WO2023078339A1 - 一种数据传输的方法、卫星基站、信关站及存储介质 - Google Patents

一种数据传输的方法、卫星基站、信关站及存储介质 Download PDF

Info

Publication number
WO2023078339A1
WO2023078339A1 PCT/CN2022/129492 CN2022129492W WO2023078339A1 WO 2023078339 A1 WO2023078339 A1 WO 2023078339A1 CN 2022129492 W CN2022129492 W CN 2022129492W WO 2023078339 A1 WO2023078339 A1 WO 2023078339A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
satellite base
functional module
station
data
Prior art date
Application number
PCT/CN2022/129492
Other languages
English (en)
French (fr)
Inventor
孙建成
缪德山
周叶
梁靖
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023078339A1 publication Critical patent/WO2023078339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the application relates to the field of satellite communication, in particular to a data transmission method, a satellite base station, a gateway station and a storage medium.
  • Satellite Internet has the advantages of wide coverage and little impact from natural disasters and physical attacks. It can be deeply integrated with the terrestrial mobile communication network to make up for the shortcomings of the insufficient coverage of the terrestrial mobile communication network, and form a fusion network system with complementary advantages, close integration, and three-dimensional layering with the terrestrial mobile communication network, and finally realize the transmission of information on a global scale and interact.
  • the satellite whose communication mode adopts the regenerative mode is used as a base station (hereinafter referred to as the satellite base station), and the satellite base station is connected to the satellite terminal and the gateway station (Gate Way).
  • the satellite base station can detect the signal sent by the satellite terminal, process the detected signal and forward it to the gateway station.
  • the communication between the base station and the core network is carried out through a wired connection, while in the satellite Internet, the communication between the satellite base station and the core network needs to be realized through the gateway station, because the communication between the satellite base station and the gateway station uses It is a non-standard protocol, which makes the data and signaling transmitted on the feeder link between the satellite base station and the gateway station more complicated.
  • This application provides a data transmission method, satellite base station, gateway station, and storage medium to solve the complexities of data and signaling transmitted on the feeder link between the satellite base station and the gateway station in the prior art. high technical issues.
  • a data transmission method provided by the embodiment of the present application is as follows:
  • the satellite base station determines that it is accessed as a gateway station of the functional module of the user equipment UE;
  • the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module; wherein, the feeding DRB is used as a feeder link bearer for transmitting signaling and data between the satellite base station and the gateway station .
  • the satellite base station determines itself to be accessed as a gateway station of the functional module of the user equipment UE, including:
  • the satellite base station receives the random access request sent by any UE functional module in the gateway station;
  • the satellite base station generates response information of the random access request, sends the response information to the UE functional module, and establishes a radio resource control RRC connection with the UE functional module.
  • the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module, including:
  • the satellite base station determines the identity information of the UE functional module according to the establishment reason of the RRC connection or the relevant information of the UE functional module;
  • the satellite base station allocates at least one feeder DRB to the functional module; wherein each feeder DRB bears a different service type.
  • the business type includes:
  • At least one of N2 signaling and N3 data At least one of N2 signaling and N3 data.
  • the N2 signaling includes:
  • At least one of UE-related N2 signaling and non-UE-related signaling At least one of UE-related N2 signaling and non-UE-related signaling.
  • the N3 data includes:
  • a possible implementation manner also includes:
  • the satellite base station controls the total access amount and service acceptance amount of common UEs on the air interface of the satellite base station.
  • the satellite base station controls the total amount of access and the total amount of services accepted by ordinary UEs on the air interface of the satellite base station according to the carrying capacity and load of the feeder link, including:
  • the satellite base station determines the maximum carrying capacity of the feeding link according to the UE capability reported by the UE functional module;
  • the satellite base station decides whether to allow ordinary UEs to access the feeder beam where the gateway station is located, or decides whether to allow all
  • the common UE accesses other service beams of the satellite base station, or decides whether to accept the session establishment request of the common UE initiated by the core network.
  • the method also includes:
  • feeding beam is a dedicated beam of the gateway station, ordinary UE is not allowed to access;
  • the feeding beam is a non-dedicated beam of the gateway station, then the data scheduling of the feeding DRB is preferentially guaranteed in the feeding cell where the gateway station is located.
  • the embodiment of the present application provides a data transmission method, including:
  • the gateway station itself, as a user equipment UE functional module, accesses the satellite base station, so that the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module;
  • the gateway station establishes a feeder link with the satellite base station through the at least one feeder DRB;
  • the gateway transmits signaling and data with the satellite base station on the feeder link.
  • the gateway station includes at least one UE functional module, and the gateway station itself accesses the satellite base station as a user equipment UE functional module, including:
  • the gateway station sends a random access request to the corresponding satellite base station through at least one UE functional module;
  • the gateway station receives the response information of the random access request sent by the satellite base station, and establishes a radio resource control RRC connection between the UE function module and the satellite base station according to the response information.
  • the protocol of the feeder link includes:
  • the feeding user plane protocol stack includes a packet data convergence protocol PDCP layer, a radio link control RLC layer, a media access control MAC layer, and a physical PHY layer; the feeding control plane protocol stack includes a radio resource control RRC layer , PDCP layer, RLC layer, MAC layer, PHY layer.
  • an embodiment of the present application provides a satellite base station, where the satellite base station includes: at least one processor; a transceiver communicatively connected to the at least one processor; and a memory communicatively connected to the at least one processor ; wherein, the transceiver performs data reception and transmission under the control of a processor; the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, to enable the at least one processor to:
  • the feeding DRB serves as a feeding link bearer for transmitting signaling and data between the satellite base station and the gateway station.
  • the processor is further configured to:
  • Generate response information of the random access request send the response information to the UE functional module, and establish a radio resource control RRC connection with the UE functional module.
  • the processor is further configured to:
  • the identity information is the UE functional module of the gateway station, at least one feeder DRB is allocated to the functional module; wherein each feeder DRB corresponds to bear a different service type.
  • the business type includes:
  • At least one of N2 signaling and N3 data At least one of N2 signaling and N3 data.
  • the N2 signaling includes:
  • At least one of UE-related N2 signaling and non-UE-related signaling At least one of UE-related N2 signaling and non-UE-related signaling.
  • the N3 data includes:
  • the processor is further configured to:
  • the processor is further configured to:
  • the processor is further configured to:
  • feeding beam is a dedicated beam of the gateway station, ordinary UE is not allowed to access;
  • the feeding beam is a non-dedicated beam of the gateway station, then the data scheduling of the feeding DRB is preferentially guaranteed in the feeding cell where the gateway station is located.
  • an embodiment of the present application provides a gateway station, where the gateway station includes: at least one processor; a transceiver communicatively connected to the at least one processor; and a transceiver communicatively connected to the at least one processor memory; wherein, the transceiver performs data reception and transmission under the control of the processor; the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor Execute to enable the at least one processor to:
  • the gateway station itself, as a user equipment UE functional module, accesses the satellite base station, so that the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module;
  • Signaling and data are transmitted with the satellite base station on the feeder link.
  • the processor is further configured to:
  • the gateway station includes at least one UE functional module
  • the protocol of the feeder link includes:
  • the feeding user plane protocol stack includes a packet data convergence protocol PDCP layer, a radio link control RLC layer, a media access control MAC layer, and a physical PHY layer; the feeding control plane protocol stack includes a radio resource control RRC layer , PDCP layer, RLC layer, MAC layer, PHY layer.
  • the embodiment of the present application provides a satellite base station, including:
  • the determination unit is used for the satellite base station to determine itself as the gateway station access of the user equipment UE functional module;
  • a configuration unit configured to configure at least one feeder data radio bearer DRB for the UE functional module; wherein, the feeder DRB is used as a bearer of a feeder link, and is used to transmit signaling and data between a satellite base station and a gateway station data.
  • the determining unit is further configured to:
  • the satellite base station receives a random access request sent by a UE functional module in the gateway station;
  • the satellite base station generates the response information of the random access request, and sends it to the UE functional module to establish a radio resource control RRC connection.
  • the configuration unit is also used for:
  • the satellite base station determines the identity information of the UE functional module according to the establishment reason of the RRC connection or the relevant information of the UE functional module;
  • the satellite base station allocates at least one feeder DRB to the functional module; wherein each feeder DRB bears a different service type.
  • the business type includes:
  • At least one of N2 signaling and N3 data At least one of N2 signaling and N3 data.
  • the N2 signaling includes:
  • At least one of UE-related N2 signaling and non-UE-related signaling At least one of UE-related N2 signaling and non-UE-related signaling.
  • the N3 data includes:
  • the configuration unit is also used for:
  • the satellite base station controls the total access amount and service acceptance amount of common UEs on the air interface of the satellite base station.
  • the configuration unit is also used for:
  • the satellite base station determines the maximum carrying capacity of the feeding link according to the UE capability reported by the UE functional module;
  • the satellite base station decides whether to allow ordinary UEs to access the feeder beam where the gateway station is located, or decides whether to allow all
  • the common UE accesses other service beams of the satellite base station, or decides whether to accept the session establishment request of the common UE initiated by the core network.
  • the configuration unit is also used for:
  • feeding beam is a dedicated beam of the gateway station, ordinary UE is not allowed to access;
  • the feeding beam is a non-dedicated beam of the gateway station, then the data scheduling of the feeding DRB is preferentially guaranteed in the feeding cell where the gateway station is located.
  • the embodiment of the present application provides a gateway station, including:
  • the access unit is used for the gateway station itself to access the satellite base station as a user equipment UE functional module, so that the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module;
  • An establishment unit configured to establish a feeder link with the satellite base station through the at least one feeder DRB;
  • a transmission unit configured to transmit signaling and data with the satellite base station on the feeder link.
  • the access unit is used for:
  • the gateway station includes at least one UE functional module
  • the protocol of the feeder link includes:
  • the feeding user plane protocol stack includes a packet data convergence protocol PDCP layer, a radio link control RLC layer, a media access control MAC layer, and a physical PHY layer; the feeding control plane protocol stack includes a radio resource control RRC layer , PDCP layer, RLC layer, MAC layer, PHY layer.
  • the embodiment of the present application further provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to perform the process described in the first aspect or the second aspect. The method described in the two aspects.
  • the embodiments of the present application have at least the following technical effects:
  • the gateway station itself is connected to the satellite base station as a UE functional module, and the satellite base station configures the feeder DRB for the UE functional module of the gateway station as the bearer of the feeder link, so that the In the satellite 5G fusion system, the feeder link support based on the NR-Uu interface is provided for the satellite base station, and the DRB of the NR-Uu interface is used to carry the transmission of signaling and data between the satellite base station and the gateway station, so that it can be used in different gateway stations
  • the unified communication standard communicates with the satellite base station, which reduces the complexity of data and signaling transmission between the satellite base station and the gateway station, and thus can efficiently realize the transmission of signaling and data on the feeder link.
  • Figure 1 is a schematic diagram of the connection between a satellite base station, a gateway station, and a core network;
  • Figure 2 is a schematic structural diagram of the control plane in the NG-RAN protocol architecture
  • Figure 3 is a schematic structural diagram of the user plane in the NG-RAN protocol architecture
  • FIG. 4 is a flowchart of a data transmission method on the satellite base station side provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a comparison between the feeding user plane protocol stack provided by the embodiment of the present application and the user plane protocol stack in NR;
  • FIG. 6 is a schematic diagram of a comparison between the feed control plane protocol stack provided by the embodiment of the present application and the control plane protocol stack in NR;
  • Fig. 7 is the end-to-end control plane protocol stack architecture in the satellite 5G fusion system provided by the embodiment of the present application;
  • FIG. 8 is an end-to-end user plane protocol stack architecture in the satellite 5G fusion system provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of communication between a satellite base station and a gateway station provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a data transmission method on the gateway station side provided by an embodiment of the present application.
  • FIG. 11 is another schematic diagram of communication between a satellite base station and a gateway station provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a satellite base station provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a gateway station provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another satellite base station provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another gateway station provided by the embodiment of the present application.
  • the applicable system can be Global System Of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) general packet Wireless business (General Packet Radio Service, GPRS) system, Long Term Evolution (Long Term Evolution, LTE) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (Time Division Duplex, TDD) system, Long Term Evolution Advanced (LTE-A) system, Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability For Microwave Access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM Global System Of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Long Term Evolution Advanced
