WO2023216379A1 - 一种辅助切削液渗入切削区的系统及方法 - Google Patents

一种辅助切削液渗入切削区的系统及方法 Download PDF

Info

Publication number
WO2023216379A1
WO2023216379A1 PCT/CN2022/100856 CN2022100856W WO2023216379A1 WO 2023216379 A1 WO2023216379 A1 WO 2023216379A1 CN 2022100856 W CN2022100856 W CN 2022100856W WO 2023216379 A1 WO2023216379 A1 WO 2023216379A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
blade
cutting fluid
coil
magnetic field
Prior art date
Application number
PCT/CN2022/100856
Other languages
English (en)
French (fr)
Inventor
张克栋
刘亚运
郭旭红
刘同舜
李志浩
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023216379A1 publication Critical patent/WO2023216379A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to the field of mechanical processing technology, and in particular, to a system and method for assisting cutting fluid to penetrate into a cutting zone.
  • the cooling and lubrication conditions in the tool-chip or tool-work contact area can be improved by applying cutting fluid, thereby improving the surface quality of the workpiece after processing and reducing blade wear.
  • the ways through which cutting fluid penetrates into the cutting zone to exert cooling and lubricating effects include capillary penetration, gap penetration caused by blade vibration, pore penetration caused by built-up edge, and chip lattice distortion defects in the first shear zone Penetration caused by etc.; among them, interstitial penetration, pore penetration and lattice defect penetration have a relatively small effect on improving the penetration of cutting fluid at the tool-chip or tool-work interface; and if a good formation between the tool-chip or tool-work interface can be The capillary penetration can play a good cooling and lubrication effect.
  • the dynamic capillary penetration method currently used has shortcomings such as the short existence time of a single capillary, excessive capillary size, and single driving force, which makes it difficult for the cutting fluid to effectively reach the tool-chip or tool-work interface during the cutting process, resulting in poor cooling and lubrication effects. .
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the dynamic capillary penetration method used in the prior art, such as the short existence time of a single capillary, excessive capillary size, and single driving force, which makes it difficult for the cutting fluid to be effective during the cutting process.
  • the cooling and lubrication effects are poor.
  • the present invention provides a system for assisting cutting fluid to penetrate into the cutting zone, including:
  • a blade, the rake surface or the flank surface of the blade is provided with a nano-texture, and the nano-texture extends in a direction perpendicular to the main cutting edge;
  • Cutting fluid the cutting fluid is a water-based cutting fluid with electroosmotic properties
  • a magnetic field generating device includes a coil connected to an external power supply.
  • the magnetic field generating device further includes a clamp for clamping the coil
  • the clamp includes a fixed rod and an adjusting seat
  • the fixed rod is used to connect with the tool holder of the machine tool, so
  • the adjusting seat is hingedly connected to the fixed rod, and the adjusting seat is used to carry the coil and adjust the position of the coil.
  • a wire core is further provided in the coil, and the wire core is used to enhance the intensity of the magnetic field generated when the coil is energized.
  • a method for preparing a blade with a system that assists cutting fluid to penetrate into the cutting zone as described above is characterized by including the following steps:
  • a femtosecond laser is used to prepare nanotextures on the front/back surfaces of the blade close to the main cutting edge.
  • a method for preparing cutting fluid according to the above-mentioned system of assisting cutting fluid to penetrate into the cutting zone which is characterized in that it includes the following steps:
  • a zwitterionic surfactant containing one cationic group and two anionic groups in the molecule is dissolved in deionized water to prepare a water-based cutting fluid with electroosmotic properties.
  • a method for assisting cutting fluid to penetrate into the cutting area using any one of the above-mentioned systems for assisting cutting fluid to penetrate into the cutting area to process the workpiece, including the following steps:
  • Step S1 Install the blade on the tool holder through the tool holder;
  • Step S2 Set the magnetic field generating device on the blade holder, and when the nano texture is arranged on the rake surface of the blade, adjust the position of the coil so that the center of the coil faces vertically towards the rake surface.
  • the texture is provided on the flank surface of the blade, adjust the position of the coil so that the center of the coil is vertically facing the flank surface;
  • Step S3 Set the predetermined cutting parameters and coil energizing current, start the machine tool to process the workpiece, and continuously spray cutting fluid into the contact area between the blade and the workpiece.
  • the distance between the center of the coil and the rake surface or flank surface of the blade is 35mm-45mm, and the current when the coil is energized is 1A-6A.
  • the size of the magnetic field generated by the coil is adjusted by adjusting the size of the output current of the coil's external power supply.
  • the friction between the blade and the workpiece generates a self-excited electric field
  • the intensity of the self-excited electric field is adjusted by adjusting the cutting parameters of the machine tool.
  • the magnetic field intensity at its central position is greater than 220Gs.
  • the present invention provides a system and method for assisting cutting fluid to penetrate into the cutting zone through nano-texturing of the blade surface to provide nano-capillary channels that can be quantitatively characterized and regulated, and utilizes the electric penetration induced by the self-excited electric field at the friction interface in the cutting zone. Effect, an external magnetic field at a certain angle with the self-excited electric field is applied to the cutting zone, and the Lorentz force generated by the interaction of the electric field and the magnetic field is further introduced by regulating the magnetic field characteristics and nanotexture structure parameters. In addition to the driving force of the traditional cutting fluid penetration mechanism, electroosmotic force and Lorentz force are introduced to solve the problem of efficient penetration of cutting fluid in the nanoscale space of the cutting contact zone.
  • Cutting fluid can efficiently penetrate into the tool-chip/tool-work contact area, form an effective lubricating film at the friction interface in the cutting area, slow down the interface friction, thereby causing improvements in cutting performance such as cutting temperature, blade wear, and workpiece surface integrity.
  • the magnetic field-assisted nanochannel electroosmosis driving method of the present invention has the advantages of low driving energy field intensity, high efficiency, strong controllability, and simple structure.
