WO2023216249A1 - 用于极片的检测方法和检测装置以及叠片系统 - Google Patents

用于极片的检测方法和检测装置以及叠片系统 Download PDF

Info

Publication number
WO2023216249A1
WO2023216249A1 PCT/CN2022/092799 CN2022092799W WO2023216249A1 WO 2023216249 A1 WO2023216249 A1 WO 2023216249A1 CN 2022092799 W CN2022092799 W CN 2022092799W WO 2023216249 A1 WO2023216249 A1 WO 2023216249A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
pole piece
size
coated
positions
Prior art date
Application number
PCT/CN2022/092799
Other languages
English (en)
French (fr)
Inventor
胡军
冯仕平
倪大军
陈灿斌
郑秋辉
常文
段彭飞
吴卿
卢浩冉
雷扬
赵柏全
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280042044.3A priority Critical patent/CN117501109A/zh
Priority to PCT/CN2022/092799 priority patent/WO2023216249A1/zh
Publication of WO2023216249A1 publication Critical patent/WO2023216249A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators

Definitions

  • the present application relates to the field of battery technology, and in particular to a detection method for pole pieces, a detection device for pole pieces, a stacking system, detection equipment and a computer-readable storage medium.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the battery core in a power battery is a component used for electrochemical reactions. It is mainly formed by rolling or stacking continuous pole pieces. Usually, the pole pieces are made of extremely thin metal foil and have low strength, so they are prone to folding during the battery manufacturing process. Folding of the pole piece will cause low capacitance and short circuit in the battery core, and may even cause thermal runaway and fire.
  • the production quality of the pole pieces needs to be tested.
  • the detection of pole pieces is completed manually, but this method has problems such as high manual labor intensity, low detection accuracy, and there are also cases of missed detection and false detection.
  • This application aims to solve at least one of the technical problems existing in the prior art. To this end, one purpose of this application is to propose a detection method for pole pieces, a detection device for pole pieces, a stacking system, detection equipment and a computer-readable storage medium to improve pole piece detection accuracy and accuracy. .
  • An embodiment of the first aspect of the present application provides a detection method for a pole piece, wherein the pole piece includes a coated part and a non-coated part located on at least one side of the coated part along the longitudinal direction, and the detection method includes : Step S1000, obtain the size parameters D 1 ... D N at different detection positions P 1 ... P N of the non-coated part along the transverse direction perpendicular to the longitudinal direction; and step S2000, convert the size parameters D 1 ... D N Compare with the size detection standard S to determine whether the non-coated part is folded; where N is a positive integer and N is greater than or equal to 2.
  • the dimensional parameter is a dimensional parameter of the non-coated portion along the longitudinal direction.
  • step S1000 includes: step S1100, driving the pole piece to move along the lateral direction; and step S1200, obtaining different detection positions of the non-coated portion of the pole piece during the movement of the pole piece along the lateral direction.
  • Dimensional parameters D 1 ...D N at P 1 ...P N are used to implement detection during the movement of the pole pieces.
  • the detection method before step S2000, further includes: step S3000, obtaining the size detection standard S of the non-coated portion of the pole piece.
  • the non-coated parts of the pole pieces may have the same specifications as each other or different specifications from each other.
  • step S3000 includes: step S3100, obtaining the size detection standards S 1 ... SN at different detection positions P 1 ...P N of the non-coated portion of the pole piece.
  • the size of the non-coated part of the pole piece can be constant or non-constant.
  • step S3100 includes: step S3110, determining the absolute position P A1 ... P AN of each of the different detection positions P 1 ... P N ; and step S3120, based on the determined absolute position P A1 ... P AN , obtain the size detection standards S 1 ...S N at different positions P 1 ...P N of the non-coated part of the pole piece.
  • the non-coated parts of the pole pieces can have the same specifications as each other or different specifications.
  • the size of the non-coated parts of the pole pieces can be constant or non-constant.
  • the detection standard corresponding to the position is obtained according to the absolute position of the detection position. , can accurately detect pole pieces with non-coated parts of various specifications.
  • the pole piece includes at least one pole piece with a preset mark
  • step S3110 includes: step S3111, detecting at least one pole piece with a preset mark; step S3112, detecting positions P 1 ...P N according to different The absolute position P A1 ... P AN of each of the different detection positions P 1 ... P N is determined relative to the position of the preset mark. Calibrating the absolute position of the detection position by setting preset marks helps improve the feasibility and convenience of absolute position determination.
  • step S2000 includes: step S2100, in response to the continuous M size parameters among the size parameters D 1 ...D N being smaller than the size detection standard S, determining that the non-coated part is folded; where M is a positive integer, and M is greater than or equal to 1 and less than or equal to N.
  • step S2000 includes: step S2200, in response to the number of size parameters D 1 ...D N smaller than the size detection standard S being greater than the preset threshold, determining that the non-coated part is folded; or in response to the size parameter D 1 ...D If the number of items smaller than the size detection standard S in N is not greater than the preset threshold, it is judged that the non-coated part is not folded. By determining the number of size parameters D 1 ...D N that are smaller than the size detection standard S, the folded pole pieces that do not meet the production requirements can be effectively detected.
  • the size detection standard S is M1/M2 of the nominal size of the non-coated part along the longitudinal direction, where M1 and M2 are positive integers and M2 is not less than M1, and the preset threshold is NM1/M2.
  • An embodiment of the second aspect of the present application provides a detection device for a pole piece, wherein the pole piece includes a coated portion and a non-coated portion located on at least one side of the coated portion along the longitudinal direction, and the detection device includes : Parameter acquisition unit, used to obtain the size parameters D 1 ...D N at different detection positions P 1 ... P N of the non-coated part along the transverse direction perpendicular to the longitudinal direction; The size parameters D 1 ...D N are compared with the size detection standard S to determine whether the non-coated part is folded, where N is a positive integer and N is greater than or equal to 2.
  • the parameter acquisition unit is used to acquire dimensional parameters of the non-coated portion along the longitudinal direction.
  • the detection device further includes: a pole piece driving unit, used to drive the pole piece to move along the lateral direction, wherein the parameter acquisition unit is used to acquire the parameters of the pole piece during the movement of the pole piece along the lateral direction.
  • a pole piece driving unit used to drive the pole piece to move along the lateral direction
  • the parameter acquisition unit is used to acquire the parameters of the pole piece during the movement of the pole piece along the lateral direction.
  • the detection device further includes: a standard acquisition unit, configured to acquire the size detection standard S of the non-coated portion of the pole piece.
  • the standard acquisition unit is used to acquire the size detection standards S 1 ... SN at different detection positions P 1 ...P N of the non-coated portion of the pole piece.
  • the standard acquisition unit further includes: a positioning module, used to determine the absolute position P A1 ... P AN of each of the different detection positions P 1 ... P N , wherein the standard acquisition unit is used to determine the absolute position P A1 ...
  • the absolute positions P A1 ...P AN are used to obtain the size detection standards S 1 ...S N at different positions P 1 ...P N of the non-coated part of the pole piece.
  • the pole piece includes at least one pole piece with a preset mark
  • the positioning module further includes: a mark detection part, used to detect at least one pole piece with a preset mark; and a position determination part, based on different detection positions
  • the absolute position P A1 ... P AN of each of the different detection positions P 1 ...P N is determined relative to the position of the at least one preset mark.
  • the pole piece detection unit is used to determine that the non-coated part is folded in response to the continuous M size parameters among the size parameters D 1 ...D N being smaller than the size detection standard S; where M is a positive integer, and M Greater than or equal to 1 and less than or equal to N.
  • the pole piece detection unit is used to determine that the non-coated part is folded in response to the number of size parameters D 1 ...D N that is smaller than the size detection standard S being greater than a preset threshold; or in response to the size parameter D 1 ...D The number of items smaller than the size detection standard S in D N is not greater than the preset threshold, and it is judged that the non-coated part is not folded.
  • the parameter acquisition unit includes at least one of a laser detector, an ultrasonic detector, and an image acquisition and processing device.
  • the third embodiment of the present application provides a lamination system, which includes: the detection device in the above embodiment; and a lamination device for laminating the pole pieces.
  • An embodiment of the fourth aspect of the present application provides a detection device for a pole piece, which includes: a memory and a processor communicatively connected to the memory, wherein machine-readable instructions are stored in the memory, and when the machine-readable instructions are When the processor executes, the detection method in the above embodiment is implemented.
  • An embodiment of the fifth aspect of the present application provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the detection method in the above embodiment is executed.
  • Figure 1 is a schematic structural diagram of a pole piece in some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a pole piece in some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a folded pole piece according to some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a folded pole piece according to some embodiments of the present application.
  • Figure 5 is a schematic block diagram of a detection device according to some embodiments of the present application.
  • Figure 6 is a schematic block diagram of a detection device according to some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of a lamination system according to some embodiments of the present application.
  • Pole piece 10 coated part 11, non-coated part 12, preset mark 13;
  • Detection device 100 parameter acquisition unit 110, pole piece detection unit 120, pole piece driving unit 130, standard acquisition unit 140, positioning module 141, mark detection part 141A, position determination part 141B;
  • Lamination system 1000 lamination device 200.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the cells of power batteries are usually formed by rolling or stacking continuous pole pieces.
  • the pole piece includes a coated part coated with active material and a non-coated part not coated with active material.
  • the active material in the coated part undergoes an electrochemical reaction, while the uncoated part (often called the tab) connects the electrode terminals to form a current loop.
  • the thickness of the pole piece is extremely thin and its strength is low, it is very easy to be folded during the production process.
  • the non-coated part (tab) of the pole piece used to form a current loop is folded onto the coated part, it will cause problems such as low capacity and short circuit during use of the battery, and more seriously, it may Causes thermal runaway fire. Therefore, the production quality of the pole pieces must be controlled.
  • the applicant found that the detection accuracy can be improved by comparing the size parameters of the pole pieces with the size detection specifications, and by detecting multiple different detection positions. to improve detection accuracy.
  • the applicant has conducted in-depth research and designed a detection method for pole pieces, a detection device for pole pieces, a lamination system, detection equipment and computer-readable storage media.
  • a detection method for pole pieces By obtaining the pole pieces
  • the dimensional parameters at different detection positions of the non-coated part are compared with the dimensional detection standards to determine whether the non-coated part is folded. This can improve the accuracy and accuracy of pole piece detection.
  • a detection method for a pole piece according to an embodiment of the present application is taken as an example for description below.
