WO2023216493A1 - 一种二维光栅及其形成方法、光波导及近眼显示设备 - Google Patents

一种二维光栅及其形成方法、光波导及近眼显示设备 Download PDF

Info

Publication number
WO2023216493A1
WO2023216493A1 PCT/CN2022/121360 CN2022121360W WO2023216493A1 WO 2023216493 A1 WO2023216493 A1 WO 2023216493A1 CN 2022121360 W CN2022121360 W CN 2022121360W WO 2023216493 A1 WO2023216493 A1 WO 2023216493A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
dimensional grating
photonic crystal
cross
center
Prior art date
Application number
PCT/CN2022/121360
Other languages
English (en)
French (fr)
Inventor
马森
郭晓明
宋强
马国斌
Original Assignee
深圳珑璟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳珑璟光电科技有限公司 filed Critical 深圳珑璟光电科技有限公司
Publication of WO2023216493A1 publication Critical patent/WO2023216493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating

Definitions

  • Embodiments of the present application relate to the technical field of optical devices, and in particular to a two-dimensional grating and a method for forming the same, an optical waveguide and a near-eye display device.
  • Augmented Reality is a science and technology that integrates virtual information with the real world.
  • augmented reality glasses are expected to replace smartphones as a new generation of information platform and set off the next generation of Technological revolution.
  • augmented reality glasses are mainly used in security and industrial fields. They use unparalleled display convenience to liberate the user's hands, and cooperate with other sensors to provide users with a new interactive experience, significantly Improve team collaboration efficiency.
  • augmented reality glasses have gone through many technical iterations.
  • the mainly accepted solutions include prism solution, birdbath solution, free-form surface solution and waveguide solution.
  • the first three are larger in size, which limits their application in smart wear, that is, augmented reality glasses, while waveguides are currently the best solution for augmented reality glasses.
  • Waveguide solutions are divided into geometric waveguide solutions, relief grating waveguide solutions and volume holographic waveguide solutions.
  • the geometric waveguide solution uses an array of coated semi-transparent semi-reflective mirrors to display virtual information.
  • the field of view and eye movement range of this solution are limited, and the array lens will bring a stripe effect to the picture, so the geometric waveguide solution cannot The human eye presents the best display effect.
  • Volume holographic waveguide solutions are currently limited in large-scale mass production.
  • the relief grating waveguide solution is currently the most researched technical solution due to the convenience of nanoimprinting, and has the advantages of a large field of view and a large eye movement range.
  • the current solutions for relief grating waveguides mainly include waveguide solutions based on one-dimensional gratings and waveguide solutions based on two-dimensional gratings.
  • the one-dimensional grating waveguide is divided into a coupling area, an expansion area and an out-coupling area.
  • the expansion area needs to occupy a larger area, thus limiting the field of view and eye movement range.
  • the two-dimensional grating waveguide is divided into a coupling region and a coupling region.
  • the coupling region uses a two-dimensional grating structure to take into account the functions of expansion and coupling. Therefore, on the same size waveguide, the two-dimensional grating structure can provide a larger field of view. Within the angle and eye movement range.
  • the inventor found that there are at least the following problems in the above related technologies: in the current optical waveguide solution based on a two-dimensional grating structure, the two-dimensional grating structure used in the coupling area is usually a cylindrical structure and a rhombus structure. These two structures have fewer adjustable parameters and a low degree of freedom in adjusting the energy distribution between different diffraction orders.
  • Embodiments of the present application provide a new type of two-dimensional grating and its formation method, optical waveguide and near-eye display device.
  • embodiments of the present application provide a rectangular repeating unit that is periodically tiled and arranged on the surface of the waveguide plate along the horizontal direction and the vertical direction.
  • the center of the rectangular repeating unit is provided with
  • the first photonic crystal has petal-shaped cylinders extending inwards from the four vertices of the rectangular repeating unit, and petal-shaped cylinders extending inward from the four vertices of the single rectangular repeating unit.
  • the cylinders can be spliced into a second photonic crystal, which is composed of petal-shaped cylinders respectively distributed in the four rectangular repeating units with a common vertex and extending from the common vertex to the four rectangular repeating units.
  • the second photonic crystal, the first/second photonic crystal is formed by partially overlapping a main body part and at least one auxiliary branch part.
  • the main body part is a hexagonal prism structure
  • each vertex of the cross section of the main body part is respectively with
  • the center connection divides the cross-section of the main body into six parts, and the center of the cross-section of the auxiliary branch is set at the dividing line of the cross-section of the main body or the extension line of the dividing line away from the center.
  • the auxiliary branch part and the main body part are partially overlapped, and the two adjacent auxiliary branch parts are not connected.
  • the circumference of the cross section of the main body part is at least Two equally spaced points are connected to the center of the circle respectively, dividing the cross-section of the main body into at least two parts, and the center of the cross-section of the auxiliary branch is set at the average radius of the cross-section of the main body or the On the extension line of the side away from the center of the circle of the evenly divided radius, the auxiliary branch part partially overlaps the main body part, and the two adjacent auxiliary branch parts are not connected.
  • embodiments of the present application provide a method for forming a two-dimensional grating, which includes: determining the optimization of the two-dimensional grating as described in the first aspect according to the demand for light coupling efficiency.
  • the optimization variables include: the shape of the main body and the auxiliary branches forming the first/second photonic crystal, the number of auxiliary branches, the overlapping manner of the main body and the auxiliary branches, and the cross-sections of the two auxiliary branches The angle between the center of the main body and the center of the cross-section of the main body, the size of the main body and the auxiliary branch and/or the distance between the center of the cross-section of the main body and the center of the cross-section of the auxiliary branch, The shape and size of the first/second photonic crystal, the shape and size of the top surface of the first/second photonic crystal, the period of the two-dimensional grating in the horizontal direction, and/or the two-dimensional The period of the grating in the vertical direction; etching is performed on the waveguide sheet according to the optimized variables to form the two-dimensional grating.
  • an optical waveguide including: a waveguide plate; a coupling structure disposed on the light incident side of the waveguide plate; consisting of two optical waveguides as described in the first aspect.
  • a coupling structure composed of a three-dimensional grating is arranged on the light exit side of the waveguide plate.
  • embodiments of the present application also provide a near-eye display device, including: the optical waveguide as described in the fourth aspect.
  • the beneficial effects of this application are: different from the situation of the existing technology, the embodiments of this application provide a two-dimensional grating and its formation method, an optical waveguide and a near-eye display device, including a horizontal direction and rectangular repeating units periodically arranged in a vertical direction on the surface of the waveguide plate.
  • a first photonic crystal is disposed in the center of the rectangular repeating unit, extending from the four vertices of the rectangular repeating unit into the rectangular repeating unit.
  • Petal-shaped cylinders are respectively provided, extending inward from the four vertices of a single rectangular repeating unit.
  • the respective petal-shaped cylinders can be spliced into the second photonic crystal, and are respectively distributed among the four said vertices with a common vertex.
  • Figure 1 is a schematic structural diagram of a two-dimensional grating provided in Embodiment 1 of the present application;
  • Figure 2 is a top view of the structure of a single rectangular repeating unit in the two-dimensional grating shown in Figure 1;
  • Figure 3(a) is a perspective view of a single first/second photonic crystal in the two-dimensional grating shown in Figure 1;
  • Figure 3(b) is a diffraction order and diffraction efficiency diagram of the first/second photonic crystal shown in Figure 3(a);
  • Figure 4 is a perspective view of a first/second photonic crystal with a sub-branch size different from the example in Figure 3(a) provided in Embodiment 1 of the present application;
  • Figure 5 is a perspective view of a first/second photonic crystal that is different from the example in Figure 3(a) and has a secondary branch provided in Embodiment 1 of the present application;
  • Figure 6 is a perspective view of a first/second photonic crystal that is different from the example in Figure 3(a) and has three auxiliary branches provided in Embodiment 1 of the present application;
  • Figure 7(a) is a perspective view of the structure of a single first/second photonic crystal in a two-dimensional grating provided in Embodiment 2 of the present application;
  • Figure 7(b) is a diffraction order and diffraction efficiency diagram of the first/second photonic crystal shown in Figure 7(a);
  • Figure 8(a) is a perspective view of a first/second photonic crystal that is different from the example of Figure 7(a) and has two auxiliary branches provided in Embodiment 2 of the present application;
  • Figure 8(b) is a diffraction order and diffraction efficiency diagram of the first/second photonic crystal shown in Figure 8(a);
  • Figure 9 is a perspective view of a first/second photonic crystal with three auxiliary branches that is different from the example in Figure 7(a) provided in Embodiment 2 of the present application;
  • Figure 10 is a perspective view of a first/second photonic crystal that is different from the example in Figure 7(a) and has six auxiliary branches provided in Embodiment 2 of the present application;
  • Figure 11 is a perspective view of a first/second photonic crystal with a secondary branch having an elliptical cylinder structure that is different from the example in Figure 9 provided in Embodiment 2 of the present application;
  • Figure 12 is a perspective view of a first/second photonic crystal with a secondary branch having an elliptical cylinder structure that is different from the example in Figure 10 provided in Embodiment 2 of the present application;
  • Figure 13 is a perspective view of a first/second photonic crystal provided in Embodiment 2 of the present application, which is different from the example of Figure 9 in that the top surface of the auxiliary branch and the top surface of the main body have a certain angle;
  • Figure 14 is a perspective view of a first/second photonic crystal provided in Embodiment 2 of the present application that is different from the example of Figure 9 in which the top surface of the main body and the auxiliary branch has a certain angle with the cross section of the photonic crystal;
  • Figure 15 is a perspective view of a first/second photonic crystal with a stepped top surface that is different from the photonic crystal example in Figure 9 provided in Embodiment 2 of the present application;
  • Figure 16 is a schematic flow chart of a two-dimensional grating forming method provided in the third embodiment.
  • Figure 17 is a schematic structural diagram of an optical waveguide provided in Embodiment 4.
  • Figure 18 is a schematic structural diagram of a near-eye display device provided in Embodiment 5.
  • the first/second photonic crystal includes a main body part and at least one auxiliary branch part.