  • Figure 1 is a schematic diagram of the overall structure of a system for assisting cutting fluid to penetrate into the cutting area (nano texture is provided on the rake face) according to a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram of the overall structure of a system for assisting cutting fluid to penetrate into the cutting area (nano texture is provided on the flank surface) according to a preferred embodiment of the present invention
  • Figure 3 is a schematic diagram of the penetration of cutting fluid at the tool-chip interface under the combined action of an external magnetic field and a self-excited electric field of the system shown in Figure 1 to assist cutting fluid penetration into the cutting zone;
  • Figure 4 is a schematic diagram of the penetration of cutting fluid at the tool-machine interface under the combined action of an external magnetic field and a self-excited electric field of the system shown in Figure 1 to assist cutting fluid penetration into the cutting zone;
  • Figure 5 is a schematic diagram of the nano-texture of the system shown in Figure 1 that assists the penetration of cutting fluid into the cutting area and is arranged on the rake surface of the blade;
  • Figure 6 is a schematic diagram of the nano-texture of the system shown in Figure 1 that assists the penetration of cutting fluid into the cutting zone and is arranged on the flank surface of the blade;
  • Figure 7 is a schematic diagram of the state of the rake surface of the blade when the system shown in Figure 1 is used to assist the penetration of cutting fluid into the cutting area with an external magnetic field and a non-nano textured blade is used for cutting.
  • Figure a is the SEM image of the wear area
  • figure b is the Na element. Component analysis chart;
  • Figure 8 is a schematic diagram of the state of the rake surface of the blade when the system shown in Figure 1 is used to assist cutting fluid penetration into the cutting area without an external magnetic field when cutting with a nano-textured blade.
  • Figure c is the SEM image of the wear area
  • Figure d is the Na element composition. Analysis chart;
  • Figure 9 is a schematic diagram of the rake surface state of the blade when the system shown in Figure 1 is used to assist the cutting fluid to penetrate into the cutting area using a nano-textured blade for cutting under an external magnetic field.
  • Figure e is the SEM image of the wear area, and figure f is the Na element composition. Analysis chart;
  • Figure 10 is a schematic diagram of friction plasma emission
  • Figure 11 is a schematic morphology diagram of the nanotexture on the blade surface processed by femtosecond laser
  • Figure 12 is a schematic diagram of the gradually enlarged structure of the nano-textured capillary processed on the surface of the blade
  • Figure 13 is a step-by-step enlarged schematic diagram of the overall structure of the nanotexture processed on the blade surface.
  • a system for assisting cutting fluid to penetrate into the cutting area of the present invention includes:
  • Blade 1 the rake surface or flank surface of the blade 1 is provided with a nano-texture 11, and the nano-texture 11 extends in a direction perpendicular to the main cutting edge;
  • Cutting fluid the cutting fluid is a water-based cutting fluid with electroosmotic properties
  • the magnetic field generating device 2 includes a coil 21 connected to an external power source.
  • the magnetic field generating device 2 also includes a clamp 22 for clamping the coil 21.
  • the clamp 22 includes a fixed rod 221 and an adjusting seat 222.
  • the fixed rod 221 is used to connect with the tool rest of the machine tool, and the adjusting seat 222 is hinged with the fixed rod 221.
  • the adjustment seat 222 is used to carry the coil 21 and adjust the position of the coil 21 .
  • the coil 21 is also provided with a wire core, and the wire core is used to enhance the intensity of the magnetic field generated when the coil 21 is energized.
  • a method for preparing a blade with a system that assists cutting fluid to penetrate into the cutting zone as described above is characterized by including the following steps:
  • the objective lens is used to focus the linearly polarized femtosecond laser onto the front/back surface of the blade 1 close to the main cutting edge to process the nanotexture 11.
  • the energy of the femtosecond laser is 0.5 ⁇ J-3 ⁇ J and the frequency is 500Hz-1000Hz. , the number of scans is 1-2 times.
  • a femtosecond laser is used to set a nanotexture 11 (i.e., a nanochannel) perpendicular to the main cutting edge on the rake surface or flank surface of the blade 1 to provide a capillary effect.
  • a nanotexture 11 i.e., a nanochannel
  • the cutting fluid can have a better cooling and lubrication effect by forming good capillary penetration between the tool-chip interface or the tool-work interface. Therefore, a nano-texture 11 is provided on the rake surface or flank surface of the blade 1.
  • the cutting fluid passes through the air flow field and reaches the tool-chip or tool-work interface boundary, it penetrates through the capillary tube, flows in the tube, and vaporizes when heated. , and eventually adsorb to form a boundary film, which can play a good cooling and lubricating effect.
  • a method for preparing cutting fluid according to the above-mentioned system of assisting cutting fluid to penetrate into the cutting zone which is characterized in that it includes the following steps:
  • a zwitterionic surfactant containing one cationic group and two anionic groups in the molecule is dissolved in deionized water to prepare a water-based cutting fluid with electroosmotic properties, and the concentration of the water-based cutting fluid is 0.05mmol/L -0.2mmol/L.
  • a water-based cutting fluid can be prepared by dissolving disodium laureiminodipropionate in deionized water.
  • a method for assisting cutting fluid to penetrate into the cutting area using any one of the above-mentioned systems for assisting cutting fluid to penetrate into the cutting area to process the workpiece, including the following steps:
  • Step S1 Install blade 1 horizontally on the tool holder through the tool holder;
  • Step S2 Set the magnetic field generating device 2 on the knife holder, and when the nanotexture 11 is set on the rake surface of the blade 1, adjust the position of the coil 21 through the clamp 22 so that the center of the coil 21 faces vertically toward the rake surface. , when the nanotexture 11 is disposed on the flank surface of the blade 1, adjust the position of the coil 21 through the clamp 22 so that the center of the coil 21 faces vertically toward the flank surface;
  • the coil 21 is placed above the blade 1 through the clamp 22 and the position of the coil 21 is adjusted so that the center of the coil 21 is vertically facing the rake surface; 21 After being powered on, the first external magnetic field can be generated vertically downward and perpendicular to the rake face; during the cutting process, the blade 1 and the workpiece undergo severe friction to generate a self-excited electric field, in which the direction of the workpiece points to the direction of the blade 1 and is in contact with the main cutting The edge-parallel electric field component interacts with the first external magnetic field to generate a Lorentz force that drives the cutting fluid to flow along the nanostructure 11 to the tool-chip contact area, ensuring the effective penetration of the cutting fluid and improving the lubrication and cooling effects.
  • the coil 21 when the nanotexture 11 is disposed on the flank surface of the blade 1, the coil 21 is disposed on the side away from the flank surface of the blade 1 through the clamp 22 and the position of the coil 21 is adjusted so that the center of the coil 21 faces vertically.