  • Figures 1 and 2 are schematic structural diagrams of pole pieces according to some embodiments of the present application.
  • some embodiments of the present application provide a detection method for the pole piece 10 , wherein the pole piece 10 includes a coating portion 11 and at least one portion located along the longitudinal direction of the coating portion 11 .
  • the detection method includes: step S1000, obtaining the size parameters D 1 ... D N of the non-coated part 12 at different detection positions P 1 ... P N along the transverse direction perpendicular to the longitudinal direction. ; and step S2000, compare the size parameters D 1 ...D N with the size detection standard S to determine whether the non-coated part 12 is folded; where N is a positive integer and N is greater than or equal to 2.
  • the coated portion 11 of the pole piece 10 refers to the portion coated with active material. During the charging and discharging process of the battery, the active material in the coated portion 11 is used for electrochemical reaction with the electrolyte around it.
  • the non-coated portion 12 of the pole piece 10 refers to the portion that is not coated with active material. This portion is generally called a tab and is used to connect with the electrode terminal to form a current loop during the charging and discharging process of the battery.
  • the battery core is formed by rolling or stacking continuous pole pieces including a plurality of pole pieces 10 .
  • the transverse direction refers to the direction in which multiple pole pieces 10 are continuously arranged (see the Y direction in Figures 1 and 2), and the longitudinal direction refers to the direction perpendicular to the transverse direction in the plane where the pole pieces 10 are located (see Figures 1 and 2).
  • the non-coated portion 12 may be located on one side of the coated portion 11 along the longitudinal direction, or may be located on both sides of the coated portion 11 along the longitudinal direction (as shown in FIGS. 1 and 2 ).
  • the non-coated portion 12 may be uncut (Fig. 1) or cut (Fig. 2).
  • Uncut means that the width of the non-coated portion 12 in the transverse direction is equal to the width of the coated portion 11 in the transverse direction, and cut means that the width of the non-coated portion 12 in the transverse direction is smaller than the width of the coated portion. 11 Width in the transverse direction.
  • the length of the uncut non-coated portion 12 in the longitudinal direction may be constant along the transverse direction (see Figure 1), or may be non-constant. Illustratively, the length of the uncut non-coated portion 12 in the longitudinal direction may gradually decrease along the transverse direction. The lengths of the cut non-coated portions 12 in the longitudinal direction may be the same as each other, or may be different from each other (see Figure 2).
  • the accuracy of detection can be improved; by comparing the non-coated portion of the pole piece 10 Detection at multiple positions of 12 can improve the accuracy of detection.
  • the dimensional parameter is a dimensional parameter of the non-coated portion 12 along the longitudinal direction.
  • the dimensional parameter along the longitudinal direction refers to the length of the non-coated portion 12 in the longitudinal direction.
  • pole piece folding can be accurately detected by comparing the length of the non-coated portion 12 in the longitudinal direction with its nominal length.
  • step S1000 includes: step S1100, driving the pole piece 10 to move along the lateral direction; and step S1200, during the movement of the pole piece 10 along the lateral direction, obtaining the non-coating of the pole piece 10 Dimensional parameters D 1 ...D N at different detection positions P 1 ...P N of part 12 .
  • a continuous pole piece comprising a plurality of pole pieces 10 is driven away by a drive unit to enter, for example, a laminating device or a winding device.
  • the dimensional parameters are obtained during the movement of the pole piece 10, that is, online detection during the production process is achieved.
  • obtaining the size parameters D 1 ...D N at different detection positions P 1 ...P N of the non-coated portion 12 of the pole piece 10 may include: In response to each pole piece 10 moving a predetermined distance along the transverse direction, the dimensional parameters of the non-coated portion 12 of the pole piece 10 are obtained once to obtain dimensional parameters at different detection positions P 1 ...P N of the non-coated portion 12 D 1 ...D N .
  • pole pieces that do not meet production requirements can be processed in a timely manner to prevent them from entering the subsequent production process, improve the product qualification rate, and avoid the waste of production materials.
  • the size parameters are collected to obtain the size parameters D 1 ...D N at different detection positions P 1 ...P N , which can make the pole piece detection suitable for different tape traveling speeds of the pole pieces. , there will be no missed detection or false detection due to the faster or slower walking speed of the pole pieces in the production process.
  • the detection method before step S2000, further includes: step S3000, obtaining the size detection standard S of the non-coated portion 12 of the pole piece 10.
  • each non-coated part 12 may correspond to the same size detection standard S; when the non-coated parts 12 have different specifications from each other (please refer to FIG. 2), each non-coated part 12 may The coated portion 12 may correspond to different size detection standards S.
  • Step S3000 may be performed before or after step S1000, or may be performed simultaneously with step S1000.
  • pole pieces having non-coated portions with specifications that are the same as each other and different from each other can be accurately detected.
  • step S3000 includes: step S3100, obtaining the size detection standards S 1 ... SN at different detection positions P 1 ...P N of the non-coated portion 12 of the pole piece 10 .
  • different positions P 1 ...P N of the non-coating part 12 may correspond to the same detection standard; when the size of the non-coating part 12 is non-constant, for example, along the transverse direction
  • different positions P 1 ...P N of the non-coated portion 12 may correspond to different detection standards.
  • pole pieces with non-coated parts of constant size and non-constant size can be accurately detected.
  • step S3100 includes: step S3110, determining the absolute position P A1 ... P AN of each of the different detection positions P 1 ... P N ; and step S3120, based on the determined absolute position P A1 ... P AN , obtain the size detection standards S 1 ...S N at different positions P 1 ...P N of the non-coated portion 12 of the pole piece 10 .
  • the absolute position P A1 ...P AN refers to the absolute position of the detection position P 1 ...P N in the continuous pole piece including multiple pole pieces 10.
  • P A1 can refer to the non-position of the A-th pole piece 10 in the continuous pole piece 10.
  • the non-coated part 12 of the A-th pole piece 10 may have the same or different specifications as the non-coated parts 12 of other pole pieces 10, and the non-coated part 12 of the A-th pole piece 10 may have a constant or non-constant dimensions.
  • Dimensional detection standards S 1 ...S at different positions P 1 ...P N of the non-coated portion 12 of the pole piece 10 are obtained by determining the absolute position P A1 ...P AN of each of the different detection positions P 1 ...P N N , pole pieces with non-coated parts of various specifications can be accurately detected.
  • the pole piece 10 includes at least one pole piece 10 with a preset mark 13
  • step S3110 includes: step S3111, detecting that the pole piece 10 includes at least one pole piece 10 with a preset mark 13; step S3112, detecting according to different The position of the positions P 1 ...P N relative to the preset mark 13 determines the absolute position P A1 ...P AN of each of the different detection positions P 1 ...P N .
  • the preset mark 13 may be located on the coated portion 11 or the non-coated portion 12 of the pole piece 10 .
  • the preset mark 13 may be a through hole (refer to FIGS. 1 and 2 ) or may be a mark having a color difference from the coated part 11 or the non-coated part 12 .
  • the preset mark 13 can be in various shapes.
  • the specifications of the pole piece 10 can change periodically.
  • a plurality of pole pieces 10 shown as eight in FIG. 2
  • a continuous pole piece may include a plurality of such groups.
  • the preset mark 13 can be set on the first pole piece 10 in each group.
  • step S2000 includes: step S2100, in response to the continuous M size parameters among the size parameters D 1 ...D N being smaller than the size detection standard S, determining that the non-coated part 12 is folded; where M is a positive integer, And M is greater than or equal to 1 and less than or equal to N.
  • Figure 3 is a schematic structural diagram of a folded pole piece according to some embodiments of the present application.
  • the size parameters D 1 ...D N may be the length of the non-coated part 12 in the longitudinal direction at the detection position P 1 ...P N (the edge of the non-coated part 12),
  • the detection criterion S may be the nominal length of the non-coated portion 12 in the longitudinal direction.
  • M may be 2, that is, in response to the occurrence of two consecutive size parameters smaller than the nominal length of the non-coated part 12, it is determined that the non-coated part 12 is folded.
  • step S2000 includes: step S2200, in response to the number of size parameters D 1 ...D N smaller than the size detection standard S being greater than a preset threshold, determining that the non-coated portion 12 is folded; or in response to the size parameter If the number of D 1 ...D N smaller than the size detection standard S is not greater than the preset threshold, it is judged that the non-coated part 12 is not folded.
  • Figure 4 is a schematic structural diagram of a folded pole piece according to some embodiments of the present application.
  • the size parameters D 1 ...D N may be the length of the non-coated part 12 in the longitudinal direction at the detection position P 1 ...P N (the edge of the non-coated part 12),
  • the detection standard S may be a portion of the nominal length of the non-coated portion 12 in the longitudinal direction.
  • N may be 11
  • the detection standard S may be half the nominal length of the non-coated part 12 in the longitudinal direction
  • the preset threshold may be 5. In this case, in response to the fact that the number of size parameters D 1 ...
  • D 11 smaller than the size detection standard S is not more than 5, it is judged that the non-coated part 12 is not folded and meets the production requirements (please refer to the left pole in Figure 4 piece and the middle pole piece); or in response to the number of size parameters D 1 ...D 11 smaller than the size detection standard S being greater than 5, it is judged that the non-coated part 12 is folded and does not meet the production requirements (please refer to the right side of Figure 4 pole piece).
  • the folded pole pieces that do not meet the production requirements can be effectively detected.
  • the size detection standard S is M1/M2 of the nominal size of the non-coated part 12 along the longitudinal direction, where M1 and M2 are positive integers and M2 is not less than M1, and the preset threshold is NM1/M2 .
  • N may be 20, the size detection standard S may be 1/2 of the nominal size of the non-coated part 12 along the longitudinal direction, and the preset threshold may be 10. In another embodiment, N may be 20, the size detection standard S may be 4/5 of the nominal size of the non-coated part 12 along the longitudinal direction, and the preset threshold may be 16. It can be understood that the smaller the size detection standard S, the smaller the number of allowable size parameters D 1 ...D N that are smaller than the size detection standard S.
  • the degree of pole piece folding that meets production requirements can be artificially specified.
  • Figure 5 is a schematic block diagram of a detection device according to some embodiments of the present application.
  • some embodiments of the present application provide a detection device 100 for a pole piece, wherein the pole piece includes a coated portion and a non-coated portion located on at least one side of the coated portion along the longitudinal direction.
  • the detection device includes: a parameter acquisition unit 110 for acquiring the size parameters D 1 ...D N of the non-coated part at different detection positions P 1 ...P N along the transverse direction perpendicular to the longitudinal direction; and the pole piece The detection unit 120 is used to compare the size parameters D 1 ...D N with the size detection standard S to determine whether the non-coated part is folded, where N is a positive integer and N is greater than or equal to 2.
  • the parameter acquisition unit 110 may acquire the size parameters D 1 ...D N when the pole pieces are in static or dynamic state.
  • the pole piece detection unit 120 may include a processor and a memory, the detection standard S may be stored in the memory, the processor is used to obtain the size parameters D 1 ...D N from the parameter acquisition unit 110, and obtain the pre-stored size detection standard S from the memory, and Compare the dimensional parameters D 1 ...D N with the dimensional inspection standard S to obtain the inspection result.