  • the main body part and/or the auxiliary branch part may be a hexagonal prism structure or a cylindrical structure, and the auxiliary branch part may also be an elliptical cylinder. body structure, and the two adjacent auxiliary branches are not connected.
  • the embodiment of the present application provides a two-dimensional grating. Please refer to Figure 1, Figure 2 and Figure 3(a).
  • Figure 1 shows a top view of the structure of a two-dimensional grating provided by the embodiment of the present application.
  • Figure 2 shows a top view of the structure of a single rectangular repeating unit in the two-dimensional grating shown in Figure 1
  • Figure 3(a) shows a perspective view of the structure of a single first/second photonic crystal in the two-dimensional grating shown in Figure 1.
  • the two-dimensional grating 1 includes rectangular repeating units 10 periodically arranged on the surface of the waveguide plate along the horizontal direction (X direction) and the vertical direction (Y direction).
  • the center of the rectangular repeating unit 10 is set There is a first photonic crystal 11, which is provided with petal-shaped cylinders (12a, 12b, 12c and 12d) extending from the four vertices of the rectangular repeating unit 10 into the rectangular repeating unit 10 and distributed in the same vertices.
  • the second photonic crystal 11A is formed by splicing the petal-shaped cylinders extending inward from the four vertices of the single rectangular repeating unit 10 in the four rectangular repeating units 10 to form the second photonic crystal 11A.
  • the spliced shape of the petal-shaped cylinders (12a, 12b, 12c and 12d) is the same as the shape of the first photonic crystal 11, and they are respectively distributed in the four rectangular repeating units 10 with a common vertex.
  • the second photonic crystal 11A is composed of petal-shaped cylinders whose vertices extend into each of the rectangular repeating units 10 .
  • the petal-shaped cylinder 12a in the upper left corner shown in FIG. 2 can be a quarter of the second photonic crystal 11A, which has a common vertex with the rectangular repeating unit 10 where the petal-shaped cylinder 12a is located.
  • the petal-shaped cylinders 12b, 12c and 12d respectively extending from the common vertex into the three rectangular repeating units 10 in the three rectangular repeating units constitute the second photonic crystal 11A.
  • the first photonic crystal 11/second photonic crystal 11A is formed by partially overlapping the main body part 11a and the auxiliary branch part 11b.
  • 11a is a hexagonal prism structure, at least one vertex of the hexagonal prism structure extends outward to form the auxiliary branch 11b, and the main body 11a and the auxiliary branch 11b are integrated into one body.
  • Each vertex O" is connected to the center O respectively, dividing the cross-section of the main body part 11a into six parts, and the center O' of the cross-section of the auxiliary branch part 11b is set at the dividing line of the cross-section of the main body part 11a Or on the extension of the dividing line away from the center, the auxiliary branch portion 11b partially overlaps the main body portion 11a, and the two adjacent auxiliary branch portions 11b are not connected.
  • Figure 3 ( In a), there are six auxiliary branches 11b as an example, and each auxiliary branch 11b has a hexagonal prism structure.
  • one vertex of the cross section of the auxiliary branch 11b is set at the center of the cross section of the auxiliary branch 11b.
  • the hexagonal prism structure can be a regular hexagonal prism structure, and the size and size of the hexagonal prism structure can be set according to actual needs. shape etc.
  • the distance l1 from the center O to the vertex O" is 10nm-1 ⁇ m;
  • the distance l2 from the center O' to the vertex is 10 nm-1 ⁇ m;
  • the distance l3 from the center O of the main body part 11a to the center O' of the auxiliary branch part 11b is 20 nm-2 ⁇ m.
  • the ratio of the size of the rectangular repeating unit 10 in the horizontal direction (X direction) to the size in the vertical direction (Y direction) is That is, the ratio of the period of the two-dimensional grating 1 in the horizontal direction to the period in the vertical direction is Moreover, in the embodiment shown in Figure 1, Figure 2 and Figure 3 (a), the size of the rectangular repeating unit 10 in the horizontal direction (X direction) is 200nm-2 ⁇ m, that is, the two-dimensional grating 1 The period in the horizontal direction is 200nm-2 ⁇ m. Moreover, in the embodiment shown in FIG. 1, FIG. 2 and FIG. 3(a), the height H of the first photonic crystal 11/second photonic crystal 11A and the petal-shaped cylinder 12 is 10 nm-1 ⁇ m.
  • the two adjacent auxiliary branches 11b on the cross section of the first photonic crystal 11/second photonic crystal 11A, the two adjacent auxiliary branches 11b
  • the angle ⁇ between the center O' of the body part 11a and the center O of the main body part 11a may be 60°, 120° or 180°, and in the example shown in Figure 3(a), the angle ⁇ is 60°.
  • the first photonic crystal 11/second photonic crystal 11A of the two-dimensional grating 1 provided by the embodiment of the present application is coupling out light
  • Figure 3(b) shows the first photon shown in Figure 3(a).
  • a diffraction order and diffraction efficiency of the crystal/second photonic crystal 11A can achieve diffraction efficiency of different diffraction orders as shown in Figure 3(b), and the image effect observable by the human eye within the eye movement range is better.
  • the structure of the two-dimensional grating is relatively simple and easy to process.
  • the two-dimensional grating 1 provided by the embodiment of the present application can be adjusted to the shape of the main body part 11a, the shape of the auxiliary branch parts 11b, the number of the auxiliary branch parts 11b, and the center O of the main body part 11a to the vertex.
  • the distance l1 of O is The period size in the horizontal direction (X direction) and the vertical direction (Y direction), the height of the first photonic crystal 11/second photonic crystal 11A and the petal-shaped cylinder 12, the two adjacent Optimizing parameters such as the angle ⁇ between the center O' of the auxiliary branch 11b and the center O of the main body 11a are used to adjust the energy distribution between each diffraction order, which greatly improves the degree of freedom of energy distribution adjustment, and is suitable for different
  • the diffraction efficiency between different diffraction orders in the decoupling region can be adjusted more freely and flexibly.
  • Figure 4 shows a structure and shape that is basically similar to Figure 3(a), except that the auxiliary branch part 11b and the main part 11a
  • the size of the overlapping part is different, specifically the distance l2 from the center O' of the sub-branch 11b to the vertex is different, and the structure of the first photonic crystal 11/second photonic crystal 11A with the same other parameters can be optimized by adjusting the above The parameters can realize the adjustment of the diffraction efficiency of the two-dimensional grating 1.
  • the number of the auxiliary branches 11b is six, which are respectively formed by extending from the six vertices of the main body 11a. In some other embodiments , the number of the auxiliary branches 11b can also be one to five.
  • FIG. 5 shows that the first photonic crystal 11/second photonic crystal 11A in the two-dimensional grating 1 has one auxiliary branch 11b.
  • FIG. 6 shows an example in which the first photonic crystal 11/second photonic crystal 11A in the two-dimensional grating 1 has three auxiliary branches 11b.
  • the included angle is: 0-70°.
  • the top surface of the first photonic crystal 11 / the second photonic crystal 11A may also be in the shape of a step, and the number of steps is 2-10, and the width of the steps is 1-500 nm. The depth is 1-500nm.
  • the embodiment of the present application provides a two-dimensional grating. Similar to the above-mentioned Embodiment 1 and Figures 1 and 2, the two-dimensional grating provided by the embodiment of the present application also includes periodic planes along the horizontal direction and the vertical direction. Arrange rectangular repeating units on the surface of the waveguide plate. A first photonic crystal is provided in the center of the rectangular repeating unit. There are petal-shaped cylinders extending from the four vertices of the rectangular repeating unit into the rectangular repeating unit.
  • the second photonic crystal is formed by splicing petal-shaped cylinders distributed in the four rectangular repeating units that share a common vertex and extending from the common vertex, respectively from the four vertices of the single rectangular repeating unit to
  • the shape of the inner extending petal-shaped cylinders after splicing is the same as the shape of the first photonic crystal. They are respectively distributed in the four rectangular repeating units with a common vertex, and are respectively distributed from the common vertex to each of the rectangles.
  • the petal-shaped cylinders extending within the repeating unit constitute the second photonic crystal.
  • FIG. 7(a) shows a perspective view of the structure of a single first/second photonic crystal in a two-dimensional grating provided by an embodiment of the present application.
  • a photonic crystal 11/second photonic crystal 11A is formed by partially overlapping a main body 11a and at least one auxiliary branch 11b.
  • the main body 11a is a cylindrical structure, and the side surfaces of the cylindrical structure extend outward to form at least one of the
  • the auxiliary branch 11b connects at least two equally spaced points on the circumference of the cross-section of the main body 11a to the center O respectively, dividing the cross-section of the main body 11a into at least two parts, that is, in the direction of the cross-section
  • the main body part 11a is equally divided into at least two parts, and the center O' of the cross section of the auxiliary branch part 11b is set along the average radius of the cross section of the main body part 11a or away from the center of the circle of the average radius.
  • the auxiliary branch portion 11b partially overlaps the main body portion 11a, and the two adjacent auxiliary branch portions 11b are not in contact with each other.
  • Figure 7 (a) there are three auxiliary branches 11b as an example.
  • the lateral direction of the main body 11a is The cross section is evenly divided into three parts, and both the main body part 11a and the auxiliary branch part 11b are cylindrical structures.
  • the distance l3 from the center O of the main body part 11a to the center O' of the auxiliary branch part 11b is 20 nm-2 ⁇ m.
  • the ratio of the size of the rectangular repeating unit in the horizontal direction to the size in the vertical direction is That is, the ratio of the period of the two-dimensional grating 1 in the horizontal direction to the period in the vertical direction is Moreover, in the embodiment of the present application, the size of the rectangular repeating unit in the horizontal direction is 200 nm-2 ⁇ m, that is, the period of the two-dimensional grating 1 in the horizontal direction is 200 nm-2 ⁇ m.
  • the height H of the first photonic crystal 11/second photonic crystal 11A and the petal-shaped cylinder is 10 nm-1 ⁇ m.
  • the centers O' of the two adjacent auxiliary branches 11b and The included angle ⁇ between the lines connecting the center O of the main body portion 11a may be 60°, 120° or 180°, and in the example shown in FIG. 7(a) , the included angle ⁇ is 120°.
  • the radius R of the cross-section of the main body part 11a and the auxiliary branch part are 10nm-1 ⁇ m.
  • Figure 7(b) shows the first/second photonic crystal 11A shown in Figure 7(a).
  • a diffraction order and diffraction efficiency of a two-photon crystal can achieve diffraction efficiency of different diffraction orders as shown in Figure 7(b).
  • the image effect observable by the human eye within the eye movement range is better, and the two-photon crystal
  • the structure of dimensional grating is also relatively simple and easy to process.
  • the two-dimensional grating provided by the embodiment of the present application can be adjusted to the above-mentioned shape by adjusting the shape of the main body part 11a, the shape of the auxiliary branch parts 11b, the number of the auxiliary branch parts 11b, and the center O of the main body part 11a.