  • the terminal device involved in this embodiment of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), access point (Access Point) , Remote Terminal (Remote Terminal), Access Terminal (Access Terminal), User Terminal (User Terminal), User Agent (User Agent), and User Device (User Device), which are not limited in the embodiments of this application.
  • Subscriber Unit Subscriber unit
  • Subscriber station Subscriber Station
  • mobile station Mobile Station
  • Mobile mobile station
  • Remote station Remote Station
  • Access Terminal Access Terminal
  • User Terminal User Terminal
  • User Agent User Agent
  • User Device User Device
  • the network device involved in this embodiment of the present application may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiment of the present application may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a Long Term Evolution (LTE) system (evolutional Node B, eNB or e-NodeB), a 5G base station (gNB) in the 5G network architecture (Next Generation System), or a Home evolved Node B (HeNB), a relay node (Relay Node) , a home base station (Femto), a pico base station (Pico), etc., which are not limited in this embodiment of the present application.
  • network devices may include centralized units (Centralized Unit,
  • CU node
  • distributed unit Distributed Unit, DU
  • centralized unit and distributed unit can also be arranged geographically separately.
  • FIG. 1 is a schematic diagram of connection between a satellite base station, a gateway station, and a core network.
  • next generation radio access network Next Generation Radio Access Network, NG-RAN
  • the satellite base station and the gateway station are used as NR-RAN.
  • NG Next Generation Radio Access Network
  • the gateway station on the ground NG is transmitted on the feeder link, and then the satellite base station is connected to the core network, and can also be connected to the data network through the core network; among them, the UE communicates with the satellite base station through the NR Uu interface (air interface) , the gateway station communicates with the core network through NG, and communicates between the core network and the data network through the N6 interface.
  • NR Uu interface air interface
  • FIG. 2 is a schematic structural diagram of the control plane in the NG-RAN protocol architecture.
  • the protocols used by the UE include: Non-Access Stratum (Non-Access Stratum, NAS)-Session Management (SM), NAS-Mobility Management (MM) , Radio Resource Control (Radio Resource Control, RRC), Packet Data Convergence Protocol (Packet Data Convergence Protocol, PDCP), Radio Link Control (Radio Link Control, RLC), Media Access Control (Medium Access Control, MAC), NR Physical (Physical, PHY);
  • the protocols used by the satellite base station include: RRC, PDCP, RLC, MAC, NR PHY, these protocols communicate with the corresponding protocols in the UE through the NR-Uu interface, and the Next Generation Application Protocol (Next Generation Application Protocol) , NG-AP), Stream Control Transmission Protocol (Stream Control Transmission Protocol, SCTP), Internet Protocol (Internet Protocol, IP), satellite radio interface (SRI, Satellite Radio Interface) protocol stack, IP, SRI protocol layer Corresponding to the corresponding protocol layer in the gateway station;
  • Next Generation Application Protocol Next Generation Application Protocol
  • FIG. 3 is a schematic structural diagram of the user plane in the NG-RAN protocol architecture.
  • the protocols used by the UE include: Protocol Data Unit (Protocol Data Unit, PDU), Service Data Adaptation Protocol (Service Data Adaptation Protocol, SDAP), PDCP, RLC, MAC, NR PHY
  • the protocols used by satellite base stations include: SDAP, PDCP, RLC, MAC, NR PHY, tunnel transmission protocol-user plane (GPRS Tunnel Protocol, GTP-U), user datagram protocol (User Datagram Protocol, UDP), IP, SRI
  • the protocol layer used by the gateway station includes: IP, SRI protocol layer, L2, L1; the protocol used by UPF in the core network includes: PDU, GTP-U, UDP, IP, L2, L1, N11.
  • the protocol stack of the satellite radio interface is used to transmit the UE user plane between the satellite base station and the gateway station.
  • the user session is transmitted between the core network and the satellite base station through the GTP-U tunnel as usual, but it needs to go through the gateway station. .
  • the communication between the satellite base station and the gateway station is through SRI (also called the feeder interface), but the protocol stack of SRI is usually customized by the gateway station service provider, which makes the In the process of communication between the satellite base station and the core network at the channel gateway station, different SRIs need to be set separately for different gateway stations, which leads to more complicated data and signaling transmitted on the feeder link between the satellite base station and the gateway station .
  • SRI also called the feeder interface
  • the embodiment of the present application provides a data transmission method, a satellite base station, a gateway station, and a storage medium, to solve the feeder link between the satellite base station and the gateway station existing in the prior art
  • the technical problems of high complexity of the data and signaling transmitted on the Internet are described in detail below.
  • the method and the device are based on the same inventive concept, and since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present application provides a data transmission method, and the processing procedure of the method is as follows.
  • Step 401 the satellite base station determines that it is accessed as a gateway station of the functional module of the user equipment UE;
  • the above-mentioned satellite base station first determines a target gateway station, and sends a feeder beam signal to the target gateway station.
  • the gateway station receives the feed beam signal and initiates an access request, and the satellite base station receives the access request and responds.
  • Step 402 The satellite base station configures at least one feeding data radio bearer DRB for the UE functional module; wherein, the feeding DRB serves as the bearer of the feeding link and is used to transmit signaling and data between the satellite base station and the gateway station.
  • the protocol for the above-mentioned feeder link including:
  • the feeding user plane protocol stack includes packet data convergence protocol PDCP layer, radio link control RLC layer, medium access control MAC layer, physical PHY layer, and does not include session PDU layer, service data adaptation protocol SDAP layer;
  • the electrical control plane protocol stack includes the radio resource control RRC layer, PDCP layer, RLC layer, MAC layer, and PHY layer, and does not include the non-access NAS layer.
  • Figure 5 is a schematic diagram of the comparison between the protocol stack of the feeding user plane provided by the embodiment of the present application and the protocol stack of the user plane in NR
  • Figure 6 is the comparison between the protocol stack of the feeding control plane provided by the embodiment of the present application and Schematic diagram of the comparison of control plane protocol stacks in NR.
  • the power feeding user plane Since there is no need to establish a PDU session communication between the UE functional module of the gateway station and the core network, the power feeding user plane does not need to establish and maintain a PDU session, and there is no need to use SDAP. Therefore, the feeding user plane protocol stack is for users in NR It consists of the remaining protocol layers after removing the PDU layer, that is, the SDAP layer, on the basis of the protocol stack.
  • the UE function module of the gateway station Since the RRC connection between the UE function module of the gateway station and the satellite base station needs to be maintained, relevant signaling and encryption need to be guaranteed, but the UE function module of the gateway station does not need to perform NAS procedures such as registration, authentication, and service establishment with the core network , so there is no need to use the NAS layer in the NR control plane protocol stack, and the feed control plane includes the PHY layer, MAC layer, RLC layer, and PDCP layer.
  • the feeder DRB (indicated by the dotted line box) carries the IP packet corresponding to N2 signaling or N3 data, and the satellite base station encapsulates the NGAP signaling or GTP-U data of the UE into the IP packet , through feeding DRB to the UE function module of the gateway station, the UE function module of the gateway station forwards to the core network, the core network will process the IP packet layer by layer, and finally identify the data packet through different GTP-U tunnels
  • the ordinary UE that should belong, and the data that should belong to the PDU session in the ordinary UE (the GTP-U tunnel is allocated by the core network per UE per PDU Session during the service establishment process), based on or through NGAP in NGAP signaling
  • the user identity can determine which common UE's N2 signaling it is;
  • the protocol stack of the satellite radio interface between the satellite base station and the gateway station is standardized as the feeder user plane protocol stack and the feeder control plane protocol stack of the feeder link, and because the feeder user plane protocol stack and feeder
  • the electrical control plane protocol stack inherits part of the protocols in the user plane protocol stack and control plane protocol stack in NR. Therefore, during the communication process between the satellite base station and the gateway station, there is no need to communicate between the 5G communication protocol and the non-standard protocol (custom protocol), which not only enables the rapid establishment of a communication connection between the satellite base station and the gateway station, but also is well compatible with the NR system, reducing the data transmitted on the feeder link between the satellite base station and the gateway station, Signaling complexity.
  • FIG. 9 is a schematic diagram of communication between a satellite base station and a gateway station provided by an embodiment of the present application.
  • 5G UE functional modules are added to gateway station 1 and gateway station 2, so that the 5G UE in gateway station 1 can The functional module establishes an NR-Uu connection with the satellite base station 1, and establishes an NR-Uu connection with the satellite base station 2 through the 5G UE functional module in the gateway station 2, and then the satellite base station 1 and the satellite base station 2 can respectively determine themselves as 5G UE functional modules
  • satellite base station 1 and satellite base station 2 configure at least one feeder DRB for the 5G UE functional module of gateway 1 and the 5G UE functional module of gateway 2 respectively, and
  • the feeder DRB is used as the bearer of the feeder link (the feeder link between satellite base station 1 and gateway station 1 is denoted as feeder link 1, and the feeder link
  • the satellite base station 1 and the satellite base station 2 can communicate with the core network and the data network connected to the core network through their corresponding gateway stations.
  • the satellite base station 1 configures multiple feeder DRBs for the 5G UE functional module of the gateway station 1, the services corresponding to different feeder DRBs are different.
  • a gateway station needs to communicate with multiple satellite base stations, multiple 5G UE functional modules can be set in the gateway station, and one 5G UE functional module communicates with one satellite base station, so that different satellite base stations can be connected through their respective The 5G UE functional modules communicate with the same gateway station.
  • the gateway station itself is connected to the satellite base station as a UE functional module, and the satellite base station configures the feeder DRB for the UE functional module of the gateway station as the bearer of the feeder link, so that the In the satellite 5G fusion system, the feeder link support based on the NR-Uu interface is provided for the satellite base station, and the DRB of the NR-Uu interface is used to carry the transmission of signaling and data between the satellite base station and the gateway station, so that it can be used in different gateway stations
  • the unified communication standard communicates with the satellite base station, which reduces the complexity of data and signaling transmission between the satellite base station and the gateway station, and thus can efficiently realize the transmission of signaling and data on the feeder link.
  • step 401 the satellite base station determines itself as the gateway station access of the user equipment UE functional module, which can be implemented in the following ways:
  • the satellite base station receives a random access request sent by a UE functional module in the gateway station; the satellite base station generates the response information of the random access request, sends the response information to the UE functional module, and establishes a radio resource control RRC connection with the UE functional module.
  • the satellite base station provides a feeding beam to cover the area where the gateway station is located, providing the gateway station with
  • the gateway station uses itself as a UE functional module (equivalent to allowing the gateway station to act as a user terminal) to access the satellite base station, and uses the same method as a normal UE (that is, a general user terminal). Search, synchronize, and read system information for feeder cells, and establish RRC connections through random access requests.
  • a UE function module is set in a gateway station, and the gateway station sends a random access request to the satellite base station through the UE function module, and the base station generates corresponding response information according to the random access request, and sends it to the gateway station
  • an RRC connection can be established between the satellite base station and the gateway station, and the satellite base station can then determine that there is a gateway station accessing itself as a UE function module.
  • the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module, including:
  • the satellite base station determines the identity information of the UE functional module according to the establishment reason of the RRC connection or the relevant information of the UE functional module, and the relevant information is used to indicate that the UE functional module is a gateway station UE functional module; if the identity information is an information For the UE functional modules in the off-site, the satellite base station allocates at least one feeder DRB for the functional modules; wherein, each feeder DRB corresponds to bear different types of services.
  • the service type includes at least one of N2 signaling and N3 data.
  • the foregoing N2 signaling includes at least one of UE-related N2 signaling and non-UE-related signaling.
  • the N3 data includes at least one of data of each UE under the jurisdiction of the satellite base station, data of the satellite base station or other satellite base stations that communicate with the satellite base station through an inter-satellite link.
  • the satellite base station can determine the identity information of the UE functional module of the gateway station through the reason for RRC establishment, or the UE capability/UE type indicator related information, and then provide the gateway
  • the UE function module of the station configures at least one feeder DRB to carry signaling and data on the feeder link.
  • the above configuration of the feeding DRB may be configured according to the pre-configuration in the satellite base station, or may be determined by the implementation of the satellite base station.
  • the satellite base station determines that the identity information of the UE is an ordinary UE according to the reason or related information for establishing the RRC connection with the UE, then Communicate normally with normal UEs in the same way as normal UEs; assuming that the gateway station will connect itself to the satellite base station as a UE functional module after a period of time, the satellite base station will establish the RRC connection with the UE functional module of the gateway station according to the reason for establishing the RRC connection, or the UE
  • the relevant information of the functional module determines that the identity information of the UE functional module is the UE functional module of the gateway station, then the satellite base station configures two feeder DRBs for this UE functional module, one feeder DRB carries different N2 signaling, and the other The feeding DRB carries N3 data.
  • the satellite base station controls the total amount of access and the total amount of services accepted by ordinary UEs on the air interface of the satellite base station according to the carrying capacity and load of the feeder link. Specifically, it can be achieved in the following ways:
  • the satellite base station determines the maximum carrying capacity of the feeding link according to the UE capability reported by the UE functional module;
  • the satellite base station decides whether to allow ordinary UEs to access the feeder beam where the gateway station is located, or whether to allow ordinary UEs to access other services of the satellite base station beam, or decide whether to accept the session establishment request of the common UE initiated by the core network.