  • the accuracy of detection can be improved; by comparing multiple dimensional parameters of the non-coated part of the pole piece Position detection can improve the accuracy of detection.
  • the dimensional parameter is a dimensional parameter of the non-coated portion along the longitudinal direction.
  • the dimensional parameter along the longitudinal direction refers to the length of the non-coated portion in the longitudinal direction.
  • Figure 6 is a schematic block diagram of a detection device according to some embodiments of the present application. Please refer to Figure 6.
  • the detection device 100 also includes: a pole piece driving unit 130, used to drive the pole piece to move along the lateral direction, wherein the parameter acquisition unit 110 is used to drive the pole piece to move along the lateral direction.
  • the size parameters D 1 ...D N at different detection positions P 1 ...P N of the non-coated part of the pole piece are obtained.
  • the pole piece driving unit 130 may be a driving roller.
  • the drive roller may include an encoder, and the encoder is used to feedback the distance the drive roller drives the pole piece to move.
  • the detection is carried out during the movement of the pole pieces, that is, the online detection is carried out during the production process.
  • the pole pieces that do not meet the production requirements can be processed in time to prevent them from entering the subsequent production links, improve the product qualification rate, and avoid the waste of production materials. waste.
  • the detection device 100 further includes: a standard acquisition unit 140 for acquiring the size detection standard S of the non-coated portion of the pole piece.
  • each non-coated part may correspond to the same size detection standard S; when the non-coated parts have different specifications from each other (please refer to Figure 2), each non-coated part Can correspond to different size detection standards S.
  • the standard acquisition unit 140 is used to acquire the size detection standard S corresponding to the size parameter of the non-coated portion of each pole piece.
  • the standard acquisition unit 140 is communicatively connected to the pole piece detection unit 120, and sends the acquired correspondence between the size parameters of the non-coated parts of each pole piece and the size detection standard S to the pole piece detection unit 120.
  • the pole piece detection unit 120 compares the size parameters D 1 ...D N with the size detection standard S according to the corresponding relationship.
  • pole pieces having non-coated portions with specifications that are the same as each other and different from each other can be accurately detected.
  • the standard acquisition unit 140 is used to acquire the size detection standards S 1 ... SN at different detection positions P 1 ...P N of the non-coated portion of the pole piece.
  • different positions P1 ... PN of the non-coated part can correspond to the same detection standard; when the size of the non-coated part is non-constant, for example, when it gradually decreases along the transverse direction , different positions P 1 ...P N of the non-coated part can correspond to different detection standards.
  • the standard acquisition unit 140 is used to acquire the size detection standards S 1 ... SN corresponding to the size parameters of different positions P 1 ...P N of the non-coated part.
  • the standard acquisition unit 140 is communicatively connected to the pole piece detection unit 120, and sends the obtained corresponding relationship between the size parameters of different positions P 1 ...P N of the non-coated part and the size detection standard to the pole piece.
  • the pole piece detection unit 120 compares the size parameters D 1 ...D N with the size detection standards S 1 ...S N according to the corresponding relationship.
  • pole pieces with non-coated parts of constant size and non-constant size can be accurately detected.
  • the standard acquisition unit 140 further includes: a positioning module 141 for determining the absolute position P A1 ...P AN of each of the different detection positions P 1 ...P N , wherein the standard acquisition unit 140 is used to determine From the determined absolute positions P A1 ...P AN , the size detection standards S 1 ...S N at different positions P 1 ...P N of the non-coated parts of the pole pieces are obtained.
  • the absolute position P A1 ...P AN refers to the absolute position of the detection position P 1 ...P N in a continuous pole piece including multiple pole pieces.
  • P A1 can refer to the non-coating of the A-th pole piece in the continuous pole piece.
  • the non-coated part of the A-th pole piece may have the same or different specifications as the non-coated parts of other pole pieces, and the non-coated part of the A-th pole piece may have a constant or non-constant size.
  • the dimensional inspection standards S 1 ... S N at different positions P 1 ... P N of the non-coated portion of the pole piece are obtained by determining the absolute position P A1 ... P AN of each of the different inspection positions P 1 ... P N , Pole pieces with non-coated parts of various specifications can be accurately detected.
  • the pole piece includes at least one pole piece with a preset mark
  • the positioning module 141 further includes: a mark detection part 141A, used to detect at least one pole piece with a preset mark; and a position determination part 141B, according to The positions of the different detection positions P 1 ...P N relative to the preset marks determine the absolute position P A1 ...P AN of each of the different detection positions P 1 ...P N .
  • the mark detection part 141A may include at least one of a laser detector, an ultrasonic detector, and an image acquisition and processing device.
  • the position determination part 141B may be communicatively connected with the mark detection part 141A and the pole piece driving unit 130, and in response to the mark detection part 141A detecting at least one pole piece with a preset mark, using the pole piece driving unit
  • the signal fed back by 130 (for example, the distance the driving unit 130 drives the pole piece to move) is used to determine each of the different detection positions P 1 ...P N based on the positions of the different detection positions P 1 ...P N relative to the preset mark 13
  • the absolute positions of P A1 ...P AN The absolute positions of P A1 ...P AN .
  • the pole piece detection unit 120 is used to determine that the non-coated part is folded in response to the continuous M size parameters among the size parameters D 1 ...D N being smaller than the size detection standard S; where M is a positive integer, and M is greater than or equal to 1 and less than or equal to N.
  • the method by which the pole piece detection unit 120 determines whether the non-coated portion is folded is similar to that described above with reference to FIG. 3 , and therefore will not be described again.
  • the pole piece detection unit 120 can effectively detect folded pole pieces that do not meet production requirements by determining the number of consecutive size parameters that are smaller than the detection standard.
  • the pole piece detection unit 120 is used to determine that the non-coated part is folded in response to the number of size parameters D 1 ...D N that is smaller than the size detection standard S being greater than a preset threshold; or in response to the size parameter D 1 ...D If the number of items smaller than the size detection standard S in N is not greater than the preset threshold, it is judged that the non-coated part is not folded.
  • the method by which the pole piece detection unit 120 determines whether the non-coated portion is folded is similar to that described above with reference to FIG. 4 , and therefore will not be described again.
  • the pole piece detection unit 120 can effectively detect folded pole pieces that do not meet production requirements by determining the number of size parameters D 1 ...D N that are smaller than the size detection standard S.
  • the size detection standard S is M1/M2 of the nominal size of the non-coated part along the longitudinal direction, where M1 and M2 are positive integers and M2 is not less than M1, and the preset threshold is NM1/M2.
  • the degree of pole piece folding that meets production requirements can be artificially specified.
  • the parameter acquisition unit 110 includes at least one of a laser detector, an ultrasonic detector, and an image acquisition and processing device.
  • the parameter acquisition unit 110 may be a digital laser detector.
  • the detection window of the digital laser detector may be, for example, as shown in the rectangular dotted box in Figure 4 .
  • the digital laser detector may detect the extreme polarity within the detection window.
  • the piece is scanned and the size parameter in the longitudinal direction of the edge of the pole piece is fed back.
  • the size parameter corresponding to the detection position that is not within the detection window can be fed back to a value smaller than the size detection standard.
  • Figure 7 is a schematic structural diagram of a lamination system according to some embodiments of the present application. Please refer to FIG. 7 .
  • Some embodiments of the present application provide a lamination system 1000 , including: the detection device 100 of any of the above embodiments; and a lamination device 200 for laminating the pole pieces 10 .
  • the driving unit 130 may be a driving roller that drives the pole piece 10 to move during the production process.
  • the driving roller may include an encoder to feedback the distance the driving roller drives the pole piece 10 to move.
  • the parameter acquisition unit 110 may be disposed upstream of the stacking device 200 relative to the direction of movement of the pole piece 10 to acquire differences in the non-coated portion along the transverse direction (Y direction) perpendicular to the longitudinal direction (X direction). Dimensional parameters D 1 ...D N at positions P 1 ...P N are detected.
  • the mark detection part 141A may be disposed upstream of the parameter acquisition unit 110 relative to the direction of movement of the pole piece 10 for detecting the pole piece 10 with a preset mark.
  • the driving unit 130 drives the pole piece 10 to move along the transverse direction (Y direction).
  • the parameter acquisition unit 110 acquires the dimensional parameters of the non-coated portion of the pole piece 10 in response to each time the pole piece 10 is driven a predetermined distance, so as to obtain the difference of the non-coated portion of the pole piece 10
  • Dimensional parameters D 1 ...D N at positions P 1 ...P N are detected.
  • the mark detection part 141A detects the pole piece 10 with the preset mark during the movement of the pole piece 10 .
  • the position determination part 141B responds to the mark detection part 141A detecting the pole piece 10 with the preset mark, and uses the movement distance of the pole piece 10 fed back by the driving unit 130 to determine that each of the detection positions P 1 ...P N is in the continuous pole piece. Medium absolute position P A1 ...P AN .
  • the standard acquisition unit 140 acquires the size detection standards S 1 ...S N at different positions P 1 ...P N of the non-coated portion of the pole piece 10 according to the determined absolute positions P A1 ...P AN , and according to the pole feedback from the driving unit 130
  • the movement distance of the piece 10 obtains the corresponding relationship between the size parameters D 1 ...D N and the size detection standard S 1 ...S N at different positions P 1 ...P N of the non-coated part of the pole piece 10, and sends the corresponding relationship to
  • the pole piece detection unit 120 obtains the size parameters D 1 ...D N of different positions P 1 ...P N from the parameter acquisition unit 110, and obtains the corresponding dimensions of the different positions P 1 ...P N from the memory according to the corresponding relationship.
  • the size detection standard S 1 ...S N is compared with the size parameter D 1 ...D N and the size detection standard S 1 ...S N to obtain the detection result.
  • the method of comparing the size parameters D 1 ...D N with the size detection standards S 1 ...S N to detect the pole piece can be the detection method described above with reference to Figures 3 and 4.
  • the stacking device 200 can transfer a section of the continuous pole piece including the folded pole piece to the processing area to prevent it from flowing into the subsequent production process ( For example, lamination processing).
  • Some embodiments of the present application provide a detection device for a pole piece.
  • the detection device includes: a memory and a processor communicatively connected to the memory, wherein machine-readable instructions are stored in the memory. When the machine-readable instructions are When the processor executes, the detection method in any of the above embodiments is implemented.
  • Some embodiments of the present application provide a computer-readable storage medium, in which a computer program is stored on the computer-readable storage medium.
  • the computer program is run by a processor, the detection method of any of the above embodiments is executed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本申请提供一种用于极片的检测方法、用于极片的检测装置、叠片系统、检测设备和计算机可读存储介质,其中,极片包括涂覆部分和位于涂覆部分的沿着纵向方向的至少一侧的非涂覆部分,检测方法包括:步骤S1000,获取非涂覆部分的沿着垂直于纵向方向的横向方向的不同检测位置P1…PN处的尺寸参数D1…DN;和步骤S2000,将尺寸参数D1…DN与尺寸检测标准S进行比较,以判断非涂覆部分是否翻折;其中,N为正整数并且N大于或等于2。