  • the distance l3 between the center/center of the circle O' of the auxiliary branch 11b, the period size of the rectangular repeating unit 10 in the horizontal and vertical directions, the first photonic crystal 11, the second photonic crystal 11A and the petal-shaped cylinder The height H of Radius r and other optimized parameters are used to adjust the energy distribution between each diffraction order, which greatly improves the degree of freedom in energy distribution adjustment and enables more free and flexible adjustment of the diffraction efficiency between different diffraction orders in different coupling areas.
  • the number of the auxiliary branches 11b is three, and they are formed by extending outward from some side surfaces of the cylindrical structure of the main body 11a.
  • the number of the auxiliary branches 11b can also be one to six.
  • Figure 8(a) shows the first photonic crystal 11/second photonic crystal in the two-dimensional grating.
  • 11A has two examples of said sub-branch 11b.
  • Figure 9 shows another type of the first photonic crystal 11/second photonic crystal 11A in the two-dimensional grating having three auxiliary branches 11b (the three auxiliary branches 11b are located at the same side of the main body 11a.
  • Half of the outside is different from the example shown in Figure 7(a) which is arranged at an equal angle on the outside of the main body part 11a); that is, there are six equally spaced points on the circumference of the cross section of the main body part 11a.
  • the cross section of the main body part 11a is equally divided into six parts, and the centers O' of the cross sections of the three auxiliary branch parts 11b are respectively located at three adjacent cross sections of the main body part 11a.
  • the evenly divided radius is located on the extension line on the side away from the center O, so that the three auxiliary branches 11b partially overlap with the main body 11a, and the two adjacent auxiliary branches 11b are not connected.
  • FIG. 10 shows an example in which the first photonic crystal 11 / the second photonic crystal 11A in the two-dimensional grating has six auxiliary branches 11 b. Moreover, it is not difficult to see from the diffraction efficiency of different diffraction orders of the structure of Figure 8(a) shown in Figure 8(b) that the optimization parameters of each diffraction order can be achieved by adjusting the number of secondary branches 11b and other optimization parameters. Adjustment of energy distribution between.
  • the auxiliary branch 11b may also have an elliptical column structure.
  • 11A has three and six auxiliary branches 11b and the auxiliary branch 11b is an elliptical column structure, and when the main body 11a is a cylindrical structure and the auxiliary branch 11b is an elliptical column structure, when the On the same cross section of the first photonic crystal 11/second photonic crystal 11A, the long axis s of the auxiliary branch 11b is located on the extension line of the radius R of the main body 11a, and the semi-major axis of the auxiliary branch 11b is The length m is: 20nm-1 ⁇ m, the length n of the semi-minor axis of the auxiliary branch 11b is: 10nm-800nm, the distance l3 from the center O of the main body 11a to the center O' of the auxiliary branch 11b is 20n
  • FIG. 13 shows that the top surface of the auxiliary branch 11 b has a certain angle with the top surface of the main body 11 a and the number of the auxiliary branches 11 b is three.
  • the angle ⁇ is: 0-70°.
  • FIG. 14 shows the relationship between the top surface of the main body part 11a and/or the auxiliary branch part 11b and the first photonic crystal 11/second photonic crystal 11A.
  • the top surface of the auxiliary branch part 11b and the top surface of the main body part 11a form a plane and are in contact with the first photonic crystal 11/th
  • the included angle ⁇ is: 0-70°.
  • the cross-section refers to the horizontal plane in the embodiment of this application.
  • FIG. 15 shows an example in which the top surface of the first photonic crystal 11 / the second photonic crystal 11A is stepped.
  • the top surface of the crystal 11A may also be in the shape of a step, and the number of step layers is 2-10, the step width p is 1-500 nm, and the step depth h is 1-500 nm.
  • This embodiment provides a method for forming a two-dimensional grating. Please refer to Figure 16, which shows the flow of a method for forming a two-dimensional grating provided by this embodiment.
  • the forming method includes:
  • Step S11 According to the demand for light coupling efficiency, determine the optimization variables of the two-dimensional grating as described in Embodiment 1 or 2,
  • the optimization variables at least include: the shape of the main body and the auxiliary branches forming the first/second photonic crystal, the number of auxiliary branches, the overlapping method of the main body and the auxiliary branches, and the cross-section of the two auxiliary branches.
  • the optimization variables may include: the shape and size of the main body and the auxiliary branches, the number of the auxiliary branches, the position of the auxiliary branches on the side of the main body, and the cross section of the main body of the hexagonal prism structure.
  • the distance from the center of the circle to the vertex, the distance from the center to the vertex on the cross section of the auxiliary branch of the hexagonal prism structure, the distance from the center of the main part to the center of the auxiliary branch, the radius of the main part and/or the auxiliary branch of the cylindrical structure, the elliptical cylinder structure The length of the semi-major axis and semi-minor axis of the secondary branch, the period of the rectangular repeating unit, the height of the first/second photonic crystal and the petal-shaped cylinder, the center of the two adjacent secondary branches and the main body
  • Step S12 Perform etching on the waveguide plate according to the optimized variables to form the two-dimensional grating.
  • the size parameters in the structure of the two-dimensional grating can be optimized according to the user's requirements for the diffraction efficiency of the optical waveguide, thereby obtaining the actual manufacturing parameters of the two-dimensional grating, that is, the two-dimensional grating
  • the optimized variables of the grating thus, the etching operation is performed on the optical waveguide substrate according to the obtained optimized variables to form the required two-dimensional grating.
  • the method for forming a two-dimensional grating provided in this embodiment can be based on the diffraction efficiency requirements of the optical waveguide required by the user as shown in Figure 3(b), as shown in Figure 3(a) of Embodiment 1.
  • the size parameters in the structure of the two-dimensional grating in the example are optimized to obtain the actual manufacturing parameters of the two-dimensional grating, that is, the optimization variables of the two-dimensional grating; thus, based on the obtained optimization variables, the optical waveguide substrate is Etching operation is performed to form a two-dimensional grating as shown in Figure 3(a) in Embodiment 1.
  • the structure of the two-dimensional grating in the example shown in Figure 7(a) of Embodiment 2 can be modified according to the diffraction efficiency of the optical waveguide required by the user as shown in Figure 7(b).
  • the size parameters of the two-dimensional grating are optimized to obtain the actual manufacturing parameters of the two-dimensional grating, that is, the optimized variables of the two-dimensional grating; thereby, the etching operation is performed on the optical waveguide substrate according to the obtained optimized variables to form a structure as in Embodiment 2
  • the structure of the two-dimensional grating in the example shown in Figure 8(a) of Embodiment 2 can be modified.
  • the size parameters of the two-dimensional grating are optimized to obtain the actual manufacturing parameters of the two-dimensional grating, that is, the optimized variables of the two-dimensional grating; thereby, the etching operation is performed on the optical waveguide substrate according to the obtained optimized variables to form a structure as in Embodiment 2
  • This embodiment provides an optical waveguide.
  • the optical waveguide 100 shown includes: a waveguide plate 101; a coupling structure 102, which is disposed at On the light entrance side of the waveguide plate 101, the coupling structure 103 composed of the two-dimensional grating 1 as described in Embodiment 1 or 2 is provided on the light exit side of the waveguide plate 101.
  • the coupling structure 102 can be a rectangular grating, a tilted grating, a trapezoidal grating, an echelon grating, a holographic grating or other one-dimensional gratings. Specifically, the coupling structure 102 can diffractively couple the projection light of the optical machine to the waveguide plate 101 Total reflection propagation in the direction of the outcoupling structure 103 can be set according to actual needs.
  • the coupling-out structure 103 is composed of a two-dimensional grating as described in Embodiment 1 or Embodiment 2. This two-dimensional grating is easy to process and is conducive to adjusting the coupling efficiency. Specifically, please refer to Embodiment 1 or Embodiment 2 and the following. As shown in the drawings, for the manufacturing method of the two-dimensional grating shown in Embodiment 1 or 2, please refer to Embodiment 3 and its accompanying drawings, which will not be described in detail here.
  • the decoupling region 103 can absorb light. Diffuse and propagate, and couple part of the light out of the waveguide 101 into the human eye, thereby achieving pupil dilation display.
  • This embodiment provides a near-eye display device. Please refer to FIG. 18 , which shows the structure of a near-eye display device provided by this embodiment.
  • the near-eye display device 1000 includes: an optical waveguide as described in Embodiment 4. 100.
  • the near-eye display device 1000 provided in this embodiment uses the two-dimensional grating shown in Embodiment 1 or 2 of the present application as the coupling structure as the optical waveguide 100.
  • This two-dimensional grating has more optimization variables and can Perform multi-parameter control to adjust the diffraction efficiency.
  • Embodiments of the present application provide a two-dimensional grating and a method for forming the same, an optical waveguide, and a near-eye display device, which include rectangular repeating units periodically tiled and arranged on the surface of the waveguide sheet along the horizontal and vertical directions.
  • the rectangular repeating units A first photonic crystal is provided in the center of the unit, and petal-shaped cylinders are respectively provided extending from the four vertices of the rectangular repeating unit into the rectangular repeating unit, extending inward from the four vertices of a single rectangular repeating unit.
  • the separately arranged petal-shaped cylinders can be spliced into the second photonic crystal, respectively distributed in the four rectangular repeating units with a common vertex, and extending from the common vertex to the four rectangular repeating units.
  • the petal-shaped cylinder constitutes the second photonic crystal. Due to the petal-like structure in the two-dimensional grating provided by the embodiment of the present application, the size and shape of the first/second photonic crystal and its main body and auxiliary branches can be adjusted. and other optimized parameters to achieve high-degree-of-freedom energy distribution adjustment, thereby more freely and flexibly adjusting the diffraction efficiency between different diffraction orders in different coupling areas, making the imaging effect observed by the human eye within the eye movement range better. .
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physically separated.
  • the unit can be located in one place, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • the programs can be stored in computer-readable storage media. When the programs are executed, When doing so, it may include the processes of the above method embodiments.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种二维光栅(1)及其形成方法、光波导(100)及近眼显示设备(1000),二维光栅(1)包括平铺排列的矩形重复单(10),其中心设置有第一光子晶体(11),自单个矩形重复单元(10)的四个顶点向内延伸分别设置的瓣状柱体(12a、12b、12c、12d)可拼接成第二光子晶体(11A),分别分布于具有共用顶点的四个矩形重复单元(10)内、自共用顶点分别向四个矩形重复单元(10)内延伸设置的瓣状柱体(12a、12b、12c、12d)构成第二光子晶体(11A),二维光栅(1)能够通过调节第一/第二光子晶体(11、11A)及其主体部(1la)和副支部(11b)的尺寸、形状等优化参数,实现高自由度的能量分布调节,从而对不同耦出区域的不同衍射级次之间的衍射效率进行更自由灵活的调整,使得眼动范围内人眼观察到的成像效果更好。

