WO2023216690A1 - 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺 - Google Patents

一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺 Download PDF

Info

Publication number
WO2023216690A1
WO2023216690A1 PCT/CN2023/079774 CN2023079774W WO2023216690A1 WO 2023216690 A1 WO2023216690 A1 WO 2023216690A1 CN 2023079774 W CN2023079774 W CN 2023079774W WO 2023216690 A1 WO2023216690 A1 WO 2023216690A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
coal
sorting
flotation
gallium
Prior art date
Application number
PCT/CN2023/079774
Other languages
English (en)
French (fr)
Inventor
桂夏辉
王磊
邢耀文
刘秦杉
徐梦迪
夏阳超
曹亦俊
苗真勇
王兰豪
李永改
徐天缘
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2023216690A1 publication Critical patent/WO2023216690A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/005General arrangement of separating plant, e.g. flow sheets specially adapted for coal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3416Sorting according to other particular properties according to radiation transmissivity, e.g. for light, x-rays, particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/361Processing or control devices therefor, e.g. escort memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • B03D2203/08Coal ores, fly ash or soot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of mineral separation, and in particular to a whole-grain separation and pre-enrichment system and process for gallium and lithium produced from coal-related minerals.
  • Coal is an important primary energy source in my country, among which coal-related strategic metal minerals are abundant. With the development of emerging industries and the overall national security layout, it is of great significance to improve the technical level of coal-related strategic metal minerals. As a typical representative, gallium and lithium are produced from metal minerals associated with coal measures.
  • the Jungar and Daqingshan coalfields in Inner Mongolia and the Ningwu coalfield in Shanxi have formed element enrichments and have the basic conditions for extraction and utilization.
  • gallium and lithium produced from coal-related minerals are finely dispersed in the coal materials and have low-grade, Due to the characteristics of mixed coarse and fine particles, traditional physical sorting technology is not applicable, and the sorting efficiency is extremely low. At present, there is no efficient full-grain fractionation and pre-enrichment technology for gallium and lithium produced from coal-measure co-associated minerals in China.
  • phase identification and separation Based on the idea of phase identification and separation, physical sorting and pre-enrichment of gallium and lithium can be achieved based on the occurrence state of gallium and lithium in coal and the property differences between the occurring phase and the non-occurring phase.
  • the main occurrence phases of gallium in coal series are boehmite and kaolinite, while the main occurrence phases of lithium are chlorite, etc. Both of them are clay minerals. Therefore, gallium and lithium produced from coal-related minerals also have the basis for industrial coordinated extraction.
  • embodiments of the present invention aim to provide a full-grain separation and pre-enrichment system and process for gallium and lithium produced from coal-related minerals, so as to solve the problem of gallium and lithium produced from coal-related minerals in existing systems and processes.
  • the present invention provides a full-grain separation and pre-enrichment system for gallium and lithium produced from coal-related minerals, including a feed classification preparation unit, an X-ray high-efficiency separation unit and a microbubble flotation unit.
  • the X-ray The high-efficiency radiation sorting unit and the microbubble flotation unit are both located downstream of the feed grading preparation unit.
  • the feed grading unit classifies the coal series rich in strategic metal gallium and lithium, and the oversize material is fed into
  • the X-ray high-efficiency sorting unit performs sorting, and the undersize is fed into the microbubble flotation unit for sorting.
  • the feed grading preparation unit includes a grading sieve, and the sieve hole diameter of the grading sieve is 25 mm.
  • the X-ray high-efficiency sorting unit includes a sorting cloth device, a detection and identification device, a sorting control device and a high-pressure air chamber.
  • the discharge port on the grading screen is connected to the inlet of the sorting and distribution device.
  • the detection and identification device is used to identify target minerals and non-target minerals, and is then controlled by the sorting control device.
  • the high-pressure air chamber injection performs automatic separation.
  • the microbubble flotation unit includes a microbubble flotation dissociation unit, a microbubble flotation separation unit and a microbubble flotation dosing platform.
  • the microbubble flotation separation unit and microbubble flotation dosing platform They are all located downstream of the microbubble flotation dissociation unit.
  • the microbubble flotation dissociation unit includes a crusher and a grinder, the crusher is located downstream of the classification screen, and the grinder is located downstream of the crusher.
  • microbubble flotation and dissociation unit further includes a hydraulic classifying cyclone, and the hydraulic classifying cyclone is located downstream of the grinding machine.
  • the microbubble flotation separation unit includes a forced stirring mineralization device and a flotation column.
  • the forced stirring mineralization device is located downstream of the hydraulic graded cyclone, and the flotation column is located at the forced stirring mineralization device. Stir downstream of the mineralization unit.
  • microbubble flotation dosing platform includes a flotation dosing platform, and the flotation dosing platform is located downstream of the hydraulic classification cyclone.
  • the present invention provides a whole-grain-level separation and pre-enrichment process for gallium and lithium produced from coal-related minerals, using the above-mentioned full-grain separation and pre-enrichment system for gallium and lithium from coal-related minerals.
  • the steps include :
  • S3 Microbubble flotation, the underflow is fed into the microbubble flotation unit for sorting.
  • the present invention has the following beneficial effects:
  • the multi-energy field-enhanced X-ray high-efficiency sorting unit of the present invention selects based on the differences in mineral phases, effectively overcoming the problem of different mineral phases of the same element (similar quality and homogeneity) caused by the existing technology based on element differences. ) is a difficult question to choose.
  • a dual-energy X-ray source is used to image the incoming mineral transmission, eliminating the influence of the incoming material particle size on the imaging grayscale, and integrating industrial camera visible light imaging.
  • Radiographic imaging grayscale, morphology, visible light imaging mineral texture, color and other features are analyzed through SVR (Support Vector Regression, Support Vector Regression) algorithm and machine vision to solve the singleness problem of existing technology that only extracts grayscale features.
  • SVR Small Vector Regression, Support Vector Regression
  • the industrial camera performs multi-target real-time marking and tracking of the marked target minerals, thereby accurately controlling the selection and separation of the identified target minerals by the injection system and improving sorting accuracy and efficiency.
  • the microbubble flotation unit of the present invention is constructed with the physical properties of coal series rich in strategic metal gallium and lithium. Equipment and processes adapted to the quality and phase, by optimizing the grinding and dissociation, slurry mineralization, and flotation separation of fine-grained gallium-lithium existing phases, effectively control the dissociated particle size of gallium-lithium and improve the hydrophobicity difference of the existing phases. Improve mineralization efficiency and achieve efficient and accurate separation of gallium and lithium existing phases and non-occurring phases.
  • the crushing, grinding and dissociation of the material under the classification screen that is, the -25mm material
  • the underflow of the hydraulic classification cyclone return to the mill to achieve closed-circuit grinding process, which is beneficial to overcome the problem
  • the characteristics of fine dispersion of gallium and lithium in coal-related minerals can fully dissociate the inorganic mineral phase containing gallium and lithium occurrence phase, and select the dissociated fine-grained gallium and lithium occurrence phase to ensure the high efficiency of gallium and lithium occurrence phase. Recycle.
  • the microbubble flotation separation unit of the present invention adopts a column machine (flotation column and flotation machine) combined flotation process. Aiming at the problem of low grades of gallium and lithium produced from coal-related minerals, during the flotation process, Column roughing ensures the effective separation of gallium and lithium existing phases from non-occurring phases, and flotation machine scanning ensures the yield of gallium and lithium existing phases.
  • the process flow of the present invention is highly feasible, fast and accurate.
  • X-ray sorting technology can realize the identification and response of coarse-grained gallium and lithium occurrence phases
  • foam flotation technology can realize the selective separation of fine-grained gallium and lithium occurrence phases. Therefore, coal-based co-associated mineral gallium and lithium are produced based on the combination of sorting and flotation.
  • the whole-grain fractionation and pre-enrichment process and system of the occurrence phase solves the traditional problems of difficulty in physical separation and enrichment of gallium and lithium from co-associated minerals in coal systems, low sorting efficiency, and poor accuracy, and realizes gallium from co-associated minerals in coal systems.
  • Whole particle fraction sorting pre-enrichment of lithium is highly feasible, fast and accurate.
  • Figure 1 is a schematic structural diagram of a full particle size separation and pre-enrichment system for gallium and lithium produced from coal-measure co-associated minerals according to a specific embodiment
  • Figure 2 is a flow chart of a specific embodiment of the whole particle size separation and pre-enrichment process of gallium and lithium produced from coal-related minerals.
  • 1-grading screen 2-sorting and distribution device; 3-detection and identification device; 4-sorting control device; 5-high-pressure gas chamber; 6-crusher; 7-grinding machine; 8-hydraulic classification cyclone; 9-forced stirring mineralization device; 10-flotation column; 11-flotation machine; 12-first concentrate pump; 13-first tailings pump; 14-second concentrate pump; 15-second tailings Pump; 16-flotation dosing platform; 17-first diaphragm metering pump; 18-second diaphragm metering pump.
  • a specific embodiment of the present invention discloses a full-grain separation and pre-enrichment system for gallium and lithium produced from coal-related minerals (hereinafter referred to as "full-grain separation and pre-enrichment system") , including the feed grading preparation unit, X-ray high-efficiency sorting unit and micro-bubble flotation unit.
  • the X-ray high-efficiency sorting unit and micro-bubble flotation unit are located downstream of the feed grading preparation unit.
  • the feed grading unit is The strategic metallic gallium-lithium coal series materials are classified. The +25mm particle size oversize materials are fed into the Select the unit to sort.
  • the feed grading preparation unit includes a grading sieve 1, and the sieve hole diameter of the grading sieve 1 is 25mm.
  • the classification screen 1 is a linear vibrating screen.
  • the coal series rich in strategic metal gallium and lithium are first classified through the classification sieve 1.
  • the sieve aperture of the classification sieve 1 is set to 25mm, and the coal series rich in strategic metal gallium and lithium with a particle size of +25mm is the sieve.
  • the upper material and the -25mm particle size-rich strategic metal gallium-lithium coal series are the under-sieve material, and the above-sieve material and the under-sieve material are processed differently respectively.
  • the X-ray high-efficiency sorting unit includes a fine sorting cloth device 2, a multi-energy field high-precision detection and identification device based on machine vision 3, an X-ray intelligent sorting control device 4 and a high-pressure air chamber 5.
