WO2023216840A1 - 阀控制装置和方法、半导体加工设备 - Google Patents

阀控制装置和方法、半导体加工设备 Download PDF

Info

Publication number
WO2023216840A1
WO2023216840A1 PCT/CN2023/089709 CN2023089709W WO2023216840A1 WO 2023216840 A1 WO2023216840 A1 WO 2023216840A1 CN 2023089709 W CN2023089709 W CN 2023089709W WO 2023216840 A1 WO2023216840 A1 WO 2023216840A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
opening
determined
time
total number
Prior art date
Application number
PCT/CN2023/089709
Other languages
English (en)
French (fr)
Inventor
张利军
张芳
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023216840A1 publication Critical patent/WO2023216840A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0091For recording or indicating the functioning of a valve in combination with test equipment by measuring fluid parameters

Definitions

  • the present invention relates to the field of semiconductor processing equipment, and in particular, to a valve control device and method, semiconductor processing equipment and a computer-readable storage medium.
  • each process step requires rapid switching between multiple pneumatic valves within 1 second under high temperature conditions (for example, maintained at a high temperature of 120°C) Multiple times, the switching speed can reach up to 5ms to achieve precise control of the gas injection volume in the process reaction zone and ensure the final process effect.
  • the switch of the above-mentioned pneumatic valve is usually driven by an electromagnetic pilot valve.
  • the electromagnetic pilot valve When the electromagnetic pilot valve receives the opening command from the controller and is energized, it connects the pipeline and applies gas (such as compressed air) to the pneumatic valve to drive the pneumatic valve to open; When the solenoid pilot valve receives the closing command from the controller and cuts off power, it disconnects the pipeline to drive the pneumatic valve to close.
  • gas such as compressed air
  • control system cannot monitor the status of the pneumatic valve, and cannot be informed in time when the pneumatic valve fails, resulting in erroneous process results and reduced safety and stability of the equipment.
  • the present invention aims to provide a valve control device and method, semiconductor processing equipment and a computer-readable storage medium, which can monitor the status of a switching valve, so that it can be informed in time when the switching valve fails and ensure the correctness of the process results. , improve the safety and stability of the equipment.
  • a valve control device for controlling the opening or closing of the pilot valve in semiconductor processing equipment to drive the switch valve.
  • the valve control device includes a first detection module and a control module, in,
  • the first detection module is used to detect the opening and closing actions of the switch valve in each collection cycle, and convert it into an electrical signal and send it to the control module;
  • the control module is configured to send an opening signal to the pilot valve according to the preset holding time of the on-off valve and the number of cycles of the collection period during the collection period; and, according to the first detection module The electrical signal sent is used to determine whether the status of the switch valve is normal.
  • control module includes a counting unit and a control unit, wherein the counting unit is used to accumulate the total number of opening signals sent to the pilot valve when the number of cycles is completed, and according to the first
  • the electrical signal sent by a detection module accumulates the total number of opening actions and the total number of closing actions of the switching valve when the number of cycles is completed;
  • the control unit is used to determine whether each of the total number of opening actions and the total number of closing actions is equal to the total number of opening signals
  • control module also includes a timing unit, the timing unit is used to obtain the total holding time of the turn-on signal when the number of cycles is completed, and according to the electrical signal sent by the first detection module, Obtain the sum of the holding times of the opening action of the switching valve when completing the number of cycles;
  • the control unit is also configured to: determine whether the total holding time of the opening action is equal to the total holding time of the opening signal;
  • the turn-on signal determines whether the difference between the total holding time of the turn-on action and the total holding time of the turn-on signal is less than a preset threshold; if it is less than the preset threshold, determine whether There is a delay in the opening action of the on-off valve; if it is greater than or equal to the preset threshold, it is determined that the on-off valve is faulty.
  • control module further includes a delay timing unit configured to obtain the feedback delay time of the switching valve when completing the number of cycles based on the electrical signal sent by the first detection module.
  • the feedback delay time is the time difference between the first moment corresponding to each opening action of the switch valve and the second moment corresponding to each opening of the corresponding pilot valve;
  • the control unit is also configured to: determine whether the sum of the feedback delay times is less than a preset delayed maintenance time when it is determined that the opening action of the switch valve is delayed,
  • the delay maintenance time it is determined whether the sum of the feedback delay times is less than the preset switch valve alarm time. If it is less than the switch valve alarm time, it is determined that the switch valve needs maintenance; if it is greater than or equal to the preset switch valve alarm time. If the on-off valve alarm time is determined, it is determined that the on-off valve needs to be replaced.
  • control module further includes an error counting unit, which is configured to accumulate the opening of the switch valve when the number of cycles is completed based on the electrical signal sent by the first detection module. The total number of errors for each action and closing action;
  • the control unit is also configured to compare the total number of errors with the total number of opening signals sent to the pilot valve when completing the number of cycles, and determine the degree of damage to the switch valve based on the comparison results.
  • valve control device further includes a second detection module, which is used to detect the gas pressure delivered by the pilot valve to the switch valve in real time during each opening process of the pilot valve. , and convert it into an analog signal and send it to the control module;
  • a second detection module which is used to detect the gas pressure delivered by the pilot valve to the switch valve in real time during each opening process of the pilot valve. , and convert it into an analog signal and send it to the control module;
  • the control module is also used to determine whether the working status of the switch valve is normal based on the electrical signal sent by the first detection module; if not, based on the analog signal sent by the second detection module, Determine whether the working status of the pilot valve is normal.
  • control module is also configured to obtain, based on the analog signal sent by the second detection module, the sum of the holding times of the analog signal when the switch valve is in the open state when the number of cycles is completed. , and obtain the total number of times the gas pressure of the pilot valve reaches the specified pressure value when the number of cycles is completed; and determine whether the sum of the holding times of the analog signals is greater than the preset corresponding time when the gas pressure state of the pilot valve is abnormal.
  • the specified pressure value is the pressure value required to drive the switch valve to open or close;
  • the first failure time it is determined whether the total number of times the gas pressure reaches the specified pressure value is equal to the total number of opening signals sent to the pilot valve when completing the number of cycles. If equal to, Then it is determined that the air pressure status of the pilot valve is normal; or
  • control module is also configured to determine whether the sum of the holding times of the analog signals is greater than the preset pilot time when the sum of the holding times of the analog signals is less than or equal to the first fault time.
  • the second failure time corresponding to the abnormality of the valve pipeline
  • the present invention also provides a valve control method for controlling the pilot valve to drive the switching valve to open or close in semiconductor processing equipment.
  • the method includes:
  • the electrical signal it is determined whether the status of the switch valve is normal.
  • judging whether the status of the on-off valve is normal based on the electrical signal includes:
  • determining whether the status of the on-off valve is normal based on the electrical signal also includes:
  • the turn-on signal determines whether the difference between the total holding time of the turn-on action and the total holding time of the turn-on signal is less than a preset threshold; if it is less than the preset threshold, determine whether There is a delay in the opening action of the on-off valve; if it is greater than or equal to the preset threshold, it is determined that the on-off valve is faulty.
  • determining whether the status of the on-off valve is normal based on the electrical signal also includes:
  • the feedback delay time is the first moment corresponding to each opening action of the switching valve and the corresponding pilot The time difference between the second moment corresponding to each opening of the valve;
  • the delay maintenance time it is determined whether the sum of the feedback delay times is less than the preset switch valve alarm time. If it is less than the switch valve alarm time, it is determined that the switch valve needs maintenance; if it is greater than or equal to the preset switch valve alarm time. If the on-off valve alarm time is determined, it is determined that the on-off valve needs to be replaced.
  • determining whether the status of the on-off valve is normal based on the electrical signal also includes:
  • the total number of errors in the opening and closing actions of the switching valve when the number of cycles is completed is accumulated;
  • valve control method also includes:
  • judging whether the status of the pilot valve is normal based on the analog signal includes:
  • the sum of the holding time of the analog signal when the switching valve is in the open state is obtained when the number of cycles is completed, and the gas pressure of the pilot valve reaches the specified pressure when the number of cycles is completed. the total number of values; and determine the holding time of the analog signal Whether the sum is greater than the preset first failure time corresponding to when the air pressure state of the pilot valve is abnormal, and the specified pressure value is the pressure value required to drive the switch valve to open or close;
  • the first failure time it is determined whether the total number of times the gas pressure reaches the specified pressure value is equal to the total number of opening signals sent to the pilot valve when completing the number of cycles. If equal to, Then it is determined that the air pressure state of the pilot valve is normal; if not equal to, then it is determined that the air pressure state of the pilot valve is abnormal; or
  • determining whether the status of the pilot valve is normal based on the analog signal also includes:
  • the present invention also provides a valve control device for controlling the pilot valve in the semiconductor processing equipment to drive the switch valve to open or close, characterized in that the valve control device includes at least one processor and at least one A memory with at least one program stored in the memory;
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor is caused to implement the above method provided by the present invention.
  • the present invention also provides a semiconductor processing equipment, including a process chamber and at least one gas path for transporting process gas to the process chamber.
  • the gas path is provided with the switch valve and the
  • the pilot valve connected to the switch valve also includes the above-mentioned valve control device provided by the present invention, which is used to control the pilot valve corresponding to at least one of the gas paths to drive the switch valve to open or close.
  • the present invention also provides a computer-readable storage medium for semi- Conductor processing equipment has a computer program stored thereon, and when the program is executed by a processor, the above method provided by the present invention is implemented.
  • the first detection module is used to detect the opening and closing actions of the switching valve in each collection cycle, and convert them into electrical signals and send them to the control module.
  • the control module determines whether the status of the switch valve is normal based on the electrical signal sent by the first detection module, the status of the switch valve can be monitored by using the opening and closing actions of the switch valve as a basis for judgment, so that when the switch valve appears Be informed in time when a fault occurs to ensure the accuracy of process results and improve the safety and stability of the equipment.
  • the semiconductor processing equipment provided by the present invention by using the above valve control device provided by the present invention, can monitor the status of the switching valve by using the opening and closing actions of the switching valve as a basis for judgment, so that when the switching valve fails, it can be detected in a timely manner. Be informed to ensure the accuracy of process results and improve the safety and stability of equipment.
  • Figure 1 is a first functional block diagram of a valve control device provided by a first embodiment of the present invention
  • Figure 2 is a second functional block diagram of the valve control device provided by the first embodiment of the present invention.
  • Figure 3 is a third functional block diagram of the valve control device provided by the first embodiment of the present invention.
  • Figure 4 is a fourth functional block diagram of the valve control device provided by the first embodiment of the present invention.
  • Figure 5 is a fifth functional block diagram of the valve control device provided by the first embodiment of the present invention.
  • Figure 6 is a first functional block diagram of a valve control device provided by a second embodiment of the present invention.
  • Figure 7 is a second functional block diagram of the valve control device provided by the second embodiment of the present invention.
  • Figure 8 is a timing diagram of various signals of the valve control device provided by the second embodiment of the present invention when the switching valve is normal;
  • Figure 9 is a timing diagram of various signals of the valve control device provided by the second embodiment of the present invention when the switching valve is abnormal;
  • Figure 10 is a flow chart of a valve control method provided by the third embodiment of the present invention.
  • Figure 11 is a first flow chart of step S3 adopted in the third embodiment of the present invention.
  • Figure 12 is a second flow chart of step S3 adopted in the third embodiment of the present invention.
  • Figure 13 is a third flow chart of step S3 adopted in the third embodiment of the present invention.
  • Figure 14 is a first flow chart of the valve control method provided by the fourth embodiment of the present invention.
  • Figure 15 is a second flow chart of the valve control method provided by the fourth embodiment of the present invention.
  • Figure 16 is a first flow chart of step S5 adopted in the fourth embodiment of the present invention.
  • Figure 17 is a second flow chart of step S5 used in the fourth embodiment of the present invention.
  • Figure 18 is a second flow chart of the valve control method provided by the fourth embodiment of the present invention.
  • Figure 19 is a structural block diagram of the valve control device provided in the embodiment of the present invention.
  • a valve control device 4 provided by a first embodiment of the present invention is used to control a pilot valve 1 in a semiconductor processing equipment to drive a switch valve 2 to open or close.
  • the switching valve 2 is, for example, a pneumatic valve.
  • the pneumatic valve is provided on the gas path 3 in the semiconductor processing equipment and is used to connect or disconnect the gas path 3 .
  • the pilot valve 1 is, for example, an electromagnetic pilot valve, connected to the pneumatic valve through a pipeline, and is used to connect the pipeline to apply gas (such as compressed air) to the pneumatic valve when receiving an opening signal from the valve control device 4 to drive the pneumatic valve. Open; when the valve control device 4 stops sending the opening signal, disconnect the pipeline to drive the pneumatic valve to close.
