WO2023217100A1 - 活塞及发动机 - Google Patents

活塞及发动机 Download PDF

Info

Publication number
WO2023217100A1
WO2023217100A1 PCT/CN2023/092865 CN2023092865W WO2023217100A1 WO 2023217100 A1 WO2023217100 A1 WO 2023217100A1 CN 2023092865 W CN2023092865 W CN 2023092865W WO 2023217100 A1 WO2023217100 A1 WO 2023217100A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular protrusion
annular
cooling oil
oil passage
oil
Prior art date
Application number
PCT/CN2023/092865
Other languages
English (en)
French (fr)
Inventor
赵培吉
李树娟
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023217100A1 publication Critical patent/WO2023217100A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This application relates to the technical field of engines, such as pistons and engines.
  • the piston is an important component in the engine.
  • the piston is located in the engine cylinder, and the combustion chamber is located at the end of the piston. By continuously burning fuel to do work, the piston is pushed to reciprocate in the engine cylinder. The end of the piston away from the combustion chamber is connected to the oil chamber of the engine. During the operation of the engine, the oil lubricates the piston and also cools the piston.
  • the temperature of the end of the piston close to the combustion chamber is relatively high, and it is easy to fail due to high temperature after long-term use, especially the throat of the piston and the first ring groove. If these two places cannot be cooled in time, after long-term use, the piston will easily be damaged at the throat and first ring groove and fail, thereby reducing the service life of the engine.
  • a piston is introduced.
  • An internal cooling oil passage is provided in the piston.
  • the upper cavity of the internal cooling oil passage is aligned with the position of the piston throat.
  • the shape of the salt core in this technology is used.
  • the internal cooling oil passage of the molded piston is formed into an annular protrusion similar to a triangular structure.
  • the engine oil is sprayed from the oil inlet into the inner cooling oil passage.
  • the oil will change the flow direction after being blocked and guided by the annular protrusion, and finally form a vortex in the upper cavity of the inner cooling oil passage, increasing the amount of oil in the inner cooling oil passage.
  • the residence time in the upper cavity of the cold oil passage improves the cooling effect on the piston throat.
  • the oil at the oil outlet will quickly pass through the outer ring wall of the inner cooling oil passage to cool the one-ring groove at the oil outlet. Since the upper cavity of the inner cooling oil passage is located Above the first ring groove, when the oil forms a vortex in the upper cavity, the amount of oil flowing through the outer ring wall of the inner cooling oil passage close to the first ring groove is small, so the cooling effect on the first ring groove is limited.
  • a steel piston is introduced. From the drawings of the patent, it can be seen that the piston is also provided with an internal cooling oil passage. There are two annular protrusions in the internal cooling oil passage. The annular protrusions are respectively located on the two side walls of the internal cooling oil passage, and the two annular protrusions are staggered, and the shape of the two annular protrusions is a "W" shape.
  • the main effect of this structural design is to improve the oscillation and sputtering effect of the engine oil after it is sprayed into the inner cooling oil passage, so that the range of the oil oscillation and sputtering is wider, so as to increase the coverage of the engine oil in the inner cooling oil passage. area.
  • the specific process is: spray the engine oil obliquely from the oil inlet into the inner cooling oil passage, and spray the engine oil directly to the outer surface of the lower annular bulge.
  • the specific shape can increase the sputtering effect of engine oil. Part of the engine oil after sputtering will continue to splash to the upper annular bulge.
  • the disadvantage of the above-mentioned piston structure is that when the engine oil flows in the internal cooling oil passage, it is difficult to achieve a good cooling effect on the throat opening and the first ring groove at the same time.
  • This application provides a piston and an engine that take into account the cooling of two important locations in the piston structure: the throat and an annular groove.
  • the present application provides a piston, the top of the piston has a throat, the outer circumferential surface of the piston is provided with an annular groove, and an annular internal cooling oil passage is provided between the throat and the annular groove.
  • a first annular protrusion is protruding from the inner annular wall of the oil passage.
  • the upper part of the first annular protrusion has a guide profile.
  • the guide profile moves from the inner annular wall of the inner cooling oil passage to the inner cooling oil passage.
  • the outer ring wall is inclined downward, and the outer ring wall of the internal cooling oil passage is also provided with a second annular protrusion.
  • the second annular protrusion is located below the first annular protrusion.
  • An annular protrusion is located on the inner annular wall of the internal cooling oil passage and is located below the throat, the second annular protrusion is located on the outer annular wall of the internal cooling oil passage and the first annular protrusion is located on the inner annular wall of the internal cooling oil passage. The position corresponds to the ring groove.