  • the coil 21 can generate a second external magnetic field perpendicular to the flank surface after being energized; during the cutting process, the blade 1 and the workpiece undergo severe friction to generate a self-excited electric field, in which the direction of the workpiece points to the direction of the blade 1 and is in contact with the main cutting
  • the edge-parallel electric field component interacts with the second external magnetic field to generate a Lorentz force that drives the cutting fluid to flow along the nanotexture 11 to the tool-tool contact area, ensuring the effective penetration of the cutting fluid and improving the lubrication and cooling effects.
  • Step S3 Set the predetermined cutting parameters and coil energizing current, start the machine tool to process the workpiece, and continuously spray cutting fluid into the contact area between the blade 1 and the workpiece.
  • capillaries are formed by the sliding and plowing action of the micro-roughness between the knife-chip or knife-work interface, and at the same time, the frictional static electricity generated by the violent friction The potential acts on the escaping low-energy electrons in the capillary channel, and forms a frictional micro-plasma through electron avalanche.
  • a self-excited electric field can be formed in the microscopic contact area of the interface. The electric field component of this self-excited electric field can trigger friction in the capillary channel at the interface.
  • Electro-osmotic behavior of lubricating fluid however, the capillary formed above has dynamic characteristics, and has shortcomings such as a short existence time of a single capillary and excessive capillary size. Moreover, the capillary electro-osmotic flow driven by an electric field often requires a large electric field intensity. When friction occurs, When the self-excited electric field is small, the generated electroosmotic force is not enough to overcome the viscous resistance and inertial force, which will result in the failure of electric penetration and poor cooling and lubrication effect of the cutting fluid.
  • the movement of fluid with high conductivity will be significantly affected by the magnetic field.
  • the combined action of the electric field and the magnetic field can produce a Lorentz force, which can change the boundary layer structure driven only by the electroosmotic force; the present invention uses the blade to 1.
  • Surface nanotexturing creates nanocapillary channels that can be quantitatively characterized and controlled, and utilizes the electrodynamic penetration effect caused by the self-excited electric field at the friction interface in the cutting area.
  • An external magnetic field at a certain angle with the self-excited electric field is applied to the cutting area.
  • Parameters such as magnetic field characteristics and nanotexture structure further introduce the Lorentz force generated by the interaction of electric field and magnetic field to act on the cutting fluid, driving the cutting fluid to effectively penetrate into the tool-tool contact area through the nanotexture 11, and friction at the interface in the cutting area An effective lubricating film is formed to slow down the interface friction, thereby improving cutting performance such as cutting temperature, blade 1 wear, and workpiece surface integrity.
  • the magnetic field-assisted nanochannel electroosmotic driving method has the advantages of low driving energy field intensity, high efficiency, strong controllability, and simple structure.
  • the distance between the center of the coil 21 and the rake surface or flank surface of the blade 1 is 35mm-45mm, and the current when the coil 21 is energized is 1A-6A.
  • the size of the magnetic field generated by the coil 21 is adjusted by adjusting the size of the output current of the external power supply of the coil 21 .
  • the friction between the blade 1 and the workpiece generates a self-excited electric field
  • the intensity of the self-excited electric field is adjusted by adjusting the cutting parameters of the machine tool. Specifically, the intensity of the self-excited electric field generated is adjusted by adjusting the feed amount, cutting amount and rotation speed of the blade 1 during cutting.
  • the magnetic field intensity at its central position is greater than 220Gs.
  • the blade 1 uses a single crystal diamond blade, and the nano texture 11 is processed on the flank surface of the blade 1.
  • the specific steps are as follows:
  • an objective lens with a numerical aperture of 0.8 (magnification of 80 times) is used to focus the linearly polarized femtosecond laser with a wavelength of 800 nm onto the flank surface of the blade 1 close to the main cutting edge.
  • at 11 has a depth of 150nm and a period of 500nm.
  • water-based cutting fluid with a concentration of 0.15mmol/L was used to participate in the cutting process.
  • the parameters of the coil 21 used in the magnetic field generating device 2 are as follows: the outer diameter is 42mm, the inner diameter is 12mm, the length is 60mm, the number of turns is 2000, the wire diameter is 0.5mm, and a diameter of 12mm and a length of 20mm is placed in the coil 21
  • the iron core is used to enhance the magnetic field intensity generated when the coil 21 is energized;
  • the above system is used to process engineering ceramic workpieces.
  • the cutting parameters are: spindle speed 1000r/min, feed rate 10mm/min, cutting The depth is 10 ⁇ m.
  • the diamond blade can emit electrons with energy up to 900eV when sliding against the ceramic material, and can form an electric field up to 1000V/cm in the micron-scale area of the tool-work interface; the external magnetic field generated when the coil 21 is energized
  • the Lorentz force is generated by interacting with the self-excited electric field at the tool-work friction interface, and together with the electroosmotic force, drives the cutting fluid to penetrate into the tool-work contact area through the nanotexture.
  • the blade 1 uses a TiAlN coated blade, and a nano-texture 11 is processed on the rake surface of the blade 1.
  • the specific steps are as follows:
  • an objective lens with a numerical aperture of 0.8 (magnification of 80 times) is used to focus the linearly polarized femtosecond laser with a wavelength of 800 nm onto the rake surface of the blade 1 close to the main cutting edge.
  • at Structure 11 has a depth of 200nm and a period of 400nm.
  • water-based cutting fluid with a concentration of 0.20mmol/L was used to participate in the cutting process.
  • the parameters of the coil 21 used in the magnetic field generating device 2 are as follows: the outer diameter is 45mm, the inner diameter is 15mm, the length is 55mm, the number of turns is 1500, the wire diameter is 1mm, and a diameter of 15mm and a length of 25mm is placed in the coil 21
  • the iron core is used to enhance the magnetic field intensity generated when the coil 21 is energized;
  • the above system is used to process engineering ceramic workpieces.
  • the cutting parameters are: cutting speed 75m/min, feed rate 0.1mm/rev, cutting The depth is 0.3mm.
  • the TiAlN-coated blade can emit electrons with energy up to 1500eV when sliding against the stainless steel material, thereby forming an electric field up to 1750V/cm in the micron-scale area of the tool-chip interface; generated when the coil 21 is energized.
  • the external magnetic field interacts with the self-excited electric field at the tool-chip friction interface to generate Lorentz force, and together with the electroosmotic force, drives the cutting fluid to penetrate into the tool-chip contact area through the nanotexture 11.