Description

用于极片的检测方法和检测装置以及叠片系统 技术领域
本申请涉及电池技术领域,尤其涉及一种用于极片的检测方法、用于极片的检测装置、叠片系统、检测设备和计算机可读存储介质。
背景技术
随着清洁能源的迅速发展,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
动力电池中的电芯是用于发生电化学反应的部件,其主要由连续的极片卷绕或层叠形成。通常,极片由厚度极薄的金属箔材制成且自身强度较低,因此在电池生产制造的过程中容易发生翻折。极片翻折会导致电芯产生低容、短路等现象,更有甚者会引起热失控着火。
因此,需要对极片的生产质量进行检测。在一些情况下,极片的检测依靠人工方式来完成,但是这种方式存在人工劳动强度大、检测精度低等问题,并且还存在漏检、误检的情况。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种用于极片的检测方法、用于极片的检测装置、叠片系统、检测设备和计算机可读存储介质,以改善极片检测精度和准确率。
本申请第一方面的实施例提供一种用于极片的检测方法,其中,极片包括涂覆部分和位于涂覆部分的沿着纵向方向的至少一侧的非涂覆部分,检测方法包括:步骤S1000,获取非涂覆部分的沿着垂直于纵向方向的横向方向的不同检测位置P 1…P N处的尺寸参数D 1…D N;和步骤S2000,将尺寸参数D 1…D N与尺寸检测标准S进行比较,以判断非涂覆部分是否翻折;其中,N为正整数并且N大于或等于2。
本申请实施例的技术方案中,通过将极片多个位置的尺寸参数与尺寸检测标准进行比较来确定极片是否翻折,可以实现极片的精准检测。
在一些实施例中,尺寸参数为非涂覆部分的沿着纵向方向上的尺寸参数。通过测量极片在纵向方向上的尺寸参数并判断其是否在预设范围内,可以精确检测极片翻折。
在一些实施例中,步骤S1000包括:步骤S1100,驱动极片沿着横向方向运动;和步骤S1200,在极片沿着横向方向运动的过程中,获取极片的非涂覆部分的不同检测位置P 1…P N处的尺寸参数D 1…D N。通过在极片的运动过程中实施检测,即,生产过程中的在线检测,可以及时对不符合生产要求的极片进行处理,防止其进入后续生产环节,提高了产品合格率,避免了生产材料浪费。
在一些实施例中,在步骤S2000之前,检测方法还包括:步骤S3000,获取极片的非涂覆部分的尺寸检测标准S。极片的非涂覆部分可以具有彼此相同或彼此不同的规格,通过获取与极片的非涂覆部分相对应的尺寸检测标准,可以精确检测具有彼此相同和彼此不同的规格的非涂覆部分的极片。
在一些实施例中,步骤S3000包括:步骤S3100,获取极片的非涂覆部分的不同检测位置P 1…P N处的尺寸检测标准S 1…S N。极片的非涂覆部分的尺寸可以是恒定的或者非恒定的,通过获取与不同检测位置P 1…P N相对应的尺寸检测标准,可以精确检测具有恒定尺寸或非恒定尺寸的非涂覆部分的极片。
在一些实施例中,步骤S3100包括:步骤S3110,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN;和步骤S3120,根据所确定的绝对位置P A1…P AN,获取极片的非涂覆部分的不同位置P 1…P N处的尺寸检测标准S 1…S N。极片的非涂覆部分可以具有彼此相同或彼此不同的规格,极片的非涂覆部分的尺寸可以是恒定的或者非恒定的,根据检测位置的绝对位置来获取与该位置对应的检测标准,可以精确检测具有各种规格的非涂覆部分的极片。
在一些实施例中,极片包括至少一个具有预设标记的极片,并且步骤S3110包括:步骤S3111,检测至少一个具有预设标记的极片;步骤S3112,根据不同检测位置P 1…P N相对于预设标记的位置,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN。通过设置预设标记来标定检测位置的绝对位置,有助于提高绝对位置确定的可行性和便利性。
在一些实施例中,步骤S2000包括:步骤S2100,响应于尺寸参数D 1…D N中的连续M个尺寸参数小于尺寸检测标准S,判定非涂覆部分翻折;其中M为正整数,并且M大于等于1且小于等于N。通过确定连续出现的小于检测标准的尺寸参数的个数,可以有效检测出不符合生产要求的翻折极片。
在一些实施例中,步骤S2000包括:步骤S2200,响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数大于预设阈值,判断非涂覆部分翻折;或响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数不大于预设阈值,判断非涂覆部分未翻折。通过确定尺寸参数D 1…D N中小于尺寸检测标准S的个数,可以有效检测出不符合生产要求的翻折极片。
在一些实施例中,尺寸检测标准S为非涂覆部分沿着纵向方向的标称尺寸的M1/M2,其中,M1和M2为正整数且M2不小于M1,预设阈值为NM1/M2。通过将尺寸检测标准S和预设阈值设置为如上形式,可以人为地规定符合生产要求的极片翻折程度。
本申请第二方面的实施例提供一种用于极片的检测装置,其中,极片包括涂覆部分和位于涂覆部分的沿着纵向方向的至少一侧的非涂覆部分,检测装置包括:参数获取单元,用于获取非涂覆部分的沿着垂直于纵向方向的横向方向的不同检测位置P 1…P N处的尺寸参数D 1…D N;和极片检测单元,用于将尺寸参数D 1…D N与尺寸检测标准S进行比较,以判断非涂覆部分是否翻折,其中,N为正整数并且N大于或等于2。
在一些实施例中,参数获取单元用于获取非涂覆部分的沿着纵向方向上的尺寸参数。
在一些实施例中,检测装置还包括:极片驱动单元,用于驱动极片沿着横向方向运动,其中,参数获取单元用于在极片沿着横向方向运动的过程中,获取极片的非涂覆部分的不同检测位置P 1…P N处的尺寸参数D 1…D N
在一些实施例中,检测装置还包括:标准获取单元,用于获取极片的非涂覆部分的尺寸检测标准S。
在一些实施例中,标准获取单元用于获取极片的非涂覆部分的不同检测位置P 1…P N处的尺寸检测标准S 1…S N
在一些实施例中,标准获取单元还包括:定位模块,用于确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN,其中,标准获取单元用于根据所确定的绝对位置P A1…P AN,获取极片的非涂覆部分的不同位置P 1…P N处的尺寸检测标准S 1…S N
在一些实施例中,极片包括至少一个具有预设标记的极片,定位模块还包括:标记检测部,用于检测至少一个具有预设标记的极片;和位置确定部,根据不同检测位置P 1…P N相对于至少一个预设标记的位置,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN
在一些实施例中,极片检测单元用于响应于尺寸参数D 1…D N中的连续M个尺寸参数小于尺寸检测标准S,判定非涂覆部分翻折;其中M为正整数,并且M大于等于1且小于等于N。
在一些实施例中,极片检测单元用于响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数大于预设阈值,判断非涂覆部分翻折;或响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数不大于预设阈值,判断非涂覆部分未翻折。
在一些实施例中,参数获取单元包括激光探测器、超声波探测器和图像获取和处理装置中的至少一种。
本申请第三方面的实施例提供一种叠片系统,其包括:上述实施例中的检测装置;和叠片装置,用于对极片进行叠片处理。
本申请第四方面的实施例提供一种用于极片的检测设备,其包括:存储器和与存储器通信地连接的处理器,其中,存储器中存储有机器可读指令,当机器可读指令被处理器执行时,实现上述实施例中的检测方法。
本申请第五方面的实施例提供一种用于计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器运行时,执行上述实施例中的检测方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1为本申请一些实施例的极片的结构示意图;
图2为本申请一些实施例的极片的结构示意图;
图3为本申请一些实施例的翻折的极片的结构示意图;
图4为本申请一些实施例的翻折的极片的结构示意图;
图5为本申请一些实施例的检测装置的示意性框图;
图6为本申请一些实施例的检测装置的示意性框图;
图7为本申请一些实施例的叠片系统的结构示意图。
附图标记说明:
极片10,涂覆部分11,非涂覆部分12,预设标记13;
检测装置100,参数获取单元110,极片检测单元120,极片驱动单元130,标准获取单元140,定位模块141,标记检测部141A,位置确定部141B;
叠片系统1000,叠片装置200。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例和附图仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。附图中只示意性地表示出了与本申请技术方案相关的部分,它们并不代表其作为产品的实际结构。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”、“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示 的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,在动力电池的生产过程中,动力电池的电芯通常由连续的极片卷绕或层叠放置而形成。极片包括涂覆有活性物质的涂覆部分和未涂覆有活性物质的非涂覆部分。在电池的充放电过程中,涂覆部分中的活性物质发生电化学反应,而非涂覆部分(通常被称作为极耳)连接电极端子以形成电流回路。
本申请人注意到,由于极片的厚度极薄且自身强度较低,因此在生产过程中非常容易发生翻折。当例如极片的用于形成电流回路的非涂覆部分(极耳)翻折到涂覆部分上时,会导致电池在使用过程中出现低容、短路等问题,更为严重地还有可能引发热失控着火。因此,必须对极片的生产质量进行把控。
在一些情况下,极片的检测依靠人工方式来完成,但是这种方式存在检测精度低的问题,并且还存在漏检、误检的情况。