  • the inlet is connected to the feed inlet of the fine sorting and distribution device 2.
  • the detection and identification device 3 identifies the target minerals and non-target minerals, and then the sorting control device 4 controls the high-pressure air chamber 5 to spray and perform automatic separation to achieve coarse-grained minerals on the screen. Pre-enrichment.
  • the multi-energy field-enhanced X-ray high-efficiency sorting unit selects based on the differences in mineral phases, effectively overcoming the problem of different mineral phases of the same element (similar quality and homogeneity) caused by the existing technology based on element differences. Difficult question to choose.
  • a dual-energy X-ray source is used to image the incoming mineral transmission, eliminating the influence of the incoming material particle size on the imaging grayscale, and integrating industrial camera visible light imaging.
  • X Characteristics such as radiographic grayscale, morphology, and visible light imaging mineral texture and color are analyzed through SVR algorithm and machine vision to solve the problem of singleness of existing technology that only extracts grayscale features.
  • the industrial camera performs multi-target real-time marking and tracking of the marked target minerals, thereby accurately controlling the selection and separation of the identified target minerals by the injection system and improving sorting accuracy and efficiency.
  • the microbubble flotation unit includes a microbubble flotation dissociation unit, a microbubble flotation separation unit and a microbubble flotation dosing platform.
  • the microbubble flotation dissociation unit includes a crusher 6, a grinding machine 7 and a hydraulic classifying cyclone 8.
  • the crusher 6 is located downstream of the classification screen 1
  • the grinding machine 7 is located downstream of the crusher 6, and the hydraulic classifying cyclone 8
  • the flow device 8 is located downstream of the grinding machine 7 .
  • the under-sieve discharge port of the classification screen 1 is connected to the feed port of the crusher 6, the discharge port of the crusher 6 is connected to the feed port of the grinding machine 7, and the feed port of the grinding machine 7 is connected to the hydraulic
  • the feed inlet of the classifying cyclone 8 is connected, and the bottom outflow feed port of the hydraulic classifying cyclone 8 is connected with the feed inlet of the grinding machine 7 .
  • the crusher 6 is a hammer crusher
  • the grinding machine 7 is a ball mill.
  • the micro-bubble flotation and dissociation unit crushes, grinds and dissociates the material under the classification sieve 1, that is, the -25mm material, and the underflow of the hydraulic classification cyclone returns to the mill to realize a closed-circuit grinding process, which is conducive to overcoming the problem.
  • the characteristics of fine dispersion of gallium and lithium in coal-related minerals can fully dissociate the inorganic mineral phase containing gallium and lithium occurrence phase, and select the dissociated fine-grained gallium and lithium occurrence phase to ensure the high efficiency of gallium and lithium occurrence phase. Recycle.
  • the microbubble flotation separation unit includes a multi-stage forced stirring mineralization device 9, a flotation column 10, a flotation machine 11, a first concentrate pump 12, a first tailings pump 13, a second concentrate pump 14 and a second tailings Pump 15, the multi-stage forced stirring mineralization device 9 is located downstream of the hydraulic classification cyclone 8, the flotation column 10 is located downstream of the multi-stage forced stirring mineralization device 9, and the first concentrate pump 12 is located at the end of the flotation column 10 Downstream, the first tailings pump 13 is located downstream of the flotation column 10, the flotation machine 11 is located downstream of the first tailings pump 13, the second concentrate pump 14 and the second tailings pump 15 are both located downstream of the flotation column. downstream of machine 11.
  • the overflow outlet of the hydraulic classification cyclone 8 is connected to the inlet of the multi-stage forced stirring mineralization device 9, and the outlet of the multi-stage forced stirring mineralization device 9 is connected to the inlet of the flotation column 10.
  • the overflow outlet of the flotation column 10 is connected to the first concentrate pump 12
  • the underflow outlet of the flotation column 10 is connected to the first tailings pump 13
  • the underflow product of the flotation column 10 passes through the first tailings pump 13 It is fed to the inlet of the flotation machine 11, the overflow outlet of the flotation machine 11 is connected to the second concentrate pump 14, and the underflow outlet of the flotation machine 11 is connected to the second tailings pump 15.
  • the diameter of the flotation column 10 is 500mm.
  • the microbubble flotation separation unit adopts a column machine (flotation column and flotation machine) combined flotation process. Aiming at the problem of low grade gallium and lithium produced from coal-related minerals, the flotation column is used during the flotation process. Rough selection ensures the effective separation of gallium and lithium existing phases from non-occurring phases, and flotation machine sweep ensures the yield of gallium and lithium existing phases.
  • the microbubble flotation dosing platform includes a flotation dosing platform 16 and a first diaphragm metering pump 17 and a second diaphragm metering pump 18.
  • the flotation dosing platform 16 is located downstream of the hydraulic classification cyclone 8 and is located in the multi-stage forced Upstream of the stirring mineralization device 9, the first diaphragm metering pump 17 is located between the flotation dosing platform 16 and the multi-stage forced stirring mineralization device 9, and the second diaphragm metering pump 18 is located between the flotation dosing platform 16 and the flotation machine. In the middle of 11.
  • the medicament from the flotation dosing platform 16 is connected to the dosing port of the multi-stage forced stirring mineralization device 9 through the first diaphragm metering pump 17 , and the medicament from the outlet of the flotation dosing platform 16 passes through the second diaphragm metering pump 18 Connected to the dosing port of the flotation machine 11.
