,利用了倍频技术提高了显示屏的灰度值,进而优化显示设备的显示效果,提高在高刷新率和超高刷新率的显示帧率情况下的显示质量,通过可设置的预设方式处理灰度线性值与序列单元帧的显示关系,提高画面显示的灵活性。
附图说明
图1是本申请画面显示控制实施例方案涉及的硬件运行环境的设备结构示意图;
图2为本申请画面显示控制方法第一实施例的流程示意图;
图3为本申请画面显示控制方法第一实施例涉及的模块示意图;
图4为本申请画面显示控制方法第一实施例中的具体步骤流程示意图;
图5为本申请画面显示控制方法第二实施例的流程示意图;
图6为本申请画面显示控制方法第二实施例中步骤S22的子流程示意图;
图7为本申请画面显示控制方法第三实施例的流程示意图;
图8为本申请画面显示控制方法第四实施例中的流程示意图;
图9为本申请画面显示控制方法第四实施例中步骤S42的子流程示意图;
图10为本申请画面显示控制方法画面显示控制装置的功能模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的设备结构示意图。
本申请实施例设备可以是终端或服务器。
如图1所示,该设备可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的设备结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及画面显示控制程序。
其中,操作系统是管理和控制画面显示控制设备与软件资源的程序,支持网络通信模块、用户接口模块、画面显示控制程序以及其他程序或软件的运行;网络通信模块用于管理和控制网络接口1002;用户接口模块用于管理和控制用户接口1003。
在图1所示的画面显示控制设备中,所述画面显示控制设备通过处理器1001调用存储器1005中存储的画面显示控制程序,并执行下述画面显示控制方法各个实施例中的操作。
基于上述硬件结构,提出本申请画面显示控制方法实施例。
参照图2,图2为本申请画面显示控制方法第一实施例的流程示意图,所述方法包括:
步骤S10,获取待显示的视频信号;
步骤S20,基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
步骤S30,基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
步骤S40,基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
本实施例中的画面显示控制方法,通过对获取到的视频信号进行倍频处理,并获取倍频处理后的倍频信号在显示器参数gamma表格中匹配对应的灰度线性值,该灰度线性值是根据倍频信号确定,进而依据该灰度线性值进行驱动显示,上述灰度线性值与进行倍频的视频信号的灰度线性值相一致,利用了倍频技术提高了显示屏的灰度值,进而优化显示设备的显示效果,提高在高刷新率和超高刷新率的显示帧率情况下的显示质量。
以下将对各个步骤进行详细说明:
步骤S10,获取待显示的视频信号;
在一具体实施例中,显示设备接收到信号源发送的待播放视频信号,根据该视频信号进行视频播放,在显示设备与信号源之间的数据传输的过程中,信号源发送的视频信号包括:电视信号、静止图像信号和可视电视图像信号。而视频信号的形成原理是通过利用红绿蓝,RGB三种颜色不同比例地进行混合表示不同色彩。不同的视频信号有不同的视频帧率,而相同的视频在不同视频帧率的表现下,观看者会有不同的视觉感受,上述视频帧率是用于测量视频显示帧数的量度,而该量度的测量单位为每秒显示帧数FPS或赫兹HZ。
由于人类眼睛的特殊生理结构,当人类所看画面的帧率高于16的时候,就会认为是连贯的,此现象称之为视觉停留,每秒的帧数(fps)或者说帧率表示图形处理器处理场时每秒钟能够更新的次数,高的帧率可以得到更流畅、更逼真的动画,显示设备的播放质量得到提升,随着显示技术的不断发展,显示屏帧刷新率已经从24帧,48帧,60帧提高到120帧,144帧,240帧等高刷新率,用户的观影体验不断得到提升。
步骤S20,基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
在一些具体的实施例中,因为高帧率的视频提升了影院中显示设备的显示质量,所以通过提高视频帧的刷新率来提升影院显示设备的显示效果。而上述提高视频帧的刷新率的方式是对视频信号进行倍频处理,得到高刷新率和超高刷新率的视频信号,该高刷新率和超高刷新率的视频信号相对于倍频处理前的视频信号,其帧率数值大小相差十分大,能够很直接地优化显示设备的显示效果,进而提升用户的观影体验。