  • the above-mentioned maximum carrying capacity may be the maximum number of users that can be carried on the feeder link, the maximum throughput, etc., and the corresponding load of the feeder link may be the number of users currently actually carried by the feeder link, the total throughput, etc.
  • the UE functional module of the gateway station accesses the satellite base station, it informs the satellite base station that its UE capability is M, and the satellite base station determines that the current load of the feeder connection is N, and sets the ratio as k (k ⁇ 1), and the satellite base station Determine the size of N and k ⁇ M, if N is greater than k ⁇ M, determine that the load of the feeder link exceeds the set ratio of the maximum carrying capacity of the feeder link, and no longer allow new ordinary UEs to access the satellite base station The feeder beam or other service beams, or no longer accept the session establishment request of the common UE initiated by the core network; if N is less than or equal to k ⁇ M, it is determined that the load of the feeder link does not exceed the maximum carrying capacity of the feeder link The setting ratio of the new ordinary UE is allowed to access the feeder beam or other service beams of the satellite base station, or accept the session establishment request of the ordinary UE initiated by the core network, so that the access of the ordinary UE on the air interface of the satellite base
  • the feeding beam is a dedicated beam of the gateway station, ordinary UEs are not allowed to access; if the feeding beam is a non-dedicated beam of the gateway station, then in The feeding cell where the gateway station is located gives priority to ensuring the data scheduling of the feeding DRB, and reduces or stops the service to the common UE when the resources of the satellite base station are tight, that is, the resource occupation ratio of the feeding beam When reaching a certain altitude, reduce or stop services to common UEs through corresponding operations.
  • the feeder beam of the satellite base station 2 covering the gateway station 2 in FIG. 9 is a dedicated beam that does not allow ordinary UEs to access, and the dedicated feeder service is provided for the gateway station 2 through the dedicated beam.
  • ordinary UEs in the feeder cell (elliptical dotted line) where the gateway station 2 is located cannot access the dedicated beam of the satellite base station 2, and ordinary UEs in the cell corresponding to other service beams of the satellite base station 2 can access the satellite base station 2.
  • satellite base station 2 configures a feeder DRB for the UE function module of gateway station 2 according to the default configuration or pre-configuration, which is used to transmit all data on the feeder link.
  • Signaling and data such as business data or N2 signaling of all ordinary terminals under the jurisdiction of satellite base stations, non-UE associated N2 signaling of satellite base stations, and signals from adjacent satellites received through Inter-Satellite Links (ISL) Data or signaling information, configuration information or control information of the satellite where the satellite base station is located or satellite base station, such as beam control information or inter-satellite measurement and control information, etc.
  • ISL Inter-Satellite Links
  • the satellite base station 2 configures two feeder DRBs for the gateway station, one feeder DRB is used to transmit N2 signaling, and the other feeder DRB is used to transmit N3 data
  • the satellite base station can indicate different NRBs in the RRC configuration message For the corresponding service type, when the gateway transmits signaling or data, it selects the corresponding feeder DRB for transmission according to different service types.
  • the feeding service is provided for the gateway station 1 through the non-dedicated beam.
  • Ordinary UEs within the solid ellipse line can access satellite base station 1 through the above-mentioned non-dedicated beam, but satellite base station 1 gives priority to ensuring the data scheduling of the feeder DRB of gateway station 1 in the feeder cell where gateway station 1 is located , when the resource of the satellite base station 1 is tight, reduce or stop the service to the common UE, so as to fully guarantee the communication demand of the feeder DRB of the gateway station and improve the service quality of the satellite communication.
  • the satellite base station 1 After the UE functional module of the gateway station 1 accesses the satellite base station 1 through a random access request, the satellite base station 1 configures at least one feeder DRB for the UE functional module of the gateway station 1 as a feeder link bearer. After the DRB configuration is completed, the satellite base station 1 can accept the access of ordinary UEs in the feeder cell where the gateway station is located. The process of registration and service establishment of ordinary UEs is the same as that of the NR system. The ordinary UEs accessing the satellite base station 1 Relevant N2 signaling and N3 data interact with the core network through the feeder DRB between the satellite base station 1 and the gateway station 1 .
  • the embodiment of the present application provides a data transmission method, please refer to Figure 10, the method includes:
  • Step 1001 The gateway itself, as a user equipment UE functional module, accesses the satellite base station, so that the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module.
  • Step 1003 The gateway station transmits signaling and data with the satellite base station on the feeder link.
  • the gateway station itself accesses the satellite base station as a user equipment UE functional module, which can be implemented in the following ways:
  • the gateway station sends a random access request to the corresponding satellite base station through at least one UE functional module; wherein, the gateway station includes at least one UE functional module; a gateway station can have many UE functional modules, and each UE module can be connected Different satellites can also be multiple UE modules connected to the same satellite.
  • the gateway station receives the response information of the random access request sent by the satellite base station, and establishes a radio resource control RRC connection between the UE function module and any of the satellite base stations according to the response information.
  • FIG. 11 is another schematic diagram of communication between a satellite base station and a gateway station provided by the embodiment of the present application.
  • the gateway station is provided with two UE functional modules, and the gateway station accesses the satellite base station 1 and the satellite base station 2 respectively through these two UE functional modules, and establishes a feeder connection with the satellite base station 1 and the satellite base station 2 in time division.
  • Electrical link 1 and feeder link 2 after the gateway station accesses satellite base station 1 through a UE functional module (denoted as UE functional module 1), satellite base station 1 configures at least one feeder DRB for UE functional module 1 (denoted as feeder DRB1), UE functional module 1 establishes a feeder link (denoted as feeder link 1) with satellite base station 1 through at least one feeder DRB1, and transmits and communicates with satellite base station 1 on feeder link 1 1 for signaling and data.
  • the gateway station After the gateway station also accesses the satellite base station 2 through another UE functional module (denoted as UE functional module 2), the satellite base station 2 configures at least one feeding DRB (denoted as feeding DRB2) for the UE functional module 2, and the UE
  • the functional module 2 establishes a feeder link (referred to as feeder link 2 ) with the satellite base station 2 through at least one feeder DRB2, and transmits signaling and data with the satellite base station 2 on the feeder link 2 .
  • the feeder link protocol includes:
  • the feeding user plane protocol stack includes packet data convergence protocol PDCP layer, radio link control RLC layer, medium access control MAC layer, physical PHY layer, and does not include session PDU layer, service data adaptation protocol SDAP layer;
  • the electrical control plane protocol stack includes the radio resource control RRC layer, PDCP layer, RLC layer, MAC layer, and PHY layer, and does not include the non-access NAS layer.
  • feeding user plane protocol stack and feeding control plane protocol stack refer to the related introduction in the satellite base station side method, which will not be repeated here.
  • a satellite base station provided by an embodiment of the present application includes at least one processor 1203; a transceiver 1202 communicatively connected to the at least one processor; and a memory communicatively connected to the at least one processor 1201;
  • the transceiver 1202 receives and sends data under the control of the processor 1203;
  • the memory 1201 stores instructions executable by the at least one processor 1203, and the instructions are processed by the at least one processor 1203, so that the at least one processor 1203 can perform the following operations:
  • the processor 1203 is further configured to:
  • the processor 1203 is further configured to:
  • the identity information is the UE functional module of the gateway station, at least one feeder DRB is allocated to the functional module; wherein each feeder DRB bears a different service type.
  • the business type includes:
  • At least one of N2 signaling and N3 data At least one of N2 signaling and N3 data.
  • the N2 signaling includes:
  • At least one of UE-related N2 signaling and non-UE-related signaling At least one of UE-related N2 signaling and non-UE-related signaling.
  • the N3 data includes:
  • the processor 1203 is further configured to:
  • the processor 1203 is further configured to:
  • the processor 1203 is further configured to:
  • feeding beam is a dedicated beam of the gateway station, ordinary UE is not allowed to access;
  • the feeder cell where the gateway station is located gives priority to ensuring the data scheduling of the feeder DRB, and reduces Or stop the service for the common UE.
  • the transceiver 1202 is configured to receive and send data under the control of the processor 1203 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1203 and various circuits of the memory represented by the memory 1201 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1202 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 1203 is responsible for managing the bus architecture and general processing, and the memory 1201 can store data used by the processor 1203 when performing operations.
  • the processor 1203 can be a central processing device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing device
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • an embodiment of the present application provides a gateway station, including at least one processor 1303; a transceiver 1302 communicatively connected to the at least one processor; a communicatively connected memory 1301;
  • the transceiver 1302 receives and sends data under the control of the processor 1303;
  • the memory 1301 stores instructions executable by the at least one processor 1303, and the instructions are processed by the at least one processor 1303, so that the at least one processor 1303 can perform the following operations:
  • the gateway station itself, as a user equipment UE functional module, accesses the satellite base station, so that the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module;
  • Signaling and data are transmitted with the satellite base station on the feeder link.
  • the processor 1303 is further configured to:
  • the gateway station includes at least one UE functional module
  • the protocol of the feeder link includes:
  • the feeding user plane protocol stack includes a packet data convergence protocol PDCP layer, a radio link control RLC layer, a media access control MAC layer, and a physical PHY layer; the feeding control plane protocol stack includes a radio resource control RRC layer , PDCP layer, RLC layer, MAC layer, PHY layer.
  • the transceiver 1302 is used for receiving and sending data under the control of the processor 1303 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1303 and various circuits of the memory represented by the memory 1301 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1302 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 1304 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1303 is responsible for managing the bus architecture and general processing, and the memory 1301 can store data used by the processor 1303 when performing operations.
  • the processor 1303 can be a CPU (Central Office), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device , complex programmable logic device), the processor can also adopt a multi-core architecture.
  • CPU Central Office
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device , complex programmable logic device
  • the processor is used to execute any one of the methods provided in the embodiments of the present application according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • an embodiment of the present application provides a satellite base station.
  • the satellite base station includes:
  • the determining unit 1401 is used for the satellite base station to determine itself as a gateway station access of the user equipment UE functional module;
  • the configuring unit 1402 is configured to configure at least one feeding data radio bearer DRB for the UE functional module; wherein, the feeding DRB is used as a feeding link bearer to transmit signaling and communication between the satellite base station and the gateway station data.
  • the determining unit 1401 is further configured to:
  • the satellite base station receives a random access request sent by a UE functional module in the gateway station;
  • the satellite base station generates the response information of the random access request, and sends it to the UE functional module to establish a radio resource control RRC connection.
  • the configuration unit 1402 is further configured to:
  • the satellite base station determines the identity information of the UE functional module according to the establishment reason of the RRC connection or information related to the UE functional module;
  • the satellite base station allocates at least one feeder DRB to the functional module; wherein each feeder DRB bears a different service type.
  • the business type includes:
  • At least one of N2 signaling and N3 data At least one of N2 signaling and N3 data.
  • the N2 signaling includes:
  • At least one of UE-related N2 signaling and non-UE-related signaling At least one of UE-related N2 signaling and non-UE-related signaling.
  • the N3 data includes:
  • the configuration unit 1402 is further configured to:
  • the satellite base station controls the total amount of access and the total amount of services received by ordinary UEs on the air interface of the satellite base station.
  • the configuration unit 1402 is further configured to:
  • the satellite base station determines the maximum carrying capacity of the feeding link according to the UE capability reported by the UE functional module;
  • the satellite base station decides whether to allow ordinary UEs to access the feeder beam where the gateway station is located, or decides whether to allow all
  • the common UE accesses other service beams of the satellite base station, or decides whether to accept the session establishment request of the common UE initiated by the core network.
  • the configuration unit 1402 is further configured to:
  • feeding beam is a dedicated beam of the gateway station, ordinary UE is not allowed to access;
  • the feeder cell where the gateway station is located gives priority to ensuring the data scheduling of the feeder DRB, and reduces Or stop the service for the common UE.
  • a gateway station is provided in an embodiment of the present application.
  • the gateway station includes:
  • the access unit 1501 is used for the gateway station itself to access the satellite base station as a user equipment UE functional module, so that the satellite base station configures at least one feeding data radio bearer DRB for the UE functional module;
  • An establishing unit 1502 configured to establish a feeding link with the satellite base station through the at least one feeding DRB;
  • the transmission unit 1503 is configured to transmit signaling and data with the satellite base station on the feeder link.
  • the access unit 1501 is configured to:
  • the gateway station includes at least one UE functional module
  • the protocol of the feeder link includes:
  • the feeding user plane protocol stack includes a packet data convergence protocol PDCP layer, a radio link control RLC layer, a media access control MAC layer, and a physical PHY layer; the feeding control plane protocol stack includes a radio resource control RRC layer , PDCP layer, RLC layer, MAC layer, PHY layer.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • an embodiment of the present application further provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the above satellite Data transmission method on the base station side or gateway station side.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输的方法、卫星基站、信关站及存储介质,用以解决现有技术中存在的卫星基站与信关站之间的馈电链路上传输的数据、信令的复杂度高的技术问题,该方法包括:卫星基站确定自身作为用户设备UE功能模块的信关站接入;所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载用于在卫星基站和信关站之间传输信令和数据。