为了解决极片检测的检测精度低、准确率低的问题,申请人研究发现,可以通过将极片的尺寸参数和尺寸检测规格进行比较来提高检测精度,并通过对多个不同检测位置进行检测来提高检测准确率。
基于以上考虑,申请人经过深入研究,设计了一种用于极片的检测方法、用于极片的检测装置、一种叠片系统、检测设备和计算机可读存储介质,通过获取极片的非涂覆部分的不同检测位置处的尺寸参数,并将尺寸参数与尺寸检测标准进行比较,来判断非涂覆部分是否翻折,如此可以提高极片检测的精确度和准确率。
以下为了方便说明,以本申请一实施例的用于极片的检测方法为例进行说明。
图1和图2为本申请一些实施例的极片的结构示意图。请参考图1和图2,本申请的一些实施例提供了一种用于极片10的检测方法,其中,极片10包括涂覆部分11和位于涂覆部分11的沿着纵向方向的至少一侧的非涂覆部分12,检测方法包括:步骤S1000,获取非涂覆部分12的沿着垂直于纵向方向的横向方向的不同检测位置P 1…P N处的尺寸 参数D 1…D N;和步骤S2000,将尺寸参数D 1…D N与尺寸检测标准S进行比较,以判断非涂覆部分12是否翻折;其中,N为正整数并且N大于或等于2。
极片10的涂覆部分11是指涂覆有活性材料的部分,在电池的充放电过程中,涂覆部分11中的活性材料用于与其周围的电解液发生电化学反应。极片10的非涂覆部分12指未涂覆有活性材料的部分,该部分通常被称作为极耳,并且用于与电极端子相连以在电池的充放电过程中形成电流回路。
在实际生产过程中,电池的电芯由包括多个极片10的连续极片卷绕或层叠放置而形成。横向方向是指多个极片10连续排列的方向(请参见图1和图2中的Y方向),纵向方向是指极片10所在平面内与横向方向垂直的方向(请参见图1和图2中的X方向)。非涂覆部分12可以位于涂覆部分11的沿着纵向方向的一侧,或者可以位于涂覆部分11的沿着纵向方向的两侧(如图1和图2所示)。
非涂覆部分12可以是未经裁切的(图1)或经裁切的(图2)。未经裁切是指非涂覆部分12在横向方向上的宽度与涂覆部分11在横向方向上的宽度相等,经裁切是指非涂覆部分12在横向方向上的宽度小于涂覆部分11在横向方向上的宽度。
未经裁切的非涂覆部分12在纵向方向上的长度沿着横向方向可以是恒定的(请参见图1),或者非恒定的。示例性地,未经裁切的非涂覆部分12在纵向方向上的长度可以沿着横向方向逐渐减小。经裁切的非涂覆部分12在纵向方向上的长度可以是彼此相同的,或者可以是彼此不同的(请参见图2)。
在本申请实施例的技术方案中,通过将极片10的非涂覆部分12的尺寸参数与相应的尺寸检测标准进行比较,可以提高检测的精确度;通过对极片10的非涂覆部分12的多个位置进行检测,可以提高检测的准确率。
根据本申请的一些实施例,尺寸参数为非涂覆部分12的沿着纵向方向上的尺寸参数。
沿着纵向方向上的尺寸参数指非涂覆部分12在纵向方向上的长度。
可以理解,将非涂覆部分12在纵向方向上的长度与其标称长度进行比较,可以精确地检测极片翻折。
根据本申请的一些实施例,步骤S1000包括:步骤S1100,驱动极片10沿着横向方向运动;和步骤S1200,在极片10沿着横向方向运动的过程中,获取极片10的非涂覆部分12的不同检测位置P 1…P N处的尺寸参数D 1…D N
在电池的生产过程中,包括多个极片10的连续极片被驱动单元驱送走带,以进入例如叠片装置或卷绕装置。在极片10的运动过程中获取尺寸参数,即,实现生产过程中的在线检测。
在一些实施例中,在极片10沿着横向方向运动的过程中,获取极片10的非涂覆部分12的不同检测位置P 1…P N处的尺寸参数D 1…D N可以包括:响应于极片10每沿着横向方向运动预定的距离,获取一次极片10的非涂覆部分12的尺寸参数,以获得非涂覆部分12的不同检测位置P 1…P N处的尺寸参数D 1…D N
在生产过程中实施在线检测,可以及时对不符合生产要求的极片进行处理,防止其进入后续生产环节,提高了产品合格率,避免了生产材料浪费。
极片10每被驱送预定的距离进行一次尺寸参数的采集以获得不同检测位置P 1…P N处的尺寸参数D 1…D N,可以使极片检测适用于极片不同的走带速度,不会由于生产环节中极片的走带速度变快或变慢,而出现漏检、误检的情况。
在一些实施例中,在步骤S2000之前,检测方法还包括:步骤S3000,获取极片10的非涂覆部分12的尺寸检测标准S。
当非涂覆部分12具有彼此相同的规格时,各个非涂覆部分12可以对应于相同的尺寸检测标准S;当非涂覆部分12具有彼此不同的规格(请参照图2)时,各个非涂覆部分12可以对应于不同的尺寸检测标准S。步骤S3000可以在步骤S1000之前或之后执行,或者可以与步骤S1000同时执行。
通过获取与极片的非涂覆部分相对应的尺寸检测标准,可以精确检测具有彼此相同和彼此不同的规格的非涂覆部分的极片。
在一些实施例中,步骤S3000包括:步骤S3100,获取极片10的非涂覆部分12的不同检测位置P 1…P N处的尺寸检测标准S 1…S N
当非涂覆部分12的尺寸恒定时,非涂覆部分12的不同位置P 1…P N可以对应于相同的检测标准;当非涂覆部分12的尺寸非恒定时,例如,沿着横向方向逐渐减小时,非涂覆部分12的不同位置P 1…P N可以对应于不同的检测标准。
通过获取与非涂覆部分12的不同位置P 1…P N相对应的尺寸检测标准S 1…S N,可以精确检测具有恒定尺寸和非恒定尺寸的非涂覆部分的极片。
在一些实施例中,步骤S3100包括:步骤S3110,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN;和步骤S3120,根据所确定的绝对位置P A1…P AN,获取极片10的非涂覆部分12的不同位置P 1…P N处的尺寸检测标准S 1…S N
绝对位置P A1…P AN是指检测位置P 1…P N在包括多个极片10的连续极片中的绝对位置,例如,P A1可以指连续极片中第A个极片10的非涂覆部分12中的第一个检测位置。如上所述,第A个极片10的非涂覆部分12可以与其它极片10的非涂覆部分12具有相同或不同的规格,第A个极片10的非涂覆部分12可以具有恒定或非恒定的尺寸。
通过确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN来获取极片10的非涂覆部分12的不同位置P 1…P N处的尺寸检测标准S 1…S N,可以精确检测具有各种规格的非涂覆部分的极片。
在一些实施例中,极片10包括至少一个具有预设标记13的极片10,并且步骤S3110包括:步骤S3111,检测包括至少一个具有预设标记13的极片10;步骤S3112,根据不同检测位置P 1…P N相对于预设标记13的位置,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN
预设标记13可以位于极片10的涂覆部分11或者非涂覆部分12。预设标记13可以为通孔(参考图1和图2)或者可以为与涂覆部分11或者非涂覆部分12具有色差的标记。预设标记13可以为各种形状。
极片10的规格可以呈周期性变化。示例性地,请参照图2,具有渐变尺寸的非涂覆部分12的多个极片10(图2中示出为8个)可以构成一组,连续极片可以包括多个这样的组。预设标记13可以设置在各组中的第一个极片10上。
通过设置预设标记来标定检测位置在连续极片中的绝对位置,有助于提高绝对位置确定的可行性和便利性。
在一些实施例中,步骤S2000包括:步骤S2100,响应于尺寸参数D 1…D N中的连续M个尺寸参数小于尺寸检测标准S,判定非涂覆部分12翻折;其中M为正整数,并且M大于等于1且小于等于N。
图3为本申请一些实施例的翻折的极片的结构示意图。请参照图3,在一些实施例中,尺寸参数D 1…D N可以为非涂覆部分12在检测位置P 1…P N(非涂覆部分12的边缘)处在纵向方向上的长度,检测标准S可以为非涂覆部分12在纵向方向上的标称长度。在本实施例中,M可以为2,即,响应于出现连续2个尺寸参数小于非涂覆部分12的标称长度,判定非涂覆部分12翻折。
通过确定连续出现的小于检测标准的尺寸参数的个数,可以有效检测出不符合生产要求的翻折极片。
在一些实施例中,步骤S2000包括:步骤S2200,响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数大于预设阈值,判断非涂覆部分12翻折;或响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数不大于预设阈值,判断非涂覆部分12未翻折。
图4为本申请一些实施例的翻折的极片的结构示意图。请参照图4,在一些实施例中,尺寸参数D 1…D N可以为非涂覆部分12在检测位置P 1…P N(非涂覆部分12的边缘)处在纵向方向上的长度,检测标准S可以为非涂覆部分12在纵向方向上的标称长度的部分。示例性地,N可以为11,检测标准S可以为非涂覆部分12在纵向方向上的标称长度的一半,预设阈值可以为5。在这种情况下,响应于尺寸参数D 1…D 11中小于尺寸检测标准S的个数不大于5,判断非涂覆部分12未翻折,符合生产要求(请参考图4中左侧极片和中间极片);或者响应于尺寸参数D 1…D 11中小于尺寸检测标准S的个数大于5,判断非涂覆部分12翻折,不符合生产要求(请参考图4中右侧极片)。
通过确定尺寸参数D 1…D N中小于尺寸检测标准S的个数,可以有效检测出不符合生产要求的翻折极片。
在一些实施例中,尺寸检测标准S为非涂覆部分12沿着纵向方向的标称尺寸的M1/M2,其中,M1和M2为正整数且M2不小于M1,预设阈值为NM1/M2。
在一个实施例中,N可以为20,尺寸检测标准S可以为非涂覆部分12沿着纵向方向的标称尺寸的1/2,预设阈值则可以为10。在另一个实施例中,N可以为20,尺寸检测标准S可以为非涂覆部分12沿着纵向方向的标称尺寸的4/5,预设阈值则可以为16。可以理解,尺寸检测标准S越小,可容许的尺寸参数D 1…D N中小于尺寸检测标准S的个数越少。
通过将尺寸检测标准S和预设阈值设置为如上形式,可以人为地规定符合生产要求的极片翻折程度。
图5为本申请一些实施例的检测装置的示意性框图。请参考图5,本申请的一些实施例提供了一种用于极片的检测装置100,其中,极片包括涂覆部分和位于涂覆部分的沿着纵向方向的至少一侧的非涂覆部分,检测装置包括:参数获取单元110,用于获取非涂覆部分的沿着垂直于纵向方向的横向方向的不同检测位置P 1…P N处的尺寸参数D 1…D N;和极片检测单元120,用于将尺寸参数D 1…D N与尺寸检测标准S进行比较,以判断非涂覆部分是否翻折,其中,N为正整数并且N大于或等于2。