  • the above-mentioned valve control device 4 includes a first detection module 41 and a control module 42, wherein the first detection module 41 is used to detect the opening and closing actions of the switching valve 2 in each collection cycle, and detect the opening and closing actions. Convert it into an electrical signal and send it to the control module 42; the control module 42 is used to send an opening signal to the pilot valve 1 according to the preset holding time and number of cycles for the opening of the switching valve 2 during the above-mentioned collection period; and, according to the first detection module 41 The above electrical signal sent is used to determine whether the status of the switch valve 2 is normal.
  • the switching valve 2 In each collection cycle, the switching valve 2 usually performs multiple opening actions and multiple closing actions.
  • the number of opening actions When the switching valve 2 is in a normal state, the number of opening actions should be consistent with the number of closing actions, and they are "open-related".
  • the above number of cycles refers to the number of times the acquisition cycle is repeated.
  • the above-mentioned keeping time of the switch valve 2 open refers to the time it takes to maintain the open state after the switch valve 2 is opened each time, that is, the time it takes for the switch valve 2 to close from each time it is opened.
  • the holding time and number of cycles for opening the switch valve 2 can be set according to specific needs and stored in the control module 42 in advance.
  • the control module 42 is, for example, a programmable logic controller (PLC), which is used to send an opening signal to the pilot valve 1 .
  • PLC programmable logic controller
  • the pilot valve 1 receives the opening signal sent by the control module 42, it connects the pipeline and applies gas (such as compressed air) to the pneumatic valve to drive the pneumatic valve to open; in the control module 42 When stopping sending the above-mentioned opening signal, disconnect the pipeline to drive the pneumatic valve to close.
  • the holding time for the control module 42 to send the above-mentioned opening signal is the same as the holding time for the above-mentioned switching valve 2 to open.
  • control module 42 includes a digital output unit (DO) for outputting an opening signal (ie, a voltage signal) to the pilot valve 1.
  • DO digital output unit
  • the pilot valve 1 controls the pressure of the gas (such as compressed air) in the pipeline according to the voltage signal. When the air pressure increases to a certain level, it can drive the switch valve 2 to open; when the gas in the pipeline is blocked, the switch valve 2 closes.
  • the above-mentioned first detection module 41 is used to monitor the opening and closing actions of the switch valve 2 in each collection cycle.
  • the first detection module 41 includes, for example, an optical fiber sensor.
  • the optical fiber sensor is used to perform the opening action of the switch valve 2 It is triggered when the switch valve 2 performs the closing action, and is converted into a first electrical signal and then sent to the control module 42; That is to say, the optical fiber sensor can feed back different electrical signals to the control module 42 when the switch valve 2 performs an opening or closing action.
  • fiber optic sensors can work normally in high-temperature environments (for example, above 120°C), so they can be used in installations in high-temperature environments. Action detection of on-off valve 2 on the lower air path.
  • optical fiber sensors are usually equipped with optical fiber amplifiers for amplifying and converting signals fed back by the optical fiber sensors into electrical signals (digital signals).
  • the control module 42 also includes a digital input unit (DI) for receiving electrical signals sent by the above-mentioned optical fiber sensor.
  • DI digital input unit
  • the number of opening and closing actions should be consistent with the number of opening signals sent by the control module 42. If there is any inconsistency, it means that the action of the switch valve 2 is lost, and the status of the switch valve 2 Abnormality, and the degree of loss of the switch valve 2 can also be judged based on the number of errors in the opening and closing actions, so that corresponding maintenance measures, such as repair or replacement, can be taken according to the degree of loss.
  • the first detection module 41 is used to detect the opening and closing actions of the switch valve 2 in each collection cycle, and the electrical signals are converted into electrical signals and sent to the control module 42 , and the control module 42 uses the control module 42 to detect the opening and closing actions of the switch valve 2 in each collection cycle.
  • the electrical signals are compared and analyzed accordingly to determine whether the status of the switching valve 2 is normal.
  • the opening and closing actions of the switching valve 2 can be used as a basis for monitoring the status of the switching valve 2, so that when the switching valve 2 fails, it can be detected in time. Be informed to ensure the accuracy of process results and improve the safety and stability of equipment.
  • the control module 42 includes a counting unit 421 and a control unit 422, wherein the counting unit 421 is used to accumulate the total number of opening signals sent to the pilot valve 1 when the above number of cycles is completed. times (that is, the product of the number of opening signals sent to the pilot valve 1 in each cycle and the number of cycles), and based on the electrical signal sent by the first detection module 41, the opening action of the switch valve 2 when the above number of cycles is accumulated.
  • the total number of times that is, the product of the number of opening actions of the switching valve 2 in each cycle and the number of cycles
  • the total number of closing actions that is, the product of the number of closing actions of the switching valve 2 in each cycle and the number of cycles.
  • the number of opening signals sent to the pilot valve 1 and the number of opening actions of the switch valve 2 in each collection cycle can also be accumulated.
  • the embodiment of the present invention has no special restrictions on this.
  • the counting unit 421 may include a first counter, a second counter and a third counter, wherein the first counter is used to accumulate the total number of opening signals sent to the pilot valve 1 when completing the above number of cycles. ; The second counter is used according to the electrical signal sent by the first detection module 41 The third counter is used to accumulate the total number of closing actions of the switching valve 2 based on the electrical signal sent by the first detection module 41 according to the electrical signal sent by the first detection module 41.
  • the control unit 422 is used to determine whether each of the total number of opening actions and the total number of closing actions is equal to the total number of opening signals. If they are equal to the total number of opening signals, then determine the opening and closing actions of the switch valve 2 There is no loss of the number of actions, thereby determining that the status of the switch valve 2 is normal; if at least one of the total number of opening actions and the total number of closing actions is less than the total number of opening signals, it is determined that the opening and closing actions of the switching valve 2 At least one of the times is lost, thereby determining that the status of the switch valve 2 is abnormal.
  • the degree of loss of the switching valve 2 can also be judged based on the number of times the opening and closing actions are lost. The greater the number of times the opening and closing actions are lost, the more severe the degree of loss of the switching valve 2. Therefore, measures can be taken according to the degree of loss. Corresponding maintenance measures, such as repair or replacement.
  • control unit 422 can count and accumulate the total number of opening actions and the total number of closing actions according to the electrical signal sent by the first detection module 41, and compare and analyze it with the accumulated total number of opening signals to determine whether Whether the status of the on-off valve 2 is normal, so as to monitor the status of the on-off valve 2, so as to be informed in time when the on-off valve 2 fails, ensuring the accuracy of the process results, and improving the safety and stability of the equipment.
  • the embodiment of the present invention is not limited to this. In practical applications, the control unit 422 can also use any other data processing method to determine whether the status of the switch valve 2 is normal based on the electrical signal sent by the first detection module 41, as long as it can It is enough to monitor the status of the switch valve 2.
  • the control unit 422 determines whether the number of opening actions and closing actions of the switching valve 2 by counting is lost, and can also further determine by timing. Judging the smoothness of the action of the switching valve 2 serves as a basis for further judging whether the status of the switching valve 2 is normal. It can also predict and distinguish the abnormality of the switching valve 2, so that corresponding maintenance measures can be taken, for example, if the abnormality is minor You can only turn off Just make a note, and when the abnormality is serious, you can choose to repair or replace it.
  • the control module 42 also includes a timing unit 423, which is used to obtain the total holding time of the turn-on signal when completing the above number of cycles (ie, the sum of the holding times of the turn-on signal in each cycle period). and the product of the number of cycles), and according to the electrical signal sent by the first detection module 41, the sum of the holding times of the opening action of the switching valve 2 when the above number of cycles is completed is obtained (that is, the opening action of the switching valve 2 in each cycle period The product of the sum of the holding times and the number of cycles).
  • the above-mentioned timing unit 423 is, for example, a first timer.
  • the control unit 422 is also used to determine whether the total holding time of the opening action is equal to the total holding time of the opening signal; if it is equal to the total holding time of the opening signal, it is determined that there is no delay in the opening action of the switching valve 2, so that the switching valve can be determined
  • the action of 2 is smooth and friction-free. When the number of opening and closing actions of switch valve 2 is not lost, it can be determined that the status of switch valve 2 is normal.
  • the preset threshold can be set according to the specific conditions of the switching valve.
  • the pipeline of the pilot valve 1 is used to transport gas (such as compressed air), its diameter and length It will affect the air pressure rise time, which will cause the opening action of switch valve 2 driven by pilot valve 1 to be slower than the time when pilot valve 1 receives the opening signal. That is, the opening action of switch valve 2 is slower than the opening action of pilot valve 1.
  • the command pulse is the opening signal sent by the control unit 422 to the pilot valve 1
  • the valve action feedback signal is the electrical signal about the opening action fed back by the first detection module 41.
  • the rising edge of the electrical signal is slower than the rising edge of the turn-on signal, and the difference is ⁇ t.
  • the degree of delay in the action of the switching valve 2 can also be further determined by monitoring the above ⁇ t as a further judgment on the switching valve. 2 is the basis for whether the status of the switch valve 2 is normal, and it can also predict and distinguish the abnormality of the switch valve 2, so that corresponding maintenance measures can be taken. For example, when the abnormality is mild, you can just pay attention, and when the abnormality is serious, you can choose Repair or replace.
  • the control module 42 also includes a delay timing unit 424, which is used to obtain the feedback delay time of the switching valve 2 when the above number of cycles is completed based on the electrical signal sent by the first detection module 41.
  • the sum of That is, the time difference (ie, ⁇ t) between the rising edge of the valve action feedback signal shown in FIG. 8 .
  • the sum of the feedback delay times of the switching valve 2 when the above number of cycles is completed is the product of the sum of the feedback delay times of the switching valve 2 in each cycle period and the number of cycles.
  • the delay timing unit 424 is, for example, a second timer.
  • the control unit 422 is also configured to determine the feedback delay when it is determined that there is a delay in the opening action of the switching valve 2 (that is, the difference between the total holding time of the opening action and the total holding time of the opening signal is less than a preset threshold). Is the sum of the times less than the preset delayed maintenance time? If it is less than the delayed maintenance time, there will be no loss in the number of opening and closing actions of the switch valve 2. In this case, it can be determined that the switch valve 2 can continue to be used, but it requires regular attention.
  • the above-mentioned delayed maintenance time can be set according to the specific conditions of the switch valve.
  • the above delayed maintenance time determines whether the sum of the above feedback delay times is less than the preset switch valve alarm time. If it is less than the switch valve alarm time, it means that there is friction in the action of switch valve 2, and it is determined that switch valve 2 needs to be cleaned. Maintenance; if it is greater than or equal to the above-mentioned switching valve alarm time, it is determined that the switching valve 2 is in a critical fault state and needs to be inspected and replaced.
  • the above-mentioned switching valve alarm time can be set according to the specific conditions of the switching valve.
  • control module 42 also includes an error counting unit 425 , which is used to accumulate the switch when completing the above number of cycles according to the electrical signal sent by the first detection module 41 .
  • the total number of errors in the opening and closing actions of valve 2 ie, the sum of the number of errors in the opening and closing actions of valve 2 in each cycle multiplied by the number of cycles).
  • the error counting unit 425 is, for example, a fourth counter.
  • the control unit 422 is also used to compare the total number of errors mentioned above with the total number of times the opening signal is sent to the pilot valve 1 when completing the above number of cycles, and determine the degree of damage to the switch valve 2 based on the comparison results. It is easy to understand that the greater the difference between the total number of errors mentioned above and the total number of times the opening signal is sent to the pilot valve 1 when completing the above number of cycles, the greater the degree of damage to the switch valve 2; conversely, the smaller the difference.
  • control module 42 may include a counting unit 421. In this case, it may be determined by counting whether the number of opening and closing actions of the switching valve 2 is lost, thereby determining whether the status of the switching valve 2 is normal.
  • the control module 42 may also include a counting unit 421 and a timing unit 423. In this case, on the basis of determining whether the number of opening actions and closing actions of the switching valve 2 is lost by counting, the switching valve 2 may also be further determined by timing. The smoothness of the action of 2 is used to predict and distinguish the abnormality of the switch valve 2, so that corresponding maintenance measures can be taken.
  • the control module 42 may also include a counting unit 421, a timing unit 423 and a delay timing unit 424.
  • the control module 42 may also include an error counting unit 425 for judging the degree of loss of the switch valve 2 based on the number of lost opening and closing actions, so that measures can be taken based on the degree of loss. Corresponding maintenance measures, such as repair or replacement.
  • the valve control device 4 provided by the second embodiment of the present invention is an improvement based on the above-mentioned first embodiment.
  • the valve control device 4 includes a first detection module 41 and On the basis of the control module 42, a second detection module 43 is also included.
  • the second detection module 43 is used to detect the gas pressure delivered by the pilot valve 1 to the switch valve 2 in real time during each opening process of the pilot valve 1, and detect it. It is converted into an analog signal and sent to the control module 42; the control module 42 is also used to determine whether the status of the pilot valve 1 is normal based on the above-mentioned analog signal sent by the second detection module 43.
  • the control module 42 also includes an analog signal port for receiving the above-mentioned analog signal.