  • FIG. 7 (a), (b) shows the SEM image of the wear area of the rake face of the blade 1 when cutting with the blade 1 without nanotexture 11 under an external magnetic field and the corresponding Na element composition analysis. It can be seen that the rake surface of insert 1 is severely worn, and there is a large amount of TiAlN coating peeling off in the wear area and the direction of chip flow. It can be seen from the Na element EDS surface distribution diagram that there is a very small amount of Na element on the rake face of blade 1. However, the material of blade 1 and the workpiece material themselves do not contain Na element, only the cutting fluid (lauriminodipropylene Disodium acid contains Na element. Therefore, the presence of Na element can prove the existence of cutting fluid. In addition, the presence of Na element is almost undetectable in the wear area, indicating that almost no cutting fluid penetrates into the blade-chip contact area without nanotexture even under minimum quantity lubrication conditions.
  • FIG 8 (c), (d) shows the SEM image of the wear area of the rake face of the blade 1 when cutting with the blade 1 provided with the nanotexture 11 without an external magnetic field and the corresponding Na element composition analysis. It can be seen that the bonding phenomenon of stainless steel materials also exists in the wear area of the rake face, and there is a certain area of coating peeling in the tool-chip contact area. It can be seen from the EDS surface distribution diagram of the Na element that a small amount of lubricant can penetrate into the tool-chip contact area. This is because the nanotexture 11 can play a role in providing capillaries when the cutting fluid penetrates into the tool-chip interface. , thereby promoting the penetration of cutting fluid to a certain extent.
  • (f) shows the SEM image of the wear area of the rake face of the blade 1 when cutting with the blade 1 provided with the nano-texture 11 under an external magnetic field and the corresponding Na element composition analysis. It can be seen that the rake surface of blade 1 is slightly worn, and there is a very small area of coating peeling in the tool-chip contact area. And it can be seen from the EDS surface distribution diagram of Na element that a large amount of lubricant can penetrate into the tool-chip contact area under the action of an external magnetic field. This is because when an external magnetic field perpendicular to the self-excited electric field acts on the cutting zone, the Lorentz force generated by the interaction of the electric field and the magnetic field can be further introduced. Driven by the joint force of the electroosmotic force and the Lorentz force, the cutting The liquid can efficiently penetrate and flow within the nanochannel, thereby promoting the formation of a lubricating film at the tool-chip interface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Fluid Mechanics (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种辅助切削液渗入切削区的系统及方法,包括:刀片(1),刀片的前刀面或后刀面上设置有在垂直于主切削刃的方向上延伸的纳米织构(11);具有电渗特性的水基切削液的切削液,将分子中含有一个阳离子基团和两个阴离子基团的两性离子表面活性剂溶于去离子水中,制备成具有电渗特性的水基切削液;磁场发生装置,其包括连接有外部电源的线圈(21)。还包括刀片和切削液的制备方法和辅助切削液渗入切削区的方法。通过刀片表面纳织构化提供可定量表征和调控的纳米毛细管通道,并利用切削区摩擦界面自激电场引发的电动渗透效应,将与自激电场成一定角度的外加磁场作用于切削区,引入了电场和磁场相互作用产生的洛伦兹力驱动切削液渗入切削区,解决了切削液在切削接触区纳米尺度空间中无法高效渗透问题。

