WO2023216769A1 - 无线接入网络系统、数据传输控制方法及装置 - Google Patents

无线接入网络系统、数据传输控制方法及装置 Download PDF

Info

Publication number
WO2023216769A1
WO2023216769A1 PCT/CN2023/085934 CN2023085934W WO2023216769A1 WO 2023216769 A1 WO2023216769 A1 WO 2023216769A1 CN 2023085934 W CN2023085934 W CN 2023085934W WO 2023216769 A1 WO2023216769 A1 WO 2023216769A1
Authority
WO
WIPO (PCT)
Prior art keywords
entity
access network
link
user plane
centralized unit
Prior art date
Application number
PCT/CN2023/085934
Other languages
English (en)
French (fr)
Inventor
缪德山
孙建成
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023216769A1 publication Critical patent/WO2023216769A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18586Arrangements for data transporting, e.g. for an end to end data transport or check
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a wireless access network system, data transmission control method and device.
  • low-orbit satellite communication systems based on the fifth generation mobile communication (5G) technology are increasingly popular. industry attention.
  • 5G fifth generation mobile communication
  • embodiments of the present disclosure provide a wireless access network system, a data transmission control method and a device.
  • embodiments of the present disclosure provide a wireless access network system, including:
  • the first access network equipment includes a distribution unit entity and a first centralized unit user plane entity; the second access network equipment includes a second centralized unit user plane entity; the first access network equipment and/or the The second access network equipment includes a centralized unit control plane entity;
  • the centralized unit control plane entity is used to control the distributed unit entity through the first access
  • the first link includes a data transmission link connected by the distribution unit entity and the first centralized unit user plane entity
  • the second link includes a data transmission link connected by the distribution unit entity and the second centralized unit entity.
  • the data transmission link connected by the unit user plane entity.
  • the first access network device includes the centralized unit control plane entity, and the centralized unit control plane entity is also connected to the first centralized unit user plane entity and the second centralized unit user plane entity respectively. communication connection; or,
  • the second access network device includes the centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or ,
  • the first access network equipment and the second access network equipment each include a centralized unit control plane entity, and each centralized unit control plane entity is respectively connected to the first centralized unit user plane entity and the second centralized unit user plane entity.
  • Centralized unit user plane entity communication connections are provided.
  • both the first access network device and the second access network device include a centralized unit control plane entity
  • the centralized unit control plane entity of the first access network device or the The centralized unit control plane entity of the second access network device is also used to control and manage initial access users, and determine based on the type or attribute of the user that the user will be transferred to the first access network device after initial access.
  • the centralized unit control plane entity or the centralized unit control plane entity of the second access network device performs connection management.
  • a user plane functional entity is provided on the first satellite, and the user plane functional entity is communicatively connected with the first centralized unit user plane entity.
  • the centralized unit control plane entity controls the distribution unit entity to transmit user plane data through the first link and/or the second link, including one or more of the following:
  • the centralized unit control plane entity controls the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the service type of the user plane data;
  • the centralized unit control plane entity controls the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the terminal associated with the user plane data;
  • the centralized unit control plane entity controls the distribution unit entity to transmit user plane data through the first link and/or the second link according to the load status on the first satellite;
  • the centralized unit control plane entity controls the distributed unit entity to transmit user plane data through the first link and/or the second link according to a preconfigured policy.
  • the centralized unit control plane entity controls the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the service type of the user plane data, including:
  • the centralized unit control plane entity controls the distribution unit entity to transmit the user plane data between satellites through the first link, and the data is transmitted from One terminal transmits to another terminal through the inter-satellite link, and the data does not pass through the ground network equipment; or,
  • the centralized unit control plane entity controls the distribution unit entity to transmit the user plane data between satellites through the first link. through terrestrial network equipment; or,
  • the centralized unit control plane entity controls the distribution unit entity to transmit the user plane data through the second link, and the data passes through the ground network equipment.
  • the second access network equipment includes one or more of the following: access network equipment located on the ground, access network equipment located on other satellites other than the first satellite, access network equipment located on the adjacent Access network equipment on the aerial platform and access network equipment on the drone.
  • embodiments of the present disclosure also provide a data transmission control method applied to a centralized unit control plane entity in a wireless access network system, wherein the wireless access network system includes a first satellite located on a first satellite. Access network equipment and a second access network equipment located outside the first satellite. The first access network equipment includes a distribution unit entity and a first centralized unit user plane entity. The second access network equipment Including a second centralized unit user plane entity, the first access network device and/or the second access network device includes the centralized unit control plane entity, and the method includes:
  • the data transmission link includes a first link within the first access network device, and/or, between the first access network device and the second access network device. the second link between;
  • Control the distribution unit entity to transmit user plane data through the first link and/or the second link;
  • the first link includes a data transmission link connected by the distribution unit entity and the first centralized unit user plane entity
  • the second link includes a data transmission link connected by the distribution unit entity and the second centralized unit entity.
  • the data transmission link connected by the unit user plane entity.
  • the first access network device includes the centralized unit control plane entity, and the centralized unit control plane entity is also connected to the first centralized unit user plane entity and the second centralized unit user plane entity respectively. communication connection; or,
  • the second access network device includes the centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or ,
  • the first access network equipment and the second access network equipment each include a centralized unit control plane entity, and each centralized unit control plane entity is respectively connected to the first centralized unit user plane entity and the second centralized unit user plane entity.
  • Centralized unit user plane entity communication connections are provided.
  • the method further includes:
  • the centralized unit control plane entity of the first access network device or the centralized unit control plane entity of the second access network device controls and manages the initial access user, and determines where the user is based on the type or attribute of the user. After initial access, the centralized unit control plane entity of the first access network device or the centralized unit control plane entity of the second access network device performs connection management.
  • a user plane functional entity is provided on the first satellite, and the user plane functional entity is communicatively connected with the first centralized unit user plane entity.
  • control distribution unit entity transmits user plane data through the first link and/or the second link, including one or more of the following:
  • control distribution unit entity transmits the user plane data through the first link and/or the second link;
  • controlling the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the terminal associated with the user plane data
  • control the distribution unit entity According to the load status on the first satellite, control the distribution unit entity to transmit user plane data through the first link and/or the second link;
  • control distribution unit entity transmits user plane data through the first link and/or the second link.
  • the control distribution unit entity transmits the user plane data through the first link and/or the second link, including:
  • the control distribution unit entity transmits the user plane data between satellites through the first link, and the data is transmitted from one terminal to the terminal through the inter-satellite link. Another terminal, the data does not pass through the ground network equipment; or,
  • the control distribution unit entity transmits the user plane data between satellites through the first link, and the data does not pass through the ground network equipment;
  • the control distribution unit entity transmits the user plane data through the second link, and the data passes through the ground network equipment.
  • the second access network equipment includes one or more of the following: access network equipment located on the ground, access network equipment located on other satellites other than the first satellite, access network equipment located on the adjacent Access network equipment on the aerial platform and access network equipment on the drone.
  • embodiments of the present disclosure also provide a centralized unit control plane entity in a wireless access network system.
  • the wireless access network system includes a first access network device located on a first satellite and a first access network device located on the first satellite.
  • the second access network equipment other than the first satellite, the first access network equipment includes a distribution unit entity and a first centralized unit user plane entity, and the second access network equipment includes a second centralized unit user plane entity , the first access network device and/or the second access network device includes the centralized unit control plane entity, and the centralized unit control plane entity includes a memory, a transceiver, and a processor:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the data transmission link includes a first link within the first access network device, and/or, between the first access network device and the second access network device. the second link between;
  • the first link includes a data transmission link connected by the distribution unit entity and the first centralized unit user plane entity
  • the second link includes a data transmission link connected by the distribution unit entity and the second centralized unit entity.
  • the data transmission link connected by the unit user plane entity.
  • the first access network device includes the centralized unit control plane entity, and the centralized unit control plane entity is also connected to the first centralized unit user plane entity and the second centralized unit user plane entity respectively. communication connection; or,
  • the second access network device includes the centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or ,
  • the first access network equipment and the second access network equipment each include a centralized unit control plane entity, and each centralized unit control plane entity is respectively connected to the first centralized unit user plane entity and the second centralized unit user plane entity.
  • Centralized unit user plane entity communication connections are provided.
  • the operation further includes:
  • the centralized unit control plane entity of the first access network device or the centralized unit control plane entity of the second access network device controls and manages the initial access user, and determines where the user is based on the type or attribute of the user. After initial access, the centralized unit control plane entity of the first access network device or the centralized unit control plane entity of the second access network device performs connection management.
  • a user plane functional entity is provided on the first satellite, and the user plane functional entity is communicatively connected with the first centralized unit user plane entity.
  • control distribution unit entity transmits user plane data through the first link and/or the second link, including one or more of the following:
  • control distribution unit entity transmits the user plane data through the first link and/or the second link;
  • controlling the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the terminal associated with the user plane data
  • the distribution unit entity is controlled to pass the first link and/or the second link transmits user plane data
  • control distribution unit entity transmits user plane data through the first link and/or the second link.
  • the control distribution unit entity transmits the user plane data through the first link and/or the second link, including:
  • the control distribution unit entity transmits the user plane data between satellites through the first link, and the data is transmitted from one terminal to the terminal through the inter-satellite link. Another terminal, the data does not pass through the ground network equipment; or,
  • the control distribution unit entity transmits the user plane data between satellites through the first link, and the data does not pass through the ground network equipment;
  • the control distribution unit entity transmits the user plane data through the second link, and the data passes through the ground network equipment.
  • the second access network equipment includes one or more of the following: access network equipment located on the ground, access network equipment located on other satellites other than the first satellite, access network equipment located on the adjacent Access network equipment on the aerial platform and access network equipment on the drone.
  • embodiments of the present disclosure also provide a data transmission control device applied to a centralized unit control plane entity in a wireless access network system, wherein the wireless access network system includes a first satellite located on a first satellite. Access network equipment and a second access network equipment located outside the first satellite. The first access network equipment includes a distribution unit entity and a first centralized unit user plane entity. The second access network equipment It includes a second centralized unit user plane entity, the first access network equipment and/or the second access network equipment includes the centralized unit control plane entity, and the device includes:
  • Determining unit configured to determine a data transmission link, where the data transmission link includes a first link within the first access network device, and/or, the first access network device and the second The second link between access network devices;
  • a control unit configured to control the distribution unit entity to transmit user plane data through the first link and/or the second link;
  • the first link includes the distribution unit entity and the first centralized unit user plane entity.
  • the connected data transmission link, the second link includes the data transmission link connected by the distribution unit entity and the second centralized unit user plane entity.
  • embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, and the computer program is used to cause the computer to perform the data transmission described in the second aspect. Control Method.
  • an embodiment of the present disclosure further provides a communication device, a computer program is stored in the communication device, and the computer program is used to cause the communication device to execute the data transmission control method described in the second aspect.
  • embodiments of the present disclosure also provide a processor-readable storage medium that stores a computer program, and the computer program is used to cause the processor to execute the above-mentioned second aspect. Data transmission control method.
  • embodiments of the present disclosure further provide a chip product.
  • a computer program is stored in the chip product.
  • the computer program is used to cause the chip product to execute the data transmission control method described in the second aspect.
  • the wireless access network system, data transmission control method and device provided by the embodiments of the present disclosure, by designing a network architecture in which the second access network equipment and the first access network equipment on the satellite are integrated, user plane data can be transmitted through the first link and/or second link for processing and transmission, so that adaptive data offload processing can be flexibly carried out to meet the capacity requirements of large-capacity data transmission and spaceborne lightweight and spaceborne chips, and realize the low-orbit satellite communication system.
  • Figure 1 is a schematic structural diagram of a wireless access network system provided by an embodiment of the present disclosure
  • Figure 2 is one of the implementation schematic diagrams of the wireless access network system provided by an embodiment of the present disclosure
  • Figure 3 is a second implementation schematic diagram of the wireless access network system provided by an embodiment of the present disclosure.
  • Figure 4 is a third implementation schematic diagram of the wireless access network system provided by an embodiment of the present disclosure.
  • Figure 5 is a fourth implementation schematic diagram of the wireless access network system provided by an embodiment of the present disclosure.
  • Figure 6 is a fifth implementation schematic diagram of the wireless access network system provided by an embodiment of the present disclosure.
  • Figure 7 is a sixth implementation schematic diagram of the wireless access network system provided by an embodiment of the present disclosure.
