WO2023217006A1 - 悬河治理搅沙船及悬河治理系统 - Google Patents

悬河治理搅沙船及悬河治理系统 Download PDF

Info

Publication number
WO2023217006A1
WO2023217006A1 PCT/CN2023/092416 CN2023092416W WO2023217006A1 WO 2023217006 A1 WO2023217006 A1 WO 2023217006A1 CN 2023092416 W CN2023092416 W CN 2023092416W WO 2023217006 A1 WO2023217006 A1 WO 2023217006A1
Authority
WO
WIPO (PCT)
Prior art keywords
hull
nozzle
jet
sand stirring
river
Prior art date
Application number
PCT/CN2023/092416
Other languages
English (en)
French (fr)
Inventor
裘钧
王光谦
钟德钰
李芳芳
马壮壮
王鸿儒
郏颖慧
程亮
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023217006A1 publication Critical patent/WO2023217006A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • E02B3/023Removing sediments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8833Floating installations
    • E02F3/885Floating installations self propelled, e.g. ship
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/907Measuring or control devices, e.g. control units, detection means or sensors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9212Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel
    • E02F3/9218Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel with jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9212Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel
    • E02F3/9225Mechanical digging means, e.g. suction wheels, i.e. wheel with a suction inlet attached behind the wheel with rotating cutting elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/28Dredgers or soil-shifting machines for special purposes for cleaning watercourses or other ways
    • E02F5/282Dredgers or soil-shifting machines for special purposes for cleaning watercourses or other ways with rotating cutting or digging tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/28Dredgers or soil-shifting machines for special purposes for cleaning watercourses or other ways
    • E02F5/287Dredgers or soil-shifting machines for special purposes for cleaning watercourses or other ways with jet nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Protecting water resources
    • Y02A20/402River restoration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • This application relates to the technical field of environmental protection equipment, especially to suspended river management sand stirring boats and suspended river management systems.
  • the so-called hanging river refers to a river whose river bed is higher than the ground on both sides of the bank. It is also called an "above ground river”.
  • the river water carries a huge amount of sediment and flows downstream.
  • the sediment continues to accumulate, causing the river bed to rise continuously. High, the water level rises accordingly, and it faces the threat of floods every flood season.
  • the total length of the "hanging river” area of the Yellow River has exceeded 800 kilometers.
  • the hanging river management device in the related technology mainly installs a mud scraper at the stern of the ship, and drives the mud scraper to move through the hull to stir up the river bed sediment.
  • this cleaning method The siltation method is ineffective and inefficient, and the dredging area is limited, which makes the dredging performance of the suspended river management sand stirrer poor.
  • a suspended river management sand stirring boat includes:
  • Lifting mechanism installed on the hull
  • the dredging mechanism is connected to the hull and to the output end of the lifting mechanism.
  • the dredging mechanism is used to stir up the riverbed sediment and lift it upward.
  • the lifting mechanism is used to drive the dredging mechanism to move relative to the hull to adjust the dredging mechanism. Relative to the height of the river bed sediment.
  • the lifting mechanism includes a lifting driving member and a pull rope; the lifting driving member is installed on the hull, one end of the pulling rope is connected to the power output end of the lifting driving member, the other end of the pulling rope is connected to the desilting mechanism, and Forming the output end of the lifting mechanism, the lifting driving member is used to retract and release the pull rope to pull the desilting mechanism upward or place it downward.
  • the desilting mechanism includes a sand stirring component, and the sand stirring component includes:
  • the first connecting arm is rotatably connected to the hull, and the end of the first connecting arm away from the hull is connected to the output end of the lifting mechanism.
  • the lifting mechanism is used to drive the first connecting arm to rotate relative to the hull in a vertical plane;
  • the sand stirring piece is connected to the roller and is used to extend into the river bed sediment;
  • the roller can drive the sand stirring part to rotate, so that when the sand stirring part is inserted into the river bed sediment, it can bring up part of the river bed sediment.
  • the sand stirring member includes a sand stirring rod and a hook.
  • One end of the sand stirring rod is connected to the roller shaft, and the other end extends in a direction away from the roller shaft.
  • the suspended river management sand stirring vessel further includes a first jet assembly, and the first jet assembly includes a first jet member and a first nozzle;
  • the first jet member is used to generate jet fluid.
  • the first nozzle is installed on the outer peripheral surface of the roller.
  • the inlet of the first jet member is connected to the outlet of the first jet member and is used to pass the jet fluid generated by the first jet member through the first The nozzle sprays;
  • the first nozzle is configured to be able to rotate driven by the roller to change the ejection direction of the jet fluid ejected through the first nozzle.
  • the number of sand stirring assemblies is at least two, and the at least two sand stirring assemblies are respectively provided on both sides of the traveling direction of the hull.
  • the axis direction of the roller in the sand stirring assembly is parallel to the traveling direction of the hull.
  • the axis direction of the roller in the sand stirring assembly is perpendicular to the traveling direction of the hull.
  • the dredging mechanism also includes a sand-cutting assembly, and the sand-cutting assembly includes:
  • the second connecting arm is rotatably connected to the hull, and the end of the second connecting arm away from the hull is connected to the output end of the lifting mechanism.
  • the lifting mechanism is used to drive the second connecting arm to rotate relative to the hull in a vertical plane;
  • the reamer is rotatably connected to the second connecting arm, and the reamer is used to rotate to mince the river bed.
  • the suspended river management sand stirring vessel further includes a second jet assembly.
  • the second jet assembly includes a second jet member and a second nozzle.
  • the second jet assembly is used to generate jet fluid.
  • the second nozzle is installed on the second On the connecting arm, the inlet of the second nozzle is connected to the outlet of the second jet component, and the jet fluid generated by the second jet component is ejected through the second nozzle to lift the riverbed sediment crushed by the reamer to the upper layer of the water flow.
  • the second nozzle is located on one side of the reamer, so that the injection path of the jet fluid ejected through the second nozzle is located outside the rotation stroke of the reamer.
  • the sand-cutting assembly is disposed on the front side of the hull in the direction of travel.
  • the suspended river management sand stirring vessel further includes a propulsion assembly, and the propulsion assembly includes a third jet component and a third nozzle;
  • the third jet component is used to generate jet fluid.
  • the third nozzle is installed at the bottom of the hull.
  • the inlet of the third jet component is connected to the outlet of the third jet component.
  • the jet fluid generated by the third jet component is sprayed out through the third nozzle.
  • the river bed sediment is lifted up to the upper level of the flow.
  • the propulsion assembly further includes a third driving member and a rotating member.
  • the third driving member is installed on the hull, the rotating member is connected to the power output end of the third driving assembly, and the third nozzle is installed on the rotating member;
  • the driving member is used to drive the rotating member to drive the third nozzle to rotate, so as to change the injection direction of the jet fluid ejected through the third nozzle.
  • the suspended river management sand stirring vessel further includes an anchoring assembly.
  • the anchoring assembly includes a fourth driving member, a steel rope and an anchor; the fourth driving member is installed on the hull, and one end of the steel rope is connected to the output of the fourth driving member. end, the other end is connected to the anchor, the anchor is configured to be anchored to a preset position of the river bed sediment, and the fourth driving member is used to retract and unwind the steel rope to make the hull move toward the preset position when the anchor is anchored.
  • This application also provides a suspended river management system, including the above-mentioned suspended river management sand stirring vessel, and also includes:
  • the sensing unit is electrically connected to the controller, and is used to obtain the water depth parameters and river bed layering parameters of the river section to be dredged, and feed back the water depth parameters and river bed layering parameters to the controller; the controller is used to determine the water depth parameters and river bed layering parameters according to the water depth parameters and river bed layering parameters.
  • the layer parameters control the lifting mechanism so that the lifting mechanism lowers the dredging mechanism to the preset position.
  • the sensing unit is provided on the hull, and a first communication unit is also provided on the hull, and the first communication unit is electrically connected to the controller;
  • the controller is provided with a second communication unit capable of wireless communication with the first communication unit, and the second communication unit is electrically connected to the sensing unit and the lifting mechanism;
  • the controller receives the water depth parameters and riverbed layering parameters obtained by the sensing unit through the first communication unit and the second communication unit; the controller sends control instructions to the lifting mechanism through the first communication unit and the second communication unit.
  • the controller is also used to analyze the water depth parameters and riverbed layering parameters obtained by the sensing unit, and issue a first instruction to the lifting mechanism.
  • the first instruction is used to instruct the lifting mechanism to lift.
  • the lifting mechanism lifts can drive the desilting mechanism to lower to the preset position; and/or
  • the sensing unit is also used to obtain the attitude, orientation and positioning parameters of the hull; the controller is also used to analyze the attitude, orientation and positioning parameters of the hull, and send a second instruction to the hull, and the second instruction is used to instruct the hull to move or turn.
  • the controller is also used to calculate the cleaning amount of river bed sediment in the river section to be dredged based on the water depth parameters and river bed layering parameters obtained by the sensing unit.
  • Figure 1 is a partial cross-sectional view along the vertical direction of the sand stirring vessel for suspended river management provided by the embodiment of the present application.
  • Figure 2 is a partial cross-sectional view along the horizontal direction of the suspended river management sand stirring vessel provided by the embodiment of the present application.
  • Figure 3 is a schematic left view of a sand stirring vessel for suspended river management provided by another embodiment of the present application.
  • Figure 4 is a schematic structural diagram of the sand stirring assembly of the suspended river management sand stirring vessel provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the connection relationship between the sensing unit, the controller and the lifting mechanism in the suspended river management system provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the connection relationship between the sensing unit, the controller and the lifting mechanism in the suspended river management system provided by another embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • an embodiment of the present application provides a suspended river management sand stirring vessel, including a hull 100, a lifting mechanism 200 and a dredging mechanism; the lifting mechanism 200 is installed on the hull 100; the dredging mechanism is connected to the hull 100, and Connected to the output end of the lifting mechanism 200, the dredging mechanism is used to stir up the river bed sediment and bring it upward.
  • the lifting mechanism 200 is used to drive the dredging mechanism to move relative to the hull 100 to adjust the height of the dredging mechanism relative to the river bed sediment. .
  • the suspended river management sand stirring vessel in the embodiment of the present application adjusts the height of the dredging mechanism relative to the river bed sediment through the lifting mechanism 200, thereby enabling the dredging mechanism to be inserted into the sediment at the bottom of the river bed when facing different textures of river bed sediment. , which can disperse the sediment deposited on the river bed to a greater extent, so that the dredging area is not restricted.
  • the dredging mechanism can lift the dispersed sediment upward, so that the dispersed sediment can follow the water flow to the downstream. The flow improves the effectiveness and efficiency of dredging, thereby improving the dredging performance of the suspended river management sand stirring vessel.
  • the lifting mechanism 200 includes a lifting driving member 210 and a pull rope 220; the lifting driving member 210 is installed on the hull 100, and one end of the pulling rope 220 is connected to the power output of the lifting driving member 210. end, the other end of the pull rope 220 is connected to the desilting mechanism and forms the output end of the lifting mechanism 200.
  • the lifting driving member 210 is used to retract and release the pull rope 220 to pull the desilting mechanism upward or place it downward.
  • the other end of the pull rope 220 is connected to an end of the desludging mechanism away from the hull 100.
  • the pull rope 220 is retracted and released through the lifting driving member 210, so that the pull rope 220 can pull the desludging mechanism upward or place it downward, thereby adjusting
  • the height of the dredging mechanism relative to the river bed sediment enables the dredging mechanism to stir up sediment deposited on the river bed at different heights, thereby increasing the dredging area and the dredging effectiveness.
  • the lifting driving member 210 is a motor. It should be noted that river bed sediment refers to the sediment deposited on the river bed, and river bottom sediment refers to the sediment deposited at the bottom of the river bed.
  • the lifting mechanism 200 further includes a bracket 230.
  • the first end of the bracket 230 is connected to the hull 100, and the second end extends in a direction away from the hull 100.
  • the portion of the pull rope 220 The rope segments are supported on brackets 230.
  • the end of the desilting mechanism away from the hull 100 extends into the river bed sediment, and the end of the bracket 230 away from the hull 100 extends in a direction away from the hull 100.
  • the end of the pull rope 220 away from the lifting driving part 210 can pull the desludging mechanism upward, and the lifting driving part 210 retracts and releases the pull rope 220 to pull the desludging mechanism upward or place it downward.
  • the second end of the bracket 230 extends in a direction away from the hull 100 , and the direction forms an angle greater than 0, such as 30 degrees to 90 degrees, with the horizontal direction.
  • the pull rope 220 is connected to the second end of the bracket 230 through at least one pulley.
