WO2022148154A1 - 一种通信方法、装置、设备和可读存储介质 - Google Patents

一种通信方法、装置、设备和可读存储介质 Download PDF

Info

Publication number
WO2022148154A1
WO2022148154A1 PCT/CN2021/132369 CN2021132369W WO2022148154A1 WO 2022148154 A1 WO2022148154 A1 WO 2022148154A1 CN 2021132369 W CN2021132369 W CN 2021132369W WO 2022148154 A1 WO2022148154 A1 WO 2022148154A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
satellite
network device
satellite node
Prior art date
Application number
PCT/CN2021/132369
Other languages
English (en)
French (fr)
Inventor
康绍莉
缪德山
徐晖
王胡成
孙韶辉
王映民
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP21917195.6A priority Critical patent/EP4277308A1/en
Priority to US18/258,864 priority patent/US20240298156A1/en
Publication of WO2022148154A1 publication Critical patent/WO2022148154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a communication method, apparatus, device, and readable storage medium.
  • T2T services such as voice, SMS, MMS and so on. These services can occur at the user level (referred to as “user T2T”) or at the beam level to which the user belongs (referred to as “beam T2T”).
  • user T2T the user level
  • beam T2T the beam level to which the user belongs
  • Embodiments of the present disclosure provide a communication method, apparatus, device, and readable storage medium, so as to carry out beam T2T services in a low-orbit satellite communication system using a 5G satellite communication system.
  • an embodiment of the present disclosure provides a communication method, executed by a network device of a first satellite node, including:
  • the first information is processed in the following manner:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the method before the processing of the first information, the method further includes:
  • the subscription information is used to indicate the type of T2T service direct communication supported by the first terminal;
  • the first terminal is a terminal supporting the T2T service.
  • sending the first information to the second terminal through the control plane channel includes:
  • the first information is sent to the network equipment of the core network, so that the network equipment of the core network sends the first information to the network equipment of the second satellite node, and then the network equipment of the second satellite node is sent by the network equipment of the core network.
  • the network device of the second satellite node sends the data to the second terminal, wherein the second terminal is located under the beam of the second satellite node.
  • sending the first information to the second terminal via the inter-satellite channel includes:
  • An intermediate inter-satellite channel is determined according to the routing strategy, wherein the intermediate inter-satellite channel includes the network device of the first satellite node, the network device of the target satellite node, and the network device of the second satellite node, or the intermediate channel
  • the inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node;
  • the first information is sent to the second terminal via the intermediate inter-satellite channel.
  • sending the first information to the second terminal via the inter-satellite channel includes:
  • the intermediate inter-satellite channel includes the network equipment of the first satellite node, the network equipment of the target satellite node, and the second satellite
  • the network equipment of the node, or the intermediate inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node.
  • the intermediate inter-satellite channel is a user-level inter-satellite channel, or the intermediate inter-satellite channel is a beam-level inter-satellite channel.
  • the method also includes:
  • Send second information where the second information is used to instruct the network device of the first satellite node to support a cell-level T2T service or a beam-level T2T service.
  • control plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY Physical Layer, physical layer
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, radio link control
  • PHY Packet Data Convergence Protocol
  • PHY Physical Uplink Control
  • MAC Physical Uplink Control
  • RLC Physical Uplink Control
  • PDCP Radio Resource Control
  • RRC Radio Resource Control
  • the data plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY Physical Uplink Control Protocol
  • MAC Physical Uplink Control Protocol
  • RLC Radio Link Control Protocol
  • PDCP Packet Control Protocol
  • SDAP Service Data Adaptation Protocol
  • an embodiment of the present disclosure provides a communication method, executed by a network device of a core network, including:
  • the method further includes one or more of the following steps:
  • a routing policy is sent to the network device of the first satellite node.
  • an embodiment of the present disclosure provides a communication method, executed by a first terminal, including:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the method also includes:
  • the method also includes:
  • the method also includes:
  • the RLC of the first terminal adopts UM (Unacknowledged Mode, unacknowledged mode); and/or
  • the PDCP of the first terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • an embodiment of the present disclosure also provides a communication method, executed by a second terminal, including:
  • the first information is sent by the network device of the first satellite node via the control plane or the inter-satellite channel when determining that the first terminal is a terminal supporting the T2T service;
  • the first information is processed.
  • the method also includes:
  • processing of the first information includes:
  • the first information is processed according to the third information.
  • the RLC of the second terminal adopts an unacknowledged UM mode
  • the PDCP of the second terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • an embodiment of the present disclosure further provides a communication apparatus, which is applied to a network device of a first satellite node, including: a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the first information is processed as follows:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • processor is also used for:
  • the subscription information is used to indicate the type of T2T service direct communication supported by the first terminal;
  • the first terminal is a terminal supporting the T2T service.
  • processor is also used for:
  • the first information is sent to the network equipment of the core network, so that the network equipment of the core network sends the first information to the network equipment of the second satellite node, and then the network equipment of the second satellite node is sent by the network equipment of the core network.
  • the network device of the second satellite node sends the data to the second terminal, wherein the second terminal is located under the beam of the second satellite node.
  • processor is also used for:
  • An intermediate inter-satellite channel is determined according to the routing strategy, wherein the intermediate inter-satellite channel includes the network device of the first satellite node, the network device of the target satellite node, and the network device of the second satellite node, or the intermediate channel
  • the inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node;
  • the first information is sent to the second terminal via the intermediate inter-satellite channel.
  • processor is also used for:
  • the intermediate inter-satellite channel includes the network equipment of the first satellite node, the network equipment of the target satellite node, and the second satellite
  • the network equipment of the node, or the intermediate inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node.
  • the intermediate inter-satellite channel is a user-level inter-satellite channel, or the intermediate inter-satellite channel is a beam-level inter-satellite channel.
  • processor is also used for:
  • Send second information where the second information is used to instruct the network device of the first satellite node to support a cell-level T2T service or a beam-level T2T service.
  • control plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY PHY, MAC, RLC, PDCP, RRC;
  • the data plane protocol structure of the network device of the first satellite node includes any one of the following:
  • an embodiment of the present disclosure further provides a communication apparatus, which is applied to a network device of a core network, including: a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • processor is further configured to execute one or more of the following:
  • a routing policy is sent to the network device of the first satellite node.
  • an embodiment of the present disclosure further provides a communication device, applied to the first terminal, including: a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • processor is also used for:
  • processor is also used for:
  • processor is also used for:
  • the RLC of the first terminal adopts an unacknowledged UM mode
  • the PDCP of the first terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • an embodiment of the present disclosure further provides a communication device, applied to a second terminal, including: a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the first information is sent by the network device of the first satellite node via the control plane or the inter-satellite channel when determining that the first terminal is a terminal supporting the T2T service;
  • the first information is processed.
  • processor is also used for:
  • processor is also used for:
  • the first information is processed according to the third information.
  • the RLC of the second terminal adopts an unacknowledged UM mode
  • the PDCP of the second terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • an embodiment of the present disclosure further provides a communication apparatus, which is applied to a network device of a first satellite node, including:
  • a first receiving unit configured to receive the first information sent by the first terminal
  • a first processing unit configured to process the first information in the following manner when it is determined that the first terminal is a terminal supporting the T2T service:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • a first acquiring unit configured to acquire subscription information of the first terminal, where the subscription information is used to indicate the type of T2T service direct communication supported by the first terminal;
  • a first determining unit configured to determine, according to the subscription information, whether the first terminal is a terminal supporting a T2T service.
  • the first processing unit includes:
  • a first receiving sub-module configured to receive the information of the control plane channel sent by the network device of the core network
  • a first processing submodule configured to send the first information to the network device of the core network according to the information of the control plane channel, so that the network device of the core network sends the first information to the second
  • the network device of the satellite node is then sent to the second terminal by the network device of the second satellite node, wherein the second terminal is located under the beam of the second satellite node.
  • the first processing unit includes:
  • the first obtaining submodule is used to obtain the routing policy configured by the network device of the core network;
  • the first determination submodule is configured to determine an intermediate inter-satellite channel according to the routing strategy, wherein the intermediate inter-satellite channel includes the network device of the first satellite node, the network device of the target satellite node, and the network device of the second satellite node.
  • network equipment, or, the intermediate inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node;
  • the first sending submodule is configured to send the first information to the second terminal via the intermediate inter-satellite channel.
  • the first processing unit includes:
  • a first establishment submodule configured to establish an intermediate inter-satellite channel for the first terminal according to the location information of the second terminal
  • the second sending submodule is configured to send the first information to the second terminal via the intermediate inter-satellite channel, wherein the intermediate inter-satellite channel includes the network equipment of the first satellite node, the target satellite The network device of the node and the network device of the second satellite node, or the intermediate inter-satellite channel includes the network device of the first satellite node and the network device of the second satellite node, and the second terminal is located in the under the beam of the second satellite node.
  • the intermediate inter-satellite channel is a user-level inter-satellite channel, or the intermediate inter-satellite channel is a beam-level inter-satellite channel.
  • the method further includes a first sending unit configured to send second information, where the second information is used to instruct the network equipment of the first satellite node to support cell-level T2T services or beam-level T2T services.
  • control plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY PHY, MAC, RLC, PDCP, RRC;
  • the data plane protocol structure of the network device of the first satellite node includes any one of the following:
  • an embodiment of the present disclosure further provides a communication apparatus, which is applied to a network device of a core network, including:
  • a first receiving unit configured to receive first information sent by the network device of the first satellite node, wherein the first information is when the network device of the first satellite node determines that the first terminal supports the end-to-end T2T service
  • the terminal is sent to the network equipment of the core network when the first information needs to be processed by the control plane;
  • the first sending unit is configured to send the first information to the second terminal.
  • a second receiving unit configured to receive subscription information sent by the first terminal, where the subscription information is used to indicate a T2T service direct communication type supported by the first terminal;
  • a second sending unit configured to send the information of the control plane channel to the network device of the first satellite node and the first terminal;
  • the third sending unit is configured to send the routing policy to the network device of the first satellite node.