具体地,预先设置好的倍频模式包括倍频系数值以及倍频方式,倍频系数是指原视频信号中的视频帧率要进行扩大的倍数,倍频方式是指视频进行倍频处理是手动设置或是自动设置。根据对获取到的视频信号进行倍频处理,得到对应的倍频信号。倍频信号中的倍频帧率的计算方式为:原视频帧率x 倍频系数值。
例如,获取到一段视频信号1,该视频信号1的常规帧刷新率为48帧,显示设备根据该48帧的视频信号1进行自动的二倍频处理,得到该48帧的视频信号1对应的96帧倍频帧率;获取到另一段视频信号2,该视频信号2的常规帧刷新率为24帧,操作员通过显示设备对该常规帧刷新率为24帧的视频信号2进行手动的三倍频处理,得到该24帧的视频信号2对应的72帧的倍频帧率。
步骤S30,基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
在显示设备进行视频显示的过程中,显示器参数gamma值是指处理位图的一种特殊效果的调整参数,gamma值是指在图像处理工作进行时,视频亮度输入值和显示设备输显示的视频亮度输出值之间的关系,该项数值直接影响到图像、视频中间值的色调或是中间层次的灰度,通过调整gamma值可以改变图像中间色调灰阶的亮度值,以增加图像的中间层次,而不会对暗部和亮部的层次有太大的影响,用户可以调整显示器的gamma值,以模拟在比较显示器上与原稿上的图像的反差时的观视条件。
在一具体的实施例中,基于预先设置好的显示器参数gamma表格匹配倍频信号的灰度线性值,实现图像灰度的线性变化,图像灰度变换方法有很多,如线性变换、指数变换、幂变换、对数变换等,其中,线性变换就是利用直线方程实现灰度值变换。
例如,15比特显示设备视频处理单元预先设置好的显示器参数gamma表格为0-32767(2 15)的原始区间灰度线性范围,8帧的视频信号1进行自动的二倍频处理后,对应的显示器参数gamma表格同时从0-32767的原始区间灰度线性范围扩展到0-65535(2 16)的倍频区间灰度线性范围,需要进行具体解释说明的是,虽然倍频后gamma区间范围从0-32767扩展到0-65535,但是倍频后的序列单元帧的gamma区间范围还是所述15比特显示设备的物理gamma区间范围0-32767。既视频信号的单帧2倍频后扩展成了2个序列单元帧,在所述15比特显示设备上就是2个物理gamma区间范围0-32767的序列单元帧。
步骤S40,基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
在一具体实施例中,根据倍频信号对应的灰度线性值,获取灰度线性值对应的显示功率,驱动显示设备进行显示。
参照图3,图3为本实施例中画面显示控制方法涉及到的视频信号处理模块,具体包括:获取3D视频信号单帧(左右帧)的视频信号获取模块,倍频设置模块,以及显示驱动模块,其中上述倍频区间灰度在0-65535,两块序列单元左帧原始区间灰度各包括一个0-32767的倍频区间灰度,另外,两块序列单元右帧原始区间灰度各包括一个0-32767的倍频区间灰度。显示驱动模块则包括序列单元左帧1、序列单元左帧2、序列单元右帧1和序列单元右帧2。
具体的,参照图4,图4为本实施例的具体流程图。获取普通帧率的视频信号;将上述普通帧率的视频信号自动或手动2倍频;显示设备视频处理单元将视频信号代码值转换成倍频区间灰度线性值;显示设备视频处理单元将倍频区间灰度线性值除以倍频数求商和模,商是倍频后序列单元帧的原始区间灰度线性值,模是需要加1灰度线性值的序列单元帧数量;显示设备视频处理单元按照计算出来序列单元帧灰度值驱动显示屏显示。
本实施例画面显示控制方法,通过对获取到的视频信号进行倍频处理,并获取倍频处理后的倍频信号在显示器参数gamma表格中匹配对应的灰度线性值,该灰度线性值是根据倍频信号确定,进而依据该灰度线性值进行驱动显示,上述灰度线性值与进行倍频的视频信号的灰度线性值相一致,利用了倍频技术提高了显示屏的灰度值,进而优化显示设备的显示效果,提高了显示设备进行显示时的灰阶值,优化显示设备的显示质量。
进一步地,基于本申请画面显示控制方法第一实施例,提出本申请画面显示控制方法第二实施例。
画面显示控制方法的第二实施例与画面显示控制方法的第一实施例的区别在于,本实施例是对步骤S20,基于预先设置好的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号的细化,参照图5,具体包括:
步骤S21,获取所述视频信号中的原始帧率和原始序列单元;
步骤S22,对所述原始帧率和原始序列单元进行基于所述倍频模式的倍频操作,得到对应的倍频帧率和倍频序列单元,所述倍频模式至少包含倍频参数值;