Description

一种辅助切削液渗入切削区的系统及方法 技术领域
本发明涉及机械加工技术领域,尤其是指一种辅助切削液渗入切削区的系统及方法。
背景技术
切削加工过程中,通过施加切削液可以改善刀-屑或刀-工接触区域的冷却润滑状况,从而提高工件加工后的表面质量并降低刀片的磨损。根据不同的切削条件和切削情况,切削液渗入切削区发挥冷却润滑作用的途径有毛细管渗透、刀片振动引起的间隙渗透、积屑瘤引起的孔隙渗透以及在第一剪切区切屑晶格扭曲缺陷引起的渗透等;其中,间隙渗透、孔隙渗透以及晶格缺陷渗透对提升刀-屑或刀-工界面的切削液渗入作用比较小;而若能在刀-屑或刀-工界面间形成良好的毛细管渗透则可以起到良好的冷却润滑作用。
目前采用的动态毛细管渗透方法存在单个毛细管存在的时间短,毛细管尺寸过大,驱动力单一等缺点,导致在切削过程中切削液难以有效抵达刀-屑或刀-工界面,冷却及润滑效果差。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中采用的动态毛细管渗透方法存在单个毛细管存在的时间短,毛细管尺寸过大,驱动力单一等缺点,导致在切削过程中切削液难以有效抵达刀-屑或刀-工界面,冷却及润滑效果差的问题。
为解决上述技术问题,本发明提供了一种辅助切削液渗入切削区的系统,包括,
刀片,所述刀片的前刀面或后刀面上设置有纳米织构,且所述纳米织构在垂直于主切削刃的方向上延伸;
切削液,所述切削液为具有电渗特性的水基切削液;
磁场发生装置,所述磁场发生装置包括连接有外部电源的线圈。
在本发明的一个实施例中,所述磁场发生装置还包括用于夹持所述线圈的夹具,所述夹具包括固定杆和调整座,所述固定杆用于与机床的刀架连接,所述调整座与所述固定杆铰接,所述调整座用于承载所述线圈并对线圈的位置进行调整。
在本发明的一个实施例中,所述线圈中还设置有线芯,所述线芯用于增强所述线圈通电时产生的磁场强度。
一种如上述辅助切削液渗入切削区的系统的刀片的制备方法,其特征在于,包括以下步骤:
对所述刀片的表面进行打磨抛光并清洗;
利用飞秒激光在所述刀片的前/后刀面上靠近主切削刃的位置制备纳米织构。
一种如上述辅助切削液渗入切削区的系统的切削液的制备方法,其特征在于,包括以下步骤:
将分子中含有一个阳离子基团和两个阴离子基团的两性离子表面活性剂溶于去离子水中,制备成具有电渗特性的水基切削液。
一种辅助切削液渗入切削区的方法,利用上述任意一项所述的辅助切削液渗入切削区的系统对工件进行加工,包括以下步骤,
步骤S1:将所述刀片通过刀杆安装在刀架上;
步骤S2:将所述磁场发生装置设置于刀架上,且当纳米织构设置于所述刀片的前刀面上时,调整所述线圈的位置使线圈的中心垂直朝向前刀面,当纳米织构设置于所述刀片的后刀面上时,调整所述线圈的位置使线圈的中心垂直朝向后刀面;
步骤S3:设置预定的切削参数和线圈通电电流,开启机床对工件进行加工并对刀片和工件的接触区持续喷射切削液。
在本发明的一个实施例中,所述线圈的中心与所述刀片的前刀面或后刀面间的距离为35mm-45mm,且所述线圈通电时的电流大小为1A-6A。
在本发明的一个实施例中,通过调节所述线圈外接电源输出电流的大小来调整线圈所产生磁场的大小。
在本发明的一个实施例中,切削过程中所述刀片与工件摩擦产生自激电场,通过调节机床的切削参数对所述自激电场的强度进行调节。
在本发明的一个实施例中,所述线圈通电时其中部位置的磁场强度大于220Gs。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的一种辅助切削液渗入切削区的系统及方法,通过刀片表面纳织构化提供可定量表征和调控的纳米毛细管通道,并利用切削区摩擦界面自激电场引发出的电动渗透效应,将与自激电场成一定角度的外加磁场作用于切削区,通过调控磁场特征、纳米织构结构参数,进一步引入了电场和磁场相互作用产生的洛伦兹力。在传统切削液渗透机制的驱动作用力外,引入电渗力、洛伦兹力,解决了切削液在切削接触区纳米尺度空间中的高效渗透问题。切削液能够高效渗入刀-屑/刀-工接触区,可以在切削区摩擦界面形成有效的润滑膜,减缓界面摩擦,从而引起切削温度、刀片磨损、工件表面完整性等切削性能的改善。相比于现有的切削液渗入切削接触区的驱动方法,本发明的磁场辅助纳米通道电渗驱动方法具有驱动能量场强度低、效率高、可控性强、结构简单等优势。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明优选实施例的辅助切削液渗入切削区的系统(纳米织构设置于前刀面)的整体结构的示意图;
图2是本发明优选实施例的辅助切削液渗入切削区的系统(纳米织构设置于后刀面)的整体结构的示意图;
图3是图1所示辅助切削液渗入切削区的系统的外加磁场与自激电场联合作用下切削液在刀-屑界面渗入的示意图;
图4是图1所示辅助切削液渗入切削区的系统的外加磁场与自激电场联合作用下切削液在刀-工界面渗入的示意图;
图5是图1所示辅助切削液渗入切削区的系统的纳米织构设置于刀片的前刀面上的示意图;
图6是图1所示辅助切削液渗入切削区的系统的纳米织构设置于刀片的后刀面上的示意图;
图7是图1所示辅助切削液渗入切削区的系统在有外加磁场下采用无纳米织构刀片切削时刀片前刀面的状态示意图,其中图a为磨损区域SEM图,图b为Na元素成分分析图;
图8是图1所示辅助切削液渗入切削区的系统在无外加磁场下采用纳米织构刀片切削时刀片前刀面的状态示意图,其中图c为磨损区域SEM图,图d为Na元素成分分析图;
图9是图1所示辅助切削液渗入切削区的系统在有外加磁场下采用纳米织构刀片切削时刀片前刀面的状态示意图,其中图e为磨损区域SEM图,图f为Na元素成分分析图;
图10是摩擦等离子发射示意图;
图11是利用飞秒激光加工的刀片表面的纳米织构的形貌示意图;
图12是刀片表面加工的纳米织构的毛细管逐步放大的结构示意图;
图13是刀片表面加工的纳米织构的逐步放大的整体结构示意图。
说明书附图标记说明:1、刀片;11、纳米织构;2、磁场发生装置;21、线圈;22、夹具;221、固定杆;222、调整座。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
参照图1-图6所示,本发明的一种辅助切削液渗入切削区的系统,包括,
刀片1,刀片1的前刀面或后刀面上设置有纳米织构11,且纳米织构11在垂直于主切削刃的方向上延伸;
切削液,切削液为具有电渗特性的水基切削液;
磁场发生装置2,磁场发生装置2包括连接有外部电源的线圈21。
进一步的,磁场发生装置2还包括用于夹持线圈21的夹具22,夹具22包括固定杆221和调整座222,固定杆221用于与机床的刀架连接,调整座222与固定杆221铰接,调整座222用于承载线圈21并对线圈21的位置进行调整。
进一步的,线圈21中还设置有线芯,线芯用于增强线圈21通电时产生的磁场强度。
一种如上述辅助切削液渗入切削区的系统的刀片的制备方法,其特征在于,包括以下步骤:
对刀片1表面进行打磨抛光,并在乙醇溶液中用超声波对其进行清洗;
利用物镜将线性偏振飞秒激光聚焦到刀片1的前/后刀面上靠近主切削刃的位置加工出纳米织构11,其中,飞秒激光的能量为0.5μJ-3μJ,频率为500Hz-1000Hz,扫描次数为1遍-2遍。