  • an embodiment of the present disclosure further provides a communication apparatus, applied to the first terminal, including:
  • a first sending unit configured to send first information to the network device of the first satellite node, where the first information is used to make the network device of the first satellite node determine that the first terminal is a terminal supporting the T2T service , the first information is processed as follows:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the second sending unit is configured to send subscription information to the network device of the first satellite node and the network device of the core network, where the subscription information is used to indicate the direct communication type of the T2T service supported by the first terminal.
  • a first receiving unit configured to receive second information sent by the network device of the first satellite node, where the second information is used to indicate that the network device of the first satellite node supports cell-level T2T services or beam-level T2T services T2T business.
  • a third sending unit configured to send third information to the second terminal, where the third information is used to represent at least one of the following information:
  • the RLC of the first terminal adopts an unacknowledged UM mode
  • the PDCP of the first terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • an embodiment of the present disclosure further provides a communication device, applied to a second terminal, including:
  • the first receiving unit is configured to receive the first information of the first terminal, wherein the first information is that when the network device of the first satellite node determines that the first terminal is a terminal that supports the T2T service, the information is processed by the control plane or sent by inter-satellite channels;
  • a first processing unit configured to process the first information.
  • the second receiving unit is configured to receive third information of the first terminal, where the third information is used to represent at least one of the following information:
  • the first processing unit is configured to process the first information according to the third information.
  • the RLC of the second terminal adopts an unacknowledged UM mode
  • the PDCP of the second terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • an embodiment of the present disclosure further provides a readable storage medium, where a program is stored on the readable storage medium, and when the program is executed by a processor, the steps in the above communication method are implemented.
  • the first information of the first terminal when the first information of the first terminal is received and it is determined that the first terminal supports the T2T service, the first information is sent to the second terminal via the control plane or the inter-satellite channel. Therefore, through the solutions of the embodiments of the present disclosure, the beam T2T service can be implemented in the low-orbit satellite communication system using the 5G satellite communication system.
  • Fig. 1 is the service transmission mode schematic diagram of traditional end-to-end communication
  • FIG. 2 is a schematic diagram of a transmission mode of a T2T service in the related art
  • FIG. 4 is the second flow chart of the communication method provided by the embodiment of the present disclosure.
  • FIG. 5 is the third flowchart of the communication method provided by the embodiment of the present disclosure.
  • FIG. 6 is a fourth flowchart of a communication method provided by an embodiment of the present disclosure.
  • FIG. 8 is one of the structural diagrams of a communication device provided by an embodiment of the present disclosure.
  • FIG. 9 is a second structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 10 is a third structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 11 is a fourth structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 12 is a fifth structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 13 is a sixth structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 14 is a seventh structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 15 is an eighth structural diagram of a communication apparatus provided by an embodiment of the present disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Figure 1 shows a schematic diagram of a traditional end-to-end communication service transmission mode.
  • the service transmission mode of end-to-end communication is "terminal ⁇ satellite ⁇ core network ⁇ satellite ⁇ terminal".
  • the core network plays the role of business management and charging.
  • FIG. 2 it is a schematic diagram of a transmission mode of T2T service in the related art.
  • Embodiments of the present disclosure provide a communication method and apparatus for carrying out beam T2T services in a low-orbit satellite communication system using a 5G satellite communication system.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • applicable systems may be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device of the core network involved in the embodiment of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network equipment can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal equipment and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the network equipment of satellite nodes includes satellites equipped with base station functions.
  • FIG. 3 is a flowchart of a communication method according to an embodiment of the present disclosure, executed by a network device of a first satellite node, including:
  • Step 301 Receive first information sent by a first terminal.
  • the first information may be any information.
  • Step 302 When it is determined that the first terminal is a terminal supporting the T2T service, the first information is processed in the following manner:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the first terminal and the second terminal can support both T2T services and non-T2T services.
  • the basic feature of beam T2T is that users under one beam are directly connected to users of another beam.
  • the network equipment of the first satellite node can identify whether the terminal supports the T2T service, and establish a channel and perform resource allocation based on the beam.
  • the data on the data plane does not pass through the core network, but is transmitted through channels between satellites; the data on the control plane is transmitted to the second terminal through the core network.
  • the network device of the first satellite node may also acquire the subscription information of the first terminal, and determine whether the first terminal supports the subscription according to the subscription information Terminals for T2T services.
  • the subscription information is used to indicate the type of direct communication of the T2T service supported by the first terminal, which may include user or session-level T2T, beam T2T, and the like. Therefore, the network device of the first satellite node can identify the T2T service and the non-T2T service, and can select different routes according to the service type (ie, whether it is a T2T service).
  • the network device of the first satellite node receives the information of the control plane channel sent by the network device of the core network, for example, the route of the control plane channel. Then, the network device of the first satellite node sends the first information to the network device of the core network according to the information of the control plane channel, so that the network device of the core network sends the first information to the first information.
  • the network equipment of the second satellite node is then sent to the second terminal by the network equipment of the second satellite node, wherein the second terminal is located under the beam of the second satellite node.
  • the network device of the first satellite node may determine the transmission channel according to the routing policy obtained from the network device of the core network, or may establish the transmission channel by itself.
  • the network device of the first satellite node can obtain the routing strategy configured by the network device of the core network, and determine the intermediate inter-satellite channel according to the routing strategy,
  • the intermediate inter-satellite channel includes the network equipment of the first satellite node, the network equipment of the target satellite node, and the network equipment of the second satellite node, or the intermediate inter-satellite channel includes the network equipment of the first satellite node.
  • a network device and a network device of the second satellite node, and the second terminal is located under the beam of the second satellite node. Afterwards, the network device of the first satellite node sends the first information to the second terminal via the intermediate inter-satellite channel.
  • the network device of the first satellite node may establish an intermediate inter-satellite channel for the first terminal according to the location information of the second terminal. Then, the first information is sent to the second terminal via the intermediate inter-satellite channel, wherein the intermediate inter-satellite channel includes the network device of the first satellite node, the network device of the target satellite node, and the third terminal.
  • the network equipment of two satellite nodes, or, the intermediate inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located in the beam of the second satellite node Down.
  • the data plane channel includes the network device of the first satellite node, the network device of the second satellite node, etc.
  • the control plane channel includes the network device of the first satellite node and the network of the intermediate satellite node. equipment, network equipment of the second satellite node, etc. That is, the network equipment of other satellite nodes may not pass between the network equipment of the first satellite node and the network equipment of the second satellite node.
  • the established intermediate inter-satellite channel is a user-level inter-satellite channel, or the intermediate inter-satellite channel is a beam-level (or called base station-level) inter-satellite channel aisle.
  • any two users communicate through the T2T tunnel between the network devices of the satellite nodes.
  • the tunnel ID allocated by the network equipment of the satellite node for the direct communication between the satellites is composed of BS ID (base station ID)/IP address (IP address), per UE tunnel ID (tunnel ID of each UE).
  • the network device of the satellite node currently serving the terminal forwards the data packet based on the user's tunnel.
  • the control plane communication process needs to go through the ground core network, that is: the first terminal ⁇ the network equipment of the first satellite node ⁇ the core network ⁇ the network equipment of the second satellite node ⁇ The second terminal; the data plane communication process does not need to go through the ground core network, that is: the first terminal ⁇ the network equipment of the first satellite node ⁇ the network equipment of the second satellite node ⁇ the second terminal, or, the first terminal ⁇ the first satellite The network equipment of the node ⁇ the network equipment of the intermediate satellite node ⁇ the network equipment of the second satellite node ⁇ the second terminal.
  • the network equipment of the first satellite node may have partial or complete control plane functions.
  • the control plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY, MAC, RLC PHY, MAC, RLC, PDCP; PHY, MAC, RLC, PDCP, RRC.
  • the network equipment of the first satellite node may have partial or complete user plane functions.
  • the data plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY, MAC, RLC PHY, MAC, RLC, PDCP; PHY, MAC, RLC, PDCP, SDAP.
  • the first information of the first terminal when the first information of the first terminal is received and it is determined that the first terminal supports the T2T service, the first information is sent to the second terminal via the control plane or the inter-satellite channel. Therefore, through the solutions of the embodiments of the present disclosure, the beam T2T service can be implemented in the low-orbit satellite communication system using the 5G satellite communication system. Therefore, using the solutions of the embodiments of the present disclosure can not only reduce the time delay of communication between users, but also manage services such as confidentiality.
  • the network device of the first satellite node may also send second information, where the second information is used to instruct the network device of the first satellite node to support a cell-level T2T service or a beam-level T2T service.
  • the network device of the first satellite node may notify the terminal through a broadcast message that the network device of the first satellite node supports the cell-level T2T service or the beam-level T2T service.
  • FIG. 4 is a flowchart of a communication method according to an embodiment of the present disclosure, executed by a network device of a core network, including:
  • Step 401 Receive first information sent by a network device of a first satellite node, where the first information is when the network device of the first satellite node determines that the first terminal is a terminal supporting T2T services and the first The information is sent to the network equipment of the core network when it needs to be processed by the control plane.
  • Step 402 Send the first information to the second terminal.
  • the method may further include one or more of the following steps:
  • the network device of the core network receives the subscription information sent by the first terminal, where the subscription information is used to indicate the direct communication type of the T2T service supported by the first terminal, which may include user or session level T2T, beam T2T and the like.
  • the network device of the core network sends the information of the control plane channel, for example, the route of the control plane channel, to the network device of the first satellite node and the first terminal.
  • the network device of the core network sends the routing policy to the network device of the first satellite node.
  • the network device of the core network has complete core network functions.