Description

一种数据传输的方法、卫星基站、信关站及存储介质
相关申请的交叉引用
本申请要求在2021年11月03日提交中国专利局、申请号为202111292911.2、申请名称为“一种数据传输的方法、卫星基站、信关站及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信领域,尤其是涉及一种数据传输的方法、卫星基站、信关站及存储介质。
背景技术
卫星互联网有着覆盖广、受自然灾害和物理攻击的影响小等优点。它与地面移动通信网络可以深度融合,弥补地面移动通信网络覆盖不足的缺点,与地面移动通信网络形成了优势互补、紧密融合、立体分层的融合网络系统,最终实现信息在全球范围内的传输和交互。
在卫星互联网中通信模式采用再生模式的卫星是作为一个基站(以下简称卫星基站)使用的,卫星基站连接卫星终端和信关站(Gate Way)。卫星基站可以检测卫星终端发送的信号,并对检测到的信号进行处理后转发给信关站。
移动通信网络中,基站与核心网之间是通过有线连接进行通信的,而在卫星互联网中,卫星基站与核心网通信则需要通过信关站实现,由于卫星基站和信关站之间的通信采用的是非标准协议,导致卫星基站与信关站之间的馈电链路上传输的数据、信令较为复杂。
鉴于此,如何降低卫星基站与信关站之间的馈电链路上传输的数据、信令的复杂度,成为一个亟待解决的技术问题。
发明内容
本申请提供一种数据传输的方法、卫星基站、信关站及存储介质,用以解决现有技术中存在的卫星基站与信关站之间的馈电链路上传输的数据、信令的复杂度高的技术问题。
第一方面,为解决上述技术问题,本申请实施例提供的一种数据传输的方法如下:
卫星基站确定自身作为用户设备UE功能模块的信关站接入;
所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
一种可能的实施方式,卫星基站确定自身作为用户设备UE功能模块的信关站接入,包括:
卫星基站接收信关站中任一个UE功能模块发送的随机接入请求;
所述卫星基站生成所述随机接入请求的响应信息,并将所述响应信息发送给所述UE功能模块,与所述UE功能模块间建立无线资源控制RRC连接。
一种可能的实施方式,所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB,包括:
所述卫星基站根据所述RRC连接的建立原因,或所述UE功能模块的相关信息,确定所述UE功能模块的身份信息;
若所述身份信息为所述信关站的UE功能模块,所述卫星基站为所述功能模块分配至少一个馈电DRB;其中,每个所述馈电DRB对应承载不同的业务类型。
一种可能的实施方式,所述业务类型,包括:
N2信令、N3数据中的至少一个。
一种可能的实施方式,所述N2信令,包括:
UE相关N2信令、非UE相关信令中的至少一个。
一种可能的实施方式,所述N3数据,包括:
所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
一种可能的实施方式,还包括:
所述卫星基站根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量。
一种可能的实施方式,所述卫星基站根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量,包括:
所述卫星基站根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
所述卫星基站根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
一种可能的实施方式,所述方法还包括:
若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度。
第二方面,本申请实施例提供一种数据传输的方法,包括:
信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
所述信关站通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
所述信关站在所述馈电链路上与所述卫星基站传输信令和数据。
一种可能的实施方式,所述信关站包括至少一个UE功能模块,信关站自身作为用户设备UE功能模块接入卫星基站,包括:
所述信关站通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;
所述信关站接收卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述卫星基站间建立无线资源控制RRC连接。
一种可能的实施方式,所述馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
第三方面,本申请实施例提供一种卫星基站,所述卫星基站包括:至少一个处理器;与所述至少一个处理器通信连接的收发机;以及与所述至少一个处理器通信连接的存储器;其中,所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行以下操作:
确定自身作为用户设备UE功能模块的信关站接入;
为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
一种可能的实施方式,所述处理器还用于:
接收所述信关站中一个UE功能模块发送的随机接入请求;
生成所述随机接入请求的响应信息,并将所述响应信息发送给所述UE功能模块,与所述UE功能模块建立无线资源控制RRC连接。
一种可能的实施方式,所述处理器还用于:
根据所述RRC连接的建立原因,或所述UE功能模块的相关信息,确定所述UE功能模块的身份信息;
若所述身份信息为所述信关站的UE功能模块,为所述功能模块分配至少一个馈电DRB;其中,每个所述馈电DRB对应承载不同的业务类型。
一种可能的实施方式,所述业务类型,包括:
N2信令、N3数据中的至少一个。
一种可能的实施方式,所述N2信令,包括:
UE相关N2信令、非UE相关信令中的至少一个。
一种可能的实施方式,所述N3数据,包括:
所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
一种可能的实施方式,所述处理器还用于:
根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量。
一种可能的实施方式,所述处理器还用于:
根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
一种可能的实施方式,所述处理器还用于:
若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度。
第四方面,本申请实施例提供一种信关站,所述信关站包括:至少一个处理器;与所述至少一个处理器通信连接的收发机;以及与所述至少一个处理器通信连接的存储器;其中,所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行以下操作:
信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
在所述馈电链路上与所述卫星基站传输信令和数据。
一种可能的实施方式,所述处理器还用于:
通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;其中,所述信关站包括至少一个UE功能模块;
接收卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述卫星基站间建立无线资源控制RRC连接。
一种可能的实施方式,所述馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
第五方面,本申请实施例提供一种卫星基站,包括:
确定单元,用于卫星基站确定自身作为用户设备UE功能模块的信关站接入;
配置单元,用于为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
一种可能的实施方式,所述确定单元还用于:
所述卫星基站接收所述信关站中一个UE功能模块发送的随机接入请求;
所述卫星基站生成所述随机接入请求的响应信息,并发送给所述UE功能模块,建立无线资源控制RRC连接。
一种可能的实施方式,所述配置单元还用于:
所述卫星基站根据所述RRC连接的建立原因,或所述UE功能模块的相关信息,确定所述UE功能模块的身份信息;
若所述身份信息为所述信关站的UE功能模块,所述卫星基站为所述功能模块分配至少一个馈电DRB;其中,每个所述馈电DRB对应承载不同的业务类型。
一种可能的实施方式,所述业务类型,包括:
N2信令、N3数据中的至少一个。
一种可能的实施方式,所述N2信令,包括:
UE相关N2信令、非UE相关信令中的至少一个。
一种可能的实施方式,所述N3数据,包括:
所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
一种可能的实施方式,所述配置单元还用于:
所述卫星基站根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量。
一种可能的实施方式,所述配置单元还用于:
所述卫星基站根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
所述卫星基站根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
一种可能的实施方式,所述配置单元还用于:
若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度。
第六方面,本申请实施例提供一种信关站,包括:
接入单元,用于信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
建立单元,用于通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
传输单元,用于在所述馈电链路上与所述卫星基站传输信令和数据。
一种可能的实施方式,所述接入单元用于:
通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;其中,所述信关站包括至少一个UE功能模块;
接收所述卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述卫星基站间建立无线资源控制RRC连接。
一种可能的实施方式,所述馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
第七方面,本申请实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如第一方面或第二方面所述的方法。
通过本申请实施例的上述一个或多个实施例中的技术方案,本申请实施例至少具有如下技术效果:
在本申请提供的实施例中,通过将信关站自身作为UE功能模块接入卫星基站,并让卫星基站为信关站的UE功能模块配置馈电DRB作为馈电链路的承载,使得在卫星5G融合系统中为卫星基站提供了基于NR-Uu接口的馈电链路支持,利用NR-Uu接口的DRB承载卫星基站与信关站间传输信令和数据,从而在不同信关站可以使用统一的通信标准与卫星基站通信,降低了卫星基站与信关站间传输数据、信令的复杂度,进而能够高效的实现馈电链路上的信令和数据的传递。
附图说明
图1为卫星基站与信关站、核心网的连接示意图;
图2为NG-RAN协议架构中控制平面的结构示意图;
图3为NG-RAN协议架构中用户平面的结构示意图;
图4为本申请实施例提供的卫星基站侧的数据传输方法的流程图;
图5为本申请实施例提供的馈电用户面协议栈与NR中用户面协议栈的对比示意图;
图6为本申请实施例提供的馈电控制面协议栈与NR中控制面协议栈的对比示意图;
图7为本申请实施例提供的卫星5G融合系统中端到端的控制面协议栈架构;
图8为本申请实施例提供的卫星5G融合系统中端到端的用户面协议栈架构;
图9为本申请实施例提供的卫星基站与信关站的通信示意图;
图10为本申请实施例提供的信关站侧的数据传输方法的流程图;
图11为本申请实施例提供的另一种卫星基站与信关站的通信示意图;
图12为本申请实施例提供的一种卫星基站的结构示意图;
图13为本申请实施例提供的一种信关站的结构示意图;
图14为本申请实施例提供的另一种卫星基站的结构示意图;
图15为本申请实施例提供的另一种信关站的结构示意图。
具体实施方式
