WO2023216133A1 - 发光基板及其制备方法、背光模组和显示装置 - Google Patents

发光基板及其制备方法、背光模组和显示装置 Download PDF

Info

Publication number
WO2023216133A1
WO2023216133A1 PCT/CN2022/092195 CN2022092195W WO2023216133A1 WO 2023216133 A1 WO2023216133 A1 WO 2023216133A1 CN 2022092195 W CN2022092195 W CN 2022092195W WO 2023216133 A1 WO2023216133 A1 WO 2023216133A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
reflective layer
substrate
opening
Prior art date
Application number
PCT/CN2022/092195
Other languages
English (en)
French (fr)
Inventor
王晨阳
张冰
高亮
王肖
Original Assignee
京东方科技集团股份有限公司
合肥京东方瑞晟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方瑞晟科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/246,404 priority Critical patent/US20240332469A1/en
Priority to PCT/CN2022/092195 priority patent/WO2023216133A1/zh
Priority to CN202280001181.2A priority patent/CN117396801A/zh
Publication of WO2023216133A1 publication Critical patent/WO2023216133A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting substrate and a preparation method thereof, a backlight module and a display device.
  • OLED organic light-emitting diode
  • Micro LED includes micro light emitting diode (Micro Light Emitting Diode, referred to as: Micro LED) and sub-millimeter light emitting diode (Mini Light Emitting Diode, referred to as: Mini LED).
  • Micro LED Micro Light Emitting Diode
  • Mini LED sub-millimeter light emitting diode
  • the size (such as length) of Micro LED is less than 100 microns, such as 10 microns to 50 microns
  • the size (such as length) of Mini LED is 100 microns to 500 microns, such as 100 microns to 120 microns.
  • LCD panels with micro-LED backlights also have the advantages of high peak brightness, high contrast, low power consumption, and high reliability, and have broad development prospects.
  • a light-emitting substrate including a light-emitting component and a reflective layer.
  • the light-emitting component includes a substrate and a plurality of light-emitting devices arranged in an array and distributed on the substrate.
  • the reflective layer is located on the light-emitting side of the light-emitting component.
  • the reflective layer is provided with a plurality of openings distributed in an array, and the plurality of light-emitting devices are located in the plurality of openings.
  • the distance between the center of the light-emitting device and the center of the opening where the light-emitting device is located is 0 mm to 0.1 mm in a preset direction; the preset direction is parallel to one side of the substrate.
  • the reflective layer has a first side and a second side opposite to each other, and both the first side and the second side are perpendicular to the preset direction.
  • the center of the light-emitting device and the center of the opening where the light-emitting device is located are in the preset direction. The distance between them is 0mm ⁇ 0.05mm.
  • the aperture of the opening gradually decreases along the thickness direction of the substrate, and from an end of the opening away from the substrate to an end of the opening close to the substrate.
  • the angle between the sidewall of the opening and the substrate is an obtuse angle.
  • the light-emitting substrate further includes a plurality of protective glues. At least part of the protective glue is disposed in the opening, and the protective glue wraps the light-emitting device located in the opening.
  • the protective glue fills and covers the opening; among the plurality of protective glues, two adjacent protective glues are spaced apart.
  • the material of the protective glue includes ultraviolet curable glue.
  • the curing temperature of the protective glue is less than the glass transition temperature of the reflective layer.
  • the material of the protective glue includes a methylvinylsiloxane coordination platinum catalyst, and/or a platinum-divinyltetramethyldisiloxane catalyst.
  • the thixotropic index of the protective glue is 4.9-5.9.
  • the light-emitting substrate further includes an adhesive layer.
  • the adhesive layer is provided on the side of the reflective layer close to the light-emitting component, and the adhesive layer is arranged to avoid the opening; the side boundary of the adhesive layer exceeds the side of the reflective layer. edge border.
  • the extended portion of the adhesive layer includes a first sub-region and a second sub-region that are sequentially away from the center of the adhesive layer, and the second sub-region is disposed around the first sub-region.
  • the width of the first sub-region is 0.002mm ⁇ 0.005mm
  • A is the shrinkage rate of the reflective layer
  • L3 is the length of the reflective layer along the preset direction.
  • the light-emitting substrate further includes a white oil layer.
  • the white oil layer is provided between the substrate and the reflective layer.
  • a plurality of openings are provided on the white oil layer, and the light-emitting device is exposed through the openings.
  • the preparation method includes: providing a light-emitting component, the light-emitting component including a substrate and a plurality of light-emitting devices arranged on the substrate in an array distribution; along a preset direction , the distance between the centers of the two farthest light-emitting devices on the light-emitting component is the first dimension.
  • the reflective layer is provided with a plurality of openings distributed in an array, the number of the plurality of openings is equal to the number of the plurality of light-emitting devices; along the preset direction, the reflective layer has The distance between the centers of the two furthest openings is a second dimension; the second dimension is smaller than the first dimension.