  • Figure 8 is a seventh implementation schematic diagram of the wireless access network system provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of the CU-UP change process provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of an inter-satellite handover process provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic flowchart of a data transmission control method provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic structural diagram of a centralized unit control plane entity in the wireless access network system provided by an embodiment of the present disclosure
  • Figure 13 is a schematic structural diagram of a data transmission control device provided by an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • Figure 1 is a schematic structural diagram of a wireless access network system provided by an embodiment of the present disclosure. As shown in Figure 1, the system includes:
  • the first access network device 110 includes a distributed unit entity (Distribute Unit, DU) 111 and a first centralized unit user plane entity (Centralized Unit User Plane, CU-UP) 112; the second access network
  • the network device 120 includes a second centralized unit user plane entity 121; the first access network device 110 and/or the second access network device 120 includes a centralized unit control plane entity (Centralized Unit Control Plane, CU-CP) 101;
  • the centralized unit control plane entity 101 is used to control the distribution unit entity 111 through the first link within the first access network device 110, and/or, between the first access network device 110 and the second access network device 120.
  • the second link transmits user plane data
  • the first link includes a data transmission link connected by the distribution unit entity 111 and the first centralized unit user plane entity 112.
  • the second link includes data connected by the distribution unit entity 111 and the second centralized unit user plane entity 121. transmission link.
  • the wireless access network system provided by the embodiment of the present disclosure includes two parts: one part is on the satellite, which is the first access network device 110.
  • the first satellite where the first access network device 110 is located can be any satellite; the other part is on the satellite.
  • a part of the second access network device 120 is located at other locations than the satellite where the first access network device 110 is located.
  • the first access network device 110 may be a satellite-based base station (such as gNB), and the first access network device 110 at least includes a DU 111 and a first CU-UP 112.
  • a satellite-based base station such as gNB
  • the first access network device 110 at least includes a DU 111 and a first CU-UP 112.
  • the second access network equipment 120 may include one or more of the following: access network equipment located on the ground (such as a ground base station), access network equipment located on other satellites other than the first satellite ( For example, satellite-borne base stations on other satellites other than the first satellite), access network equipment installed on the high altitude platform (HAPS) (such as base stations on the high altitude platform), installed on unmanned aerial vehicles ( Access network equipment on Unmanned Aerial Vehicle (UAV).
  • access network equipment located on the ground such as a ground base station
  • HAPS high altitude platform
  • UAV Unmanned Aerial Vehicle
  • the second access network device 120 includes at least a second CU-UP 121.
  • the wireless access network system includes a CU-CP 101, and the CU-CP 101 may be included in the first access network device 110 and/or the second access network device 120.
  • the wireless access network system can flexibly perform adaptive data offload processing when transmitting user plane data. It can transmit user plane data through the first link or User plane data is transmitted through the second link, and user plane data may also be transmitted through the first link and the second link.
  • the first link includes a data transmission link connected by the DU 111 and the first CU-UP 112. path, that is, the user plane data can be processed and transmitted within the first access network device 110, and the user plane data may not pass through the second access network device 120.
  • the second link includes a data transmission link connected by the DU 111 and the second CU-UP 121, that is, the user plane data can pass through the DU 111 in the first access network device 110 and the second access network device 120.
  • the second CU-UP 121 implements data processing and transmission, and the second access network device 120 can offload user plane data.
  • DU 111 can be responsible for the processing of the physical (Physical, PHY) layer, the media access control (Media Access Control, MAC) layer and the radio link control (Radio Link Control, RLC) layer.
  • physical Physical
  • MAC media access control
  • RLC Radio Link Control
  • CU-CP 101 can be responsible for the processing of Radio Resource Control (RRC) layer and the management of network interfaces (such as: Xn, NG, E1, F1).
  • RRC Radio Resource Control
  • the first CU-UP 112 and the second CU-UP 121 may be responsible for processing the Packet Data Convergence Protocol (PDCP) and the Service Data Adaptation Protocol (Service Data Adaptation Protocol, SDAP).
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • DU 111 and CU-CP 101 can be connected through the F1 interface control plane (F1-C).
  • F1-C F1 interface control plane
  • the DU 111 and the first CU-UP 112 or the second CU-UP 121 may be connected through the F1 interface user plane (F1-U).
  • F1-U F1 interface user plane
  • the CU-CP 101 and the first CU-UP 112 or the second CU-UP 121 can be connected through an E1 interface.
  • the first satellite may be provided with a User Plane Function (UPF).
  • the UPF is communicatively connected to the first CU-UP 112, and the user plane data may be transmitted to other satellites through the UPF on the satellite.
  • UPF User Plane Function
  • the interfaces between functional entities may not be real physical interfaces or protocol interfaces, but just The internal interface of the software function module will not be described in detail later.
  • the interfaces between functional entities can be any form of interface, as long as they can complete the functions of two network elements. Information exchange between entities is sufficient.
  • Each embodiment of the present disclosure only uses the E1, F1-U, and F1-C interfaces for illustrative explanations, which are not intended to limit the interface form, and will not be described in detail later.
  • the wireless access network system provided by the embodiments of the present disclosure, by designing a network architecture in which the second access network equipment and the first access network equipment on the star are integrated, user plane data can be transmitted through the first link and/or the second link.
  • the system can be processed and transmitted through various channels, so that adaptive data offload processing can be flexibly carried out to meet the capacity requirements of large-capacity data transmission and spaceborne lightweight and spaceborne chips, and achieve the optimal design of low-orbit satellite communication systems.
  • the first access network device 110 includes a centralized unit control plane entity 101.
  • the centralized unit control plane entity 101 is also communicatively connected with the first centralized unit user plane entity 112 and the second centralized unit user plane entity 121 respectively.
  • Figure 2 is one of the implementation schematic diagrams of a wireless access network system provided by an embodiment of the present disclosure.
  • the wireless access network system includes two parts: a satellite-borne base station and a ground base station.
  • the satellite-borne base station includes complete base station functions (including CU and DU functions), which are responsible for solving user access management and business processing needs;
  • the ground base station only includes the CU-UP part, which is used to process high-level data and enable user services to be transmitted on the ground.
  • the E1 and F1-U communication interfaces between the ground base station and the satellite base station are both carried on the feeder link.
  • S-UPF refers to the UPF on the satellite, which is the core network functional entity.
  • the figure also includes the UPF of the core network and the Access and Mobility Management Function (AMF).
  • AMF Access and Mobility Management Function
  • Other attached figures S-UPF, AMF, and UPF have the same meaning and will not be described again.
  • Figure 3 is a second implementation schematic diagram of a wireless access network system provided by an embodiment of the present disclosure.
  • the wireless access network system includes a satellite base station 1 and a satellite base station 2 (or There are two parts: the base station on HAPS or UAV).
  • the satellite base station 1 includes complete base station functions (including CU and DU functions) and is responsible for solving the user’s access management and business processing needs;
  • the satellite base station 2 (or the base station on HAPS or UAV) Base station) only includes the CU-UP part, which forms a complementary relationship with the satellite base station 1 and is responsible for user data offloading.
  • both the first access network device 110 and the second access network device 120 include a centralized unit control plane entity 101, and each centralized unit control plane entity 101 is respectively implemented with the first centralized unit user plane.
  • the entity 112 is communicatively connected with the second centralized unit user plane entity 121.
  • the CU-CP 101 can be set in both the first access network device 110 and the second access network device 120.
  • the CU-CP 101 of the first access network device 110 is connected to the first CU-UP 112 and the second CU-UP 112 respectively.
  • CU-UP 121 is connected through communication
  • the CU-CP 101 of the second access network device 120 is also connected through communication with the first CU-UP 112 and the second CU-UP 121 respectively. Therefore, the CU-CP 101 of the first access network device 110 and the second access network device 120 can be flexibly selected according to actual needs for service data offload processing.
  • both the first access network device 110 and the second access network device 120 include a centralized unit control plane entity
  • the centralized unit control plane entity 101 or the second access network device 101 of the first access network device 110 is also used to control and manage initial access users, and determine based on the type or attribute of the user that the user will be transferred to the centralized unit control plane entity of the first access network device 110 after initial access.
  • 101 or the centralized unit control plane entity 101 of the second access network device 120 performs connection management.
  • both the first access network device 110 and the second access network device 120 include a CU-CP 101
  • one of the CU-CP 101 can be set as the main CU-CP
  • the other CU-CP 101 can be set as the main CU-CP.
  • the secondary CU-CP and the primary CU-CP can control and manage the initial access user, and determine whether the user will be transferred to the CU-CP 101 of the first access network device 110 or the second access after the initial access based on the type or attribute of the user.
  • the CU-CP 101 of the network access device 120 performs connection management.
  • the second access network device 120 is a ground base station as an example for explanation.
  • Figure 4 is a third implementation schematic diagram of a wireless access network system provided by an embodiment of the present disclosure.
  • the wireless The access network system includes two parts: a satellite base station and a ground base station.
  • the satellite base station includes complete base station functions (including CU and DU functions) and is responsible for business processing needs;
  • the ground base station includes CU-UP and CU-CP functions, which can realize user Business is transmitted on the ground.
  • the characteristic of this architecture in Figure 4 is that the ground also has the control plane and user plane functions of the CU, and can complete user access or other management and control functions on the ground.
  • the second access network device 120 includes a centralized unit control plane entity 101.
  • the centralized unit control plane entity 101 is also communicatively connected with the first centralized unit user plane entity 112 and the second centralized unit user plane entity 121 respectively.
  • the second access network device 120 is a ground base station as an example for explanation.
  • FIG. 5 is the fourth implementation schematic diagram of the wireless access network system provided by the embodiment of the present disclosure. As shown in Figure 5, the wireless access network system includes two parts: a satellite base station and a ground base station, where the satellite base station includes DU and CU- The UP function can be used as a slave station; the ground base station serves as the master station, including CU-UP and CU-CP functions, and the control plane is all on the ground.
  • T2T Terminal to Terminal
  • the centralized unit control plane entity 101 controls the distributed unit entity 111 to transmit user plane data through the first link and/or the second link, including one or more of the following:
  • the centralized unit control plane entity 101 controls the distribution unit entity 111 to transmit the user plane data through the first link and/or the second link according to the service type of the user plane data;
  • the centralized unit control plane entity 101 controls the distribution unit entity 111 to transmit the user plane data through the first link and/or the second link according to the terminal associated with the user plane data;
  • the centralized unit control plane entity 101 controls the distributed unit entity 111 to transmit user plane data through the first link and/or the second link according to the load status on the first satellite;
  • the centralized unit control plane entity 101 controls the distributed unit entity 111 to transmit user plane data through the first link and/or the second link according to the preconfigured policy.
  • the processing and transmission of user plane data can be flexibly switched between the first access network device 110 and the second access network device 120.
  • user plane data can be processed and transmitted based on the service type or based on the terminal or based on a single terminal single service (per UE per service) granularity.
  • adaptive data offload processing can be completed based on operator policies or preconfigured policies, algorithms or implementations based on information such as satellite load status.
  • the second access network device 120 as a ground base station as an example, under the satellite-ground integrated adaptive network architecture, if the user plane data is sunk to the ground for processing, the following three different granularity processing methods can be used. conduct:
  • Method 1 According to the business granularity, each business flow of the terminal is classified and processed. For example, part of the Protocol Data Unit (PDU) sessions are reserved for complete on-board processing, and the remaining PDU sessions are dropped to the CU-UP processing of the ground base station.
  • PDU Protocol Data Unit
  • Method 2 sink all user plane data of some terminals to the CU-UP processing of the ground base station according to the terminal granularity.
  • Method 3 Perform hierarchical processing according to T2T services and non-T2T services, and all non-T2T services will be sent to the CU-UP processing of the ground base station.
  • Method 4 For the startup strategy of satellite-to-ground offloading, it can also be determined based on the load on the satellite whether the data should be sent to the ground base station for CU-UP processing. For example, when the processing load of the satellite base station reaches a threshold, start the data service. sink.
  • the first CU-CP When to carry out on-board data sinking processing and what granularity to use (for which terminals or which services) can be decided by the first CU-CP (for example, based on the operator's policy, the algorithm or implementation of the base station), for example, it can be based on The load of the CPU on the satellite is adjusted in real time by data offloading between the satellite and the ground.
  • the centralized unit control plane entity 101 controls the distribution unit entity 111 to transmit the user plane data through the first link and/or the second link according to the service type of the user plane data, which may include any of the following:
  • the centralized unit control plane entity 101 controls the distribution unit entity 111 to transmit the user plane data between stars through the first link.
  • the data passes from one terminal to the stars.