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(Global System Of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、高级长期演进(Long Term Evolution Advanced,LTE-A)系统、通用移动系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability For Microwave Access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital  Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、用户装置(User Device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(Next Generation System)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(Relay Node)、家庭基站(Femto)、微微基站(Pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(Centralized Unit,
CU)节点和分布单元(Distributed Unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
请参见图1为卫星基站与信关站、核心网的连接示意图。
在下一代无线接入网络(Next Generation Radio Access Network,NG-RAN)中,将卫星基站与信关站作为NR-RAN,卫星基站是在再生模式的卫星上设置基站,卫星基站通过馈电链路连接地面的信关站,NG在馈电链路上传输, 进而使卫星基站与核心网连接,通过核心网还可以与数据网络连接;其中,UE与卫星基站通过NR Uu接口(空中接口)通信,信关站与核心网通过NG通信,核心网与数据网络之间通过N6接口通信。
请参见图2为NG-RAN协议架构中控制平面的结构示意图。
在NG-RAN协议架构的控制平面中,UE使用的协议包括:非接入层(Non-Access Stratum,NAS)-会话管理(Session Managemen,SM)、NAS-移动性管理(Mobility Management,MM)、无线资源控制(Radio Resource Control,RRC)、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)、无线链路控制(Radio Link Control,RLC)、媒体接入控制(Medium Acess Control,MAC)、NR物理(Physical,PHY);卫星基站使用的协议包括:RRC、PDCP、RLC、MAC、NR PHY,这些协议通过NR-Uu接口与UE中的相应协议通信,以及下一代应用协议(Next Generation Application Protocol,NG-AP)、流控制传输协议(Stream Control Transmission Protocol,SCTP)、网际互连协议(Internet Protocol,IP)、卫星无线电接口(SRI,Satellite Radio Interface)的协议栈,IP、SRI的协议层与信关站中的相应协议层对应;信关站使用的协议包括:IP、SRI的协议层、L2、L1;核心网包括接入控制和移动性管理功能(Access control and Mobility management Function,AMF)、会话管理功能(Session Management Function,SMF),AMF使用的协议包括:NAS-SM Relay、NAS-MM、NG-AP、SCTP、IP、L1、L2、N11;SMF使用的协议包括:NAS-SM、N11、N6,AMF与信关站间通过NG-C通信。在图2中NG-AP、NAS像往常一样均通过SCTP在核心网与卫星基站间传输,但需要借道信关站。
请参见图3为NG-RAN协议架构中用户平面的结构示意图。
在NG-RAN协议架构的用户平面中,UE使用的协议包括:协议数据单元(Protocol Data Unit,PDU)、服务数据适配协议(Service Data Adaptation Protocol,SDAP)、PDCP、RLC、MAC、NR PHY;卫星基站使用的协议包括:SDAP、PDCP、RLC、MAC、NR PHY、隧道传输协议-用户平面(GPRS Tunnel  Protocol,GTP-U)、用户数据报协议(User Datagram Protocol,UDP)、IP、SRI的协议层;信关站使用的协议包括:IP、SRI的协议层、L2、L1;核心网中的UPF使用的协议包括:PDU、GTP-U、UDP、IP、L2、L1、N11。在图3中卫星无线电接口的协议栈用于在卫星基站与信关站间传输UE用户平面,用户会话向往常一样通过GTP-U隧道在核心网与卫星基站间传输,但需要借道信关站。
从图2和图3可以看出卫星基站与信关站间通过SRI(也可以称之为馈电接口)通信,但SRI的协议栈通常是由信关站服务商自定义的,这使得在借道信关站让卫星基站与核心网通信的过程中,需要为不同信关站单独设置不同的SRI,进而导致卫星基站与信关站之间的馈电链路上传输的数据、信令较为复杂。
为了解决上述技术问题,本申请实施例提供了一种数据传输的方法、卫星基站、信关站及存储介质,用以解决现有技术中存在的卫星基站与信关站之间的馈电链路上传输的数据、信令的复杂度高的技术问题。
其中,方法和装置是基于同一发明构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
请参考图4,本申请实施例提供一种数据传输的方法,该方法的处理过程如下。
步骤401:卫星基站确定自身作为用户设备UE功能模块的信关站接入;
一种可能的实施方式,上述卫星基站首先确定目标信关站,并向该目标信关站发送馈电波束信号,上述目标信关站为自身作为用户设备UE功能模块的信关站,上述目标信关站接收上述馈电波束信号并发起接入请求,上述卫星基站接收上述接入请求并响应。
步骤402:卫星基站为UE功能模块配置至少一个馈电数据无线承载DRB;其中,馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
上述馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层,且不含会话PDU层、服务数据适配协议SDAP层;馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层,且不含非接入NAS层。
请参见图5和图6,图5为本申请实施例提供的馈电用户面协议栈与NR中用户面协议栈的对比示意图,图6为本申请实施例提供的馈电控制面协议栈与NR中控制面协议栈的对比示意图。
由于信关站的UE功能模块与核心网间无需建立PDU会话通信,因此馈电用户面不需建立、维护PDU会话,也就不需要使用SDAP,故馈电用户面协议栈为在NR的用户面协议栈的基础上去除PDU层即SDAP层后剩余的协议层构成的。
由于信关站的UE功能模块与卫星基站间的RRC连接需要维护,需要保证相关的信令、加密,但信关站的UE功能模块无需向核心网进行注册、鉴权、业务建立等NAS过程,因此无需使用NR的控制面协议栈中的NAS层,馈电控制面包括PHY层、MAC层、RLC层、PDCP层。
基于上述馈电控制面协议栈及馈电用户面协议栈,在卫星5G融合系统中端到端的控制面协议栈架构及用户面协议栈架构请参见图7和图8,图7为本申请实施例提供的卫星5G融合系统中端到端的控制面协议栈架构,图8为本申请实施例提供的卫星5G融合系统中端到端的用户面协议栈架构。
卫星基站或信关站的UE功能模块在通过馈电DRB进行数据传输的过程中,并不对所传输的数据包对应的普通UE进行区分。如图7和图8所示,馈电DRB(虚线框所示)承载的是N2信令或N3数据对应的IP包,卫星基站将UE的NGAP信令或GTP-U数据封装到IP包中,通过馈电DRB发给信关站的UE功能模块,信关站的UE功能模块转发给核心网,核心网会对IP包进行逐层处理,最终通过不同的GTP-U隧道识别出数据包应归属的普通UE,及应归属该普通UE中的PDU会话的数据(该GTP-U隧道是业务建立过程中 核心网per UE per PDU Session分配的),基于或者是通过NGAP信令中的NGAP用户身份标识判断出这是哪个普通UE的N2信令;反之亦然。这样就将卫星基站与信关站间的卫星无线电接口的协议栈,标准化为上述馈电链路的馈电用户面协议栈和馈电控制面协议栈,并且由于上述馈电用户面协议栈和馈电控制面协议栈是继承了NR中的用户面协议栈和控制面协议栈中的部分协议的,因此卫星基站与信关站在通信的过程中,无需在5G通信协议与非标准协议(自定义协议)间进行转换,这样不仅能够让卫星基站与信关站间快速的建立通信连接,并且能很好地兼容于NR系统,降低卫星基站与信关站之间的馈电链路上传输的数据、信令的复杂度。
例如,请参见图9为本申请实施例提供的卫星基站与信关站的通信示意图。假设图9中卫星基站1和卫星基站2为搭载在卫星上的5G基站,在信关站1和信关站2中均增加了5G UE功能模块,这样就可以通过信关站1中的5G UE功能模块与卫星基站1建立NR-Uu连接,通过信关站2中的5G UE功能模块与卫星基站2建立NR-Uu连接,进而卫星基站1、卫星基站2可以分别确定自身作为5G UE功能模块的信关站1、信关站2接入后,卫星基站1、卫星基站2分别为信关站1的5G UE功能模块、信关站2的5G UE功能模块配置至少一个馈电DRB,并将馈电DRB作为馈电链路的承载(卫星基站1与信关站1件的馈电链路记为馈电链路1、卫星基站2与信关站2间的馈电链路记为馈电链路2、卫星基站1、卫星基站2与所辖区域内的普通UE建立的链路为服务链路),用以在卫星基站1与信关站1间传输信令和数据、在卫星基站2与信关站2间传输信令和数据,卫星基站1、卫星基站2可以通过各自对应的信关站与核心网,以及与核心网连接的数据网络通信。当卫星基站1为信关站1的5G UE功能模块配置的是多个馈电DRB时,不同馈电DRB对应的业务不同。
由于一个信关站需要与多个卫星基站通信,从而在信关站中可以设置多个5G UE功能模块,一个5G UE功能模块与一个卫星基站通信,这样就可以让不同的卫星基站通过各自对应的5G UE功能模块与同一信关站通信。
在本申请提供的实施例中,通过将信关站自身作为UE功能模块接入卫星基站,并让卫星基站为信关站的UE功能模块配置馈电DRB作为馈电链路的承载,使得在卫星5G融合系统中为卫星基站提供了基于NR-Uu接口的馈电链路支持,利用NR-Uu接口的DRB承载卫星基站与信关站间传输信令和数据,从而在不同信关站可以使用统一的通信标准与卫星基站通信,降低了卫星基站与信关站间传输数据、信令的复杂度,进而能够高效的实现馈电链路上的信令和数据的传递。
在步骤401中,卫星基站确定自身作为用户设备UE功能模块的信关站接入,可以通过下列方式实现:
卫星基站接收信关站中一个UE功能模块发送的随机接入请求;卫星基站生成随机接入请求的响应信息,并将响应信息发送给UE功能模块,与UE功能模块建立无线资源控制RRC连接。
在信关站与卫星基站的馈电链路中,使用上述馈电用户面协议栈和馈电控制面协议栈,卫星基站提供一个馈电波束覆盖信关站所在的区域,为信关站提供馈电链路的NR-Uu服务,信关站将自身作为UE功能模块(相当于让信关站作为用户终端)接入卫星基站,采用与普通UE(即一般的用户终端)相同的方式进行馈电小区的搜索、同步、读取系统信息,通过随机接入请求建立RRC连接。
例如,在一个信关站内设置了一个UE功能模块,信关站通过该UE功能模块向卫星基站发送随机接入请求,基站根据该随机接入请求生成对应的响应信息,并发送给信关站的UE功能模块,这样就可以在卫星基站与信关站间建立RRC连接,卫星基站进而能够确定有自身作为UE功能模块的信关站接入。
一种可能的实施方式,卫星基站为UE功能模块配置至少一个馈电数据无线承载DRB,包括:
卫星基站根据RRC连接的建立原因,或UE功能模块的相关信息,确定UE功能模块的身份信息,所述相关信息用于指示所述UE功能模块为信关站 UE功能模块;若身份信息为信关站的UE功能模块,卫星基站为功能模块分配至少一个馈电DRB;其中,每个馈电DRB对应承载不同的业务类型。业务类型包括N2信令、N3数据中的至少一个。上述N2信令,包括UE相关N2信令、非UE相关信令中的至少一个。
N3数据,包括卫星基站所辖每个UE的数据、卫星基站或与卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