  • the opening and closing actions of the switching valve 2 When the opening and closing actions of the switching valve 2 are lost, and the opening and closing actions of the switching valve 2 are delayed, it may not only be due to the abnormal status of the switching valve 2, but also may be due to the abnormal status of the pilot valve 1. , this is because the action of the switch valve 2 must be driven by the pilot valve 1 as an intermediate link to connect and break the gas pipeline. If the pilot valve 1 or its pipeline fails, it may cause the switch valve 2 to operate abnormally. Based on this, the second detection module 43 is used to detect the gas pressure delivered by the pilot valve 1 to the switching valve 2 in real time. On the basis of monitoring the status of the switching valve 2, the status of the pilot valve 1 can be monitored, so that the pilot valve 1 can be Notify immediately when valve 1 fails.
  • control module 42 is also used to determine whether the status of the switch valve 2 is normal based on the electrical signal sent by the first detection module 41; if not, based on the above-mentioned analog signal sent by the second detection module 43 , determine whether the working status of pilot valve 1 is normal. In this way, if we decide first If the status of the on-off valve 2 is normal, there is no need to judge the status of the pilot valve 1. If it is first determined that the status of the on-off valve 2 is abnormal, the status of the pilot valve 1 can be further judged to further determine the fault location.
  • the second detection module 43 includes a pressure sensor for detecting the gas pressure in the pipeline of the pilot valve 1 .
  • control module 42 is also used to obtain, based on the analog signal sent by the second detection module 43, the sum of the holding times of the analog signals when the switching valve 2 is in the open state when the above number of cycles is completed (i.e., In each cycle, when the switch valve 2 is in the open state, the sum of the holding times of the analog signals multiplied by the number of cycles), and the total number of times that the gas pressure of the pilot valve 1 reaches the specified pressure value when the above number of cycles is completed (i.e., The product of the sum of the number of times the gas pressure of pilot valve 1 reaches the specified pressure value in each cycle and the number of cycles).
  • the above specified pressure value is the pressure value required to drive the switching valve 2 to open or close.
  • the control module 42 learns the changes in air pressure in the pipeline of the pilot valve 1 based on the analog signal sent by the second detection module 43.
  • the control module 42 can obtain the above-mentioned information through timing.
  • the sum of the holding times of the analog signals, and the total number of times the gas pressure of the above pilot valve 1 reaches the specified pressure value is obtained by counting.
  • the control module 42 determines whether the sum of the holding times of the above-mentioned analog signals is greater than the preset first fault time corresponding to when the gas pressure state of the pilot valve 1 is abnormal. If it is greater than the first fault time, it is determined that the above-mentioned gas pressure reaches the specified pressure.
  • the above-mentioned first fault time refers to the sum of the holding times of the above-mentioned analog signals corresponding to a pilot valve 1 with an abnormal air pressure state.
  • the first fault time can be obtained through experiments or experience.
  • the control module in order to further determine the fault position of the pilot valve 1, is also configured to further determine the retention time of the above-mentioned analog signal when the sum of the retention times of the analog signals is less than or equal to the above-mentioned first fault time. Whether the sum of is greater than the preset second fault time corresponding to the pipeline abnormality of pilot valve 1; if it is greater than the second fault time, it is determined that the pipeline (or joint) of pilot valve 1 is abnormal; if it is less than or equal to the second fault time , then it is determined that the internal mechanical abnormality of pilot valve 1 is abnormal.
  • the above-mentioned second fault time refers to the sum of the holding times of the above-mentioned analog signals corresponding to the pilot valve 1 with an abnormality in the pipeline (or joint). The second fault time can be obtained through experiments or experience.
  • the valve control device includes a control module, n optical fiber sensors (each optical fiber sensor is equipped with an optical fiber amplifier), and n pressure sensors. Among them, each optical fiber sensor is connected correspondingly to each switch valve; each pressure sensor is connected correspondingly to each pilot valve.
  • the control module includes a control unit, a first counter, a second counter, a third counter, a fourth counter, a first timer and a second timer, as well as a digital output unit (DO), a digital input unit (DI) and an analog Signal port (AI).
  • the valve control device may also include an alarm module, which is used to issue an alarm prompt message regarding a switch valve failure under the control of the control module.
  • the first counter is used to accumulate the total number of opening signals sent to each pilot valve when the above number of cycles is completed; the second counter is used to accumulate the opening actions of each switch valve when the above number of cycles is completed based on the electrical signals sent by each optical fiber sensor.
  • the total number of times; the third counter is used according to the number of times sent by each optical fiber sensor. Electrical signal, accumulating the total number of closing actions of each switch valve when completing the above-mentioned cycle times.
  • the fourth counter is used to accumulate the total number of errors in the opening and closing actions of each switch valve when completing the above number of cycles based on the electrical signals sent by each optical fiber sensor.
  • the first timer is used to obtain the total holding time of the opening signal when the above number of cycles is completed, and based on the electrical signal sent by each optical fiber sensor, obtain the total holding time of the opening action of each switch valve when the above number of cycles is completed.
  • the second timer is used to obtain the sum of the feedback delay times of each switch valve when completing the above number of cycles based on the electrical signals sent by each optical fiber sensor.
  • Figure 8 is a timing diagram of various signals of the valve control device provided by the second embodiment of the present invention when the switching valve is normal.
  • Figure 9 is a timing diagram of various signals of the valve control device provided by the second embodiment of the present invention when the switching valve is abnormal.
  • the number of opening and closing actions the number of rising edges of the valve action feedback signal
  • the number of times the control module 42 sends the opening signal the number of command pulses
  • the number of rising edges is consistent;
  • the pilot valve is in the normal state, the holding time of the above analog signal (pressure feedback signal) is consistent with the holding time of the opening action, and the number of rising edges is consistent.
  • the number of times the control module 42 sends the opening signal is m times, and the holding times of the m opening signals are t1, t2,...,tm respectively; when the switch valve is in an abnormal state state, the respective times of opening and closing actions (the number of rising edges of the valve action feedback signal) are lost.
  • the holding times of m opening actions are t1', t2',...,tm', where , the opening and closing actions corresponding to t3' and t5' are lost.
  • valve control method provided by the third embodiment of the present invention is applied to the valve control device provided by the above-mentioned embodiments of the present invention.
  • the method includes:
  • the valve control method provided by the embodiment of the present invention uses the above-mentioned step S2 to detect the opening and closing actions of the switching valve in each collection cycle, converts it into an electrical signal; and uses the above-mentioned step S3 to perform corresponding comparative analysis based on the above-mentioned electrical signal. , to determine whether the status of the switch valve is normal, the status of the switch valve can be monitored based on the opening and closing actions of the switch valve, so that it can be informed in time when the switch valve fails, ensuring the accuracy of the process results, and improving the equipment safety and stability.
  • step S3 when applied to the valve control device 4 shown in Figure 2, as shown in Figure 11, the above step S3 includes:
  • step S3 when applied to the valve control device 4 shown in Figure 3, as shown in Figure 12, the above step S3 also includes:
  • step S35 If it is less than the total holding time of the turn-on signal, proceed to step S35;
  • S35 determine whether the difference between the total holding time of the opening action and the total holding time of the opening signal is less than the preset threshold. If it is less than the preset threshold, it is determined that there is a delay in the opening action of the switch valve; if it is greater than or equal to the preset threshold, it is determined The switching valve is faulty.
  • the above-mentioned steps S33 to step S35 and the above-mentioned steps S31 and step S32 can be executed in any order.
  • the above-mentioned steps S31 and step S32 can be executed first, and then the above-mentioned steps S33 to step S35 are executed. In this way, after determining When at least one of the number of opening actions and closing actions of the switching valve 2 is lost, the above steps S33 to S35 may no longer be performed.
  • step S3 when applied to the valve control device 4 shown in Figure 4, as shown in Figure 13, the above step S3 also includes:
  • the feedback delay time is the first moment corresponding to each opening action of the switching valve and the second moment corresponding to each opening of the corresponding pilot valve.
  • the time difference between moments i.e., ⁇ t
  • step S38 If it is greater than or equal to the delayed maintenance time, proceed to step S38;
  • S38 determine whether the sum of the feedback delay times is less than the preset on-off valve alarm time. If it is less than the on-off valve alarm time, it is determined that the on-off valve needs maintenance; if it is greater than or equal to the on-off valve alarm time, it is determined that the on-off valve needs to be replaced.
  • step S38 can be performed after completing the above step S33. Go to step S35 and then execute.
  • step S3 also includes:
  • the total number of errors in the opening and closing actions of the switch valve when the cycle is completed is accumulated;
  • valve control method provided by the fourth embodiment of the present invention is an improvement based on the above-mentioned third embodiment. Specifically, when applied to the valve control device 4 shown in Figure 6, as shown in Figure 14 , the valve control method provided by the fourth embodiment of the present invention, on the basis of including the above steps S1 to step S3, also includes:
  • the opening and closing actions of the switching valve When the opening and closing actions of the switching valve are lost or delayed, it may not only be due to the abnormal status of the switching valve, but also may be due to the abnormal status of the pilot valve. This is because The action of the switch valve must be driven by the pilot valve as an intermediate link, which connects and breaks the gas pipeline. If the pilot valve or its pipeline fails, it may cause the switch valve to operate abnormally. Based on this, with the help of the above steps S4 and S5, on the basis of monitoring the status of the on-off valve, the status of the pilot valve can be monitored, so that when the pilot valve fails, it can be learned in time.
  • step S4 and the above step S2 can be executed in any order, and after completing the above step S2 and step S4, step S3 is executed first, and then step S5 is executed, so that , step S5 can be executed after determining that the status of the switching valve is abnormal. If it is first judged that the status of the switch valve is normal, there is no need to judge the status of the pilot valve (i.e., No need to perform step S5).
  • step S5 includes:
  • step S53 If it is greater than the first failure time, proceed to step S53;
  • the specified pressure value is the pressure value required to drive the switch valve to open or close; if equal, then Make sure the air pressure status of the pilot valve is normal; if it is not equal to, make sure the air pressure status of the pilot valve is abnormal.
  • step S52 when performing the above step S52, if the sum of the holding times of the analog signals is less than or equal to the first fault time, it is determined that the air pressure status of the pilot valve is abnormal, and further Execute step S54;
  • S54 determine whether the sum of the holding times of the analog signals is greater than the preset second fault time corresponding to the pipeline abnormality of the pilot valve. If it is greater than the second fault time, it is determined that the pipeline of the pilot valve is abnormal; if it is less than or equal to the second fault. time, it is determined that there is an internal mechanical abnormality in the pilot valve.
  • n is an integer greater than 1; the number of switch valves is equal to The number of pilot valves is the same and connected one by one. Different switch valves are installed on different gas lines.
  • the method includes:
  • step S104 time the holding time of the opening signal.
  • step S107 is executed;
  • step S104 While executing the above step S104, execute step S105,
  • S105 determine whether the optical fiber sensor feeds back the first electrical signal regarding the opening action. If so, add 1 to the number of opening actions of the switching valve; if not, add 1 to the number of opening action errors of the switching valve;
  • Step S106 is executed during the execution of the above step S104.
  • S106 detects the gas pressure delivered by the pilot valve to the switch valve in real time and converts it into an analog signal
  • step S108 determine whether the optical fiber sensor feeds back the second electrical signal regarding the closing action. If so, add 1 to the number of closing actions of the switching valve, and execute step S109; if not, add 1 to the number of closing action errors of the switching valve;
  • step S109 determine whether the number of loops is 0, if so, the process ends; if not, return to the above step S102.
  • an embodiment of the present invention also provides a semiconductor processing equipment, which includes a process chamber and at least one gas path for transporting process gas to the process chamber.
  • the gas path is provided with a switching valve and a gas path connected to the switching valve.
  • the pilot valve also includes the valve control device provided by the above-mentioned embodiments of the present invention, which is used to control the opening or closing of the pilot valve corresponding to at least one gas path to drive the switch valve.
  • the semiconductor processing equipment provided by the embodiments of the present invention by using the valve control device provided by the above-mentioned embodiments of the present invention, can promptly learn when the switching valve fails, ensuring the accuracy of the process results and improving the safety and stability of the equipment.
  • FIG 19 is a structural block diagram of a valve control device provided in an embodiment of the present invention.
  • the valve control device is used to control the opening or closing of a pilot valve in a semiconductor processing equipment, and includes: at least one Processor 101, memory 102, at least one I/O interface 103. storage At least one program is stored on the processor 102. When the at least one program is executed by the at least one processor 101, the at least one processor implements the steps in any valve control method in the above embodiment; at least one I/O interface 103 is connected between the processor 101 and the memory 102, and is configured to realize information interaction between the processor and the memory.
  • the processor 101 is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.
  • the memory 102 is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically Such as SDRAM, DDR, etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH);
  • the I/O interface (read-write interface) 103 is connected between the processor 101 and the memory 102 , can realize information interaction between the processor 101 and the memory 102, which includes but is not limited to a data bus (Bus), etc.
  • processor 101 memory 102, and I/O interface 103 are connected to each other and, in turn, to other components of the computing device via bus 104.
  • the processor 101 includes an FPGA.
  • a computer-readable medium stores a computer program, wherein when the program is executed by the processor, the steps in any valve control method in the above embodiments are implemented.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a machine-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communications component, and/or installed from removable media.
  • CPU central processing unit
  • the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system. system, device or device, or any combination of the above. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components that implement the specified logical function(s). executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