  • the desilting mechanism includes a sand stirring assembly 310.
  • the sand stirring assembly 310 includes a first connecting arm 311, a roller shaft 313, and a sand stirring member 314; the first connecting arm 311 is rotationally connected. to the hull 100, and the end of the first connecting arm 311 away from the hull 100 is connected to the output end of the lifting mechanism 200.
  • the lifting mechanism 200 is used to drive the first connecting arm 311 to rotate in a vertical plane relative to the hull 100, thereby changing the first connection
  • the angle between the arm 311 and the horizontal plane; the roller shaft 313 is rotatably connected to the first connecting arm 311; the sand stirring member 314 is connected to the roller shaft 313, and is used to extend into the riverbed sediment; the roller shaft 313 can drive the sand stirring member 314 to rotate, So that when the sand stirring member 314 is inserted into the river bed sediment, part of the river bed sediment can be brought up.
  • the pull rope 220 is connected to the first connecting arm 311, and the pull rope 220 is retracted and released by the lifting driving member 210, so that the pull rope 220 drives the first connecting arm 311 to rotate relative to the hull 100 in the vertical plane, thereby driving the first connecting arm 311 connected to the second connecting arm 311.
  • the roller shaft 313 and the sand stirring member 314 on a connecting arm 311 rotate relative to the hull 100 in a vertical plane, so that the heights of the roller shaft 313 and the sand stirring member 314 relative to the river bed sediment change.
  • the sand stirring member 314 can disperse and disperse the sediment in the current area. Pull it up, and as the pull rope 220 continues to lower the first connecting arm 311, the roller 313 can continue to move downward until it contacts the newly formed river bed surface, and stirs up the sediment in the current area through the sand stirring member 314. And it is brought upward. Through such a cycle, the sediment at various depths on the river bed can be cleaned, so that the dredging area is not restricted and the dredging effect is high.
  • the sand stirring piece 314 is connected to the roller shaft 313 and can be inserted into the river bed sediment.
  • the roller shaft 313 drives the sand stirring piece 314 to rotate
  • the sand stirring piece 314 can stir up the river bed sand.
  • the sand stirring piece 314 can disperse the river bed sand.
  • the member 314 has a torque, and then exerts a certain power on the sediment adhered to the sand stirring member 314, bringing it upward to the middle and upper layers of the water flow, and then using the power of the water flow itself to improve the ability of the water flow to drive the sediment to the downstream area. distance, realizing the transportation of sediment, thereby improving the dredging efficiency, reducing energy consumption, and improving the performance of the suspended river management sand churning vessel.
  • the sand mixing assembly 310 also includes a first driving member.
  • the first driving member is connected to the first connecting arm 311.
  • the roller shaft 313 is connected to the output end of the first driving member.
  • the first driving member is used to drive the roller shaft 313.
  • the sand stirring member 314 rotates.
  • the first driving component is a motor.
  • the sand stirring member 314 includes a sand stirring rod 3141 and a hook 3142.
  • One end of the sand stirring rod 3141 is connected to the roller shaft 313, and the other end extends in a direction away from the roller shaft 313;
  • Hook 3142 is connected to the stirrer The end of the sand bar 3141 away from the roller shaft 313, and the hook 3142 is used to bring up part of the river bed sediment when the sand stirring member 314 is inserted into the river bed sediment.
  • the sand stirring rod 3141 located at the lower end of the roller shaft 313 can be inserted into the river bed sediment, and the end of the sand stirring rod 3141 away from the roller shaft 313 extends in a direction away from the roller shaft 313 , so that the sand stirring rod 3141 located at the bottom of the roller shaft 313 is inserted deeper into the river bed sediment, thereby allowing the hook 3142 to grasp the sediment deeper in the river bed, and the sand stirring member 314 rotates synchronously with the roller shaft 313 , the hook 3142 can stir up more and deeper sediment on the river bed and carry it upward to the middle and upper layers of the water flow, thereby improving the desilting efficiency.
  • the sand stirring member 314 is a rake.
  • the number of the sand stirring parts 314 is multiple, and the plurality of sand stirring parts 314 are arranged around the axis of the roller shaft 313.
  • the sand stirring parts 314 rotate with the roller shaft 313, the plurality of sand stirring parts 314 are arranged around the axis of the roller shaft 313.
  • the sand stirring member 314 is inserted into the riverbed sediment cyclically and continuously brings the riverbed sediment to the middle and upper layers of the water flow, thereby cleaning up the riverbed sediment under the current area and achieving a better desilting effect.
  • the suspended river management sand stirring vessel also includes a first jet component.
  • the first jet component includes a first jet component and a first nozzle 402; the first jet component is used to generate jet fluid, and the first nozzle is installed on the roller.
  • the inlet of the first nozzle 402 is connected to the outlet of the first jet component, and is used to eject the jet fluid generated by the first jet component through the first nozzle 402; the first nozzle 402 is configured to be able to
  • the roller 313 is driven to rotate to change the spray direction of the spray fluid sprayed through the first spray nozzle 402 .
  • the jet fluid mentioned in this application refers to a fluid with a relatively high pressure, for example, a fluid with a pressure >0.3 MPa.
  • the fluid may be water flow, air flow, etc.
  • the first jet member generates jet fluid and ejects it through the first nozzle 402, so that the jet fluid ejected by the nozzle 402 has a greater impact force.
  • the first nozzle 402 is installed on the outer peripheral surface of the roller shaft 313, the spray direction of the jet fluid ejected by the first nozzle 402 is constantly changing during the rotation of the roller shaft 313.
  • the jet fluid sprayed by the first nozzle 402 is sprayed on the river bed, it can stir up the river bed sediment; when the spray fluid sprayed by the first nozzle 402 is sprayed on the water flow, it can further lift up the sand-stirring member 314 in the water flow.
  • the sediment is lifted upward, blown away from the river bed surface, and enters the middle and upper water flow, thereby increasing the distance that the water flow drives the sediment downstream under the effect of the water flow carrying sand, and improving the desilting efficiency.
  • the roller 313 When the first nozzle 402 rotates synchronously with the roller 313, the roller 313 also applies a certain power to the jet fluid ejected by the first nozzle 402, thereby increasing the impact of the jet fluid ejected by the first nozzle 402. force, thereby allowing the sediment to further rise upward when it is impacted by the jet fluid ejected from the first nozzle 402 .
  • the first nozzle 402 and the sand stirring piece 314 are both installed on the outer circumferential surface of the roller shaft 313. The rotation of the sand stirring piece 314 and the first nozzle 402 is realized through the roller shaft 313, which saves energy.
  • the first fluid component is a high-pressure pump 400 .
  • the number of the first nozzles 402 is multiple, and the plurality of first nozzles 402 and the plurality of sand stirring members 314 are staggeredly arranged, so that in the process of the plurality of sand stirring members 314 continuously lifting up the river bed sediment,
  • the plurality of nozzles 402 continuously eject the jet fluid in various directions, so that the nozzle 402 and the sand stirring member 314 cooperate with each other, and the sand brought up by the sand stirring member 314 is continuously sprayed by the jet fluid ejected by the nozzle 402, and then As a result, the sediment is continuously raised. Because the sediment is constantly being lifted up, that is, the sediment can always be located in the water layer with higher water flow.
  • the first nozzle 402 and the sand stirring member 314 are arranged in a staggered manner. When the first nozzle 402 sprays the jet fluid toward the river bed, it can reduce the impact on the hook 3142 to grasp the river bed sediment.
  • a flow channel is provided in the roller shaft 313. One end of the flow channel is connected to the inlet of the first nozzle 402, and the other end is connected to the outlet of the first jet member; the jet fluid flowing out of the first jet member passes through the flow channel. The channel flows into the inlet of the nozzle 402.
  • the jet fluid generated by the first jet component flows into the flow channel, and then is sprayed out from the plurality of first nozzles 402 connected to the outer circumferential surface of the roller shaft 313, thereby achieving impact on the sediment in the water flow, and through the movement of the roller shaft 313
  • This way of arranging a flow channel connecting the outlet of the first jet member and the inlet of the first nozzle 402 in 313 reduces the installation of other components and makes the structure of the device more compact.
  • the diameter of the nozzle of the first nozzle 402 is much smaller than the diameter of the flow channel, so that the pressure of the jet fluid ejected from the first nozzle 402 is greater and the impact force is stronger, thereby being able to remove the sand stirred parts in the water flow.
  • the sediment brought up by 314 rises higher in the water flow.
  • the diameter of the nozzle of the first nozzle 402 is adjustable, so that the pressure of the jet fluid ejected from the first nozzle 402 can be further adjusted by adjusting the diameter of the nozzle of the first nozzle 402 .
  • the number of sand stirring assemblies 310 is at least two, and the at least two sand stirring assemblies 310 are respectively disposed on both sides of the hull 100 in the traveling direction.
  • the axis direction of the roller shaft 313 in each sand stirring assembly 310 is perpendicular to the traveling direction of the hull 100 .
  • the axis direction of the roller shaft 313 in each sand stirring assembly 310 is parallel to the traveling direction of the hull 100 .
  • the roller shaft 313 rotates around the traveling direction of the hull 100.
  • the sand stirring member 314 can bring the sediment to the water flow in a direction perpendicular to the axial direction of the roller shaft 313.
  • the movement direction of the sediment brought up by the sand stirring member 314 is perpendicular to the flow direction of the water flow, then when the water flow drives the sediment to run along the downstream area, the movement direction of the sand in the water flow will not affect the direction of the water flow carrying the sand.
  • the distance traveled by the downstream area causes interference.
  • the sand stirring member 314 brings the sediment into the water flow in the direction of the water flow, that is, the axis direction of the roller shaft 313 is perpendicular to the traveling direction of the hull 100, during the process of the sand stirring member 314 and the roller shaft 313 rotating synchronously.
  • the hook in the process of the hook catching the river bed sediment and bringing it up, the hook can receive the reverse force exerted by the river bed sediment in the opposite direction of the water flow.
  • the sand stirring assemblies 310 are arranged on both sides of the traveling direction of the hull 100 to improve the dredging performance of the suspended river management sand stirring vessel. It should be noted that the traveling direction of the hull refers to the direction in which the hull runs along the direction of water flow.
  • the sand stirring assembly 310 extends the roller 313 and the sand stirring member 314 away from the hull 100 into the river bed sediment through the first connecting arm 311. Then during the operation of the hull 100, the hull 100 moves When there is a certain distance from the river bank, the sand stirring member 314 can also clean up the river bed sediment close to the river bank, thereby expanding the scope of dredging.
  • the reaction forces on the hooks 3142 in the sand stirring assemblies 310 on both sides of the hull 100 can cancel each other out, so that the hull can operate normally along the direction of travel.
  • the rotation direction of part of the rollers 313 can be changed so that the hook 3142 on one side of the hull 100 receives a greater reaction force than the hook on the other side. 3142 receives the reverse force, so that the hull 100 can adjust its attitude through the steering power obtained, thereby reducing energy consumption.
  • the dredging mechanism also includes a sand-cutting assembly 320.
  • the sand-cutting assembly 320 includes a second connecting arm 321 and a cutter 323; the second connecting arm 321 is rotationally connected to the hull 100, And one end of the second connecting arm 321 away from the hull 100 is connected to the output end of the lifting mechanism 200.
  • the lifting mechanism 200 is used to drive the second connecting arm 321 to rotate relative to the hull 100 in the vertical plane, thereby changing the relationship between the second connecting arm 321 and the horizontal plane. angle.
  • the reamer 323 is rotatably connected to the second connecting arm 321, and the reamer 323 is used to rotate to mince the river bed.
  • the second connecting arm 321 extends from an end far away from the hull 100, and the reamer 323 is rotatably connected to an end of the second connecting arm 321 away from the hull 100, so that the reamer 323 can extend into the river bed sediment.
  • the pull rope 220 is connected to the second connecting arm 321, and the pull rope 220 is retracted and released by the lifting driving member 210, so that the pull rope 220 drives the second connecting arm 321 to rotate relative to the hull 100 in the vertical plane, thereby driving the connection to the second connecting arm.
  • the reamer 323 on 321 rotates relative to the hull 100 in the vertical plane, so that the height of the reamer 323 relative to the riverbed sediment changes.
  • the reamer 323 can mince the river bed surface in the current area and simultaneously remove part of the sediment.
  • the reamer 323 can continue to move downward until it contacts the newly formed river bed surface, and the reamer 323 rotates to The river bed surface in the current area is crushed again, and the sediment is scattered and carried upward into the water flow.
  • the sediment at various depths on the river bed can be cleaned, so that the dredging area is not restricted and the cleaning is The siltation effect is high.
  • there are multiple lifting mechanisms 200 and the sand stirring assembly 310 and the sand grinding assembly 320 are respectively connected with the corresponding lifting 200 mechanisms in transmission.
  • the sand reaming assembly 320 also includes a second driving member.
  • the second driving member is connected to the second connecting arm 321.
  • the reamer 323 is connected to the power output end of the second driving member.
  • the second driving member is used to drive the reamer 323.
  • the second driving component is a motor.
  • the suspended river management sand stirring vessel further includes a second jet component.
  • the second jet component includes a second jet component and a second nozzle 410.
  • the second jet component is used to generate jet fluid.
  • the nozzle 410 is installed on the second connecting arm 321.
  • the inlet of the second nozzle 410 is connected to the outlet of the second jet component.
  • the jet fluid generated by the second jet component is ejected through the second nozzle 410 to crush the reamer 323.
  • the river bed sediment is lifted up to the upper level of the flow.
  • the second jet member generates jet fluid and ejects it through the second nozzle 410, so that the jet fluid ejected from the nozzle has a greater impact force.