参照图6,步骤S22具体包括:
步骤S221,通过所述倍频模式中的预设操作方式,将所述原始帧率的信号源按照预设刷新速率进行增强,得到对应的倍频帧率,所述刷新速率与所述倍频模式中的倍频参数值一致;
步骤S222,通过所述倍频模式中的预设操作方式,将所述视频信号中的序列单元按照预设扩展倍数进行扩展,得到对应的倍频序列单元,所述预设扩展倍数与所述倍频模式中的倍频参数值一致。
在一具体实施例中,以15比特显示设备和48帧3D视频信号2倍频为例,所述显示设备接收所述视频信号根据预设的模式包括自动倍频或者手动倍频。所述显示设备视频处理单元原始gamma表为0-32767(2 15)的原始区间灰度线性范围,48帧3D视频信号2倍频后gamma表同时从0-32767的原始区间灰度线性范围扩展到0-65535(2 16)的倍频区间灰度线性范围。
此处要特别说明的是,虽然倍频后gamma区间范围从0-32767扩展到0-65535,但是倍频后的序列单元帧的gamma区间范围还是所述15比特显示设备的物理gamma区间范围既0-32767。既视频信号的单帧2倍频后扩展成了2个序列单元帧,在所述15比特显示设备上就是2个物理gamma区间范围0-32767的序列单元帧。
在本实施例中,通过对获取到的视频信号进行倍频处理,通过高刷新率以及超高帧刷新显示技术,减少播放过程中的画面闪烁,增加画面刷新率提高显示设备画面显示质量。
进一步地,基于本申请画面显示控制方法第一、第二实施例,提出本申请画面显示控制方法第三实施例。
画面显示控制方法的第三实施例与画面显示控制方法的第一、第二实施例的区别在于,本实施例是对步骤S30,基于预先设置好的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值的细化,参照图7,具体包括:
步骤S31,获取与所述倍频信号对应的图像代码值;
步骤S32,基于所述gamma表格,将所述图像代码值转换为灰度线性值,所述图像代码值为非线性值。
在一具体实施例中,以16比特显示设备和24帧视频信号4倍频为例,上述显示设备视频处理单元将视频信号代码值转换成上述倍频区间灰度线性范围内的灰度线性值。例如:倍频区间灰度值为1027的线性值,1027除以4得到的商是256,模是3。即上述视频信号代码值对应的原始区间灰度线性范围的灰度线性值是256,3个序列单元帧需要加1。通过4倍频提高显示设备灰度的方法的1-4序列帧对应的灰度线性值是256,257,257,257,组成了倍频区间灰度值为1027的线性值。
进一步可以理解的是,预设的gamma表是按公式算出来的数值,可能是n的倍数也可能不是n的倍数,若是n的倍数那么余数就是0,若不是n的倍数那么余数就是1到n-1之间的一个值。同时,倍频区间灰度值分配给倍频后的序列单元帧对应的线性值可以是相同,也可以是不同,但不同仍在倍频区间范围内,且与视频信号对应的原始区间灰度线性值的差值在预设阈值(如1或2)内。
在本实施例中,通过将视频信号的倍频帧率对应的图像代码对照序列单元帧对应的gamma表格转化为线性值,使得显示设备能够对视频信号进行播放,在一定程度上实现了高刷新率和超高刷新率的画面显示。
进一步地,基于本申请画面显示控制方法第一、第二、第三实施例,提出本申请画面显示控制方法第四实施例。
画面显示控制方法的第四实施例与画面显示控制方法的第一、第二、第三实施例的区别在于,本实施例是对步骤S40,基于所述倍频信号对应的灰度线性值,确定对应的显示功率,基于所述显示功率对画面进行显示控制的细化,参照图8,具体包括:
步骤S41,获取所述倍频模式的倍频参数值;
步骤S42,基于所述灰度线性值以及所述倍频参数值,获得倍频序列单元帧和倍频区间灰度线性值。
参照图9,步骤S42具体包括:
步骤S421,将所述灰度线性值除以所述倍频参数值,计算得出所述灰度线性值除以所述倍频参数值的模和所述灰度线性值除以所述倍频参数值的商;
步骤S422,基于所述灰度线性值除以所述倍频参数值的模,确定序列单元帧的增加数量,并根据所述增加数量添加序列单元帧,确定进行显示的倍频序列单元帧;
步骤S423,基于所述灰度线性值除以所述倍频参数值的商,确定序列单元帧的原始区间灰度线性值,并根据所述原始区间灰度线性值确定进行显示的倍频区间灰度线性值。
在一具体实施例中,显示设备视频处理单元根据将所述倍频区间灰度线性范围除以所述倍频数并求模(余数),其中,经过运算得到的模的值就是就是需要增加1个灰度线性值的序列单元帧的数量,经过运算得到的商就是序列单元帧的原始区间灰度线性值。