卫星基站与信关站的UE功能模块间建立RRC连接后,卫星基站可以通过RRC建立的原因、或UE能力/UE类型指示灯相关信息确定信关站的UE功能模块的身份信息,进而为信关站的UE功能模块配置至少一个馈电DRB来承载馈电链路上的信令和数据。上述馈电DRB的配置可以根据卫星基站中预配置进行配置,也可以由卫星基站的实现决定。
以图9中的卫星基站与信关站1为例,一个UE接入卫星基站1后,卫星基站根据与此UE的RRC连接建立的原因或相关信息,确定此UE的身份信息为普通UE,则按与普通UE通信的方式与之正常通信;假设一段时间后信关站将自身作为UE功能模块接入卫星基站,卫星基站根据与信关站的UE功能模间的RRC连接的建立原因,或UE功能模块的相关信息,确定UE功能模块的身份信息为信关站的UE功能模块,则卫星基站为此UE功能模块配置2个馈电DRB,一个馈电DRB承载不同的N2信令,另一个馈电DRB承载N3数据。
一种可能的实施方式,卫星基站根据馈电链路的承载能力及负荷,控制卫星基站空中接口的普通UE的接入总量和业务接纳总量。具体可以通过下列方式实现:
卫星基站根据UE功能模块上报的UE能力,确定馈电链路的最大承载能力;
卫星基站根据馈电链路的负荷是否超出最大承载能力的设定比例,决定是否还允许普通UE接入信关站所在的馈电波束,或决定是否还允许普通UE接入卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会 话建立请求。
上述最大承载能力可以是馈电链路上能承载的最大用户数量、最大吞吐量等,相应的馈电链路的负荷可以是馈电链路当前实际承载的用户数量、总的吞吐量等。
例如,在信关站的UE功能模块接入卫星基站后,告知卫星基站其UE能力为M,卫星基站确定馈电连当前的负荷为N,设定比例为k(k<1),卫星基站判断N与k×M的大小,若N大于k×M,则确定馈电链路的负荷超出馈电链路的最大承载能力的设定比例,不再允许新的普通UE接入卫星基站的馈电波束或其它业务波束,或不再接纳核心网发起的普通UE的会话建立请求;若N小于或等于k×M,则确定馈电链路的负荷未超出馈电链路的最大承载能力的设定比例,允许新的普通UE接入卫星基站的馈电波束或其它业务波束,或接纳核心网发起的普通UE的会话建立请求,这样可以有效的控制卫星基站空中接口的普通UE的接入总量、卫星基站的业务接纳总量,从而防止卫星基站与信关站间的通信出现堵塞,为已接入卫星基站的普通UE提供流畅的通信服务。
一种可能的实施方式,若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度,在所述卫星基站的资源紧张时减少或停止对所述普通UE的服务,就是在馈电波束的资源占用比例达到一定高度时,通过对应的操作,减少或停止对普通UE的服务。
请继续参见图9,假设图9中的卫星基站2覆盖信关站2的馈电波束为一个不允许普通UE接入的专用波束,通过该专用波束为信关站2提供专用馈电服务,图9中信关站2所在馈电小区(椭圆虚点线)内的普通UE不能接入卫星基站2的专用波束、该卫星基站2的其它业务波束对应的小区内的普通UE能接入卫星基站2。当信关站2的UE功能模块接入卫星基站2后,卫星基站2根据默认配置或预配置为信关站2的UE功能模块配置一个馈电DRB,用于传输馈电链路上的一切信令和数据,如卫星基站所辖所有普通终端的业务数 据或N2信令、卫星基站的非UE关联N2信令、通过星间链路(Inter-Satellite Links,ISL)接收的相邻卫星的数据或信令信息、卫星基站所在卫星或卫星基站的配置信息或控制信息,如波束控制信息或星间的测控信息等。若卫星基站2为信关站配置了2个馈电DRB,让一个馈电DRB用于传输N2信令,另一个馈电DRB用于传输N3数据,卫星基站可以在RRC配置消息中指示不同NRB对应的业务类型,信关站在传输信令或数据时,根据不同的业务类型选择对应的馈电DRB进行传输。
假设图9中的卫星基站1覆盖信关站1的馈电波束为非专用波束,通过该非专用波束为信关站1提供馈电服务,图9中覆盖信关站1的馈电小区(椭圆实线所示)内的普通UE可以通过上述非专用波束接入卫星基站1,但卫星基站1在信关站1所在的馈电小区内优先保证信关站1的馈电DRB的数据调度,在卫星基站1的资源紧张时,减少或停止对普通UE的服务,这样能够充分保证信关站的馈电DRB的通信需求,提高卫星通信服务质量。在信关站1的UE功能模块通过随机接入请求接入卫星基站1后,卫星基站1为信关站1的UE功能模块配置至少一个馈电DRB,作为馈电链路承载,在馈电DRB配置完成后,卫星基站1可以在信关站所在的馈电小区内接纳普通UE的接入,对于普通UE注册、业务建立等过程与NR系统无异,接入卫星基站1的普通UE的相关N2信令和N3数据通过卫星基站1和信关站1间的馈电DRB与核心网进行交互。
在从卫星基站侧介绍了数据传输的方法后,下面将从信关站侧进行介绍:
基于同一发明构思,本申请实施例提供一种数据传输的方法,请参见图10,该方法包括:
步骤1001:信关站自身作为用户设备UE功能模块接入卫星基站,使卫星基站为UE功能模块配置至少一个馈电数据无线承载DRB。步骤1002:信关站通过至少一个馈电DRB建立与卫星基站间的馈电链路;
步骤1003:信关站在馈电链路上与卫星基站传输信令和数据。
在步骤1001中,信关站自身作为用户设备UE功能模块接入卫星基站, 可以通过下列方式实现:
信关站通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;其中,信关站包括至少一个UE功能模块;一个信关站可以有很多个UE功能模块,每个UE模块可以连接不同的卫星,也可以是多个UE模块连接同一颗卫星。信关站接收所述卫星基站发送的随机接入请求的响应信息,并根据响应信息在所述UE功能模块与任所述卫星基站间建立无线资源控制RRC连接。
请参见图11为本申请实施例提供的另一种卫星基站与信关站的通信示意图。
在图11中信关站中设置有2个UE功能模块,信关站通过这2个UE功能模块分别接入卫星基站1和卫星基站2,并与卫星基站1和卫星基站2分时建立了馈电链路1和馈电链路2,信关站通过一个UE功能模块(记为UE功能模块1)接入卫星基站1后,卫星基站1为UE功能模块1配置了至少1个馈电DRB(记为馈电DRB1),UE功能模块1通过至少1个馈电DRB1与卫星基站1建立馈电链路(记为馈电链路1),并在馈电链路1上传输与卫星基站1的信令和数据。信关站还通过另一个UE功能模块(记为UE功能模块2)接入卫星基站2后,卫星基站2为UE功能模块2配置了至少1个馈电DRB(记为馈电DRB2),UE功能模块2通过至少1个馈电DRB2与卫星基站2建立馈电链路(记为馈电链路2),并在馈电链路2上传输与卫星基站2的信令和数据。
一种可能的实施方式,馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层,且不含会话PDU层、服务数据适配协议SDAP层;馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层,且不含非接入NAS层。
上述馈电用户面协议栈和馈电控制面协议栈可以参见卫星基站侧方法中的相关介绍,在此不再赘述。
如图12所示,本申请实施例提供的一种卫星基站,包括至少一个处理器1203;与所述至少一个处理器通信连接的收发机1202;以及与所述至少一个处理器通信连接的存储器1201;
其中,所述收发机1202,在处理器1203的控制下进行数据的接收和发送;所述存储器1201存储有可被所述至少一个处理器1203执行的指令,所述指令被所述至少一个处理器1203执行,以使所述至少一个处理器1203能够执行以下操作:
确定自身作为用户设备UE功能模块的信关站接入;为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载用于在卫星基站和信关站之间传输信令和数据。
一种可能的实施方式,所述处理器1203还用于:
接收所述信关站中一个UE功能模块发送的随机接入请求;
生成所述随机接入请求的响应信息,并发送给所述UE功能模块,建立无线资源控制RRC连接。
一种可能的实施方式,所述处理器1203还用于:
根据所述RRC连接的建立原因,或与所述UE功能模块的相关信息,确定所述UE功能模块的身份信息,所述相关信息用于指示所述UE功能模块为信关站UE功能模块;
若所述身份信息为所述信关站的UE功能模块,为所述功能模块分配至少一个馈电DRB;其中,每个馈电DRB对应承载不同的业务类型。
一种可能的实施方式,所述业务类型,包括:
N2信令、N3数据中的至少一个。
一种可能的实施方式,所述N2信令,包括:
UE相关N2信令、非UE相关信令中的至少一个。
一种可能的实施方式,所述N3数据,包括:
所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
一种可能的实施方式,所述处理器1203还用于:
根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量。
一种可能的实施方式,所述处理器1203还用于:
根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
一种可能的实施方式,所述处理器1203还用于:
若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度,在所述卫星基站的资源紧张时减少或停止对所述普通UE的服务。
收发机1202,用于在处理器1203的控制下接收和发送数据。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1203代表的一个或多个处理器和存储器1201代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1203负责管理总线架构和通常的处理,存储器1201可以存储处理器1203在执行操作时所使用的数据。
处理器1203可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable  Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
基于同一发明构思,请参见图13,本申请实施例提供一种信关站,包括至少一个处理器1303;与所述至少一个处理器通信连接的收发机1302;以及与所述至少一个处理器通信连接的存储器1301;
其中,所述收发机1302,在处理器1303的控制下进行数据的接收和发送;所述存储器1301存储有可被所述至少一个处理器1303执行的指令,所述指令被所述至少一个处理器1303执行,以使所述至少一个处理器1303能够执行以下操作:
信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
在所述馈电链路上与所述卫星基站传输信令和数据。
一种可能的实施方式,所述处理器1303还用于:
通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;其中,所述信关站包括至少一个UE功能模块;
接收所述卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述卫星基站间建立无线资源控制RRC连接。
一种可能的实施方式,所述馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
收发机1302,用于在处理器1303的控制下接收和发送数据。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1303代表的一个或多个处理器和存储器1301代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路 等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1304还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1303负责管理总线架构和通常的处理,存储器1301可以存储处理器1303在执行操作时所使用的数据。
可选的,处理器1303可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于同一发明构思,本申请一实施例中提供一种卫星基站,该卫星基站的数据传输方法的具体实施方式可参见卫星基站侧方法实施例部分的描述,重复之处不再赘述,请参见图14,该卫星基站包括:
确定单元1401,用于卫星基站确定自身作为用户设备UE功能模块的信关站接入;
配置单元1402,用于为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载用于在卫星基站和信关站之间传输信令和数据。
一种可能的实施方式,所述确定单元1401还用于:
所述卫星基站接收所述信关站中一个UE功能模块发送的随机接入请求;