公开了一种阀控制装置,包括第一检测模块(41)和控制模块(42);第一检测模块(41)用于检测每一采集周期中开关阀(2)的开启动作和关闭动作,并将其转换为电信号发送至控制模块;控制模块用于在采集周期按预设的开关阀开启的保持时间和采集周期的循环次数,向先导阀(1)发送开启信号;根据第一检测模块(41)发送的电信号,判断开关阀(2)的状态是否正常;通过对开关阀的状态进行监控,从而可以在开关阀出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性;还公开了阀控制方法和半导体加工设备。

Description

阀控制装置和方法、半导体加工设备 技术领域
本发明涉及半导体加工设备领域,具体地,涉及一种阀控制装置和方法、半导体加工设备以及计算机可读存储介质。
背景技术
在半导体制造工艺中,较多工艺会涉及到多种不同气体,半导体加工设备中也需要相应地配置多种工艺气路,并配置开关阀以实现气路的控制,在半导体工艺过程中,需要不断切换不同气路上的开关阀以调整反应所需气体量。例如,在进行原子层沉积(Atomic layer deposition,ALD)工艺的过程中,每个工艺步需要在高温条件(例如,保持为120℃的高温)下1秒内快速在多个气动阀之间切换多次,切换速度最快可达5ms,以实现精确控制工艺反应区的气体注入量,保证最终工艺效果。上述气动阀的开关通常使用电磁先导阀驱动,电磁先导阀在接收到控制器发出的开启指令并通电时,接通管路将气体(例如压缩空气)作用到气动阀,以驱动气动阀开启;电磁先导阀在接收到控制器发出的关闭指令并断电时,断开管路以驱动气动阀关闭。
然而,现有的半导体加工设备中,控制系统无法对气动阀的状态进行监控,在气动阀出现故障时无法及时获知,导致工艺结果出错,设备的安全稳定性降低。
发明内容
本发明旨在提供一种阀控制装置和方法、半导体加工设备以及计算机可读存储介质,其可以对开关阀的状态进行监控,从而可以在开关阀出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。
为实现上述目的,作为本发明的一个方面,提供一种阀控制装置,用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,所述阀控制装置包括第一检测模块和控制模块,其中,
所述第一检测模块用于检测每一采集周期中所述开关阀的开启动作和关闭动作,并将其转换为电信号发送至所述控制模块;
所述控制模块用于在所述采集周期按预设的所述开关阀开启的保持时间和所述采集周期的循环次数,向所述先导阀发送开启信号;以及,根据所述第一检测模块发送的所述电信号,判断所述开关阀的状态是否正常。
可选的,所述控制模块包括计数单元和控制单元,其中,所述计数单元用于累计完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,以及根据所述第一检测模块发送的所述电信号,累计完成所述循环次数时所述开关阀的开启动作总次数和关闭动作总次数;
所述控制单元用于判断所述开启动作总次数和所述关闭动作总次数中的每一者是否均等于所述开启信号的总次数,
若均等于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作的次数无丢失;
若所述开启动作总次数和所述关闭动作总次数中的至少一者小于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作中的至少一者的次数有丢失。
可选的,所述控制模块还包括计时单元,所述计时单元用于获得完成所述循环次数时所述开启信号的保持时间总和,以及根据所述第一检测模块发送的所述电信号,获得完成所述循环次数时所述开关阀的开启动作的保持时间总和;
所述控制单元还用于:判断所述开启动作的保持时间总和是否等于所述开启信号的保持时间总和;
若等于所述开启信号的保持时间总和,则确定所述开关阀的所述开启动作无延迟;
若小于所述开启信号的保持时间总和,则判断所述开启动作的保持时间总和与所述开启信号的保持时间总和的差值是否小于预设阈值,若小于所述预设阈值,则确定所述开关阀的所述开启动作有延迟;若大于等于所述预设阈值,则确定所述开关阀出现故障。
可选的,所述控制模块还包括延迟计时单元,所述延迟计时单元用于根据所述第一检测模块发送的所述电信号,获得完成所述循环次数时所述开关阀的反馈延迟时间的总和,所述反馈延迟时间为所述开关阀每次进行开启动作对应的第一时刻与对应的所述先导阀每次开启对应的第二时刻的时间差;
所述控制单元还用于:在确定所述开关阀的所述开启动作有延迟的情况下,判断所述反馈延迟时间的总和是否小于预设的延迟维修时间,
若小于所述延迟维修时间,则确定所述开关阀能够继续使用;
若大于等于所述延迟维修时间,则判断所述反馈延迟时间的总和是否小于预设的开关阀报警时间,若小于所述开关阀报警时间,则确定所述开关阀需要维护;若大于等于所述开关阀报警时间,则确定所述开关阀需要更换。
可选的,所述控制模块还包括错误计数单元,所述错误计数单元用于根据所述第一检测模块发送的所述电信号,累计完成所述循环次数时所述开关阀的所述开启动作和关闭动作各自的错误总次数;
所述控制单元还用于将所述错误总次数与完成所述循环次数时向所述先导阀发送的所述开启信号的总次数进行比较,并根据比较结果判断所述开关阀的损坏程度。
可选的,所述阀控制装置还包括第二检测模块,所述第二检测模块用于在所述先导阀每次开启的过程中实时检测所述先导阀向所述开关阀输送的气体压力,并将其转换为模拟信号发送至所述控制模块;
所述控制模块还用于根据所述第一检测模块发送的所述电信号,判断所述开关阀的工作状态是否正常;若否,则根据所述第二检测模块发送的所述模拟信号,判断所述先导阀的工作状态是否正常。
可选的,所述控制模块还用于根据所述第二检测模块发送的所述模拟信号,获得完成所述循环次数时所述开关阀处于开启状态下,所述模拟信号的保持时间的总和,以及获得完成所述循环次数时所述先导阀的气体压力达到指定压力值的总次数;并判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的气压状态异常时对应的第一故障时间,所述指定压力值为能够驱动所述开关阀开启或关闭所需的压力值;
若大于所述第一故障时间,则判断所述气体压力达到所述指定压力值的总次数是否等于完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,若等于,则确定所述先导阀的气压状态正常;或者
若小于等于所述第一故障时间,则确定所述先导阀的气压状态异常。
可选的,所述控制模块还用于在所述模拟信号的保持时间的总和小于等于所述第一故障时间情况下,判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的管路异常对应的第二故障时间,
若大于所述第二故障时间,则确定所述先导阀的管路异常;或者
若小于等于所述第二故障时间,则确定所述先导阀的内部机械异常。
作为另一个技术方案,本发明还提供一种阀控制方法,用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,所述方法包括:
在每一采集周期按预设的所述开关阀开启的保持时间和所述采集周期的循环次数,向所述先导阀发送开启信号;
获取每一采集周期中用于表征所述开关阀的开启动作和关闭动作的电信号;
根据所述电信号,判断所述开关阀的状态是否正常。
可选的,所述根据所述电信号,判断所述开关阀的状态是否正常,包括:
累计完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,以及根据所述电信号,累计完成所述循环次数时所述开关阀的开启动作总次数和关闭动作总次数;
判断所述开启动作总次数和所述关闭动作总次数中的每一者是否均等于所述开启信号的总次数,
若均等于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作的次数无丢失;
若所述开启动作总次数和所述关闭动作总次数中的至少一者小于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作中的至少一者的次数有丢失。
可选的,所述根据所述电信号,判断所述开关阀的状态是否正常,还包括:
获得完成所述循环次数时所述开启信号的保持时间总和,以及根据所述电信号,获得完成所述循环次数时所述开关阀的开启动作的保持时间总和;
判断所述开启动作的保持时间总和是否等于所述开启信号的保持时间总和;
若等于所述开启信号的保持时间总和,则确定所述开关阀的所述开启动作无延迟;
若小于所述开启信号的保持时间总和,则判断所述开启动作的保持时间总和与所述开启信号的保持时间总和的差值是否小于预设阈值,若小于所述预设阈值,则确定所述开关阀的所述开启动作有延迟;若大于等于所述预设阈值,则确定所述开关阀出现故障。
可选的,所述根据所述电信号,判断所述开关阀的状态是否正常,还包括:
根据所述电信号,获得完成所述循环次数时所述开关阀的反馈延迟时间的总和,所述反馈延迟时间为所述开关阀每次进行开启动作对应的第一时刻与对应的所述先导阀每次开启对应的第二时刻的时间差;
在确定所述开关阀的所述开启动作有延迟的情况下,判断所述反馈延迟时间的总和是否小于预设的延迟维修时间,
若小于所述延迟维修时间,则确定所述开关阀能够继续使用;
若大于等于所述延迟维修时间,则判断所述反馈延迟时间的总和是否小于预设的开关阀报警时间,若小于所述开关阀报警时间,则确定所述开关阀需要维护;若大于等于所述开关阀报警时间,则确定所述开关阀需要更换。
可选的,所述根据所述电信号,判断所述开关阀的状态是否正常,还包括:
根据所述电信号,累计完成所述循环次数时所述开关阀的所述开启动作和关闭动作各自的错误总次数;
将所述错误总次数与完成所述循环次数时向所述先导阀发送的所述开启信号的总次数进行比较,并根据比较结果判断所述开关阀的损坏程度。
可选的,所述阀控制方法,还包括:
在所述先导阀每次开启的过程中实时检测所述先导阀向所述开关阀输送的气体压力,并将其转换为模拟信号;
在确定所述开关阀的状态异常之后,根据所述模拟信号,判断所述先导阀的状态是否正常。
可选的,所述根据所述模拟信号,判断所述先导阀的状态是否正常,包括:
根据所述模拟信号,获得完成所述循环次数时所述开关阀处于开启状态下,所述模拟信号的保持时间的总和,以及获得完成所述循环次数时所述先导阀的气体压力达到指定压力值的总次数;并判断所述模拟信号的保持时间 的总和是否大于预设的所述先导阀的气压状态异常时对应的第一故障时间,所述指定压力值为能够驱动所述开关阀开启或关闭所需的压力值;
若大于所述第一故障时间,则判断所述气体压力达到所述指定压力值的总次数是否等于完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,若等于,则确定所述先导阀的气压状态正常;若不等于,则确定所述先导阀的气压状态异常;或者
若小于等于所述第一故障时间,则确定所述先导阀的气压状态异常。
可选的,所述根据所述模拟信号,判断所述先导阀的状态是否正常,还包括:
在所述模拟信号的保持时间的总和小于等于所述第一故障时间情况下,判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的管路异常对应的第二故障时间,
若大于所述第二故障时间,则确定所述先导阀的管路异常;或者
若小于等于所述第二故障时间,则确定所述先导阀的内部机械异常。
作为另一个技术方案,本发明还提供一种阀控制装置,用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,其特征在于,所述阀控制装置包括至少一个处理器和至少一个存储器,所述存储器中存储有至少一个程序;
当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器实现本发明提供的上述方法。
作为另一个技术方案,本发明还提供一种半导体加工设备,包括工艺腔室和向所述工艺腔室输送工艺气体的至少一条气路,所述气路上设置有所述开关阀和与所述开关阀连接的所述先导阀;还包括本发明提供的上述阀控制装置,用于控制至少一条所述气路对应的所述先导阀驱动所述开关阀开启或关闭。
作为另一个技术方案,本发明还提供一种计算机可读存储介质,用于半 导体加工设备,其上存储有计算机程序,所述程序被处理器执行时实现本发明提供的上述方法。
本发明提供的阀控制装置和方法以及计算机可读存储介质的技术方案中,借助第一检测模块检测每一采集周期中开关阀的开启动作和关闭动作,将其转换为电信号发送至控制模块,并借助控制模块根据第一检测模块发送的电信号,判断开关阀的状态是否正常,可以通过开关阀的开启动作和关闭动作作为判断依据对开关阀的状态进行监控,从而可以在开关阀出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。
本发明提供的半导体加工设备,其通过采用本发明提供的上述阀控制装置,可以通过开关阀的开启动作和关闭动作作为判断依据对开关阀的状态进行监控,从而可以在开关阀出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明第一实施例提供的阀控制装置的第一种原理框图;
图2是本发明第一实施例提供的阀控制装置的第二种原理框图;
图3是本发明第一实施例提供的阀控制装置的第三种原理框图;
图4是本发明第一实施例提供的阀控制装置的第四种原理框图;
图5是本发明第一实施例提供的阀控制装置的第五种原理框图;
图6是本发明第二实施例提供的阀控制装置的第一种原理框图;
图7是本发明第二实施例提供的阀控制装置的第二种原理框图;
图8是本发明第二实施例提供的阀控制装置在开关阀正常时各信号的时序图;
图9是本发明第二实施例提供的阀控制装置在开关阀异常时各信号的时序图;
图10是本发明第三实施例提供的阀控制方法的流程框图;
图11是本发明第三实施例采用的步骤S3的第一种流程框图;
图12是本发明第三实施例采用的步骤S3的第二种流程框图;
图13是本发明第三实施例采用的步骤S3的第三种流程框图;
图14是本发明第四实施例提供的阀控制方法的第一种流程框图;
图15是本发明第四实施例提供的阀控制方法的第二种流程框图;
图16是本发明第四实施例采用的步骤S5的第一种流程框图;
图17是本发明第四实施例采用的步骤S5的第二种流程框图;
图18是本发明第四实施例提供的阀控制方法的第二种流程框图;