具体地,以15比特显示设备和48帧视频信号2倍频为例,显示设备视频处理单元将视频信号代码值转换成倍频区间灰度线性范围内的灰度线性值。例如:倍频区间灰度值为1025的线性值,1025除以2得到的商是512,模是1,即上述视频信号代码值对应的原始区间灰度线性范围的灰度线性值是512,1个序列单元帧需要加1,上述通过2倍频提高显示设备灰度的方法的1-2序列单元帧对应的灰度线性值是512,513,组成了倍频区间灰度值为1025的线性值。
以16比特显示设备和24帧视频信号4倍频为例,显示设备视频处理单元将视频信号代码值转换成倍频区间灰度线性范围内的灰度线性值。例如:倍频区间灰度值为1027的线性值,1027除以4得到的商是256,模是3,即上述视频信号代码值对应的原始区间灰度线性范围的灰度线性值是256,3个序列单元帧需要加1,上述通过4倍频提高显示设备灰度的方法的1-4序列单元帧对应的灰度线性值是256,257,257,257,组成了倍频区间灰度值为1027的线性值。
步骤S43,基于所述倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,基于所述倍频区间灰度线性值对画面进行显示。
其中,所述基于所述倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,基于所述倍频区间灰度线性值对画面进行显示的步骤包括:
将所述倍频区间灰度线性值按照预设方式插入所述倍频序列单元帧中;
根据所述按照预设方式插入所述倍频序列单元帧中的倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,并基于所述倍频区间灰度线性值对画面进行显示控制。
在一具体实施例中,将倍频区间灰度线性值按预设方式插入到倍频序列单元帧中,如上述倍频序列单元帧对应的倍频区间灰度线性值是256,257,257,257,还可以是256,256,257,257。普通倍频技术的序列单元帧对应的gamma线性值是相同的固定值,而本方案申请实施例提出的画面控制方法经过倍频处理后的倍频序列单元帧对应的gamma线性值是可以不同的。
在本实施例中,通过对获取到的视频信号进行倍频处理,并获取倍频处理后的倍频信号在显示器参数gamma表格中匹配对应的灰度线性值,该灰度线性值是根据倍频信号确定,进而依据该灰度线性值进行驱动显示,上述灰度线性值与进行倍频的视频信号的灰度线性值相一致,利用了倍频技术提高了显示屏的灰度值,进而优化显示设备的显示效果,提高在高刷新率和超高刷新率的显示帧率情况下的显示质量。
本申请还提供一种画面显示控制装置。参照图10,本申请的画面显示控制装置包括:
获取模块10,用于获取待显示的视频信号;
倍频模块20,用于基于预先设置好的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
确定模块30,用于基于预先设置好的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
显示模块40,用于基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
优选地,倍频模块20还用于获取所述视频信号中的原始帧率和原始序列单元;对所述原始帧率和原始序列单元进行基于所述倍频模式的倍频操作,得到对应的倍频帧率和倍频序列单元,所述倍频模式中至少包含倍频参数值。
优选地,确定模块30还用于:获取与所述倍频信号对应的图像代码值;基于所述gamma表格,将所述图像代码值转换为灰度线性值,所述图像代码值为非线性值。
优选地,显示模块40还用于:获取所述倍频模式的倍频参数值;基于所述灰度线性值以及所述倍频参数值,计算得出倍频序列单元帧和倍频区间灰度线性值;基于所述倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,基于所述倍频区间灰度线性值对画面进行显示。
优选地,倍频模块20还用于:通过所述倍频模式中的预设操作方式,将所述原始帧率的信号源按照预设刷新速率进行增强,得到对应的倍频帧率,所述刷新速率与所述倍频模式中的倍频参数值一致;通过所述倍频模式中的预设操作方式,将所述视频信号中的序列单元按照预设扩展倍数进行扩展,得到对应的倍频序列单元,所述预设扩展倍数与所述倍频模式中的倍频参数值一致。
优选地,确定模块30还用于:将所述灰度线性值除以所述倍频参数值,计算得出所述灰度线性值除以所述倍频参数值的模和所述灰度线性值除以所述倍频参数值的商;基于所述灰度线性值除以所述倍频参数值的模,确定序列单元帧的增加数量,并根据所述增加数量添加序列单元帧,确定进行显示的倍频序列单元帧;基于所述灰度线性值除以所述倍频参数值的商,确定序列单元帧的原始区间灰度线性值,并根据所述原始区间灰度线性值确定进行显示的倍频区间灰度线性值。