所述卫星基站生成所述随机接入请求的响应信息,并发送给所述UE功能模块,建立无线资源控制RRC连接。
一种可能的实施方式,所述配置单元1402还用于:
所述卫星基站根据所述RRC连接的建立原因,或与所述UE功能模块的相关信息,确定所述UE功能模块的身份信息;
若所述身份信息为所述信关站的UE功能模块,所述卫星基站为所述功能模块分配至少一个馈电DRB;其中,每个馈电DRB对应承载不同的业务类型。
一种可能的实施方式,所述业务类型,包括:
N2信令、N3数据中的至少一个。
一种可能的实施方式,所述N2信令,包括:
UE相关N2信令、非UE相关信令中的至少一个。
一种可能的实施方式,所述N3数据,包括:
所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
一种可能的实施方式,所述配置单元1402还用于:
所述卫星基站根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口普通UE的接入总量和业务接纳总量。
一种可能的实施方式,所述配置单元1402还用于:
所述卫星基站根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
所述卫星基站根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
一种可能的实施方式,所述配置单元1402还用于:
若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度,在所述卫星基站的资源紧张时减少或停止对所述普通UE的服务。
基于同一发明构思,本申请一实施例中提供一种信关站,该信关站的数据传输方法的具体实施方式可参见信关站侧方法实施例部分的描述,重复之处不再赘述,请参见图15,该信关站包括:
接入单元1501,用于信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
建立单元1502,用于通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
传输单元1503,用于在所述馈电链路上与所述卫星基站传输信令和数据。
一种可能的实施方式,所述接入单元1501用于:
通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;其中,所述信关站包括至少一个UE功能模块;
接收任一卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述卫星基站间建立无线资源控制RRC连接。
一种可能的实施方式,所述馈电链路的协议,包括:
馈电用户面协议栈和馈电控制面协议栈;
其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既 可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于同一发明构思,本申请实施例还提一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述的卫星基站侧或信关站侧的数据传输方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产 品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种数据传输的方法,其特征在于,该方法包括:
    卫星基站确定自身作为用户设备UE功能模块的信关站接入;
    所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
  2. 如权利要求1所述的方法,其特征在于,卫星基站确定自身作为用户设备UE功能模块的信关站接入,包括:
    卫星基站接收信关站中一个UE功能模块发送的随机接入请求;
    所述卫星基站生成所述随机接入请求的响应信息,并将所述响应信息发送给所述UE功能模块,与所述UE功能模块建立无线资源控制RRC连接。
  3. 如权利要求2所述的方法,其特征在于,所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB,包括:
    所述卫星基站根据所述RRC连接的建立原因,或所述UE功能模块的相关信息,确定所述UE功能模块的身份信息;
    若所述身份信息为所述信关站的UE功能模块,所述卫星基站为所述UE功能模块分配至少一个馈电DRB;其中,每个所述馈电DRB对应承载不同的业务类型。
  4. 如权利要求3所述的方法,其特征在于,所述业务类型,包括:
    N2信令、N3数据中的至少一个。
  5. 如权利要求4所述的方法,其特征在于,所述N2信令,包括:
    UE相关N2信令、非UE相关信令中的至少一个。
  6. 如权利要求4所述的方法,其特征在于,所述N3数据,包括:
    所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
  7. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    所述卫星基站根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量。
  8. 如权利要求7所述的方法,其特征在于,所述卫星基站根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量,包括:
    所述卫星基站根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
    所述卫星基站根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
    若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度。
  10. 一种数据传输的方法,其特征在于,包括:
    信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
    所述信关站通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
    所述信关站在所述馈电链路上与所述卫星基站传输信令和数据。
  11. 如权利要求10所述的方法,其特征在于,所述信关站包括至少一个UE功能模块,信关站自身作为用户设备UE功能模块接入卫星基站,包括:
    所述信关站通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;
    所述信关站接收所述卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述卫星基站间建立无线资源控制 RRC连接。
  12. 如权利要求10或11所述的方法,其特征在于,所述馈电链路的协议,包括:
    馈电用户面协议栈和馈电控制面协议栈;
    其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
  13. 一种卫星基站,其特征在于,所述卫星基站包括:至少一个处理器;与所述至少一个处理器通信连接的收发机;以及与所述至少一个处理器通信连接的存储器;其中,所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行以下操作:
    确定自身作为用户设备UE功能模块的信关站接入;
    为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
  14. 如权利要求13所述的卫星基站,其特征在于,所述处理器还用于:
    接收所述信关站中一个UE功能模块发送的随机接入请求;
    生成所述随机接入请求的响应信息,并将所述响应信息发送给所述UE功能模块,与所述UE功能模块建立无线资源控制RRC连接。
  15. 如权利要求14所述的卫星基站,其特征在于,所述处理器还用于:
    根据所述RRC连接的建立原因,或所述UE功能模块的相关信息,确定所述UE功能模块的身份信息;
    若所述身份信息为所述信关站的UE功能模块,为所述功能模块分配至少一个馈电DRB;其中,每个所述馈电DRB对应承载不同的业务类型。
  16. 如权利要求15所述的卫星基站,其特征在于,所述业务类型,包括:
    N2信令、N3数据中的至少一个。
  17. 如权利要求16所述的卫星基站,其特征在于,所述N2信令,包括:
    UE相关N2信令、非UE相关信令中的至少一个。
  18. 如权利要求16所述的卫星基站,其特征在于,所述N3数据,包括:
    所述卫星基站所辖每个UE的数据、所述卫星基站或与所述卫星基站通过星间链路同的其它卫星基站的数据中的至少一个。
  19. 如权利要求13-18任一项所述的卫星基站,其特征在于,所述处理器还用于:
    根据所述馈电链路的承载能力及负荷,控制所述卫星基站空中接口的普通UE的接入总量和业务接纳总量。
  20. 如权利要求19所述的卫星基站,其特征在于,所述处理器还用于:
    根据所述UE功能模块上报的UE能力,确定所述馈电链路的最大承载能力;
    根据所述馈电链路的负荷是否超出所述最大承载能力的设定比例,决定是否还允许普通UE接入所述信关站所在的馈电波束,或决定是否还允许所述普通UE接入所述卫星基站的其它业务波束,或决定是否还接纳核心网发起的普通UE的会话建立请求。
  21. 如权利要求20所述的卫星基站,其特征在于,所述处理器还用于:
    若所述馈电波束为所述信关站的专用波束,则不允许普通UE接入;
    若所述馈电波束为所述信关站的非专用波束,则在所述信关站所在的馈电小区优先保证所述馈电DRB的数据调度。
  22. 一种信关站,其特征在于,所述信关站包括:至少一个处理器;与所述至少一个处理器通信连接的收发机;以及与所述至少一个处理器通信连接的存储器;其中,所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行以下操作:
    信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
    通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
    在所述馈电链路上与所述卫星基站传输信令和数据。
  23. 如权利要求22所述的信关站,其特征在于,所述处理器还用于:
    通过至少一个UE功能模块向对应的卫星基站发送随机接入请求;其中,所述信关站包括至少一个UE功能模块;
    接收所述卫星基站发送的所述随机接入请求的响应信息,并根据所述响应信息在所述UE功能模块与所述任一卫星基站建立无线资源控制RRC连接。
  24. 如权利要求22或23所述的信关站,其特征在于,所述馈电链路的协议,包括:
    馈电用户面协议栈和馈电控制面协议栈;
    其中,所述馈电用户面协议栈包括分组数据汇聚协议PDCP层、无线链路控制RLC层、媒体接入控制MAC层、物理PHY层;所述馈电控制面协议栈包括无线资源控制RRC层、PDCP层、RLC层、MAC层、PHY层。
  25. 一种卫星基站,其特征在于,包括:
    确定单元,用于卫星基站确定自身作为用户设备UE功能模块的信关站接入;
    配置单元,用于为所述UE功能模块配置至少一个馈电数据无线承载DRB;其中,所述馈电DRB作为馈电链路的承载,用于在卫星基站和信关站之间传输信令和数据。
  26. 一种信关站,其特征在于,包括:
    接入单元,用于信关站自身作为用户设备UE功能模块接入卫星基站,使所述卫星基站为所述UE功能模块配置至少一个馈电数据无线承载DRB;
    建立单元,用于通过所述至少一个馈电DRB建立与所述卫星基站间的馈电链路;
    传输单元,用于在所述馈电链路上与所述卫星基站传输信令和数据。
  27. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至12 任一项所述的方法。
PCT/CN2022/129492 2021-11-03 2022-11-03 一种数据传输的方法、卫星基站、信关站及存储介质 WO2023078339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111292911.2 2021-11-03
CN202111292911.2A CN116073881A (zh) 2021-11-03 2021-11-03 一种数据传输的方法、卫星基站、信关站及存储介质