  • the ejection The fluid can agitate the riverbed sediment; when the second jet fluid is sprayed into the water flow, the jet fluid can further lift up the sediment dispersed and carried up by the reamer 323 in the water flow, thereby increasing the water flow and driving the sediment downstream.
  • the running distance improves the dredging efficiency.
  • the second fluidic component is a high-pressure pump 400 .
  • the second nozzle 410 is located on one side of the reamer 323 , so that the injection path of the jet fluid ejected through the second nozzle 410 is located outside the rotation stroke of the reamer 323 .
  • the jet fluid is ejected from one side of the reamer 323 through the second nozzle 410, so that the sediment scattered and carried by the reamer 323 can be lifted upward to the middle and upper layers of the water flow.
  • the sediment can travel a longer distance, realizing the transportation of sediment and improving the dredging efficiency.
  • the injection path of the jet fluid ejected from the second nozzle 410 is located outside the rotation stroke of the reamer 323, thereby preventing the reamer 323 from obstructing the jet fluid ejected from the second nozzle 410 and affecting the impact of the jet fluid on the mud in the water flow.
  • the impact force of sand can, at the same time, avoid the wear of the reamer 323 by the jet fluid, thereby increasing the service life of the reamer 323.
  • the plurality of second nozzles 410 are circumferentially arranged around the rotation direction of the reamer 323 , so that the jet fluid ejected by the second nozzle 410 can be ejected in various directions and then expand.
  • the spray range is increased so that the sediment within the spray range can be lifted upward by the impact of the jet fluid.
  • the sand-cutting assembly 320 is disposed on the front side of the hull 100 in the direction of travel.
  • the sand reamer assembly 320 Being disposed on the front side of the hull 100 in the direction of travel, compared to arranging the sand reaming assembly 320 on both sides of the hull 100 perpendicular to the direction of travel, can reduce the reaction force that the reamer 323 will receive on the balance of the hull 100 on the water surface. Impact.
  • the sand stirring assembly 320 is arranged on the front side of the traveling direction of the hull 100, and the sand stirring assembly 310 is arranged on both sides of the hull 100 perpendicular to the traveling direction, so that when the hull 100 encounters a hard bed surface during traveling, The hard river bed surface can be minced first by the reamer 323 to loosen the river bed sediment, and then the loose sediment on the river bed can be stirred up by the sand stirrer 314 and brought up to the middle and upper layers of the water flow, thereby improving the Dredging efficiency.
  • the first nozzle and the second nozzle 410 eject jet fluid, thereby further lifting the sediment in the water flow upward, so that the water flow drives the sediment downstream.
  • the sediment can travel a longer distance, which improves the transportation effect of sediment and improves the dredging efficiency.
  • the area of action of the sand stirring assembly 320 on the river bed sediment is much smaller than that of the sand stirring assembly 310. When the river bed sediment is relatively loose, only the sand stirring assembly 310 is required to work.
  • multiple sand stirring assemblies 310 and sand twisting assemblies 320 are connected to the hull 100 , and the connection positions of the sand stirring components 310 and the sand twisting components 320 relative to the hull 100 are not restricted, as long as they can stir the sand in real time.
  • the component 310 and the sand-pulling component 320 only need to cooperate with each other.
  • the suspended river management sand stirring vessel also includes a propulsion assembly.
  • the propulsion assembly includes a third jet component and a third nozzle 620; the third jet component is used to generate jet fluid, and the third nozzle 620 620 is installed at the bottom of the hull 100.
  • the inlet of the third nozzle 620 is connected to the outlet of the third jet member.
  • the jet fluid generated by the third jet member is ejected through the third nozzle 620 to lift the river bed sediment to the upper layer of the water flow.
  • the third jet member is used to generate jet fluid and eject it through the third nozzle 620 , so that the hull 100 is subjected to a force opposite to the direction in which the third nozzle 620 injects the jet fluid, thereby providing the hull 100 with travel through this force.
  • Power enables the hull 100 to operate normally.
  • the third nozzle 620 sprays the jet fluid toward the water flow, it can spray the sediment in the water flow and lift the sediment in the water flow to the upper layer of the water flow.
  • the third fluidic component is a high-pressure pump 400 .
  • the suspended river control sand stirring vessel also includes a pressure-bearing pipe 420 installed on the hull 100.
  • the first jet part, the second jet part and the third jet part are the same high-pressure pump 400.
  • the receiving pipe has multiple branches. One end of the receiving pipe is connected to the outlet of the high-pressure pump 400, and the branches of the receiving pipe are connected to the first nozzle, the second nozzle 410, and the third nozzle 620 respectively. That is, all the injection fluids are generated through one high-pressure pump 400, thereby enabling Reduce energy consumption and make the structure more compact.
  • the suspended river control sand stirring vessel also includes a jet flow control member 730.
  • the jet flow control member 730 is disposed between the pressure-bearing pipe 420 and the high-pressure pump 400 to play a diversion control role, so that the first nozzle, the second nozzle 410 and The third nozzle 620 can stably inject high-pressure fluid.
  • the propulsion assembly further includes a third driving member and a rotating member, the third driving member is installed on the hull 100, the rotating member is connected to the power output end of the third driving assembly, and the third nozzle 620 is installed on the rotating member;
  • the third driving member is used to drive the rotating member to drive the third nozzle 620 to rotate, so as to change the ejection direction of the jet fluid ejected through the third nozzle 620 .
  • the rotating member drives the third nozzle 620 to rotate and changes the ejection direction of the jet fluid ejected by the third nozzle 620, so that when the third nozzle 620 ejects the jet fluid, it can provide forces in different directions for the hull 100.
  • the third nozzle 620 ejects the jet fluid
  • the injection direction of the jet fluid ejected by the nozzle 620 is at an angle with the traveling direction of the hull 100, the hull 100 can receive steering power, thereby adjusting its posture to clean various areas of the river bed sediment.
  • the third driving component is a motor.
  • the hull 100 is generally flat, which can adapt to the characteristics of a river with a high bed and shallow water, improve the performance of the hull 100 in passing on the river, and facilitate the cleaning of river bed sediment.
  • the suspended river management sand stirring vessel also includes an anchoring assembly 500.
  • the anchoring assembly 500 includes a fourth driving member, a steel rope and an anchor; the fourth driving member is installed on the hull 100, and one end of the steel rope is connected to the fourth driving member.
  • the output end of the component, the other end is connected to the anchor, the anchor is configured to be able to be anchored to a preset position on the river bed sediment, and the fourth driving component is used to retract and unwind the steel rope to make the hull face the preset position when the anchor is anchored. march.
  • the anchor of the suspended river management sand stirring vessel is realized.
  • Set operating mode the speed at which the hull 100 moves toward the preset position can be adjusted by the speed of the fourth driving member retracting or retracting the steel rope.
  • the suspended river control sand stirring vessel can also be realized by adjusting the injection direction of the jet fluid ejected by the third nozzle 620, or by anchoring and adjusting the injection direction of the jet fluid ejected by the third nozzle 620. Travel towards a preset location. It should be noted that when the operation route of the suspended river management sand stirring vessel is not set, the suspended river management sand stirring vessel can follow the direction of the water flow to carry out the operation mode. That is, the operation mode of the suspended river management sand stirring vessel in this plan can be The anchoring operation mode and the walking operation mode are combined.
  • anchoring operation modes for the suspended river control sand stirring vessel which can be a Z-shaped operation mode, a fan-shaped downstream operation mode or an alternating downstream and counter-current operation mode, as long as it can clean up the river bed sediment.
  • An embodiment of the present application provides a suspended river management system, including the above-mentioned suspended river management sand stirring vessel, a controller 710, and a sensing unit 720; the sensing unit 720 is electrically connected to the controller 710, and is used to obtain The water depth parameters and river bed stratification parameters of the river section to be dredged are fed back to the controller 710; the controller 710 is used to control the lifting mechanism 200 according to the water depth parameters and the river bed stratification parameters to make the lifting The mechanism 200 lowers the desilting mechanism to a preset position.
  • the suspended river management system obtained by the embodiment of the present application obtains the water depth parameters and river bed layering parameters of the river section to be dredged through the sensing unit 720, and can determine the best position for the dredging mechanism to clean the river bed sediment, and then control the
  • the device 710 controls the lifting mechanism 200 so that the lifting mechanism 200 lowers the dredging mechanism to the optimal position, and as the dredging mechanism cleans the river bed sediment, the lifting mechanism 200 can continuously adjust the lowering position of the dredging mechanism, so that the dredging mechanism can be continuously adjusted.
  • the dredging mechanism can clean the sediment at various depths of the river bed, so that the dredging area is not restricted.
  • the dredging mechanism can lift the scattered sediment upward, so that the scattered sediment can flow downstream with the water flow, which improves the efficiency of the river bed.
  • the dredging effect and efficiency are improved, thereby improving the dredging performance of the suspended river management sand stirring vessel.
  • the sensing unit 720 includes an underwater detector.
  • the underwater detector can measure water depth data and river bed layering conditions, and then obtain the lowering depth (H) of the sand-cutting assembly 320 and the sand-stirring assembly 310.
  • the controller 710 can The lowering depth (H) guides the lifting mechanism 200 to control the sand-cutting assembly 320 and the sand stirring assembly 310 to be lowered to the preset position. Among them, twist
  • the lowering depth (H) of the sand component 320 and the sand stirring component 310 is based on the local water depth Hw and a certain depth ⁇ H is added. ⁇ H is determined by the stratification of the deep river bed and the geological characteristics of each layer measured by the underwater detector.
  • the underwater detector includes a sonar probe, a transducer and a processor.
  • the sonar probe emits an acoustic signal. After the acoustic signal reaches the river bed, it is reflected back to the transducer for reception. The echo signal is processed and calculated by the processor.
  • the sensing unit is provided on the hull, and a first communication unit 740 is also provided on the hull.
  • the first communication unit 740 is electrically connected to the controller 710; the controller 710 is provided with a device capable of communicating with The first communication unit 740 performs wireless communication with the second communication unit 712.
  • the second communication unit 712 is electrically connected to the sensing unit 720 and the lifting mechanism 200; the controller 710 receives the sensing unit through the first communication unit 740 and the second communication unit 712. The water depth parameter and river bed layering parameter obtained in 720; the controller 710 sends control instructions to the lifting mechanism 200 through the first communication unit 740 and the second communication unit 712.
  • the controller 710 is disposed on the bank.
  • the controller 710 can wirelessly communicate with the first communication unit 740 through the second communication unit 712 to receive sensing information.
  • the unit 720 obtains the water depth parameters and river bed layering parameters, and sends control instructions to the lifting mechanism 200 through wireless communication between the second communication unit 712 and the first communication unit 740 .
  • the first communication unit 740 and the second communication unit 712 may also be communicatively connected through wires. It should be noted that the controller 710 can also be installed on the ship.
  • the controller 710 is also used to analyze the water depth parameters and riverbed layering parameters obtained by the sensing unit 720, and issue a first instruction to the lifting mechanism 200.
  • the first instruction is used to instruct the lifting mechanism 200 to lift, When the lifting mechanism 200 rises and falls, it can drive the desilting mechanism to lower to a preset position.
  • the sensing unit 720 is also used to obtain the attitude, orientation and positioning parameters of the hull; the controller 710 is also used to analyze the attitude, orientation and positioning parameters of the hull, and send a second instruction to the hull.
  • the second instruction Used to indicate hull movement or steering.
  • the second communication unit 712 is electrically connected to the sensing unit 720 and the propulsion assembly.
  • the controller 710 receives the sensing unit 720 through the first communication unit 740 and the second communication unit 712 to obtain the attitude, orientation and positioning parameters of the hull, and analyzes the attitude, orientation and positioning parameters of the hull. The attitude, orientation and positioning parameters are analyzed, and control instructions are sent to the propulsion component through wireless communication between the second communication unit 712 and the first communication unit 740 to adjust the hull operation route.
  • the sensing unit 720 also includes an attitude, orientation and positioning detector.
  • the attitude, orientation and positioning detector is used to obtain the attitude, orientation and positioning parameters of the hull 100 and feed back the attitude, orientation and positioning parameters of the hull 100 to the controller.
  • the controller is used to control the propulsion components according to the attitude, orientation and positioning parameters of the hull 100, so that the propulsion components push the hull 100 to adjust its attitude and travel route.
  • the attitude, orientation and positioning detector is composed of a GPS module or a Beidou navigation module.
  • the controller 710 is also used to calculate the cleaning amount of river bed sediment in the river section to be dredged based on the water depth parameters and river bed layering parameters obtained by the sensing unit.
  • the controller 710 analyzes the water depth parameters and riverbed layering parameters before and after the suspended river management sand stirring vessel operation obtained by the sensing unit, and calculates the amount of riverbed sediment to be cleared in the river section to be dredged, so as to evaluate the effect of the riverbed management operation. , quantifying the volume of river bed sediment cleaned per unit time, thereby making it easy to calculate the operating efficiency of the suspended river management sand stirring vessel.