  • the link is transmitted to another terminal, and the data does not pass through ground network equipment.
  • the centralized unit control plane entity 101 controls the distribution unit entity 111 to transmit the user plane data between satellites through the first link, and the data does not pass through the ground network equipment.
  • the centralized unit control plane entity 101 controls the distribution unit entity 111 to transmit the user plane data through the second link, and the data passes through the ground network equipment.
  • service data can be transmitted through the second link, and service data can be offloaded, processed and transmitted through terrestrial access network equipment.
  • Figure 6 is the fifth implementation schematic diagram of the wireless access network system provided by the embodiment of the present disclosure.
  • the figure shows the signaling and service processing flow of the T2T service, in which the dotted lines
  • the curve represents the path of control plane signaling.
  • the UE's control plane signaling interacts between S-gNB (i.e., the base station gNB on the satellite) and the AMF on the ground through the N2 interface; the solid curve represents the complete data processing on the satellite.
  • the UE's service data does not fall to the ground.
  • S-gNB i.e., the base station gNB on the satellite
  • the AMF on the ground through the N2 interface
  • the solid curve represents the complete data processing on the satellite.
  • the UE's service data does not fall to the ground.
  • the S-UPF on the target side passes it to the target S-gNB and forwards it to the target
  • FIG. 7 is the sixth implementation schematic diagram of the wireless access network system provided by the embodiment of the present disclosure.
  • PDU session part of the services (PDU session) of a UE can be retained in the star.
  • Complete processing is performed on the satellite, and it is connected to the UPF on the ground through the N3 port; some services (PDU sessions) are only processed by DU on the satellite, and sink to the ground CU-UP through F1-U for related high-level protocol processing.
  • the dotted curve represents the path of control plane signaling.
  • the UE's control plane signaling interacts between the satellite base station and the ground AMF through the N2 interface; the solid curve represents the PDU session for complete data processing on the satellite.
  • Data path and PDU session data path that sinks to the surface for processing. All interfaces between the on-board payload and the ground payload are carried on the feeder link.
  • FIG 8 is the seventh implementation schematic diagram of the wireless access network system provided by the embodiment of the present disclosure.
  • all PDCP and SDAP processing of the user plane of all services of a UE can be moved to On the ground, all user data of the UE is only processed by DU on the satellite, and CU-UP processing is completed on the ground.
  • the dotted curve represents the path of control plane signaling.
  • the UE's control plane signaling interacts between the satellite base station and the ground AMF through the N2 interface; the solid curve represents the PDU session data path that sinks to the ground for processing.
  • the user plane data for sinking processing only needs to be processed by the gNB-DU part on the satellite base station side, that is, only PHY, MAC, and RLC are processed, and then the data is handed over to the gNB-CU-UP on the ground for further processing (PDCP ,SDAP). All interfaces between the on-board payload and the ground payload are carried on the feeder link.
  • the following is an example of the service processing mode conversion and handover process of the wireless access network system provided by each of the above embodiments of the present disclosure through embodiments of specific application scenarios.
  • Embodiment 1 Conversion of business processing methods between satellite and ground.
  • Figure 9 is a schematic diagram of the CU-UP change process provided by an embodiment of the present disclosure. As shown in Figure 9, whether all or part of the UE's services are switched from the satellite to the ground or from the ground back to the satellite, it is essentially the same Changes to gNB-CU-UP under gNB-CU-CP. Its main process is as follows:
  • the gNB-CU-CP decides to change the CU-UP, such as switching some or all bearers of the UE from the CU-UP on the satellite to the CU-UP on the ground, and vice versa.
  • gNB-CU-CP initiates the UE context modification (Context Modification) process on the F1 interface, with the purpose of adjusting the uplink data channel of F1-U.
  • gNB-CU-CP initiates the Bearer Context Modification process to the source gNB-CU-UP to obtain PDCP uplink/downlink status information and exchange data forwarding related information.
  • gNB-CU-CP initiates the Bearer Context Modification process to the target gNB-CU-UP.
  • Data forwarding may be performed between the source gNB-CU-UP and the target gNB-CU-UP.
  • gNB-CU-CP initiates a path conversion process to the AMF to update the downlink address of the N3 tunnel.
  • gNB-CU-CP initiates the Bearer Context Release process to the source gNB-CU-UP.
  • Embodiment 2 Switching process.
  • FIG. 10 is a schematic diagram of an inter-satellite handover process provided by an embodiment of the present disclosure.
  • the process of inter-satellite handover is to coordinate the relevant context and prepare for handover between two gNB-CU-CPs.
  • the target gNB-CU-CP selects CU-UP and establishes the corresponding E1 bearer to accommodate the UE, which can be an on-board CU. -UP or ground CU-UP. Its main process is as follows:
  • the source base station decides to perform inter-satellite handover and sends a handover request (HANDOVER REQUEST) message to the target base station on the Xn interface.
  • a handover request HANDOVER REQUEST
  • the source gNB-CU-CP sends to the target gNB- CU-CP.
  • the target gNB-CU-CP selects gNB-CU-UP and initiates bearer establishment.
  • the target gNB-CU-CP initiates the UE context establishment process on the F1 interface, tells gNB-DU the F1-U uplink address of gNB-CU-UP, and also obtains the F1-U downlink data channel allocated by gNB-DU. .
  • the target gNB-CU-CP feeds back the handover request confirmation (HANDOVER REQUEST ACKNOWLEDGE) message to the source gNB-CU-CP.
  • the source gNB-CU-CP initiates the UE context modification process, including a handover command to the UE, and also instructs the gNB-DU to stop sending downlink data of the UE.
  • the source gNB-CU-CP initiates the bearer context modification process on the E1 interface to obtain PDCP uplink/downlink status and data forwarding information.
  • the source gNB-CU-CP sends a sequence number status transmission (SN STATUS TRANSFER) to the target gNB-CU-CP.
  • the target gNB-CU-CP initiates the bearer context modification process on the E1 interface, including the uplink and downlink status information of PDCP if necessary.
  • the target base station performs the path conversion process and switches the downlink address of the user data N3 tunnel.
  • the target gNB-CU-CP sends the UE context release message on the Xn interface to the source gNB-CU-CP.
  • the source gNB-CU-CP initiates context release of the source sides E1 and F1 accordingly.
  • gNB-CU-CP remaining unchanged and gNB-DU remaining unchanged, but the landed gNB-CU-UP changes with the change of gateway stations.
  • gNB-CU-CP can initiate the UP change process directly after the new feed is established.
  • the process is the same as that shown in Figure 9.
  • gNB-CU-CP needs to create a new interface with gNB-CU-UP of the target gateway station, then before step 2 of the process shown in Figure 9 above, it is necessary to add gNB-CU-CP and the target gateway station.
  • FIG 11 is a schematic flowchart of a data transmission control method provided by an embodiment of the present disclosure.
  • the method is applied to a centralized unit control plane entity (CU-CP) in a wireless access network system, where the wireless access network system includes a A first access network device on a satellite and a second access network device located outside the first satellite.
  • the first access network device includes a distribution unit entity (DU) and a first centralized unit user plane entity (first CU).
  • DU distribution unit entity
  • first CU first centralized unit user plane entity
  • -UP distribution unit entity
  • the second access network device includes a second centralized unit user plane entity (second CU-UP)
  • the first access network device and/or the second access network device includes the CU-CP, as shown in Figure 11
  • the method includes the following steps:
  • Step 1100 Determine a data transmission link.
  • the data transmission link includes a first link within the first access network device, and/or a second link between the first access network device and the second access network device. road.
  • Step 1101 Control the distribution unit entity to transmit user plane data through the first link and/or the second link.
  • the first link includes a data transmission link connected by the distribution unit entity and the first centralized unit user plane entity
  • the second link includes a data transmission link connected by the distribution unit entity and the second centralized unit user plane entity.
  • the wireless access network system provided by the embodiments of the present disclosure includes two parts: one part is on the satellite and is the first access network device.
  • the first satellite where the first access network device is located can be any satellite; the other part is on the satellite. Locations other than the satellite where the first access network equipment is located are the second access network equipment.
  • the first access network device may be a satellite base station (eg, gNB), and the first access network device at least includes a DU and a first CU-UP.
  • gNB satellite base station
  • the first access network device at least includes a DU and a first CU-UP.
  • the second access network equipment may include one or more of the following: access network equipment located on the ground (such as a ground base station), access network equipment located on other satellites other than the first satellite (such as a ground base station) Satellite-borne base stations on satellites other than the first satellite), access network equipment installed on HAPS (such as base stations on airborne platforms), and access network equipment installed on UAVs.
  • the second access network device includes at least a second CU-UP.
  • the CU-CP included in the wireless access network system may be provided in the first access network device and/or the second access network device.
  • the CU-CP in the wireless access network system is designed for access terminals.
  • User plane data transmission can flexibly perform adaptive data offload processing.
  • the DU can be controlled to transmit user plane data through different links. For example, it can be transmitted through the first link.
  • User plane data may also be transmitted through the second link, or user plane data may be transmitted through the first link and the second link together.
  • the first link includes a data transmission link connected by the DU and the first CU-UP, that is, the user plane data can be processed and transmitted within the first access network device, and the user plane data does not need to pass through the third access network device.
  • the second link includes a data transmission link connected by the DU and the second CU-UP, that is, the user plane data can pass through the DU in the first access network device and the second CU-UP in the second access network device.
  • UP implements data processing and transmission, so that the second access network device can offload user plane data.
  • DU may be responsible for processing of the PHY layer, MAC layer and RLC layer.
  • the CU-CP can be responsible for RRC layer processing and management of network interfaces (such as Xn, NG, E1, F1).
  • network interfaces such as Xn, NG, E1, F1.
  • the first CU-UP and the second CU-UP may be responsible for processing of PDCP and SDAP.
  • DU and CU-CP can be connected through the F1 interface control plane (F1-C).
  • F1-C F1 interface control plane
  • the DU and the first CU-UP or the second CU-UP may be connected through the F1 interface user plane (F1-U).
  • F1-U F1 interface user plane
  • the CU-CP and the first CU-UP or the second CU-UP may be connected through an E1 interface.
  • a UPF may be provided on the first satellite, and the UPF is connected to the first CU-UP for communication, so that user plane data can be transmitted to other satellites through the UPF on the satellite.
  • the interfaces between functional entities may not be real physical interfaces or protocol interfaces, but just The internal interface of the software function module will not be described in detail later.
  • each functional entity such as DU, CU-CP, CU-UP
  • the interface between each functional entity can be any form of interface, as long as it can complete the communication between the two network element functional entities. Information exchange is sufficient.
  • Each embodiment of the present disclosure only uses the E1, F1-U, and F1-C interfaces for illustrative explanations, which are not intended to limit the interface form, and will not be described in detail later.
  • the user plane data can pass through the first link and/or the second link. Processing and transmission, so that adaptive data offload processing can be flexibly carried out to meet the capacity requirements of large-capacity data transmission and spaceborne lightweight and spaceborne chips, and achieve the optimal design of low-orbit satellite communication systems.
  • the first access network device includes a centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity.
  • the wireless access network system includes two parts: a satellite base station and a ground base station.
  • the satellite base station includes complete base station functions (including CU and DU functions) and is responsible for solving user access problems. Management and business processing requirements; the ground base station only includes the CU-UP part, which is used to process high-level data so that user services can be transmitted on the ground.
  • the E1 and F1-U communication interfaces between the ground base station and the satellite base station are both carried on the feeder link.
  • the wireless access network system includes two parts: a satellite base station 1 and a satellite base station 2 (or a base station on a HAPS or UAV).
  • the satellite base station 1 includes a complete base station function ( (including CU and DU functions), responsible for solving the user's access management and business processing needs;
  • the satellite base station 2 (or the base station on HAPS or UAV) only includes the CU-UP part, forming a complementary relationship with the satellite base station 1, responsible for user Data offloading.
  • the second access network device includes a centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity.
  • the wireless access network system includes two parts: a satellite base station and a ground base station.
  • the satellite base station includes DU and CU-UP functions and can serve as a slave station; the ground base station serves as a master station. , including CU-UP and CU-CP functions, all control surfaces are on the ground.
  • T2T Terminal to Terminal
  • both the first access network device and the second access network device include a centralized unit control plane entity, and each centralized unit control plane entity communicates with the first centralized unit user plane entity and the second centralized unit user plane entity respectively. connect.