  • This application also provides an engine having the above-mentioned piston.
  • Figure 1 is a cross-sectional view of the piston from a top view in this application;
  • Figure 2 is a cross-sectional view along the line A-A in Figure 1;
  • Figure 3 is a cross-sectional view along the line B-B in Figure 1;
  • Figure 4 is a partial enlarged view of point A in Figure 3;
  • Figure 5 is the flow direction of the engine oil at the oil inlet in the internal cooling oil passage of this application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral body; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components or an interaction between two components.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components or an interaction between two components.
  • a first feature to a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact. contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • an internal cooling oil passage is provided in the piston, and the upper cavity of the internal cooling oil passage is aligned with the position of the piston throat.
  • the salt core shape in this technology is used to form the internal cooling oil passage of the piston.
  • the formed inner cooling oil passage is The cold oil passage is an annular protrusion similar to a triangular structure.
  • the engine oil is sprayed from the oil inlet into the inner cooling oil passage. The oil will change the flow direction after being blocked and guided by the annular protrusion, and finally form a vortex in the upper cavity of the inner cooling oil passage, increasing the amount of oil in the inner cooling oil passage.
  • the residence time in the upper cavity of the cold oil passage improves the cooling effect on the piston throat.
  • the oil at the oil outlet will quickly pass through the outer ring wall of the inner cooling oil passage to cool the one-ring groove at the oil outlet. Since the upper cavity of the inner cooling oil passage is located Above the first ring groove, when the oil forms a vortex in the upper cavity, the amount of oil flowing through the outer ring wall of the inner cooling oil passage close to the first ring groove is small, so the cooling effect on the first ring groove is limited.
  • this application uses a piston, the specific structure of which is described below.
  • the top of the piston has a throat 1, and the outer circumferential surface of the piston is provided with a ring groove 2 as well as a second ring groove and a third ring groove.
  • the second ring groove and the third ring groove are located below the first ring groove 2.
  • An annular internal cooling oil channel 3 is provided in the piston.
  • the internal cooling oil channel 3 is located between the throat 1 and an annular groove 2.
  • An oil inlet 31 and an oil outlet 32 are provided below the internal cooling oil channel 3. Through the inlet
  • the oil port 31 injects engine oil into the inner cooling oil passage 3, and the oil flows in the inner cooling oil passage 3 to cool the piston, especially the throat 1 and the ring groove 2, and then the oil flows out from the oil outlet 32.
  • the distance between the oil inlet 31 and the oil outlet 32 is 180°.
  • the bottom of the internal cooling oil channel 3 is set at an angle.
  • the oil inlet 31 is located at the highest point of the bottom of the internal cooling oil channel 3.
  • the oil outlet 32 is located at the internal cooling oil channel 3. The lowest part of the oil passage 3 allows the engine oil in the internal cooling oil passage 3 to flow out from the oil outlet 32 .
  • the oil inlet 31 is configured to inject upward.
  • the oil inlet 31 can be configured for inclined injection, and the injection direction can be adjusted according to design needs.
  • the part closest to the throat 1 in the internal cooling oil passage 3 is called the first part 34
  • the part closest to the ring groove 2 is called the second part 35.
  • the annular wall of the internal cooling oil passage 3 is protrudingly provided with a first annular protrusion 4 and a second annular protrusion 5.
  • the second annular protrusion 5 is located below the first annular protrusion 4.
  • the first annular protrusion 4 is located on the inner annular wall of the internal cooling oil passage 3 and is located below the throat 1.
  • the second annular protrusion 5 is located on the outer annular wall of the internal cooling oil passage 3, and the position of the first annular protrusion 4 is in line with the One ring corresponds to slot 2.
  • the position of the first annular protrusion 4 can also be set higher than an annular groove 2.
  • the position of the first annular protrusion 4 can also be set 5 mm higher than an annular groove 2.
  • the position and other heights can be set according to the actual situation.
  • the upper part of the first annular protrusion 4 has a guide profile 41.
  • the guide profile 41 is inclined downward from the inner annular wall of the inner cooling oil passage 3 to the outer annular wall of the inner cooling oil passage 3.
  • the tangent line at the end of the guide profile 41 is in line with the inner cooling oil passage.
  • the intersection of the outer ring walls 3 is located above the second annular protrusion 5 .
  • the part of the internal cooling oil channel 3 above the first annular protrusion 4 is called the upper cavity 33.
  • the engine oil is injected into the internal cooling oil channel 3 from the oil inlet 31.