Abstract

本申请涉及一种悬河治理搅沙船及悬河治理系统。悬河治理搅沙船包括船体、升降机构及清淤机构;升降机构安装于船体;清淤机构连接于船体,且连接于升降机构的输出端,清淤机构用于将河床泥沙搅散并向上带起,升降机构用于驱动清淤机构相对船体运动,以调节清淤机构相对河床底泥的高度。

Description

悬河治理搅沙船及悬河治理系统
相关申请
本申请要求2022年5月7日申请的,申请号为202210493611.9,名称为“悬河治理搅沙船及悬河治理系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及环境保护设备技术领域,特别是涉及悬河治理搅沙船及悬河治理系统。
背景技术
所谓悬河,指河床高出两岸地面的河,又称“地上河”,黄河中游流经土质疏松的黄土高原,河水携带巨量泥沙,流经下游,泥沙不断堆积,导致河床不断升高,水面随之升高,每逢汛期便面临着洪水的威胁。目前黄河的“悬河”区域总长度已经超过800公里,相关技术中的悬河治理装置主要是通过在船尾安装刮泥架,通过船体带动刮泥架移动以搅动河床泥沙,然而这种清淤方式成效底、效率低下,且清淤区域受限,使得悬河治理搅沙船的清淤性能差。
发明内容
一种悬河治理搅沙船,包括:
船体;
升降机构,安装于船体;以及
清淤机构,连接于船体,且连接于升降机构的输出端,清淤机构用于将河床泥沙搅散并向上带起,升降机构用于驱动清淤机构相对船体运动,以调节清淤机构相对河床底泥的高度。
在其中一个实施例中,升降机构包括升降驱动件和拉绳;升降驱动件安装于船体,拉绳的一端连接于升降驱动件的动力输出端,拉绳的另一端连接于清淤机构,并形成升降机构的输出端,升降驱动件用于收放拉绳,以将清淤机构向上拉起或者向下放置。
在其中一个实施例中,清淤机构包括搅沙组件,搅沙组件包括:
第一连接臂,转动连接于船体,且第一连接臂远离船体的一端连接于升降机构的输出端,升降机构用于驱动第一连接臂相对船体在竖直面内转动;
辊轴,连接于第一连接臂;以及
搅沙件,搅沙件连接于辊轴,且用于伸入河床泥沙;
辊轴能够带动搅沙件转动,以使搅沙件插入河床泥沙时能够将部分河床泥沙向上带起。
在其中一个实施例中,所述搅沙件包括搅沙杆和弯钩,所述搅沙杆的一端连接于所述辊轴,另一端向远离所述辊轴的方向伸出。
在其中一个实施例中,悬河治理搅沙船还包括第一射流组件,第一射流组件包括第一射流件和第一喷头;
第一射流件用于产生喷射流体,第一喷头安装于辊轴的外周面上,第一喷头的入口连通于第一射流件的出口,并用于使第一射流件产生的喷射流体经第一喷头喷出;
第一喷头被配置为能够在辊轴的带动下转动,以改变经第一喷头喷出的喷射流体的喷射方向。
在其中一个实施例中,搅沙组件的数量为至少两个,至少两个搅沙组件分别设于船体的行进方向的两侧。
在其中一个实施例中,所述搅沙组件中的辊轴的轴线方向与船体的行进方向平行。
在其中一个实施例中,所述搅沙组件中的所述辊轴的轴线方向与所述船体的行进方向垂直。
在其中一个实施例中,清淤机构还包括绞沙组件,绞沙组件包括:
第二连接臂,转动连接于船体,且第二连接臂远离船体的一端连接于升降机构的输出端,升降机构用于驱动第二连接臂相对船体在竖直面内转动;以及
绞刀,可转动地连接于第二连接臂,绞刀用于转动以绞碎河床。
在其中一个实施例中,悬河治理搅沙船还包括第二射流组件,第二射流组件包括第二射流件和第二喷头,第二射流组件用于产生喷射流体,第二喷头安装于第二连接臂上,第二喷头的入口连通于第二射流件的出口,第二射流件产生的喷射流体经第二喷头喷出,以将绞刀绞碎的河床泥沙扬起至水流上层。
在其中一个实施例中,第二喷头位于绞刀的一侧,以使经由第二喷头喷出的喷射流体的喷射路径位于绞刀的转动行程之外。
在其中一个实施例中,绞沙组件设置于船体的行进方向的前侧。
在其中一个实施例中,悬河治理搅沙船还包括推进组件,推进组件包括第三射流件和第三喷头;
第三射流件用于产生喷射流体,第三喷头安装于船体的底部,第三喷头的入口连通于第三射流件的出口,第三射流件产生的喷射流体经第三喷头喷出,以将河床泥沙扬起至水流上层。
在其中一个实施例中,推进组件还包括第三驱动件和转动件,第三驱动件安装于船体,转动件连接于第三驱动组件的动力输出端,第三喷头安装于转动件;第三驱动件用于驱动转动件带动第三喷头转动,以改变经过第三喷头喷出的喷射流体的喷射方向。
在其中一个实施例中,悬河治理搅沙船还包括抛锚组件,抛锚组件包括第四驱动件、钢绳及锚;第四驱动件安装于船体,钢绳的一端连接于第四驱动件的输出端,另一端连接于锚,锚被配置为能够锚定至河床底泥的预设位置,第四驱动件用于收放钢绳,以使船体在锚被锚定时朝向预设位置行进。
本申请还提供一种悬河治理系统,包括上述的悬河治理搅沙船,还包括:
控制器;以及
感知单元,与控制器电性连接,并用于获取待清淤河段的水深参数和河床分层参数,并将水深参数和河床分层参数反馈至控制器;控制器用于根据水深参数和河床分层参数控制升降机构,以使升降机构将清淤机构下放至预设位置。该系统能够解决上述至少一个技术问题。
在其中一个实施例中,感知单元设置在船体上,船体上还设有第一通信单元,第一通信单元与控制器电连接;
控制器上设有能够与第一通信单元进行无线通信的第二通信单元,第二通信单元与感知单元和升降机构电连接;
控制器通过第一通信单元和第二通信单元接收感知单元获得的水深参数和河床分层参数;控制器通过第一通信单元和第二通信单元向升降机构发送控制指令。
在其中一个实施例中,控制器还用于对感知单元获取的水深参数和河床分层参数进行分析,并向升降机构发出第一指令,第一指令用于指示升降机构升降,升降机构升降时,能够带动清淤机构下放至预设位置;和/或
感知单元还用于获取船体的姿态方位以及定位参数;控制器还用于对船体的姿态方位及定位参数进行分析,并向船体发送第二指令,第二指令用于指示船体行进或转向。
在其中一个实施例中,控制器还用于根据感知单元获取的水深参数和河床分层参数计算出待清淤河段的河床泥沙的清理量。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技 术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请实施例提供的悬河治理搅沙船的沿竖直方向的部分剖视图。
图2为本申请实施例提供的悬河治理搅沙船的沿水平方向的部分剖视图。
图3为本申请另一实施例提供的悬河治理搅沙船的左视示意图。
图4为本申请实施例提供的悬河治理搅沙船的搅沙组件的结构示意图。
图5为本申请一实施例提供的悬河治理系统中感知单元、控制器及升降机构的连接关系示意图。
图6为本申请另一实施例提供的悬河治理系统中感知单元、控制器及升降机构的连接关系示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1和图2,本申请一实施例提供了的悬河治理搅沙船,包括船体100、升降机构200及清淤机构;升降机构200安装于船体100;清淤机构连接于船体100,且连接于升降机构200的输出端,清淤机构用于将河床泥沙搅散并向上带起,升降机构200用于驱动清淤机构相对船体100运动,以调节清淤机构相对河床底泥的高度。
本申请实施例的悬河治理搅沙船通过升降机构200调节清淤机构相对河床底泥的高度,从而在面对不同质地的河床泥沙时,均能够使得清淤机构插入河床最底层的泥沙,从而能够更大程度的将河床沉积的泥沙搅散,使得清淤区域不受限制,同时清淤机构能够将搅散的泥沙向上扬起,从而便于搅散的泥沙跟随水流向下游流动,提高了清淤成效和效率,进而提高了悬河治理搅沙船的清淤性能。
请一并参阅图3,在其中一个实施例中,升降机构200包括升降驱动件210和拉绳220;升降驱动件210安装于船体100,拉绳220的一端连接于升降驱动件210的动力输出端,拉绳220的另一端连接于清淤机构,并形成升降机构200的输出端,升降驱动件210用于收放拉绳220,以将清淤机构向上拉起或者向下放置。
具体地,拉绳220的另一端连接于清淤机构远离船体100的一端,通过升降驱动件210收放拉绳220,使得拉绳220能够将清淤机构向上拉起或者向下放置,从而调节清淤机构相对于河床底泥的高度,使得清淤机构能够搅动河床沉积的不同高度的泥沙,从而增加清淤区域和清淤成效。可选地,升降驱动件210为电机。需要说明的是,河床泥沙指的是河床上沉积的泥沙,河床底泥指的是河床最底层沉积的泥沙。
参阅图1和图3,在其中一个实施例中,升降机构200还包括支架230,支架230的第一端连接于船体100,第二端向远离船体100的方向伸出,拉绳220的部分绳段支撑在支架230上。
具体地,清淤机构远离船体100的一端伸入河床泥沙内,而支架230远离船体100的一端向远离船体100的方向伸出,当拉绳220的部分绳段支撑在支架230上时,拉绳220远离升降驱动件210的一端就能够向上拉住清淤机构,并通过升降驱动件210收放拉绳220而实现将清淤机构向上拉起或者向下放置。
在一些实施例中,支架230的第二端向远离船体100的方向延伸,该方向与水平方向呈一大于0的角度,如30度至90度。拉绳220与支架230的第二端通过至少一滑轮连接。
参阅图2和图3,在其中一个实施例中,清淤机构包括搅沙组件310,搅沙组件310包括第一连接臂311、辊轴313及搅沙件314;第一连接臂311转动连接于船体100,且第一连接臂311远离船体100的一端连接于升降机构200的输出端,升降机构200用于驱动第一连接臂311相对船体100在竖直面内转动,从而改变第一连接臂311与水平面的夹角;辊轴313转动连接于第一连接臂311;搅沙件314连接于辊轴313,且用于伸入河床泥沙;辊轴313能够带动搅沙件314转动,以使搅沙件314插入河床泥沙时能够将部分河床泥沙向上带起。
