WO2023216497A1 - 伽马调试方法、装置、设备及存储介质 - Google Patents

伽马调试方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023216497A1
WO2023216497A1 PCT/CN2022/121918 CN2022121918W WO2023216497A1 WO 2023216497 A1 WO2023216497 A1 WO 2023216497A1 CN 2022121918 W CN2022121918 W CN 2022121918W WO 2023216497 A1 WO2023216497 A1 WO 2023216497A1
Authority
WO
WIPO (PCT)
Prior art keywords
gamma
value
target
voltage
display panel
Prior art date
Application number
PCT/CN2022/121918
Other languages
English (en)
French (fr)
Inventor
王铁钢
姜海斌
上官修宁
牛通
赵双
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to KR1020237043101A priority Critical patent/KR20240000619A/ko
Publication of WO2023216497A1 publication Critical patent/WO2023216497A1/zh
Priority to US18/538,090 priority patent/US20240112615A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present application belongs to the field of display technology, and in particular relates to a gamma debugging method, device, equipment and storage medium.
  • VMP Voltage Gamma Max Power
  • Embodiments of the present application provide a gamma debugging method, device, equipment and storage medium, which can improve the display effect of the display panel.
  • embodiments of the present application provide a gamma debugging method, which includes: selecting multiple different target dimming values, and setting corresponding gamma maximum voltage and gamma minimum voltage for each target dimming value.
  • the maximum gamma voltage is the same, and the minimum voltage of each gamma is the same; for each target dimming value, according to the maximum gamma voltage, the minimum gamma voltage, the maximum value of the gamma register, and the target of 0 gray level at the target dimming value Voltage, get the gamma register value of 0 gray level at the target dimming value.
  • the target voltage is the minimum voltage value at which the display panel displays a black screen at 0 gray level; write the gamma register value of 0 gray level at the target dimming value.
  • the gamma register of the display panel so that the display panel displays according to the gamma register value of 0 grayscale.
  • embodiments of the present application provide a gamma debugging device, including: a voltage setting module for selecting multiple different target dimming values, and setting corresponding gamma maximum voltage and gamma for each target dimming value.
  • Minimum voltage of gamma the maximum voltage of each gamma is the same, and the minimum voltage of each gamma is the same;
  • the calculation module is used for each target dimming value, according to the maximum gamma voltage, the minimum voltage of gamma, and the maximum value of the gamma register
  • the target voltage of 0 gray level under the target dimming value the gamma register value of 0 gray level under the target dimming value is obtained.
  • the target voltage is the minimum voltage value at which the display panel displays a black screen at 0 gray level; write to the module, use
  • the gamma register value of 0 grayscale under the target dimming value is written into the gamma register of the display panel, so that the display panel displays according to the gamma register value of 0 grayscale.
  • embodiments of the present application provide a gamma debugging device, including: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, the gamma debugging method of the first aspect is implemented.
  • embodiments of the present application provide a computer-readable storage medium.
  • Computer program instructions are stored on the computer-readable storage medium.
  • the gamma debugging method of the first aspect is implemented.
  • Embodiments of the present application provide a gamma debugging method, device, equipment and storage medium, which sets the maximum gamma voltage corresponding to multiple different target dimming values to the same voltage, and sets the minimum gamma voltage corresponding to multiple different target brightnesses.
  • the voltage is set to the same voltage so that when the dimming value changes, neither the gamma maximum voltage nor the gamma minimum voltage changes. Since the gamma maximum voltage and the gamma minimum voltage do not change, the brightness inversion of the real-time panel display caused by the large accuracy step of the gamma maximum voltage does not occur.
  • the display panel can read the gamma register value during display.
  • the gamma register value allows the display panel to generate the minimum voltage value that displays a black screen at 0 gray level under the target dimming value as the gray level.
  • the display data voltage of the sub-pixel is 0 gray level, which reduces the voltage difference between the black screen and the white screen of the display panel to reduce crosstalk, image retention and other adverse phenomena, thereby reducing crosstalk, image retention and other adverse phenomena. This reduces or even eliminates the possibility of brightness inversion corresponding to the same gray level on the display panel, thereby improving the display effect of the display panel.
  • Figure 1 is a flow chart of a gamma debugging method provided by an embodiment of the present application
  • Figure 2 is a flow chart of a gamma debugging method provided by another embodiment of the present application.
  • Figure 3 is a flow chart of a gamma debugging method provided by yet another embodiment of the present application.
  • Figure 4 is a flow chart of a gamma debugging method provided by yet another embodiment of the present application.
  • Figure 5 is a schematic diagram of an example of brightness changes of a display panel using the dynamic gamma maximum voltage function
  • Figure 6 is a schematic diagram of an example of brightness changes of a display panel using the gamma debugging method according to an embodiment of the present application
  • Figure 7 is a schematic structural diagram of a gamma debugging device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a gamma debugging device provided by another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a gamma debugging device provided by another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a gamma debugging device provided by an embodiment of the present application.
  • the maximum gamma voltage is the maximum value that the display IC of the display panel can provide for the corresponding data signal, that is, the black-state voltage.
  • the maximum gamma voltage can be gradually reduced according to the order of dimming value from high to low, and according to the accuracy step of the maximum gamma voltage that the display panel can handle.
  • the dimming value can be 51, which is the Display Brightness Value (DBV).
  • the display brightness value can be understood as the display brightness level. Taking a mobile phone as an example, the mobile phone is equipped with a brightness bar, and different positions on the brightness bar can represent different display brightness values.
  • the debugging brightness of the driver integrated circuit in the display panel is debugged through the 51 register in the display panel.
  • the 51 value is the value of the 51 register and corresponds to the brightness bar used to adjust the brightness of the display panel.
  • the corresponding gamma maximum voltage is 7.4V (i.e. volts).
  • the display brightness value is 3000, the corresponding gamma maximum voltage is 6.8V.
  • the display panel between the two display brightness values can handle The accuracy step of the maximum gamma voltage is 0.006V.
  • the maximum gamma voltage will drop once, that is, when the display brightness value is adjusted from 4095 to 3000 During the process, every time the display brightness value changes by 11, there will be a brightness reversal phenomenon.
  • the brightness reversal means that the previous display brightness value is higher than the next display brightness value, but the actual brightness of the display panel is located at the previous display brightness value. The brightness is lower than the actual brightness of the display panel at the next displayed brightness value.
  • This application provides a gamma debugging method, device, equipment and storage medium, which can alleviate the problem by setting the gamma maximum voltage, gamma minimum voltage and specific 0 grayscale gamma register value of the dimming value.
  • a gamma debugging method, device, equipment and storage medium which can alleviate the problem by setting the gamma maximum voltage, gamma minimum voltage and specific 0 grayscale gamma register value of the dimming value.
  • This application provides a gamma debugging method, which can be applied to gamma debugging devices, gamma debugging equipment, etc., that is, the gamma debugging method can be executed by gamma debugging devices, gamma debugging equipment, etc.
  • Figure 1 shows a gamma debugging method provided by an embodiment of the present application. As shown in Figure 1, the gamma debugging method may include steps S101 to S103.
  • step S101 multiple different target dimming values are selected.
  • the target dimming value is a specific dimming value selected from the dimming values.
  • the selection method and the selected quantity are not limited here.
  • the dimming value may include a display brightness value, that is, DBV, and the display brightness value may be represented by a value of 51.
  • the maximum value, the minimum value in the range of dimming values, and the individual dimming values between the maximum value and the minimum value can be selected as the target dimming value.
  • the dimming value range is 0 to 4095, in which 0 and 4095 can be selected as the target dimming value, and an individual dimming value between 0 and 4095 can be selected as the target dimming value.
  • Each target dimming value is set with a corresponding maximum gamma voltage and minimum gamma voltage (Voltage Gamma Small Power, VGSP).
  • the maximum voltage of each gamma is the same, and the minimum voltage of each gamma is the same. That is, the maximum gamma voltages corresponding to multiple different target dimming values are the same, and the minimum gamma voltages corresponding to multiple different target dimming values are the same.
  • the multiple target dimming values are A1, A2, A3 and A4 respectively.
  • the maximum gamma voltages of the target dimming values A1, A2, A3 and A4 are V max1 , V max2 , V max3 and V max4 respectively.
  • step S102 for each target dimming value, according to the maximum gamma voltage, the minimum gamma voltage, the maximum value of the gamma register, and the target voltage of 0 grayscale at the target dimming value, 0 at the target dimming value is obtained.
  • Grayscale gamma register value for each target dimming value, according to the maximum gamma voltage, the minimum gamma voltage, the maximum value of the gamma register, and the target voltage of 0 grayscale at the target dimming value.
  • the gamma register value of 0 gray level under the target dimming value can be obtained according to step S102.
  • the target voltage is the minimum voltage value at which the display panel displays a black screen at 0 gray level.
  • the target voltage can be obtained based on testing or experience of the display panel, and is not limited here.
  • the target voltage can be related to the screen material, manufacturing process, gamma voltage, charging frequency and other factors of the display panel.
  • the maximum gamma voltage corresponding to each target dimming value is the same, and the minimum gamma voltage is also the same, so that the unit values of the gamma resistor strings corresponding to each target dimming value are equal.