  • the oil will be injected into the upper cavity 33 and pass through the upper cavity 33. Due to the blocking and guiding function, the engine oil will flow along the contour of the upper cavity 33 and flow to the guide contour 41. At this time, the oil will form a vortex in the upper cavity 33, and the vortex flows to the oil flow in the upper cavity 33 as shown in Figure 5. , increasing the amount of engine oil flowing through the first part 34, thereby increasing the cooling effect of the engine oil on the throat 1; the engine oil flowing downward along the guide contour 41 will flow and impact to the top of the second annular protrusion 5, and pass through the second annular protrusion 5.
  • the engine oil After being blocked by the second annular protrusion 5, the engine oil will quickly spread along the second annular protrusion 5 and the outer annular wall of the inner cooling oil passage 3 to form a circulation.
  • the circulation is in the direction indicated by the arrows in Figures 1 and 4, from the oil inlet.
  • the oil outlet 31 flows along the circumferential surface of the inner cooling oil passage 3 in both directions of the oil outlet 32, thereby increasing the amount of engine oil flowing through the second part 35, increasing the cooling effect of the engine oil on the ring groove 2, and thus taking into account the cooling effect on the piston. Cooling of two important locations in the structure: throat 1 and ring groove 2.
  • the lower part of the first annular protrusion 4 has a drainage profile 42.
  • the drainage profile 42 cools the oil from the inner annular wall of the internal cooling oil passage 3 to the internal cooling oil passage 3.
  • the outer ring wall of Road 3 is inclined upward.
  • this part of the oil can be directed to flow into the upper cavity 33 .
  • this part of the engine oil will then flow along the contour of the upper cavity 33 to enhance the vortex effect formed in the upper cavity 33 .
  • the oil in this part can be spread out, improving the evenness of the oil distribution in the internal cooling oil passage 3, and expanding the oil flow.
  • a range of vortex flow is formed in the upper cavity 33 .
  • the upper contour of the second annular protrusion 5 is a blocking contour 52 , and optionally, the blocking contour 52 is a flat surface or a concave arc surface.
  • the intercepting contour 52 is a plane perpendicular to the piston axis. At this time, too much slower engine oil will not remain above the intercepting contour 52. After the oil impacts the intercepting contour 52, the oil is intercepted. The blocking effect of the residual engine oil on the profile 52 is weak, so the circulation speed of the engine oil above the intercepting profile 52 can be increased and the cooling effect on the ring groove 2 can be improved.
  • the intercepting profile 52 may also be of other shapes, as long as it can intercept the engine oil to form a circulating flow.
  • the shape and positional relationship between the first annular protrusion 4 and the second annular protrusion 5 are very closely related to the intensity of the vortex formed in the upper cavity 33 and the intensity of the circulation above the second annular protrusion 5 Relationship.
  • the angle between the guide profile 41 and the drainage profile 42 is 15°-40°, optionally 26°; the protruding length of the first annular protrusion 4 and the second annular protrusion 5 along the piston radial direction is 3mm.
  • the height difference in the vertical direction between the first annular protrusion 4 and the second annular protrusion 5 is 8mm-9mm, and the lateral distance between the first annular protrusion 4 and the second annular protrusion 5 is 9mm- 11mm, optional 10mm.
  • the height difference between the first annular protrusion 4 and the second annular protrusion 5 in the vertical direction can be understood as the height difference between the first annular protrusion 4 and the second annular protrusion 5.
  • first annular protrusion 4 and the second annular protrusion 5 projects onto the outer circumferential surface of the piston respectively, and the distance between the two projections; the lateral distance between the first annular protrusion 4 and the second annular protrusion 5 can be understood as, the first annular protrusion 4 and the second annular protrusion 5
  • the annular protrusions 5 project toward the top of the piston respectively, and the distance between the two projections is the distance between them.
  • the second annular protrusion 5 has a notch 51, and the oil inlet 31 is located below the notch 51.
  • the oil directly injected at the oil inlet 31 will not be blocked by the second annular protrusion 5.
  • the scattered engine oil will be blocked by the second annular protrusion 5, above the second annular protrusion 5 into a circulation.
  • the oil flow rate of the outer ring wall of the inner cooling oil passage 3 is large, and the cooling effect of the first ring groove 2 there is also good.
  • the first annular protrusion 4 is fully arranged in the internal cooling oil channel 3, that is, the arc of the first annular protrusion 4 is 360°, and the arc of the second annular protrusion 5 is 315°-345°. Select 330°.
  • This embodiment also introduces an engine having the above-mentioned piston.
  • the fuel injector of the engine generally shoots directly at the throat 1 above the oil inlet 31, that is, the fuel burns at the throat 1 above the oil inlet 31, where the temperature of the throat 1 is the highest, and the inlet
  • the internal cooling oil channel 3 at the oil hole 31 has the best cooling effect and can maximize the cooling efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