优选地,显示模块40还用于:将所述倍频区间灰度线性值按照预设方式插入所述倍频序列单元帧中;根据所述按照预设方式插入所述倍频序列单元帧中的倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,并基于所述倍频区间灰度线性值对画面进行显示控制。上述各模块的具体工作原理和更详细的功能描述详见上文方法实施例,此处不再赘述。
此外,本申请还提供一种计算机可读存储介质,所述介质优选为计算机可读存储介质,其上存储有画面显示控制程序,所述画面显示控制程序被处理器执行时实现如上所述的画面显示控制方法的步骤。
在本申请画面显示控制设备和介质的实施例中,包含了上述画面显示控制方法各实施例的全部技术特征,说明和解释内容与上述画面显示控制方法各实施例基本相同,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书与附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (15)

  1. 一种画面显示控制方法,其特征在于,所述画面显示控制方法包括如下步骤:
    获取待显示的视频信号;
    基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
    基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
    基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
  2. 如权利要求1所述的画面显示控制方法,其特征在于,所述基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号的步骤包括:
    获取所述视频信号中的原始帧率和原始序列单元;
    对所述原始帧率和原始序列单元进行基于所述倍频模式的倍频操作,得到对应的倍频帧率和倍频序列单元,所述倍频模式至少包含倍频参数值。
  3. 如权利要求1所述的画面显示控制方法,其特征在于,所述基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值的步骤包括:
    获取与所述倍频信号对应的图像代码值;
    基于所述gamma表格,将所述图像代码值转换为灰度线性值,所述图像代码值为非线性值。
  4. 如权利要求1所述的画面显示控制方法,其特征在于,所述基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示的步骤包括:
    获取所述倍频模式的倍频参数值;
    基于所述灰度线性值以及所述倍频参数值,获得倍频序列单元帧和倍频区间灰度线性值;
    基于所述倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,基于所述倍频区间灰度线性值对画面进行显示。
  5. 如权利要求2所述的画面显示控制方法,其特征在于,所述对所述原始帧率和原始序列单元进行基于所述倍频模式的倍频操作,得到对应的倍频帧率和倍频序列单元的步骤包括:
    通过所述倍频模式中的预设操作方式,将所述原始帧率的信号源按照预设刷新速率进行增强,得到对应的倍频帧率,所述刷新速率与所述倍频模式中的倍频参数值一致;
    通过所述倍频模式中的预设操作方式,将所述视频信号中的序列单元按照预设扩展倍数进行扩展,得到对应的倍频序列单元,所述预设扩展倍数与所述倍频模式中的倍频参数值一致。
  6. 如权利要求4所述的画面显示控制方法,其特征在于,所述基于所述灰度线性值以及所述倍频参数值,获得倍频序列单元帧和倍频区间灰度线性值的步骤包括:
    将所述灰度线性值除以所述倍频参数值,计算得出所述灰度线性值除以所述倍频参数值的模和所述灰度线性值除以所述倍频参数值的商;
    基于所述灰度线性值除以所述倍频参数值的模,确定序列单元帧的增加数量,并根据所述增加数量添加序列单元帧,确定进行显示的倍频序列单元帧;
    基于所述灰度线性值除以所述倍频参数值的商,确定序列单元帧的原始区间灰度线性值,并根据所述原始区间灰度线性值确定进行显示的倍频区间灰度线性值。
  7. 如权利要求4所述的画面显示控制方法,其特征在于,所述基于所述倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,基于所述倍频区间灰度线性值对画面进行显示的步骤包括:
    将所述倍频区间灰度线性值按照预设方式插入所述倍频序列单元帧中;
    根据所述按照预设方式插入所述倍频序列单元帧中的倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,并基于所述倍频区间灰度线性值对画面进行显示控制。
  8. 一种画面显示控制装置,其特征在于,所述画面显示控制装置包括:
    获取模块,用于获取待显示的视频信号;
    倍频模块,用于基于预设的倍频模式,对所述视频信号进行倍频操作,得到与所述视频信号对应的倍频信号;
    确定模块,用于基于预设的显示器参数gamma表格,确定所述倍频信号对应的灰度线性值;
    显示模块,用于基于所述灰度线性值和所述倍频模式,对所述视频信号的序列单元帧进行扩展,得到倍频序列单元帧,以进行画面显示。
  9. 如权利要求8所述的画面显示控制装置,其特征在于,所述倍频模块还用于:
    获取所述视频信号中的原始帧率和原始序列单元;
    对所述原始帧率和原始序列单元进行基于所述倍频模式的倍频操作,得到对应的倍频帧率和倍频序列单元,所述倍频模式中至少包含倍频参数值。
  10. 如权利要求8所述的画面显示控制装置,其特征在于,所述确定模块还用于:
    获取与所述倍频信号对应的图像代码值;
    基于所述gamma表格,将所述图像代码值转换为灰度线性值,所述图像代码值为非线性值。
  11. 如权利要求8所述的画面显示控制装置,其特征在于,所述显示模块还用于:
    获取所述倍频模式的倍频参数值;
    基于所述灰度线性值以及所述倍频参数值,计算得出倍频序列单元帧和倍频区间灰度线性值;
    基于所述倍频区间灰度线性值,确定所述倍频序列单元帧中进行显示的倍频区间灰度线性值,基于所述倍频区间灰度线性值对画面进行显示。
  12. 如权利要求9所述的画面显示控制装置,其特征在于,所述倍频模块还用于:
    通过所述倍频模式中的预设操作方式,将所述原始帧率的信号源按照预设刷新速率进行增强,得到对应的倍频帧率,所述刷新速率与所述倍频模式中的倍频参数值一致;
    通过所述倍频模式中的预设操作方式,将所述视频信号中的序列单元按照预设扩展倍数进行扩展,得到对应的倍频序列单元,所述预设扩展倍数与所述倍频模式中的倍频参数值一致。
  13. 如权利要求11所述的画面显示控制装置,其特征在于,所述确定模块还用于:
    将所述灰度线性值除以所述倍频参数值,计算得出所述灰度线性值除以所述倍频参数值的模和所述灰度线性值除以所述倍频参数值的商;
    基于所述灰度线性值除以所述倍频参数值的模,确定序列单元帧的增加数量,并根据所述增加数量添加序列单元帧,确定进行显示的倍频序列单元帧;
    基于所述灰度线性值除以所述倍频参数值的商,确定序列单元帧的原始区间灰度线性值,并根据所述原始区间灰度线性值确定进行显示的倍频区间灰度线性值。
  14. 一种画面显示控制设备,其特征在于,所述画面显示控制设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的画面显示控制程序,所述画面显示控制程序被所述处理器执行时实现如权利要求1至7中任一项所述的画面显示控制方法的步骤。
  15. 一种介质,所述介质为计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有画面显示控制程序,所述画面显示控制程序被处理器执行时实现如权利要求1至7中任一项所述的画面显示控制方法的步骤。
PCT/CN2023/093347 2022-05-10 2023-05-10 画面显示控制方法、装置、设备与介质 WO2023217199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210500595.1A CN114613314B (zh) 2022-05-10 2022-05-10 画面显示控制方法、装置、设备与介质
CN202210500595.1 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023217199A1 true WO2023217199A1 (zh) 2023-11-16

Family

ID=81867929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093347 WO2023217199A1 (zh) 2022-05-10 2023-05-10 画面显示控制方法、装置、设备与介质