  • CU-CP can be set on both the first access network device and the second access network device, and the first The CU-CP of the access network device is communicatively connected to the first CU-UP and the second CU-UP respectively, and the CU-CP of the second access network device is also communicatively connected to the first CU-UP and the second CU-UP respectively. . Therefore, the CU-CP of the first access network device and the second access network device can be flexibly selected according to actual needs for service data offload processing.
  • the centralized unit control plane entity of the first access network device or the centralized unit of the second access network device is also used to control and manage initial access users, and determine whether the user will be transferred to the centralized unit control plane entity of the first access network device or the second access network device after initial access based on the type or attribute of the user.
  • both the first access network device and the second access network device include a CU-CP
  • one of the CU-CPs can be set as the primary CU-CP and the other CU-CP as the secondary CU-CP.
  • the master CU-CP can control and manage initial access users, and determine whether the user will be converted to a CU-CP of the first access network device or a CU-CP of the second access network device after initial access based on the user's type or attribute. Perform connection management.
  • the wireless access network system includes two parts: a satellite base station and a ground base station.
  • the satellite base station includes complete base station functions (including CU and DU functions) and is responsible for business processing requirements; the ground base station
  • the base station includes CU-UP and CU-CP functions, which can realize the transmission of user services on the ground. Since the ground also has the control plane and user plane functions of CU, user access or other management and control functions can be completed on the ground.
  • control distribution unit entity transmits user plane data through the first link and/or the second link, which may include one or more of the following:
  • the control distribution unit entity transmits the user plane data through the first link and/or the second link.
  • control distribution unit entity transmits the user plane data through the first link and/or the second link.
  • the distribution unit entity is controlled to pass through the first link and/or the second link Transmit user plane data.
  • the processing and transmission of user plane data can be flexibly switched between the first access network device and the second access network device.
  • user plane data can be processed and transmitted based on the service type or based on the terminal or based on a single terminal single service (per UE per service) granularity.
  • adaptive data offload processing can be completed based on operator policies or preconfigured policies, algorithms or implementations based on information such as satellite load status.
  • the second access network device as a ground base station as an example, under the satellite-ground integrated adaptive network architecture, if the user plane data is sunk to the ground for processing, it can be processed according to the following three different granularity processing methods: :
  • Method 1 According to the business granularity, each business flow of the terminal is classified and processed. For example, some PDU sessions are reserved for complete on-board processing, and the remaining PDU sessions are sent to the CU-UP processing of the ground base station.
  • Method 2 sink all user plane data of some terminals to the CU-UP processing of the ground base station according to the terminal granularity.
  • Method 3 Perform hierarchical processing according to T2T services and non-T2T services, and all non-T2T services will be sent to the CU-UP processing of the ground base station.
  • Method 4 For the startup strategy of satellite-to-ground offloading, it can also be determined based on the load on the satellite whether the data should be sent to the ground base station for CU-UP processing. For example, when the processing load of the satellite base station reaches a threshold, start the data service. sink.
  • the first CU-CP When to carry out on-board data sinking processing and what granularity to use (for which terminals or which services) can be decided by the first CU-CP (for example, based on the operator's policy, the algorithm or implementation of the base station), for example, it can be based on The load of the CPU on the satellite is adjusted in real time by data offloading between the satellite and the ground.
  • the control distribution unit entity transmits the user plane data through the first link and/or the second link, which may include any of the following:
  • control distribution unit entity transmits user plane data between satellites through the first link, and the data passes from one terminal through the inter-satellite link To transmit to another terminal, the data does not pass through ground network equipment.
  • control distribution unit entity transmits the user plane data between satellites through the first link, and the data does not pass through the ground network equipment.
  • control distribution unit entity transmits the user plane data through the second link, and the data passes through the ground network equipment.
  • service data can be transmitted through the second link, and service data can be offloaded, processed and transmitted through terrestrial access network equipment.
  • FIG 12 is a schematic structural diagram of a centralized unit control plane entity in a wireless access network system provided by an embodiment of the present disclosure.
  • the wireless access network system includes a first access network device located on a first satellite and a first access network device located on a first satellite.
  • the first access network equipment includes a distribution unit entity and a first centralized unit user plane entity.
  • the second access network equipment includes a second centralized unit user plane entity.
  • the device and/or the second access network device includes the centralized unit control plane entity.
  • the centralized unit control plane entity includes a memory 1220, a transceiver 1210 and a processor 1200; wherein the processor 1200 and the memory 1220 They can also be physically separated.
  • the memory 1220 is used to store computer programs; the transceiver 1210 is used to send and receive data under the control of the processor 1200.
  • the transceiver 1210 is used to receive and transmit data under the control of the processor 1200.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1200 and various circuits of the memory represented by memory 1220 are linked together. Bus architectures can also integrate circuits such as peripherals, voltage regulators, and power management Various other circuits, etc., are linked together, which are well known in the art, and therefore will not be further described in this disclosure.
  • the bus interface provides the interface.
  • the transceiver 1210 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 when performing operations.
  • the processor 1200 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device (CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 1200 is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 1220, for example: determining a data transmission link, and the data transmission link includes the first access The first link within the network device, and/or the second link between the first access network device and the second access network device; the control distribution unit entity passes the first link and/or the second link Transmit user plane data; the first link includes a data transmission link connected by the distribution unit entity and the first centralized unit user plane entity, and the second link includes a data transmission link connected by the distribution unit entity and the second centralized unit user plane entity. Connected data transmission links.
  • the first access network device includes a centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or,
  • the second access network device includes a centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or,
  • Both the first access network device and the second access network device include a centralized unit control plane entity, and each centralized unit control plane entity is communicatively connected to the first centralized unit user plane entity and the second centralized unit user plane entity respectively.
  • the method further includes:
  • the centralized unit control plane entity of the first access network device or the centralized unit control plane entity of the second access network device The control entity controls and manages the initial access user, and determines based on the type or attribute of the user that the user will be transferred to the centralized unit control plane entity of the first access network device or the centralized unit of the second access network device after the initial access.
  • Unit control plane entities perform connection management.
  • a user plane functional entity is provided on the first satellite, and the user plane functional entity is communicatively connected with the user plane entity of the first centralized unit.
  • control distribution unit entity transmits user plane data through the first link and/or the second link, including one or more of the following:
  • control distribution unit entity transmits the user plane data through the first link and/or the second link;
  • controlling the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the terminal associated with the user plane data
  • control the distribution unit entity According to the load status on the first satellite, control the distribution unit entity to transmit user plane data through the first link and/or the second link;
  • control distribution unit entity transmits user plane data through the first link and/or the second link.
  • the control distribution unit entity transmits the user plane data through the first link and/or the second link, including:
  • the control distribution unit entity transmits user plane data between satellites through the first link.
  • the data is transmitted from one terminal to another terminal through the inter-satellite link.
  • the data does not through terrestrial network equipment; or,
  • the control distribution unit entity transmits the user plane data between satellites through the first link, and the data does not pass through the ground network equipment;
  • the control distribution unit entity transmits the user plane data through the second link, and the data passes through the ground network equipment.
  • the second access network equipment includes one or more of the following: access network equipment located on the ground, access network equipment located on other satellites other than the first satellite, and access network equipment located on an airborne platform. Access network equipment, access network equipment installed on drones.
  • Figure 13 is a schematic structural diagram of a data transmission control device provided by an embodiment of the present disclosure.
  • the device is applied to a centralized unit control plane entity in a wireless access network system, where the wireless access network system includes a A first access network device and a second access network device located outside the first satellite.
  • the first access network device includes a distribution unit entity and a first centralized unit user plane entity.
  • the second access network device includes a second centralized unit entity.
  • the unit user plane entity, the first access network equipment and/or the second access network equipment includes a centralized unit control plane entity.
  • the device includes:
  • Determining unit 1300 configured to determine a data transmission link.
  • the data transmission link includes a first link within a first access network device, and/or a link between a first access network device and a second access network device. second link;
  • the control unit 1310 is used to control the distribution unit entity to transmit user plane data through the first link and/or the second link;
  • the first link includes a data transmission link connected by the distribution unit entity and the first centralized unit user plane entity
  • the second link includes a data transmission link connected by the distribution unit entity and the second centralized unit user plane entity.
  • the first access network device includes a centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or,
  • the second access network device includes a centralized unit control plane entity, and the centralized unit control plane entity is also communicatively connected with the first centralized unit user plane entity and the second centralized unit user plane entity; or,
  • Both the first access network device and the second access network device include a centralized unit control plane entity, and each centralized unit control plane entity is communicatively connected to the first centralized unit user plane entity and the second centralized unit user plane entity respectively.
  • both the first access network device and the second access network device include a centralized unit control plane
  • the device also includes an access unit for:
  • the centralized unit control plane entity of the first access network device or the centralized unit control plane entity of the second access network device controls and manages the initial access user, and determines, based on the type or attribute of the user, which user to switch to after initial access. Connection management is performed by a centralized unit control plane entity of the first access network device or a centralized unit control plane entity of the second access network device.
  • a user plane functional entity is provided on the first satellite, and the user plane functional entity is communicatively connected with the user plane entity of the first centralized unit.
  • control distribution unit entity transmits user plane data through the first link and/or the second link, including one or more of the following:
  • control distribution unit entity transmits the user plane data through the first link and/or the second link;
  • controlling the distribution unit entity to transmit the user plane data through the first link and/or the second link according to the terminal associated with the user plane data
  • control the distribution unit entity According to the load status on the first satellite, control the distribution unit entity to transmit user plane data through the first link and/or the second link;
  • control distribution unit entity transmits user plane data through the first link and/or the second link.
  • the control distribution unit entity transmits the user plane data through the first link and/or the second link, including:
  • the control distribution unit entity transmits user plane data between satellites through the first link.
  • the data is transmitted from one terminal to another terminal through the inter-satellite link.
  • the data does not through terrestrial network equipment; or,
  • the control distribution unit entity transmits the user plane data between satellites through the first link, and the data does not pass through the ground network equipment;
  • the control distribution unit entity transmits the user plane data through the second link, and the data passes through the ground network equipment.
  • the second access network equipment includes one or more of the following: access network equipment located on the ground, access network equipment located on other satellites other than the first satellite, and access network equipment located on an airborne platform. Access network equipment equipment and access network equipment installed on the drone.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, and the computer program is used to cause the computer to execute the data transmission control method provided by the above-mentioned embodiments.
  • the computer-readable storage medium may be any available media or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drives (SSD)) etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memories such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drives (SSD)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal mobile telecommunication system
  • WiMAX microwave access
  • 5G New Radio, NR 5G New Radio
  • EPS Evolved Packet System
  • 5GS 5G system
  • EPS Evolved Packet System
  • 5GS 5G system
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the name of the terminal may be different.
  • the terminal may be called User Equipment (UE).
  • UE User Equipment
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (also known as a "cellular phone").
  • Wireless terminal equipment may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, or an access point.
  • remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal user terminal
  • user agent user Agent
  • the access network equipment involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the access network equipment can be used to exchange received air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal equipment and the rest of the access network, where the rest of the access network can Includes Internet Protocol (IP) communications networks.
  • IP Internet Protocol
  • Access network equipment can also coordinate attribute management of the air interface.
  • the access network equipment involved in the embodiments of the present disclosure may be the access network equipment (Base) in the Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA).
  • Transceiver Station (BTS) it can also be the access network equipment (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be a long term evolution (long term evolution, LTE) system
  • the evolved access network equipment evolutional Node B, eNB or e-NodeB
  • the home evolved base station Home evolved Node B, HeNB
  • relay node relay node
  • pico base station (pico) are not limited in the embodiments of the present disclosure.
  • Access network equipment and terminals can each use one or more antennas for Multi-Input Multi-Output (MIMO) transmission.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user.