其中,极片、涂覆部分、非涂覆部分、纵向方向、横向方向、检测位置P 1…P N、尺寸参数D 1…D N以及检测标准S与上文中参照图1和图2所描述的类似,因此以下 不再赘述。参数获取单元110可以在极片处于静态或动态时获取尺寸参数D 1…D N。极片检测单元120可以包括处理器和存储器,检测标准S可以存储在存储器中,处理器用于从参数获取单元110获取尺寸参数D 1…D N,从存储器获取预先存储的尺寸检测标准S,并将尺寸参数D 1…D N与尺寸检测标准S进行比较,以获得检测结果。
在本申请实施例的技术方案中,通过将极片的非涂覆部分的尺寸参数与相应的尺寸检测标准进行比较,可以提高检测的精确度;通过对极片的非涂覆部分的多个位置进行检测,可以提高检测的准确率。
在一些实施例中,尺寸参数为非涂覆部分的沿着纵向方向上的尺寸参数。
沿着纵向方向上的尺寸参数指非涂覆部分在纵向方向上的长度。
将非涂覆部分在纵向方向上的长度与其标称长度进行比较,可以精确地检测极片翻折。
图6为本申请一些实施例的检测装置的示意性框图。请参考图6,在一些实施例中,检测装置100还包括:极片驱动单元130,用于驱动极片沿着横向方向运动,其中,参数获取单元110用于在极片沿着横向方向运动的过程中,获取极片的非涂覆部分的不同检测位置P 1…P N处的尺寸参数D 1…D N
在一些实施例中,极片驱动单元130可以为驱动辊。驱动辊可以包括编码器,编码器用于反馈驱动辊驱送极片运动的距离。
在极片的运动过程中实施检测,即,在生产过程中实施在线检测,可以及时对不符合生产要求的极片进行处理,防止其进入后续生产环节,提高了产品合格率,避免了生产材料浪费。
请参考图6,在一些实施例中,检测装置100还包括:标准获取单元140,用于获取极片的非涂覆部分的尺寸检测标准S。
当非涂覆部分具有彼此相同的规格时,各个非涂覆部分可以对应于相同的尺寸检测标准S;当非涂覆部分具有彼此不同的规格(请参照图2)时,各个非涂覆部分可以对应于不同的尺寸检测标准S。标准获取单元140用于获取与各个极片的非涂覆部分的尺寸参数对应的尺寸检测标准S。在一些实施例中,标准获取单元140与极片检测单元120通信地连接,并将所获取的各个极片的非涂覆部分的尺寸参数与尺寸检测标准S的对应关系发送给极片检测单元120,极片检测单元120根据该对应关系,将尺寸参数D 1…D N与尺寸检测标准S进行比较。
通过获取与极片的非涂覆部分相对应的尺寸检测标准,可以精确检测具有彼此相同和彼此不同的规格的非涂覆部分的极片。
在一些实施方式中,标准获取单元140用于获取极片的非涂覆部分的不同检测位置P 1…P N处的尺寸检测标准S 1…S N
当非涂覆部分的尺寸恒定时,非涂覆部分的不同位置P 1…P N可以对应于相同的检测标准;当非涂覆部分的尺寸非恒定时,例如,沿着横向方向逐渐减小时,非涂覆部分的不同位置P 1…P N可以对应于不同的检测标准。标准获取单元140用于获取与非涂覆部分的不同位置P 1…P N的尺寸参数对应的尺寸检测标准S 1…S N。在一些实施例中,标准获取单元140与极片检测单元120通信地连接,并将所获取的非涂覆部分的不同位置P 1…P N的尺寸参数与尺寸检测标准的对应关系发送给极片检测单元120,极片检测单元120根据该对应关系,将尺寸参数D 1…D N与尺寸检测标准S 1…S N进行比较。
通过获取与非涂覆部分的不同位置P 1…P N相对应的尺寸检测标准S 1…S N,可以精确检测具有恒定尺寸和非恒定尺寸的非涂覆部分的极片。
在一些实施例中,标准获取单元140还包括:定位模块141,用于确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN,其中,标准获取单元140用于根据所确定的绝对位置P A1…P AN,获取极片的非涂覆部分的不同位置P 1…P N处的尺寸检测标准S 1…S N
绝对位置P A1…P AN是指检测位置P 1…P N在包括多个极片的连续极片中的绝对位置,例如,P A1可以指连续极片中第A个极片的非涂覆部分中的第一个检测位置。如上所述,第A个极片的非涂覆部分可以与其它极片的非涂覆部分具有相同或不同的规格,第A个极片的非涂覆部分可以具有恒定或非恒定的尺寸。
通过确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN来获取极片的非涂覆部分的不同位置P 1…P N处的尺寸检测标准S 1…S N,可以精确检测具有各种规格的非涂覆部分的极片。
在一个实施例中,极片包括至少一个具有预设标记的极片,定位模块141还包括:标记检测部141A,用于检测至少一个具有预设标记的极片;和位置确定部141B,根据不同检测位置P 1…P N相对于预设标记的位置,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN
预设标记与上文中参照图1和图2所描述的类似,因此以下不再赘述。在一些实施例中,标记检测部141A可以包括激光探测器、超声波探测器和图像获取和处理装置中的至少一种。在一些实施例中,位置确定部141B可以与标记检测部141A和极片驱动 单元130通信地连接,并且响应于标记检测部141A检测到至少一个具有预设标记的极片,利用极片驱动单元130反馈的信号(例如,驱动单元130驱送极片运动的距离)来根据不同检测位置P 1…P N相对于预设标记13的位置,确定不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN
通过设置预设标记并利用标记检测部141A和位置确定部141B,有助于提高绝对位置确定的可行性和便利性。
在一些实施方式中,极片检测单元120用于响应于尺寸参数D 1…D N中的连续M个尺寸参数小于尺寸检测标准S,判定非涂覆部分翻折;其中M为正整数,并且M大于等于1且小于等于N。
极片检测单元120判断非涂覆部分是否翻折的方法与上文中参照图3所描述的类似,因此不再赘述。
极片检测单元120通过确定连续出现的小于检测标准的尺寸参数的个数,可以有效检测出不符合生产要求的翻折极片。
在一些实施方式中,极片检测单元120用于响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数大于预设阈值,判断非涂覆部分翻折;或响应于尺寸参数D 1…D N中小于尺寸检测标准S的个数不大于预设阈值,判断非涂覆部分未翻折。
极片检测单元120判断非涂覆部分是否翻折的方法与上文中参照图4所描述的类似,因此不再赘述。
极片检测单元120通过确定尺寸参数D 1…D N中小于尺寸检测标准S的个数,可以有效检测出不符合生产要求的翻折极片。
在一些实施方式中,尺寸检测标准S为非涂覆部分沿着纵向方向的标称尺寸的M1/M2,其中,M1和M2为正整数且M2不小于M1,预设阈值为NM1/M2。
通过将尺寸检测标准S和预设阈值设置为如上形式,可以人为地规定符合生产要求的极片翻折程度。
在一些实施方式中,参数获取单元110包括激光探测器、超声波探测器和图像获取和处理装置中的至少一种。
在一些实施例中,参数获取单元110可以为数字激光探测器,数字激光探测器的探测窗口例如可以为如图4中的矩形虚线框所示,数字激光探测器可以对该探测窗口内的极片进行扫描并反馈极片边缘处在纵向方向上的尺寸参数,其中,不在探测窗口内的检测位置对应的尺寸参数可以被反馈为小于尺寸检测标准的值。
图7为本申请一些实施例的叠片系统的结构示意图。请参考图7,本申请的一些实施例提供了一种叠片系统1000,包括:上述任一实施例的检测装置100;和叠片装置200,用于对极片10进行叠片处理。
请参考图7,在一个具体实施例中,驱动单元130可以为在生产过程中驱动极片10走带的驱动辊,驱动辊可以包括编码器,以反馈驱动辊驱送极片10运动的距离。参数获取单元110可以设置在叠片装置200的相对于极片10运动的方向的上游,用于获取非涂覆部分的沿着垂直于纵向方向(X方向)的横向方向(Y方向)的不同检测位置P 1…P N处的尺寸参数D 1…D N。标记检测部141A可以设置在参数获取单元110的相对于极片10运动的方向的上游,用于检测具有预设标记的极片10。
在生产过程中,驱动单元130驱动极片10沿着横向方向(Y方向)运动。参数获取单元110在极片10的运动过程中响应于极片10每被驱动预定的距离,获取一次极片10的非涂覆部分的尺寸参数,以获得极片10的非涂覆部分的不同检测位置P 1…P N处的尺寸参数D 1…D N。标记检测部141A在极片10的运动过程中检测具有预设标记的极片10。位置确定部141B响应于标记检测部141A检测到具有预设标记的极片10,利用驱动单元130反馈的极片10的运动距离,确定检测位置P 1…P N中的每一个在连续极片中绝对位置P A1…P AN。标准获取单元140根据所确定的绝对位置P A1…P AN获取极片10的非涂覆部分的不同位置P 1…P N处的尺寸检测标准S 1…S N,根据驱动单元130反馈的极片10的运动距离获取极片10的非涂覆部分的不同位置P 1…P N处的尺寸参数D 1…D N与尺寸检测标准S 1…S N的对应关系,将该对应关系发送给极片检测单元120,极片检测单元120从参数获取单元110获取不同位置P 1…P N的尺寸参数D 1…D N,并根据该对应关系从存储器获取与不同位置P 1…P N对应的尺寸检测标准S 1…S N,将尺寸参数D 1…D N与尺寸检测标准S 1…S N进行比较,以获得检测结果。
将尺寸参数D 1…D N与尺寸检测标准S 1…S N进行比较以对极片进行检测的方法可以为以上参考图3和图4所述的检测方法。在一个实施例中,当检测到不符合生产要求的翻折极片时,叠片装置200可以将包括翻折极片的一段连续极片转移到待处理区,以防止其流入后续生产流程(例如,叠片处理)。
可以理解,根据本申请实施例的极片检测方法、检测装置以及叠片系统,可以实现极片的在线检测,该检测的精确度和准确率高,且不受极片走带速度的影响。
本申请的一些实施例提供了一种用于极片的检测设备,检测设备包括:存储器和与存储器通信地连接的处理器,其中,存储器中存储有机器可读指令,当机器可读指令被处理器执行时,实现上述任一实施例的检测方法。
本申请的一些实施例提供了一种计算机可读存储介质,其中,计算机可读存储介质上存储有计算机程序,计算机程序被处理器运行时,执行上述任一实施例的检测方法。
应理解,以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (24)