具体地,拉绳220连接于第一连接臂311,通过升降驱动件210收放拉绳220,使得拉绳220带动第一连接臂311在竖直面内相对船体100转动,从而带动连接于第一连接臂311上的辊轴313和搅沙件314在竖直面内相对船体100转动,使得辊轴313和搅沙件314相对于河床底泥的高度发生改变。在搅沙件314随辊轴313转动的过程中,当拉绳220将第一连接臂311下放至辊轴313与河床床面接触时,搅沙件314能够将当前区域的泥沙搅散并向上带起,随着拉绳220继续下放第一连接臂311,辊轴313能够继续向下移动直至抵接于新形成的河床床面,并通过搅沙件314将当前区域的泥沙搅散并向上带起,通过如此循环就可以实现对河床上各个深度的泥沙的清理,使得清淤区域不受限制,且清淤成效高。
其中,搅沙件314连接于辊轴313,且能够插入河床泥沙中,在辊轴313带动搅沙件314转动的过程中,搅沙件314能够将河床泥沙搅散,同时,搅沙件314具有转矩,然后施加给黏附于搅沙件314上的泥沙一定的动力,将其向上带起至水流中上层,再借助水流本身的动力,提高水流带动泥沙向下游区域运行的路程,实现对泥沙的搬运,进而在提高了清淤效率的同时,减少了能耗,提高了悬河治理搅沙船的性能。
进一步地,搅沙组件310还包括第一驱动件,第一驱动件连接于第一连接臂311,辊轴313连接于第一驱动件的输出端,第一驱动件用于驱动辊轴313带动搅沙件314转动。可选地,第一驱动件为电机。
请参阅图4,在其中一个实施例中,搅沙件314包括搅沙杆3141和弯钩3142,搅沙杆3141的一端连接于辊轴313,另一端向远离辊轴313的方向伸出;弯钩3142连接于搅 沙杆3141远离辊轴313的端部,弯钩3142用于在搅沙件314插入河床泥沙时将部分河床泥沙向上带起。
具体地,当辊轴313置于河床床面时,位于辊轴313下端的搅沙杆3141能够插入河床泥沙,而搅沙杆3141远离辊轴313的一端向远离辊轴313的方向伸出,使得位于辊轴313底端的搅沙杆3141插入河床泥沙的深度更深,进而使得弯钩3142能够抓住河床更深处的泥沙,则在搅沙件314随着辊轴313同步转动的过程中,弯钩3142能够将更多、更深处的河床上的泥沙搅起并向上带起至水流中上层,从而提高清淤效率。可选地,搅沙件314为耙。
进一步地,搅沙件314的数量为多个,多个搅沙件314围绕辊轴313的轴线布置,在搅沙件314随辊轴313转动过程中,围绕辊轴313的轴线布置的多个搅沙件314循环插入河床泥沙,并不断的将河床泥沙带起至水流中上层,从而能够将当前区域下的河床泥沙清理干净,达到更好的清淤效果。
在其中一个实施例中,悬河治理搅沙船还包括第一射流组件,第一射流组件包括第一射流件和第一喷头402;第一射流件用于产生喷射流体,第一喷头安装于辊轴313的外周面上,第一喷头402的入口连通于第一射流件的出口,并用于使第一射流件产生的喷射流体经第一喷头402喷出;第一喷头402被配置为能够在辊轴313的带动下转动,以改变经第一喷头402喷出的喷射流体的喷射方向。需要说明的是,本申请中提到的喷射流体均是指压力较高的流体,例如,指压强>0.3MPa的流体。其中,流体可以为水流,也可以为气流等。
具体地,第一射流件产生喷射流体,并经过第一喷头402喷出,使得喷头402喷出的喷射流体具有较大的冲击力。由于第一喷头402安装于辊轴313的外周面上,则在辊轴313转动的过程中,第一喷头402喷出的喷射流体的喷射方向一直在发生改变。当第一喷头402喷出的喷射流体喷射于河床时,能够搅动河床泥沙;当第一喷头402喷出的喷射流体喷射于水流中时,能够进一步地将水流中被搅沙件314带起的泥沙向上扬起,吹离河床床面,进入中上层水流,从而在水流携沙作用下,提高水流带动泥沙向下游运行的路程,提高了清淤效率。
其中,第一喷头402在与辊轴313同步转动过程中,辊轴313也施加给了第一喷头402喷出的喷射流体一定的动力,从而提高了第一喷头402喷出的喷射流体的冲击力,进而使得泥沙在受到第一喷头402喷出的喷射流体的冲击力时能够进一步向上扬起。其中,第一喷头402与搅沙件314均安装于辊轴313外周面的设置,通过辊轴313一个部件实现了搅沙件314和第一喷头402的转动,节约了能量。可选地,第一射流件为高压泵400。
进一步地,第一喷头402的数量为多个,多个第一喷头402与多个搅沙件314交错布置,从而在多个搅沙件314循环不断地将河床泥沙带起的过程中,多个喷头402循环不断地将喷射流体朝向各个方向喷出,使得喷头402与搅沙件314相互配合,被搅沙件314带起的泥沙不断地被喷头402喷出的喷射流体喷射,进而使得泥沙不断的被扬起。由于泥沙不断的被扬起,即泥沙能够始终位于水流较高的水层,在水流带动泥沙向下游运行的过程中,泥沙能够运行的路程更长,实现对泥沙的更有成效的搬运,提高清淤效率。其中,第一喷头402与搅沙件314交错布置,在第一喷头402朝向河床喷出的喷射流体时,能够减少对弯钩3142抓住河床泥沙造成影响。
在其中一个实施例中,辊轴313内设有流道,流道的一端与第一喷头402的入口连通,另一端与第一射流件的出口连通;第一射流件流出的喷射流体经流道流入喷头402的入口。
具体地,第一射流件产生的喷射流体流入流道内,然后从连接于辊轴313外周面上的多个第一喷头402喷出,实现了对水流中泥沙的冲击,而通过在辊轴313内设置连通第一射流件的出口和第一喷头402入口的流道的这种方式,减少了其他部件的设置,使得装置的结构更加紧凑。
进一步地,第一喷头402的喷口直径远小于流道的直径,从而通过使得从第一喷头402处喷出的喷射流体的压强更大,冲击力更强,进而能够将水流中被搅沙件314带起的泥沙扬向水流中的更高处。可选地,第一喷头402的喷口直径可调,从而能够进一步通过调节第一喷头402的喷口直径,调节从第一喷头402处喷出的喷射流体的压强。
参阅图2和图3,在其中一个实施例中,搅沙组件310的数量为至少两个,至少两个搅沙组件310分别设于船体100的行进方向的两侧边。
在一实施例中,例如在图2的实施例中,每个搅沙组件310中的辊轴313的轴线方向与船体100的行进方向垂直。
在另一实施例中,例如在图3的实施例中,每个搅沙组件310中的辊轴313的轴线方向与船体100的行进方向平行。具体地,辊轴313绕船体100行进方向转动,在搅沙件314与辊轴313同步转动的过程中,搅沙件314能够将泥沙朝向垂直于辊轴313轴向的方向带起至水流中,即搅沙件314带起的泥沙的运动方向与水流流动方向垂直,则在水流带动泥沙沿下游区域运行的过程中,水流中泥沙的运动方向不会对水流携带泥沙向下游区域运行路程的距离造成干扰。而在搅沙件314将泥沙朝向水流方向带起至水流中的实施例,即辊轴313的轴线方向与船体100的行进方向垂直,在搅沙件314与辊轴313同步转动的过程中,弯钩在将河床泥沙抓住并向上带起的过程中,弯钩能够受到河床泥沙施加于水流方向相反的反向作用力。
将搅沙组件310设置在船体100的行进方向的两侧边,提高了悬河治理搅沙船的清淤性能。需要说明的是,船体的行进方向指的是船体沿着水流流动方向运行的方向。
进一步地,搅沙组件310通过第一连接臂311将辊轴313和搅沙件314向远离船体100一侧向外伸出至河床泥沙内,则在船体100运行的过程中,船体100在距离河岸一定距离时,搅沙件314也能够将靠近河岸边的河床泥沙清理掉,从而扩大清淤范围范围。
需要说明的是,在船体100正常运行时,船体100两侧边的搅沙组件310中弯钩3142受到的反向作用力能够相互抵消,从而使得船体能够沿行进方向正常运行。在其他实施例中,当船体100需要调整姿态进行转向时,可以通过改变部分辊轴313的转动方向,使得船体100一侧中的弯钩3142受到的反向作用力大于另一侧的弯钩3142受到的反向作用力,从而使得船体100通过获得的转向动力,进而能够通过该转向动力调整自身姿态,减少能耗。
参阅图1和图2,在其中一个实施例中,清淤机构还包括绞沙组件320,绞沙组件320包括第二连接臂321和绞刀323;第二连接臂321转动连接于船体100,且第二连接臂321远离船体100的一端连接于升降机构200的输出端,升降机构200用于驱动第二连接臂321相对船体100在竖直面内转动,从而改变第二连接臂321与水平面的夹角。绞刀323可转动地连接于第二连接臂321,绞刀323用于转动以绞碎河床。
具体地,第二连接臂321远离船体100的一端伸出,绞刀323可转动地连接于第二连接臂321远离船体100的一端,使得绞刀323能够伸入河床泥沙。拉绳220连接于第二连接臂321,通过升降驱动件210收放拉绳220,使得拉绳220带动第二连接臂321在竖直面内相对船体100转动,从而带动连接于第二连接臂321上的绞刀323在竖直面内相对船体100转动,使得绞刀323相对于河床底泥的高度发生改变。在绞刀323转动的过程中,当拉绳220将第二连接臂321下放置绞刀323与河床床面接触时,绞刀323能够将当前区域的河床床面绞碎,同时将部分泥沙绞散并向上带起至水流中,随着拉绳220继续下放第二连接臂321,则绞刀323能够继续向下移动直至抵接于新形成的河床床面,并通过绞刀323转动将当前区域的河床床面再次绞碎,并将泥沙绞散向上带起至水流中,通过如此循环就可以实现对河床上各个深度的泥沙的清理,使得清淤区域不受限制,且清淤成效高。需要说明的是,升降机构200的数量为多个,搅沙组件310与绞沙组件320分别与各自对应的升降200机构传动连接。