  • the first information of the first terminal when the first information of the first terminal is received and it is determined that the first terminal supports the T2T service, the first information is sent to the second terminal via the control plane or the inter-satellite channel. Therefore, through the solutions of the embodiments of the present disclosure, the beam T2T service can be implemented in the low-orbit satellite communication system using the 5G satellite communication system. Therefore, using the solutions of the embodiments of the present disclosure can not only reduce the time delay of communication between users, but also manage services such as confidentiality.
  • FIG. 5 is a flowchart of a communication method according to an embodiment of the present disclosure, executed by a first terminal, including:
  • Step 501 Send first information to the network device of the first satellite node, where the first information is used to make the network device of the first satellite node, when determining that the first terminal is a terminal supporting T2T services, follow the steps below:
  • the first information is processed in the following way:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the first terminal can support both T2T services and non-T2T services.
  • the first information of the first terminal when the first information of the first terminal is received and it is determined that the first terminal supports the T2T service, the first information is sent to the second terminal via the control plane or the inter-satellite channel. Therefore, through the solutions of the embodiments of the present disclosure, the beam T2T service can be implemented in the low-orbit satellite communication system using the 5G satellite communication system. Therefore, using the solutions of the embodiments of the present disclosure can not only reduce the time delay of communication between users, but also manage services such as confidentiality.
  • the first terminal may also send subscription information to the network device of the first satellite node and the network device of the core network, where the subscription information is used to indicate the direct communication of the T2T service supported by the first terminal Type, which can include user or session level T2T, beam T2T, etc.
  • the first terminal may also receive second information sent by the network device of the first satellite node, where the second information is used to indicate that the network device of the first satellite node supports cell-level T2T service or beam-level T2T service.
  • the functions of PDCP and SDAP of the base station can be further compressed due to the simplification of service types.
  • the PDCP and SDAP protocol functions of the terminal need to be designed to be equivalent to the terminal protocol of the peer terminal, at least including header compression and decompression (Header compression and decompression using the ROHC protocol), adding Decryption (Ciphering and deciphering), integrity protection and integrity verification (Integrity protection and integrity verification) and other functions need to be implemented between terminals. Therefore, the configuration of related parameters needs to be shared between terminals so that data packets can be transmitted. .
  • the RLC of the first terminal adopts an unacknowledged UM mode; and/or the PDCP of the first terminal supports functions such as reordering and on-demand delivery of logical channels in the unacknowledged mode to higher layers.
  • the first terminal may send third information to the second terminal, where the third information is used to represent at least one of the following information:
  • FIG. 6 is a flowchart of a communication method according to an embodiment of the present disclosure, executed by a second terminal, including:
  • Step 601 Receive first information of a first terminal, where the first information is sent by a network device of a first satellite node via a control plane or an inter-satellite channel when determining that the first terminal is a terminal supporting T2T services. of.
  • Step 602 Process the first information.
  • the RLC of the second terminal adopts an unacknowledged UM mode; and/or, the PDCP of the second terminal supports functions such as reordering, on-demand delivery, etc., of logical channels in the unacknowledged mode to higher layers .
  • the second terminal can support both T2T services and non-T2T services.
  • the second terminal receives third information of the first terminal, where the third information is used to represent at least one of the following information: header compression and decompression in the PDCP functional entity of the first terminal methods, encryption and decryption methods, integrity protection and integrity verification methods.
  • the second terminal may process the first information according to the third information.
  • the first terminal may also receive second information sent by the network device of the first satellite node, where the second information is used to indicate that the network device of the first satellite node supports cell-level T2T services or beam-level T2T services.
  • the network device of the core network determines the network device of the satellite node (such as a satellite base station) that provides the T2T beam according to the location of the target user (such as the second terminal) or the target area, so as to directly establish a tunnel between the network devices of the satellite node; or,
  • the network equipment of the calling user's satellite node can determine the network equipment (such as a satellite base station) of the target satellite node according to the coverage area information of the target T2T beam (the called terminal is located under the target T2T beam), thereby directly establishing an inter-satellite tunnel.
  • the T2T type can be optionally added to the user subscription information of the terminal, indicating the direct communication type of the T2T service supported by the terminal user, specifically including user/session level T2T, beam T2T, etc.;
  • the network device of the core network needs to configure a routing policy to the network device of the satellite node, so that the T2T service data of the terminal can be communicated directly through the inter-satellite tunnel/path.
  • the network device of the core network determines the network device of the satellite node (such as a satellite base station) that provides the T2T beam according to the location of the target user (such as the second terminal) or the target area, so as to directly establish a tunnel between the network devices of the satellite node; or,
  • the network equipment of the calling user's satellite node can determine the network equipment (such as a satellite base station) of the target satellite node according to the coverage area information of the target T2T beam (the called terminal is located under the target T2T beam), thereby directly establishing an inter-satellite tunnel.
  • the T2T type can be optionally added to the user subscription information of the terminal, indicating the direct communication type of the T2T service supported by the terminal user, specifically including user/session level T2T, beam T2T, etc.;
  • the network equipment of the core network needs to configure a routing policy to the network equipment of the satellite node, so that the T2T service data of the terminal can be communicated directly through the inter-satellite tunnel/path.
  • the network equipment of the satellite node supports the user-level inter-satellite channel, and any two users communicate through the T2T tunnel between the network equipment of the satellite node.
  • the tunnel identifier allocated by the network equipment of the satellite node for the direct communication between the satellites is composed of BS ID/IP address and per UE tunnel ID.
  • the network device of the satellite node currently serving the terminal forwards the data packet based on the user's tunnel.
  • the direct communication between users of beam T2T includes both direct communication between multiple users under one beam, and direct communication between users under different beams.
  • the network equipment of the satellite node where A is located the ground gateway station, the core network, the ground gateway station, the network equipment of the satellite node where beam B is located, and then to the terminal under beam B; the user plane data of the terminal under beam A, After being processed by the network equipment of the satellite node where beam A is located, it is directly transmitted to the network equipment of the satellite node where beam B is located at the opposite end through the inter-satellite link, and the network equipment of the satellite node where beam B is located transmits the data to the lower beam B. terminal B.
  • FIG. 7 it is a schematic diagram of the protocol structure of the beam T2T of the network equipment of the satellite node.
  • the network equipment of the satellite node may have partial or complete control plane functions, and may have partial or complete user plane functions.
  • the network device of the satellite node may only support Distributed Unit (DU), specifically including the protocol layer PHY/MAC/RLC.
  • DU Distributed Unit
  • the control signaling of the terminal under beam A is the same as that of non-T2T services.
  • the functions that the DU needs to have are: (1) Identify whether the terminal is a T2T terminal or a common terminal (non-T2T terminal); (2) Distribute the SRB (Signalling Radio Bearer, signaling radio bearer) data of the T2T terminal to the core network.
  • the network equipment distributes the DRB (Data Radio Bearer) data of the T2T terminal to the network equipment of the satellite node; (3) maps the received T2T DRB data to the bearer of the corresponding T2T terminal.
  • the first information of the first terminal when the first information of the first terminal is received and it is determined that the first terminal supports the T2T service, the first information is sent to the second terminal via the control plane or the inter-satellite channel. Therefore, through the solutions of the embodiments of the present disclosure, the beam T2T service can be implemented in the low-orbit satellite communication system using the 5G satellite communication system. Therefore, using the solutions of the embodiments of the present disclosure can not only reduce the time delay of communication between users, but also manage services such as confidentiality.
  • the communication apparatus As shown in FIG. 8 , the communication apparatus according to the embodiment of the present disclosure, applied to the network device of the first satellite node, includes: a processor 800, configured to read a computer program in the memory 820, and execute the following processes:
  • the first information is processed as follows:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the transceiver 810 is used to receive and transmit data under the control of the processor 800 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 800 and various circuits of memory represented by memory 820 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 810 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 800 in performing operations.
  • the processor 810 can be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 800 in performing operations.
  • the processor 800 is further configured to read the program, and perform the following steps:
  • the subscription information is used to indicate the type of T2T service direct communication supported by the first terminal;
  • the first terminal is a terminal supporting the T2T service.
  • the processor 800 is further configured to read the program, and perform the following steps:
  • the first information is sent to the network equipment of the core network, so that the network equipment of the core network sends the first information to the network equipment of the second satellite node, and then the network equipment of the second satellite node is sent by the network equipment of the core network.
  • the network device of the second satellite node sends the data to the second terminal, wherein the second terminal is located under the beam of the second satellite node.
  • the processor 800 is further configured to read the program, and perform the following steps:
  • An intermediate inter-satellite channel is determined according to the routing strategy, wherein the intermediate inter-satellite channel includes the network device of the first satellite node, the network device of the target satellite node, and the network device of the second satellite node, or the intermediate channel
  • the inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node;
  • the first information is sent to the second terminal via the intermediate inter-satellite channel.
  • the processor 800 is further configured to read the program, and perform the following steps:
  • the intermediate inter-satellite channel includes the network equipment of the first satellite node, the network equipment of the target satellite node, and the second satellite
  • the network equipment of the node, or the intermediate inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node.
  • the intermediate inter-satellite channel is a user-level inter-satellite channel, or the intermediate inter-satellite channel is a beam-level inter-satellite channel.
  • the processor 800 is further configured to read the program, and perform the following steps:
  • Send second information where the second information is used to instruct the network device of the first satellite node to support a cell-level T2T service or a beam-level T2T service.
  • control plane protocol structure of the network device of the first satellite node includes any one of the following:
  • PHY PHY, MAC, RLC, PDCP, RRC;
  • the data plane protocol structure of the network device of the first satellite node includes any one of the following:
  • the communication apparatus As shown in FIG. 9 , the communication apparatus according to the embodiment of the present disclosure, applied to a network device of a core network, includes: a processor 900, configured to read a computer program in a memory 920, and execute the following processes:
  • the transceiver 910 is used to receive and transmit data under the control of the processor 900 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 900 and various circuits of memory represented by memory 920 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 910 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 900 in performing operations.
  • the processor 910 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 900 in performing operations.