  • the maximum gamma voltage, the minimum gamma voltage, the maximum value of the gamma register, the target voltage of 0 gray level at the target dimming value, and the target There is a certain proportional relationship between the gamma register values at 0 grayscale under the dimming value.
  • the maximum gamma voltage, the minimum gamma voltage, the maximum value of the gamma register and the target voltage can be used, as well as the relationship between the above parameters.
  • Proportional relationship calculate the gamma register value that can make the display data voltage of the display panel display 0 gray level under the target brightness be the target voltage.
  • This gamma register value is the gamma register value of 0 gray level under the target dimming value. value.
  • step S103 the gamma register value of 0 grayscale under the target dimming value is written into the gamma register of the display panel, so that the display panel displays according to the gamma register value of 0 grayscale.
  • the gamma register value of 0 grayscale at the target brightness calculated in step S102 can be written into the corresponding gamma register of the display panel.
  • the display panel When the display panel is displaying, it can read the gamma register value that has been written to the gamma register, and based on the read gamma register value of 0 gray level, generate a display of the sub-pixel with a gray level of 0 in the display panel.
  • the data voltage is used to drive the corresponding sub-pixel to realize the display of the display panel.
  • the gamma maximum voltage corresponding to multiple different target dimming values is set to the same voltage
  • the gamma minimum voltage corresponding to multiple different target brightnesses is set to the same voltage, so that when the dimming value is In the event of a change, neither the gamma maximum voltage nor the gamma minimum voltage will change. Since the gamma maximum voltage and the gamma minimum voltage do not change, the brightness inversion of the real-time panel display caused by the large accuracy step of the gamma maximum voltage does not occur.
  • the display panel can read the gamma register value during display.
  • the gamma register value allows the display panel to generate the minimum voltage value that displays a black screen at 0 gray level under the target dimming value as the gray level.
  • the display data voltage of the sub-pixel is 0 gray level, which reduces the voltage difference between the black screen and the white screen on the display panel to reduce crosstalk, image retention and other adverse phenomena. Basically, it reduces or even eliminates the possibility of brightness inversion corresponding to the same gray scale on the display panel, thereby improving the display effect of the display panel.
  • the gamma resistance value corresponding to the unit value of the gamma register can be calculated first, and then the gamma resistance value corresponding to the unit value of the gamma register can be used to calculate the gamma register at 0 gray level under the target brightness. value.
  • Figure 2 shows a gamma debugging method provided by another embodiment of the present application. The difference between Figure 2 and Figure 1 is that step S102 in Figure 1 can be specifically detailed into step S1021 and step S1022 in Figure 2 .
  • step S1021 the unit gamma resistance value is calculated based on the maximum gamma voltage, the minimum gamma voltage and the maximum value of the gamma register.
  • the maximum value of the gamma register can be determined according to the number of bits of the gamma register. For example, if the number of bits of the gamma register is 12 bits, the maximum value of the gamma register can be 4096.
  • the unit gamma resistance value is the gamma resistance value corresponding to the unit value of the gamma register. In the embodiment of the present application, the unit value of the gamma register may be 1.
  • the unit gamma resistance value can be calculated as shown in the following equation (1):
  • R is the unit gamma resistance value
  • V max is the maximum gamma voltage
  • V min is the minimum voltage of gamma
  • G m is the maximum value of the gamma register.
  • the maximum gamma voltage V max and the minimum gamma voltage V min are equivalent to the voltage at both ends of the gamma resistor string. (V max -V min )/G m is equivalent to dividing the gamma resistor string evenly into G m parts. Each part
  • the resistance is the unit gamma resistance value R.
  • the maximum value G m of the gamma register is a decimal number. If the maximum value of the gamma register is a decimal number, you can also convert the other decimal number to a decimal number first, and then calculate the unit gamma resistance value. calculation.
  • step S1022 based on the unit gamma resistance value, the gamma register value corresponding to the target voltage is calculated, and the gamma register value corresponding to the target voltage is determined as the gamma register value of 0 gray level under the target dimming value.
  • the unit gamma resistance value corresponding to each target dimming value is also the same. After obtaining the unit gamma resistance value, the gamma maximum voltage and the target voltage can be combined to determine the gamma register value corresponding to the target voltage.
  • the gamma maximum voltage V max , the gamma minimum voltage V min , the maximum value of the gamma register G m , the target voltage V 0 and the gamma register value X of 0 grayscale at the target dimming value may satisfy the following Equation (2):
  • the gamma register value X of 0 grayscale under the target dimming value can be a decimal number, and the decimal number gamma register
  • the decimal number gamma register value in the display panel is required to be a hexadecimal number
  • the decimal number of the gamma register value system number and then write the converted hexadecimal number into the gamma register of the display panel.
  • the gamma register value X at 0 gray level under the target dimming value is the register value that enables the display panel to generate the target voltage.
  • individual display panels can be selected from a batch of display panels, and a target voltage of 0 gray level under the target dimming value can be obtained based on the individual display panel, so that the target voltage of 0 gray level under the target dimming value can be obtained.
  • the gamma register value obtained by the target voltage is applied to this batch of display panels.
  • Figure 3 shows a gamma debugging method provided by yet another embodiment of the present application. The difference between Fig. 3 and Fig. 1 is that the gamma debugging method shown in Fig. 3 may also include step S104 and step S105. Step S103 in Fig. 1 may be specifically refined into step S1031 in Fig. 3.
  • step S104 at least one display panel is selected as a target display panel.
  • At least one target display panel can be selected from the display panels of the batch, or at least one target display panel can be selected from the display panels of the batch according to predetermined rules. display panel.
  • step S105 each target display panel is subjected to black screen debugging under multiple different target dimming values, and target voltages corresponding to multiple different target dimming values are obtained.
  • the selected target display panel can be debugged to display a black screen under multiple different target dimming values.
  • Black screen debugging is the debugging of the display panel displaying a black screen.
  • the minimum voltage value that can make the target display panel display a black screen under 0 grayscale can be obtained, that is, the target voltage.
  • the target voltage obtained in step S105 can be used in step S102 to obtain the gamma register value of 0 gray level under the target dimming value.
  • a weighted algorithm or other algorithm can be used to obtain the target voltage for participating in the above embodiment according to the target voltages of the two or more target display panels at multiple different target dimming values.
  • the target voltage calculated from the gamma register value.
  • the target display panel may include a display panel located at an edge of the display motherboard.
  • the display motherboard here is the display motherboard where the target display panel is located. After cutting the display motherboard, a batch of display panels can be obtained.
  • the display panel located at the edge of the display motherboard is more affected during the production process than the display panel located at the center of the display motherboard. Therefore, the compatibility range of the target voltage obtained based on the display panel located at the edge of the display motherboard is wider. Wider and more adaptable.
  • step S1031 write the gamma register value of 0 gray level under the target dimming value into the gamma register in the display panel of the same batch as the target display panel, so that the display panel can adjust the gamma register value of 0 gray level according to the target dimming value. show.
  • Display panels in the same batch are basically made of the same materials and manufacturing processes. Therefore, the target voltage obtained based on some display panels in a batch can be applied to all display panels in the batch. There is no need to modify the display panels in the same batch. Each display panel undergoes black screen debugging, which improves the efficiency of gamma debugging for a large number of display panels in the same batch.
  • a program that implements the gamma debugging method in the above embodiment is written into a gamma debugging device, and the gamma debugging device can execute the gamma debugging method in the above embodiment.
  • the gamma debugging device may be an independent device from the display panel, such as a gamma debugging equipment fixture.
  • the gamma register value of 0 gray level under the target dimming value is written to the corresponding 0 gray level gamma register in the display panel through the gamma debugging device.
  • the dynamic gamma maximum voltage function in the display panel can be turned off.
  • the register value required for sub-pixel driving at 0 gray level is directly based on the gamma register value written into the gamma register at 0 gray level. Make an assignment.
  • the dynamic gamma maximum voltage function is a function that gradually reduces the gamma maximum voltage according to the accuracy step of the gamma maximum voltage that the display panel can handle in the order of dimming value from high to low. Therefore, by writing the register value in the register at 0 grayscale under the target dimming value, the brightness inversion can be reduced or even eliminated while mitigating crosstalk, image sticking and other undesirable phenomena during the display panel display process. possible effects of the phenomenon.
  • a program that implements the gamma debugging method in the above embodiment is written into a gamma debugging device, and the gamma debugging device can execute the gamma debugging method in the above embodiment.
  • the gamma debugging device may be the display IC of the display panel.
  • mapping i.e. remapping
  • the display panel can display the , to achieve the effect of reducing or even eliminating the possibility of brightness inversion on the basis of reducing crosstalk, image sticking and other undesirable phenomena.
  • the gamma debugging device can be a display IC of the display panel.
  • the display IC can adjust the gamma of 0 gray scale according to the written target dimming value.
  • the register value controls the display panel display.
  • Figure 4 shows a gamma debugging method provided by yet another embodiment of the present application. The difference between Figure 4 and Figure 1 is that the gamma debugging method shown in Figure 4 may also include step S106 and step S107
  • step S106 during the process of adjusting the dimming value of the display panel from high to low or from low to high, a real-time dimming value is obtained.
  • the process of adjusting the dimming value of the display panel from high to low may be a process in which the user drags the brightness bar of the display panel from the bright end to the dark end.