Description

一种二维光栅及其形成方法、光波导及近眼显示设备
相关申请的交叉参考
本申请要求于2022年05月13日提交中国专利局,申请号为202210521079.7,发明名称为“一种二维光栅及其形成方法、光波导及近眼显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学器件技术领域,特别涉及一种二维光栅及其形成方法、光波导及近眼显示设备。
背景技术
增强现实技术(Augmented Reality,AR)是将虚拟信息与现实世界融合在一起的科学技术,并随着近来元宇宙概念的爆火,增强现实眼镜有望作为新一代信息平台取代智能手机,掀起下一代科技革命。目前由于应用场景与软件生态的限制,增强现实眼镜主要应用于安防和工业领域,其借助无与伦比的显示便捷性,解放了使用者的双手,并配合其他传感器可提供给用户全新的交互体验,显著提升团队协作效率。
作为新一代显示平台,增强现实眼镜经过了多次技术迭代,目前被普遍接受的主要有棱镜方案、birdbath方案、自由曲面方案和波导方案。前三者体积较大,限制了其在智能穿戴方面,即增强现实眼镜方面的应用,而波导是目前最佳的增强现实眼镜方案。
波导方案又分为几何波导方案、浮雕光栅波导方案和体全息波导方案。几何波导方案是使用阵列的镀膜半透半反射镜来达到虚拟信息的显示,但是该方案的视场和眼动范围受限,而且阵列镜片会给画面带来条 纹效果,所以几何波导方案无法给人眼呈现最佳的显示效果。体全息波导方案目前在大规模量产上受到了限制。浮雕光栅波导方案由于纳米压印的便利性是目前研究最多的技术方案,具有大视场和大眼动范围的优势。浮雕光栅波导目前的方案路径主要有基于一维光栅的波导方案和基于二维光栅的波导方案。
其中,一维光栅波导分为耦入区域、扩展区域和耦出区域,扩展区域需要占用较大面积,从而限制了视场和眼动范围。二维光栅波导分为耦入区域和耦出区域,耦出区域使用二维光栅结构兼顾了扩展和耦出的功能,因此在同样大小的波导片上,二维光栅结构可以提供更大的视场角与眼动范围内。
在实现本申请的过程中,发明人发现以上相关技术中至少存在如下问题:目前基于二维光栅结构的光波导方案中,在耦出区域使用的二维光栅结构通常为圆柱结构和菱形结构,这两种结构可调节参数较少,对不同衍射级次之间的能量分布调节自由度低。
发明内容
本申请实施例提供了一种新型的二维光栅及其形成方法、光波导及近眼显示设备。
本申请实施例的目的是通过如下技术方案实现的:
为解决上述技术问题,第一方面,本申请实施例中提供了一种包括沿水平方向和竖直方向周期性平铺排列在波导片表面的矩形重复单元,所述矩形重复单元的中心设置有第一光子晶体,自所述矩形重复单元的四个顶点向所述矩形重复单元内延伸分别设置有瓣状柱体,自单个所述矩形重复单元的四个顶点向内延伸分别设置的瓣状柱体可拼接成第二光子晶体,分别分布于具有共用顶点的四个所述矩形重复单元内、自所述共用顶点分别向四个所述矩形重复单元内延伸设置的瓣状柱体构成 所述第二光子晶体,所述第一/第二光子晶体由主体部和至少一个副支部部分重合形成,当所述主体部为六棱柱结构时,所述主体部的横切面的各顶点分别与中心连接,将所述主体部的横切面划分为六份,所述副支部的横切面的中心设置于所述主体部的横切面的划分线或所述划分线的远离中心一侧的延长线上、使所述副支部与所述主体部部分重合,相邻的两个所述副支部不相接,当所述主体部为圆柱体结构时,所述主体部的横切面的圆周上至少两个间隔相等的点分别与圆心连接,将所述主体部的横切面均分为至少两份,所述副支部的横切面的中心设置于所述主体部的横切面的均分半径或所述均分半径的远离圆心一侧的延长线上、使所述副支部与所述主体部部分重合,相邻的两个所述副支部不相接。
为解决上述技术问题,第二方面,本申请实施例中提供了一种二维光栅的形成方法,包括:根据对光线耦出效率的需求,确定如第一方面所述的二维光栅的优化变量,其中,所述优化变量包括:形成所述第一/第二光子晶体的主体部和副支部的形状、副支部的数量、主体部与副支部的重合方式、两个副支部的横切面的中心分别与主体部的横切面的中心的连线之间的夹角、主体部和副支部的尺寸和/或主体部的横切面的中心和副支部的横切面的中心之间的距离、所述第一/第二光子晶体的形状和尺寸、所述第一/第二光子晶体的顶面的形状和尺寸、所述二维光栅在水平方向上的周期、和/或所述二维光栅在竖直方向上的周期;根据所述优化变量在波导片上进行刻蚀作业以形成所述二维光栅。
为解决上述技术问题,第三方面,本申请实施例提供了一种光波导,包括:波导片;耦入结构,设置在所述波导片的入光侧;由如第一方面所述的二维光栅构成的耦出结构,设置在所述波导片的出光侧。
为解决上述技术问题,第四方面,本申请实施例还提供了一种近眼 显示设备,包括:如第四方面所述的光波导。
与现有技术相比,本申请的有益效果是:区别于现有技术的情况,本申请实施例中提供了一种二维光栅及其形成方法、光波导及近眼显示设备,包括沿水平方向和竖直方向周期性平铺排列在波导片表面的矩形重复单元,所述矩形重复单元的中心设置有第一光子晶体,自所述矩形重复单元的四个顶点向所述矩形重复单元内延伸分别设置有瓣状柱体,自单个所述矩形重复单元的四个顶点向内延伸分别设置的瓣状柱体可拼接成所述第二光子晶体,分别分布于具有共用顶点的四个所述矩形重复单元内、自所述共用顶点分别向四个所述矩形重复单元内延伸设置的瓣状柱体构成所述第二光子晶体。本申请实施例提供的二维光栅中由于存在瓣状结构,能够通过调节第一/第二光子晶体及其主体部和副支部的尺寸、形状等优化参数,实现高自由度的能量分布调节,从而对不同耦出区域的不同衍射级次之间的衍射效率进行更自由灵活的调整,使得眼动范围内人眼观察到成像效果更好。
附图说明
一个或多个实施例中通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件/模块和步骤表示为类似的元件/模块和步骤,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例一提供的一种二维光栅的结构示意图;
图2是图1所示二维光栅中单个矩形重复单元的结构的俯视图;
图3(a)是图1所示二维光栅中单个第一/第二光子晶体的立体图;
图3(b)是图3(a)所示第一/第二光子晶体的一种衍射级次及衍射效率图;
图4是本申请实施例一提供的一种不同于图3(a)示例的副支部尺 寸的第一/第二光子晶体的立体图;
图5是本申请实施例一提供的一种不同于图3(a)示例的且具有一个副支部的第一/第二光子晶体的立体图;
图6是本申请实施例一提供的一种不同于图3(a)示例的且具有三个副支部的第一/第二光子晶体的立体图;
图7(a)是本申请实施例二提供的一种二维光栅中单个第一/第二光子晶体的结构的立体图;
图7(b)是图7(a)所示第一/第二光子晶体的一种衍射级次及衍射效率图;
图8(a)是本申请实施例二提供的一种不同于图7(a)示例的且具有两个副支部的第一/第二光子晶体的立体图;
图8(b)是图8(a)所示第一/第二光子晶体的一种衍射级次及衍射效率图;
图9是本申请实施例二提供的一种不同于图7(a)示例的另一种具有三个副支部的第一/第二光子晶体的立体图;
图10是本申请实施例二提供的一种不同于图7(a)示例的且具有六个副支部的第一/第二光子晶体的立体图;
图11是本申请实施例二提供的一种不同于图9示例的具有椭圆柱结构的副支部的第一/第二光子晶体的立体图;
图12是本申请实施例二提供的一种不同于图10示例的具有椭圆柱结构的副支部的第一/第二光子晶体的立体图;
图13是本申请实施例二提供的一种不同于图9示例的副支部的顶面与主体部的顶面存在一定的角度的第一/第二光子晶体的立体图;
图14是本申请实施例二提供的一种不同于图9示例的主体部和副支部的顶面与光子晶体的横切面存在一定的角度的第一/第二光子晶体 的立体图;
图15是本申请实施例二提供的一种不同于图9示例的光子晶体顶面呈阶梯状的第一/第二光子晶体的立体图;
图16是本实施例三提供的一种二维光栅的形成方法的流程示意图;
图17是本实施例四提供的一种光波导的结构示意图;
图18是本实施例五提供的一种近眼显示设备的结构示意图。
具体实施方式
下面结合具体实施例对本申请进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本申请,但不以任何形式限制本申请。应当指出的是,对本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进。这些都属于本申请的保护范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不适用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