  • the processor 900 is further configured to read the program and execute one or more of the following:
  • a routing policy is sent to the network device of the first satellite node.
  • the communication apparatus As shown in FIG. 10 , the communication apparatus according to the embodiment of the present disclosure, applied to a first terminal, includes: a processor 1000, configured to read a computer program in a memory 1020, and perform the following processes:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the transceiver 1010 is used for receiving and transmitting data under the control of the processor 1000 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 1000 and various circuits of the memory represented by the memory 1020 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1010 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the user interface 1030 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 may store data used by the processor 1000 when performing operations.
  • the processor 1010 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor 1000 is further configured to read the program and perform the following steps:
  • the processor 1000 is further configured to read the program and perform the following steps:
  • the processor 1000 is further configured to read the program and perform the following steps:
  • the RLC of the first terminal adopts an unacknowledged UM mode
  • the PDCP of the first terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • the communication apparatus As shown in FIG. 11 , the communication apparatus according to the embodiment of the present disclosure, applied to a first terminal, includes: a processor 1100, configured to read a computer program in a memory 1120, and perform the following processes:
  • the first information is sent by the network device of the first satellite node via the control plane or the inter-satellite channel when determining that the first terminal is a terminal supporting the T2T service;
  • the first information is processed.
  • the transceiver 1111 is used to receive and transmit data under the control of the processor 1100 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1100 and various circuits of memory represented by memory 1120 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1111 may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over a transmission medium.
  • the user interface 1130 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 in performing operations.
  • the processor 1111 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor 1100 is further configured to read the program and perform the following steps:
  • the processor 1100 is further configured to read the program and perform the following steps:
  • the first information is processed according to the third information.
  • the RLC of the second terminal adopts an unacknowledged UM mode
  • the PDCP of the second terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • the communication apparatus applied to the network equipment of the first satellite node, includes:
  • a first receiving unit 1201, configured to receive the first information sent by the first terminal
  • the first processing unit 1202 is configured to process the first information in the following manner when it is determined that the first terminal is a terminal supporting the T2T service:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the device may further include:
  • a first acquiring unit configured to acquire subscription information of the first terminal, where the subscription information is used to indicate the type of T2T service direct communication supported by the first terminal;
  • a first determining unit configured to determine, according to the subscription information, whether the first terminal is a terminal supporting a T2T service.
  • the first processing unit includes:
  • a first receiving sub-module configured to receive the information of the control plane channel sent by the network device of the core network
  • a first processing submodule configured to send the first information to the network device of the core network according to the information of the control plane channel, so that the network device of the core network sends the first information to the second
  • the network device of the satellite node is then sent to the second terminal by the network device of the second satellite node, wherein the second terminal is located under the beam of the second satellite node.
  • the first processing unit includes:
  • the first obtaining submodule is used to obtain the routing policy configured by the network device of the core network;
  • the first determination submodule is configured to determine an intermediate inter-satellite channel according to the routing strategy, wherein the intermediate inter-satellite channel includes the network device of the first satellite node, the network device of the target satellite node, and the network device of the second satellite node.
  • network equipment, or, the intermediate inter-satellite channel includes the network equipment of the first satellite node and the network equipment of the second satellite node, and the second terminal is located under the beam of the second satellite node;
  • the first sending submodule is configured to send the first information to the second terminal via the intermediate inter-satellite channel.
  • the first processing unit includes:
  • a first establishment submodule configured to establish an intermediate inter-satellite channel for the first terminal according to the location information of the second terminal
  • the second sending submodule is configured to send the first information to the second terminal via the intermediate inter-satellite channel, wherein the intermediate inter-satellite channel includes the network equipment of the first satellite node, the target satellite The network device of the node and the network device of the second satellite node, or the intermediate inter-satellite channel includes the network device of the first satellite node and the network device of the second satellite node, and the second terminal is located in the under the beam of the second satellite node.
  • the intermediate inter-satellite channel is a user-level inter-satellite channel, or the intermediate inter-satellite channel is a beam-level inter-satellite channel.
  • the device may further include:
  • the first sending unit is configured to send second information, where the second information is used to instruct the network equipment of the first satellite node to support cell-level T2T services or beam-level T2T services.
  • control plane protocol structure of the network device of the first satellite node includes any of the following:
  • PHY PHY, MAC, RLC, PDCP, RRC;
  • the data plane protocol structure of the network device of the first satellite node includes any one of the following:
  • the communication apparatus As shown in FIG. 13 , the communication apparatus according to the embodiment of the present disclosure, applied to the network equipment of the core network, includes:
  • the first receiving unit 1301 is configured to receive first information sent by a network device of a first satellite node, where the first information is when the network device of the first satellite node determines that the first terminal supports end-to-end T2T The terminal of the service and the first information is sent to the network device of the core network when the first information needs to be processed by the control plane;
  • the first sending unit 1302 is configured to send the first information to the second terminal.
  • the device may further include at least one of the following units:
  • a second receiving unit configured to receive subscription information sent by the first terminal, where the subscription information is used to indicate a T2T service direct communication type supported by the first terminal;
  • a second sending unit configured to send the information of the control plane channel to the network device of the first satellite node and the first terminal;
  • the third sending unit is configured to send the routing policy to the network device of the first satellite node.
  • the communication apparatus As shown in FIG. 14 , the communication apparatus according to the embodiment of the present disclosure, applied to the first terminal, includes:
  • the first sending unit 1401 is configured to send first information to the network device of the first satellite node, where the first information is used to enable the network device of the first satellite node to determine that the first terminal is a T2T service-supporting device.
  • the first information is processed in the following manner:
  • the first information When the first information needs to be processed on the control plane, the first information is sent to the second terminal through the control plane channel; when the first information needs to be processed on the data plane, the first information is sent to the second terminal. A message is sent to the second terminal via the inter-satellite channel.
  • the device further includes:
  • the second sending unit is configured to send subscription information to the network device of the first satellite node and the network device of the core network, where the subscription information is used to indicate the direct communication type of the T2T service supported by the first terminal.
  • the device further includes:
  • a first receiving unit configured to receive second information sent by the network device of the first satellite node, where the second information is used to indicate that the network device of the first satellite node supports cell-level T2T services or beam-level T2T services T2T business.
  • the device further includes:
  • a third sending unit configured to send third information to the second terminal, where the third information is used to represent at least one of the following information:
  • the RLC of the first terminal adopts an unacknowledged UM mode
  • the PDCP of the first terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • the communication apparatus As shown in FIG. 15 , the communication apparatus according to the embodiment of the present disclosure, applied to the second terminal, includes:
  • the first receiving unit 1501 is configured to receive first information of a first terminal, wherein the first information is that when the network device of the first satellite node determines that the first terminal is a terminal that supports the T2T service, the information is processed by the control plane. Or sent by inter-satellite channels;
  • the first processing unit 1502 is configured to process the first information.
  • the device further includes:
  • the second receiving unit is configured to receive third information of the first terminal, where the third information is used to represent at least one of the following information:
  • the first processing unit is configured to process the first information according to the third information.
  • the RLC of the second terminal adopts an unacknowledged UM mode
  • the PDCP of the second terminal supports the functions of reordering the logical channels in the unacknowledged mode to the upper layer and delivering on demand.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure essentially or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • Embodiments of the present disclosure further provide a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to make the processor perform any of the foregoing methods.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
  • modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the function of the above determined module.