  • the process of adjusting the dimming value of the display panel from low to high may be a process in which the user drags the brightness bar of the display panel from the dark end to the bright end.
  • the real-time dimming value can be obtained.
  • step S107 the display panel display is controlled based on the real-time dimming value, the gamma register value of 0 grayscale under the target dimming value, and the gamma register value of other grayscale binding points.
  • the 0 gray level under the real-time dimming value can be obtained
  • the gamma register value and the gamma register value of other grayscale binding points are used to control the display panel display by using the gamma register value of 0 grayscale and the gamma register value of other grayscale binding points under the real-time dimming value.
  • the other grayscale binding points under the target dimming value are grayscale binding points other than 0 grayscale.
  • the selection of grayscale binding points is not limited here.
  • the gamma register values of other grayscale binding points under the target dimming value can be obtained by using optical acquisition equipment to collect the brightness of the display panel display, and debugging according to the display brightness, which is not limited here.
  • the display panel is controlled to display images at other gray-scale binding points, the actual brightness displayed on the display panel is collected using optical acquisition equipment, and the original gamma of other gray-scale binding points is calculated based on the gamma mapping relationship that represents the gray scale and the desired brightness.
  • the register value is debugged so that the actual brightness displayed by the display panel under other grayscale binding points is consistent with the expected brightness of other grayscale binding points in the gamma mapping relationship or the difference is within the error threshold.
  • Other grayscale values obtained by debugging The gamma register value of the grayscale binding point is the gamma register value of other grayscale binding points in the embodiment of the present application.
  • the display panel display is controlled based on the gamma register value of 0 grayscale and the gamma register value of other grayscale binding points at the target dimming value. If the real-time dimming value is the target dimming value, you can directly read the gamma register value of 0 grayscale and the gamma register value of other grayscale binding points under the target dimming value.
  • the gamma register value of a gray level other than the gray level binding point can be obtained through an interpolation algorithm based on the gamma register values of two adjacent gray level binding points of the gray level.
  • two target dimming values closest to the real-time dimming value are determined; according to the two target dimming values closest to the real-time dimming value Lower the gamma register value of 0 gray level and use the interpolation algorithm to obtain the gamma register value of 0 gray level under the real-time dimming value; according to the gamma register value of 0 gray level under the real-time dimming value and other gray level binding points
  • the gamma register value controls the display panel display.
  • the gamma register value of a gray level other than the gray level binding point can be obtained through an interpolation algorithm based on the gamma register values of two adjacent gray level binding points of the gray level.
  • the interpolation algorithm can estimate the approximate value of the function at other points through the value of the function at a limited number of points.
  • Interpolation algorithms may include but are not limited to linear interpolation, Lagrangian interpolation, Newton interpolation, etc.
  • the gamma register value at 0 gray level under the real-time dimming value can be estimated by using the gamma register value taken by the function at 0 gray level at the two target dimming values closest to the real-time dimming value. For example, if the simplest linear interpolation method is used, the two target dimming values closest to the real-time dimming value are B1 and B1+3 respectively, and the gamma register value of 0 grayscale under the target dimming value B1 is b1.
  • the gray scale of each sub-pixel in the image displayed by the display panel may be different.
  • the gray scale displayed by the sub-pixel is driven by the display data voltage, and the display data voltage is generated based on the gamma register value.
  • the gray scale of each sub-pixel in the image to be displayed can be obtained; according to the gray scale of each sub-pixel, the gamma register value of the gray scale of each sub-pixel under real-time brightness is obtained; based on the real-time brightness
  • the gamma register value of the gray scale of each sub-pixel corresponds to generating the display data voltage of each sub-pixel under real-time brightness to drive the sub-pixels in the display panel, so that the display panel displays images under real-time dimming value.
  • FIG 5 shows the brightness change of the display panel using the dynamic gamma maximum voltage function.
  • Figure 6 shows the brightness change of the display panel using the gamma debugging method according to the embodiment of the present application.
  • the abscissa in Figures 5 and 6 is the 51 value, the ordinate is the ratio of the brightness difference to the first brightness, the brightness difference is the difference between the second brightness and the first brightness, and the first brightness is the value between two adjacent 51 values. The brightness displayed by the display panel under the higher 51 value.
  • the second brightness is the brightness displayed by the display panel under the lower 51 value among the two adjacent 51 values.
  • the ratio of the brightness difference to the first brightness should be a positive value, but as can be seen from Figure 5, during the 51 value adjustment process of the display panel, a large number of negative values appear in the ratio of the brightness difference to the first brightness, and the negative The absolute value of the value is large.
  • Figure 6 during the 51 value adjustment process of the display panel, the ratio of the brightness difference to the first brightness rarely shows a negative value, and the absolute value of the negative value that appears is very small and can be ignored.
  • FIG. 7 shows a gamma debugging device provided by an embodiment of the present application.
  • the gamma debugging device 200 may include a voltage setting module 201 , a calculation module 202 and a writing module 203 .
  • the voltage setting module 201 can be used to select multiple different target dimming values.
  • Each target dimming value is set with a corresponding maximum gamma voltage and minimum gamma voltage.
  • the maximum voltage of each gamma is the same, and the minimum voltage of each gamma is the same.
  • the calculation module 202 can be used for each target dimming value, according to the maximum gamma voltage, the minimum gamma voltage, the maximum value of the gamma register, and the target voltage of 0 grayscale at the target dimming value, to obtain 0 at the target dimming value.
  • Grayscale gamma register value
  • the target voltage is the minimum voltage value at which the display panel displays a black screen at 0 gray level.
  • the writing module 203 can be used to write the gamma register value of 0 grayscale under the target dimming value into the gamma register of the display panel, so that the display panel displays according to the gamma register value of 0 grayscale.
  • the gamma maximum voltage corresponding to multiple different target dimming values is set to the same voltage
  • the gamma minimum voltage corresponding to multiple different target brightnesses is set to the same voltage, so that when the dimming value is In the event of a change, neither the gamma maximum voltage nor the gamma minimum voltage will change. Since the gamma maximum voltage and the gamma minimum voltage do not change, the brightness inversion of the real-time panel display caused by the large accuracy step of the gamma maximum voltage does not occur.
  • the display panel can read the gamma register value during display.
  • the gamma register value allows the display panel to generate the minimum voltage value that displays a black screen at 0 gray level under the target dimming value as the gray level.
  • the display data voltage of the sub-pixel is 0 gray level, which reduces the voltage difference between the black screen and the white screen of the display panel to reduce crosstalk, image retention and other adverse phenomena, thereby reducing crosstalk, image retention and other adverse phenomena. This reduces or even eliminates the possibility of brightness inversion corresponding to the same gray level on the display panel, thereby improving the display effect of the display panel.
  • the calculation module 202 may be used to: calculate a unit gamma resistance value based on the gamma maximum voltage, the gamma minimum voltage, and the maximum value of the gamma register, where the unit gamma resistance value is the unit value of the gamma register.
  • the corresponding gamma resistor value based on the unit gamma resistor value, calculate the gamma register value corresponding to the target voltage, and determine the gamma register value corresponding to the target voltage as the gamma register value of 0 gray level under the target dimming value.
  • the maximum value of the gamma register may be determined based on the number of bits in the gamma register.
  • the voltage setting module 201 may be used to select the maximum value, the minimum value in the range of dimming values, and individual dimming values between the maximum value and the minimum value as the target dimming value.
  • the gamma debugging device 200 may further include a driver module.
  • the driver module can be used to: when the display panel is displaying, read the gamma register value that has been written to the gamma register, and generate a grayscale image of 0 grayscale in the display panel based on the read gamma register value of 0 grayscale.
  • the display data voltage of the sub-pixel the display data voltage is used to drive the sub-pixel whose gray level is 0 gray level in the display panel.
  • Figure 8 shows a gamma debugging device provided by another embodiment of the present application.
  • the difference between Figure 8 and Figure 7 is that the gamma debugging device 200 shown in Figure 8 may also include a selection module 204 and a black screen debugging module 205.
  • the selection module 204 can be used to select at least one display panel as a target display panel.
  • the black screen debugging module 205 can be used to perform black screen debugging on each target display panel under multiple different target dimming values, and obtain target voltages corresponding to multiple different target dimming values.
  • the target display panel includes a display panel located at an edge of the display motherboard.
  • the black screen debugging module 205 can also be used to use a weighting algorithm according to the target voltages of more than two target display panels under multiple different target dimming values when the number of target panels is more than two. Obtain the target voltage of 0 gray level at the target dimming value.
  • the gamma debugging device 200 may include a device independent of the display panel or a display integrated circuit of the display panel.
  • the gamma debugging device 200 may include a display integrated circuit of a display panel.
  • Figure 9 shows a gamma debugging device provided by yet another embodiment of the present application. The difference between Figure 9 and Figure 7 is that the gamma debugging device 200 shown in Figure 9 may also include a real-time acquisition module 206 and a display control module 207.
  • the real-time acquisition module 206 may be used to acquire the real-time dimming value during the process of adjusting the dimming value of the display panel from high to low or from low to high.
  • the display control module 207 can be used to control the display panel display according to the real-time dimming value, the gamma register value of 0 grayscale under the target dimming value, and the gamma register value of other grayscale binding points.
  • the display control module 207 may be configured to: when the real-time dimming value is the target dimming value, according to the gamma register value of 0 grayscale and the gamma of other grayscale binding points under the target dimming value.