一种活塞,内冷油道(3)的内环壁凸出设置有第一环形凸起(4),第一环形凸起(4)的上部具有导向轮廓(41),导向轮廓(41)倾斜向下设置,内冷油道(3)的外环壁还凸出设置有第二环形凸起(5),第二环形凸起(5)位于第一环形凸起(4)的下方,第一环形凸起(4)位于内冷油道(3)的内环壁并且位于喉口(1)下方,第二环形凸起(5)位于内冷油道(3)的外环壁并且第一环形凸起(4)的位置与一环槽(2)对应。

Description

活塞及发动机
本申请要求在2022年05月10日提交中国专利局、申请号为202210505523.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及发动机的技术领域,例如涉及活塞及发动机。
背景技术
活塞是发动机中的重要部件,活塞位于发动机的缸体内,燃烧室位于活塞的端部,通过不断燃烧燃料做功,推动活塞在发动机缸体内往复运动。活塞远离燃烧室的一端与发动机的机油腔连通,在发动机工作的过程中,机油起到对活塞润滑的作用,同时也能够对活塞进行冷却。
在实际使用过程中,活塞靠近燃烧室的一端温度较高,长时间使用后容易因高温而失效,尤其是活塞喉口和一环槽这两个部位。若不能对这两处进行及时冷却,长时间使用后,活塞容易在喉口和一环槽的位置出现损伤而失效,从而降低发动机的使用寿命。
在公告号为CN210139037U的实用新型专利中,介绍了一种活塞,在活塞中设置内冷油道,内冷油道的上腔体与活塞喉口的位置对齐,利用该技术中的盐芯形状成型活塞的内冷油道,成型后的内冷油道为与三角形结构相似的环形凸起。在使用过程中,从进油口向内冷油道内喷射机油,机油经过环形凸起的阻挡和导向,会改变流动方向,最终在内冷油道的上腔体内形成涡流,增大机油在内冷油道上腔体内的停留时间,从而提升对活塞喉口处的冷却效果。但针对于一环槽的冷却中,出油口处的机油会快速经过内冷油道的外环壁,对出油口处的一环槽进行冷却,由于内冷油道的上腔体位于一环槽上方,因此当机油在上腔体内形成涡流之后,流经与一环槽位置接近的内冷油道外环壁的机油量较小,因此对一环槽的冷却效果有限。
在公告号为CN212337476U的实用新型专利中,介绍了一种钢活塞,从该专利的附图中可知,活塞内也设置有内冷油道,内冷油道内设置有两道环形凸起,两道环形凸起分别位于内冷油道的两个侧壁,并且两道环形凸起交错设置,两道环形凸起的形状为“W”形。在活塞的结构设计中,该种结构设计主要起到的效果是提升机油喷射至内冷油道后的振荡溅射效果,使机油振荡溅射的范围更加广泛,以提升机油覆盖内冷油道的面积。具体过程为:从进油口向内冷油道内斜喷机油,将机油直接喷射至下环形凸起的外表面,由于下环形凸起的 特定形状,能够增大机油的溅射效果,溅射后的部分机油会继续溅射至上环形凸起,同样,经过上环形凸起溅射后的部分机油会继续溅射至下环形凸起,以此往复,在内冷油道内形成振荡效果,提升机油在内冷油道内的覆盖面,最终从内冷油道的出油口流出。该种内冷油道的设置方式,既不能在内冷油道内形成涡流,也不能形成环流,更加倾向于提升机油在内冷油道内的振荡效果,而不能集中对活塞的喉口和一环槽进行冷却,对喉口和一环槽的降温作用有限。
上述活塞结构的不足之处在于,机油在内冷油道内流动时,难以同时对喉口和一环槽的位置同时起到较好的冷却效果。
发明内容
本申请提供一种活塞及发动机,以兼顾对活塞结构中的喉口和一环槽这两个重要位置的冷却。
本申请提供一种活塞,所述活塞顶部具有喉口,所述活塞外周面开设有一环槽,所述喉口与所述一环槽之间开设有环形的内冷油道,所述内冷油道的内环壁凸出设置有第一环形凸起,所述第一环形凸起的上部具有导向轮廓,所述导向轮廓由所述内冷油道内环壁向所述内冷油道外环壁倾斜向下设置,所述内冷油道的外环壁还凸出设置有第二环形凸起,所述第二环形凸起位于所述第一环形凸起的下方,所述第一环形凸起位于所述内冷油道的内环壁并且位于所述喉口下方,所述第二环形凸起位于所述内冷油道的外环壁并且所述第一环形凸起的位置与所述一环槽对应。