  • the microbubble flotation unit of this embodiment constructs equipment and processes that are compatible with the properties of coal series rich in strategic metal gallium and lithium, and optimizes the crushing and dissociation of fine-grained gallium and lithium existing phases, slurrying and mineralization, and flotation. Select and separate equipment and processes to effectively control the dissociated particle size of gallium and lithium, enhance the hydrophobicity difference of the existing phases, improve the mineralization efficiency, and achieve efficient and accurate separation of the gallium and lithium existing phases and non-occurring phases.
  • FIG. 2 Another specific embodiment of the present invention, as shown in Figure 2, discloses a whole-grain separation and pre-enrichment process for gallium and lithium produced from coal-related minerals, using the method of Example 1 to produce gallium and lithium from coal-related minerals.
  • Full particle size sorting and pre-enrichment system the steps include:
  • the coal-based materials rich in strategic metal gallium and lithium are first classified through a grading sieve 1 with a hole diameter of 25mm.
  • the coal-based materials above the screen are +25mm coal-based materials, and the coal-based materials under the sieve are -25mm coal-based materials.
  • the incoming material enters the multi-energy field-enhanced X-ray sorting machine and is evenly distributed on the sorting belt by the vibrating feeder.
  • the dual-energy X-ray source transmits images of the incoming minerals, eliminating the influence of the particle size of the incoming material on the imaging grayscale. It also integrates industrial camera visible light imaging, and based on X-ray imaging grayscale, morphology, visible light imaging mineral texture, color and other characteristics, through SVR algorithm, machine vision and other analysis, the target mineral is marked and identified, and then the target mineral is identified by the sorting and injection device. Through sorting, we can obtain the gallium-lithium occurrence phase and other non-gallium-lithium occurrence phases of coal-bearing co-associated minerals.
  • the objects on the +25mm grading sieve 1 are fed into the multi-energy field-enhanced X-ray efficient sorting unit for sorting, and the objects on the +25mm grading sieve 1 enter the coarse-grained phase of the multi-energy field-enhanced X-ray
  • the fine sorting and distribution device 2 controls the feeding queue and fine distribution.
  • the machine vision high-precision detection and identification device 3 located above the fine sorting and distribution device 2 detects and identifies the materials.
  • the coarse-grained existing phase X-ray intelligent sorting control device 4 located behind the coarse-grained existing phase X-ray fine sorting distribution device 2 performs automatic separation through injection from the high-pressure air chamber 5 , to obtain the gallium-lithium occurrence phase and other non-gallium-lithium occurrence phases of coal-related minerals.
  • the material is crushed to -3mm by the crusher 6, and the crushed products are fed into the grinding machine 7 for grinding operation to achieve full dissociation.
  • the hydraulic classification cyclone 8 classifies the grinding products, the overflow products are fed to the microbubble flotation separation unit for separation, and the underflow products are returned to the grinding machine 7 for re-grinding.
  • the grinding products are fed into the hydraulic classification cyclone 8 for classification.
  • the overflow product of the hydraulic classification cyclone 8, that is, the -0.5mm material, is fed into the microbubble flotation separation unit for separation.
  • the underflow of the hydraulic classification cyclone 8 is The product, i.e. +0.5 ⁇ -3mm material, returns to the grinding machine 7 for re-grinding, and the re-ground product returns to the hydraulic classifying cyclone 8.
  • the overflow product of the hydraulic classification cyclone 8 is -0.5mm material and the microbubble flotation dosing platform.
  • the chemicals configured according to the difference in hydrophobicity of the interface between the inorganic mineral phase and the organic phase coal are fed into the multi-stage forced stirring mineralization device for stirring. mineralization.
  • the mixed material is fed into the flotation column 10 for rough separation.
  • the overflow product of the flotation column 10 is organic phase coal as a non-occurring phase product and is discharged from the first concentrate pump 12.
  • the flotation column 10 The underflow products are inorganic mineral phase products containing gallium and lithium occurrence phases.
  • the underflow product of the flotation column 10 is fed to the flotation machine 11 by the first tailings pump 13 for further sweeping.
  • the flotation dosing platform 16 is based on the relationship between the gallium-lithium occurrence phase and other non-gallium-lithium occurrence phases of the coal system co-associated minerals.
  • the difference in interfacial hydrophobicity between the inorganic mineral phases feeds the medicament into the flotation machine 11 through the second diaphragm metering pump 18.
  • the overflow product of the flotation machine 11 is a non-occurring phase product, and the tailings product of the flotation machine 11 is used as gallium.
  • the lithium occurrence phase product is fed into the subsequent process by the second tailings pump 15.
  • the process flow implemented in this implementation is highly feasible, fast and accurate.
  • X-ray sorting technology can realize the identification and response of coarse-grained gallium and lithium occurrence phases
  • foam flotation technology can realize the selective separation of fine-grained gallium and lithium occurrence phases. Therefore, coal-based co-associated mineral gallium and lithium are produced based on the combination of sorting and flotation.
  • the whole-grain fractionation and pre-enrichment process and system of the occurrence phase solves the traditional problems of difficulty in physical separation and enrichment of gallium and lithium from co-associated minerals in coal systems, low sorting efficiency, and poor accuracy, and realizes gallium from co-associated minerals in coal systems.
  • Whole particle fraction sorting pre-enrichment of lithium is highly feasible, fast and accurate.