进一步地,绞沙组件320还包括第二驱动件,第二驱动件连接于第二连接臂321,绞刀323连接于第二驱动件的动力输出端,第二驱动件用于驱动绞刀323转动。可选地,第二驱动件为电机。
参阅图1,在其中一个实施例中,悬河治理搅沙船还包括第二射流组件,第二射流组件包括第二射流件和第二喷头410,第二射流组件用于产生喷射流体,第二喷头410安装于第二连接臂321上,第二喷头410的入口连通于第二射流件的出口,第二射流件产生的喷射流体经第二喷头410喷出,以将绞刀323绞碎的河床泥沙扬起至水流上层。
具体地,第二射流件产生喷射流体,并经过第二喷头410喷出,使得喷头喷出的喷射流体具有较大的冲击力,当第二喷头410喷出的喷射流体喷射于河床时,喷射流体能够搅动河床泥沙;当第二喷射流体喷射于水流中时,喷射流体能够进一步地将水流中被绞刀323绞散并带起的泥沙向上扬起,从而提高水流带动泥沙向下游运行的路程,提高了清淤效率。可选地,第二射流件为高压泵400。
继续参阅图1,在其中一个实施例中,第二喷头410位于绞刀323的一侧,以使经由第二喷头410喷出的喷射流体的喷射路径位于绞刀323的转动行程之外。
具体地,经过第二喷头410喷出喷射流体从绞刀323的一侧喷出,从而能够将绞刀323绞散并带起的泥沙向上扬起至水流中上层,在水流带动泥沙向下游运行的过程中,泥沙能够运行的路程更长,实现对泥沙的搬运,提高清淤效率。其中,第二喷头410喷出的喷射流体的喷射路径位于绞刀323的转动行程之外,从而能够避免绞刀323对第二喷头410喷出的喷射流体造成阻碍,影响喷射流体对水流中泥沙的冲击力,同时,能够避免喷射流体对绞刀323的磨损,提高绞刀323的使用寿命。
进一步地,第二喷头410的数量为多个,多个第二喷头410绕绞刀323的转动方向周向布置,从而使得第二喷头410喷出的喷射流体能够朝各个方向喷出,进而扩大了喷射范围,使得位于喷射范围内的泥沙都能够受到喷射流体的冲击力向上扬起。
参阅图1,在其中一个实施例中,绞沙组件320设置于船体100的行进方向的前侧。
具体地,绞刀323在对大颗粒卵石型、岩石型或结皮型等硬质河床床面进行绞碎时,绞刀323会受到较大的反作用力,而本方案中将绞沙组件320设置于船体100的行进方向的前侧,相较于将绞沙组件320设置于船体100与前进方向垂直的两侧的设置,能够减少绞刀323会受到的反作用力对船体100在水面上平衡的影响。同时,绞沙组件320设置于船体100的行进方向的前侧,搅沙组件310设置于船体100与前进方向垂直的两侧,使得船体100在行进过程中,当遇到硬质床面时,可以先通过绞刀323先将硬质河床床面进行绞碎,使得河床泥沙松散,然后再通过搅沙件314将河床上松散的泥沙搅散并向上带起至水流中上层,从而提高清淤效率。在绞刀323和搅沙件314工作的过程中,第一喷头和第二喷头410喷出喷射流体,从而进一步将水流中的泥沙向上扬起,使得水流在带动泥沙向下游运行的过程中,泥沙能够运行的路程更长,提高对泥沙的搬运成效,提高清淤效率。 需要说明的是,绞沙组件320对河床泥沙的作用面积远小于搅沙组件310,当河床泥沙较为松散时,可以只需要搅沙组件310工作即可。
在其他实施例中,船体100上连接有多个搅沙组件310和绞沙组件320,且搅沙组件310和绞沙组件320相对于船体100的连接位置不受限制,其只要能够实时搅沙组件310和绞沙组件320的相互配合即可。
参阅图1和图2,在其中一个实施例中,悬河治理搅沙船还包括推进组件,推进组件包括第三射流件和第三喷头620;第三射流件用于产生喷射流体,第三喷头620安装于船体100的底部,第三喷头620的入口连通于第三射流件的出口,第三射流件产生的喷射流体经第三喷头620喷出,以将河床泥沙扬起至水流上层。
具体地,第三射流件用于产生喷射流体,并经过第三喷头620喷出,使得船体100受到与第三喷头620喷射喷射流体方向相反的作用力,从而通过该作用力为船体100提供行进动力,使得船体100正常运行。同时,第三喷头620在朝向水流喷出喷射流体的过程中,能够喷射于水流中的泥沙,并将水流中的泥沙扬起至水流上层。可选地,第三射流件为高压泵400。
进一步地,悬河治理搅沙船还包括安装于船体100上的承压管420,第一射流件、第二射流件和第三射流件为同一个高压泵400,承接管具有多个支路,承接管的一端与高压泵400的出口连通,承接管的支路分别与第一喷头、第二喷头410和第三喷头620连通,即通过一个高压泵400实现了所有喷射流体的产生,从而能够减少能耗,并使得结构更加紧凑。
更进一步地,悬河治理搅沙船还包括射流控制件730,射流控制件730设置于承压管420与高压泵400之间,以起到分流控制作用,使得第一喷头、第二喷头410及第三喷头620均能够稳定的喷射高压流体。
在其中一个实施例中,推进组件还包括第三驱动件和转动件,第三驱动件安装于船体100,转动件连接于第三驱动组件的动力输出端,第三喷头620安装于转动件;第三驱动件用于驱动转动件带动第三喷头620转动,以改变经过第三喷头620喷出的喷射流体的喷射方向。
具体地,通过转动件带动第三喷头620转动改变第三喷头620喷出的喷射流体的喷射方向,使得第三喷头620喷出喷射流体时能够为船体100提供不同方向的作用力,当第三喷头620喷出的喷射流体的喷射方向与船体100行进方向呈夹角时,船体100能够受到转向动力,从而能够调整姿态,实现对河床泥沙各个区域的清理。可选地,第三驱动件为电机。
参阅图1,在其中一个实施例中,船体100总体呈扁平状,从而能够适应河道河床高而河水浅的特点,增加了船体100能够在河道上通过的性能,便于河床泥沙的清理。
在其中一个实施例中,悬河治理搅沙船还包括抛锚组件500,抛锚组件500包括第四驱动件、钢绳及锚;第四驱动件安装于船体100,钢绳的一端连接于第四驱动件的输出端,另一端连接于锚,锚被配置为能够锚定至河床底泥的预设位置,第四驱动件用于收放钢绳,以使船体在锚被锚定时朝向预设位置行进。
具体地,通过设定悬河治理搅沙船作业行进路线,然后将锚抛至预设位置,再通过第四驱动件收放钢绳,控制船体100作业轨迹,从而实现悬河治理搅沙船的锚定作业模式。其中,可以通过第四驱动件收放钢绳速度,调节船体100朝向预设位置行进的速度。
在其他实施例中,也可以通过调节第三喷头620喷出的喷射流体的喷射方向,或者通过锚定于调节第三喷头620喷出的喷射流体的喷射方向相结合,实现悬河治理搅沙船朝向预设位置行进。需要说明的是,在未设定悬河治理搅沙船作业行进路线时,悬河治理搅沙船可以跟随水流流动方向进行行走作业模式,即本方案中的悬河治理搅沙船的作业行进模式可以为锚定作业模式和行走作业模式相结合。
进一步地,悬河治理搅沙船的锚定作业模式有多种,可以为Z字型作业模式、扇形顺流作业模式或者顺逆流交替作业模式,其只要能够实现对河床泥沙的清理即可。
请参阅图5,本申请一实施例提供悬河治理系统,包括上述的悬河治理搅沙船,还包括控制器710,以及感知单元720;感知单元720与控制器710电性连接,并用于获取待清淤河段的水深参数和河床分层参数,并将水深参数和河床分层参数反馈至控制器710;控制器710用于根据水深参数和河床分层参数控制升降机构200,以使升降机构200将清淤机构下放至预设位置。
本申请实施例提供的悬河治理系统通过感知单元720获取待清淤河段的水深参数和河床分层参数,就能够判断出清淤机构对河床泥沙进行清理的最佳位置,然后通过控制器710控制升降机构200,使得升降机构200将清淤机构下放至最佳位置,并随着清淤机构对河床泥沙的清理,能够通过升降机构200不断的调节清淤机构下放位置,使得清淤机构能够清理河床各个深度的泥沙,从而使得清淤区域不受限制,同时清淤机构能够将搅散的泥沙向上扬起,从而便于搅散的泥沙跟随水流向下游流动,提高了清淤成效和效率,进而提高了悬河治理搅沙船的清淤性能。
进一步地,感知单元720包括水下检测器,水下检测器能够测得水深数据和河床分层情况,然后获得绞沙组件320和搅沙组件310的下放深度(H),控制器710则根据下放深度(H)指导升降机构200控制绞沙组件320和搅沙组件310下放至预设位置。其中,绞 沙组件320和搅沙组件310的下放深度(H)是在当地水深Hw基础上增加一定深度ΔH,ΔH由水下检测器测得的河床深部地层分层情况和各层地质的特征决定。
更进一步地,水下检测器包括声呐探头、换能器和处理器,通过声呐探头发射声波信号,声波信号到达河床后反射回到换能器接收,回波信号经加处理器加工处理和计算,得到河床各点相对于换能器的位置,以换能器位置为坐标原点,从而计算出河床各点的三维坐标,从而反演出水深及河床表界面形貌,划分为岩石床面、板结床面、粗化床面、泥沙床面等大类,再根据回波信号强弱反演出河床深部地层分层情况和各层地质的特征。
请参阅图6,在其中一个实施例中,感知单元设置在船体上,船体上还设有第一通信单元740,第一通信单元740与控制器710电连接;控制器710上设有能够与第一通信单元740进行无线通信的第二通信单元712,第二通信单元712与感知单元720和升降机构200电连接;控制器710通过第一通信单740元和第二通信单元712接收感知单元720获得的水深参数和河床分层参数;控制器710通过第一通信单元740和第二通信单元712向升降机构200发送控制指令。