本申请还提供了一种发动机,具有上述的活塞。
附图说明
图1是本申请中活塞俯视角度的剖面图;
图2是图1中A-A向剖视图;
图3是图1中B-B向剖视图;
图4是图3中的A处局部放大图;
图5是本申请内冷油道中进油口处机油的流动方向。
图中:
1、喉口;2、一环槽;3、内冷油道;31、进油口;32、出油口;33、上腔体;34、第一部;35、第二部;4、第一环形凸起;41、导向轮廓;42、引流轮 廓;5、第二环形凸起;51、缺口;52、截流轮廓。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请的描述中,除非另有明确的规定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
在相关技术中,在活塞中设置内冷油道,内冷油道的上腔体与活塞喉口的位置对齐,利用该技术中的盐芯形状成型活塞的内冷油道,成型后的内冷油道为与三角形结构相似的环形凸起。在使用过程中,从进油口向内冷油道内喷射机油,机油经过环形凸起的阻挡和导向,会改变流动方向,最终在内冷油道的上腔体内形成涡流,增大机油在内冷油道上腔体内的停留时间,从而提升对活塞喉口处的冷却效果。但针对于一环槽的冷却中,出油口处的机油会快速经过内冷油道的外环壁,对出油口处的一环槽进行冷却,由于内冷油道的上腔体位于一环槽上方,因此当机油在上腔体内形成涡流之后,流经与一环槽位置接近的内冷油道外环壁的机油量较小,因此对一环槽的冷却效果有限。
为解决上述问题,本申请采用了一种活塞,具体结构如下文所述。
如图1和图2所示,活塞的顶部具有喉口1,活塞的外周面开设有一环槽2以及二环槽和三环槽,二环槽和三环槽位于一环槽2的下方。活塞内开设有环形的内冷油道3,内冷油道3位于喉口1与一环槽2之间,内冷油道3的下方开设有进油口31和出油口32,通过进油口31向内冷油道3内喷射机油,机油在内冷油道3内流动,对活塞进行冷却,尤其对喉口1和一环槽2进行冷却,之后机油从出油口32流出。一般进油口31与出油口32之间间隔180°,内冷油道3的底部倾斜设置,进油口31设置在内冷油道3底部的最高处,出油口32设置在内冷油道3的最低处,以便于内冷油道3内的机油从出油口32流出。
在本实施例中,进油口31设置为向上喷射。在其他实施例中,进油口31可设置为倾斜喷射,喷射方向根据设计需要进行调整。
如图2所示,为了便于下文表述,将内冷油道3中与喉口1位置最接近的部位称为第一部34,与一环槽2位置最接近的部位称为第二部35。
如图3和4所示,内冷油道3的环壁凸出设置有第一环形凸起4和第二环形凸起5,第二环形凸起5位于第一环形凸起4的下方,第一环形凸起4位于内冷油道3的内环壁并且位于喉口1下方,第二环形凸起5位于内冷油道3的外环壁,并且第一环形凸起4的位置与一环槽2对应。在一实施例中,第一环形凸起4的位置还可以设置在高于一环槽2的位置,示例性地,第一环形凸起4的位置还可以设置比一环槽2高5mm的位置,其他高度可根据实际情况进行设置。第一环形凸起4的上部具有导向轮廓41,导向轮廓41由内冷油道3内环壁向内冷油道3外环壁倾斜向下设置,导向轮廓41末端的切线与内冷油道3外环壁的交汇处位于第二环形凸起5的上方。第一环形凸起4上方的部分内冷油道3称为上腔体33,机油从进油口31射入内冷油道3,机油会射入上腔体33内,经过上腔体33的阻挡及导向作用,机油会沿上腔体33的轮廓流动,并流动至导向轮廓41,此时机油在上腔体33内形成涡流,涡流流向如图5中上腔体33内的机油流动,提升流经第一部34的机油量,从而提升机油对喉口1处的冷却效果;沿导向轮廓41倾斜向下流动的机油,会流动冲击至第二环形凸起5的上方,经过第二环形凸起5的阻挡后,机油会快速沿第二环形凸起5及内冷油道3的外环壁扩散,形成环流,环流如图1和图4中箭头所指方向,从进油口31向出油口32的两个方向上沿内冷油道3周面流动,从而提升流经第二部35处的机油量,提升机油对一环槽2的冷却效果,从而兼顾对活塞结构中的喉口1和一环槽2这两个重要位置的冷却。