  • the implementation of other modules is similar. In addition, all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开公开了一种通信方法、装置、设备和可读存储介质,该方法包括:接收第一终端发送的第一信息;当确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。

Description

一种通信方法、装置、设备和可读存储介质
相关申请的交叉引用
本公开主张在2021年01月11日在中国提交的中国专利申请号No.202110031350.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种通信方法、装置、设备和可读存储介质。
背景技术
针对使用星上处理和星间链路的低轨卫星通信系统,为满足降低时延或保密等特殊需求,需要支持一些不经过核心网管理的业务,称为“端到端”(Terminal to Terminal,T2T)业务。
目前常用的T2T业务如语音、短信、彩信等。这些业务可以发生在用户级别(简称“用户T2T”),也可以发生在用户所属的波束级别(简称“波束T2T”)。举例来说,假设1个波束中有2个用户,分别标记为UE1和UE2,如果UE1开展普通业务而UE2开展T2T业务,则UE2的T2T业务称为“用户T2T”;假设1个波束中的所有用户都只开展T2T业务,则称为“波束T2T”,特殊情况下,如果1个波束只服务于1个用户,也称为“波束T2T”。
针对使用5G卫星通信体制的低轨卫星通信系统如何开展波束T2T业务,相关技术中目前没有相关的技术方案。
发明内容
本公开实施例提供一种通信方法、装置、设备和可读存储介质,以在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。
第一方面,本公开实施例提供了一种通信方法,由第一卫星节点的网络设备执行,包括:
接收第一终端发送的第一信息;
当确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,在所述对所述第一信息进行处理之前,所述方法还包括:
获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
其中,所述在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端,包括:
接收核心网的网络设备发送的控制面通道的信息;
根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
其中,所述在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端,包括:
获取核心网的网络设备配置的路由策略;
根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
将所述第一信息经所述中间卫星间通道发送给所述第二终端。
其中,所述在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端,包括:
根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
其中,所述方法还包括:
发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
PHY(Physical Layer,物理层)、MAC(Medium Access Control,媒体接入控制)、RLC(Radio Link Control,无线链路控制);
PHY、MAC、RLC、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议);
PHY、MAC、RLC、PDCP、RRC(Radio Resource Control,无线资源控制);
所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、SDAP(Service Data Adaptation Protocol,服务数据适应协议)。
第二方面,本公开实施例提供了一种通信方法,由核心网的网络设备执行,包括:
接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
将所述第一信息发送给第二终端。
其中,所述方法还包括以下一个或者多个步骤:
接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
向所述第一卫星节点的网络设备发送路由策略。
第三方面,本公开实施例提供了一种通信方法,由第一终端执行,包括:
向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,所述方法还包括:
向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
其中,所述方法还包括:
接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,所述方法还包括:
向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述第一终端的RLC采用UM(Unacknowledged Mode,非确认模式);和/或
所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
第四方面,本公开实施例还提供了一种通信方法,由第二终端执行,包 括:
接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
对所述第一信息进行处理。
其中,所述方法还包括:
接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述对所述第一信息进行处理,包括:
根据所述第三信息,对所述第一信息进行处理。
其中,所述第二终端的RLC采用非确认UM模式;和/或
所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
第五方面,本公开实施例还提供了一种通信装置,应用于第一卫星节点的网络设备,包括:存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收第一终端发送的第一信息;
当确定所述第一终端为支持端到端T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,所述处理器还用于:
获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
其中,所述处理器还用于:
接收核心网的网络设备发送的控制面通道的信息;
根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
其中,所述处理器还用于:
获取核心网的网络设备配置的路由策略;
根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
将所述第一信息经所述中间卫星间通道发送给所述第二终端。
其中,所述处理器还用于:
根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
其中,所述处理器还用于:
发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、RRC;
所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、SDAP。
第六方面,本公开实施例还提供了一种通信装置,应用于核心网的网络设备,包括:存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
将所述第一信息发送给第二终端。
其中,所述处理器还用于执行以下一项或者多项:
接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
向所述第一卫星节点的网络设备发送路由策略。
第七方面,本公开实施例还提供了一种通信装置,应用于第一终端,包括:存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通 道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,所述处理器还用于:
向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
其中,所述处理器还用于:
接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,所述处理器还用于:
向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述第一终端的RLC采用非确认UM模式;和/或
所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
第八方面,本公开实施例还提供了一种通信装置,应用于第二终端,包括:存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
对所述第一信息进行处理。
其中,所述处理器还用于:
接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述处理器还用于:
根据所述第三信息,对所述第一信息进行处理。
其中,所述第二终端的RLC采用非确认UM模式;和/或
所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
第九方面,本公开实施例还提供了一种通信装置,应用于第一卫星节点的网络设备,包括:
第一接收单元,用于接收第一终端发送的第一信息;
第一处理单元,用于当确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,还包括:
第一获取单元,用于获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
第一确定单元,用于根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
其中,所述第一处理单元包括:
第一接收子模块,用于接收核心网的网络设备发送的控制面通道的信息;
第一处理子模块,用于根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
其中,所述第一处理单元包括:
第一获取子模块,用于获取核心网的网络设备配置的路由策略;
第一确定子模块,用于根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述 第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
第一发送子模块,用于将所述第一信息经所述中间卫星间通道发送给所述第二终端。
其中,所述第一处理单元包括:
第一建立子模块,用于根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
第二发送子模块,用于将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
其中,还包括第一发送单元,用于发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、RRC;
所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、SDAP。
第十方面,本公开实施例还提供了一种通信装置,应用于核心网的网络设备,包括:
第一接收单元,用于接收第一卫星节点的网络设备发送的第一信息,其 中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
第一发送单元,用于将所述第一信息发送给第二终端。
其中,还包括以下至少一个单元:
第二接收单元,用于接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
第二发送单元,用于向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
第三发送单元,用于向所述第一卫星节点的网络设备发送路由策略。
第十一方面,本公开实施例还提供了一种通信装置,应用于第一终端,包括:
第一发送单元,用于向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,还包括:
第二发送单元,用于向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
其中,还包括:
第一接收单元,用于接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,还包括:
第三发送单元,用于向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述第一终端的RLC采用非确认UM模式;和/或
所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
第十二方面,本公开实施例还提供了一种通信装置,应用于第二终端,包括:
第一接收单元,用于接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
第一处理单元,用于对所述第一信息进行处理。
其中,还包括:
第二接收单元,用于接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述第一处理单元,用于根据所述第三信息,对所述第一信息进行处理。
其中,所述第二终端的RLC采用非确认UM模式;和/或
所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
第十三方面,本公开实施例还提供一种可读存储介质,所述可读存储介质上存储程序,所述程序被处理器执行时实现如上所述的通信方法中的步骤。
在本公开实施例中,当接收到第一终端的第一信息并在确定第一终端支持T2T业务时,将第一信息经控制面或者卫星间通道发送给第二终端。因此,通过本公开实施例的方案,实现了在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。
附图说明
图1是传统的端到端通信的业务传输方式示意图;
图2是相关技术中T2T业务的传输方式示意图;
图3是本公开实施例提供的通信方法的流程图之一;
图4是本公开实施例提供的通信方法的流程图之二;
图5是本公开实施例提供的通信方法的流程图之三;
图6是本公开实施例提供的通信方法的流程图之四;
图7是为卫星节点的网络设备的波束T2T的协议结构示意图;
图8是本公开实施例提供的通信装置的结构图之一;
图9是本公开实施例提供的通信装置的结构图之二;
图10是本公开实施例提供的通信装置的结构图之三;
图11是本公开实施例提供的通信装置的结构图之四;
图12是本公开实施例提供的通信装置的结构图之五;
图13是本公开实施例提供的通信装置的结构图之六;
图14是本公开实施例提供的通信装置的结构图之七;
图15是本公开实施例提供的通信装置的结构图之八。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1所示为传统的端到端通信的业务传输方式示意图,通常端到端通信的业务传输方式为“终端→卫星→核心网→卫星→终端”。其中,核心网起着业务的管理、计费等作用。如图2所示,为相关技术中T2T业务的传输方式 示意图。
本公开实施例提供了通信方法及装置,用以在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber  unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的核心网的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
卫星节点的网络设备包括搭载了基站功能的卫星等。
参见图3,图3是本公开实施例通信方法的流程图,由第一卫星节点的网络设备执行,包括:
步骤301、接收第一终端发送的第一信息。
其中,所述第一信息可以是任意的信息。
步骤302、当确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
其中,第一终端和第二终端既可以支持T2T业务,也可以支持非T2T业务。
在本公开实施例中,波束T2T具备的基本特征为:一个波束下的用户直接与另一个波束的用户连接。第一卫星节点的网络设备能够识别终端是否支持T2T业务,并基于波束来建立通道和进行资源分配。数据面的数据不经过核心网,而是通过卫星间的通道进行传输;控制面的数据经核心网传输到第二终端。
在具体应用中,在步骤302之前,为提高通信效率,第一卫星节点的网络设备还可获取所述第一终端的签约信息,并根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。其中,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型,可包括用户或会话级T2T,波束T2T等。从而,第一卫星节点的网络设备能够识别T2T业务和非T2T业务,能够依据业务类型(即是否为T2T业务)来选择不同的路由。
在经控制面通道进行处理时,第一卫星节点的网络设备接收核心网的网络设备发送的控制面通道的信息,例如,控制面通道的路由等。然后,第一卫星节点的网络设备根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