Country Status (2)

Country Link
CN (1) CN114613314B (zh)
WO (1) WO2023217199A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613314B (zh) * 2022-05-10 2022-08-26 深圳市时代华影科技股份有限公司 画面显示控制方法、装置、设备与介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553553A2 (en) * 2004-01-07 2005-07-13 Chi Mei Optoelectronics Corporation Liquid crystal display driver for compensating viewing angle
KR20080017598A (ko) * 2006-08-21 2008-02-27 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 구동방법
CN101562002A (zh) * 2008-04-16 2009-10-21 Nec液晶技术株式会社 控制器、保持型显示装置、电子设备以及信号调整方法
CN103390387A (zh) * 2013-07-23 2013-11-13 深圳市明微电子股份有限公司 一种倍频显示控制方法及系统
CN108234977A (zh) * 2018-01-12 2018-06-29 京东方科技集团股份有限公司 一种视频播放方法及显示系统
US20190004406A1 (en) * 2015-12-24 2019-01-03 Panasonic Intellectual Property Management Co., Ltd. High-speed display device, high-speed display method, and realtime measurement-projection device
JP2019186767A (ja) * 2018-04-11 2019-10-24 シャープ株式会社 映像処理装置、映像処理方法、テレビジョン受像機、制御プログラム、及び記録媒体
CN111314685A (zh) * 2020-02-17 2020-06-19 深圳市时代华影科技股份有限公司 一种led视频显示系统及其显示方法
CN112689111A (zh) * 2020-12-21 2021-04-20 峰米(北京)科技有限公司 一种视频处理方法、装置、终端和存储介质
CN112927648A (zh) * 2019-12-06 2021-06-08 西安诺瓦星云科技股份有限公司 显示控制方法及装置、模组控制卡和led显示屏
CN114613314A (zh) * 2022-05-10 2022-06-10 深圳市时代华影科技股份有限公司 画面显示控制方法、装置、设备与介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553553A2 (en) * 2004-01-07 2005-07-13 Chi Mei Optoelectronics Corporation Liquid crystal display driver for compensating viewing angle
KR20080017598A (ko) * 2006-08-21 2008-02-27 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 구동방법
CN101562002A (zh) * 2008-04-16 2009-10-21 Nec液晶技术株式会社 控制器、保持型显示装置、电子设备以及信号调整方法
CN103390387A (zh) * 2013-07-23 2013-11-13 深圳市明微电子股份有限公司 一种倍频显示控制方法及系统
US20190004406A1 (en) * 2015-12-24 2019-01-03 Panasonic Intellectual Property Management Co., Ltd. High-speed display device, high-speed display method, and realtime measurement-projection device