具体的,利用飞秒激光在刀片1的前刀面或后刀面上设置与主切削刃垂直的纳米织 构11(即纳米通道)以起到提供毛细管的作用。可以想到的是,切削液在刀-屑界面或刀-工界面间形成良好的毛细管渗透就可以起到更好的冷却润滑作用。因此在刀片1的前刀面或后刀面上设置纳米织构11,切削过程中,切削液穿越空气流场抵达刀-屑或刀-工界面边界后,通过毛细管渗透、管内流动、受热汽化,最终吸附形成边界膜,能够起到好的冷却润滑作用。
一种如上述辅助切削液渗入切削区的系统的切削液的制备方法,其特征在于,包括以下步骤:
将分子中含有一个阳离子基团和两个阴离子基团的两性离子表面活性剂溶于去离子水中,制备成具有电渗特性的水基切削液,且水基切削液的浓度为0.05mmol/L-0.2mmol/L。可以将月桂亚氨基二丙酸二钠溶于去离子水中制备成水基切削液。
一种辅助切削液渗入切削区的方法,利用上述任意一项所述的辅助切削液渗入切削区的系统对工件进行加工,包括以下步骤,
步骤S1:将刀片1通过刀杆水平安装在刀架上;
步骤S2:将磁场发生装置2设置于刀架上,且当纳米织构11设置于刀片1的前刀面上时,通过夹具22调整线圈21的位置,使线圈21的中心垂直朝向前刀面,当纳米织构11设置于刀片1的后刀面上时,通过夹具22调整线圈21的位置,使线圈21的中心垂直朝向后刀面;
具体的,当纳米织构11设置于刀片1的前刀面上时,通过夹具22将线圈21设置于刀片1的上方并调整线圈21的位置,使线圈21的中心垂直朝向前刀面;线圈21在通电后能够产生竖直向下并垂直于前刀面的第一外加磁场;切削过程中,刀片1与工件发生剧烈摩擦产生自激电场,其中由工件方向指向刀片1方向且与主切削刃平行的电场分量与第一外加磁场共同作用,产生驱动切削液沿纳米织构11流向刀-屑接触区的洛伦兹力,保证切削液的有效渗入,提高润滑和冷却效果。
具体的,当纳米织构11设置于刀片1的后刀面上时,通过夹具22将线圈21设置于背离刀片1后刀面的一侧并调整线圈21的位置,使线圈21的中心垂直朝向后刀面;线圈21在通电后能够产生垂直于后刀面的第二外加磁场;切削过程中,刀片1与工件发生剧烈摩擦产生自激电场,其中由工件方向指向刀片1方向且与主切削刃平行的电场分量与第二外加磁场共同作用,产生驱动切削液沿纳米织构11流向刀-工接触区的洛伦兹力,保证切削液的有效渗入,提高润滑和冷却效果。
步骤S3:设置预定的切削参数和线圈通电电流,开启机床对工件进行加工并对刀片1和工件的接触区持续喷射切削液。
参照图10-图13所示,可以想到的是,在切削过程中,由刀-屑或刀-工界面间微观粗糙度滑擦和耕犁作用而形成毛细管,同时剧烈的摩擦产生的摩擦静电势作用于毛细通道中的外逸低能电子,并通过电子雪崩的方式形成摩擦微等离子体,最终可在界面微观接触区域形成自激电场,该自激电场的电场分量可引发摩擦界面毛细通道内润滑液的电动渗透行为;但是上述形成的毛细管具有动态特性,存在单个毛细管存在时间短、毛细管尺寸过大等缺点,且由电场驱动的毛细管电渗流往往需要较大的电场强度,当摩擦产生的自激电场较小时,所产生的电渗力不足以克服粘性阻力和惯性力,将导致电动渗透无法产生,切削液的冷却润滑效果不佳。
根据电磁流体力学可知,具有高导电率流体的运动会受到磁场的显著影响,电场和磁场共同作用可以产生一个洛伦兹力,能够改变仅由电渗力驱动的边界层结构;本发明通过在刀片1表面纳织构化出可定量表征和调控的纳米毛细管通道,并利用切削区摩擦界面自激电场引发的电动渗透效应,将与自激电场成一定角度的外加磁场作用于切削区,通过调控磁场特征、纳米织构结构等参数,进一步引入了电场和磁场相互作用产生的洛伦兹力作用于切削液,驱动切削液通过纳米织构11有效渗入刀-工接触区,在切削区摩擦界面形成有效的润滑膜,减缓界面摩擦,从而达到对切削温度、刀片1的磨损、工件表面完整性等切削性能的改善。相比于现有切削液渗入切削接触区的驱动方法,磁场辅助纳米通道电渗驱动方法具有驱动能量场强度低、效率高、可控性强、结构简单等优势。
进一步的,线圈21的中心与刀片1的前刀面或后刀面间的距离为35mm-45mm,且线圈21通电时的电流大小为1A-6A。
进一步的,通过调节线圈21外接电源输出电流的大小来调整线圈21所产生磁场的大小。
进一步的,切削过程中刀片1与工件摩擦产生自激电场,通过调节机床的切削参数对自激电场的强度进行调节。具体的,通过调节切削时刀片1的进给量、吃刀量和转速等对产生的自激电场的强度进行调节。
进一步的,线圈21通电时其中部位置的磁场强度大于220Gs。
实施例二
参照图1-图6所示,基于实施例一的基础上,公开一种适用于工程陶瓷工件加工的辅助切削液渗入切削区的系统,
具体的,刀片1采用单晶金刚石刀片,并在刀片1的后刀面加工出纳米织构11,具体步骤如下:
(1)对单晶金刚石刀片表面进行打磨、抛光处理,并在乙醇溶液中用超声波对其清洗20min;
(2)基于表面等离子体波与主光束干涉模型,利用数值孔径为0.8的物镜(放大倍数为80倍)将波长为800nm的线性偏振飞秒激光聚焦到刀片1的后刀面靠近主切削刃处,加工出纳米织构11,其中,激光的加工参数如下:飞秒脉冲能量为2μJ,频率为800Hz,扫描次数1遍,纳米织构11在垂直于主切削刃的方向延伸,纳米织构11的深度为150nm,周期为500nm。
具体的,采用浓度为0.15mmol/L的水基切削液参与切削加工。
具体的,磁场发生装置2采用的线圈21参数如下:外径为42mm,内径为12mm,长60mm,匝数为2000,线径为0.5mm,并在线圈21内放置一个直径为12mm,长20mm的铁芯以增强线圈21通电时所产生的磁场强度;
通过夹具22调整线圈21的位置,同时调整线圈21的朝向,使得线圈21的中心对准设有纳米织构11的刀片1的刀-工接触区,此时线圈21中心距离刀尖45mm。随后,将线圈21的首尾两端和直流稳压电源的正负极相连,通过调节该电源的输出电流来调节线圈21所产生的磁场大小,本实施例中线圈21通电时的电流为1A,此时通电的线圈21中部位置所产生的磁场强度可达到502Gs。
采用上述系统对工程陶瓷工件进行加工,
具体的,安装刀片1,将切削液喷头对准刀-工接触区,然后开启机床对ZrO2工程陶瓷棒料进行切削加工,切削参数为:主轴转速1000r/min,进给量10mm/min,切削深度10μm,在此切削参数下金刚石刀片滑擦陶瓷材料时可发射能量高达900eV的电子,进而可在刀-工界面微米尺度区域内形成高达1000V/cm的电场;线圈21通电时产生的外部磁场与刀-工摩擦界面自激电场相互作用而产生洛伦兹力,并与电渗力一起驱动切削液通过纳米织构渗入刀-工接触区。
实施例三
参照图1所示,在实施例一的基础上,公开一种对AISI 316L不锈钢工件进行加工的辅助切削液渗入切削区的系统,
具体的,刀片1采用TiAlN涂层刀片,并在刀片1的前刀面加工出纳米织构11,具体步骤如下:
(1)对TiAlN涂层刀片的表面进行打磨、抛光处理,并在乙醇溶液中用超声波对其清洗20min;
(2)基于表面等离子体波与主光束干涉模型,利用数值孔径为0.8的物镜(放大倍数为80倍)将波长为800nm的线性偏振飞秒激光聚焦到刀片1的前刀面靠近主切削刃处,加工出纳米织构11,其中,激光的加工参数如下:飞秒脉冲能量为2.5μJ,频率为1000Hz,扫描次数1遍;纳米织构11在垂直于主切削刃的方向延伸,纳米织构11的深度为200nm,周期为400nm。
具体的,采用浓度为0.20mmol/L的水基切削液参与切削加工。
具体的,磁场发生装置2采用的线圈21参数如下:外径为45mm,内径为15mm,长55mm,匝数为1500,线径为1mm,并在线圈21内放置一个直径为15mm,长25mm的铁芯以增强线圈21通电时所产生的磁场强度;