图19为本发明实施例中提供的阀控制装置的一种结构框图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
第一实施例
请参阅图1,本发明第一实施例提供的阀控制装置4,用于控制半导体加工设备中的先导阀1驱动开关阀2开启或关闭。开关阀2例如为气动阀,该气动阀设置于半导体加工设备中的气路3上,用于接通或断开该气路3。先导阀1例如为电磁先导阀,通过管路与气动阀连接,用于在接收到阀控制装置4的开启信号时接通管路将气体(例如压缩空气)作用到气动阀,以驱动气动阀开启;在阀控制装置4停止发送开启信号时,断开管路以驱动气动阀关闭。
上述阀控制装置4包括第一检测模块41和控制模块42,其中,第一检测模块41用于检测每一采集周期中开关阀2的开启动作和关闭动作,并将其 转换为电信号发送至控制模块42;控制模块42用于在上述采集周期按预设的开关阀2开启的保持时间和循环次数,向先导阀1发送开启信号;以及,根据第一检测模块41发送的上述电信号,判断开关阀2的状态是否正常。
在每一采集周期,开关阀2通常进行多次开启动作和多次关闭动作,在开关阀2处于正常状态时,开启动作次数应与关闭动作次数一致,且“有开有关”。上述循环次数是指重复该采集周期的次数。上述开关阀2开启的保持时间是指开关阀2每次开启后,保持该此开启状态所用的时长,即,开关阀2从每次开启到关闭所用的时长。开关阀2开启的保持时间和循环次数可以根据具体需要而设定,并预先存储在控制模块42中。
控制模块42例如为可编程逻辑控制器(Programmable Logic Controller,PLC),其用于向先导阀1发送开启信号。以开关阀2为气动阀为例,先导阀1在接收到控制模块42发送的开启信号时接通管路将气体(例如压缩空气)作用到气动阀,以驱动气动阀开启;在控制模块42停止发送上述开启信号时,断开管路以驱动气动阀关闭。控制模块42发送上述开启信号的保持时间与上述开关阀2开启的保持时间相同。具体地,控制模块42包括数字量输出单元(DO),用于向先导阀1输出开启信号(即电压信号),先导阀1根据电压信号控制管路中气体(例如压缩空气)的气压,该气压在增大至一定大小时能够驱动开关阀2开启;管路中气体被阻断时,开关阀2关闭。
上述第一检测模块41用于在每一采集周期中对开关阀2的开启动作和关闭动作进行监控,该第一检测模块41例如包括光纤传感器,该光纤传感器用于在开关阀2进行开启动作时被触发,并转换为第一电信号后发送至控制模块42;以及,在开关阀2进行关闭动作时被触发,并转换为第二电信号后发送至控制模块42。也就是说,光纤传感器可以在开关阀2进行开启动作或关闭动作时分别向控制模块42反馈不同的电信号。另外,光纤传感器能够在高温环境(例如120℃以上)下正常工作,从而可以应用于安装在高温环境 下气路上的开关阀2的动作检测。此外,光纤传感器通常配备有光纤放大器,用于将光纤传感器反馈的信号放大并转换为电信号(数字信号)。控制模块42还包括数字量输入单元(DI),用于接收由上述光纤传感器发送的电信号。
开关阀2在处于正常状态时,其开启动作和关闭动作的次数应与控制模块42发送开启信号的次数一致,如果有不一致的情况,则说明开关阀2的动作有丢失,开关阀2的状态异常,而且还可以根据开启动作和关闭动作出现错误次数的多少来判断开关阀2的损耗程度,从而可以根据损耗程度采取相应的维护措施,例如维修或者更换。基于此,借助第一检测模块41检测每一采集周期中开关阀2的开启动作和关闭动作,将其转换为电信号发送至控制模块42,并借助控制模块42根据第一检测模块41发送的电信号进行相应的对比分析,判断开关阀2的状态是否正常,可以通过开关阀2的开启动作和关闭动作作为判断依据对开关阀2的状态进行监控,从而可以在开关阀2出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。
在一些可选的实施例中,如图2所示,控制模块42包括计数单元421和控制单元422,其中,计数单元421用于累计完成上述循环次数时向先导阀1发送的开启信号的总次数(即为每一循环周期中向先导阀1发送的开启信号的次数与循环次数的乘积),以及根据第一检测模块41发送的电信号,累计完成上述循环次数时开关阀2的开启动作总次数(即为每一循环周期中开关阀2的开启动作次数与循环次数的乘积)和关闭动作总次数(即为每一循环周期中开关阀2的关闭动作次数与循环次数的乘积)。当然,在实际应用中,也可以累计每一采集周期中向先导阀1发送开启信号的次数,以及开关阀2的开启动作次数,本发明实施例对此没有特别的限制。
在一些可选的实施例中,计数单元421可以包括第一计数器、第二计数器和第三计数器,其中,第一计数器用于累计完成上述循环次数时向先导阀1发送的开启信号的总次数;第二计数器用于根据第一检测模块41发送的电 信号,累计完成上述循环次数时开关阀2的开启动作总次数;第三计数器用于根据第一检测模块41发送的电信号,累计完成上述循环次数时开关阀2的关闭动作总次数。
控制单元422用于判断上述开启动作总次数和关闭动作总次数中的每一者是否均等于上述开启信号的总次数,若均等于开启信号的总次数,则确定开关阀2的开启动作和关闭动作的次数无丢失,从而确定开关阀2的状态正常;若上述开启动作总次数和关闭动作总次数中的至少一者小于上述开启信号的总次数,则确定开关阀2的开启动作和关闭动作中的至少一者的次数有丢失,从而确定开关阀2的状态异常。可选的,还可以根据开启动作和关闭动作丢失次数的多少来判断开关阀2的损耗程度,开启动作和关闭动作丢失次数越多,开关阀2的损耗程度越严重,从而可以根据损耗程度采取相应的维护措施,例如维修或者更换。
由此,控制单元422根据第一检测模块41发送的电信号,可以通过计数累计上述开启动作总次数和关闭动作总次数,并通过将其与累计的上述开启信号的总次数进行对比分析,判断开关阀2的状态是否正常,从而实现对开关阀2的状态进行监控,以在开关阀2出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。当然,本发明实施例并不局限于此,在实际应用中,控制单元422根据第一检测模块41发送的电信号,还可以采用其他任意数据处理方式判断开关阀2的状态是否正常,只要能够实现对开关阀2的状态进行监控即可。
在一些可选的实施例中,控制单元422根据第一检测模块41发送的电信号,在通过计数判断开关阀2的开启动作和关闭动作的次数是否有丢失的基础上,还可以通过计时进一步判断开关阀2的动作的光滑程度,作为进一步判断开关阀2的状态是否正常的依据,而且还可以预测和区分开关阀2的异常程度,从而可以采取相应的维护措施,例如在异常程度较轻时可以仅关 注即可,而在异常程度严重时可以选择维修或者更换。
具体地,如图3所示,控制模块42还包括计时单元423,该计时单元423用于获得完成上述循环次数时开启信号的保持时间总和(即,每一循环周期中开启信号的保持时间之和与循环次数的乘积),以及根据第一检测模块41发送的电信号,获得完成上述循环次数时开关阀2的开启动作的保持时间总和(即,每一循环周期中开关阀2的开启动作的保持时间之和与循环次数的乘积)。当然,在实际应用中,也可以获得每一循环周期中开启信号的保持时间之和,以及开关阀2的开启动作的保持时间之和,本发明实施例对此没有特别的限制。上述计时单元423例如为第一计时器。
控制单元422还用于判断上述开启动作的保持时间总和是否等于上述开启信号的保持时间总和;若等于上述开启信号的保持时间总和,则确定开关阀2的开启动作无延迟,从而可以确定开关阀2的动作光滑,无摩擦,在开关阀2的开启动作和关闭动作的次数无丢失的情况下,可以确定开关阀2的状态正常。
若小于上述开启信号的保持时间总和,则判断上述开启动作的保持时间总和与上述开启信号的保持时间总和的差值是否小于预设阈值,若小于该预设阈值,则说明上述开启动作的保持时间总和略小于上述开启信号的保持时间总和,确定开关阀2的上述开启动作有延迟,从而可以确定开关阀2的动作欠光滑,有少量摩擦,在开关阀2的开启动作和关闭动作的次数无丢失的情况下,可以确定开关阀2可以继续使用,但需要定期关注。上述预设阈值可以根据开关阀的具体情况而设定。
若大于等于上述预设阈值,则说明上述开启动作的保持时间总和远远小于上述开启信号的保持时间总和,从而可以确定开关阀2出现故障,需要维修或者更换。
由于先导阀1的用于输送气体(例如压缩空气)的管路,其管径和长度 会影响气压升高时间,这会导致开关阀2在先导阀1的驱动下进行开启动作的时刻比先导阀1接收到开启信号的时刻慢,即,开关阀2的开启动作相对于先导阀1接收到开启信号的时刻有延迟。具体来说,如图8所示,指令脉冲即为控制单元422向先导阀1发送的开启信号,阀动作反馈信号即为第一检测模块41反馈的关于开启动作的电信号,关于开启动作的电信号上升沿比开启信号上升沿慢,且相差△t。基于此,在一些可选的实施例中,在确定开关阀2的上述开启动作有延迟的情况下,还可以通过监控上述△t进一步判断开关阀2的动作的延迟程度,作为进一步判断开关阀2的状态是否正常的依据,而且还可以预测和区分开关阀2的异常程度,从而可以采取相应的维护措施,例如在异常程度较轻时可以仅关注即可,而在异常程度严重时可以选择维修或者更换。
具体地,如图4所示,控制模块42还包括延迟计时单元424,该延迟计时单元424用于根据第一检测模块41发送的电信号,获得完成上述循环次数时开关阀2的反馈延迟时间的总和,该反馈延迟时间为开关阀2每次进行开启动作对应的第一时刻(即,图8中示出的指令脉冲上升沿)与对应的先导阀1每次开启对应的第二时刻(即,图8中示出的阀动作反馈信号上升沿)的时间差(即,△t)。完成上述循环次数时开关阀2的反馈延迟时间的总和即为每一循环周期中开关阀2的反馈延迟时间之和与循环次数的乘积。当然,在实际应用中,也可以获得每一循环周期中开关阀2的反馈延迟时间之和,本发明实施例对此没有特别的限制。上述延迟计时单元424例如为第二计时器。
控制单元422还用于在确定开关阀2的开启动作有延迟(即,上述开启动作的保持时间总和与上述开启信号的保持时间总和的差值小于预设阈值)的情况下,判断上述反馈延迟时间的总和是否小于预设的延迟维修时间,若小于该延迟维修时间,则在开关阀2的开启动作和关闭动作的次数无丢失的 情况下,可以确定开关阀2能够继续使用,但需要定期关注。上述延迟维修时间可以根据开关阀的具体情况而设定。
若大于等于上述延迟维修时间,则判断上述反馈延迟时间的总和是否小于预设的开关阀报警时间,若小于该开关阀报警时间,则说明开关阀2的动作有摩擦,确定开关阀2需要清理维护;若大于等于上述开关阀报警时间,则确定开关阀2处于临界故障状态,需要检查更换。上述开关阀报警时间可以根据开关阀的具体情况而设定。
在一些可选的实施例中,如图5所示,控制模块42还包括错误计数单元425,该错误计数单元425用于根据第一检测模块41发送的电信号,累计完成上述循环次数时开关阀2的开启动作和关闭动作各自的错误总次数(即,每一循环周期中开关阀2的开启动作和关闭动作各自的错误次数之和与循环次数的乘积)。错误计数单元425例如为第四计数器。
控制单元422还用于将上述错误总次数与完成上述循环次数时向先导阀1发送开启信号的总次数进行比较,并根据比较结果判断开关阀2的损坏程度。容易理解,上述错误总次数与完成上述循环次数时向先导阀1发送开启信号的总次数之间的差值越大,开关阀2的损坏程度越大;反之,则越小。
需要说明的是,控制模块42可以包括计数单元421,在这种情况下,可以通过计数判断开关阀2的开启动作和关闭动作的次数是否有丢失,从而确定开关阀2的状态是否正常。控制模块42也可以包括计数单元421和计时单元423,在这种情况下,在通过计数判断开关阀2的开启动作和关闭动作的次数是否有丢失的基础上,还可以通过计时进一步判断开关阀2的动作的光滑程度,以预测和区分开关阀2的异常程度,从而可以采取相应的维护措施。控制模块42还可以包括计数单元421、计时单元423和延迟计时单元424,在这种情况下,在通过计数判断开关阀2的开启动作和关闭动作的次数是否有丢失的基础上,还可以通过计时进一步判断开关阀2的动作的光滑程度, 并在确定开关阀2的开启动作有延迟的情况下,通过监控上述△t进一步判断开关阀2的动作的延迟程度,以预测和区分开关阀2的异常程度,从而可以采取相应的维护措施。在上述几种情况中的任意一者下,控制模块42还可以包括错误计数单元425,用于根据开启动作和关闭动作丢失次数的多少来判断开关阀2的损耗程度,从而可以根据损耗程度采取相应的维护措施,例如维修或者更换。
第二实施例
本发明第二实施例提供的阀控制装置4,其是在上述第一实施例的基础上所做的改进,具体地,如图6所示,阀控制装置4在包括第一检测模块41和控制模块42的基础上,还包括第二检测模块43,该第二检测模块43用于在先导阀1每次开启的过程中实时检测先导阀1向开关阀2输送的气体压力,并将其转换为模拟信号发送至控制模块42;控制模块42还用于根据第二检测模块43发送的上述模拟信号,判断先导阀1的状态是否正常。控制模块42还包括模拟信号端口,用于接收上述模拟信号。
当开关阀2的开启动作和关闭动作如果有丢失,开关阀2的开启动作和关闭动作如果有延迟,除了可能是因为开关阀2的状态异常之外,还可能是因为先导阀1的状态异常,这是因为开关阀2的动作必须通过作为中间环节的先导阀1通断输送气体的管路来驱动,如果先导阀1或者其管路出现故障,都可能导致开关阀2的动作异常。基于此,借助第二检测模块43实时检测先导阀1向开关阀2输送的气体压力,可以在对开关阀2的状态进行监控的基础上,对先导阀1的状态进行监控,从而可以在先导阀1出现故障时及时获知。
在一些可选的实施例中,控制模块42还用于根据第一检测模块41发送的电信号,判断开关阀2的状态是否正常;若否,则根据第二检测模块43发送的上述模拟信号,判断先导阀1的工作状态是否正常。这样,如果先判 断开关阀2的状态正常,则无需再对先导阀1的状态进行判断,如果先判断开关阀2的状态异常,则可以进一步对先导阀1的状态进行判断,以进一步判别故障位置。
在一些可选的实施例中,第二检测模块43包括压力传感器,用于检测先导阀1的管路中的气体压力。
在一些可选的实施例中,控制模块42还用于根据第二检测模块43发送的模拟信号,获得完成上述循环次数时开关阀2处于开启状态下,模拟信号的保持时间的总和(即,每一循环周期中开关阀2处于开启状态下,模拟信号的保持时间之和与循环次数的乘积),以及获得完成上述循环次数时先导阀1的气体压力达到指定压力值的总次数(即,每一循环周期中先导阀1的气体压力达到指定压力值的次数之和与循环次数的乘积)。上述指定压力值为能够驱动开关阀2开启或关闭所需的压力值。