  • the reflective layer is attached to the light-emitting component along the preset direction, so that the plurality of light-emitting devices are respectively located in the plurality of openings.
  • the light-emitting assembly includes multiple rows of light-emitting devices, and each row of light-emitting devices includes multiple light-emitting devices arranged sequentially along the preset direction.
  • L 2 is the distance between the centers of two adjacent light-emitting devices in a row of light-emitting devices
  • n is the number of light-emitting devices included in a row of light-emitting devices.
  • the method further includes: pre-baking the light-emitting component to which the reflective layer is attached.
  • a protective glue is provided inside and above the opening. The protective glue is cured.
  • the pre-baking temperature is approximately 140°C to 160°C, and the baking time is approximately 10 min to 30 min.
  • the curing temperature is approximately 140°C to 160°C, and the curing time is approximately 50min to 70min.
  • the method further includes: disposing protective glue in and above the opening; the protection The curing temperature of the glue is lower than the glass transition temperature of the reflective layer.
  • the protective glue is cured; the curing temperature is approximately 80°C to 100°C, and the curing time is approximately 50min to 70min.
  • a backlight module including an optical film and the light-emitting substrate according to any of the preceding embodiments.
  • the optical film is disposed on the light-emitting side of the light-emitting substrate.
  • a display device including a display panel and the backlight module according to any of the foregoing embodiments.
  • the backlight module is disposed on the non-light emitting side of the display panel.
  • Figure 1 is a top view of a light-emitting substrate provided according to some embodiments.
  • Figure 2 is a top view of a light emitting assembly provided according to some embodiments.
  • Figure 3 is a top view of a reflective layer provided in accordance with some embodiments.
  • Figure 4 is an enlarged view of the area corresponding to the dotted box B in Figure 1;
  • Figure 5 is a cross-sectional view along the section line A-A’ in Figure 1;
  • Figure 6 is another cross-sectional view along the section line A-A’ in Figure 1;
  • Figure 7 is another cross-sectional view along the section line A-A’ in Figure 1;
  • Figure 8 is another cross-sectional view along the section line A-A’ in Figure 1;
  • Figure 9 is another top view of a light-emitting substrate provided according to some embodiments.
  • Figure 10 is another cross-sectional view along the section line A-A’ in Figure 1;
  • Figure 11 is a flow chart of a method for preparing a light-emitting substrate according to some embodiments.
  • Figure 12 is a preparation process diagram of a method for preparing a light-emitting substrate according to some embodiments.
  • Figure 13 is another flow chart of a method for preparing a light-emitting substrate according to some embodiments.
  • Figure 14 is a cross-sectional view of a backlight module provided according to some embodiments.
  • Figure 15 is a cross-sectional view of a display device provided in accordance with some embodiments.
  • Figure 16 is a top view of a display device provided in accordance with some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • micro-LEDs are gradually becoming more and more popular as backlight products.
  • the reflective layer is attached to the light-emitting component and an opening is formed on the reflective layer. The openings are aligned with the light-emitting device so that the light emitted by the light-emitting device can be effectively emitted from the openings.
  • the light emitting effect of at least some of the light-emitting devices on the light-emitting component is greatly reduced.
  • the intensity and brightness of the light emitted by some of the light-emitting devices are reduced.
  • the inventor of the present disclosure discovered that after the reflective layer is attached to the light-emitting component, the openings on the reflective layer cannot be aligned with the light-emitting device, and the reflective layer will cover part of the light-emitting device, causing the light emitted by the light-emitting device to be blocked by the reflective layer. , thus causing the light emitting effect of at least some of the light-emitting devices on the light-emitting component to decrease rapidly, affecting the display effect of products using micro-LEDs as backlight sources, and reducing the product yield.
  • embodiments of the present disclosure provide a light-emitting substrate 100.
  • the light-emitting substrate 100 includes a light-emitting component 10 and a reflective layer 20 .
  • the reflective layer 20 is provided on the light-emitting side (the side from which light emits) of the light-emitting component 10 .
  • the light-emitting component 10 includes a substrate 1 and a plurality of light-emitting devices M disposed on the substrate 1 . Multiple light-emitting devices M are distributed in an array.
  • the light-emitting device M can be a micro LED, such as a Mini LED, or a Micro LED.
  • the light-emitting component 10 further includes a substrate 1 on which a plurality of light-emitting devices M are disposed.
  • the light-emitting devices M are welded on the substrate 1 .
  • a plurality of light-emitting devices M are electrically connected to the substrate 1 , for example, a plurality of light-emitting devices M are electrically connected to signal lines on the substrate 1 .
  • the substrate 1 may include any one of a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, and the like.
  • the substrate 1 may be a semiconductor substrate.