Publications (1)

Publication Number Publication Date
WO2023078339A1 true WO2023078339A1 (zh) 2023-05-11

Family

ID=86177409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129492 WO2023078339A1 (zh) 2021-11-03 2022-11-03 一种数据传输的方法、卫星基站、信关站及存储介质

Country Status (2)

Country Link
CN (1) CN116073881A (zh)
WO (1) WO2023078339A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116684980A (zh) * 2023-08-02 2023-09-01 银河航天(北京)网络技术有限公司 基于多卫星处理数据的方法、装置及存储介质
CN117081640A (zh) * 2023-07-10 2023-11-17 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 基于帧头压缩的多协议星舰地一体化网关设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930025A (zh) * 2020-08-06 2020-11-13 北京中科晶上科技股份有限公司 卫星通信系统仿真平台的建模与仿真方法及装置
WO2021164374A1 (zh) * 2020-02-21 2021-08-26 大唐移动通信设备有限公司 移动信关站、通信卫星、低轨卫星通信系统及使用方法
WO2021175067A1 (zh) * 2020-03-03 2021-09-10 华为技术有限公司 信关站切换方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164374A1 (zh) * 2020-02-21 2021-08-26 大唐移动通信设备有限公司 移动信关站、通信卫星、低轨卫星通信系统及使用方法
WO2021175067A1 (zh) * 2020-03-03 2021-09-10 华为技术有限公司 信关站切换方法及装置
CN111930025A (zh) * 2020-08-06 2020-11-13 北京中科晶上科技股份有限公司 卫星通信系统仿真平台的建模与仿真方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Cleanup for Transparent Satellite based Architecture", 3GPP DRAFT; R3-192291 CLEANUP FOR TRANSPARENT SATELLITE BASED ARCHITECTURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, NV, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051712506 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117081640A (zh) * 2023-07-10 2023-11-17 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 基于帧头压缩的多协议星舰地一体化网关设计方法
CN117081640B (zh) * 2023-07-10 2024-04-09 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 基于帧头压缩的多协议星舰地一体化网关设计方法
CN116684980A (zh) * 2023-08-02 2023-09-01 银河航天(北京)网络技术有限公司 基于多卫星处理数据的方法、装置及存储介质
CN116684980B (zh) * 2023-08-02 2023-09-26 银河航天(北京)网络技术有限公司 基于多卫星处理数据的方法、装置及存储介质

Also Published As

Publication number Publication date
CN116073881A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2018027988A1 (zh) 网络切片的选择方法、无线接入设备和终端
WO2023078339A1 (zh) 一种数据传输的方法、卫星基站、信关站及存储介质
EP3917217A1 (en) Communication method and related device
EP4277308A1 (en) Communication method and apparatus, device, and readable storage medium
US20230262793A1 (en) Method for communication between user terminal and network, and terminal, network device and apparatus
US20230171823A1 (en) Information transmission method, network device and terminal
WO2023066383A1 (zh) 数据传输方法、装置及存储介质
CN114205883A (zh) 网络切片重映射方法、装置及存储介质
KR20220155383A (ko) 통신 방법, 액세스 네트워크 디바이스, 단말 디바이스, 및 코어 네트워크 디바이스
WO2022073431A1 (zh) 数据处理方法、设备、装置和存储介质
WO2022073491A1 (zh) 切换方法、装置、终端设备、网络设备及存储介质
US20230254729A1 (en) Migration method and apparatus for iab-node
WO2023273397A1 (zh) 组切换方法、设备、装置及存储介质
WO2022152092A1 (zh) 数据传输控制方法和装置
WO2022161210A1 (zh) 资源配置方法、装置、设备以及存储介质
WO2022116820A1 (zh) 终端rrc连接恢复的方法和装置
WO2022156439A1 (zh) 信息传输方法、装置、基站及介质
WO2022160303A1 (zh) 服务质量参数处理方法、终端设备、网络功能实体和网络设备
CN114390622A (zh) 一种信息传输方法、装置及通信设备
WO2019232683A1 (zh) 小区建立的方法和装置
WO2023020276A1 (zh) 组播广播业务数据传输方法、装置、设备以及存储介质
WO2023116627A1 (zh) 信息处理方法、装置及可读存储介质
WO2023005896A1 (zh) 信息传输方法、装置、中继终端和网络侧设备
WO2024022199A1 (zh) 信息传输方法、装置及存储介质
WO2024066666A1 (zh) 数据传输优先级确定方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889361

Country of ref document: EP

Kind code of ref document: A1