  1. 一种用于极片的检测方法,其中,所述极片包括涂覆部分和位于所述涂覆部分的沿着纵向方向的至少一侧的非涂覆部分,所述检测方法包括:
    步骤S1000:获取所述非涂覆部分的沿着垂直于所述纵向方向的横向方向的不同检测位置P 1…P N处的尺寸参数D 1…D N;和
    步骤S2000:将所述尺寸参数D 1…D N与尺寸检测标准S进行比较,以判断所述非涂覆部分是否翻折;
    其中,N为正整数并且N大于或等于2。
  2. 根据权利要求1所述的检测方法,其中,所述尺寸参数为所述非涂覆部分的沿着所述纵向方向上的尺寸参数。
  3. 根据权利要求2所述的检测方法,其中,所述步骤S1000包括:
    步骤S1100:驱动所述极片沿着所述横向方向运动;和
    步骤S1200:在所述极片沿着横向方向运动的过程中,获取所述极片的非涂覆部分的不同检测位置P 1…P N处的尺寸参数D 1…D N
  4. 根据权利要求1所述的检测方法,其中,在所述步骤S2000之前,所述检测方法还包括:
    步骤S3000:获取所述极片的非涂覆部分的尺寸检测标准S。
  5. 根据权利要求4所述的检测方法,其中,所述步骤S3000包括:
    步骤S3100:获取所述极片的非涂覆部分的所述不同检测位置P 1…P N处的尺寸检测标准S 1…S N
  6. 根据权利要求5所述的检测方法,其中,所述步骤S3100包括:
    步骤S3110:确定所述不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN;和
    步骤S3120:根据所确定的所述绝对位置P A1…P AN,获取所述极片的非涂覆部分的所述不同位置P 1…P N处的尺寸检测标准S 1…S N
  7. 根据权利要求6所述的检测方法,其中,所述极片包括至少一个具有预设标记的极片,并且所述步骤S3110包括:
    步骤S3111:检测所述至少一个具有预设标记的极片;
    步骤S3112:根据所述不同检测位置P 1…P N相对于所述预设标记的位置,确定所述不同检测位置P 1…P N中的每一个中的绝对位置P A1…P AN
  8. 根据权利要求1至7中任一项所述的检测方法,其中,所述步骤S2000包括:
    步骤S2100:响应于所述尺寸参数D 1…D N中的连续M个尺寸参数小于所述尺寸检测标准S,判定所述非涂覆部分翻折;
    其中M为正整数,并且M大于等于1且小于等于N。
  9. 根据权利要求1-7中任一项所述的检测方法,其中,所述步骤S2000包括:
    步骤S2200:响应于所述尺寸参数D 1…D N中小于所述尺寸检测标准S的个数大于预设阈值,判断所述非涂覆部分翻折;或
    响应于所述尺寸参数D 1…D N中小于所述尺寸检测标准S的个数不大于所述预设阈值,判断所述非涂覆部分未翻折。
  10. 根据权利要求9所述的检测方法,其中,所述尺寸检测标准S为所述非涂覆部分沿着纵向方向的标称尺寸的M1/M2,其中,M1和M2为正整数且M2不小于M1,所述预设阈值为NM1/M2。
  11. 一种用于极片的检测装置,其中,所述极片包括涂覆部分和位于所述涂覆部分的沿着纵向方向的至少一侧的非涂覆部分,所述检测装置包括:
    参数获取单元,用于获取所述非涂覆部分的沿着垂直于所述纵向方向的横向方向的不同检测位置P 1…P N处的尺寸参数D 1…D N;和
    极片检测单元,用于将所述尺寸参数D 1…D N与尺寸检测标准S进行比较,以判断所述非涂覆部分是否翻折,
    其中,N为正整数并且N大于或等于2。
  12. 根据权利要求11所述的检测装置,其中,所述参数获取单元用于获取所述非涂覆部分的沿着所述纵向方向上的尺寸参数。
  13. 根据权利要求12所述的检测装置,还包括:极片驱动单元,用于驱动所述极片沿着所述横向方向运动,其中,所述参数获取单元用于在所述极片沿着横向方向运动的过程中,获取所述极片的非涂覆部分的不同检测位置P 1…P N处的尺寸参数D 1…D N
  14. 根据权利要求11所述的检测装置,还包括:标准获取单元,用于获取所述极片的非涂覆部分的尺寸检测标准S。
  15. 根据权利要求14所述的检测装置,其中,所述标准获取单元用于获取所述极片的非涂覆部分的所述不同检测位置P 1…P N处的尺寸检测标准S 1…S N
  16. 根据权利要求15所述的检测装置,其中,所述标准获取单元还包括:定位模块,用于确定所述不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN
    其中,所述标准获取单元用于根据所确定的所述绝对位置P A1…P AN,获取所述极片的非涂覆部分的所述不同位置P 1…P N处的尺寸检测标准S 1…S N
  17. 根据权利要求16所述的检测装置,其中,所述极片包括至少一个具有预设标记的极片,所述定位模块还包括:
    标记检测部,用于检测所述至少一个具有预设标记的极片;和
    位置确定部,根据所述不同检测位置P 1…P N相对于所述预设标记的位置,确定所述不同检测位置P 1…P N中的每一个的绝对位置P A1…P AN
  18. 根据权利要求11至17中任一项所述的检测装置,其中,所述极片检测单元用于响应于所述尺寸参数D 1…D N中的连续M个尺寸参数小于所述尺寸检测标准S,判定所述非涂覆部分翻折;
    其中M为正整数,并且M大于等于1且小于等于N。
  19. 根据权利要求11至17中任一项所述的检测装置,其中,所述极片检测单元用于响应于所述尺寸参数D 1…D N中小于所述尺寸检测标准S的个数大于预设阈值,判断所述非涂覆部分翻折;或
    响应于所述尺寸参数D 1…D N中小于所述尺寸检测标准S的个数不大于预设阈值,判断所述非涂覆部分未翻折。
  20. 根据权利要求19所述的检测装置,其中,所述尺寸检测标准S为所述非涂覆部分沿着纵向方向的标称尺寸的M1/M2,其中,M1和M2为正整数且M2不小于M1,所述预设阈值为NM1/M2。
  21. 根据权利要求11至20中任一项所述的检测装置,其中,所述参数获取单元包括激光探测器、超声波探测器和图像获取和处理装置中的至少一种。
  22. 一种叠片系统,其中,包括:
    如权利要求11至21中任一项所述的检测装置;和
    叠片装置,用于对极片进行叠片处理。
  23. 一种用于极片的检测设备,所述检测设备包括:存储器和与所述存储器通信地连接的处理器,其中,所述存储器中存储有机器可读指令,当所述机器可读指令被所述处理器执行时,实现如权利要求1至10中任一项所述的检测方法。
  24. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时,执行如权利要求1至10中任一项所述的检测方法。
PCT/CN2022/092799 2022-05-13 2022-05-13 用于极片的检测方法和检测装置以及叠片系统 WO2023216249A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280042044.3A CN117501109A (zh) 2022-05-13 2022-05-13 用于极片的检测方法和检测装置以及叠片系统
PCT/CN2022/092799 WO2023216249A1 (zh) 2022-05-13 2022-05-13 用于极片的检测方法和检测装置以及叠片系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092799 WO2023216249A1 (zh) 2022-05-13 2022-05-13 用于极片的检测方法和检测装置以及叠片系统