  • Register value control display panel display; when the real-time dimming value is not the target dimming value, determine the two target dimming values closest to the real-time dimming value; based on the two targets closest to the real-time dimming value
  • the gamma register value of 0 gray level under the dimming value uses the interpolation algorithm to obtain the gamma register value of 0 gray level under the real-time dimming value; according to the gamma register value of 0 gray level under the real-time dimming value and other gray levels
  • the gamma register value of the tied point controls the display panel display.
  • the above-described gamma debugging device 200 may further include a debugging module.
  • the debugging module is used to: control the display panel to display images under other gray-scale binding points, and collect the actual brightness displayed by the display panel; based on the gamma mapping relationship that represents the gray scale and the desired brightness, adjust the original gamma registers of other gray-scale binding points debug the value to obtain the debugged gamma register value, so that the actual brightness displayed by the display panel under other gray-scale binding points is consistent with the expected brightness of other gray-scale binding points in the gamma mapping relationship or the difference is within the error threshold Within the range; determine the debugged gamma register value as the gamma register value of other grayscale binding points.
  • FIG. 10 is a schematic structural diagram of a gamma debugging device provided by an embodiment of the present application.
  • the gamma debugging device 300 includes a memory 301 , a processor 302 and a computer program stored on the memory 301 and executable on the processor 302 .
  • the above-mentioned processor 302 may include a central processing unit (CPU), or an Application Specific Integrated Circuit (ASIC), or may be configured to implement one or more integrated circuits of embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 301 may include read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible devices Memory storage device.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., magnetic disks
  • flash memory devices e.g., electrical, optical or other physical/tangible devices Memory storage device.
  • memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or multiple processors), it is operable to perform operations described with reference to the gamma debugging method according to embodiments of the present application.
  • the processor 302 reads the executable program code stored in the memory 301 to run the computer program corresponding to the executable program code, so as to implement the gamma debugging method in the above embodiment.
  • the gamma debugging device 300 may also include a communication interface 303 and a bus 304. Among them, as shown in Figure 10, the memory 301, the processor 302, and the communication interface 303 are connected through the bus 304 and complete communication with each other.
  • the communication interface 303 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application. Input devices and/or output devices can also be accessed through the communication interface 303.
  • Bus 304 includes hardware, software, or both, coupling the components of gamma debugging device 300 to one another.
  • the bus 304 may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced Industry Standard Architecture (EISA) bus, a Front Side Bus (FSB), Hyper Transport (HT) interconnect, Industry Standard Architecture (ISA) bus, infinite bandwidth interconnect, low pin count (LPC) bus, memory bus, Micro Channel architecture Architecture, MCA) bus, Peripheral Component Interconnect (PCI) bus, PCI-Express (PCI-E) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association part ( Video Electronics Standards Association Local Bus, VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 304 may include one or more buses.
  • the present application provides a computer-readable storage medium.
  • Computer program instructions are stored on the computer-readable storage medium.
  • the gamma debugging method in the above embodiment can be implemented and the same can be achieved.
  • the technical effects will not be repeated here.
  • the above-mentioned computer-readable storage media may include non-transitory computer-readable storage media, such as read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), magnetic disks or optical disks etc. are not limited here.
  • the present application provides a computer program product.
  • the instructions in the computer program product are executed by a processor of an electronic device, the electronic device executes the gamma debugging method in the above embodiment and can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • the present application provides a display panel.
  • the display panel may include the gamma debugging device in the above embodiment.
  • the gamma debugging device can implement the gamma debugging method in the embodiment.