为了解决目前二维光栅可调参数少,能量分布调节自由度低的问题,本申请实施例提供了一种新型的二维光栅及其形成方法、光波导及近眼显示设备,该二维光栅能够通过调节第一/第二光子晶体及其主体部和副支部的尺寸、形状等优化参数,实现高自由度的能量分布调节,从而对不同耦出区域的不同衍射级次之间的衍射效率进行更自由灵活的调整,使得眼动范围内人眼观察到的成像效果更好。其中,所述第一/第二光子晶体包括主体部和至少一个副支部,所述主体部和/或所述副支部可以是六棱柱结构或圆柱体结构,所述副支部还可以是椭圆柱体结构,且相邻的两个所述副支部不相接。
具体地,下面结合附图,对本申请实施例作进一步阐述。
实施例一
本申请实施例提供了一种二维光栅,请参见图1、图2和图3(a),其中,图1示出了本申请实施例提供的一种二维光栅的结构的俯视图,图2示出了图1所示二维光栅中单个矩形重复单元的结构的俯视图,图3(a)示出了图1所示二维光栅中单个第一/第二光子晶体的结构的立体图。具体地,所述二维光栅1,包括沿水平方向(X方向)和竖直方向(Y方向)周期性平铺排列在波导片表面的矩形重复单元10,所述矩形重复单元10的中心设置有第一光子晶体11,自所述矩形重复单元10的四个顶点向所述矩形重复单元10内延伸皆设置有瓣状柱体(12a、12b、12c和12d),分布于共用一个顶点的四个所述矩形重复单元10内、自共用顶点分别延伸设置的瓣状柱体拼接后形成所述第二光子晶体11A,分别自单个所述矩形重复单元10的四个顶点向内延伸设置的瓣状柱体 (12a、12b、12c和12d)拼接后的形状与所述第一光子晶体11的形状相同,分别分布于具有共用顶点的四个所述矩形重复单元10内、自所述共用顶点分别向各个所述矩形重复单元10内延伸设置的瓣状柱体构成所述第二光子晶体11A。例如,图2所示左上角的瓣状柱体12a可为所述第二光子晶体11A的四分之一,其与分别分布于与瓣状柱体12a所在的矩形重复单元10具有共同顶点的三个矩形重复单元内、自所述共用顶点分别向所述三个所述矩形重复单元10内延伸设置的瓣状柱体12b、12c和12d构成所述第二光子晶体11A。
且有,在图1、图2和图3(a)所示实施例中,所述第一光子晶体11/第二光子晶体11A由主体部11a和副支部11b部分重合形成,所述主体部11a为六棱柱结构,所述六棱柱结构的至少一个顶点向外延伸以形成所述副支部11b且所述主体部11a和所述副支部11b融合为一体,所述主体部11a的横切面的各顶点O”分别与中心O连接,将所述主体部11a的横切面划分为六份,以所述副支部11b的横切面的中心O’设置于所述主体部11a的横切面的划分线或所述划分线的远离中心一侧的延长线上、使所述副支部11b与所述主体部11a部分重合,且相邻的两个所述副支部11b不相接。其中,图3(a)中以存在六个副支部11b为例,且各所述副支部11b为六棱柱结构,此时所述副支部11b的横切面的一个顶点设置于所述副支部11b的横切面的中心O’与所述主体部11a的横切面的中心O之间;也即:以副支部11b的横切面的中心O’与一个顶点的连线沿主体部11a的横切面的划分线向主体部11a靠近,使副支部11b与主体部11a部分融合。进一步地,在其他的一些实施方式中,所述六棱柱结构可为正六棱柱结构,具体可根据实际需要设置所述六棱柱结构的尺寸和形状等。
且有,在图1、图2和图3(a)所示实施例中,在所述主体部11a 的六棱柱结构的横切面上,中心O到顶点O”的距离l1为10nm-1μm;在所述副支部11b的六棱柱结构的横切面上,中心O’到顶点的距离l2为10nm-1μm;在所述第一光子晶体11/第二光子晶体11A的同一横切面上,所述主体部11a的中心O到所述副支部11b的中心O’的距离l3为20nm-2μm。
且有,在图1、图2和图3(a)所示实施例中,所述矩形重复单元10在水平方向(X方向)的尺寸与在竖直方向(Y方向)的尺寸之比为
Figure PCTCN2022121360-appb-000001
也即所述二维光栅1在水平方向上的周期与在竖直方向上的周期之比为
Figure PCTCN2022121360-appb-000002
且有,在图1、图2和图3(a)所示实施例中,所述矩形重复单元10在水平方向(X方向)上的尺寸为200nm-2μm,也即所述二维光栅1在水平方向的周期为200nm-2μm。且有,在图1、图2和图3(a)所示实施例中,所述第一光子晶体11/第二光子晶体11A和所述瓣状柱体12的高度H为10nm-1μm。
且有,在图1、图2和图3(a)所示实施例中,在所述第一光子晶体11/第二光子晶体11A的横切面上,相邻的两个所述副支部11b的中心O’与所述主体部11a的中心O的连线的夹角α可以为60°、120°或180°,且图3(a)所示示例中夹角α为60°。
本申请实施例提供的二维光栅1的第一光子晶体11/第二光子晶体11A在耦出光线时,请参见图3(b),其示出了图3(a)所示第一光子晶体/第二光子晶体11A的一种衍射级次及衍射效率,能够实现如图3(b)所示的不同衍射级次的衍射效率,眼动范围内人眼可观察到的图像效果较好,且该二维光栅的结构也较为简单,易于加工。
且有,本申请实施例提供的二维光栅1可通过调整所述主体部11a的形状、所述副支部11b的形状、所述副支部11b的数量、所述主体部11a的中心O到顶点O”的距离l1、所述副支部11b的中心O’到顶点 的距离l2、所述主体部11a的中心O到所述副支部11b的中心O’的距离l3、所述矩形重复单元10在水平方向(X方向)和竖直方向(Y方向)上的周期大小、所述第一光子晶体11/第二光子晶体11A和所述瓣状柱体12的高度、相邻的两个所述副支部11b的中心O’与所述主体部11a的中心O的连线的夹角α等优化参数来调节各个衍射级次之间的能量分布,大大提升了能量分布调节的自由度,对不同耦出区域的不同衍射级次之间的衍射效率能够进行更自由灵活的调整。例如,图4示出了与图3(a)结构和形状基本相似,仅所述副支部11b与主体部11a的重合部分的尺寸不同,具体地为所述副支部11b的中心O’到顶点的距离l2不同,其他参数相同的一种第一光子晶体11/第二光子晶体11A的结构,通过调整上述优化参数可实现对所述二维光栅1的衍射效率的调整。
在本申请图1、图2和图3(a)所示实施例中,所述副支部11b的数量为六个,分别通过所述主体部11a六个顶点延伸形成,在其他的一些实施例中,所述副支部11b的数量还可以是一到五个,例如,图5示出了所述二维光栅1中的第一光子晶体11/第二光子晶体11A具有一个所述副支部11b的示例,图6示出了所述二维光栅1中的第一光子晶体11/第二光子晶体11A具有三个所述副支部11b的示例。
在其他的一些实施例中,所述副支部11b的顶面和/或所述主体部11a的顶面所述第一光子晶体11/第二光子晶体11A的横切面之间存在一定的角度且夹角为:0-70°。
在其他的一些实施例中,所述第一光子晶体11/第二光子晶体11A的顶面还可以是呈阶梯状,且阶梯的层数为2-10,阶梯的宽度为1-500nm,阶梯的深度为1-500nm。
实施例二
本申请实施例提供了一种二维光栅,其中,与上述实施例一及图1和图2相似的,本申请实施例提供的二维光栅,同样包括沿水平方向和竖直方向周期性平铺排列在波导片表面的矩形重复单元,所述矩形重复单元的中心设置有第一光子晶体,自所述矩形重复单元的四个顶点向所述矩形重复单元内延伸皆设置有瓣状柱体,分布于共用一个顶点的四个所述矩形重复单元内、自共用顶点分别延伸设置的瓣状柱体拼接后形成所述第二光子晶体,分别自单个所述矩形重复单元的四个顶点向内延伸设置的瓣状柱体拼接后的形状与所述第一光子晶体的形状相同,分别分布于具有共用顶点的四个所述矩形重复单元内、自所述共用顶点分别向各个所述矩形重复单元内延伸设置的瓣状柱体构成所述第二光子晶体。