控制模块42根据第二检测模块43发送的模拟信号,获知先导阀1的管路中的气压变化,当气压上升达到能够将开关阀2开启的指定压力值时,控制模块42可以通过计时获得上述模拟信号的保持时间的总和,以及通过计数获得上述先导阀1的气体压力达到指定压力值的总次数。然后,控制模块42判断上述模拟信号的保持时间的总和是否大于预设的先导阀1的气压状态异常时对应的第一故障时间,若大于该第一故障时间,则判断上述气体压力达到指定压力值的总次数是否等于完成上述循环次数时向先导阀发送开启信号的总次数,若是,则确定先导阀1的气压状态正常,可以在开关阀2的状态出现异常的情况下,排除先导阀1出现故障的可能性,确定是开关阀2自身出现故障。若小于等于第一故障时间,则确定先导阀1的气压状态异常。上述第一故障时间是指一气压状态异常的先导阀1对应的上述模拟信号的保持时间的总和,该第一故障时间可以通过实验或者经验获得。
容易理解,只有当上述模拟信号的保持时间的总和大于第一故障时间, 且上述气体压力达到指定压力值的总次数等于完成上述循环次数时向先导阀发送开启信号的总次数,才能确定先导阀1的气压状态正常。这两个条件中的任意一者不满足,都不能确定先导阀1的气压状态正常。但是,若当上述模拟信号的保持时间的总和小于等于第一故障时间,则可以确定先导阀1的气压状态异常,无需再判断上述总次数。
在一些可选的实施例中,为了进一步判别先导阀1的故障位置,控制模块还用于在模拟信号的保持时间的总和小于等于上述第一故障时间情况下,进一步判断上述模拟信号的保持时间的总和是否大于预设的先导阀1的管路异常对应的第二故障时间;若大于该第二故障时间,则确定先导阀1的管路(或接头)异常;若小于等于第二故障时间,则确定先导阀1的内部机械异常。上述第二故障时间是指一管路(或接头)异常的先导阀1对应的上述模拟信号的保持时间的总和,该第二故障时间可以通过实验或者经验获得。
在一个具体的实施例中,如图7所示,先导阀有n个,n为大于1的整数;开关阀的数量与先导阀的数量相同,且一一对应地连接,不同的开关阀对应安装于不同的气路上。在这种情况下,本实施例提供的阀控制装置包括控制模块、n个光纤传感器(每个光纤传感器均配有光纤放大器)和n个压力传感器。其中,各个光纤传感器与各个开关阀对应连接;各个压力传感器与各个先导阀对应连接。
控制模块包括控制单元、第一计数器、第二计数器、第三计数器、第四计数器、第一计时器和第二计时器,以及数字量输出单元(DO)、数字量输入单元(DI)和模拟信号端口(AI)。可选的,阀控制装置还可以包括报警模块,用于在控制模块的控制下发出关于开关阀故障的报警提示信息。其中,第一计数器用于累计完成上述循环次数时向各先导阀发送开启信号的总次数;第二计数器用于根据各光纤传感器发送的电信号,累计完成上述循环次数时各开关阀的开启动作总次数;第三计数器用于根据各光纤传感器发送的 电信号,累计完成上述循环次数时各开关阀的关闭动作总次数。第四计数器用于根据各光纤传感器发送的电信号,累计完成上述循环次数时各开关阀的开启动作和关闭动作各自的错误总次数。第一计时器用于获得完成上述循环次数时开启信号的保持时间总和,以及根据各光纤传感器发送的电信号,获得完成上述循环次数时各开关阀的开启动作的保持时间总和。第二计时器用于根据各光纤传感器发送的电信号,获得完成上述循环次数时各开关阀的反馈延迟时间的总和。
图8是本发明第二实施例提供的阀控制装置在开关阀正常时各信号的时序图。图9是本发明第二实施例提供的阀控制装置在开关阀异常时各信号的时序图。如图8所示,在开关阀处于正常状态时,同一采集周期中,开启动作和关闭动作各自的次数(阀动作反馈信号的上升沿数量)与控制模块42发送开启信号的次数(指令脉冲的上升沿数量)一致;在先导阀处于正常状态时,上述模拟信号(压力反馈信号)的保持时间与开启动作的保持时间一致,且上升沿次数一致。
如图9所示,控制模块42发送开启信号的次数(指令脉冲的上升沿数量)为m次,m次开启信号的保持时间分别为t1,t2,...,tm;在开关阀处于异常状态时,开启动作和关闭动作各自的次数(阀动作反馈信号的上升沿数量)有丢失,具体地,m次开启动作的保持时间分别为t1’,t2’,...,tm’,其中,t3’和t5’对应的开启动作和关闭动作丢失。在先导阀处于异常状态时,m次模拟信号(压力反馈信号)的保持时间分别为t1”,t2”,...,tm”,其中,t5”对应的模拟信号(压力反馈信号)未达到指定压力值P(P’),即,气体压力达到指定压力值的次数丢失。
第三实施例
作为另一个技术方案,本发明第三实施例提供的阀控制方法,应用于本发明上述各个实施例提供的阀控制装置,以图1示出的阀控制装置4为例, 请参阅图10,该方法包括:
S1、在每一采集周期按预设的开关阀开启的保持时间和采集周期的循环次数,向先导阀发送开启信号;
S2、检测每一采集周期中开关阀的开启动作和关闭动作,并将其转换为电信号;
S3、根据上述电信号,判断开关阀的状态是否正常。
本发明实施例提供的阀控制方法,借助上述步骤S2检测每一采集周期中开关阀的开启动作和关闭动作,将其转换为电信号;并借助上述步骤S3根据上述电信号进行相应的对比分析,判断开关阀的状态是否正常,可以通过开关阀的开启动作和关闭动作作为判断依据对开关阀的状态进行监控,从而可以在开关阀出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。
在一些可选的实施例中,在应用于图2示出的阀控制装置4时,如图11所示,上述步骤S3,包括:
S31,累计完成循环次数时向先导阀发送的开启信号的总次数,以及根据电信号,累计完成循环次数时开关阀的开启动作总次数和关闭动作总次数;
S32,判断开启动作总次数和关闭动作总次数中的每一者是否均等于开启信号的总次数,
若均等于开启信号的总次数,则确定开关阀的开启动作和关闭动作的次数无丢失;
若开启动作总次数和关闭动作总次数中的至少一者小于开启信号的总次数,则确定开关阀2的开启动作和关闭动作中的至少一者的次数有丢失。
在一些可选的实施例中,在应用于图3示出的阀控制装置4时,如图12所示,上述步骤S3,还包括:
S33,获得完成循环次数时开启信号的保持时间总和,以及根据上述电 信号,获得完成循环次数时所述开关阀的开启动作的保持时间总和;
S34,判断开启动作的保持时间总和是否等于开启信号的保持时间总和;
若等于所述开启信号的保持时间总和,则确定所述开关阀的所述开启动作无延迟;
若小于所述开启信号的保持时间总和,则进行步骤S35;
S35,判断开启动作的保持时间总和与开启信号的保持时间总和的差值是否小于预设阈值,若小于预设阈值,则确定开关阀的开启动作有延迟;若大于等于预设阈值,则确定开关阀出现故障。
需要说明的是,上述步骤S33至步骤S35与上述步骤S31和步骤S32可以采用任意顺序执行,优选的,可以先执行上述步骤S31和步骤S32,后执行上述步骤S33至步骤S35,这样,在确定开关阀2的开启动作和关闭动作中的至少一者的次数有丢失时,可以不再执行上述步骤S33至步骤S35。
在一些可选的实施例中,在应用于图4示出的阀控制装置4时,如图13所示,上述步骤S3,还包括:
S36,根据上述电信号,获得完成循环次数时开关阀的反馈延迟时间的总和,该反馈延迟时间为开关阀每次进行开启动作对应的第一时刻与对应的先导阀每次开启对应的第二时刻的时间差(即,△t);
S37,在确定开关阀的开启动作有延迟的情况下,判断上述反馈延迟时间的总和是否小于预设的延迟维修时间,
若小于延迟维修时间,则确定开关阀能够继续使用;
若大于等于延迟维修时间,则进行步骤S38;
S38,判断反馈延迟时间的总和是否小于预设的开关阀报警时间,若小于开关阀报警时间,则确定开关阀需要维护;若大于等于开关阀报警时间,则确定开关阀需要更换。
需要说明的是,上述步骤S36至步骤S38可以在完成上述步骤步骤S33 至步骤S35之后再执行。
在一些可选的实施例中,上述步骤S3,还包括:
根据电信号,累计完成循环次数时开关阀的开启动作和关闭动作各自的错误总次数;
将错误总次数与完成循环次数时向先导阀发送的开启信号的总次数进行比较,并根据比较结果判断开关阀的损坏程度。
第四实施例
本发明第四实施例提供的阀控制方法,其是在上述第三实施例的基础上所做的改进,具体地,在应用于图6示出的阀控制装置4时,如图14所示,本发明第四实施例提供的阀控制方法在包括上述步骤S1至步骤S3的基础上,还包括:
S4,在先导阀每次开启的过程中实时检测先导阀向开关阀输送的气体压力,并将其转换为模拟信号;
S5,根据上述模拟信号,判断先导阀的状态是否正常。
当开关阀的开启动作和关闭动作如果有丢失,开关阀的开启动作和关闭动作如果有延迟,除了可能是因为开关阀的状态异常之外,还可能是因为先导阀的状态异常,这是因为开关阀的动作必须通过作为中间环节的先导阀的通断输送气体的管路来驱动,如果先导阀或者其管路出现故障,都可能导致开关阀的动作异常。基于此,借助上述步骤S4和步骤S5,可以在对开关阀的状态进行监控的基础上,对先导阀的状态进行监控,从而可以在先导阀出现故障时及时获知。
在一些可选的实施例中,如图15所示,上述步骤S4与上述步骤S2可以采用任意顺序执行,并且在完成上述步骤S2和步骤S4之后,先执行步骤S3,后执行步骤S5,这样,可以在确定开关阀的状态异常之后,再执行步骤S5。如果先判断开关阀的状态正常,则无需再对先导阀的状态进行判断(即, 无需执行步骤S5)。
在一些可选的实施例中,如图16所示,上述步骤S5,包括:
S51,根据上述模拟信号,获得完成循环次数时开关阀处于开启状态下,模拟信号的保持时间的总和,以及获得完成循环次数时先导阀的气体压力达到指定压力值的总次数;
S52,判断模拟信号的保持时间的总和是否大于预设的先导阀的气压状态异常时对应的第一故障时间;
若大于第一故障时间,则进行步骤S53;
若小于等于第一故障时间,则确定先导阀的气压状态异常;
S53,判断气体压力达到指定压力值的总次数是否等于完成循环次数时向先导阀发送开启信号的总次数,该指定压力值为能够驱动开关阀开启或关闭所需的压力值;若等于,则确定先导阀的气压状态正常;若不等于,则确定先导阀的气压状态异常。
在一些可选的实施例中,如图17所示,在进行上述步骤S52时,在模拟信号的保持时间的总和小于等于第一故障时间情况下,则确定先导阀的气压状态异常,并进一步执行步骤S54;
S54,判断模拟信号的保持时间的总和是否大于预设的先导阀的管路异常对应的第二故障时间,若大于第二故障时间,则确定先导阀的管路异常;若小于等于第二故障时间,则确定先导阀的内部机械异常。
在一个具体实施例中,本发明第四实施例提供的阀控制方法在应用于图7示出的阀控制装置4时,先导阀有n个,n为大于1的整数;开关阀的数量与先导阀的数量相同,且一一对应地连接,不同的开关阀对应安装于不同的气路上。在这种情况下,对应于每个开关阀2,如图18所示,该方法包括:
S101,设定开关阀开启的保持时间和循环次数;
S102,向先导阀发送开启信号;
S103,开启信号发送次数加1;
S104,对开启信号的保持时间进行计时,在达到上述开关阀开启的保持时间时,执行步骤S107;
在执行上述步骤S104的同时,执行步骤S105,
S105,判断光纤传感器是否反馈关于开启动作的第一电信号,若是,则开关阀的开启动作次数加1;若否,则开关阀的开启动作错误次数加1;
在执行上述步骤S104的过程中执行步骤S106,
S106,实时检测先导阀向开关阀输送的气体压力,并将其转换为模拟信号;
S107,向先导阀发送关闭信号;
S108,判断光纤传感器是否反馈关于关闭动作的第二电信号,若是,则开关阀的关闭动作次数加1,并执行步骤S109;若否,则开关阀的关闭动作错误次数加1;
S109,判断循环次数是否为0,若是,流程结束;若否,则返回执行上述步骤S102。
作为另一个技术方案,本发明实施例还提供一种半导体加工设备,其包括工艺腔室和向工艺腔室输送工艺气体的至少一条气路,该气路上设置有开关阀和与开关阀连接的先导阀,还包括本发明上述各个实施例提供的阀控制装置,用于控制至少一条气路对应的先导阀驱动开关阀开启或关闭。
本发明实施例提供的半导体加工设备,通过采用本发明上述各个实施例提供的阀控制装置,可以在开关阀出现故障时及时获知,保证工艺结果的正确性,提高设备的安全稳定性。
图19为本发明实施例中提供的阀控制装置的一种结构框图,如图19所示,该阀控制装置用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,包括:至少一个处理器101、存储器102、至少一个I/O接口103。存储 器102上存储有至少一个程序,当该至少一个程序被该至少一个处理器101执行,使得该至少一个处理器实现如上述实施例中任一阀控制方法中的步骤;至少一个I/O接口103连接在处理器101与存储器102之间,配置为实现处理器与存储器的信息交互。
其中,处理器101为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器102为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)103连接在处理器101与存储器102间,能实现处理器101与存储器102的信息交互,其包括但不限于数据总线(Bus)等。
在一些实施例中,处理器101、存储器102和I/O接口103通过总线104相互连接,进而与计算设备的其它组件连接。
在一些实施例中,该处理器101包括FPGA。
根据本公开的实施例,还提供一种计算机可读介质。该计算机可读介质上存储有计算机程序,其中,该程序被处理器执行时实现如上述实施例任一阀控制方法中的步骤。
特别地,根据本公开实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在机器可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被中央处理单元(CPU)执行时,执行本公开的系统中限定的上述功能。
需要说明的是,本公开所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系 统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,前述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (19)