  • the semiconductor substrate is a single crystal semiconductor substrate or a polycrystalline semiconductor substrate made of silicon or silicon carbide, a compound semiconductor substrate such as silicon germanium, an SOI (Silicon On Insulator) substrate, etc. Any kind.
  • the substrate 1 may also include an organic resin material such as epoxy resin, triazine, silicone resin or polyimide.
  • the substrate 1 may also be an FR4 type printed circuit board (PCB), or may be an easily deformable flexible PCB.
  • PCB printed circuit board
  • the substrate 1 may also comprise a ceramic material such as silicon nitride, AIN or Al 2 O 3 , or a metal or a metal compound, or a metal core printed circuit board (MCPCB) or a metal copper clad laminate (MCCL). any kind.
  • a ceramic material such as silicon nitride, AIN or Al 2 O 3 , or a metal or a metal compound, or a metal core printed circuit board (MCPCB) or a metal copper clad laminate (MCCL). any kind.
  • the substrate 1 is provided with a bonding pad P, and the bonding pad P is an exposed conductive material.
  • the light-emitting device M is fixed on the substrate 1 through the pad P, and is electrically connected to the signal line on the substrate 1 through the pad P.
  • the substrate 1 may be arranged with a plurality of device mounting areas, and the light-emitting devices M are correspondingly arranged in the device mounting areas.
  • Each device mounting area may include at least one first connection pad and at least one second connection pad.
  • the first connection pad and the second connection pad in the same device installation area can be electrically connected to the electrode pin of the same light-emitting device M.
  • the first connection pad is electrically connected to the N-pole pin of the light-emitting device M.
  • the second connection pad is electrically connected to the P-electrode pin of the light-emitting device M.
  • the substrate 1 may further include a circuit pattern electrically connected to at least one first connection pad and at least one second connection pad, so that the plurality of light emitting devices M are connected in series and/or in parallel to each other.
  • the substrate 1 may be configured to block visible light (have non-transmissivity to visible light).
  • visible light has non-transmissivity to visible light.
  • ambient light can be inhibited from entering the light-emitting device M formed on the substrate 1 from the outside, thereby preventing ambient light from interfering with the normal light emission of the light-emitting device M.
  • the substrate 1 may also be transparent to visible light.
  • the reflective layer 20 is provided with a plurality of openings K distributed in an array.
  • the plurality of light-emitting devices M correspond to the plurality of openings K one-to-one, and the plurality of light-emitting devices M are located in the plurality of openings K.
  • the reflective layer 20 can be prevented from blocking the light emitted by the light-emitting device M, thereby ensuring the light extraction effect of the light-emitting substrate 100 .
  • the distance d between the center M1 of the light-emitting device M and the center K1 of the opening K where the light-emitting device M is located in the preset direction X is 0 mm to 0.1 mm.
  • the distance d can be 0mm, 0.001mm, 0.008mm, 0.01mm, 0.035mm, 0.0785mm or 0.1mm.
  • center M1 of the light-emitting device M may be the geometric center of the cross-section of the light-emitting device M parallel to the substrate 1
  • center K1 of the opening K may be the center of the opening K parallel to the substrate. 1 The geometric center of the section.
  • the aforementioned reflective layer 20 before attaching the aforementioned reflective layer 20 to the light-emitting component 10, along the preset direction X is the distance between the centers of the two farthest light-emitting devices M on the light-emitting component 10 . That is, before the aforementioned reflective layer 20 is attached to the light-emitting component 10 , the size of the reflective layer 20 is reduced in advance, so that the amount of pre-reduction of the reflective layer 20 can offset the occurrence of the reflective layer 20 during the process of being attached to the light-emitting component 10 The amount of extension, so that after the reflective layer 20 is attached to the light-emitting component 10, the distance d between the center M1 of the light-emitting device M and the center K1 of the opening K where the light-emitting device M is located in the preset direction 0.1mm, which greatly improves the alignment accuracy of the opening K and the light-emitting device M.
  • the preset direction X is parallel to one side of the light emitting component 10 .
  • the preset direction X is parallel to one side of the substrate 1 of the light-emitting component 10 .
  • the preset direction X is the attachment direction when the reflective layer 20 is attached to the light-emitting component 10 during the preparation process of the light-emitting substrate 100 .
  • the reflective layer 20 has opposite first sides 20a and second sides 20b, and both the first sides 20a and the second sides 20b are perpendicular to the preset direction X.
  • the distance d (refer to Figure 4) in the preset direction X is 0mm ⁇ 0.05mm.
  • the distance d can be 0mm, 0.001mm, 0.008mm, 0.01mm, 0.035mm, 0.0475mm or 0.05mm.
  • the light-emitting substrate 100 further includes a plurality of protective glues 30 . At least part of the protective glue 30 is disposed in the opening K, and the protective glue 30 wraps the light-emitting device M located in the opening K.