与上述实施例一不同之处在于,请参见图7(a),其示出了本申请实施例提供的一种二维光栅中单个第一/第二光子晶体的结构的立体图,所述第一光子晶体11/第二光子晶体11A由主体部11a和至少一个副支部11b部分重合形成,所述主体部11a为圆柱体结构,所述圆柱体结构的侧面向外延伸以形成至少一个所述副支部11b,所述主体部11a的横切面的圆周上至少两个间隔相等的点分别与圆心O连接,将所述主体部11a的横切面均分为至少两份,也即在横切面方向上将所述主体部11a均分为至少两份,所述副支部11b的横切面的中心O’设置于沿所述主体部11a的横切面的均分半径或所述均分半径的远离圆心一侧的延长线上、使所述副支部11b与所述主体部11a部分重合,且相邻的两个所述副支部11b不相接。其中,图7(a)中以存在三个副支部11b为例,所述主体部11a的横切面的圆周上存在三个等间隔的点分别与圆心O连接,将所述主体部11a的横切面均分为三份,且所述主体部11a和所述副支部11b皆为圆柱结构。
且有,在图7(a)所示实施例中,在同一横切面上,所述主体部 11a的圆心O到所述副支部11b的圆心O’的距离l3为20nm-2μm。且有,在本申请实施例中,所述矩形重复单元在水平方向的尺寸与在竖直方向的尺寸之比为
Figure PCTCN2022121360-appb-000003
也即所述二维光栅1在水平方向上的周期与在竖直方向上的周期之比为
Figure PCTCN2022121360-appb-000004
且有,在本申请实施例中,所述矩形重复单元在水平方向上的尺寸为200nm-2μm,也即所述二维光栅1在水平方向的周期为200nm-2μm。且有,在7(a)所示实施例中,所述第一光子晶体11/第二光子晶体11A和所述瓣状柱体的高度H为10nm-1μm。且有,在图7(a)所示实施例中,在所述第一光子晶体11/第二光子晶体11A的同一横切面上,相邻的两个所述副支部11b的中心O’与所述主体部11a的中心O的连线的夹角α可以为60°、120°或180°,且图7(a)所示示例中夹角α为120°。且有,在7(a)所示实施例中,在所述第一光子晶体11/第二光子晶体11A的同一横切面上,所述主体部11a的横切面的半径R和所述副支部11b的横切面的半径r皆为10nm-1μm。
本申请实施例提供的二维光栅的第一光子晶体11/第二光子晶体11A在耦出光线时,请参见图7(b),其示出了图7(a)所示第一/第二光子晶体的一种衍射级次及衍射效率,能够实现如图7(b)所示的不同衍射级次的衍射效率,眼动范围内人眼可观察到的图像效果较好,且该二维光栅的结构也较为简单,易于加工。
且有,本申请实施例提供的二维光栅可通过调整所述主体部11a的形状、所述副支部11b的形状、所述副支部11b的数量、所述主体部11a的圆心O到所述副支部11b的中心/圆心O’的距离l3、所述矩形重复单元10在水平方向和竖直方向上的周期大小、所述第一光子晶体11第二光子晶体11A和所述瓣状柱体的高度H、相邻的两个所述副支部11b的中心O’与所述主体部11a的圆心O的连线的夹角α、所述主体部11a 的半径R和所述副支部11b的半径r等优化参数来调节各个衍射级次之间的能量分布,大大提升能量分布调节的自由度,对不同耦出区域的不同衍射级次之间的衍射效率进行更自由灵活的调整。
在本申请图7(a)所示实施例中,所述副支部11b的数量为三个,通过所述主体部11a的圆柱体结构的部分侧面向外延伸形成。在其他的一些实施例中,所述副支部11b的数量还可以是一到六个,例如,图8(a)示出了所述二维光栅中的第一光子晶体11/第二光子晶体11A具有两个所述副支部11b的示例。图9示出了所述二维光栅中的第一光子晶体11/第二光子晶体11A另一种具有三个所述副支部11b(三个所述副支部11b位于所述主体部11a的同一半的外侧,与图7(a)所示等角度设置于所述主体部11a的外侧不同)的示例;也即:所述主体部11a的横切面的圆周上存在六个间隔相等的点分别与圆心O连接,将所述主体部11a的横切面均分为六份,三个所述副支部11b的横切面的中心O’分别设置于所述主体部11a的横切面的三个相邻的均分半径所在远离圆心O一侧的延长线上、使三个所述副支部11b分别与所述主体部11a部分重合,相邻的两个所述副支部11b不相接。图10示出了所述二维光栅中的第一光子晶体11/第二光子晶体11A具有六个所述副支部11b的示例。且有,通过图8(b)所示的图8(a)的结构的不同衍射级次的衍射效率不难看出,可通过调整所述副支部11b的数量等优化参数实现对各个衍射级次之间的能量分布的调节。
在其他的一些实施例中,所述副支部11b还可以是椭圆柱结构,请一并参见图11和图12,其分别示出了二维光栅中的第一光子晶体11/第二光子晶体11A具有三个和六个所述副支部11b且副支部11b为椭圆柱结构的示例,且有,所述主体部11a为圆柱体结构,且所述副支部11b为椭圆柱结构时,在所述第一光子晶体11/第二光子晶体11A的同一横 切面上,所述副支部11b的长轴s位于所述主体部11a的半径R延长线上,所述副支部11b的半长轴的长度m为:20nm-1μm,所述副支部11b的半短轴的长度n为:10nm-800nm,所述主体部11a的圆心O到所述副支部11b的中心O’的距离l3为20nm-2μm。
在其他的一些实施例中,请参见图13,其示出了所述副支部11b的顶面与所述主体部11a的顶面存在一定的角度且所述副支部11b的数量为三个的示例,所述副支部11b的顶面与所述主体部11a的顶面存在一定的角度时其夹角β为:0-70°。或者,在其他的一些实施例中,请参见图14,其示出了所述主体部11a和/或所述副支部11b的顶面与所述第一光子晶体11/第二光子晶体11A的横切面之间存在一定的角度的示例,在图14所示示例中,所述副支部11b的顶面与所述主体部11a的顶面形成一个平面且与所述第一光子晶体11/第二光子晶体11A的横切面之间存在一定的角度且夹角γ为:0-70°。其中,所述横切面在本申请实施例中指的是水平面。
在其他的一些实施例中,请参见图15,其示出了第一光子晶体11/第二光子晶体11A的顶面呈阶梯状的一种示例,所述第一光子晶体11/第二光子晶体11A的顶面还可以是呈阶梯状,且阶梯的层数为2-10,阶梯的宽度p为1-500nm,阶梯的深度h为1-500nm。
实施例三
本实施例提供了一种二维光栅的形成方法,请参见图16,其示出了本实施例提供的一种二维光栅的形成方法的流程,所述形成方法包括:
步骤S11:根据对光线耦出效率的需求,确定如实施例一或实施例二所述的二维光栅的优化变量,
其中,所述优化变量至少包括:形成所述第一/第二光子晶体的主 体部和副支部的形状、副支部的数量、主体部与副支部的重合方式、两个副支部的横切面的中心分别与主体部的横切面的中心的连线之间的夹角、主体部和副支部的尺寸和/或主体部的横切面的中心和副支部的横切面的中心之间的距离、所述第一/第二光子晶体的形状和尺寸、所述第一/第二光子晶体的顶面的形状和尺寸、所述二维光栅在水平方向上的周期、和/或所述二维光栅在竖直方向上的周期。
具体地,所述优化变量可以包括:主体部和副支部的形状和尺寸、所述副支部的数量、所述副支部在所述主体部侧面的位置、六棱柱结构的主体部的横切面上圆心到顶点的距离、六棱柱结构的副支部的横切面上圆心到顶点的距离、主体部的圆心到副支部的圆心的距离、圆柱结构的主体部和/或副支部的半径、椭圆柱结构的副支部的半长轴和半短轴的长度、矩形重复单元的周期、第一/第二光子晶体和瓣状柱体的高度、相邻的两个所述副支部的中心与所述主体部的中心的连线的夹角、副支部的顶面与所述主体部的顶面之间的夹角、副支部的顶面与主体部的顶面形成的平面与第一/第二光子晶体的横切面的夹角、呈阶梯状的第一/第二光子晶体的顶面的阶梯数量、阶梯宽度和阶梯深度等,具体地,可根据实际对衍射级次和衍射效率的需要选择所述二维光栅的优化变量。
步骤S12:根据所述优化变量在波导片上进行刻蚀作业以形成所述二维光栅。
在本申请实施例中,可根据用户所需要的光波导的衍射效率的需求,对二维光栅的结构中的尺寸参数进行优化,从而得到二维光栅的实际制造参数,即所述的二维光栅的优化变量;从而,根据得到的优化变量在光波导基底上进行刻蚀作业,以形成所需的二维光栅。
示例性的,本实施例提供的二维光栅的形成方法,可根据用户所需要的光波导的如图3(b)所示的衍射效率的需求,对如实施例一图3(a) 所示示例中的二维光栅的结构中的尺寸参数进行优化,从而得到二维光栅的实际制造参数,即所述的二维光栅的优化变量;从而,根据得到的优化变量在光波导基底上进行刻蚀作业,以形成如实施例一中图3(a)所示的二维光栅。
另一示例性的,可根据用户所需要的光波导的如图7(b)所示的衍射效率的需求,对如实施例二图7(a)所示示例中的二维光栅的结构中的尺寸参数进行优化,从而得到二维光栅的实际制造参数,即所述的二维光栅的优化变量;从而,根据得到的优化变量在光波导基底上进行刻蚀作业,以形成如实施例二中图7(a)所示的二维光栅。