  1. 一种阀控制装置,用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,其特征在于,所述阀控制装置包括第一检测模块和控制模块,其中,
    所述第一检测模块用于检测每一采集周期中所述开关阀的开启动作和关闭动作,并将其转换为电信号发送至所述控制模块;
    所述控制模块用于在所述采集周期按预设的所述开关阀开启的保持时间和所述采集周期的循环次数,向所述先导阀发送开启信号;以及,根据所述第一检测模块发送的所述电信号,判断所述开关阀的状态是否正常。
  2. 根据权利要求1所述的阀控制装置,其特征在于,所述控制模块包括计数单元和控制单元,其中,所述计数单元用于累计完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,以及根据所述第一检测模块发送的所述电信号,累计完成所述循环次数时所述开关阀的开启动作总次数和关闭动作总次数;
    所述控制单元用于判断所述开启动作总次数和所述关闭动作总次数中的每一者是否均等于所述开启信号的总次数,
    若均等于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作的次数无丢失;
    若所述开启动作总次数和所述关闭动作总次数中的至少一者小于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作中的至少一者的次数有丢失。
  3. 根据权利要求2所述的阀控制装置,其特征在于,所述控制模块还包括计时单元,所述计时单元用于获得完成所述循环次数时所述开启信号的保持时间总和,以及根据所述第一检测模块发送的所述电信号,获得完成所 述循环次数时所述开关阀的开启动作的保持时间总和;
    所述控制单元还用于:判断所述开启动作的保持时间总和是否等于所述开启信号的保持时间总和;
    若等于所述开启信号的保持时间总和,则确定所述开关阀的所述开启动作无延迟;
    若小于所述开启信号的保持时间总和,则判断所述开启动作的保持时间总和与所述开启信号的保持时间总和的差值是否小于预设阈值,若小于所述预设阈值,则确定所述开关阀的所述开启动作有延迟;若大于等于所述预设阈值,则确定所述开关阀出现故障。
  4. 根据权利要求3所述的阀控制装置,其特征在于,所述控制模块还包括延迟计时单元,所述延迟计时单元用于根据所述第一检测模块发送的所述电信号,获得完成所述循环次数时所述开关阀的反馈延迟时间的总和,所述反馈延迟时间为所述开关阀每次进行开启动作对应的第一时刻与对应的所述先导阀每次开启对应的第二时刻的时间差;
    所述控制单元还用于:在确定所述开关阀的所述开启动作有延迟的情况下,判断所述反馈延迟时间的总和是否小于预设的延迟维修时间,
    若小于所述延迟维修时间,则确定所述开关阀能够继续使用;
    若大于等于所述延迟维修时间,则判断所述反馈延迟时间的总和是否小于预设的开关阀报警时间,若小于所述开关阀报警时间,则确定所述开关阀需要维护;若大于等于所述开关阀报警时间,则确定所述开关阀需要更换。
  5. 根据权利要求2所述的阀控制装置,其特征在于,所述控制模块还包括错误计数单元,所述错误计数单元用于根据所述第一检测模块发送的所述电信号,累计完成所述循环次数时所述开关阀的所述开启动作和关闭动作各自的错误总次数;
    所述控制单元还用于将所述错误总次数与完成所述循环次数时向所述 先导阀发送的所述开启信号的总次数进行比较,并根据比较结果判断所述开关阀的损坏程度。
  6. 根据权利要求1-5任意一项所述的阀控制装置,其特征在于,所述阀控制装置还包括第二检测模块,所述第二检测模块用于在所述先导阀每次开启的过程中实时检测所述先导阀向所述开关阀输送的气体压力,并将其转换为模拟信号发送至所述控制模块;
    所述控制模块还用于根据所述第一检测模块发送的所述电信号,判断所述开关阀的工作状态是否正常;若否,则根据所述第二检测模块发送的所述模拟信号,判断所述先导阀的工作状态是否正常。
  7. 根据权利要求6所述的阀控制装置,其特征在于,所述控制模块还用于根据所述第二检测模块发送的所述模拟信号,获得完成所述循环次数时所述开关阀处于开启状态下,所述模拟信号的保持时间的总和,以及获得完成所述循环次数时所述先导阀的气体压力达到指定压力值的总次数;并判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的气压状态异常时对应的第一故障时间,所述指定压力值为能够驱动所述开关阀开启或关闭所需的压力值;
    若大于所述第一故障时间,则判断所述气体压力达到所述指定压力值的总次数是否等于完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,若等于,则确定所述先导阀的气压状态正常;或者若不等于,则确定所述先导阀的气压状态异常;或者
    若小于等于所述第一故障时间,则确定所述先导阀的气压状态异常。
  8. 根据权利要求7所述的阀控制装置,其特征在于,所述控制模块还用于在所述模拟信号的保持时间的总和小于等于所述第一故障时间情况下,判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的管路异 常对应的第二故障时间,
    若大于所述第二故障时间,则确定所述先导阀的管路异常;或者
    若小于等于所述第二故障时间,则确定所述先导阀的内部机械异常。
  9. 一种阀控制方法,用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,其特征在于,所述方法包括:
    在每一采集周期按预设的所述开关阀开启的保持时间和所述采集周期的循环次数,向所述先导阀发送开启信号;
    获取每一采集周期中用于表征所述开关阀的开启动作和关闭动作的电信号;
    根据所述电信号,判断所述开关阀的状态是否正常。
  10. 根据权利要求9所述的阀控制方法,其特征在于,所述根据所述电信号,判断所述开关阀的状态是否正常,包括:
    累计完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,以及根据所述电信号,累计完成所述循环次数时所述开关阀的开启动作总次数和关闭动作总次数;
    判断所述开启动作总次数和所述关闭动作总次数中的每一者是否均等于所述开启信号的总次数,
    若均等于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作的次数无丢失;
    若所述开启动作总次数和所述关闭动作总次数中的至少一者小于所述开启信号的总次数,则确定所述开关阀的所述开启动作和关闭动作中的至少一者的次数有丢失。
  11. 根据权利要求10所述的阀控制方法,其特征在于,所述根据所述电信号,判断所述开关阀的状态是否正常,还包括:
    获得完成所述循环次数时所述开启信号的保持时间总和,以及根据所述电信号,获得完成所述循环次数时所述开关阀的开启动作的保持时间总和;
    判断所述开启动作的保持时间总和是否等于所述开启信号的保持时间总和;
    若等于所述开启信号的保持时间总和,则确定所述开关阀的所述开启动作无延迟;
    若小于所述开启信号的保持时间总和,则判断所述开启动作的保持时间总和与所述开启信号的保持时间总和的差值是否小于预设阈值,若小于所述预设阈值,则确定所述开关阀的所述开启动作有延迟;若大于等于所述预设阈值,则确定所述开关阀出现故障。
  12. 根据权利要求11所述的阀控制方法,其特征在于,所述根据所述电信号,判断所述开关阀的状态是否正常,还包括:
    根据所述电信号,获得完成所述循环次数时所述开关阀的反馈延迟时间的总和,所述反馈延迟时间为所述开关阀每次进行开启动作对应的第一时刻与对应的所述先导阀每次开启对应的第二时刻的时间差;
    在确定所述开关阀的所述开启动作有延迟的情况下,判断所述反馈延迟时间的总和是否小于预设的延迟维修时间,
    若小于所述延迟维修时间,则确定所述开关阀能够继续使用;
    若大于等于所述延迟维修时间,则判断所述反馈延迟时间的总和是否小于预设的开关阀报警时间,若小于所述开关阀报警时间,则确定所述开关阀需要维护;若大于等于所述开关阀报警时间,则确定所述开关阀需要更换。
  13. 根据权利要求10所述的阀控制方法,其特征在于,所述根据所述电信号,判断所述开关阀的状态是否正常,还包括:
    根据所述电信号,累计完成所述循环次数时所述开关阀的所述开启动作和关闭动作各自的错误总次数;
    将所述错误总次数与完成所述循环次数时向所述先导阀发送的所述开启信号的总次数进行比较,并根据比较结果判断所述开关阀的损坏程度。
  14. 根据权利要求9所述的阀控制方法,其特征在于,所述阀控制方法,还包括:
    在所述先导阀每次开启的过程中实时检测所述先导阀向所述开关阀输送的气体压力,并将其转换为模拟信号;
    在确定所述开关阀的状态异常之后,根据所述模拟信号,判断所述先导阀的状态是否正常。
  15. 根据权利要求14所述的阀控制方法,其特征在于,所述根据所述模拟信号,判断所述先导阀的状态是否正常,包括:
    根据所述模拟信号,获得完成所述循环次数时所述开关阀处于开启状态下,所述模拟信号的保持时间的总和,以及获得完成所述循环次数时所述先导阀的气体压力达到指定压力值的总次数;并判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的气压状态异常时对应的第一故障时间,所述指定压力值为能够驱动所述开关阀开启或关闭所需的压力值;
    若大于所述第一故障时间,则判断所述气体压力达到所述指定压力值的总次数是否等于完成所述循环次数时向所述先导阀发送的所述开启信号的总次数,若等于,则确定所述先导阀的气压状态正常;或者若不等于,则确定所述先导阀的气压状态异常;或者
    若小于等于所述第一故障时间,则确定所述先导阀的气压状态异常。
  16. 根据权利要求15所述的阀控制方法,其特征在于,所述根据所述模拟信号,判断所述先导阀的状态是否正常,还包括:
    在所述模拟信号的保持时间的总和小于等于所述第一故障时间情况下,判断所述模拟信号的保持时间的总和是否大于预设的所述先导阀的管路异 常对应的第二故障时间,
    若大于所述第二故障时间,则确定所述先导阀的管路异常;或者
    若小于等于所述第二故障时间,则确定所述先导阀的内部机械异常。
  17. 一种阀控制装置,用于控制半导体加工设备中的先导阀驱动开关阀开启或关闭,其特征在于,所述阀控制装置包括至少一个处理器和至少一个存储器,所述存储器中存储有至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器实现如权利要求9-16中任一所述的方法。
  18. 一种半导体加工设备,包括工艺腔室和向所述工艺腔室输送工艺气体的至少一条气路,所述气路上设置有所述开关阀和与所述开关阀连接的所述先导阀;其特征在于,还包括权利要求1-8或17任意一项所述的阀控制装置,用于控制至少一条所述气路对应的所述先导阀驱动所述开关阀开启或关闭。
  19. 一种计算机可读存储介质,用于半导体加工设备,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求9-16中任一所述的方法。
PCT/CN2023/089709 2022-05-07 2023-04-21 阀控制装置和方法、半导体加工设备 WO2023216840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210494298.0A CN114738545A (zh) 2022-05-07 2022-05-07 阀控制装置和方法、半导体加工设备
CN202210494298.0 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023216840A1 true WO2023216840A1 (zh) 2023-11-16