并且,沿导向轮廓41倾斜向下流动的机油,冲击至第二环形凸起5的上方之后,会有部分机油经过内冷油道3外环壁的阻挡之后继续在上腔体33内形成涡流,并且内冷油道3内的涡流从进油口31向出油口32的方向逐渐扩散并且 衰减,但由于机油的冲击速度较大,涡流仍能够持续至出油口32的上方,对喉口1进行冷却。
为提升上腔体33内的涡流效果,可选的,如图4所示,第一环形凸起4的下部具有引流轮廓42,引流轮廓42由内冷油道3内环壁向内冷油道3外环壁倾斜向上设置。此时,结合图5所示,机油从进油口31喷射进入之后,部分机油会冲击引流轮廓42,经过引流轮廓42的阻挡和导向作用,能够将该部分的机油导向流向上腔体33的外环壁处,之后该部分机油会沿上腔体33的轮廓流动,以增强在上腔体33内形成的涡流效果。另外,机油冲击引流轮廓42之后,由于引流轮廓42为锥形面或类锥形的扩散面,能够将该部分的机油扩散开,提升机油在内冷油道3内的分布均匀度,扩大机油在上腔体33内形成涡流的范围。
如图4所示,第二环形凸起5的上部轮廓为截流轮廓52,可选的,截流轮廓52为平面或者凹陷的弧形面。可选的,在本实施例中,截流轮廓52为与活塞轴线垂直的平面,此时截流轮廓52的上方不会残余过多速度较慢的机油,机油冲击至截流轮廓52之后,机油受到截流轮廓52上残存机油的阻滞效果较弱,因此能够提升截流轮廓52上方的机油环流速度,提升对一环槽2的冷却效果。在其他实施例中,截流轮廓52也可以为其他形状,能够起到对机油进行截流以形成环流的效果即可。
另外,当截流轮廓52与一环槽2底部平齐时,截流轮廓52上形成的机油环流刚好流经第二部35,此时对一环槽2的冷却效果最佳。
当然,在其余方面,第一环形凸起4和第二环形凸起5的形状和位置关系,与上腔体33内形成的涡流强度以及第二环形凸起5上方的环流强度均有非常密切的关系。其中,导向轮廓41与引流轮廓42之间的夹角为15°-40°,可选为26°;第一环形凸起4和第二环形凸起5沿活塞径向的凸出长度为3mm-4mm,第一环形凸起4与第二环形凸起5在竖直方向上的高度差为8mm-9mm,第一环形凸起4与第二环形凸起5之间的横向间距为9mm-11mm,可选为10mm。如图4所示,以B-B向剖视图为例,第一环形凸起4与第二环形凸起5在竖直方向上的高度差,可以理解为,第一环形凸起4与第二环形凸起5分别向活塞外周面上投影,两个投影之间的距离;第一环形凸起4与第二环形凸起5之间的横向间距,可以理解为,第一环形凸起4与第二环形凸起5分别向活塞顶部投影,两个投影之间的距离。
可选的,如图1和图2所示,第二环形凸起5具有缺口51,进油口31位于缺口51的下方。此时,机油从进油口31喷射进入内冷油道3之后,进油口31处直接喷射的机油不会被第二环形凸起5所阻挡,经过第一环形凸起4阻挡和导向后散射的机油才会被第二环形凸起5所阻挡,在第二环形凸起5的上方形 成环流。在缺口51处,内冷油道3的外环壁机油流量大,该处的一环槽2冷却效果同样较好。
可选的,第一环形凸起4在内冷油道3内满环设置,即第一环形凸起4的弧度为360°,第二环形凸起5的弧度为315°-345°,可选为330°。
本实施例还介绍了一种发动机,具有上述活塞。在发动机的装配过程中,一般发动机的喷油嘴直射进油孔31上方的喉口1处,即燃油在进油孔31上方的喉口1处燃烧,该处喉口1温度最高,而进油孔31处内冷油道3的冷却效果最好,能够将冷却效率最大化。