通过夹具22调整线圈21的位置,同时调整线圈21的朝向,使得线圈21的中心对准设有纳米织构11的刀片1的刀-屑接触区,此时线圈21中心距离刀尖55mm。随后,将线圈21的首尾两端和直流稳压电源的正负极相连,通过调节该电源的输出电流来调节线圈21所产生的磁场大小,本实施例中线圈21通电时的电流为5A,此时通电的线圈21中部位置所产生的磁场强度可达到1054Gs。
采用上述系统对工程陶瓷工件进行加工,
具体的,安装刀片,将切削液喷头对准刀-屑接触区,然后开启机床对AISI 316L不锈钢棒料进行切削加工,切削参数为:切削速度75m/min,进给量0.1mm/rev,切削深度0.3mm,在此切削参数下TiAlN涂层刀片滑擦不锈钢材料时可发射能量高达1500eV的电子,进而可在刀-屑界面微米尺度区域内形成高达1750V/cm的电场;线圈21通电时产生的外部磁场与刀-屑摩擦界面自激电场相互作用而产生洛伦兹力,并与电渗力一起驱动切削液通过纳米织构11渗入刀-屑接触区。
参见图7(a),(b)所示为有外加磁场下采用无纳米织构11的刀片1切削时刀片1的前刀面磨损区域SEM图及相应的Na元素成分分析。可见,刀片1前刀面发生了严重的磨损,在磨损区域、切屑流出的方向存在TiAlN涂层的大量剥落。从Na元素EDS面分布图可看出,在刀片1的前刀面存在极少量的Na元素,而刀片1的材料和工件材料本身都并不含Na元素,只有切削液(月桂亚氨基二丙酸二钠含)中含有Na元素。因此,Na元素的存在能够证明切削液的存在。此外,在磨损区域几乎检测不到Na元素的存在,说明即 使在微量润滑条件下几乎没有切削液渗入到无纳米织构刀片刀-屑接触区域。
参见图8(c),(d)所示为无外加磁场下采用设有纳米织构11的刀片1切削时刀片1的前刀面磨损区域SEM图及相应的Na元素成分分析。可见,前刀面磨损区域同样存在不锈钢材料的粘结现象,在刀-屑接触区域存在一定面积的涂层剥落现象。从Na元素的EDS面分布图可以看出,有少量的润滑剂可渗入到刀-屑接触区域,这是由于纳米织构11在切削液渗入刀-屑界面过程中可以起到提供毛细管的作用,从而一定程度上促进切削液的渗入。
参见图9(e),(f)所示为有外加磁场下采用设有纳米织构11的刀片1切削时刀片1的前刀面磨损区域SEM图及相应的Na元素成分分析。可见,刀片1的前刀面磨损轻微,在刀-屑接触区域存在极小面积的涂层剥落现象。并且从Na元素的EDS面分布图可以看出,大量的润滑剂在外加磁场作用下可渗入到刀-屑接触区域。这是由于当与自激电场相互垂直的外加磁场作用于切削区时,可进一步引入了电场和磁场相互作用产生的洛伦兹力,在电渗力和洛伦兹力的联合驱动下,切削液可在纳米通道内高效渗透流动,从而促进刀-屑界面润滑膜形成。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种辅助切削液渗入切削区的系统,其特征在于,包括,
    刀片,所述刀片的前刀面或后刀面上设置有纳米织构,且所述纳米织构在垂直于主切削刃的方向上延伸;
    切削液,所述切削液为具有电渗特性的水基切削液;
    磁场发生装置,所述磁场发生装置包括连接有外部电源的线圈。
  2. 根据权利要求1所述的辅助切削液渗入切削区的系统,其特征在于:所述磁场发生装置还包括用于夹持所述线圈的夹具,所述夹具包括固定杆和调整座,所述固定杆用于与机床的刀架连接,所述调整座与所述固定杆铰接,所述调整座用于承载所述线圈并对线圈的位置进行调整。
  3. 根据权利要求1所述的辅助切削液渗入切削区的系统,其特征在于:所述线圈中还设置有线芯,所述线芯用于增强所述线圈通电时产生的磁场强度。
  4. 一种如权利要求1所述的辅助切削液渗入切削区的系统的刀片的制备方法,其特征在于,包括以下步骤:
    对所述刀片的表面进行打磨抛光并清洗;
    利用飞秒激光在所述刀片的前/后刀面上靠近主切削刃的位置制备纳米织构。
  5. 一种如权利要求1所述的辅助切削液渗入切削区的系统的切削液的制备方法,其特征在于,包括以下步骤:
    将分子中含有一个阳离子基团和两个阴离子基团的两性离子表面活性剂溶于去离子水中,制备成具有电渗特性的水基切削液。
  6. 一种辅助切削液渗入切削区的方法,利用权利要求1-5中任意一项所述的辅助切削液渗入切削区的系统对工件进行加工,其特征在于:包括以下步骤,
    步骤S1:将所述刀片通过刀杆安装在刀架上;
    步骤S2:将所述磁场发生装置设置于刀架上,且当纳米织构设置于所述刀片的前刀面上时,调整所述线圈的位置使线圈的中心垂直朝向前刀面,当纳米织构设置于所述刀片的后刀面上时,调整所述线圈的位置使线圈的中心垂直朝向后刀面;
    步骤S3:设置预定的切削参数和线圈通电电流,开启机床对工件进行加工并对刀片和工件的接触区持续喷射切削液。
  7. 根据权利要求6所述的辅助切削液渗入切削区的方法,其特征在于:所述线圈的中心与所述刀片的前刀面或后刀面间的距离为35mm-45mm,且所述线圈通电时的电流大小为1A-6A。
  8. 根据权利要求6所述的辅助切削液渗入切削区的方法,其特征在于:通过调节所述线圈外接电源输出电流的大小来调整线圈所产生磁场的大小。
  9. 根据权利要求6所述的辅助切削液渗入切削区的方法,其特征在于:切削过程中所述刀片与工件摩擦产生自激电场,通过调节机床的切削参数对所述自激电场的强度进行调节。
  10. 根据权利要求6所述的辅助切削液渗入切削区的方法,其特征在于:所述线圈通电时其中部位置的磁场强度大于220Gs。
PCT/CN2022/100856 2022-05-12 2022-06-23 一种辅助切削液渗入切削区的系统及方法 WO2023216379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210532511.2A CN114888625B (zh) 2022-05-12 2022-05-12 一种辅助切削液渗入切削区的系统及方法
CN202210532511.2 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023216379A1 true WO2023216379A1 (zh) 2023-11-16

Family

ID=82723466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100856 WO2023216379A1 (zh) 2022-05-12 2022-06-23 一种辅助切削液渗入切削区的系统及方法

Country Status (2)

Country Link
CN (1) CN114888625B (zh)
WO (1) WO2023216379A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313636A (ja) * 2006-04-27 2007-12-06 Kyocera Corp 切削工具およびそれを用いた被削材の切削方法
CN103028746A (zh) * 2012-11-09 2013-04-10 山东大学 一种微纳复合织构自润滑陶瓷刀具及其制备方法
CN103602509A (zh) * 2013-10-22 2014-02-26 青岛海伴塑胶工贸有限公司 一种水基降温切削液
CN106270582A (zh) * 2016-08-30 2017-01-04 江苏大学 一种形成切屑导流毛细管的刀具及其用途、加工方法