在一实施例中,控制器710设置于岸上,当悬河治理搅沙船在悬河上进行泥沙清理时,控制器710可以通过第二通信单元712与第一通信单元740进行无线通信而接收感知单元720获得的水深参数和河床分层参数,并通过第二通信单元712与第一通信单元740进行无线通信而向升降机构200发送控制指令。
在其他实施例中,第一通信单元740与第二通信单元712也可以是通过导线进行通信连接的。需要说明的是,控制器710也可以安装于船上。
在其中一个实施例中,控制器710还用于对感知单元720获取的水深参数和河床分层参数进行分析,并向升降机构200发出第一指令,第一指令用于指示升降机构200升降,升降机构200升降时,能够带动清淤机构下放至预设位置。
在其中一个实施例中,感知单元720还用于获取船体的姿态方位以及定位参数;控制器710还用于对船体的姿态方位及定位参数进行分析,并向船体发送第二指令,第二指令用于指示船体行进或转向。
进一步地,第二通信单元712与感知单元720和推进组件电连接,控制器710通过第一通信单元740和第二通信单元712接收感知单元720获得船体的姿态方位以及定位参数,并对船体的姿态方位及定位参数进行分析,并通过第二通信单元712与第一通信单元740进行无线通信而向推进组件发送控制指令,以调整船体作业行进路线。
更进一步地,感知单元720还包括姿态方位及定位检测器,姿态方位及定位检测器用于获取船体100姿态方位及定位参数,并将船体100姿态方位及定位参数反馈至控制器, 控制器用于根据船体100姿态方位及定位参数控制推进组件,以使推进组件推动船体100调整姿态和行进路线。其中,姿态方位及定位检测器由GPS模块或北斗导航模块组成。
在其中一个实施例中,控制器710还用于根据感知单元获取的水深参数和河床分层参数计算出待清淤河段的河床泥沙的清理量。
具体地,控制器710对感知单元获取的悬河治理搅沙船作业前后水深参数和河床分层参数进行分析,计算出待清淤河段的河床泥沙的清理量,从而能够评估河床治理作业效果,量化在单位时间内对河床泥沙清理的体积,从而便于计算出悬河治理搅沙船的作业效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种悬河治理搅沙船,其特征在于,包括:
    船体;
    升降机构,安装于所述船体;以及
    清淤机构,连接于所述船体,且连接于所述升降机构的输出端,所述清淤机构用于将河床泥沙搅散并向上带起,所述升降机构用于驱动所述清淤机构相对所述船体运动,以调节所述清淤机构相对河床底泥的高度。
  2. 根据权利要求1所述的悬河治理搅沙船,其特征在于,所述升降机构包括升降驱动件和拉绳;所述升降驱动件安装于所述船体,所述拉绳的一端连接于所述升降驱动件的动力输出端,所述拉绳的另一端连接于所述清淤机构,并形成所述升降机构的输出端,所述升降驱动件用于收放拉绳,以将所述清淤机构向上拉起或者向下放置。
  3. 根据权利要求1所述的悬河治理搅沙船,其特征在于,所述清淤机构包括搅沙组件,所述搅沙组件包括:
    第一连接臂,转动连接于所述船体,且所述第一连接臂远离所述船体的一端连接于所述升降机构的输出端,所述升降机构用于驱动所述第一连接臂相对所述船体在竖直面内转动;
    辊轴,连接于所述第一连接臂;以及
    搅沙件,所述搅沙件连接于所述辊轴,且用于伸入所述河床泥沙;
    所述辊轴能够带动所述搅沙件转动,以使所述搅沙件插入所述河床泥沙时能够将部分所述河床泥沙向上带起。
  4. 根据权利要求3所述的悬河治理搅沙船,其特征在于,所述搅沙件包括搅沙杆和弯钩,所述搅沙杆的一端连接于所述辊轴,另一端向远离所述辊轴的方向伸出。
  5. 根据权利要求3所述的悬河治理搅沙船,其特征在于,所述悬河治理搅沙船还包括第一射流组件,所述第一射流组件包括第一射流件和第一喷头;
    所述第一射流件用于产生喷射流体,所述第一喷头安装于所述辊轴的外周面上,所述第一喷头的入口连通于所述第一射流件的出口,并用于使所述第一射流件产生的所述喷射流体经所述第一喷头喷出;
    所述第一喷头被配置为能够在所述辊轴的带动下转动,以改变经所述第一喷头喷出的所述喷射流体的喷射方向。
  6. 根据权利要求3所述的悬河治理搅沙船,其特征在于,所述搅沙组件的数量为至 少两个,至少两个搅沙组件分别设于所述船体的行进方向的两侧边。
  7. 根据权利要求3所述的悬河治理搅沙船,其特征在于,所述搅沙组件中的所述辊轴的轴线方向与所述船体的行进方向平行。
  8. 根据权利要求3所述的悬河治理搅沙船,其特征在于,所述搅沙组件中的所述辊轴的轴线方向与所述船体的行进方向垂直。
  9. 根据权利要求1-8任一项所述的悬河治理搅沙船,其特征在于,所述清淤机构还包括绞沙组件,所述绞沙组件包括:
    第二连接臂,转动连接于所述船体,且所述第二连接臂远离所述船体的一端连接于所述升降机构的输出端,所述升降机构用于驱动所述第二连接臂相对所述船体在竖直面内转动;以及
    绞刀,可转动地连接于所述第二连接臂,所述绞刀用于转动以绞碎所述河床。
  10. 根据权利要求9所述的悬河治理搅沙船,其特征在于,所述悬河治理搅沙船还包括第二射流组件,所述第二射流组件包括第二射流件和第二喷头,所述第二射流组件用于产生喷射流体,所述第二喷头安装于所述第二连接臂上,所述第二喷头的入口连通于所述第二射流件的出口,所述第二射流件产生的所述喷射流体经所述第二喷头喷出,以将所述绞刀绞碎的所述河床泥沙扬起至水流上层。
  11. 根据权利要求10所述的悬河治理搅沙船,其特征在于,所述第二喷头位于所述绞刀的一侧,以使经由所述第二喷头喷出的所述喷射流体的喷射路径位于所述绞刀的转动行程之外。
  12. 根据权利要求1-11任一项所述的悬河治理搅沙船,其特征在于,所述悬河治理搅沙船还包括推进组件,所述推进组件包括第三射流件和第三喷头;
    所述第三射流件用于产生喷射流体,所述第三喷头安装于所述船体的底部,所述第三喷头的入口连通于所述第三射流件的出口,所述第三射流件产生的所述喷射流体经所述第三喷头喷出,以将所述河床泥沙扬起至水流上层。
  13. 根据权利要求12所述的悬河治理搅沙船,其特征在于,所述推进组件还包括第三驱动件和转动件,所述第三驱动件安装于所述船体,所述转动件连接于所述第三驱动组件的动力输出端,所述第三喷头安装于所述转动件;所述第三驱动件用于驱动所述转动件带动所述第三喷头转动,以改变经过所述第三喷头喷出的所述喷射流体的喷射方向。
  14. 根据权利要求1-13任一项所述的悬河治理搅沙船,其特征在于,所述悬河治理搅沙船还包括抛锚组件,所述抛锚组件包括第四驱动件、钢绳及锚;所述第四驱动件安装于所述船体,所述钢绳的一端连接于所述第四驱动件的输出端,另一端连接于所述锚,所述 锚被配置为能够锚定至所述河床底泥的预设位置,所述第四驱动件用于收放所述钢绳,以使所述船体在所述锚被锚定时朝向所述预设位置行进。
  15. 一种悬河治理系统,包括权利要求1-14任一项所述的悬河治理搅沙船,还包括:
    控制器;以及
    感知单元,与所述控制器电性连接,并用于获取待清淤河段的水深参数和河床分层参数,并将所述水深参数和所述河床分层参数反馈至所述控制器;所述控制器用于根据所述水深参数和所述河床分层参数控制所述升降机构,以使所述升降机构将所述清淤机构下放至预设位置。
  16. 根据权利要求15所述的悬河治理系统,其特征在于,所述感知单元设置在所述船体上,所述船体上还设有第一通信单元,所述第一通信单元与所述控制器电连接;
    所述控制器上设有能够与所述第一通信单元进行无线通信的第二通信单元,所述第二通信单元与所述感知单元和所述升降机构电连接;
    所述控制器通过所述第一通信单元和所述第二通信单元接收所述感知单元获得的所述水深参数和所述河床分层参数;所述控制器通过所述第一通信单元和所述第二通信单元向所述升降机构发送控制指令。
  17. 根据权利要求15或16任一项所述的悬河治理系统,其特征在于,所述控制器还用于对所述感知单元获取的所述水深参数和所述河床分层参数进行分析,并向所述升降机构发出第一指令,所述第一指令用于指示所述升降机构升降,所述升降机构升降时,能够带动所述清淤机构下放至预设位置;和/或
    所述感知单元还用于获取所述船体的姿态方位以及定位参数;所述控制器还用于对所述船体的姿态方位及定位参数进行分析,并向所述船体发送第二指令,所述第二指令用于指示所述船体行进或转向。
  18. 根据权利要求17所述的悬河治理系统,其特征在于,所述控制器还用于根据所述感知单元获取的所述水深参数和所述河床分层参数计算出所述待清淤河段的所述河床泥沙的清理量。
PCT/CN2023/092416 2022-05-07 2023-05-06 悬河治理搅沙船及悬河治理系统 WO2023217006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210493611.9A CN114837119B (zh) 2022-05-07 2022-05-07 悬河治理搅沙船及悬河治理系统
CN202210493611.9 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023217006A1 true WO2023217006A1 (zh) 2023-11-16