又一示例性的,可根据用户所需要的光波导的如图8(b)所示的衍射效率的需求,对如实施例二图8(a)所示示例中的二维光栅的结构中的尺寸参数进行优化,从而得到二维光栅的实际制造参数,即所述的二维光栅的优化变量;从而,根据得到的优化变量在光波导基底上进行刻蚀作业,以形成如实施例二中图8(a)所示的二维光栅。
实施例四
本实施例提供了一种光波导,请参见图17,其示出了本实施例提供的一种光波导的结构,所示光波导100包括:波导片101;耦入结构102,设置在所述波导片101的入光侧;由如实施例一或实施例二所述的二维光栅1构成的耦出结构103,设置在所述波导片101的出光侧。
所述耦入结构102可以为矩形光栅、倾斜光栅、梯形光栅、阶梯光栅、全息光栅或其他一维光栅,具体地,所述耦入结构102可以将光机的投影光线衍射耦合到波导片101内朝耦出结构103的方向全反射传播,可根据实际需要进行设置。
所述耦出结构103由如实施例一或实施例二所述的二维光栅构成, 该二维光栅易于加工,利于调节耦出效率,具体地,请参见实施例一或实施例二及其附图所示,如实施例一或实施例二所示的二维光栅的制造方法请参见实施例三及其附图所示,此处不再详述,所述耦出区域103能够将光线扩散传播,并将部分光线耦出波导片101进入人眼,从而实现扩瞳显示。
实施例五
本实施例提供了一种近眼显示设备,请参见图18,其示出了本实施例提供的一种近眼显示设备的结构,所述近眼显示设备1000包括:如实施例四所述的光波导100。
本实施例提供的近眼显示设备1000,由于其光波导100采用的是本申请实施例一或实施例二所示的二维光栅作为耦出结构,该二维光栅具有更多的优化变量,可进行多参数调控来实现对衍射效率的调整。
本申请实施例中提供了一种二维光栅及其形成方法、光波导及近眼显示设备,包括沿水平方向和竖直方向周期性平铺排列在波导片表面的矩形重复单元,所述矩形重复单元的中心设置有第一光子晶体,自所述矩形重复单元的四个顶点向所述矩形重复单元内延伸分别设置有瓣状柱体,自单个所述矩形重复单元的四个顶点向内延伸分别设置的瓣状柱体可拼接成所述第二光子晶体,分别分布于具有共用顶点的四个所述矩形重复单元内、自所述共用顶点分别向四个所述矩形重复单元内延伸设置的瓣状柱体构成所述第二光子晶体,本申请实施例提供的二维光栅中由于存在瓣状结构,能够通过调节第一/第二光子晶体及其主体部和副支部的尺寸、形状等优化参数,实现高自由度的能量分布调节,从而对不同耦出区域的不同衍射级次之间的衍射效率进行更自由灵活的调整, 使得眼动范围内人眼观察到的成像效果更好。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以任意顺序实现,并存在如上所述的本申请的不同方面的许多其他变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种二维光栅,其特征在于,包括沿水平方向和竖直方向周期性平铺排列在波导片表面的矩形重复单元,所述矩形重复单元的中心设置有第一光子晶体,自所述矩形重复单元的四个顶点向所述矩形重复单元内延伸分别设置有瓣状柱体,自单个所述矩形重复单元的四个顶点向内延伸分别设置的瓣状柱体可拼接成第二光子晶体,分别分布于具有共用顶点的四个所述矩形重复单元内、自所述共用顶点分别向四个所述矩形重复单元内延伸设置的瓣状柱体构成所述第二光子晶体,所述第一/第二光子晶体由主体部和至少一个副支部部分重合形成,
    当所述主体部为六棱柱结构时,所述主体部的横切面的各顶点分别与中心连接,将所述主体部的横切面划分为六份,所述副支部的横切面的中心设置于所述主体部的横切面的划分线或所述划分线的远离中心一侧的延长线上、使所述副支部与所述主体部部分重合,相邻的两个所述副支部不相接,
    当所述主体部为圆柱体结构时,所述主体部的横切面的圆周上至少两个间隔相等的点分别与圆心连接,将所述主体部的横切面均分为至少两份,所述副支部的横切面的中心设置于所述主体部的横切面的均分半径或所述均分半径的远离圆心一侧的延长线上、使所述副支部与所述主体部部分重合,相邻的两个所述副支部不相接。
  2. 根据权利要求1所述的二维光栅,其特征在于,
    各所述副支部为六棱柱结构、圆柱体结构或椭圆柱体结构。
  3. 根据权利要求2所述的二维光栅,其特征在于,
    所述主体部和所述副支部皆为六棱柱结构时,
    在所述主体部的横切面上,中心到顶点的距离为10nm-1μm,
    在所述副支部的横切面上,中心到顶点的距离为10nm-1μm,
    在同一横切面上,所述主体部的中心到所述副支部的中心的距离为20nm-2μm。
  4. 根据权利要求2所述的二维光栅,其特征在于,
    所述主体部和所述副支部皆为圆柱体结构时,
    所述主体部的横切面的半径和所述副支部的横切面的半径皆为10nm-1μm。
  5. 根据权利要求2所述的二维光栅,其特征在于,
    所述主体部为圆柱体结构,且所述副支部皆为椭圆柱结构时,
    在同一横切面上,所述副支部的长轴位于所述主体部的半径延长线上,
    所述副支部的半长轴的长度为20nm-1μm,所述副支部的半短轴的长度为10nm-800nm,
    所述主体部的圆心到所述副支部的中心的距离为20nm-2μm。
  6. 根据权利要求2所述的二维光栅,其特征在于,
    所述二维光栅在水平方向上的周期与在竖直方向上的周期之比为
    Figure PCTCN2022121360-appb-100001
  7. 根据权利要求2所述的二维光栅,其特征在于,
    所述二维光栅在水平方向上的周期为200nm-2μm。
  8. 根据权利要求2所述的二维光栅,其特征在于,
    所述第一/第二光子晶体和所述瓣状柱体的高度为10nm-1μm。
  9. 根据权利要求2所述的二维光栅,其特征在于,
    在所述第一/第二光子晶体的横切面上,相邻的两个所述副支部的中心与所述主体部的中心的连线的夹角为60°、120°或180°。
  10. 根据权利要求2所述的二维光栅,其特征在于,
    所述副支部的顶面和/或所述主体部的顶面与所述第一/第二光子晶体的横切面之间的夹角为0-70°。
  11. 根据权利要求2所述的二维光栅,其特征在于,
    所述副支部的顶面与所述主体部的顶面之间的夹角为:0-70°。
  12. 根据权利要求2所述的二维光栅,其特征在于,
    所述第一/第二光子晶体的顶面呈阶梯状,且阶梯的层数为2-10,阶梯的宽度为1-500nm,阶梯的深度为1-500nm。
  13. 一种二维光栅的形成方法,其特征在于,包括:
    根据对光线耦出效率的需求,确定如权利要求1-12任一项所述的二维光栅的优化变量,
    其中,所述优化变量包括:形成所述第一/第二光子晶体的主体部和副支部的形状、副支部的数量、主体部与副支部的重合方式、两个副支部的横切面的中心分别与主体部的横切面的中心的连线之间的夹角、 主体部和副支部的尺寸和/或主体部的横切面的中心和副支部的横切面的中心之间的距离、所述第一/第二光子晶体的形状和尺寸、所述第一/第二光子晶体的顶面的形状和尺寸、所述二维光栅在水平方向上的周期、和/或所述二维光栅在竖直方向上的周期;
    根据所述优化变量在波导片上进行刻蚀作业以形成所述二维光栅。
  14. 一种光波导,其特征在于,包括:
    波导片;
    耦入结构,设置在所述波导片的入光侧;
    由如权利要求1-12任一项所述的二维光栅构成的耦出结构,设置在所述波导片的出光侧。
  15. 一种近眼显示设备,其特征在于,包括:如权利要求14所述的光波导。
PCT/CN2022/121360 2022-05-13 2022-09-26 一种二维光栅及其形成方法、光波导及近眼显示设备 WO2023216493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210521079.7A CN114624802B (zh) 2022-05-13 2022-05-13 一种二维光栅及其形成方法、光波导及近眼显示设备
CN202210521079.7 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023216493A1 true WO2023216493A1 (zh) 2023-11-16