  • the specific details of the gamma debugging device and the gamma debugging method are as follows. For the content, please refer to the relevant descriptions in the above embodiments and will not be described again here.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Picture Signal Circuits (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本申请公开了一种伽马调试方法、装置、设备及存储介质,属于显示技术领域。该方法包括:选取多个不同的目标调光值,每个目标调光值均设置对应的伽马最大电压和伽马最小电压,每个伽马最大电压相同,每个伽马最小电压相同;针对每个目标调光值,根据伽马最大电压、伽马最小电压、伽马寄存器的最大值以及目标调光值下0灰阶的目标电压,得到目标调光值下0灰阶的伽马寄存器值,目标电压为在0灰阶下显示面板显示黑屏的最小电压值;将目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器。

Description

伽马调试方法、装置、设备及存储介质
相关申请的交叉引用
本申请要求享有于2022年05月10日提交的名称为“伽马调试方法、装置、设备及存储介质”的中国专利申请202210501278.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于显示技术领域,尤其涉及一种伽马调试方法、装置、设备及存储介质。
背景技术
伽马最大电压(Voltage Gamma Max Power,VGMP)为显示面板的显示集成电路(Integrated Circuit,IC)对应数据信号可提供的最大值,即黑态电压。为了减轻显示面板的串扰、残影等不良现象,可针对不同调光值设置不同的伽马最大电压。但在将调光值从高调整到低的过程中,会出现显示面板同一灰阶对应的亮度发生反转的现象,降低了显示面板的显示效果。
发明内容
本申请实施例提供一种伽马调试方法、装置、设备及存储介质,能够提高显示面板的显示效果。
第一方面,本申请实施例提供一种伽马调试方法,包括:选取多个不同的目标调光值,每个目标调光值均设置对应的伽马最大电压和伽马最小电压,每个伽马最大电压相同,每个伽马最小电压相同;针对每个目标调光值,根据伽马最大电压、伽马最小电压、伽马寄存器的最大值以及目标调光值下0灰阶的目标电压,得到目标调光值下0灰阶的伽马寄存器值, 目标电压为在0灰阶下显示面板显示黑屏的最小电压值;将目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器,以使显示面板根据0灰阶的伽马寄存器值显示。
第二方面,本申请实施例提供一种伽马调试装置,包括:电压设置模块,用于选取多个不同的目标调光值,每个目标调光值均设置对应的伽马最大电压和伽马最小电压,每个伽马最大电压相同,每个伽马最小电压相同;计算模块,用于针对每个目标调光值,根据伽马最大电压、伽马最小电压、伽马寄存器的最大值以及目标调光值下0灰阶的目标电压,得到目标调光值下0灰阶的伽马寄存器值,目标电压为在0灰阶下显示面板显示黑屏的最小电压值;写入模块,用于将目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器,以使显示面板根据0灰阶的伽马寄存器值显示。
第三方面,本申请实施例提供一种伽马调试设备,包括:处理器以及存储有计算机程序指令的存储器;处理器执行计算机程序指令时实现第一方面的伽马调试方法。
第四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现第一方面的伽马调试方法。
本申请实施例提供一种伽马调试方法、装置、设备及存储介质,将多个不同目标调光值对应的伽马最大电压设置为相同的电压,将多个不同目标亮度对应的伽马最小电压设置为相同的电压,使得在调光值发生变化的情况下,伽马最大电压和伽马最小电压均不会发生改变。由于伽马最大电压和伽马最小电压不发生改变,因此不会出现伽马最大电压的精度步长较大导致的实时面板显示的亮度反转的现象。而且,在伽马最大电压和伽马最小电压不会随调光值发生变化的情况下,计算目标调光值下0灰阶的伽马寄存器值,并将该伽马寄存器值写入显示面板对应的伽马寄存器中,使得显示面板在显示时可读取该伽马寄存器值,该伽马寄存器值可使显示面板生成目标调光值下在0灰阶显示黑屏的最小电压值作为灰阶为0灰阶的子像素的显示数据电压,降低了显示面板显示黑屏和显示白屏之间的电压 差,以减轻串扰、残影等不良现象,从而在减轻串扰、残影的不良现象的基础上,降低甚至消除显示面板同一灰阶对应的亮度发生反转的现象出现的可能性,提高了显示面板的显示效果。
附图说明
图1为本申请一实施例提供的伽马调试方法的流程图;
图2为本申请另一实施例提供的伽马调试方法的流程图;
图3为本申请又一实施例提供的伽马调试方法的流程图;
图4为本申请再一实施例提供的伽马调试方法的流程图;
图5为使用动态伽马最大电压功能的显示面板的亮度变化情况的一示例的示意图;
图6为使用本申请实施例的伽马调试方法的显示面板的亮度变化情况的一示例的示意图;
图7为本申请一实施例提供的伽马调试装置的结构示意图;
图8为本申请另一实施例提供的伽马调试装置的结构示意图;
图9为本申请又一实施例提供的伽马调试装置的结构示意图;
图10为本申请一实施例提供的伽马调试设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
显示面板在显示过程中,会出现串扰(即crosstalk)、残影等不良现象,影响显示面板的显示效果。为了减轻串扰、残影等不良现象,针对不同调光值设置了不同的伽马最大电压。伽马最大电压为显示面板的显示IC对应数据信号可提供的最大值,即黑态电压。可按照调光值由高至低的顺 序,按照显示面板能够处理的伽马最大电压的精度步长,逐步减小伽马最大电压。在调整伽马最大电压之后,将显示面板的调光值从高调整到低的过程中,显示面板同一灰阶对应的亮度本应逐渐下降,但由于显示面板能够处理的伽马最大电压的精度步长较大,难以精细化,因此在实际显示中,会出现显示面板同一灰阶对应的亮度发生反转的现象。例如,调光值可为51值,51值即显示亮度值(Display Brightness Value,DBV)。例如,显示亮度值可以理解为显示亮度等级,以手机为例,手机设置有亮度条,亮度条上的不同位置可以代表不同的显示亮度值。显示面板中驱动集成电路调试亮度是通过显示面板中的51寄存器来进行调试的,51值即为51寄存器的值,与用于调节显示面板明暗的亮度条对应。显示亮度值为4095时对应的伽马最大电压为7.4V(即伏特),显示亮度值为3000时对应的伽马最大电压为6.8V,在两个显示亮度值之间的显示面板能够处理的伽马最大电压的精度步长为0.006V,在显示亮度值从4095降低至3000的过程中,伽马最大电压下降(7.4V-6.8V)/0.006V=100次,若显示亮度值的变化步长为1,显示亮度值4095到显示亮度值3000中显示亮度值每变化(4095-3000)/100≈11,伽马最大电压就会发生一次下降,即在显示亮度值从4095调整至3000的过程中,显示亮度值每变化11,就会出现一次亮度反转的现象,亮度反转指上一显示亮度值高于下一显示亮度值,但位于上一显示亮度值的显示面板的实际亮度低于位于下一显示亮度值的显示面板的实际亮度。
本申请提供一种伽马调试方法、装置、设备及存储介质,能够通过对调光值的伽马最大电压、伽马最小电压以及特定的0灰阶的伽马寄存器值的设置,能够在减轻串扰、残影等不良现象的基础上,降低甚至消除显示面板同一灰阶对应的亮度发生反转的现象出现的可能性,从而提高显示面板的显示效果。
下面对本申请提供的伽马调试方法、装置、设备及存储介质依次进行说明。
本申请提供一种伽马调试方法,可应用于伽马调试装置、伽马调试设备等,即该伽马调试方法可由伽马调试装置、伽马调试设备等执行。图1 示出了本申请一实施例提供的伽马调试方法。如图1所示,该伽马调试方法可包括步骤S101至步骤S103。
在步骤S101中,选取多个不同的目标调光值。
目标调光值为从调光值中选取的特定调光值,选取方式和选取的数量在此并不限定。在本申请中,调光值可包括显示亮度值即DBV,显示亮度值可用51值表示。可选取调光值的范围中的最大值、最小值以及位于最大值和最小值之间的个别调光值作为目标调光值。例如,调光值的范围为0至4095,可在其中选取0和4095作为目标调光值,并在0和4095之间选取个别调光值作为目标调光值。
每个目标调光值均设置对应的伽马最大电压和伽马最小电压(Voltage Gamma Small Power,VGSP)。每个伽马最大电压相同,每个伽马最小电压相同。即,多个不同目标调光值对应的伽马最大电压相同,多个不同目标调光值对应的伽马最小电压相同。例如,多个目标调光值分别为A1、A2、A3和A4,目标调光值A1、A2、A3和A4的伽马最大电压分别为V max1、V max2、V max3和V max4,目标调光值A1、A2、A3和A4的伽马最小电压分别为V min1、V min2、V min3和V min4,其中,V max1=V max2=V max3=V max4,V min1=V min2=V min3=V min4
在步骤S102中,针对每个目标调光值,根据伽马最大电压、伽马最小电压、伽马寄存器的最大值以及目标调光值下0灰阶的目标电压,得到目标调光值下0灰阶的伽马寄存器值。
对于每个目标调光值,均可根据步骤S102,得到该目标调光值下0灰阶的伽马寄存器值。
目标电压为在0灰阶下显示面板显示黑屏的最小电压值。目标电压可根据对显示面板的测试或经验得到,在此并不限定。目标电压可与显示面板的屏体材料、制作工艺、伽马电压、充电频率等因素相关。各目标调光值对应的伽马最大电压相同,伽马最小电压也相同,使得各目标调光值对应的伽马电阻串的单位值相等。在各目标调光值对应的伽马电阻串的单位值相等的情况下,伽马最大电压、伽马最小电压、伽马寄存器的最大值、目标调光值下0灰阶的目标电压以及目标调光值下0灰阶的伽马寄存器值 之间存在一定的比例关系。为了使显示面板在目标亮度下显示0灰阶时的显示数据电压能够为目标电压,可利用伽马最大电压、伽马最小电压、伽马寄存器的最大值和目标电压,以及上述参数之间的比例关系,计算得到能够使显示面板在目标亮度下显示0灰阶时的显示数据电压为目标电压的伽马寄存器值,该伽马寄存器值即为目标调光值下0灰阶的伽马寄存器值。
在步骤S103中,将目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器,以使显示面板根据0灰阶的伽马寄存器值显示。
可将步骤S102中计算得到的目标亮度下0灰阶的伽马寄存器值写入显示面板对应的伽马寄存器中。显示面板在显示时,可读取已写入伽马寄存器的伽马寄存器值,根据读取得到的0灰阶的伽马寄存器值,生成显示面板中灰阶为0灰阶的子像素的显示数据电压,利用该显示数据电压驱动对应的子像素,实现显示面板的显示。
在本申请实施例中,将多个不同目标调光值对应的伽马最大电压设置为相同的电压,将多个不同目标亮度对应的伽马最小电压设置为相同的电压,使得在调光值发生变化的情况下,伽马最大电压和伽马最小电压均不会发生改变。由于伽马最大电压和伽马最小电压不发生改变,因此不会出现伽马最大电压的精度步长较大导致的实时面板显示的亮度反转的现象。而且,在伽马最大电压和伽马最小电压不会随调光值发生变化的情况下,计算目标调光值下0灰阶的伽马寄存器值,并将该伽马寄存器值写入显示面板对应的伽马寄存器中,使得显示面板在显示时可读取该伽马寄存器值,该伽马寄存器值可使显示面板生成目标调光值下在0灰阶显示黑屏的最小电压值作为灰阶为0灰阶的子像素的显示数据电压,减小了显示面板显示黑屏和显示白屏之间的电压差,以减轻串扰、残影等不良现象,从而在减轻串扰、残影的不良现象的基础上,降低甚至消除显示面板同一灰阶对应的亮度发生反转的现象出现的可能性,提高了显示面板的显示效果。