Abstract

本发明涉及一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺,属于矿物分选技术领域,解决了现有技术中煤系共伴生矿产镓锂分选效率低的问题。本发明包括入料分级准备单元、X射线高效分选单元和微气泡浮选单元,所述X射线高效分选单元和所述微气泡浮选单元均设于所述入料分级准备单元的下游,所述入料分级单元对富战略性金属镓锂煤系物进行分级,筛上物给入所述X射线高效分选单元进行分选,筛下物给入所述微气泡浮选单元进行分选。本发明能够高效对煤系共伴生矿产镓锂进行分选。

Description

一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺 技术领域
本发明涉及矿物分选技术领域,尤其涉及一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺。
背景技术
煤炭是我国重要一次能源,其中煤系共伴生战略性金属矿产丰富,随着新兴产业发展及国家安全总体布局,提升煤系共伴生战略性金属矿产技术水平意义重大。煤系共伴生金属矿产镓锂作为典型代表,在内蒙古准格尔、大青山及山西宁武煤田已形成元素富集,具备提取利用的基本条件。
开发煤系共伴生矿产镓锂的分选预富集有利于提高后端活化、浸出等过程的效率,但煤系共伴生矿产镓锂在煤系物中呈细杂分散分布且具有品位低、粗粒与细粒混存等特点,传统物理分选技术并不适用,分选效率极低。目前,国内尚未有高效的煤系共伴生矿产镓锂的全粒级分选预富富集技术。
基于物相识别分离思路,根据煤系共伴生矿产镓锂在煤中的赋存状态、赋存相与非赋存相间的性质差异可实现镓锂的物理分选预富集。煤系物中镓的主要赋存相为勃姆石和高岭石,而锂的主要赋存相为绿泥石等,二者赋存相均为粘土矿物。因此,煤系共伴生矿产镓锂也具备工业化协同提取的基础。基于煤系战略性金属镓锂的赋存特征和赋存相理化特性,亟需开发一种高效的基于物相识别的煤系共伴生矿产镓锂全粒级分选预富集系统及工艺,推动煤系共伴生矿产镓锂的提取利用,有力保 障国家资源安全。
发明内容
鉴于上述的分析,本发明实施例旨在提供一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺,用以解决现有系统及工艺中煤系共伴生矿产镓锂分选效率低的问题。
一方面,本发明提供了一种煤系共伴生矿产镓锂的全粒级分选预富集系统,包括入料分级准备单元、X射线高效分选单元和微气泡浮选单元,所述X射线高效分选单元和所述微气泡浮选单元均设于所述入料分级准备单元的下游,所述入料分级单元对富战略性金属镓锂煤系物进行分级,筛上物给入所述X射线高效分选单元进行分选,筛下物给入所述微气泡浮选单元进行分选。
进一步地,所述入料分级准备单元包括分级筛,所述分级筛的筛孔孔径为25mm。
进一步地,所述X射线高效分选单元包括分选布料装置、检测识别装置、分选控制装置和高压气仓。
进一步地,所述分级筛的筛上出料口与所述分选布料装置的入料口相连,所述检测识别装置用于识别目的矿物与非目的矿物,后经所述分选控制装置控制所述高压气仓喷吹执行自动分离。
进一步地,所述微气泡浮选单元包括微气泡浮选解离单元、微气泡浮选分离单元和微气泡浮选加药平台,所述微气泡浮选分离单元和微气泡浮选加药平台均设于所述微气泡浮选解离单元的下游。
进一步地,所述微气泡浮选解离单元包括破碎机和磨矿机,所述破碎机设于所述分级筛的下游,所述磨矿机设于所述破碎机的下游。
进一步地,所述微气泡浮选解离单元还包括水力分级旋流器,所述水力分级旋流器设于所述磨矿机的下游。
进一步地,所述微气泡浮选分离单元包括强制搅拌矿化装置和浮选柱,所述强制搅拌矿化装置设于所述水力分级旋流的下游,所述浮选柱设于所述强制搅拌矿化装置的下游。
进一步地,所述微气泡浮选加药平台包括浮选加药平台,所述浮选加药平台设于所述水力分级旋流器的下游。
另一方面,本发明提供了一种煤系共伴生矿产镓锂的全粒级分选预富集工艺,采用上述煤系共伴生矿产镓锂的全粒级分选预富集系统,步骤包括:
S1:入料分级准备;
S2:X射线拣选,筛上物给入X射线高效分选单元进行分选;
S3:微气泡浮选,筛下物给入微气泡浮选单元进行分选。
与现有技术相比,本发明具有如下有益效果:
(1)本发明的多能场强化X射线高效分选单元是基于矿物相的差异性进行拣选,有效克服现有技术基于元素差异性进行拣选导致的同种元素不同矿物相(类质同像)难以拣选的问题。同时针对煤系共伴生矿产镓锂的赋存特征较为复杂的问题,采用双能量X光源对来料矿物透射成像,消除来料粒度对成像灰度的影响,并综合工业相机可见光成像,依据X射线成像灰度、形貌、可见光成像矿物纹理、色泽等特征,经过SVR(Support Vector Regression,支持向量回归)算法、机器视觉分析,解决现有技术仅提取灰度特征的单一性问题。同时,工业相机将标记的目的矿物进行多目标实时标记跟踪,从而精确控制喷吹系统对已识别的目的矿物的拣选分离,提高分选精度与效率。
(2)本发明的微气泡浮选单元,构建与富战略性金属镓锂煤系物性 质相适应的设备与工艺,通过优化细粒镓锂赋存相破磨解离、调浆矿化、浮选分离设备与工艺,有效控制镓锂解离粒度,提升赋存相疏水性差异,提高矿化效率,达到镓锂赋存相与非赋存相的高效、精准分离。
(3)本发明的微气泡浮选解离单元中对分级筛筛下物即-25mm物料的破碎磨矿解离以及水力分级旋流器底流返回磨机实现闭路磨矿的工艺,有利于克服煤系共伴生矿产镓锂细杂分散的特征,对含镓锂赋存相无机矿物相的充分解离,选别出解离的细粒镓锂赋存相,保证镓锂赋存相的高效回收。
(4)本发明的微气泡浮选分离单元采用柱机(浮选柱和浮选机)联合浮选工艺,针对煤系共伴生矿产镓锂品位低的问题,在浮选过程中通过浮选柱粗选保证镓锂赋存相与非赋存相的有效分离,浮选机扫选保证镓锂赋存相产率。
(5)本发明工艺流程可行性强、快速精准。X射线拣选技术可实现粗粒镓锂赋存相的识别和响应,泡沫浮选技术可实现细粒镓锂赋存相的选择性分离,因此基于拣-浮联合的煤系共伴生矿产镓锂赋存相的全粒级分选预富集工艺与系统解决了传统煤系共伴生矿产镓锂物理分选富集难、分选效率低、精度差等难题,实现了煤系共伴生矿产镓锂的全粒级分选预富集。
本发明中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本发明的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过说明书以及附图中所特别指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为具体实施例的煤系共伴生矿产镓锂的全粒级分选预富集系统结构示意图;