CN211727522U (zh) * 2020-03-12 2020-10-23 苏州大学 一种磁场辅助下的车削加工装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI380868B (zh) * 2005-02-02 2013-01-01 Mitsuboshi Diamond Ind Co Ltdl Fine processing method of sintered diamond using laser, cutter wheel for brittle material substrate, and method of manufacturing the same
EP2036630B1 (de) * 2007-09-14 2013-01-16 Feintool Intellectual Property AG Verfahren und Vorrichtung zum Schmieren von Werkzeug und Werkstück beim Schneiden
JP2012045635A (ja) * 2010-08-24 2012-03-08 Mitsubishi Materials Corp 耐溶着性に優れた切削インサート
CN103143739B (zh) * 2013-03-29 2015-09-09 哈尔滨理工大学 用于重型切削加工中的车铣复合折线刃刀片
DE102016215545B3 (de) * 2016-08-18 2018-02-08 Jan C. Aurich Verfahren zum Betrieb einer spanenden Werkzeugmaschine und Werkzeugmaschine für die spanende Bearbeitung von Werkstücken
CN110328607B (zh) * 2019-08-05 2020-05-29 衢州学院 一种利用电场效应增强加工区域酸碱度的锗平面镜化学抛光方法
CN110587235B (zh) * 2019-09-19 2020-10-13 临安英明机械配件有限公司 一种行星减速器壳体的加工工艺及钻孔机构
CN110614388B (zh) * 2019-09-25 2021-08-13 南京航空航天大学 一种梯度润湿刀具及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313636A (ja) * 2006-04-27 2007-12-06 Kyocera Corp 切削工具およびそれを用いた被削材の切削方法
CN103028746A (zh) * 2012-11-09 2013-04-10 山东大学 一种微纳复合织构自润滑陶瓷刀具及其制备方法
CN103602509A (zh) * 2013-10-22 2014-02-26 青岛海伴塑胶工贸有限公司 一种水基降温切削液
CN106270582A (zh) * 2016-08-30 2017-01-04 江苏大学 一种形成切屑导流毛细管的刀具及其用途、加工方法
CN211727522U (zh) * 2020-03-12 2020-10-23 苏州大学 一种磁场辅助下的车削加工装置

Also Published As

Publication number Publication date
CN114888625A (zh) 2022-08-12
CN114888625B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
KR102432658B1 (ko) 레이저 컷팅 유리를 기계적으로 처리하여 챔퍼링된 에지
CN106737199B (zh) 一种在线去毛刺和砂轮修锐激光辅助微细磨削装置及方法
US20120031883A1 (en) Laser machining device and laser machining method
CN105149785A (zh) 0.5mm铝合金板搭接激光焊接工艺
TWI392550B (zh) Method for processing brittle material substrates
CN110625401B (zh) 一种激光诱导材料耦合反应下的加工装置及方法
CN1931506A (zh) 基于激光冲击波技术的去除切削毛刺的方法和装置
WO2023216379A1 (zh) 一种辅助切削液渗入切削区的系统及方法
JP2015047638A (ja) ビーム分岐回転光学系を用いたレーザ加工法
US11952307B2 (en) Method for preparing microstructure on surface of glass by titanium oxide nanoparticle-assisted infrared nanosecond laser
WO2021190528A1 (zh) 一种多刃超硬刀具铣削加工硬脆材料的加工方法
Feng et al. Investigation and modelling of hybrid laser-waterjet micromachining of single crystal SiC wafers using response surface methodology
Wang et al. Fabrication of micro-channels on Al2O3/TiC ceramics using picosecond laser induced plasma micromachining
US20200122268A1 (en) Pulsed laser method for machining a diamond
CN105149789A (zh) 0.5mm镀锌板角接激光焊接工艺
JP2015000434A (ja) ビーム分岐合成光学系を用いたレーザ加工法
CN211727522U (zh) 一种磁场辅助下的车削加工装置
US20010035447A1 (en) Methods for laser cut initiation
JP2008183599A (ja) 高脆性非金属材料製の被加工物の加工方法及びその装置
Feng et al. Influence of laser process parameters on the characteristic of 30CrMnSiA steel substrate and adhesively bonded joints
CN206416045U (zh) 一种在线去毛刺和砂轮修锐激光辅助微细磨削装置
CN115365639A (zh) 一种基于超声振动辅助飞秒激光加工C/SiC复合材料的方法
WO2023087708A1 (zh) 大深径比微纳织构刀具、其加工装置及其加工方法
Shao et al. Laser-assisted thermochemical ultrahigh-precision polishing of titanium in phosphoric acid solution
CN110405367A (zh) 一种磁场辅助飞秒激光快速钻骨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941325

Country of ref document: EP

Kind code of ref document: A1