Family

ID=82568362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092416 WO2023217006A1 (zh) 2022-05-07 2023-05-06 悬河治理搅沙船及悬河治理系统

Country Status (2)

Country Link
CN (1) CN114837119B (zh)
WO (1) WO2023217006A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837119B (zh) * 2022-05-07 2023-04-07 清华大学 悬河治理搅沙船及悬河治理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586726A1 (fr) * 1985-08-30 1987-03-06 Briand Sa Ets Drague pour deblaiement de bassin
CN2578396Y (zh) * 2002-11-13 2003-10-08 彭程 调沙清淤船
CN102926422A (zh) * 2012-11-02 2013-02-13 王建光 清淤运输船
CN211200516U (zh) * 2019-09-11 2020-08-07 华北电力大学 一种环保型水利工程清淤装置
CN113175016A (zh) * 2021-04-26 2021-07-27 江苏省水利机械制造有限公司 一种复合型水下动力清淤拖耙
CN114382127A (zh) * 2022-01-18 2022-04-22 东珠生态环保股份有限公司 一种污染河道的泥沙生态清理系统
CN114837119A (zh) * 2022-05-07 2022-08-02 清华大学 悬河治理搅沙船及悬河治理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060130A (zh) * 1991-08-19 1992-04-08 秦桂亭 黄河下游治理方案——浮力漂运搅混法
DE102014005737B3 (de) * 2014-04-16 2015-09-17 Georg Linner Vorrichtung zum Aufnehmen und Entfernen von auf Gewässerböden abgelagerten plastischen, schlammartigen Stoffen
CN109826265B (zh) * 2019-01-08 2021-04-16 王美玲 一种单机组水压式挖泥船

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586726A1 (fr) * 1985-08-30 1987-03-06 Briand Sa Ets Drague pour deblaiement de bassin
CN2578396Y (zh) * 2002-11-13 2003-10-08 彭程 调沙清淤船
CN102926422A (zh) * 2012-11-02 2013-02-13 王建光 清淤运输船
CN211200516U (zh) * 2019-09-11 2020-08-07 华北电力大学 一种环保型水利工程清淤装置
CN113175016A (zh) * 2021-04-26 2021-07-27 江苏省水利机械制造有限公司 一种复合型水下动力清淤拖耙
CN114382127A (zh) * 2022-01-18 2022-04-22 东珠生态环保股份有限公司 一种污染河道的泥沙生态清理系统
CN114837119A (zh) * 2022-05-07 2022-08-02 清华大学 悬河治理搅沙船及悬河治理系统

Also Published As

Publication number Publication date
CN114837119A (zh) 2022-08-02
CN114837119B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2023217006A1 (zh) 悬河治理搅沙船及悬河治理系统
CA1150740A (en) In-line centrifugal pump
EP2729629B1 (en) Drag head and trailing suction hopper dredger
CN108442443B (zh) 一种基于水下机器人的水下孔洞清淤方法及系统
EP2644781B1 (en) Pumping means intended for being trailed by a trailing suction hopper dredger and trailing suction hopper dredger equipped with such pumping means
CA2514065A1 (en) Underwater sediment management
CN106193153B (zh) 一种绞吸挖泥船
GB2459700A (en) Underwater mass flow excavation appartus
CN113152558A (zh) 一种能调节清淤深度的河道清淤船
JP4938045B2 (ja) 浚渫方法及びその装置
CN101806074B (zh) 三角锯成槽机
CN106193156B (zh) 一种挖泥船绞吸头
KR101670338B1 (ko) 땅을 준설하기 위한 커터 헤드 및 이러한 커터 헤드를 사용하여 준설하기 위한 방법
JP4390277B2 (ja) 浚渫装置
CN105951909A (zh) 一种码头下方清淤器具及其施工方法
WO2023217016A1 (zh) 悬河治理装置及悬河治理搅沙船
EP2543774B1 (en) Device for displacing bottom material under water and method for applying such a device
CN106013307B (zh) 一种改良结构的挖泥船
CN203546782U (zh) 一种绞吸装置
CN206157803U (zh) 一种桥式自动侧挖式抓斗挖泥船
CN115748860A (zh) 一种清淤机具
CN109826265B (zh) 一种单机组水压式挖泥船
JP5731243B2 (ja) 固定式ダム浚渫工法
CN106480920A (zh) 一种桥式自动侧挖式抓斗挖泥船
CN112796362B (zh) 吸沙船及吸沙头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802778

Country of ref document: EP

Kind code of ref document: A1