CN108234977A (zh) * 2018-01-12 2018-06-29 京东方科技集团股份有限公司 一种视频播放方法及显示系统
JP2019186767A (ja) * 2018-04-11 2019-10-24 シャープ株式会社 映像処理装置、映像処理方法、テレビジョン受像機、制御プログラム、及び記録媒体
CN112927648A (zh) * 2019-12-06 2021-06-08 西安诺瓦星云科技股份有限公司 显示控制方法及装置、模组控制卡和led显示屏
CN111314685A (zh) * 2020-02-17 2020-06-19 深圳市时代华影科技股份有限公司 一种led视频显示系统及其显示方法
CN112689111A (zh) * 2020-12-21 2021-04-20 峰米(北京)科技有限公司 一种视频处理方法、装置、终端和存储介质
CN114613314A (zh) * 2022-05-10 2022-06-10 深圳市时代华影科技股份有限公司 画面显示控制方法、装置、设备与介质

Also Published As

Publication number Publication date
CN114613314A (zh) 2022-06-10
CN114613314B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
US9916809B2 (en) Method and apparatus for image data transformation
JP5347100B2 (ja) 輝度調節が可能な映像表示装置および映像表示方法
WO2017114233A1 (zh) 显示驱动装置及显示驱动方法
WO2023217199A1 (zh) 画面显示控制方法、装置、设备与介质
US7667720B2 (en) Image display device, driving circuit and driving method used in same
US20070263121A1 (en) Image display apparatus, signal processing apparatus, image processing method, and computer program product
CN108156533B (zh) 智能电视背光调节方法、智能电视以及存储介质
CN105872311B (zh) 高动态范围画面切换方法及装置
JP2007033864A (ja) 画像処理回路及び画像処理方法
JP2005217574A (ja) 映像信号処理装置及び方法
JP2021168186A (ja) 情報処理装置および情報処理方法
KR20150002440A (ko) 영상처리장치 및 영상처리방법
TW200308165A (en) Signal processing unit and liquid crystal display device
US7684638B2 (en) Dynamic image contrast enhancement device
US11830446B2 (en) Display apparatus and display control method
KR20180047263A (ko) 디스플레이 장치 및 방법
CN113763903A (zh) 显示设备以及显示的控制方法
WO2009131058A1 (ja) 表示制御装置および方法、並びにプログラム
JP2016197853A (ja) 評価装置、評価方法およびカメラシステム
US11817063B2 (en) Perceptually improved color display in image sequences on physical displays
CN113763904A (zh) 显示设备以及显示的控制方法
KR20180103239A (ko) 디스플레이 장치 및 그 제어 방법
CN113763905A (zh) 显示设备以及显示的控制方法
US20080284881A1 (en) Method and system for video motion blur reduction
JP4587186B2 (ja) インパルス型画像表示装置及びその駆動方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802968

Country of ref document: EP

Kind code of ref document: A1