在一些实施例中,可先计算得到伽马寄存器的单位值对应的伽马电阻值,再利用该伽马寄存器的单位值对应的伽马电阻值,计算目标亮度下0灰阶的伽马寄存器值。图2示出了本申请另一实施例提供的伽马调试方 法。图2与图1的不同之处在于,图1中的步骤S102可具体细化为图2中的步骤S1021和步骤S1022。
在步骤S1021中,根据伽马最大电压、伽马最小电压和伽马寄存器的最大值,计算得到单位伽马电阻值。
伽马寄存器的最大值可根据伽马寄存器的位数确定,例如,若伽马寄存器的位数为12比特,则伽马寄存器的最大值可为4096。单位伽马电阻值为伽马寄存器的单位值对应的伽马电阻值,在本申请实施例中,伽马寄存器的单位值可为1。单位伽马电阻值的计算可如以下算式(1)所示:
R=(V max-V min)/G m           (1)
其中,R为单位伽马电阻值,V max为伽马最大电压,V min为伽马最小电压,G m为伽马寄存器的最大值。伽马最大电压V max和伽马最小电压V min相当于伽马电阻串两端的电压,(V max-V min)/G m相当于将伽马电阻串平均分为G m个部分,每部分的电阻即为单位伽马电阻值R。这里为了方便计算,伽马寄存器的最大值G m为十进制数,若伽马寄存器的最大值为其他进制数,也可先将其他进制数转换为十进制数,再进行单位伽马电阻值的计算。
在步骤S1022中,基于单位伽马电阻值,计算目标电压对应的伽马寄存器值,并将目标电压对应的伽马寄存器值确定为目标调光值下0灰阶的伽马寄存器值。
由于各目标调光值下的伽马最大电压均相同,伽马最小电压也相同,则各目标调光值对应的单位伽马电阻值也相同。在得到单位伽马电阻值后,可结合伽马最大电压和目标电压,确定与目标电压对应的伽马寄存器值。
在一些示例中,伽马最大电压V max、伽马最小电压V min、伽马寄存器的最大值G m、目标电压V 0以及目标调光值下0灰阶的伽马寄存器值X可满足以下算式(2):
(V max-V min)/G m=(V max-V 0)/X          (2)
例如,若伽马最大电压V max=7.4V,伽马最小电压V min=1V,伽马寄存器的最大值G m=4096,目标电压V 0=6.8V,按照上述算式(2)计算,可 得X=384。
目标调光值下0灰阶的伽马寄存器值X可为十进制数,可根据显示面板中对伽马寄存器值的进制数要求,对十进制数的伽马寄存器X进行处理。例如,若显示面板中对伽马寄存器值的进制数要求为十六进制数,则可将得到的目标调光值下0灰阶的伽马寄存器值X的十进制数转换为十六进制数,再将转换得到的十六进制数写入显示面板的伽马寄存器中。目标调光值下0灰阶的伽马寄存器值X即为能够使显示面板生成目标电压的寄存器值。
在一些实施例中,可从一个批次的显示面板中选择个别显示面板,基于个别显示面板得到目标调光值下0灰阶的目标电压,从而可将基于目标调光值下0灰阶的目标电压得到的伽马寄存器值应用于这一个批次的显示面板。图3示出了本申请又一实施例提供的伽马调试方法。图3与图1的不同之处在于,图3所示的伽马调试方法还可包括步骤S104和步骤S105,图1中的步骤S103可具体细化为图3中的步骤S1031。
在步骤S104中,选取至少一块显示面板作为目标显示面板。
对于需要进行伽马调试的同一批次的显示面板而言,可在该批次的显示面板中任意选取至少一块目标显示面板,或者,按照预定规则在该批次的显示面板中选取至少一块目标显示面板。
在步骤S105中,对每块目标显示面板进行多个不同目标调光值下的显示黑屏调试,获取多个不同目标调光值各自对应的目标电压。
可对选取得到的目标显示面板进行多个不同目标调光值下的显示黑屏调试。显示黑屏调试即为显示面板显示黑屏的调试,在显示黑屏调试中可以得到在0灰阶下能够使目标显示面板显示黑屏的最小电压值,即目标电压。步骤S105中获取到的目标电压可在步骤S102中用于得到目标调光值下0灰阶的伽马寄存器值。
在目标显示面板的数量为两个以上的情况下,可根据两个以上的目标显示面板多个不同目标调光值下的目标电压,利用加权算法或其他算法,得到用于参与上述实施例中伽马寄存器值计算的目标电压。
在一些示例中,目标显示面板可包括位于显示母板边缘的显示面板。 这里的显示母板为目标显示面板所在的显示母板。该显示母板切割后可得到一个批次的显示面板。位于显示母板边缘的显示面板在制作过程中受到的影响,较位于显示母板中心的显示面板受到的影响更大,因此,基于位于显示母板边缘的显示面板获取的目标电压的兼容范围更广,更具有适配性。
在步骤S1031中,将目标调光值下0灰阶的伽马寄存器值写入与目标显示面板同批次的显示面板中的伽马寄存器,以使显示面板根据0灰阶的伽马寄存器值显示。
同批次的显示面板由于制作材料、制作工艺等基本一致,因此,基于一个批次中的部分显示面板得到的目标电压可应用于该批次中的所有显示面板,不需对同一批次中的每个显示面板进行显示黑屏调试,提高了同批次大量显示面板伽马调试的效率。
在一些实施例中,实现上述实施例中的伽马调试方法的程序写入伽马调试装置,伽马调试装置可执行上述实施例中的伽马调试方法。对于未将上述实施例中的伽马调试方法的程序写入显示IC的显示面板来说,伽马调试装置可为与显示面板独立的装置,如伽马调试的设备治具。通过伽马调试装置将目标调光值下0灰阶的伽马寄存器值写入到显示面板中对应的0灰阶的伽马寄存器。在显示面板运行的过程中,可关闭显示面板中的动态伽马最大电压功能,处于0灰阶的子像素驱动所需的寄存器值直接按照写入0灰阶的伽马寄存器的伽马寄存器值进行赋值。动态伽马最大电压功能为按照调光值由高至低的顺序,按照显示面板能够处理的伽马最大电压的精度步长,逐步减小伽马最大电压的功能。因此,通过写入目标调光值下0灰阶的寄存器中的寄存器值,即可在显示面板显示的过程中,实现在减轻串扰、残影等不良现象的基础上降低甚至消除亮度发生反转的现象的可能性的效果。
在一些实施例中,实现上述实施例中的伽马调试方法的程序写入伽马调试装置,伽马调试装置可执行上述实施例中的伽马调试方法。对于已将上述实施例中的伽马调试方法的程序写入显示IC的显示面板来说,伽马调试装置可为显示面板的显示IC。写入伽马寄存器的伽马寄存器值与目标 电压存在映射(即remapping)关系,因此,通过写入目标调光值下0灰阶的寄存器中的寄存器值,即可在显示面板显示的过程中,实现在减轻串扰、残影等不良现象的基础上降低甚至消除亮度发生反转的现象的可能性的效果。
在一些实施例中,伽马调试装置可为显示面板的显示IC,则在显示面板的调光值被调节的情况下,显示IC可根据写入的目标调光值下0灰阶的伽马寄存器值,控制显示面板显示。图4示出了本申请再一实施例提供的伽马调试方法。图4与图1的不同之处在于,图4所示的伽马调试方法还可包括步骤S106和步骤S107
在步骤S106中,在显示面板的调光值由高至低或由低到高调节的过程中,获取实时调光值。
显示面板的调光值由高至低调节的过程可为用户将显示面板的亮度条由亮端向暗端拖动的过程。显示面板的调光值由低至高调节的过程可为用户将显示面板的亮度条由暗端向亮端拖动的过程。在调光值调节变化的过程中,可获取实时调光值。
在步骤S107中,根据实时调光值、目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示。
根据实时调光值和目标调光值的比较,以及目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,可得到实时调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,从而利用实时调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示。
目标调光值下其他灰阶绑点为除0灰阶以外的灰阶绑点,灰阶绑点的选取在此并不限定。目标调光值下其他灰阶绑点的伽马寄存器值,可通过利用光学采集设备采集显示面板显示的亮度,并根据显示的亮度调试得到,在此并不限定。例如,控制显示面板显示其他灰阶绑点下的图像,利用光学采集设备采集显示面板显示的实际亮度,根据表征灰阶与期望亮度的伽马映射关系,对其他灰阶绑点原始的伽马寄存器值进行调试,以使在其他灰阶绑点下显示面板显示的实际亮度与其他灰阶绑点在伽马映射关系 中的期望亮度一致或差值在误差阈值范围内,调试得到的其他灰阶绑点的伽马寄存器值即为本申请实施例中的其他灰阶绑点的伽马寄存器值。
在一些示例中,在实时调光值为目标调光值的情况下,根据目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示。实时调光值为目标调光值,则可直接读取目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值。除灰阶绑点以外的灰阶的伽马寄存器值可根据该灰阶相邻的两个灰阶绑点的伽马寄存器值通过插值算法得到。
在一些示例中,在实时调光值不是目标调光值的情况下,确定与实时调光值最接近的两个目标调光值;根据与实时调光值最接近的两个目标调光值下0灰阶的伽马寄存器值,利用插值算法,得到实时调光值下0灰阶的伽马寄存器值;根据实时调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示。除灰阶绑点以外的灰阶的伽马寄存器值可根据该灰阶相邻的两个灰阶绑点的伽马寄存器值通过插值算法得到。
插值算法可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值算法可包括但不限于线性插值法、拉格朗日插值法、牛顿插值法等。
除灰阶绑点以外的灰阶的伽马寄存器值可通过函数在两个灰阶绑点所取的伽马寄存器值估算得到。例如,若采用最简单的线性插值法,灰阶绑点A1的伽马寄存器值为a1,灰阶绑点A1+3的伽马寄存器值为a2,则灰阶绑点A1+1的伽马寄存器值为a1+[(a2-a1)×(A1+1-A1)/(A1+3-A1)]=a1+[(a2-a1)/3],灰阶绑点A1+2的伽马寄存器值为a1+[(a2-a1)×(A1+2-A1)/(A1+3-A1)]=a1+[2(a2-a1)/3]。
实时调光值下0灰阶的伽马寄存器值可通过函数在与实时调光值最接近的两个目标调光值下0灰阶所取的伽马寄存器值估算得到。例如,若采用最简单的线性插值法,与实时调光值最接近的两个目标调光值分别为B1和B1+3,目标调光值B1下0灰阶的伽马寄存器值为b1,目标调光值B1+3下0灰阶的伽马寄存器值为b3,则目标调光值B1+1下0灰阶的伽马 寄存器值为b1+[(b2-b1)×(B1+1-B1)/(B1+3-B1)]=b1+[(b2-b1)/3],目标调光值B1+2下0灰阶的伽马寄存器值为b1+[(b2-b1)×(B1+2-B1)/(B1+3-B1)]=b1+[2(b2-b1)/3]。
显示面板显示的图像中各子像素的灰阶可能不同,子像素显示的灰阶是通过显示数据电压驱动显示的,显示数据电压是根据伽马寄存器值生成的。在显示面板需要显示图像的情况下,可获取待显示图像中各子像素的灰阶;根据各子像素的灰阶,得到实时亮度下各子像素的灰阶的伽马寄存器值;基于实时亮度下各子像素的灰阶的伽马寄存器值,对应生成实时亮度下各子像素的显示数据电压,以驱动显示面板中的子像素,从而使显示面板在实时调光值下显示图像。
采用本申请实施例中的伽马调试方法,可大大降低显示面板同一灰阶对应的亮度发生反转的现象出现的可能性。图5示出了使用动态伽马最大电压功能的显示面板的亮度变化情况。动态伽马最大电压功能可参见上述实施例中的相关说明。图6示出了使用本申请实施例的伽马调试方法的显示面板的亮度变化情况。图5和图6中的横坐标为51值,纵坐标为亮度差与第一亮度的比值,亮度差为第二亮度与第一亮度的差值,第一亮度为相邻两个51值中较高51值下显示面板显示的亮度,第二亮度为相邻两个51值中较低51值下显示面板显示的亮度。正常情况下,亮度差与第一亮度的比值应为正值,但由图5可得,在显示面板的51值调节的过程中,亮度差与第一亮度的比值出现大量负值,且负值的绝对值很大。而如图6所示,在显示面板的51值调节的过程中,亮度差与第一亮度的比值出现负值的情况非常少,且出现的负值的绝对值很小,可忽略不计。由图5和图6对比可得,本申请实施例的伽马调试方法可在减轻串扰、残影等不良现象的基础上大幅度降低甚至消除亮度发生反转的现象的可能性,从而提高显示面板的显示效果。