在经数据面进行处理时,第一卫星节点的网络设备可根据从核心网的网 络设备获得的路由策略确定传输通道,也可以自身建立传输通道。
具体的,如果根据从核心网的网络设备获得的路由策略确定传输通道,第一卫星节点的网络设备可获取核心网的网络设备配置的路由策略,并根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。之后,第一卫星节点的网络设备将所述第一信息经所述中间卫星间通道发送给所述第二终端。
具体的,如果自身建立传输通道,第一卫星节点的网络设备可根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道。然后,将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
也即,在本公开实施例中,数据面通道包括第一卫星节点的网络设备、第二卫星节点的网络设备等,或者,控制面通道包括第一卫星节点的网络设备、中间卫星节点的网络设备、第二卫星节点的网络设备等。也即在第一卫星节点的网络设备和第二卫星节点的网络设备之间可以不经过其他卫星节点的网络设备。
在第一卫星节点的网络设备在自身建立传输通道时,建立的中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级(或称为基站级)的卫星间通道。
对于用户级的卫星间通道,任意两个用户之间通过卫星节点的网络设备之间的T2T隧道进行通信。卫星节点的网络设备为星间直接通信分配的隧道标识由BS ID(基站标识)/IP address(IP地址)、per UE tunnel ID(每个UE的隧道标识)构成。当前为终端提供服务的卫星节点的网络设备基于用户的隧道进行数据包的转发。
也即,在第一卫星节点的网络设备进行处理时,控制面通信流程需要经过地面核心网,即:第一终端→第一卫星节点的网络设备→核心网→第二卫星节点的网络设备→第二终端;数据面通信流程不需要经过地面核心网,即:第一终端→第一卫星节点的网络设备→第二卫星节点的网络设备→第二终端,或者,第一终端→第一卫星节点的网络设备→中间卫星节点的网络设备→第二卫星节点的网络设备→第二终端。
在具体应用中,第一卫星节点的网络设备可具有部分或者完整的控制面功能。所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
PHY、MAC、RLC;PHY、MAC、RLC、PDCP;PHY、MAC、RLC、PDCP、RRC。
第一卫星节点的网络设备可具有部分或者完整的用户面功能。所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
PHY、MAC、RLC;PHY、MAC、RLC、PDCP;PHY、MAC、RLC、PDCP、SDAP。
在本公开实施例中,当接收到第一终端的第一信息并在确定第一终端支持T2T业务时,将第一信息经控制面或者卫星间通道发送给第二终端。因此,通过本公开实施例的方案,实现了在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。因此,利用本公开实施例的方案,既能够降低用户之间通信的时延,又能够对业务进行保密等管理。
此外,第一卫星节点的网络设备还可发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。例如,第一卫星节点的网络设备可通过广播消息通知终端第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
参见图4,图4是本公开实施例通信方法的流程图,由核心网的网络设备执行,包括:
步骤401、接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的。
步骤402、将所述第一信息发送给第二终端。
在本公开实施例中,所述方法还可包括以下一个或者多个步骤:
核心网的网络设备接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型,可包括用户或会话级T2T,波束T2T等。
核心网的网络设备向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息,例如,控制面通道的路由等。
核心网的网络设备向所述第一卫星节点的网络设备发送路由策略。
其中,在本公开实施例中,核心网的网络设备具有完整的核心网功能。
在本公开实施例中,当接收到第一终端的第一信息并在确定第一终端支持T2T业务时,将第一信息经控制面或者卫星间通道发送给第二终端。因此,通过本公开实施例的方案,实现了在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。因此,利用本公开实施例的方案,既能够降低用户之间通信的时延,又能够对业务进行保密等管理。
参见图5,图5是本公开实施例通信方法的流程图,由第一终端执行,包括:
步骤501、向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
在本公开实施例中,第一终端既可以支持T2T业务,也可以支持非T2T业务。
在本公开实施例中,当接收到第一终端的第一信息并在确定第一终端支持T2T业务时,将第一信息经控制面或者卫星间通道发送给第二终端。因此,通过本公开实施例的方案,实现了在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。因此,利用本公开实施例的方案,既能够降低用户之间通信的时延,又能够对业务进行保密等管理。
此外,为了提高通信效率,第一终端还可向所述第一卫星节点的网络设 备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型,可包括用户或会话级T2T,波束T2T等。
在上述实施例的基础上,第一终端还可接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
对于T2T终端来说,由于采用业务类型的简化,从而可以使得基站的PDCP和SDAP的功能进一步压缩。当基站的PDCP和SDAP去除时,终端的PDCP和SDAP协议功能需要和对端的终端协议进行对等设计,至少包括PDCP功能实体中的头压缩和解压缩(Header compression and decompression using the ROHC protocol)、加解密(Ciphering and deciphering)、完整性保护和完整性验证(Integrity protection and integrity verification)等功能需要通过终端与终端之间来实现,因此,终端之间需共享相关参数的配置,使得数据包可以传输。
同时,所述第一终端的RLC采用非确认UM模式;和/或,所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交等功能。
因此,为保证通信的顺利进行,第一终端可向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
参见图6,图6是本公开实施例通信方法的流程图,由第二终端执行,包括:
步骤601、接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的。
步骤602、对所述第一信息进行处理。
在本公开实施例中,所述第二终端的RLC采用非确认UM模式;和/或,所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交等功能。第二终端既可以支持T2T业务,也可以支持非T2T业务。
为保证通信的顺利进行,第二终端接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
那么,在步骤602中,第二终端可根据所述第三信息,对所述第一信息进行处理。
在上述实施例的基础上,第一终端还可接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
根据以上的实施例的描述,当一个T2T波束仅支持一个用户时,波束T2T的功能配置:
(1)当一个T2T波束仅支持一个用户时,网络配置如下:
核心网的网络设备根据目标用户(如第二终端)的位置或目标区域确定提供T2T波束的卫星节点的网络设备(如卫星基站),从而在卫星节点的网络设备之间直接建立隧道;或者,主叫用户的卫星节点的网络设备可根据目标T2T波束(被叫终端位于该目标T2T波束下)的覆盖区域信息确定目标卫星节点的网络设备(如卫星基站),从而直接建立卫星间隧道。
在终端的用户签约信息可选增加T2T类型,指示终端用户所支持的T2T业务直接通信类型,具体包括用户/会话级T2T,波束T2T等;
核心网的网络设备需向卫星节点的网络设备配置路由策略,使得终端的T2T业务数据可经过卫星间隧道/路径直接通信。
(2)当一个T2T波束仅支持多个用户时,网络配置如下:
核心网的网络设备根据目标用户(如第二终端)的位置或目标区域确定提供T2T波束的卫星节点的网络设备(如卫星基站),从而在卫星节点的网络设备之间直接建立隧道;或者,主叫用户的卫星节点的网络设备可根据目标T2T波束(被叫终端位于该目标T2T波束下)的覆盖区域信息确定目标卫星节点的网络设备(如卫星基站),从而直接建立卫星间隧道。
在终端的用户签约信息可选增加T2T类型,指示终端用户所支持的T2T业务直接通信类型,具体包括用户/会话级T2T,波束T2T等;
核心网的网络设备需向卫星节点的网络设备配置路由策略,使得终端的 T2T业务数据可经过卫星间隧道/路径直接通信。
卫星节点的网络设备支持用户级的卫星间通道,任意两个用户之间通过卫星节点的网络设备之间的T2T隧道通信。卫星节点的网络设备为星间直接通信分配的隧道标识由BS ID/IP address、per UE tunnel ID构成。
当前为终端提供服务的卫星节点的网络设备基于用户的隧道进行数据包的转发。
对于波束T2T的用户间直接通信,既包括一个波束下的多个用户之间的直接通信,也包括不同波束下的用户之间的直接通信。
基于以上配置,当卫星节点的网络设备具备完整的基站功能时,假设波束A的终端和波束B的终端之间进行T2T通信,则波束A下终端的控制信令与非T2T业务相同,经过波束A所在的卫星节点的网络设备、地面信关站、核心网、地面信关站、波束B所在的卫星节点的网络设备,然后到波束B下的终端;波束A下的终端的用户面数据,经波束A所在的卫星节点的网络设备处理后,直接通过星间链路传递给对端波束B所在的卫星节点的网络设备,由波束B所在的卫星节点的网络设备将数据传递给波束B下的终端B。
如图7所示,为卫星节点的网络设备的波束T2T的协议结构示意图。卫星节点的网络设备可具有部分或者完整的控制面功能,可具有部分或者完整的用户面功能。
针对波束T2T,卫星节点的网络设备可以只支持分布式单元(Distributed Unit,DU),具体包括协议层PHY/MAC/RLC。
假设波束A的终端和波束B的终端之间进行T2T通信,则波束A下终端的控制信令与非T2T业务相同,经过波束A所在的卫星节点的网络设备、地面信关站、核心网、地面信关站、波束B所在的卫星节点的网络设备,然后到波束B下的终端;波束A下的终端的用户面数据,经波束A所在的卫星节点的网络设备的DU处理后,直接通过星间链路传递给对端波束B所在的卫星节点的网络设备的DU,由波束B所在的卫星节点的网络设备将数据传递给波束B下的终端B。
对于卫星节点的网络设备的DU,需要实现RLC PDU(Protocol Data Unit,协议数据单元)数据分发功能,根据终端类别以及RB(Radio Bearer,无线 承载)属性,将数据流分发到相应的单元。即,DU需要具备的功能有:(1)识别终端是T2T终端还是普通终端(非T2T终端);(2)将T2T终端的SRB(Signalling Radio Bearer,信令无线承载)数据分发到核心网的网络设备,将T2T终端的DRB(Data Radio Bearer,数据无线承载)数据分发给卫星节点的网络设备;(3)将收到的T2T DRB数据映射到对应T2T终端的承载上。
在本公开实施例中,当接收到第一终端的第一信息并在确定第一终端支持T2T业务时,将第一信息经控制面或者卫星间通道发送给第二终端。因此,通过本公开实施例的方案,实现了在使用5G卫星通信体制的低轨卫星通信系统中开展波束T2T业务。因此,利用本公开实施例的方案,既能够降低用户之间通信的时延,又能够对业务进行保密等管理。
如图8所示,本公开实施例的通信装置,应用于第一卫星节点的网络设备,包括:处理器800,用于读取存储器820中的计算机程序,执行下列过程:
接收第一终端发送的第一信息;
当确定所述第一终端为支持端到端T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
收发机810,用于在处理器800的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
处理器810可以是中央处埋器(Central Processing Unit,CPU)、专用集 成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
处理器800还用于读取所述程序,执行如下步骤:
获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
处理器800还用于读取所述程序,执行如下步骤:
接收核心网的网络设备发送的控制面通道的信息;
根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
处理器800还用于读取所述程序,执行如下步骤:
获取核心网的网络设备配置的路由策略;
根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
将所述第一信息经所述中间卫星间通道发送给所述第二终端。
处理器800还用于读取所述程序,执行如下步骤:
根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第 一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
处理器800还用于读取所述程序,执行如下步骤:
发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
其中,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、RRC;
所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、SDAP。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图9所示,本公开实施例的通信装置,应用于核心网的网络设备,包括:处理器900,用于读取存储器920中的计算机程序,执行下列过程:
接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
将所述第一信息发送给第二终端。
收发机910,用于在处理器900的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等 之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
处理器910可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
处理器900还用于读取所述程序,执行以下一项或者多项:
接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
向所述第一卫星节点的网络设备发送路由策略。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图10所示,本公开实施例的通信装置,应用于第一终端,包括:处理器1000,用于读取存储器1020中的计算机程序,执行下列过程:
向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
收发机1010,用于在处理器1000的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
处理器1010可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器1000还用于读取所述程序,执行如下步骤:
向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
处理器1000还用于读取所述程序,执行如下步骤:
接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
处理器1000还用于读取所述程序,执行如下步骤:
向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述第一终端的RLC采用非确认UM模式;和/或
所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法 实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图11所示,本公开实施例的通信装置,应用于第一终端,包括:处理器1100,用于读取存储器1120中的计算机程序,执行下列过程:
接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
对所述第一信息进行处理。
收发机1111,用于在处理器1100的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1111可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