  • MIMO Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoding transmission or beamforming transmission, etc.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions that are executed provide steps for implementing the functions specified in a process or processes of the flowchart diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种无线接入网络系统、数据传输控制方法及装置,其中该无线接入网络系统包括:设于第一卫星上的第一接入网设备和设于第一卫星以外的第二接入网设备;第一接入网设备包括分布单元实体和第一集中单元用户面实体;第二接入网设备包括第二集中单元用户面实体;第一接入网设备和/或第二接入网设备包括集中单元控制面实体;集中单元控制面实体用于控制分布单元实体通过第一接入网设备内的第一链路,和/或,第一接入网设备和第二接入网设备之间的第二链路进行用户面数据的传输。从而可以满足大容量数据传输以及星载轻量化和星载芯片的能力需求,实现低轨卫星通信系统的最优设计。

Description

无线接入网络系统、数据传输控制方法及装置
相关申请的交叉引用
本申请要求于2022年05月12日提交的申请号为202210521049.6,发明名称为“无线接入网络系统、数据传输控制方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种无线接入网络系统、数据传输控制方法及装置。
背景技术
在卫星通信系统中,由于低轨卫星相对地面的通信时延可控,链路预算符合需求,基于第五代移动通信(5th Generation Mobile Communication,5G)技术的低轨卫星通信系统越来越受到业界的关注。
然而,由于卫星重量和功耗的约束,目前卫星载荷的中央处理器(Central Processing Unit,CPU)芯片处理能力相对较弱,导致星载基站在处理大量数据业务时存在较大难度,难以满足大容量数据传输的需求。
发明内容
针对现有技术存在的问题,本公开实施例提供一种无线接入网络系统、数据传输控制方法及装置。
第一方面,本公开实施例提供一种无线接入网络系统,包括:
设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备;
所述第一接入网设备包括分布单元实体和第一集中单元用户面实体;所述第二接入网设备包括第二集中单元用户面实体;所述第一接入网设备和/或所述第二接入网设备包括集中单元控制面实体;
所述集中单元控制面实体用于控制所述分布单元实体通过所述第一接入 网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路进行用户面数据的传输;
所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
可选地,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
可选地,在所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体还用于控制管理初始接入用户,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体进行连接管理。
可选地,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
可选地,所述集中单元控制面实体控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
所述集中单元控制面实体根据用户面数据的业务类型,控制所述分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
所述集中单元控制面实体根据与用户面数据相关联的终端,控制所述分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
所述集中单元控制面实体根据所述第一卫星上的负载状态,控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
所述集中单元控制面实体根据预配置的策略,控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
可选地,所述集中单元控制面实体根据用户面数据的业务类型,控制所述分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
在所述用户面数据的业务类型为终端到终端业务的情况下,所述集中单元控制面实体控制所述分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
在所述用户面数据的业务类型为高安全等级业务的情况下,所述集中单元控制面实体控制所述分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络设备;或者,
在所述用户面数据的业务类型为非终端到终端业务的情况下,所述集中单元控制面实体控制所述分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
可选地,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
第二方面,本公开实施例还提供一种数据传输控制方法,应用于无线接入网络系统中的集中单元控制面实体,其中所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备,所述第一接入网设备包括分布单元实体和第一集中单元用户面实体,所述第二接入网设备包括第二集中单元用户面实体,所述第一接入网设备和/或所述第二接入网设备包括所述集中单元控制面实体,所述方法包括:
确定数据传输链路,所述数据传输链路包括所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路;
控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
可选地,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
可选地,在所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述方法还包括:
所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体进行连接管理。
可选地,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
可选地,所述控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
根据与用户面数据相关联的终端,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
根据所述第一卫星上的负载状态,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
根据预配置的策略,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
可选地,所述根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
在所述用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
在所述用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络设备;或者,
在所述用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
可选地,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
第三方面,本公开实施例还提供一种无线接入网络系统中的集中单元控制面实体,所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备,所述第一接入网设备包括分布单元实体和第一集中单元用户面实体,所述第二接入网设备包括第二集中单元用户面实体,所述第一接入网设备和/或所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定数据传输链路,所述数据传输链路包括所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路;
控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户 面数据的传输;
所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
可选地,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
可选地,在所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述操作还包括:
所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体进行连接管理。
可选地,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
可选地,所述控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
根据与用户面数据相关联的终端,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
根据所述第一卫星上的负载状态,控制分布单元实体通过所述第一链路 和/或所述第二链路进行用户面数据的传输;
根据预配置的策略,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
可选地,所述根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
在所述用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
在所述用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络设备;或者,
在所述用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
可选地,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
第四方面,本公开实施例还提供一种数据传输控制装置,应用于无线接入网络系统中的集中单元控制面实体,其中所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备,所述第一接入网设备包括分布单元实体和第一集中单元用户面实体,所述第二接入网设备包括第二集中单元用户面实体,所述第一接入网设备和/或所述第二接入网设备包括所述集中单元控制面实体,所述装置包括:
确定单元,用于确定数据传输链路,所述数据传输链路包括所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路;
控制单元,用于控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体 所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
第五方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行如上所述第二方面所述的数据传输控制方法。
第六方面,本公开实施例还提供一种通信设备,所述通信设备中存储有计算机程序,所述计算机程序用于使通信设备执行如上所述第第二方面所述的数据传输控制方法。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行如上所述第二方面所述的数据传输控制方法。
第八方面,本公开实施例还提供一种芯片产品,所述芯片产品中存储有计算机程序,所述计算机程序用于使芯片产品执行如上所述第二方面所述的数据传输控制方法。
本公开实施例提供的无线接入网络系统、数据传输控制方法及装置,通过设计第二接入网设备和星上的第一接入网设备融合的网络架构,用户面数据可以通过第一链路和/或第二链路进行处理和传输,从而可以灵活地进行自适应地数据分流处理,满足大容量数据传输以及星载轻量化和星载芯片的能力需求,实现低轨卫星通信系统的最优设计。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的无线接入网络系统的结构示意图;
图2是本公开实施例提供的无线接入网络系统的实施示意图之一;
图3是本公开实施例提供的无线接入网络系统的实施示意图之二;
图4是本公开实施例提供的无线接入网络系统的实施示意图之三;
图5是本公开实施例提供的无线接入网络系统的实施示意图之四;
图6是本公开实施例提供的无线接入网络系统的实施示意图之五;
图7是本公开实施例提供的无线接入网络系统的实施示意图之六;
图8是本公开实施例提供的无线接入网络系统的实施示意图之七;
图9是本公开实施例提供的CU-UP变更流程示意图;
图10是本公开实施例提供的星间切换流程示意图;
图11是本公开实施例提供的数据传输控制方法的流程示意图;
图12是本公开实施例提供的无线接入网络系统中的集中单元控制面实体的结构示意图;
图13是本公开实施例提供的数据传输控制装置的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1为本公开实施例提供的无线接入网络系统的结构示意图,如图1所示,该系统包括:
设于第一卫星上的第一接入网设备110和设于第一卫星以外的第二接入网设备120;
第一接入网设备110包括分布单元实体(Distribute Unit,DU)111和第一集中单元用户面实体(Centralized Unit User Plane,CU-UP)112;第二接入 网设备120包括第二集中单元用户面实体121;第一接入网设备110和/或第二接入网设备120包括集中单元控制面实体(Centralized Unit Control Plane,CU-CP)101;
集中单元控制面实体101用于控制分布单元实体111通过第一接入网设备110内的第一链路,和/或,第一接入网设备110和第二接入网设备120之间的第二链路进行用户面数据的传输;
第一链路包括由分布单元实体111和第一集中单元用户面实体112所连通的数据传输链路,第二链路包括由分布单元实体111和第二集中单元用户面实体121所连通的数据传输链路。
具体地,本公开实施例提供的无线接入网络系统包括两部分:一部分在星上,为第一接入网设备110,第一接入网设备110所在的第一卫星可以是任意卫星;另一部分在第一接入网设备110所在卫星以外的其他位置,为第二接入网设备120。
可选地,第一接入网设备110可以是星载基站(例如gNB),第一接入网设备110至少包括DU 111和第一CU-UP 112。
可选地,第二接入网设备120可以包括以下一种或多种:设于地面的接入网设备(例如地面基站)、设于第一卫星以外的其他卫星上的接入网设备(例如第一卫星以外的其他卫星上的星载基站)、设于临空平台(High Altittude Platform System,HAPS)上的接入网设备(例如临空平台上的基站)、设于无人机(Unmanned Aerial Vehicle,UAV)上的接入网设备。
可选地,第二接入网设备120至少包括第二CU-UP 121。
可选地,该无线接入网络系统中包括CU-CP 101,CU-CP 101可以包括于第一接入网设备110和/或第二接入网设备120内。
可选地,本公开实施例提供的无线接入网络系统,在进行用户面数据传输时,可以灵活地进行自适应地数据分流处理,其既可以通过第一链路传输用户面数据,也可以通过第二链路传输用户面数据,还可以通过第一链路和第二链路共同传输用户面数据。
其中,第一链路包括由DU 111和第一CU-UP 112所连通的数据传输链 路,也即用户面数据可以在第一接入网设备110内实现数据处理和传输,用户面数据可以不经过第二接入网设备120。
第二链路包括由DU 111和第二CU-UP 121所连通的数据传输链路,也即用户面数据可以经由第一接入网设备110内的DU 111和第二接入网设备120内的第二CU-UP 121实现数据处理和传输,第二接入网设备120可以对用户面数据进行分流处理。
可选地,DU 111可以负责物理(Physical,PHY)层、媒体访问控制(Media Access Control,MAC)层和无线链路控制(Radio Link Control,RLC)层的处理。
可选地,CU-CP 101可以负责无线资源控制(Radio Resource Control,RRC)层的处理以及网络接口(如:Xn、NG、E1、F1)的管理。
可选地,第一CU-UP 112和第二CU-UP 121可以负责分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)和服务数据适配协议(Service Data Adaptation Protocol,SDAP)的处理。
可选地,DU 111和CU-CP 101之间可以通过F1接口控制面(F1-C)相连。
可选地,DU 111和第一CU-UP 112或第二CU-UP 121之间可以通过F1接口用户面(F1-U)相连。
可选地,CU-CP 101和第一CU-UP 112或第二CU-UP 121之间可以通过E1接口相连。
可选地,第一卫星上可以设有用户面功能实体(User Plane Function,UPF),UPF与第一CU-UP 112通信连接,用户面数据可以通过星上的UPF传输至其他卫星。
需要说明的是,本公开各实施例中,在同一接入网设备里面,各个功能实体(比如DU、CU-CP、CU-UP)之间的接口可以不是真正的物理接口或者协议接口,只是软件功能模块的内部接口,后续不再赘述。