本申请提供一种伽马调试装置。图7示出了本申请一实施例提供的伽马调试装置。如图7所示,伽马调试装置200可包括电压设置模块201、计算模块202和写入模块203。
电压设置模块201可用于用于选取多个不同的目标调光值。
每个目标调光值均设置对应的伽马最大电压和伽马最小电压,每个伽马最大电压相同,每个伽马最小电压相同。
计算模块202可用于针对每个目标调光值,根据伽马最大电压、伽马最小电压、伽马寄存器的最大值以及目标调光值下0灰阶的目标电压,得到目标调光值下0灰阶的伽马寄存器值。
目标电压为在0灰阶下显示面板显示黑屏的最小电压值。
写入模块203可用于将目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器,以使显示面板根据0灰阶的伽马寄存器值显示。
在本申请实施例中,将多个不同目标调光值对应的伽马最大电压设置为相同的电压,将多个不同目标亮度对应的伽马最小电压设置为相同的电压,使得在调光值发生变化的情况下,伽马最大电压和伽马最小电压均不会发生改变。由于伽马最大电压和伽马最小电压不发生改变,因此不会出现伽马最大电压的精度步长较大导致的实时面板显示的亮度反转的现象。而且,在伽马最大电压和伽马最小电压不会随调光值发生变化的情况下,计算目标调光值下0灰阶的伽马寄存器值,并将该伽马寄存器值写入显示面板对应的伽马寄存器中,使得显示面板在显示时可读取该伽马寄存器值,该伽马寄存器值可使显示面板生成目标调光值下在0灰阶显示黑屏的最小电压值作为灰阶为0灰阶的子像素的显示数据电压,降低了显示面板显示黑屏和显示白屏之间的电压差,以减轻串扰、残影等不良现象,从而在减轻串扰、残影的不良现象的基础上,降低甚至消除显示面板同一灰阶对应的亮度发生反转的现象出现的可能性,提高了显示面板的显示效果。
在一些实施例中,计算模块202可用于:根据伽马最大电压、伽马最小电压和伽马寄存器的最大值,计算得到单位伽马电阻值,单位伽马电阻值为伽马寄存器的单位值对应的伽马电阻值;基于单位伽马电阻值,计算目标电压对应的伽马寄存器值,并将目标电压对应的伽马寄存器值确定为目标调光值下0灰阶的伽马寄存器值。
在一些示例中,伽马寄存器的最大值可根据伽马寄存器的位数确定。
在一些实施例中,伽马最大电压V max、伽马最小电压V min、伽马寄存器的最大值G m、目标电压V 0以及目标调光值下0灰阶的伽马寄存器值X 满足以下条件:(V max-V min)/G m=(V max-V 0)/X。
在一些实施例中,电压设置模块201可用于:选取调光值的范围中的最大值、最小值以及位于最大值和最小值之间的个别调光值作为目标调光值。
在一些实施例中,伽马调试装置200还可包括驱动模块。驱动模块可用于:在显示面板显示时,读取已写入伽马寄存器的伽马寄存器值,根据读取得到的0灰阶的伽马寄存器值,生成显示面板中灰阶为0灰阶的子像素的显示数据电压;利用显示数据电压驱动显示面板中灰阶为0灰阶的子像素。
图8示出了本申请另一实施例提供的伽马调试装置。图8与图7的不同之处在于,图8所示的伽马调试装置200还可包括选取模块204和黑屏调试模块205。
选取模块204可用于选取至少一块显示面板作为目标显示面板。
黑屏调试模块205可用于对每块目标显示面板进行多个不同目标调光值下的显示黑屏调试,获取多个不同目标调光值各自对应的目标电压。
在一些示例中,目标显示面板包括位于显示母板边缘的显示面板。
在一些示例中,黑屏调试模块205还可用于在目标面板的数量为两个以上的情况下,根据两个以上的目标显示面板在多个不同目标调光值下的目标电压,利用加权算法,得到目标调光值下0灰阶的目标电压。
在一些实施例中,伽马调试装置200可包括与显示面板相互独立的装置或显示面板的显示集成电路。
在一些实施例中,伽马调试装置200可包括显示面板的显示集成电路。图9示出了本申请又一实施例提供的伽马调试装置。图9与图7的不同之处在于,图9所示的伽马调试装置200还可包括实时获取模块206和显示控制模块207。
实时获取模块206可用于在显示面板的调光值由高至低或由低到高调节的过程中,获取实时调光值。
显示控制模块207可用于根据实时调光值、目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示。
在一些实施例中,显示控制模块207可用于:在实时调光值为目标调光值的情况下,根据目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示;在实时调光值不是目标调光值的情况下,确定与实时调光值最接近的两个目标调光值;根据与实时调光值最接近的两个目标调光值下0灰阶的伽马寄存器值,利用插值算法,得到实时调光值下0灰阶的伽马寄存器值;根据实时调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制显示面板显示。
在一些实施例中,上述伽马调试装置200还可包括调试模块。调试模块用于:控制显示面板显示其他灰阶绑点下的图像,采集显示面板显示的实际亮度;根据表征灰阶与期望亮度的伽马映射关系,对其他灰阶绑点原始的伽马寄存器值进行调试,得到调试后的伽马寄存器值,以使在其他灰阶绑点下显示面板显示的实际亮度与其他灰阶绑点在伽马映射关系中的期望亮度一致或差值在误差阈值范围内;将调试后的伽马寄存器值确定为其他灰阶绑点的伽马寄存器值。
本申请提供还提供了一种伽马调试设备。图10为本申请一实施例提供的伽马调试设备的结构示意图。如图10所示,伽马调试设备300包括存储器301、处理器302及存储在存储器301上并可在处理器302上运行的计算机程序。
在一个示例中,上述处理器302可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器301可包括只读存储器(Read-Only Memory,ROM),随机存取存储器(Random Access Memory,RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本申请实施例中伽马调试方法所描述的操作。
处理器302通过读取存储器301中存储的可执行程序代码来运行与可执行程序代码对应的计算机程序,以用于实现上述实施例中的伽马调试方法。
在一个示例中,伽马调试设备300还可包括通信接口303和总线304。其中,如图10所示,存储器301、处理器302、通信接口303通过总线304连接并完成相互间的通信。
通信接口303,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。也可通过通信接口303接入输入设备和/或输出设备。
总线304包括硬件、软件或两者,将伽马调试设备300的部件彼此耦接在一起。举例来说而非限制,总线304可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Enhanced Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(Low pin count,LPC)总线、存储器总线、微信道架构(Micro Channel Architecture,MCA)总线、外围组件互连(Peripheral Component Interconnect,PCI)总线、PCI-Express(PCI-E)总线、串行高级技术附件(Serial Advanced Technology Attachment,SATA)总线、视频电子标准协会局部(Video Electronics Standards Association Local Bus,VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线304可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
本申请提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令,该计算机程序指令被处理器执行时可实现上述实施例中的伽马调试方法,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,上述计算机可读存储介质可包括非暂态计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等,在此并不限定。
本申请提供一种计算机程序产品,该计算机程序产品中的指令由电子设备的处理器执行时,使得所述电子设备执行上述实施例中的伽马调试方法,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请提供一种显示面板,显示面板可包括上述实施例中的伽马调试装置,伽马调试装置能够实现上述是实施例中的伽马调试方法,伽马调试装置以及伽马调试方法的具体内容可参见上述实施例中的相关说明,在此不再赘述。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于装置实施例、设备实施例、计算机可读存储介质实施例、计算机程序产品实施例、显示面板实施例而言,相关之处可以参见方法实施例的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申请的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。

Claims (15)

  1. 一种伽马调试方法,包括:
    选取多个不同的目标调光值,每个所述目标调光值均设置对应的伽马最大电压和伽马最小电压,每个所述伽马最大电压相同,每个所述伽马最小电压相同;
    针对每个所述目标调光值,根据所述伽马最大电压、所述伽马最小电压、伽马寄存器的最大值以及所述目标调光值下0灰阶的目标电压,得到所述目标调光值下0灰阶的伽马寄存器值,所述目标电压为在0灰阶下显示面板显示黑屏的最小电压值;
    将所述目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器,以使所述显示面板根据0灰阶的伽马寄存器值显示。
  2. 根据权利要求1所述的方法,其中,所述根据所述伽马最大电压、所述伽马最小电压、伽马寄存器的最大值以及所述目标调光值下0灰阶的目标电压,得到所述目标调光值下0灰阶的伽马寄存器值,包括:
    根据所述伽马最大电压、所述伽马最小电压和所述伽马寄存器的最大值,计算得到单位伽马电阻值,所述单位伽马电阻值为所述伽马寄存器的单位值对应的伽马电阻值;
    基于所述单位伽马电阻值,计算所述目标电压对应的伽马寄存器值,并将所述目标电压对应的伽马寄存器值确定为所述目标调光值下0灰阶的伽马寄存器值。
  3. 根据权利要求2所述的方法,其中,所述伽马寄存器的最大值根据所述伽马寄存器的位数确定。
  4. 根据权利要求2所述的方法,其中,所述伽马最大电压V max、所述伽马最小电压V min、所述伽马寄存器的最大值G m、所述目标电压V 0以及所述目标调光值下0灰阶的伽马寄存器值X满足以下条件:
    (V max-V min)/G m=(V max-V 0)/X。
  5. 根据权利要求1所述的方法,在所述针对每个所述目标调光值,根据所述伽马最大电压、所述伽马最小电压、伽马寄存器的最大值以及所 述目标调光值下0灰阶的目标电压,得到所述目标调光值下0灰阶的伽马寄存器值之前,还包括:
    选取至少一块显示面板作为目标显示面板;