处理器1111可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器1100还用于读取所述程序,执行如下步骤:
接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
处理器1100还用于读取所述程序,执行如下步骤:
根据所述第三信息,对所述第一信息进行处理。
其中,所述第二终端的RLC采用非确认UM模式;和/或
所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图12所示,本公开实施例的通信装置,应用于第一卫星节点的网络设备,包括:
第一接收单元1201,用于接收第一终端发送的第一信息;
第一处理单元1202,用于当确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
可选的,所述装置还可包括:
第一获取单元,用于获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
第一确定单元,用于根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
可选的,所述第一处理单元包括:
第一接收子模块,用于接收核心网的网络设备发送的控制面通道的信息;
第一处理子模块,用于根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
可选的,所述第一处理单元包括:
第一获取子模块,用于获取核心网的网络设备配置的路由策略;
第一确定子模块,用于根据所述路由策略确定中间卫星间通道,其中, 所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
第一发送子模块,用于将所述第一信息经所述中间卫星间通道发送给所述第二终端。
可选的,所述第一处理单元包括:
第一建立子模块,用于根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
第二发送子模块,用于将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
可选的,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
可选的,所述装置还可包括:
第一发送单元,用于发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
可选的,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、RRC;
所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
PHY、MAC、RLC;
PHY、MAC、RLC、PDCP;
PHY、MAC、RLC、PDCP、SDAP。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法 实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图13所示,本公开实施例的通信装置,应用于核心网的网络设备,包括:
第一接收单元1301,用于接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
第一发送单元1302,用于将所述第一信息发送给第二终端。
可选的,所述装置还可包括以下至少一个单元:
第二接收单元,用于接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
第二发送单元,用于向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
第三发送单元,用于向所述第一卫星节点的网络设备发送路由策略。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图14所示,本公开实施例的通信装置,应用于第一终端,包括:
第一发送单元1401,用于向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
可选的,所述装置还包括:
第二发送单元,用于向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
可选的,所述装置还包括:
第一接收单元,用于接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
可选的,所述装置还包括:
第三发送单元,用于向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
其中,所述第一终端的RLC采用非确认UM模式;和/或
所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图15所示,本公开实施例的通信装置,应用于第二终端,包括:
第一接收单元1501,用于接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
第一处理单元1502,用于对所述第一信息进行处理。
可选的,所述装置还包括:
第二接收单元,用于接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
可选的,所述第一处理单元,用于根据所述第三信息,对所述第一信息进行处理。
其中,所述第二终端的RLC采用非确认UM模式;和/或
所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、 按需递交功能。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器如前任一所述的方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (58)

  1. 一种通信方法,由第一卫星节点的网络设备执行,包括:
    接收第一终端发送的第一信息;
    当确定所述第一终端为支持端到端T2T业务的终端时,按照如下方式对所述第一信息进行处理:
    在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
  2. 根据权利要求1所述的方法,其中,在所述对所述第一信息进行处理之前,所述方法还包括:
    获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
    根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
  3. 根据权利要求1所述的方法,其中,所述在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端,包括:
    接收核心网的网络设备发送的控制面通道的信息;
    根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
  4. 根据权利要求1所述的方法,其中,所述在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端,包括:
    获取核心网的网络设备配置的路由策略;
    根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
    将所述第一信息经所述中间卫星间通道发送给所述第二终端。
  5. 根据权利要求1所述的方法,其中,所述在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端,包括:
    根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
    将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
  6. 根据权利要求5所述的方法,其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
  7. 根据权利要求1所述的方法,还包括:
    发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
  8. 根据权利要求1所述的方法,其中,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
    物理层PHY、媒体接入控制MAC、无线链路控制RLC;
    PHY、MAC、RLC、分组数据汇聚协议PDCP;
    PHY、MAC、RLC、PDCP、无线资源控制RRC;
    所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
    PHY、MAC、RLC;
    PHY、MAC、RLC、PDCP;
    PHY、MAC、RLC、PDCP、服务数据适应协议SDAP。
  9. 一种通信方法,由核心网的网络设备执行,包括:
    接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
    将所述第一信息发送给第二终端。
  10. 根据权利要求9所述的方法,还包括以下一个或者多个步骤:
    接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
    向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
    向所述第一卫星节点的网络设备发送路由策略。
  11. 一种通信方法,由第一终端执行,包括:
    向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
    在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
  12. 根据权利要求11所述的方法,还包括:
    向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
  13. 根据权利要求11所述的方法,还包括:
    接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
  14. 根据权利要求11所述的方法,还包括:
    向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
    所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
  15. 根据权利要求11所述的方法,其中,
    所述第一终端的RLC采用非确认UM模式;和/或
    所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
  16. 一种通信方法,由第二终端执行,包括:
    接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
    对所述第一信息进行处理。
  17. 根据权利要求16所述的方法,还包括:
    接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
    所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
  18. 根据权利要求17所述的方法,其中,所述对所述第一信息进行处理,包括:
    根据所述第三信息,对所述第一信息进行处理。
  19. 根据权利要求16所述的方法,其中,
    所述第二终端的RLC采用非确认UM模式;和/或
    所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
  20. 一种通信装置,应用于第一卫星节点的网络设备,包括:存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收第一终端发送的第一信息;
    当确定所述第一终端为支持端到端T2T业务的终端时,按照如下方式对所述第一信息进行处理:
    在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
  21. 根据权利要求20所述的装置,其中,所述处理器还用于:
    获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
    根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
  22. 根据权利要求20所述的装置,其中,所述处理器还用于:
    接收核心网的网络设备发送的控制面通道的信息;
    根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
  23. 根据权利要求20所述的装置,其中,所述处理器还用于:
    获取核心网的网络设备配置的路由策略;
    根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
    将所述第一信息经所述中间卫星间通道发送给所述第二终端。
  24. 根据权利要求20所述的装置,其中,所述处理器还用于:
    根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
    将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
  25. 根据权利要求24所述的装置,其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
  26. 根据权利要求20所述的装置,其中,所述处理器还用于:
    发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
  27. 根据权利要求20所述的装置,其中,
    所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
    PHY、MAC、RLC;
    PHY、MAC、RLC、PDCP;
    PHY、MAC、RLC、PDCP、RRC;
    所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
    PHY、MAC、RLC;
    PHY、MAC、RLC、PDCP;
    PHY、MAC、RLC、PDCP、SDAP。
  28. 一种通信装置,应用于核心网的网络设备,包括:存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收第一卫星节点的网络设备发送的第一信息,其中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
    将所述第一信息发送给第二终端。
  29. 根据权利要求28所述的装置,其中,所述处理器还用于执行以下一项或者多项:
    接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
    向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
    向所述第一卫星节点的网络设备发送路由策略。
  30. 一种通信装置,应用于第一终端,包括:存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
    在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
  31. 根据权利要求30所述的装置,其中,所述处理器还用于:
    向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
  32. 根据权利要求30所述的装置,其中,所述处理器还用于:
    接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
  33. 根据权利要求30所述的装置,其中,所述处理器还用于:
    向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
    所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
  34. 根据权利要求30所述的装置,其中,
    所述第一终端的RLC采用非确认UM模式;和/或
    所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
  35. 一种通信装置,应用于第二终端,包括:存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
    对所述第一信息进行处理。
  36. 根据权利要求35所述的装置,其中,所述处理器还用于:
    接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
    所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的 方法、完整性保护和完整性验证的方法。
  37. 根据权利要求36所述的装置,其中,所述处理器还用于:
    根据所述第三信息,对所述第一信息进行处理。
  38. 根据权利要求35所述的装置,其中,