Claims (10)

  1. 一种活塞,所述活塞顶部具有喉口(1),所述活塞外周面开设有一环槽(2),所述喉口(1)与所述一环槽(2)之间开设有环形的内冷油道(3),所述内冷油道(3)的内环壁凸出设置有第一环形凸起(4),所述第一环形凸起(4)的上部具有导向轮廓(41),所述导向轮廓(41)由所述内冷油道(3)内环壁向所述内冷油道(3)外环壁倾斜向下设置,所述内冷油道(3)的外环壁还凸出设置有第二环形凸起(5),所述第二环形凸起(5)位于所述第一环形凸起(4)的下方,所述第一环形凸起(4)位于所述内冷油道(3)的内环壁并且位于所述喉口(1)下方,所述第二环形凸起(5)位于所述内冷油道(3)的外环壁并且所述第一环形凸起(4)的位置与所述一环槽(2)对应。
  2. 根据权利要求1所述的活塞,其中,所述第二环形凸起(5)的上部轮廓为截流轮廓(51),所述截流轮廓(51)与所述一环槽(2)的槽底平齐。
  3. 根据权利要求2所述的活塞,其中,所述截流轮廓(51)为平面或凹陷的弧形面。
  4. 根据权利要求1所述的活塞,其中,所述内冷油道(3)的底部连通设置有进油口(31),所述第二环形凸起(5)具有缺口(51),所述进油口(31)位于所述缺口(51)的下方。
  5. 根据权利要求4所述的活塞,其中,所述第二环形凸起(5)的圆角为315°-345°。
  6. 根据权利要求1所述的活塞,其中,所述第一环形凸起(4)的圆角为360°。
  7. 根据权利要求1所述的活塞,其中,所述第一环形凸起(4)的下部具有引流轮廓(42),所述引流轮廓(42)由所述内冷油道(3)内环壁向所述内冷油道(3)外环壁倾斜向上设置。
  8. 根据权利要求7所述的活塞,其中,所述导向轮廓(41)与所述引流轮廓(42)之间的夹角为15°-40°。
  9. 根据权利要求1所述的活塞,其中,所述第一环形凸起(4)和所述第二环形凸起(5)的凸出长度为3mm-4mm,所述第一环形凸起(4)与所述第二环形凸起(5)在竖直方向上的高度差为8mm-9mm,所述第一环形凸起(4)与所述第二环形凸起(5)之间的横向间距为9mm-11mm。
  10. 一种发动机,具有如权利要求1-9任一所述的活塞。
PCT/CN2023/092865 2022-05-10 2023-05-09 活塞及发动机 WO2023217100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210505523.6A CN114810410B (zh) 2022-05-10 2022-05-10 一种活塞及发动机
CN202210505523.6 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023217100A1 true WO2023217100A1 (zh) 2023-11-16