图2为具体实施例的煤系共伴生矿产镓锂的全粒级分选预富集工艺流程图。
附图标记:
1-分级筛;2-分选布料装置;3-检测识别装置;4-分选控制装置;5-高压气仓;6-破碎机;7-磨矿机;8-水力分级旋流器;9-强制搅拌矿化装置;10-浮选柱;11-浮选机;12-第一精矿泵;13-第一尾矿泵;14-第二精矿泵;15-第二尾矿泵;16-浮选加药平台;17-第一隔膜计量泵;18-第二隔膜计量泵。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本发明一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
实施例1
本发明的一个具体实施例,如图1所示,公开了一种煤系共伴生矿产镓锂的全粒级分选预富集系统(以下简称“全粒级分选预富集系统”),包括入料分级准备单元、X射线高效分选单元和微气泡浮选单元,X射线高效分选单元和微气泡浮选单元均设于入料分级准备单元的下游,入料分级单元对富战略性金属镓锂煤系物进行分级,+25mm粒级的筛上物给入X射线高效分选单元进行分选,-25mm粒级的筛下物给入微气泡浮 选单元进行分选。
需要说明的是,本实施例中“+”表示大于,“-”表示小于等于,如+25mm粒级的煤系物是指煤系物的直径大于25mm。
入料分级准备单元包括分级筛1,分级筛1的筛孔孔径为25mm。优选的,分级筛1为直线振动筛。
本实施例中,富战略性金属镓锂煤系物首先经过分级筛1进行分级,设定分级筛1的筛孔孔径为25mm,+25mm粒级的富战略性金属镓锂煤系物为筛上物,-25mm粒级的富战略性金属镓锂煤系物为筛下物,筛上物和筛下物分别进行不同的处理。
X射线高效分选单元包括精细分选布料装置2、基于机器视觉的多能场高精检测识别装置3、X射线智能分选控制装置4和高压气仓5,分级筛1的筛上出料口与精细分选布料装置2的入料口相连,检测识别装置3识别目的矿物与非目的矿物,后经分选控制装置4控制高压气仓5喷吹执行自动分离,实现筛上粗粒矿物预富集。
本实施例中,多能场强化X射线高效分选单元是基于矿物相的差异性进行拣选,有效克服现有技术基于元素差异性进行拣选导致的同种元素不同矿物相(类质同像)难以拣选的问题。同时针对煤系共伴生矿产镓锂的赋存特征较为复杂的问题,采用双能量X光源对来料矿物透射成像,消除来料粒度对成像灰度的影响,并综合工业相机可见光成像,依据X射线成像灰度、形貌、可见光成像矿物纹理、色泽等特征,经过SVR算法、机器视觉分析,解决现有技术仅提取灰度特征的单一性问题。同时,工业相机将标记的目的矿物进行多目标实时标记跟踪,从而精确控制喷吹系统对已识别的目的矿物的拣选分离,提高分选精度与效率。
微气泡浮选单元包括微气泡浮选解离单元、微气泡浮选分离单元和微气泡浮选加药平台。
微气泡浮选解离单元包括破碎机6、磨矿机7和水力分级旋流器8,破碎机6设于分级筛1的下游,磨矿机7设于破碎机6的下游,水力分级旋流器8设于磨矿机7的下游。
具体地,分级筛1的筛下出料口与破碎机6的入料口相连,破碎机6的出料口与磨矿机7的入料口相连,磨矿机7的入料口与水力分级旋流器8的入料口相连,水力分级旋流器8的底流出料口与磨矿机7入料口相连。优选地,破碎机6为锤式破碎机,磨矿机7为球磨机。
本实施例中,微气泡浮选解离单元中对分级筛1筛下物即-25mm物料的破碎磨矿解离以及水力分级旋流器底流返回磨机实现闭路磨矿的工艺,有利于克服煤系共伴生矿产镓锂细杂分散的特征,对含镓锂赋存相无机矿物相的充分解离,选别出解离的细粒镓锂赋存相,保证镓锂赋存相的高效回收。
微气泡浮选分离单元包括多段强制搅拌矿化装置9、浮选柱10、浮选机11、第一精矿泵12、第一尾矿泵13、第二精矿泵14和第二尾矿泵15,多段强制搅拌矿化装置9设于水力分级旋流器8的下游,浮选柱10设于多段强制搅拌矿化装置9的下游,第一精矿泵12设于浮选柱10的下游,第一尾矿泵13设于浮选柱10的下游,浮选机11设于第一尾矿泵13的下游,第二精矿泵14和第二尾矿泵15均设于浮选机11的下游。
具体地,水力分级旋流器8的溢流出料口与多段强制搅拌矿化装置9的入料口相连,多段强制搅拌矿化装置9的出料口与浮选柱10的入料口相连,浮选柱10的溢流出料口与第一精矿泵12相连,浮选柱10的底流出料口与第一尾矿泵13相连,浮选柱10的底流产品通过第一尾矿泵13给入到浮选机11的入料口,浮选机11的溢流出料口与第二精矿泵14相连,浮选机11的底流出料口与第二尾矿泵15相连。
优选地,浮选柱10的直径为500mm。
本实施例中,微气泡浮选分离单元采用柱机(浮选柱和浮选机)联合浮选工艺,针对煤系共伴生矿产镓锂品位低的问题,在浮选过程中通过浮选柱粗选保证镓锂赋存相与非赋存相的有效分离,浮选机扫选保证镓锂赋存相产率。
微气泡浮选加药平台包括浮选加药平台16和第一隔膜计量泵17和第二隔膜计量泵18,浮选加药平台16设于水力分级旋流器8的下游,且位于多段强制搅拌矿化装置9的上游,第一隔膜计量泵17设于浮选加药平台16和多段强制搅拌矿化装置9之间,第二隔膜计量泵18位于浮选加药平台16和浮选机11的中间。
具体地,浮选加药平台16的药剂通过第一隔膜计量泵17与多段强制搅拌矿化装置9的加药口相连,浮选加药平台16出料口的药剂通过第二隔膜计量泵18与浮选机11的加药口相连。
本实施例的微气泡浮选单元,通过构建与富战略性金属镓锂煤系物性质相适应的设备与工艺,通过优化细粒镓锂赋存相破磨解离、调浆矿化、浮选分离设备与工艺,有效控制镓锂解离粒度,提升赋存相疏水性差异,提高矿化效率,达到镓锂赋存相与非赋存相的高效、精准分离。
实施例2
本发明的另一个具体实施例,如图2所示,公开了一种煤系共伴生矿产镓锂的全粒级分选预富集工艺,采用实施例1的煤系共伴生矿产镓锂的全粒级分选预富集系统,步骤包括:
S1:入料分级准备。
富战略性金属镓锂的煤系物首先通过孔径为25mm的分级筛1进行分级,筛上物为+25mm的煤系物,筛下物为-25mm的煤系物。
S2:X射线拣选,+25mm的筛上物给入X射线高效分选单元进行分选。
来料进入多能场强化X光分选机,经震动式给料器均匀分布在分选皮带上方,经过双能量X光源对来料矿物透射成像,消除来料粒度对成像灰度的影响,并综合工业相机可见光成像,依据X射线成像灰度、形貌、可见光成像矿物纹理、色泽等特征,经过SVR算法、机器视觉等分析,标记识别目的矿物,而后由拣选喷吹装置实现对目的矿物的分选,得到煤系共伴生矿产镓锂赋存相与其他非镓锂赋存相。