需要说明的是,本公开各实施例中,各个功能实体(比如DU、CU-CP、CU-UP)之间的接口可以是任意形式的接口,只要是能够完成两个网元功能 实体之间的信息交互即可,本公开各实施例只是以E1、F1-U和F1-C接口进行示例性的说明,不作为对接口形式的限制,后续不再赘述。
本公开实施例提供的无线接入网络系统,通过设计第二接入网设备和星上的第一接入网设备融合的网络架构,用户面数据可以通过第一链路和/或第二链路进行处理和传输,从而可以灵活地进行自适应地数据分流处理,满足大容量数据传输以及星载轻量化和星载芯片的能力需求,实现低轨卫星通信系统的最优设计。
可选地,第一接入网设备110包括集中单元控制面实体101,集中单元控制面实体101还分别与第一集中单元用户面实体112和第二集中单元用户面实体121通信连接。
一种实施方式中,图2为本公开实施例提供的无线接入网络系统的实施示意图之一,如图2所示,该无线接入网络系统包括星载基站和地面基站两部分,星载基站包括完整的基站功能(含CU和DU功能),负责解决用户的接入管理和业务处理需求;地面基站仅包括CU-UP部分,用于处理高层数据,实现用户业务可以在地面传输。可选地,地面基站和星载基站之间的E1和F1-U通信接口均承载在馈电链路之上。
图2中,S-UPF指的是星上的UPF,为核心网功能实体,图中还包括核心网的UPF和接入和移动性管理功能(Access and Mobility Management Function,AMF),其他附图中的S-UPF、AMF、UPF含义相同,后续不再赘述。
一种实施方式中,图3为本公开实施例提供的无线接入网络系统的实施示意图之二,如图3所示,该无线接入网络系统包括星载基站1和星载基站2(或者HAPS或UAV上的基站)两部分,星载基站1包括完整的基站功能(含CU和DU功能),负责解决用户的接入管理和业务处理需求;星载基站2(或者HAPS或UAV上的基站)仅包括CU-UP部分,与星载基站1形成互补关系,负责用户数据分流。
可选地,第一接入网设备110和第二接入网设备120均包括集中单元控制面实体101,各集中单元控制面实体101均分别与第一集中单元用户面实 体112和第二集中单元用户面实体121通信连接。
具体地,可以在第一接入网设备110和第二接入网设备120均设置CU-CP 101,第一接入网设备110的CU-CP 101分别与第一CU-UP 112和第二CU-UP 121通信连接,第二接入网设备120的CU-CP 101也分别与第一CU-UP 112和第二CU-UP 121通信连接。从而可以根据实际需要灵活选择第一接入网设备110和第二接入网设备120的CU-CP 101进行业务数据分流处理。
可选地,在第一接入网设备110和第二接入网设备120均包括集中单元控制面实体的情况下,第一接入网设备110的集中单元控制面实体101或第二接入网设备120的集中单元控制面实体101还用于控制管理初始接入用户,并基于用户的类型或者属性确定用户在初始接入后转为由第一接入网设备110的集中单元控制面实体101或第二接入网设备120的集中单元控制面实体101进行连接管理。
具体地,在第一接入网设备110和第二接入网设备120均包括CU-CP 101的情况下,可以设置其中一个CU-CP 101为主CU-CP,另一个CU-CP 101为辅CU-CP,主CU-CP可以控制管理初始接入用户,并基于用户的类型或者属性确定该用户在初始接入后转为第一接入网设备110的CU-CP 101还是第二接入网设备120的CU-CP 101进行连接管理。
一种实施方式中,以第二接入网设备120为地面基站为例进行说明,图4为本公开实施例提供的无线接入网络系统的实施示意图之三,如图4所示,该无线接入网络系统包括星载基站和地面基站两部分,星载基站包括完整的基站功能(含CU和DU功能),负责业务处理需求;地面基站包括CU-UP和CU-CP功能,可实现用户业务在地面传输。
图4中这种架构的特点在于,地面也具备CU的控制面和用户面功能,可以在地面完成用户的接入或者其他管控的功能。
可选地,第二接入网设备120包括集中单元控制面实体101,集中单元控制面实体101还分别与第一集中单元用户面实体112和第二集中单元用户面实体121通信连接。
一种实施方式中,以第二接入网设备120为地面基站为例进行说明,图 5为本公开实施例提供的无线接入网络系统的实施示意图之四,如图5所示,该无线接入网络系统包括星载基站和地面基站两部分,其中星载基站包括DU和CU-UP功能,可以作为从站;地面基站作为主站,包括CU-UP和CU-CP功能,控制面全部在地面。
以星上传输终端到终端(Terminal to Terminal,T2T)的数据为例,用户可以首先接入到地面,在建立连接后,T2T的数据转入星上。
可选地,集中单元控制面实体101控制分布单元实体111通过第一链路和/或第二链路进行用户面数据的传输,包括以下一项或多项:
(1)集中单元控制面实体101根据用户面数据的业务类型,控制分布单元实体111通过第一链路和/或第二链路传输用户面数据;
(2)集中单元控制面实体101根据与用户面数据相关联的终端,控制分布单元实体111通过第一链路和/或第二链路传输用户面数据;
(3)集中单元控制面实体101根据第一卫星上的负载状态,控制分布单元实体111通过第一链路和/或第二链路进行用户面数据的传输;
(4)集中单元控制面实体101根据预配置的策略,控制分布单元实体111通过第一链路和/或第二链路进行用户面数据的传输。
具体地,本公开实施例中,用户面数据的处理和传输可以在第一接入网设备110和第二接入网设备120之间灵活切换。
例如,可以基于业务类型或者基于终端或者基于单个终端单个业务(per UE per业务)粒度的进行用户面数据的处理和传输。
例如,可以基于运营商策略或预配置的策略、基于卫星负荷状态等信息的算法或实现来完成自适应地数据分流处理。
一种实施方式中,以第二接入网设备120为地面基站为例,星地融合自适应网络架构下,如果用户面数据下沉到地面处理,可以按照下面三种不同颗粒度的处理方式进行:
方式一:按业务粒度下沉,对终端的每个业务流,实现分类处理。比如,保留部分协议数据单元(Protocol Data Unit,PDU)会话进行完整的星上处理,其余部分的PDU会话下沉到地面基站的CU-UP处理。
方式二:按终端粒度下沉,将某些终端的全部用户面数据下沉到地面基站的CU-UP处理。
方式三:按照T2T业务和非T2T业务进行分级处理,所有非T2T业务全部下沉到地面基站的CU-UP处理。
方式四:针对星地分流的启动策略,还可以基于星上的负载确定是否数据要下沉到地面基站的CU-UP处理,比如当星载基站的处理负荷达到一个门限时,启动数据业务的下沉。
何时进行星上数据下沉处理,采用何种粒度(针对哪些终端或者哪些业务),均可以由第一CU-CP决定(例如根据运营商策略、基站的算法或实现决定),比如可以基于星上CPU的负载情况进行实时的星地间的数据分流调整。
可选地,集中单元控制面实体101根据用户面数据的业务类型,控制分布单元实体111通过第一链路和/或第二链路传输用户面数据,可以包括以下任一项:
(1)在用户面数据的业务类型为终端到终端业务的情况下,集中单元控制面实体101控制分布单元实体111通过第一链路在星间传输用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备。
也就是说,对于T2T业务,可以通过第一链路在星上进行完整数据处理和星间传输,数据通过星间链路从一个终端传输到另一个终端,业务数据不落地到地面。
(2)在用户面数据的业务类型为高安全等级业务的情况下,集中单元控制面实体101控制分布单元实体111通过第一链路在星间传输用户面数据,数据不经过地面网络设备。
也就是说,对于高安全等级的业务,可以通过第一链路在星上进行完整数据处理和星间传输,业务数据不落地到地面。
(3)在用户面数据的业务类型为非终端到终端业务的情况下,集中单元控制面实体101控制分布单元实体111通过第二链路传输用户面数据,数据经过地面网络设备。
也就是说,对于非T2T业务,可以通过第二链路传输业务数据,通过地面接入网设备进行业务数据分流处理和传输。
一种实施方式中,图6为本公开实施例提供的无线接入网络系统的实施示意图之五,如图6所示,图中示出了T2T业务的信令和业务处理流程,其中虚线的曲线表示控制面信令的通路,UE的控制面信令通过N2接口在S-gNB(即星上的基站gNB)和地面的AMF之间交互;实线的曲线表示星上进行完整数据处理的PDU会话数据通路,UE的业务数据不落地到地面,S-gNB处理之后直接交给星上S-UPF进行路由,目标侧的S-UPF将其传递给目标S-gNB,处理后转发给目标UE。
图7为本公开实施例提供的无线接入网络系统的实施示意图之六,如图7所示,对于非T2T业务,考虑到灵活性,可以将一个UE的部分业务(PDU会话)保留在星上进行完整处理,通过N3口连接到地面的UPF;部分业务(PDU会话)在星上只进行DU的处理,通过F1-U下沉到地面CU-UP进行相关的高层协议处理。图中,虚线的曲线表示控制面信令的通路,UE的控制面信令通过N2接口在星载基站和地面的AMF之间交互;实线的曲线分别表示星上进行完整数据处理的PDU会话数据通路和下沉到地面处理的PDU会话数据通路。星上载荷和地面载荷之间的所有接口,均承载在馈电链路之上。
图8为本公开实施例提供的无线接入网络系统的实施示意图之七,如图8所示,对于非T2T业务,可以将某个UE全部业务的用户面的PDCP及SDAP处理全部下沉到地面,该UE所有的用户数据在星上只进行DU的处理,地面完成CU-UP的处理。图中,虚线的曲线表示控制面信令的通路,UE的控制面信令通过N2接口在星载基站和地面的AMF之间交互;实线的曲线表示下沉到地面处理的PDU会话数据通路,下沉处理的用户面数据在星载基站侧只需要经过gNB-DU部分的处理,即只进行PHY、MAC、RLC的处理,然后将数据交由地面的gNB-CU-UP进一步处理(PDCP、SDAP)。星上载荷和地面载荷之间的所有接口,均承载在馈电链路之上。
以下通过具体应用场景的实施例对本公开各上述实施例提供的无线接入网络系统的业务处理方式转换和切换过程进行举例说明。
实施例1:星地间的业务处理方式转换。
图9为本公开实施例提供的CU-UP变更流程示意图,如图9所示,不论是将UE的所有业务还是部分业务从卫星切到地面还是从地面切回卫星,实质上都是同一个gNB-CU-CP下gNB-CU-UP的变更。其主要流程如下:
1、gNB-CU-CP决定进行CU-UP的改变,比如将UE的某些承载或全部承载从星上CU-UP切到地面的CU-UP,反之亦然。
2-3、gNB-CU-CP和目标gNB-CU-UP间进行承载建立。
4、gNB-CU-CP发起F1接口上的UE上下文修改(Context Modification)过程,目的是调整F1-U的上行数据通道。
5-6、gNB-CU-CP向源gNB-CU-UP发起承载上下文修改(Bearer Context Modification)过程,用以获取PDCP上行/下行状态信息,交互数据前转相关信息。
7-8、gNB-CU-CP向目标gNB-CU-UP发起承载上下文修改(Bearer Context Modification)过程。
9、源gNB-CU-UP和目标gNB-CU-UP间可能执行数据前转。
10-12、gNB-CU-CP向AMF发起路径转换过程,用以更新N3隧道的下行地址。
13-14、gNB-CU-CP向源gNB-CU-UP发起承载上下文释放(Bearer Context Release)过程。
实施例2:切换流程。
(1)星间切换。
图10为本公开实施例提供的星间切换流程示意图,如图10所示,如果当前卫星无法继续为某个UE提供服务,需要执行星间切换。星间切换的过程是在两个gNB-CU-CP间进行相关上下文的协调和切换的准备,目标gNB-CU-CP选择CU-UP并建立对应的E1承载来接纳UE,可以是星上CU-UP或地面的CU-UP。其主要流程如下:
1、源基站决定进行星间切换,Xn接口上发送切换请求(HANDOVER REQUEST)消息给目标基站。在分离架构下,由源gNB-CU-CP发给目标gNB- CU-CP。
2-3、目标gNB-CU-CP选择gNB-CU-UP,并发起承载建立。
4、目标gNB-CU-CP发起F1接口上的UE上下文建立过程,将gNB-CU-UP的F1-U上行地址告诉gNB-DU,同时也得到gNB-DU分配的F1-U的下行数据通道。
5、目标gNB-CU-CP向源gNB-CU-CP反馈切换请求确认(HANDOVER REQUEST ACKNOWLEDGE)消息。
6、源gNB-CU-CP发起UE上下文修改过程,包括给UE的切换命令,同时也指示gNB-DU停止该UE的下行数据发送。
7-8、源gNB-CU-CP发起E1接口上的承载上下文修改过程,获取PDCP上行/下行状态和数据前转信息。
9、源gNB-CU-CP向目标gNB-CU-CP发送序号状态传输(SN STATUS TRANSFER)。
10-11、目标gNB-CU-CP发起E1接口上的承载上下文修改过程,如有需要则包括PDCP的上下行状态信息。
12、源gNB-CU-UP和目标gNB-CU-UP间的数据前转过程。
13-15、目标基站执行路径转换过程,切换用户数据N3隧道的下行地址。
16-18、目标gNB-CU-CP向源gNB-CU-CP发送Xn接口上的UE上下文释放消息。源gNB-CU-CP对应地发起源侧E1和F1的上下文释放。
(2)馈电切换
对于移动性过程,如卫星在不同信关站之间的切换,相当于gNB-CU-CP不变,gNB-DU不变,但落地的gNB-CU-UP随着信关站的改变而改变。
如果馈电切换过程中,gNB-CU-CP已经和目标信关站的gNB-CU-UP有E1接口,那么可以直接在新的馈电建立之后,gNB-CU-CP发起UP变更的过程,其流程同图9所示的流程。
如果馈电切换过程中,gNB-CU-CP需要和目标信关站的gNB-CU-UP新建接口,那在上述图9所示的流程步骤2之前,需要增加gNB-CU-CP和目标信关站对应的gNB-CU-UP之间的E1建立过程,其余流程同图9所示的流 程。
图11为本公开实施例提供的数据传输控制方法的流程示意图,该方法应用于无线接入网络系统中的集中单元控制面实体(CU-CP),其中该无线接入网络系统包括设于第一卫星上的第一接入网设备和设于第一卫星以外的第二接入网设备,第一接入网设备包括分布单元实体(DU)和第一集中单元用户面实体(第一CU-UP),第二接入网设备包括第二集中单元用户面实体(第二CU-UP),第一接入网设备和/或第二接入网设备包括该CU-CP,如图11所示,该方法包括如下步骤:
步骤1100、确定数据传输链路,数据传输链路包括第一接入网设备内的第一链路,和/或,第一接入网设备和第二接入网设备之间的第二链路。
步骤1101、控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输。
第一链路包括由分布单元实体和第一集中单元用户面实体所连通的数据传输链路,第二链路包括由分布单元实体和第二集中单元用户面实体所连通的数据传输链路。
具体地,本公开实施例提供的无线接入网络系统包括两部分:一部分在星上,为第一接入网设备,第一接入网设备所在的第一卫星可以是任意卫星;另一部分在第一接入网设备所在卫星以外的其他位置,为第二接入网设备。
可选地,第一接入网设备可以是星载基站(例如gNB),第一接入网设备至少包括DU和第一CU-UP。
可选地,第二接入网设备可以包括以下一种或多种:设于地面的接入网设备(例如地面基站)、设于第一卫星以外的其他卫星上的接入网设备(例如第一卫星以外的其他卫星上的星载基站)、设于HAPS上的接入网设备(例如临空平台上的基站)、设于UAV上的接入网设备。
可选地,第二接入网设备至少包括第二CU-UP。
可选地,该无线接入网络系统中包括的CU-CP可以设于第一接入网设备和/或第二接入网设备内。
可选地,本公开实施例中,无线接入网络系统中的CU-CP针对接入终端 的用户面数据传输,可以灵活地进行自适应地数据分流处理,在确定数据传输链路之后,可以控制DU通过不同的链路进行用户面数据的传输,比如,既可以通过第一链路传输用户面数据,也可以通过第二链路传输用户面数据,还可以通过第一链路和第二链路共同传输用户面数据。
其中,第一链路包括由DU和第一CU-UP所连通的数据传输链路,也即用户面数据可以在第一接入网设备内实现数据处理和传输,用户面数据可以不经过第二接入网设备。
第二链路包括由DU和第二CU-UP所连通的数据传输链路,也即用户面数据可以经由第一接入网设备内的DU和第二接入网设备内的第二CU-UP实现数据处理和传输,从而第二接入网设备可以对用户面数据进行分流处理。
可选地,DU可以负责PHY层、MAC层和RLC层的处理。
可选地,CU-CP可以负责RRC层的处理以及网络接口(如:Xn、NG、E1、F1)的管理。
可选地,第一CU-UP和第二CU-UP可以负责PDCP和SDAP的处理。
可选地,DU和CU-CP之间可以通过F1接口控制面(F1-C)相连。
可选地,DU和第一CU-UP或第二CU-UP之间可以通过F1接口用户面(F1-U)相连。
可选地,CU-CP和第一CU-UP或第二CU-UP之间可以通过E1接口相连。
可选地,第一卫星上可以设有UPF,UPF与第一CU-UP通信连接,从而用户面数据可以通过星上的UPF传输至其他卫星。
需要说明的是,本公开各实施例中,在同一接入网设备里面,各个功能实体(比如DU、CU-CP、CU-UP)之间的接口可以不是真正的物理接口或者协议接口,只是软件功能模块的内部接口,后续不再赘述。
需要说明的是,本公开各实施例中,各个功能实体(比如DU、CU-CP、CU-UP)之间的接口可以是任意形式的接口,只要是能够完成两个网元功能实体之间的信息交互即可,本公开各实施例只是以E1、F1-U和F1-C接口进行示例性的说明,不作为对接口形式的限制,后续不再赘述。
本公开实施例提供的数据传输控制方法,通过设计第二接入网设备和星上的第一接入网设备融合的网络架构,用户面数据可以通过第一链路和/或第二链路进行处理和传输,从而可以灵活地进行自适应地数据分流处理,满足大容量数据传输以及星载轻量化和星载芯片的能力需求,实现低轨卫星通信系统的最优设计。
可选地,第一接入网设备包括集中单元控制面实体,集中单元控制面实体还分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接。
一种实施方式中,如图2所示,该无线接入网络系统包括星载基站和地面基站两部分,星载基站包括完整的基站功能(含CU和DU功能),负责解决用户的接入管理和业务处理需求;地面基站仅包括CU-UP部分,用于处理高层数据,实现用户业务可以在地面传输。可选地,地面基站和星载基站之间的E1和F1-U通信接口均承载在馈电链路之上。