    对每块所述目标显示面板进行多个不同目标调光值下的显示黑屏调试,获取多个不同目标调光值各自对应的所述目标电压。
  6. 根据权利要求5所述的方法,还包括:
    在所述目标面板的数量为两个以上的情况下,根据两个以上的所述目标显示面板在多个不同目标调光值下的目标电压,利用加权算法,得到所述目标调光值下0灰阶的所述目标电压。
  7. 根据权利要求5所述的方法,其中,所述目标显示面板包括位于显示母板边缘的显示面板。
  8. 根据权利要求1所述的方法,在所述将所述目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器之后,还包括:
    在所述显示面板的调光值由高至低或由低到高调节的过程中,获取实时调光值;
    根据所述实时调光值、所述目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制所述显示面板显示。
  9. 根据权利要求8所述的方法,其中,所述根据所述实时调光值、所述目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制所述显示面板显示,包括:
    在所述实时调光值为所述目标调光值的情况下,根据所述目标调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马寄存器值,控制所述显示面板显示;
    在所述实时调光值不是所述目标调光值的情况下,确定与所述实时调光值最接近的两个所述目标调光值;
    根据与所述实时调光值最接近的两个所述目标调光值下0灰阶的伽马寄存器值,利用插值算法,得到所述实时调光值下0灰阶的伽马寄存器值;
    根据所述实时调光值下0灰阶的伽马寄存器值和其他灰阶绑点的伽马 寄存器值,控制所述显示面板显示。
  10. 根据权利要求8或9所述的方法,其中,还包括:
    控制所述显示面板显示其他灰阶绑点下的图像,采集所述显示面板显示的实际亮度;
    根据表征灰阶与期望亮度的伽马映射关系,对其他灰阶绑点原始的伽马寄存器值进行调试,得到调试后的伽马寄存器值,以使在其他灰阶绑点下所述显示面板显示的实际亮度与其他灰阶绑点在所述伽马映射关系中的期望亮度一致或差值在误差阈值范围内;
    将所述调试后的伽马寄存器值确定为其他灰阶绑点的伽马寄存器值。
  11. 根据权利要求1所述的方法,其中,所述选取多个不同的目标调光值,包括:
    选取调光值的范围中的最大值、最小值以及位于最大值和最小值之间的个别调光值作为所述目标调光值。
  12. 根据权利要求1所述的方法,其中,在所述将目标调光值下0灰阶的伽马寄存器值写入显示面板的伽马寄存器,以使显示面板根据0灰阶的伽马寄存器值显示之后,还包括:
    在所述显示面板显示时,读取已写入所述伽马寄存器的伽马寄存器值,根据读取得到的0灰阶的伽马寄存器值,生成所述显示面板中灰阶为0灰阶的子像素的显示数据电压;
    利用所述显示数据电压驱动所述显示面板中灰阶为0灰阶的子像素。
  13. 一种伽马调试装置,包括:
    电压设置模块,用于选取多个不同的目标调光值,每个所述目标调光值均设置对应的伽马最大电压和伽马最小电压,每个所述伽马最大电压相同,每个所述伽马最小电压相同;
    计算模块,用于针对每个所述目标调光值,根据所述伽马最大电压、所述伽马最小电压、伽马寄存器的最大值以及所述目标调光值下0灰阶的目标电压,得到所述目标调光值下0灰阶的伽马寄存器值,所述目标电压为在0灰阶下显示面板显示黑屏的最小电压值;
    写入模块,用于将所述目标调光值下0灰阶的伽马寄存器值写入显示 面板的伽马寄存器,以使所述显示面板根据0灰阶的伽马寄存器值显示。
  14. 一种伽马调试设备,包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1至12中任意一项所述的伽马调试方法。
  15. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1至12中任意一项所述的伽马调试方法。
PCT/CN2022/121918 2022-05-10 2022-09-27 伽马调试方法、装置、设备及存储介质 WO2023216497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237043101A KR20240000619A (ko) 2022-05-10 2022-09-27 감마 디버깅 방법, 장치, 장비 및 저장 매체
US18/538,090 US20240112615A1 (en) 2022-05-10 2023-12-13 Gamma tuning method, apparatus, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210501278.1 2022-05-10
CN202210501278.1A CN114783346A (zh) 2022-05-10 2022-05-10 伽马调试方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/538,090 Continuation US20240112615A1 (en) 2022-05-10 2023-12-13 Gamma tuning method, apparatus, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2023216497A1 true WO2023216497A1 (zh) 2023-11-16

Family

ID=82437766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121918 WO2023216497A1 (zh) 2022-05-10 2022-09-27 伽马调试方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20240112615A1 (zh)
KR (1) KR20240000619A (zh)
CN (1) CN114783346A (zh)
WO (1) WO2023216497A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114783346A (zh) * 2022-05-10 2022-07-22 云谷(固安)科技有限公司 伽马调试方法、装置、设备及存储介质
CN115394251B (zh) * 2022-08-26 2024-01-30 昆山国显光电有限公司 显示面板的显示控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473499A (zh) * 2019-07-18 2019-11-19 武汉天马微电子有限公司 用于显示面板的伽马电压调试方法、显示面板及显示装置
CN112652262A (zh) * 2019-10-10 2021-04-13 三星显示有限公司 显示装置
CN113096583A (zh) * 2021-04-22 2021-07-09 Oppo广东移动通信有限公司 发光器件的补偿方法、装置、显示模组和可读存储介质
CN114267316A (zh) * 2021-12-17 2022-04-01 昆山工研院新型平板显示技术中心有限公司 伽马调试方法、电子设备及计算机可读存储介质
CN114783346A (zh) * 2022-05-10 2022-07-22 云谷(固安)科技有限公司 伽马调试方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473499A (zh) * 2019-07-18 2019-11-19 武汉天马微电子有限公司 用于显示面板的伽马电压调试方法、显示面板及显示装置
CN112652262A (zh) * 2019-10-10 2021-04-13 三星显示有限公司 显示装置
CN113096583A (zh) * 2021-04-22 2021-07-09 Oppo广东移动通信有限公司 发光器件的补偿方法、装置、显示模组和可读存储介质
CN114267316A (zh) * 2021-12-17 2022-04-01 昆山工研院新型平板显示技术中心有限公司 伽马调试方法、电子设备及计算机可读存储介质
CN114783346A (zh) * 2022-05-10 2022-07-22 云谷(固安)科技有限公司 伽马调试方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114783346A (zh) 2022-07-22
US20240112615A1 (en) 2024-04-04
KR20240000619A (ko) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2023216497A1 (zh) 伽马调试方法、装置、设备及存储介质
JP4974878B2 (ja) 液晶表示装置及びその駆動方法
CN100346199C (zh) 改进动态对比度的液晶显示器和为其生成γ电压的方法
US7903066B2 (en) Image processing device and method thereof and image display device
CN101436392A (zh) 驱动液晶显示设备的装置和方法
CN1265344C (zh) 驱动液晶显示器的方法和装置
CN112820233B (zh) 伽马调试方法、装置及设备
JP5354927B2 (ja) 液晶表示装置
WO2023103405A1 (zh) 补偿查找表的配置方法、显示面板的补偿方法及补偿查找表的配置装置
WO2024031832A1 (zh) 一种显示面板及其亮度补偿方法、补偿装置、补偿设备
CN109326260B (zh) 多工器驱动方法以及显示装置
JP2007272144A (ja) ガンマ補正および表示装置
CN111415618A (zh) 显示驱动的方法和显示装置
CN113851074B (zh) 一种led驱动脉冲调制方法及装置
CN102427517A (zh) 动态对比度的调整方法及装置、液晶电视机
CN114267316B (zh) 伽马调试方法、电子设备及计算机可读存储介质
KR102669220B1 (ko) 지향성 스케일링 시스템들 및 방법들
TWI796865B (zh) 顯示面板的伽馬調試方法和伽馬調試裝置
CN112735343B (zh) 发光元器件调光控制方法、装置及显示装置
WO2019184338A1 (zh) 液晶显示装置的驱动方法
WO2024000887A1 (zh) 显示补偿方法、装置、设备、介质及显示装置
CN110246465B (zh) 图像显示处理方法及装置、电子设备、计算机可读介质
JP2024523841A (ja) ガンマデバッグ方法、装置、デバイスおよび記憶媒体
CN101388168B (zh) 时序控制器、显示装置与调整迦玛电压方法
KR20090015196A (ko) 표시 장치 및 이의 구동 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023575898

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237043101

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043101

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941437

Country of ref document: EP

Kind code of ref document: A1