    所述第二终端的RLC采用非确认UM模式;和/或
    所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
  39. 一种通信装置,应用于第一卫星节点的网络设备,包括:
    第一接收单元,用于接收第一终端发送的第一信息;
    第一处理单元,用于当确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
    在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
  40. 根据权利要求39中所述的装置,还包括:
    第一获取单元,用于获取所述第一终端的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信的类型;
    第一确定单元,用于根据所述签约信息,确定所述第一终端是否为支持T2T业务的终端。
  41. 根据权利要求39中所述的装置,其中,所述第一处理单元包括:
    第一接收子模块,用于接收核心网的网络设备发送的控制面通道的信息;
    第一处理子模块,用于根据所述控制面通道的信息,将所述第一信息发送给核心网的网络设备,以使所述核心网的网络设备将所述第一信息发送给第二卫星节点的网络设备,再由所述第二卫星节点的网络设备发送给所述第二终端,其中,所述第二终端位于所述第二卫星节点的波束下。
  42. 根据权利要求39中所述的装置,其中,所述第一处理单元包括:
    第一获取子模块,用于获取核心网的网络设备配置的路由策略;
    第一确定子模块,用于根据所述路由策略确定中间卫星间通道,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网 络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下;
    第一发送子模块,用于将所述第一信息经所述中间卫星间通道发送给所述第二终端。
  43. 根据权利要求39中所述的装置,其中,所述第一处理单元包括:
    第一建立子模块,用于根据所述第二终端所在的位置信息,为所述第一终端建立中间卫星间通道;
    第二发送子模块,用于将所述第一信息经所述中间卫星间通道发送给所述第二终端,其中,所述中间卫星间通道包括所述第一卫星节点的网络设备、目标卫星节点的网络设备以及第二卫星节点的网络设备,或者,所述中间卫星间通道包括所述第一卫星节点的网络设备和所述第二卫星节点的网络设备,所述第二终端位于所述第二卫星节点的波束下。
  44. 根据权利要求43中所述的装置,其中,所述中间卫星间通道为用户级的卫星间通道,或者,所述中间卫星间通道为波束级的卫星间通道。
  45. 根据权利要求39中所述的装置,其中,还包括第一发送单元,用于发送第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
  46. 根据权利要求39中所述的装置,其中,所述第一卫星节点的网络设备的控制面协议结构包括以下任意一种:
    PHY、MAC、RLC;
    PHY、MAC、RLC、PDCP;
    PHY、MAC、RLC、PDCP、RRC;
    所述第一卫星节点的网络设备的数据面协议结构包括以下任意一种:
    PHY、MAC、RLC;
    PHY、MAC、RLC、PDCP;
    PHY、MAC、RLC、PDCP、SDAP。
  47. 一种通信装置,应用于核心网的网络设备,其中,包括:
    第一接收单元,用于接收第一卫星节点的网络设备发送的第一信息,其 中,所述第一信息是所述第一卫星节点的网络设备在确定第一终端为支持端到端T2T业务的终端且所述第一信息需经控制面处理时发送给所述核心网的网络设备的;
    第一发送单元,用于将所述第一信息发送给第二终端。
  48. 根据权利要求47中所述的装置,还包括以下至少一个单元:
    第二接收单元,用于接收所述第一终端发送的签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型;
    第二发送单元,用于向所述第一卫星节点的网络设备以及所述第一终端发送控制面通道的信息;
    第三发送单元,用于向所述第一卫星节点的网络设备发送路由策略。
  49. 一种通信装置,应用于第一终端,其中,包括:
    第一发送单元,用于向第一卫星节点的网络设备发送第一信息,所述第一信息用于使得所述第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,按照如下方式对所述第一信息进行处理:
    在所述第一信息需经控制面处理的情况下,将所述第一信息经控制面通道发送给第二终端;在所述第一信息需经数据面处理的情况下,将所述第一信息经卫星间通道发送给第二终端。
  50. 根据权利要求49中所述的装置,还包括:
    第二发送单元,用于向所述第一卫星节点的网络设备和核心网的网络设备发送签约信息,所述签约信息用于指示所述第一终端支持的T2T业务直接通信类型。
  51. 根据权利要求49中所述的装置,还包括:
    第一接收单元,用于接收所述第一卫星节点的网络设备发送的第二信息,所述第二信息用于指示所述第一卫星节点的网络设备支持小区级的T2T业务或者波束级的T2T业务。
  52. 根据权利要求49中所述的装置,还包括:
    第三发送单元,用于向第二终端发送第三信息,所述第三信息用于表示以下至少一项信息:
    所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的 方法、完整性保护和完整性验证的方法。
  53. 根据权利要求49中所述的装置,其中,所述第一终端的RLC采用非确认UM模式;和/或
    所述第一终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
  54. 一种通信装置,应用于第二终端,其中,包括:
    第一接收单元,用于接收第一终端的第一信息,其中,所述第一信息是第一卫星节点的网络设备在确定所述第一终端为支持T2T业务的终端时,经控制面或者卫星间通道发送的;
    第一处理单元,用于对所述第一信息进行处理。
  55. 根据权利要求54中所述的装置,还包括:
    第二接收单元,用于接收所述第一终端的第三信息,所述第三信息用于表示以下至少一项信息:
    所述第一终端的PDCP功能实体中的头压缩和解压缩的方法、加解密的方法、完整性保护和完整性验证的方法。
  56. 根据权利要求55中所述的装置,其中,所述第一处理单元,用于根据所述第三信息,对所述第一信息进行处理。
  57. 根据权利要求54中所述的装置,其中,所述第二终端的RLC采用非确认UM模式;和/或
    所述第二终端的PDCP支持非确认模式下的逻辑信道向高层进行重排序、按需递交功能。
  58. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如权利要求1至19任一项所述的方法。
PCT/CN2021/132369 2021-01-11 2021-11-23 一种通信方法、装置、设备和可读存储介质 WO2022148154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21917195.6A EP4277308A1 (en) 2021-01-11 2021-11-23 Communication method and apparatus, device, and readable storage medium
US18/258,864 US20240298156A1 (en) 2021-01-11 2021-11-23 Communication method, device, apparatus and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031350.4A CN114827920B (zh) 2021-01-11 2021-01-11 一种通信方法、装置、设备和可读存储介质
CN202110031350.4 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022148154A1 true WO2022148154A1 (zh) 2022-07-14

Family

ID=82357097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132369 WO2022148154A1 (zh) 2021-01-11 2021-11-23 一种通信方法、装置、设备和可读存储介质

Country Status (4)

Country Link
US (1) US20240298156A1 (zh)
EP (1) EP4277308A1 (zh)
CN (1) CN114827920B (zh)
WO (1) WO2022148154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347513A (zh) * 2022-12-27 2023-06-27 中国电信股份有限公司卫星通信分公司 通信方法及装置、通信系统、存储介质及电子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116112065B (zh) * 2023-04-10 2023-06-06 银河航天(北京)网络技术有限公司 基于卫星通信的文件共享方法、系统、装置及存储介质
WO2024212250A1 (zh) * 2023-04-14 2024-10-17 Oppo广东移动通信有限公司 数据传输方法和卫星
CN116633415B (zh) * 2023-04-28 2024-04-26 中国科学院信息工程研究所 基于异构网络的通信方法、装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257418A (zh) * 2018-08-22 2019-01-22 西安电子科技大学 一种基于移动可靠传输代理的分段可靠传输方法
CN110224937A (zh) * 2019-07-23 2019-09-10 中国联合网络通信集团有限公司 一种卫星网络路由方法、设备及装置
CN110601746A (zh) * 2019-09-30 2019-12-20 中国电子科技集团公司第五十四研究所 一种基于星上处理的通信卫星中多控制器并发管控方法
CN110784836A (zh) * 2019-10-18 2020-02-11 重庆克让通讯有限公司 个人移动终端在飞机上实现宽带通信的系统及方法
CN110891295A (zh) * 2019-12-25 2020-03-17 深圳市星网荣耀科技有限公司 一种卫星通信与地面通信网络融合的路由方法和路由装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167918A1 (en) * 1998-12-24 2002-11-14 Brewer Charles R. Real-time satellite communication system using separate control and data transmission paths
CN103188010B (zh) * 2011-12-29 2016-09-28 北京信威通信技术股份有限公司 一种基于星上交换的卫星移动通信方法和装置
CN104661276B (zh) * 2014-12-19 2018-04-03 中国人民解放军理工大学 基于ip的多波束卫星移动通信路由选择方法
CN106506061B (zh) * 2016-11-08 2019-09-20 中国电子科技集团公司第七研究所 卫星通信系统的数据传输方法和系统
CN108495278B (zh) * 2018-02-11 2021-04-13 北京盛安同力科技开发有限公司 一种卫星网络中低时延资源控制的业务传输方法
CN108429578B (zh) * 2018-03-23 2019-08-06 中国电子科技集团公司第五十四研究所 一种卫星移动通信系统TtT通信方法
CN108882307B (zh) * 2018-04-27 2022-08-16 中国电子科技集团公司电子科学研究院 一种控制与业务分离的方法及装置
CN109039434B (zh) * 2018-09-13 2021-02-09 上海垣信卫星科技有限公司 一种用于安全卫星通信的方法
CN111224707B (zh) * 2018-11-26 2021-12-28 华为技术有限公司 卫星、终端设备、卫星通信系统和卫星通信方法
CN110034817B (zh) * 2019-04-29 2020-06-19 北京邮电大学 基于软件定义网络的低轨道卫星网络路由方法及装置
CN111585641B (zh) * 2020-05-09 2021-04-13 中山大学 一种用于低轨星座的卫星mimo自适应传输方法
CN112087456B (zh) * 2020-09-10 2021-06-11 上海清申科技发展有限公司 面向复杂卫星载荷的遥测数据处理方法、装置、系统、电子设备及可读介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257418A (zh) * 2018-08-22 2019-01-22 西安电子科技大学 一种基于移动可靠传输代理的分段可靠传输方法
CN110224937A (zh) * 2019-07-23 2019-09-10 中国联合网络通信集团有限公司 一种卫星网络路由方法、设备及装置
CN110601746A (zh) * 2019-09-30 2019-12-20 中国电子科技集团公司第五十四研究所 一种基于星上处理的通信卫星中多控制器并发管控方法
CN110784836A (zh) * 2019-10-18 2020-02-11 重庆克让通讯有限公司 个人移动终端在飞机上实现宽带通信的系统及方法
CN110891295A (zh) * 2019-12-25 2020-03-17 深圳市星网荣耀科技有限公司 一种卫星通信与地面通信网络融合的路由方法和路由装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347513A (zh) * 2022-12-27 2023-06-27 中国电信股份有限公司卫星通信分公司 通信方法及装置、通信系统、存储介质及电子装置
CN116347513B (zh) * 2022-12-27 2024-05-24 中国电信股份有限公司卫星通信分公司 通信方法及装置、通信系统、存储介质及电子装置

Also Published As

Publication number Publication date
CN114827920A (zh) 2022-07-29
US20240298156A1 (en) 2024-09-05
EP4277308A1 (en) 2023-11-15
CN114827920B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2022148154A1 (zh) 一种通信方法、装置、设备和可读存储介质
WO2022156439A1 (zh) 信息传输方法、装置、基站及介质
WO2022028041A1 (zh) 用户终端与网络进行通信的方法、终端、网络设备及装置
WO2022073431A1 (zh) 数据处理方法、设备、装置和存储介质
WO2023125107A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023078339A1 (zh) 一种数据传输的方法、卫星基站、信关站及存储介质
WO2023041027A1 (zh) 数据处理方法、装置及设备
CN115915490A (zh) 建立数据传输路径的方法、装置、设备以及存储介质
CN115189820A (zh) 一种降低时延的方法、装置、终端及设备
CN115190605A (zh) 数据传输方法、装置及存储介质
CN115915022B (zh) 组播广播业务数据传输方法、装置、设备以及存储介质
WO2023061081A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023005887A1 (zh) QoS参数配置方法、设备、装置及存储介质
CN114585110B (zh) 终端进入非激活态的控制方法和装置
CN114390622A (zh) 一种信息传输方法、装置及通信设备
CN105052197A (zh) 数据分流控制装置和方法
WO2023011030A1 (zh) 一种数据包激活方法、装置、网络设备和终端
WO2025016108A1 (zh) 信息处理、传输方法、装置、终端及网络设备
CN115052370A (zh) 点到多点的数据传输方法、装置、电子设备及存储介质
WO2024230289A1 (zh) 缓冲区状态报告上报方法、装置、终端及网络设备
CN119316934A (zh) 信息传输方法、装置、终端及网络设备
WO2025077726A1 (zh) 信息传输方法、装置、终端及网络设备
WO2024066666A1 (zh) 数据传输优先级确定方法、装置及设备
CN117479109A (zh) 组播广播业务mbs的传输方法、装置、终端及通信设备
WO2023116627A1 (zh) 信息处理方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917195

Country of ref document: EP

Effective date: 20230811