具体地,+25mm的分级筛1的筛上物给入多能场强化X射线高效分选单元进行拣选,+25mm的分级筛1的筛上物进入粗粒赋存相多能场强化X射线精细分选布料装置2进行入料排队控制和精细布料,位于分选精细布料装置2上方的机器视觉高精检测识别装置3对物料进行检测识别,根据煤系共伴生战略性金属矿产赋存相与非赋存相间的X射线信号差异,位于粗粒赋存相X射线精细分选布料装置2后方的粗粒赋存相X射线智能分选控制装置4通过高压气仓5喷吹执行自动分离,得到煤系共伴生矿产镓锂赋存相与其他非镓锂赋存相。
S3:微气泡浮选,-25mm的筛下物给入微气泡浮选单元进行分选。
S3.1:-25mm的筛下物进入微气泡浮选解离单元经破碎机6、磨矿机7以实现充分解离。
物料经破碎机6破碎至-3mm,破碎产品给入磨矿机7进行磨矿作业以实现充分解离。
S3.2:水力分级旋流器8对磨矿产品进行分级,溢流产品给入到微气泡浮选分离单元进行分选,底流产品返回磨矿机7再磨。
磨矿产品给入水力分级旋流器8进行分级,水力分级旋流器8的溢流产品即-0.5mm物料给入到微气泡浮选分离单元进行分选,水力分级旋流器8的底流产品即+0.5~-3mm物料返回磨矿机7再磨,再磨产品返回水力分级旋流器8。
S3.3:水力分级旋流器8的溢流产品及药剂给入多段强制搅拌矿化装置9进行搅拌矿化。
水力分级旋流器8的溢流产品即-0.5mm的物料和微气泡浮选加药平台根据无机矿物相与有机相煤间界面疏水性差异配置的药剂给入多段强制搅拌矿化装置进行搅拌矿化。
S3.4:浮选柱10对搅拌矿化后的混合物进行粗选。
经多段强制搅拌矿化后混合物料给入浮选柱10进行粗选,浮选柱10的溢流产品为有机相煤作为非赋存相产品由第一精矿泵12排出,浮选柱10的底流产品为含镓锂赋存相的无机矿物相产品。
S3.5:浮选机11对浮选柱10的底流产品和加入的药剂进行扫选。
浮选柱10的底流产品由第一尾矿泵13给入浮选机11进一步扫选,浮选加药平台16根据煤系共伴生矿产镓锂赋存相与其他非镓锂赋存相的无机矿物相间的界面疏水性差异将药剂通过第二隔膜计量泵18给入浮选机11,浮选机11的溢流产品为非赋存相产品,浮选机11的尾矿产品则作为镓锂赋存相产品由第二尾矿泵15给入后续工艺。
本实施的工艺流程可行性强、快速精准。X射线拣选技术可实现粗粒镓锂赋存相的识别和响应,泡沫浮选技术可实现细粒镓锂赋存相的选择性分离,因此基于拣-浮联合的煤系共伴生矿产镓锂赋存相的全粒级分选预富集工艺与系统解决了传统煤系共伴生矿产镓锂物理分选富集难、分选效率低、精度差等难题,实现了煤系共伴生矿产镓锂的全粒级分选预富集。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,包括入料分级准备单元、X射线高效分选单元和微气泡浮选单元,所述X射线高效分选单元和所述微气泡浮选单元均设于所述入料分级准备单元的下游,所述入料分级单元对富战略性金属镓锂煤系物进行分级,筛上物给入所述X射线高效分选单元进行分选,筛下物给入所述微气泡浮选单元进行分选。
  2. 根据权利要求1所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述入料分级准备单元包括分级筛(1),所述分级筛(1)的筛孔孔径为25mm。
  3. 根据权利要求2所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述X射线高效分选单元包括分选布料装置(2)、检测识别装置(3)、分选控制装置(4)和高压气仓(5)。
  4. 根据权利要求3所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述分级筛(1)的筛上出料口与所述分选布料装置(2)的入料口相连,所述检测识别装置(3)用于识别目的矿物与非目的矿物,后经所述分选控制装置(4)控制所述高压气仓(5)喷吹执行自动分离。
  5. 根据权利要求2所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述微气泡浮选单元包括微气泡浮选解离单元、微气泡浮选分离单元和微气泡浮选加药平台,所述微气泡浮选分离单元和微气泡浮选加药平台均设于所述微气泡浮选解离单元的下游。
  6. 根据权利要求5所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述微气泡浮选解离单元包括破碎机(6)和磨矿机(7),所述破碎机(6)设于所述分级筛(1)的下游,所述磨矿机(7)设于所述破碎机(6)的下游。
  7. 根据权利要求6所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述微气泡浮选解离单元还包括水力分级旋流器(8),所述水力分级旋流器(8)设于所述磨矿机(7)的下游。
  8. 根据权利要求7所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述微气泡浮选分离单元包括强制搅拌矿化装置(9)和浮选柱(10),所述强制搅拌矿化装置(9)设于所述水力分级旋流(8)的下游,所述浮选柱(10)设于所述强制搅拌矿化装置(9)的下游。
  9. 根据权利要求7或8所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,其特征在于,所述微气泡浮选加药平台包括浮选加药平台(16),所述浮选加药平台(16)设于所述水力分级旋流器(8)的下游。
  10. 一种煤系共伴生矿产镓锂的全粒级分选预富集工艺,其特征在于,采用权利要求1-9任一项所述的煤系共伴生矿产镓锂的全粒级分选预富集系统,步骤包括:
    S1:入料分级准备;
    S2:X射线拣选,筛上物给入X射线高效分选单元进行分选;
    S3:微气泡浮选,筛下物给入微气泡浮选单元进行分选。
PCT/CN2023/079774 2022-05-11 2023-03-06 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺 WO2023216690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210509469.2 2022-05-11
CN202210509469.2A CN114950710B (zh) 2022-05-11 2022-05-11 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺

Publications (1)

Publication Number Publication Date
WO2023216690A1 true WO2023216690A1 (zh) 2023-11-16

Family

ID=82982088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079774 WO2023216690A1 (zh) 2022-05-11 2023-03-06 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺

Country Status (2)

Country Link
CN (1) CN114950710B (zh)
WO (1) WO2023216690A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950710B (zh) * 2022-05-11 2023-07-18 中国矿业大学 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049584A (zh) * 2007-04-09 2007-10-10 云南省化工研究院 一种磷矿除镁的方法
CN101837323A (zh) * 2010-05-26 2010-09-22 中南大学 一种氧化铅锌矿的浮选方法
RU2413578C1 (ru) * 2009-12-07 2011-03-10 Валерий Владимирович Рудаков Способ переработки руд
CN105268544A (zh) * 2015-12-01 2016-01-27 中国矿业大学 一种基于流态化分选的宽粒级煤系高岭土提质工艺
CN105642433A (zh) * 2016-04-13 2016-06-08 中国矿业大学 一种煤系高岭土脱碳工艺
CN109331987A (zh) * 2018-09-18 2019-02-15 中国矿业大学 一种煤系共伴生矿产资源全粒级干法分选洁净工艺及系统
CN111495788A (zh) * 2020-04-27 2020-08-07 紫金矿业集团股份有限公司 X射线智能优先选别含铜蓝硫化铜矿石的方法
CN112090480A (zh) * 2020-09-21 2020-12-18 马钢集团设计研究院有限责任公司 一种低品位萤石矿的干式预选系统及工艺
CN113716578A (zh) * 2021-09-15 2021-11-30 山西金宇科林科技有限公司 一种煤系高岭土游离石英剔除工艺
CN114950710A (zh) * 2022-05-11 2022-08-30 中国矿业大学 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389879B2 (en) * 2004-01-21 2008-06-24 Hewlett-Packard Development Company, L.P. Sorting particles
CN101058083A (zh) * 2007-06-01 2007-10-24 中国矿业大学 铝土矿柱式短流程分选工艺及设备
CN103820646B (zh) * 2013-12-30 2016-04-27 中国神华能源股份有限公司 一种从粉煤灰中提取镓的方法
CN105797831B (zh) * 2016-03-22 2018-03-09 中国矿业大学 一种炼焦末中煤的解离再选工艺
CN106669961A (zh) * 2016-06-20 2017-05-17 中国矿业大学 一种中煤回收精煤工艺
CN106669960B (zh) * 2016-06-20 2019-02-22 中国矿业大学 一种炼焦细粒中煤的解离再选工艺
CN109731697B (zh) * 2019-03-14 2019-12-13 中国矿业大学 一种宽粒级浮选系统及工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049584A (zh) * 2007-04-09 2007-10-10 云南省化工研究院 一种磷矿除镁的方法
RU2413578C1 (ru) * 2009-12-07 2011-03-10 Валерий Владимирович Рудаков Способ переработки руд
CN101837323A (zh) * 2010-05-26 2010-09-22 中南大学 一种氧化铅锌矿的浮选方法
CN105268544A (zh) * 2015-12-01 2016-01-27 中国矿业大学 一种基于流态化分选的宽粒级煤系高岭土提质工艺
CN105642433A (zh) * 2016-04-13 2016-06-08 中国矿业大学 一种煤系高岭土脱碳工艺
CN109331987A (zh) * 2018-09-18 2019-02-15 中国矿业大学 一种煤系共伴生矿产资源全粒级干法分选洁净工艺及系统
CN111495788A (zh) * 2020-04-27 2020-08-07 紫金矿业集团股份有限公司 X射线智能优先选别含铜蓝硫化铜矿石的方法
CN112090480A (zh) * 2020-09-21 2020-12-18 马钢集团设计研究院有限责任公司 一种低品位萤石矿的干式预选系统及工艺
CN113716578A (zh) * 2021-09-15 2021-11-30 山西金宇科林科技有限公司 一种煤系高岭土游离石英剔除工艺
CN114950710A (zh) * 2022-05-11 2022-08-30 中国矿业大学 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺

Also Published As

Publication number Publication date
CN114950710A (zh) 2022-08-30
CN114950710B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN104923386B (zh) 微细粒嵌布混合矿粗粒预选、磁—重分选工艺
CN104874462B (zh) 微细粒嵌布混合矿粗粒预选、磁—浮分选工艺
CN105107616B (zh) 一种有效提高低品位钒钛磁铁矿选矿效率的方法
CN104607296B (zh) 一种钛铁矿选矿方法及设备
CN104549692B (zh) 一种含高品位自然铜硫化铜矿的选矿工艺
WO2023216690A1 (zh) 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺
CN105880003B (zh) 一种磁铁矿石无筛分高压辊磨干式磁选方法
US11130141B2 (en) System and method for recovering glass and metal from a mixed waste stream
CN104888947B (zh) 微细粒嵌布磁-赤混合矿的磁选-离心机分选工艺
CN108212506A (zh) 一种磁-赤-菱混合铁矿石的分级预选、精细分选新方法
CN105797831B (zh) 一种炼焦末中煤的解离再选工艺
CN103586146A (zh) 一种处理磁、赤混合矿石的选矿工艺
CN204564293U (zh) 一种钛铁矿选矿设备
CN109351467A (zh) 一种基于铁矿物嵌布粒度处理磁赤混合矿石的分选工艺
CN104826727B (zh) 一种细粒中煤多级磨矿浮选工艺及系统
CN105728155B (zh) 一种炼焦中煤的解离再选工艺
WO2023216691A1 (zh) 一种煤系共伴生矿产锗的全粒级分选预富集工艺
CN106391295A (zh) 一种钒钛磁铁矿的选钛方法和装置
CN109746114A (zh) 一种难选动力煤分选工艺
CN105728156A (zh) 一种超纯煤的制备工艺
CN109127112A (zh) 一种处理高品位或低品位赤铁矿生产四种产品的选矿工艺
CN110075991A (zh) 干湿联合分选系统
CN214439946U (zh) 一种提高含铅钼矿入选品位的智能分选装置
CN108144743B (zh) 采用高压辊磨机的低品位铀硼铁伴生矿选矿工艺方法
CN108855579B (zh) 一种水介质旋流器选煤的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802466

Country of ref document: EP

Kind code of ref document: A1