Family

ID=82513906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092865 WO2023217100A1 (zh) 2022-05-10 2023-05-09 活塞及发动机

Country Status (2)

Country Link
CN (1) CN114810410B (zh)
WO (1) WO2023217100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810410B (zh) * 2022-05-10 2023-08-18 潍柴动力股份有限公司 一种活塞及发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257153A (ja) * 1998-03-17 1999-09-21 Yanmar Diesel Engine Co Ltd 内燃機関のピストン
KR101593543B1 (ko) * 2016-01-04 2016-02-16 동양피스톤 주식회사 내연기관용 피스톤
CN109500361A (zh) * 2019-01-22 2019-03-22 马勒汽车技术(中国)有限公司 盐芯和活塞
CN111794876A (zh) * 2020-06-13 2020-10-20 广西玉柴机器股份有限公司 一种钢活塞内冷油道进出油孔
CN114810410A (zh) * 2022-05-10 2022-07-29 潍柴动力股份有限公司 一种活塞及发动机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045456A1 (de) * 2008-09-02 2010-03-04 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE102012014193A1 (de) * 2012-07-18 2014-05-15 Mahle International Gmbh Kolben für einen Verbrennungsmotor
CN114278455B (zh) * 2020-09-27 2023-12-19 马勒汽车技术(中国)有限公司 具有分流式内冷流道的活塞

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257153A (ja) * 1998-03-17 1999-09-21 Yanmar Diesel Engine Co Ltd 内燃機関のピストン
KR101593543B1 (ko) * 2016-01-04 2016-02-16 동양피스톤 주식회사 내연기관용 피스톤
CN109500361A (zh) * 2019-01-22 2019-03-22 马勒汽车技术(中国)有限公司 盐芯和活塞
CN111794876A (zh) * 2020-06-13 2020-10-20 广西玉柴机器股份有限公司 一种钢活塞内冷油道进出油孔
CN114810410A (zh) * 2022-05-10 2022-07-29 潍柴动力股份有限公司 一种活塞及发动机

Also Published As

Publication number Publication date
CN114810410A (zh) 2022-07-29
CN114810410B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2023217100A1 (zh) 活塞及发动机
US6918372B2 (en) Intake system of internal combustion engine
US10156182B2 (en) Combustion chamber structure for direct injection engine
US20160298529A1 (en) Ducted Combustion Systems Utilizing Duct Structures
KR100590645B1 (ko) 내연 기관의 흡기 시스템
KR101996085B1 (ko) 질소 산화물 저감을 위한 직접 분사식 디젤 엔진의 연소실
US20050120995A1 (en) Fuel injection valve for diesel engine
JP2009024683A (ja) 複数の噴孔を有するインジェクタ、当該インジェクタを備えた筒内ガソリン噴射型内燃機関とその制御方法
EP0105933B2 (en) Combustion chamber of diesel engine
CN116398313B (zh) 柴油机燃烧室、活塞和柴油机
JP6320509B2 (ja) 対向ピストン機関の燃焼室構造を画定するピストンクラウンボウル
US5335634A (en) Combustion chamber structure for an engine
US6158410A (en) Internal combustion engine with at least one injection device per cylinder
CN116398315A (zh) 柴油机燃烧室、活塞和柴油机
JPH0914103A (ja) 筒内噴射エンジン
WO2018163742A1 (ja) ディーゼルエンジン
JP2003065056A (ja) 筒内噴射式火花点火内燃機関
JP3568136B2 (ja) 内燃機関用ピストンの冷却装置
CN210509418U (zh) 发动机气缸盖和发动机以及车辆
JP2002522704A (ja) 能動的ガイドヘッドを有するピストン及びそれと組合される燃焼室
JP4869121B2 (ja) 内燃機関用ピストン
KR101970017B1 (ko) 인듀서가 마련된 직접 분사식 디젤 엔진의 연소실
JP2015175245A (ja) エンジンのピストン冷却構造
JP2549491Y2 (ja) 内燃機関のピストン冷却装置
KR100303979B1 (ko) 3밸브의직분식가솔린엔진

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802870

Country of ref document: EP

Kind code of ref document: A1