Publications (1)

Publication Number Publication Date
WO2023216249A1 true WO2023216249A1 (zh) 2023-11-16

Family

ID=88729479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092799 WO2023216249A1 (zh) 2022-05-13 2022-05-13 用于极片的检测方法和检测装置以及叠片系统

Country Status (2)

Country Link
CN (1) CN117501109A (zh)
WO (1) WO2023216249A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548491A (zh) * 2018-04-20 2018-09-18 桑顿新能源科技有限公司 一种测试叠片式电芯极片包覆情况的方法及设备
CN111392403A (zh) * 2020-03-18 2020-07-10 深圳市昊天宸科技有限公司 一种多功能电芯检测设备
CN112635848A (zh) * 2020-12-21 2021-04-09 合肥国轩高科动力能源有限公司 一种极耳检测的电池卷绕机构
CN113607742A (zh) * 2021-08-03 2021-11-05 广东利元亨智能装备股份有限公司 电芯极耳检测方法、装置、电子设备和存储介质
CN113720282A (zh) * 2021-08-25 2021-11-30 广东奥普特科技股份有限公司 极耳的平面度测量方法及测量装置
CN215066248U (zh) * 2021-06-21 2021-12-07 上海商汤科技开发有限公司 极耳检测设备
CN113820333A (zh) * 2021-09-16 2021-12-21 无锡先导智能装备股份有限公司 电池极片异常检测方法、装置、上位机及检测系统
KR20220033865A (ko) * 2020-09-10 2022-03-17 주식회사 엘지에너지솔루션 전극 탭 - 리드 용접부의 용접 품질 검사방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548491A (zh) * 2018-04-20 2018-09-18 桑顿新能源科技有限公司 一种测试叠片式电芯极片包覆情况的方法及设备
CN111392403A (zh) * 2020-03-18 2020-07-10 深圳市昊天宸科技有限公司 一种多功能电芯检测设备
KR20220033865A (ko) * 2020-09-10 2022-03-17 주식회사 엘지에너지솔루션 전극 탭 - 리드 용접부의 용접 품질 검사방법
CN112635848A (zh) * 2020-12-21 2021-04-09 合肥国轩高科动力能源有限公司 一种极耳检测的电池卷绕机构
CN215066248U (zh) * 2021-06-21 2021-12-07 上海商汤科技开发有限公司 极耳检测设备
CN113607742A (zh) * 2021-08-03 2021-11-05 广东利元亨智能装备股份有限公司 电芯极耳检测方法、装置、电子设备和存储介质
CN113720282A (zh) * 2021-08-25 2021-11-30 广东奥普特科技股份有限公司 极耳的平面度测量方法及测量装置
CN113820333A (zh) * 2021-09-16 2021-12-21 无锡先导智能装备股份有限公司 电池极片异常检测方法、装置、上位机及检测系统

Also Published As

Publication number Publication date
CN117501109A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US11597115B2 (en) Apparatus and method for cutting electrode sheet
WO2024108847A1 (zh) 辊、点检方法及装置、卷材传送方法及装置、设备、介质
US20150255780A1 (en) Method of manufacturing electrode for secondary battery and hot-gas drying furnace
EP3621140B1 (en) Apparatus and method for manufacturing secondary battery
WO2023217040A1 (zh) 一种纠偏装置和卷绕机
US8351054B2 (en) Apparatus detecting a position of a functional layer on an electrode
US20120313650A1 (en) Inspection device and inspection method
KR20150086042A (ko) 이차전지용 극판 검사방법
KR102465777B1 (ko) 전극조립체의 제조방법 및 제조장치
WO2023216249A1 (zh) 用于极片的检测方法和检测装置以及叠片系统
JP5522025B2 (ja) 塗工装置、塗工方法、電池の製造方法
US20140113063A1 (en) Method of manufacturing battery electrode and apparatus
US20220278307A1 (en) Method for producing electrode
JP2006088255A (ja) スリットロール製造方法およびスリットロール外径測定装置
US20240047639A1 (en) Measurement device and electrode plate production system
KR101789854B1 (ko) 이차전지 사행 불량 판정 시스템 및 그 방법
US20240166460A1 (en) Roller, inspection method and apparatus, coil conveying method and apparatus, device and medium
JP2018088409A (ja) 二次電池製造装置の巻き取り部張力制御システム
KR20220142595A (ko) 2차 전지용 전극 생산 시스템
US20240154246A1 (en) Separator thickness adjustment device and method, and winding electrode assembly production system
KR20180105152A (ko) 세퍼레이터의 컬량 측정 방법, 슬릿 장치 및 컬량 측정 장치
KR20230161844A (ko) 사행 보정 장치 및 사행 보정 방법
CN116918114A (zh) 电极片切割装置和方法
CN118106188A (zh) 电池极片涂布装置和电池极片涂布方法
KR20230046501A (ko) 전극시트 커팅장치 및 커팅방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280042044.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022941201

Country of ref document: EP

Effective date: 20240311