一种实施方式中,如图3所示,该无线接入网络系统包括星载基站1和星载基站2(或者HAPS或UAV上的基站)两部分,星载基站1包括完整的基站功能(含CU和DU功能),负责解决用户的接入管理和业务处理需求;星载基站2(或者HAPS或UAV上的基站)仅包括CU-UP部分,与星载基站1形成互补关系,负责用户数据分流。
可选地,第二接入网设备包括集中单元控制面实体,集中单元控制面实体还分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接。
一种实施方式中,如图5所示,该无线接入网络系统包括星载基站和地面基站两部分,其中星载基站包括DU和CU-UP功能,可以作为从站;地面基站作为主站,包括CU-UP和CU-CP功能,控制面全部在地面。以星上传输终端到终端(Terminal to Terminal,T2T)的数据为例,用户可以首先接入到地面,在建立连接后,T2T的数据转入星上。
可选地,第一接入网设备和第二接入网设备均包括集中单元控制面实体,各集中单元控制面实体均分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接。
具体地,可以在第一接入网设备和第二接入网设备均设置CU-CP,第一 接入网设备的CU-CP分别与第一CU-UP和第二CU-UP通信连接,第二接入网设备的CU-CP也分别与第一CU-UP和第二CU-UP通信连接。从而可以根据实际需要灵活选择第一接入网设备和第二接入网设备的CU-CP进行业务数据分流处理。
可选地,在第一接入网设备和第二接入网设备均包括集中单元控制面实体的情况下,第一接入网设备的集中单元控制面实体或第二接入网设备的集中单元控制面实体还用于控制管理初始接入用户,并基于用户的类型或者属性确定用户在初始接入后转为由第一接入网设备的集中单元控制面实体或第二接入网设备的集中单元控制面实体进行连接管理。
具体地,在第一接入网设备和第二接入网设备均包括CU-CP的情况下,可以设置其中一个CU-CP为主CU-CP,另一个CU-CP为辅CU-CP,主CU-CP可以控制管理初始接入用户,并基于用户的类型或者属性确定该用户在初始接入后转为第一接入网设备的CU-CP还是第二接入网设备的CU-CP进行连接管理。
一种实施方式中,如图4所示,该无线接入网络系统包括星载基站和地面基站两部分,星载基站包括完整的基站功能(含CU和DU功能),负责业务处理需求;地面基站包括CU-UP和CU-CP功能,可实现用户业务在地面传输。由于地面也具备CU的控制面和用户面功能,因此可以在地面完成用户的接入或者其他管控的功能。
可选地,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输,可以包括以下一项或多项:
(1)根据用户面数据的业务类型,控制分布单元实体通过第一链路和/或第二链路传输用户面数据。
(2)根据与用户面数据相关联的终端,控制分布单元实体通过第一链路和/或第二链路传输用户面数据。
(3)根据第一卫星上的负载状态,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输。
(4)根据预配置的策略,控制分布单元实体通过第一链路和/或第二链路 进行用户面数据的传输。
具体地,本公开实施例中,用户面数据的处理和传输可以在第一接入网设备和第二接入网设备之间灵活切换。
例如,可以基于业务类型或者基于终端或者基于单个终端单个业务(per UE per业务)粒度的进行用户面数据的处理和传输。
例如,可以基于运营商策略或预配置的策略、基于卫星负荷状态等信息的算法或实现来完成自适应地数据分流处理。
一种实施方式中,以第二接入网设备为地面基站为例,星地融合自适应网络架构下,如果用户面数据下沉到地面处理,可以按照下面三种不同颗粒度的处理方式进行:
方式一:按业务粒度下沉,对终端的每个业务流,实现分类处理。比如,保留部分PDU会话进行完整的星上处理,其余部分的PDU会话下沉到地面基站的CU-UP处理。
方式二:按终端粒度下沉,将某些终端的全部用户面数据下沉到地面基站的CU-UP处理。
方式三:按照T2T业务和非T2T业务进行分级处理,所有非T2T业务全部下沉到地面基站的CU-UP处理。
方式四:针对星地分流的启动策略,还可以基于星上的负载确定是否数据要下沉到地面基站的CU-UP处理,比如当星载基站的处理负荷达到一个门限时,启动数据业务的下沉。
何时进行星上数据下沉处理,采用何种粒度(针对哪些终端或者哪些业务),均可以由第一CU-CP决定(例如根据运营商策略、基站的算法或实现决定),比如可以基于星上CPU的负载情况进行实时的星地间的数据分流调整。
可选地,根据用户面数据的业务类型,控制分布单元实体通过第一链路和/或第二链路传输用户面数据,可以包括以下任一项:
(1)在用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过第一链路在星间传输用户面数据,数据从一个终端经过星间链路 传输到另一个终端,数据不经过地面网络设备。
也就是说,对于T2T业务,可以通过第一链路在星上进行完整数据处理和星间传输,数据通过星间链路从一个终端传输到另一个终端,业务数据不落地到地面。
(2)在用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过第一链路在星间传输用户面数据,数据不经过地面网络设备。
也就是说,对于高安全等级的业务,可以通过第一链路在星上进行完整数据处理和星间传输,业务数据不落地到地面。
(3)在用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过第二链路传输用户面数据,数据经过地面网络设备。
也就是说,对于非T2T业务,可以通过第二链路传输业务数据,通过地面接入网设备进行业务数据分流处理和传输。
本公开各实施例提供的方法和系统是基于同一申请构思的,由于方法和系统解决问题的原理相似,因此方法和系统的实施可以相互参见,重复之处不再赘述。
图12为本公开实施例提供的无线接入网络系统中的集中单元控制面实体的结构示意图,所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于第一卫星以外的第二接入网设备,第一接入网设备包括分布单元实体和第一集中单元用户面实体,第二接入网设备包括第二集中单元用户面实体,第一接入网设备和/或第二接入网设备包括该集中单元控制面实体,如图12所示,该集中单元控制面实体包括存储器1220,收发机1210和处理器1200;其中,处理器1200与存储器1220也可以物理上分开布置。
存储器1220,用于存储计算机程序;收发机1210,用于在处理器1200的控制下收发数据。
具体地,收发机1210用于在处理器1200的控制下接收和发送数据。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路 等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
处理器1200可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器1200通过调用存储器1220存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法,例如:确定数据传输链路,数据传输链路包括第一接入网设备内的第一链路,和/或,第一接入网设备和第二接入网设备之间的第二链路;控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输;第一链路包括由分布单元实体和第一集中单元用户面实体所连通的数据传输链路,第二链路包括由分布单元实体和第二集中单元用户面实体所连通的数据传输链路。
可选地,第一接入网设备包括集中单元控制面实体,集中单元控制面实体还分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接;或者,
第二接入网设备包括集中单元控制面实体,集中单元控制面实体还分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接;或者,
第一接入网设备和第二接入网设备均包括集中单元控制面实体,各集中单元控制面实体均分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接。
可选地,在第一接入网设备和第二接入网设备均包括集中单元控制面实体的情况下,该方法还包括:
第一接入网设备的集中单元控制面实体或第二接入网设备的集中单元控 制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定用户在初始接入后转为由第一接入网设备的集中单元控制面实体或第二接入网设备的集中单元控制面实体进行连接管理。
可选地,第一卫星上设有用户面功能实体,用户面功能实体与第一集中单元用户面实体通信连接。
可选地,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输,包括以下一项或多项:
根据用户面数据的业务类型,控制分布单元实体通过第一链路和/或第二链路传输用户面数据;
根据与用户面数据相关联的终端,控制分布单元实体通过第一链路和/或第二链路传输用户面数据;
根据第一卫星上的负载状态,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输;
根据预配置的策略,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输。
可选地,根据用户面数据的业务类型,控制分布单元实体通过第一链路和/或第二链路传输用户面数据,包括:
在用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过第一链路在星间传输用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
在用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过第一链路在星间传输用户面数据,数据不经过地面网络设备;或者,
在用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过第二链路传输用户面数据,数据经过地面网络设备。
可选地,第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
本公开各实施例提供的方法和装置是基于同一申请构思的,由于方法和 装置解决问题的原理相似,因此方法和装置的实施可以相互参见,重复之处不再赘述。
在此需要说明的是,本公开实施例提供的上述集中单元控制面实体,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图13为本公开实施例提供的数据传输控制装置的结构示意图,该装置应用于无线接入网络系统中的集中单元控制面实体,其中所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于第一卫星以外的第二接入网设备,第一接入网设备包括分布单元实体和第一集中单元用户面实体,第二接入网设备包括第二集中单元用户面实体,第一接入网设备和/或第二接入网设备包括集中单元控制面实体,如图13所示,该装置包括:
确定单元1300,用于确定数据传输链路,数据传输链路包括第一接入网设备内的第一链路,和/或,第一接入网设备和第二接入网设备之间的第二链路;
控制单元1310,用于控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输;
第一链路包括由分布单元实体和第一集中单元用户面实体所连通的数据传输链路,第二链路包括由分布单元实体和第二集中单元用户面实体所连通的数据传输链路。
可选地,第一接入网设备包括集中单元控制面实体,集中单元控制面实体还分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接;或者,
第二接入网设备包括集中单元控制面实体,集中单元控制面实体还分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接;或者,
第一接入网设备和第二接入网设备均包括集中单元控制面实体,各集中单元控制面实体均分别与第一集中单元用户面实体和第二集中单元用户面实体通信连接。
可选地,在第一接入网设备和第二接入网设备均包括集中单元控制面实 体的情况下,该装置还包括接入单元,用于:
第一接入网设备的集中单元控制面实体或第二接入网设备的集中单元控制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定用户在初始接入后转为由第一接入网设备的集中单元控制面实体或第二接入网设备的集中单元控制面实体进行连接管理。
可选地,第一卫星上设有用户面功能实体,用户面功能实体与第一集中单元用户面实体通信连接。
可选地,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输,包括以下一项或多项:
根据用户面数据的业务类型,控制分布单元实体通过第一链路和/或第二链路传输用户面数据;
根据与用户面数据相关联的终端,控制分布单元实体通过第一链路和/或第二链路传输用户面数据;
根据第一卫星上的负载状态,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输;
根据预配置的策略,控制分布单元实体通过第一链路和/或第二链路进行用户面数据的传输。
可选地,根据用户面数据的业务类型,控制分布单元实体通过第一链路和/或第二链路传输用户面数据,包括:
在用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过第一链路在星间传输用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
在用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过第一链路在星间传输用户面数据,数据不经过地面网络设备;或者,
在用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过第二链路传输用户面数据,数据经过地面网络设备。
可选地,第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设 备、设于无人机上的接入网设备。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行上述各实施例提供的数据传输控制方法。
在此需要说明的是,本公开实施例提供的计算机可读存储介质,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
所述计算机可读存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘 (SSD))等。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端的名称可能也不相同,例如在5G系统中,终端可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user  agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的接入网设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。接入网设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。接入网设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的接入网设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的接入网设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的接入网设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型接入网设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。
接入网设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (29)

  1. 一种无线接入网络系统,其特征在于,包括:
    设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备;
    所述第一接入网设备包括分布单元实体和第一集中单元用户面实体;所述第二接入网设备包括第二集中单元用户面实体;所述第一接入网设备和/或所述第二接入网设备包括集中单元控制面实体;
    所述集中单元控制面实体用于控制所述分布单元实体通过所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路进行用户面数据的传输;
    所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
  2. 根据权利要求1所述的无线接入网络系统,其特征在于,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
  3. 根据权利要求2所述的无线接入网络系统,其特征在于,在所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体还用于控制管理初始接入用户,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或 所述第二接入网设备的集中单元控制面实体进行连接管理。
  4. 根据权利要求1所述的无线接入网络系统,其特征在于,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
  5. 根据权利要求1至4任一项所述的无线接入网络系统,其特征在于,所述集中单元控制面实体控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