Family

ID=81906937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121360 WO2023216493A1 (zh) 2022-05-13 2022-09-26 一种二维光栅及其形成方法、光波导及近眼显示设备

Country Status (2)

Country Link
CN (1) CN114624802B (zh)
WO (1) WO2023216493A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114624802B (zh) * 2022-05-13 2022-09-02 深圳珑璟光电科技有限公司 一种二维光栅及其形成方法、光波导及近眼显示设备
CN115079323A (zh) * 2022-08-24 2022-09-20 北京亮亮视野科技有限公司 二维耦出光栅、二维衍射光波导和近眼显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050047742A1 (en) * 2003-08-28 2005-03-03 Alps Electric Co., Ltd And Kyoto University Two-dimensional photonic crystal slab, two-dimensional photonic crystal waveguide, and optical device
CN109459813A (zh) * 2018-12-26 2019-03-12 上海鲲游光电科技有限公司 一种基于二维光栅的平面光波导
CN111679362A (zh) * 2020-07-14 2020-09-18 深圳珑璟光电技术有限公司 一种光波导及近眼显示系统
CN111812760A (zh) * 2020-08-06 2020-10-23 深圳珑璟光电技术有限公司 一种光栅结构、光波导及近眼显示系统
WO2022049104A1 (en) * 2020-09-01 2022-03-10 Wave Optics Ltd Methods for designing diffraction grating for augmented reality or virtual reality display and diffraction grating for augmented reality or virtual reality display
CN114624802A (zh) * 2022-05-13 2022-06-14 深圳珑璟光电科技有限公司 一种二维光栅及其形成方法、光波导及近眼显示设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201705160D0 (en) * 2017-03-30 2017-05-17 Wave Optics Ltd Waveguide for an augmented reality or virtual reality display
CN113325506A (zh) * 2020-02-28 2021-08-31 苏州苏大维格科技集团股份有限公司 一种全息光波导镜片及增强现实显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050047742A1 (en) * 2003-08-28 2005-03-03 Alps Electric Co., Ltd And Kyoto University Two-dimensional photonic crystal slab, two-dimensional photonic crystal waveguide, and optical device
CN109459813A (zh) * 2018-12-26 2019-03-12 上海鲲游光电科技有限公司 一种基于二维光栅的平面光波导
CN111679362A (zh) * 2020-07-14 2020-09-18 深圳珑璟光电技术有限公司 一种光波导及近眼显示系统
CN111812760A (zh) * 2020-08-06 2020-10-23 深圳珑璟光电技术有限公司 一种光栅结构、光波导及近眼显示系统
WO2022049104A1 (en) * 2020-09-01 2022-03-10 Wave Optics Ltd Methods for designing diffraction grating for augmented reality or virtual reality display and diffraction grating for augmented reality or virtual reality display
CN114624802A (zh) * 2022-05-13 2022-06-14 深圳珑璟光电科技有限公司 一种二维光栅及其形成方法、光波导及近眼显示设备

Also Published As

Publication number Publication date
CN114624802B (zh) 2022-09-02
CN114624802A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023216493A1 (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN212460098U (zh) 用于增强现实或虚拟现实显示器中的波导和显示器
CN110651204B (zh) 具有可变衍射效率的衍射光栅和用于显示图像的方法
JP6714797B2 (ja) 射出瞳を拡大する回折光導波路装置
US11960087B2 (en) Optical device and display apparatus with same images for left and right eyes
WO2019010857A1 (zh) 一种全息波导镜片及增强现实显示装置
WO2023178838A1 (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN217639770U (zh) 一种图像组合器和ar近眼显示光学系统
WO2021169383A1 (zh) 用于呈现增强现实图像的装置和包含该装置的系统
US20230266599A1 (en) Image light guide with compound diffractive optical element and the head-mounted display made therewith
CN111812760A (zh) 一种光栅结构、光波导及近眼显示系统
CN114859555A (zh) 光栅、用于近眼显示的光波导及近眼显示设备
CN113568178B (zh) 一种波导片模型及ar眼镜
CN112965157A (zh) 一种二维光栅、光波导和ar眼镜
US11852833B2 (en) Metasurface waveguide couplers
CN114660692B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN113325501A (zh) 一种多向衍射扩展光波导镜片及增强现实显示装置
CN111175975B (zh) 一种用于实现大焦深成像的近眼显示装置
JP7345555B2 (ja) 光導波路ユニット、アレイ及び平板レンズ
CN215641931U (zh) 光学结构和光学装置
CN213042024U (zh) 一种光栅、光波导及近眼显示系统
CN113703094A (zh) 波导结构和电子设备
CN115469389B (zh) 二维耦出光栅、超表面光波导和近眼显示设备
CN216083281U (zh) 全息波导片及增强现实抬头显示装置
CN114527537B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941433

Country of ref document: EP

Kind code of ref document: A1