Family

ID=82286005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089709 WO2023216840A1 (zh) 2022-05-07 2023-04-21 阀控制装置和方法、半导体加工设备

Country Status (2)

Country Link
CN (1) CN114738545A (zh)
WO (1) WO2023216840A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738545A (zh) * 2022-05-07 2022-07-12 北京北方华创微电子装备有限公司 阀控制装置和方法、半导体加工设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566475A (zh) * 2010-12-17 2012-07-11 北京北方微电子基地设备工艺研究中心有限责任公司 监测报警处理方法、装置及等离子体加工设备
CN104571149A (zh) * 2014-06-12 2015-04-29 北京七星华创电子股份有限公司 用于气体集成输送系统的质量流量控制装置及控制方法
US20150168932A1 (en) * 2013-12-18 2015-06-18 International Business Machines Corporation Motion detection device and system for motion controlled switching of a peripheral device
US20200142795A1 (en) * 2018-11-06 2020-05-07 Renesas Electronics Corporation Semiconductor device, semiconductor systems and test-control methods
CN114738545A (zh) * 2022-05-07 2022-07-12 北京北方华创微电子装备有限公司 阀控制装置和方法、半导体加工设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819543A (en) * 1987-10-23 1989-04-11 Topworks, Inc. Electric and pneumatic feedback controlled positioner
JP2892374B2 (ja) * 1989-06-16 1999-05-17 太陽鉄工株式会社 電磁弁
JP3530775B2 (ja) * 1999-07-16 2004-05-24 Smc株式会社 電磁弁の動作管理装置
US8271141B2 (en) * 2008-06-09 2012-09-18 Ross Operating Valve Company Control valve system with cycle monitoring, diagnostics and degradation prediction
DE102008062290A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur Diagnose des Verschleißzustandes einer Ventilanordnung zur Steuerung eines Prozessmediumflusses
CN102022391B (zh) * 2010-12-20 2013-04-24 扬州瘦西湖仪表有限公司 一种选择性控制多个工作油缸的数字液压控制系统
US9523376B2 (en) * 2013-07-18 2016-12-20 Abb Schweiz Ag Discrete pilot stage valve arrangement with fail freeze mode
DE102013016207A1 (de) * 2013-09-28 2015-04-02 L'orange Gmbh Diagnoseverfahren
CN106246214B (zh) * 2016-08-24 2018-11-06 日立楼宇技术(广州)有限公司 电磁先导阀的状态检测系统及方法
US10865643B2 (en) * 2018-10-15 2020-12-15 General Electric Technology Gmbh Method and system for a component lifetime counter
CN110538620B (zh) * 2018-11-14 2021-10-15 北京北方华创微电子装备有限公司 反应腔室的压力控制系统及压力控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566475A (zh) * 2010-12-17 2012-07-11 北京北方微电子基地设备工艺研究中心有限责任公司 监测报警处理方法、装置及等离子体加工设备
US20150168932A1 (en) * 2013-12-18 2015-06-18 International Business Machines Corporation Motion detection device and system for motion controlled switching of a peripheral device
CN104571149A (zh) * 2014-06-12 2015-04-29 北京七星华创电子股份有限公司 用于气体集成输送系统的质量流量控制装置及控制方法
US20200142795A1 (en) * 2018-11-06 2020-05-07 Renesas Electronics Corporation Semiconductor device, semiconductor systems and test-control methods
CN114738545A (zh) * 2022-05-07 2022-07-12 北京北方华创微电子装备有限公司 阀控制装置和方法、半导体加工设备

Also Published As

Publication number Publication date
TW202344767A (zh) 2023-11-16
CN114738545A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023216840A1 (zh) 阀控制装置和方法、半导体加工设备
JP6581833B2 (ja) アクチュエータ不具合検知装置、制御装置および方法
CA2679218C (en) Partial stroke testing with pulsed control loop
RU2662571C2 (ru) Система и способ отключения полевого устройства
KR102108219B1 (ko) 유체 공급장치의 공압 분배기
KR20070023387A (ko) 원자층 증착 챔버의 에어 밸브 장치
KR20150072665A (ko) 수소탱크용 파일럿 솔레노이드 밸브의 개폐 검출 방법 및 장치
US20100071457A1 (en) Partial stroke testing with pulsed control loop
CN110134001A (zh) 一种具有冗余安全的异构双核电机伺服控制器及其冗余安全控制方法
WO2014191051A1 (en) Detecting surge in a compression system
US20120316694A1 (en) Method for Monitoring an Installation
JP2020518084A (ja) 制御バルブの劣化を検出するためのシステムおよび方法
US20190098072A1 (en) Management system for a plant facility and method for managing a plant facility
TW201400999A (zh) 矩陣式生產系統及其控制方法
TW202235895A (zh) 基於包含感測器映射及經觸發之資料登錄的健康狀態而監測、評估及回應的基板處理系統工具
KR100649112B1 (ko) 반도체/디스플레이 제조장비의 가스밸브 오동작 검출기
TWI843538B (zh) 閥控制裝置和方法、半導體加工設備
JP2018123919A (ja) ガス配管システム
US20160116895A1 (en) Remote unit and abnormality determining method therein
CN103752526A (zh) 灯检机剔瓶验证方法及灯检机
CN108061195B (zh) 一种vpsa工艺的高频快切阀门开关速度精准检测的方法
US7818146B2 (en) Method and device for the diagnosis of technical devices disposed within an industrial installation
KR102185340B1 (ko) 공압 밸브 장치 및 공압 밸브 모니터링 방법
CN107187773A (zh) 一种垃圾箱后门控制系统及控制方法
Llanos et al. Transmission delays in residual computation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802614

Country of ref document: EP

Kind code of ref document: A1