    所述集中单元控制面实体根据用户面数据的业务类型,控制所述分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    所述集中单元控制面实体根据与用户面数据相关联的终端,控制所述分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    所述集中单元控制面实体根据所述第一卫星上的负载状态,控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    所述集中单元控制面实体根据预配置的策略,控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
  6. 根据权利要求5所述的无线接入网络系统,其特征在于,所述集中单元控制面实体根据用户面数据的业务类型,控制所述分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
    在所述用户面数据的业务类型为终端到终端业务的情况下,所述集中单元控制面实体控制所述分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为高安全等级业务的情况下,所述集中单元控制面实体控制所述分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为非终端到终端业务的情况下,所述集中单元控制面实体控制所述分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
  7. 根据权利要求1所述的无线接入网络系统,其特征在于,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
  8. 一种数据传输控制方法,其特征在于,应用于无线接入网络系统中的集中单元控制面实体,其中所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备,所述第一接入网设备包括分布单元实体和第一集中单元用户面实体,所述第二接入网设备包括第二集中单元用户面实体,所述第一接入网设备和/或所述第二接入网设备包括所述集中单元控制面实体,所述方法包括:
    确定数据传输链路,所述数据传输链路包括所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路;
    控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
  9. 根据权利要求8所述的数据传输控制方法,其特征在于,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
  10. 根据权利要求9所述的数据传输控制方法,其特征在于,在所述第 一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述方法还包括:
    所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体进行连接管理。
  11. 根据权利要求8所述的数据传输控制方法,其特征在于,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
  12. 根据权利要求8至11任一项所述的数据传输控制方法,其特征在于,所述控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
    根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    根据与用户面数据相关联的终端,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    根据所述第一卫星上的负载状态,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    根据预配置的策略,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
  13. 根据权利要求12所述的数据传输控制方法,其特征在于,所述根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
    在所述用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络 设备;或者,
    在所述用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
  14. 根据权利要求8所述的数据传输控制方法,其特征在于,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
  15. 一种无线接入网络系统中的集中单元控制面实体,其特征在于,所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备,所述第一接入网设备包括分布单元实体和第一集中单元用户面实体,所述第二接入网设备包括第二集中单元用户面实体,所述第一接入网设备和/或所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定数据传输链路,所述数据传输链路包括所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路;
    控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
  16. 根据权利要求15所述的集中单元控制面实体,其特征在于,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实 体通信连接;或者,
    所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
  17. 根据权利要求16所述的集中单元控制面实体,其特征在于,在所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述操作还包括:
    所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体进行连接管理。
  18. 根据权利要求15所述的集中单元控制面实体,其特征在于,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
  19. 根据权利要求15至18任一项所述的集中单元控制面实体,其特征在于,所述控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
    根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    根据与用户面数据相关联的终端,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    根据所述第一卫星上的负载状态,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    根据预配置的策略,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
  20. 根据权利要求19所述的集中单元控制面实体,其特征在于,所述根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
    在所述用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
  21. 根据权利要求15所述的集中单元控制面实体,其特征在于,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
  22. 一种数据传输控制装置,其特征在于,应用于无线接入网络系统中的集中单元控制面实体,其中所述无线接入网络系统包括设于第一卫星上的第一接入网设备和设于所述第一卫星以外的第二接入网设备,所述第一接入网设备包括分布单元实体和第一集中单元用户面实体,所述第二接入网设备包括第二集中单元用户面实体,所述第一接入网设备和/或所述第二接入网设备包括所述集中单元控制面实体,所述装置包括:
    确定单元,用于确定数据传输链路,所述数据传输链路包括所述第一接入网设备内的第一链路,和/或,所述第一接入网设备和所述第二接入网设备之间的第二链路;
    控制单元,用于控制所述分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    所述第一链路包括由所述分布单元实体和所述第一集中单元用户面实体所连通的数据传输链路,所述第二链路包括由所述分布单元实体和所述第二集中单元用户面实体所连通的数据传输链路。
  23. 根据权利要求22所述的数据传输控制装置,其特征在于,所述第一接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别 与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第二接入网设备包括所述集中单元控制面实体,所述集中单元控制面实体还分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接;或者,
    所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体,各所述集中单元控制面实体均分别与所述第一集中单元用户面实体和所述第二集中单元用户面实体通信连接。
  24. 根据权利要求23所述的数据传输控制装置,其特征在于,在所述第一接入网设备和所述第二接入网设备均包括集中单元控制面实体的情况下,所述装置还包括:
    接入单元,用于所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体对初始接入用户进行控制管理,并基于用户的类型或者属性确定所述用户在初始接入后转为由所述第一接入网设备的集中单元控制面实体或所述第二接入网设备的集中单元控制面实体进行连接管理。
  25. 根据权利要求22所述的数据传输控制装置,其特征在于,所述第一卫星上设有用户面功能实体,所述用户面功能实体与所述第一集中单元用户面实体通信连接。
  26. 根据权利要求22至25任一项所述的数据传输控制装置,其特征在于,所述控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输,包括以下一项或多项:
    根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    根据与用户面数据相关联的终端,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据;
    根据所述第一卫星上的负载状态,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输;
    根据预配置的策略,控制分布单元实体通过所述第一链路和/或所述第二链路进行用户面数据的传输。
  27. 根据权利要求26所述的数据传输控制装置,其特征在于,所述根据用户面数据的业务类型,控制分布单元实体通过所述第一链路和/或所述第二链路传输所述用户面数据,包括:
    在所述用户面数据的业务类型为终端到终端业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据从一个终端经过星间链路传输到另一个终端,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为高安全等级业务的情况下,控制分布单元实体通过所述第一链路在星间传输所述用户面数据,数据不经过地面网络设备;或者,
    在所述用户面数据的业务类型为非终端到终端业务的情况下,控制分布单元实体通过所述第二链路传输所述用户面数据,数据经过地面网络设备。
  28. 根据权利要求22所述的数据传输控制装置,其特征在于,所述第二接入网设备包括以下一种或多种:设于地面的接入网设备、设于所述第一卫星以外的其他卫星上的接入网设备、设于临空平台上的接入网设备、设于无人机上的接入网设备。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行权利要求8至14所述的方法。
PCT/CN2023/085934 2022-05-12 2023-04-03 无线接入网络系统、数据传输控制方法及装置 WO2023216769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210521049.6 2022-05-12
CN202210521049.6A CN117097387A (zh) 2022-05-12 2022-05-12 无线接入网络系统、数据传输控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023216769A1 true WO2023216769A1 (zh) 2023-11-16

Family

ID=88729639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085934 WO2023216769A1 (zh) 2022-05-12 2023-04-03 无线接入网络系统、数据传输控制方法及装置

Country Status (2)

Country Link
CN (1) CN117097387A (zh)
WO (1) WO2023216769A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200084655A1 (en) * 2017-11-17 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Apparatus and Systems Relating to Data Radio Bearer Inactivity
CN113891407A (zh) * 2020-07-03 2022-01-04 大唐移动通信设备有限公司 一种切换方法和设备
CN113965247A (zh) * 2021-09-30 2022-01-21 北京九天微星科技发展有限公司 一种基于星上upf与5g基站用户面深度融合方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200084655A1 (en) * 2017-11-17 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Apparatus and Systems Relating to Data Radio Bearer Inactivity
CN113891407A (zh) * 2020-07-03 2022-01-04 大唐移动通信设备有限公司 一种切换方法和设备
CN113965247A (zh) * 2021-09-30 2022-01-21 北京九天微星科技发展有限公司 一种基于星上upf与5g基站用户面深度融合方法及系统

Also Published As

Publication number Publication date
CN117097387A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2022148154A1 (zh) 一种通信方法、装置、设备和可读存储介质
US11974172B2 (en) Service node updating method, terminal device, and network-side device
US20230397020A1 (en) Method and apparatus for controlling data transmission, and storage medium
WO2022028041A1 (zh) 用户终端与网络进行通信的方法、终端、网络设备及装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2023078339A1 (zh) 一种数据传输的方法、卫星基站、信关站及存储介质
WO2023216769A1 (zh) 无线接入网络系统、数据传输控制方法及装置
EP4376539A1 (en) Multicast session processing method, network function entity, apparatus, and storage medium
WO2022161210A1 (zh) 资源配置方法、装置、设备以及存储介质
WO2022152092A1 (zh) 数据传输控制方法和装置
WO2022116820A1 (zh) 终端rrc连接恢复的方法和装置
CN114828158B (zh) 信息传输方法、装置、基站及介质
CN117135705A (zh) Xn切换方法、设备、装置及存储介质
CN116530144A (zh) 服务质量参数处理方法、终端设备、网络功能实体和网络设备
WO2022134636A1 (zh) 回传路径切换方法、基站、装置及存储介质
WO2022148205A1 (zh) 多连接下的切换方法和装置
WO2023237006A1 (zh) 一种小数据传输的处理方法、装置及可读存储介质
WO2024082839A1 (zh) 一种信息传输方法、装置及设备
US20230413133A1 (en) Method and apparatus for managing cell identification conflict in communication system
WO2024061075A1 (zh) 网络注册方法及装置
WO2024066882A1 (zh) 控制面信令传输方法、装置及存储介质
WO2023231767A1 (zh) 定时提前值传输方法、装置及存储介质
CN114390727B (zh) 目标对象切换方法及装置、电子设备、网络设备
WO2022148433A1 (zh) 辅小区组scg去激活配置方法及装置、接入网设备
WO2022117054A1 (zh) 终端rrc连接恢复的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802545

Country of ref document: EP

Kind code of ref document: A1