  • the protective glue 30 may be in the form of glue.
  • a glue dispensing machine is used to spray the protective glue 30 in the form of glue onto the light-emitting device M (i.e., glue dispensing), and the protective glue 30 is cured to form a shape as shown in Figure 5 Hemispherical lens shown.
  • the protective glue 30 is configured to encapsulate the light-emitting device M to protect the light-emitting device M from damage by water vapor or external force in the external environment. At the same time, the protective glue 30 acts as a hemispherical lens to cover the light-emitting device M, which can enhance the light-emitting device. M's glowing effect.
  • the protective glue 30 fills and covers the opening K.
  • a certain protective effect can be formed on the opening K of the reflective sheet 20 to prevent the opening K from being damaged during the subsequent assembly process.
  • two adjacent protective glues 30 are spaced apart.
  • the protective glues 30 there is a spacing between adjacent protective glues 30 so that the protective glues 30 can form a hemispherical shape, thereby improving the luminous effect of the light-emitting substrate 100 .
  • the inventor of the present disclosure found that in related technologies, after the protective glue covers the light-emitting device and is cured, a large number of bubbles are sealed inside the protective glue, especially where large bubbles exist at the position where the side wall of the opening contacts the light-emitting component. , causing serious interference to the luminescence of the light-emitting device and reducing the luminous effect of the luminescent substrate.
  • the opening K in the light-emitting substrate 100 provided by the embodiment of the present disclosure is open-shaped.
  • the diameter of the opening K gradually decreases.
  • the escape space of air can be increased, so that the protective glue 30 can fully contact the side wall K3 of the opening K and the light-emitting component 10 during the dispensing process, so as to avoid the risk of leakage caused by the protective glue.
  • 30 is not in sufficient contact with the side wall K3 of the opening K, or is not in sufficient contact with the light-emitting component 10, resulting in residual air in the uncontacted position, which leads to the problem of the protective glue 30 sealing the residual air to form bubbles after curing, which can be avoided
  • the bubbles interfere with the light emission path of the light-emitting device M, effectively improving the light-emitting effect of the light-emitting substrate 100.
  • the angle ⁇ between the sidewall K3 of the opening K and the substrate 1 is an obtuse angle.
  • the angle ⁇ between the sidewall K3 of the opening K and the substrate 1 may be 120° ⁇ 150°.
  • the angle ⁇ between the sidewall K3 of the opening K and the substrate 1 in the light-emitting component 10 is 130° to 140°.
  • the angle ⁇ may be 120°, 125°, 137°, 142.5° or 150°.
  • the side wall K3 of the opening K may be in an arc shape, and the arc shape is bent toward the direction of the opening K.
  • the arc-shaped side wall K3 is tangent to the substrate 1 , and the arc-shaped central angle corresponding to the arc shape is tangent to the substrate 1 . is an acute angle.
  • the arc-shaped side wall K3 makes the contact position between the side wall K3 of the opening K and the light-emitting component 10 smoother, which is beneficial to the filling of the protective glue 30 in the opening K and avoids the protective glue 30 and the side wall K3 of the opening K. Insufficient contact between the light-emitting components 10 leads to the problem of residual bubbles, further improving the light-emitting effect of the light-emitting substrate 100 .
  • the thixotropic index of the protective glue 30 is 4.9-5.9.
  • the curing speed of the protective glue 30 after dispensing is slowed down, thereby ensuring that the protective glue 30 in the form of glue can be fully filled in each position of the opening K, so that the protective glue 30 in the opening K can be fully filled.
  • the air escapes in time effectively solving the problem of sealing air bubbles after the protective glue 30 is cured, thereby preventing air bubbles from interfering with the light emitting path of the light-emitting device M, and effectively improving the luminous effect of the light-emitting substrate 100 .
  • the material of the protective glue 30 in the light-emitting substrate 100 provided by the embodiment of the present disclosure includes ultraviolet curable glue. After the dispensing is completed, the protective glue 30 can be cured by ultraviolet irradiation.
  • the material of the protective glue 30 to be ultraviolet curable glue
  • the high-temperature baking method is avoided during the curing process of the protective glue 30 , thereby preventing the light-emitting substrate 100 from being in a high-temperature environment and preventing the reflective sheet 20 from being damaged in a high-temperature environment.
  • the surroundings of the reflective sheet 20 are retracted toward the center of the reflective sheet 20 to a certain extent, thereby preventing the retracted reflective sheet 20 from driving the protective glue 30 provided on the reflective sheet 20 to shift, resulting in the luminescence covered by the protective glue 30
  • the problem of device M falling off after being displaced improves the yield rate of the light-emitting substrate 100 .
  • the curing temperature of the protective glue 30 is less than the glass transition temperature of the reflective layer 20 .
  • the aforementioned “glass transition temperature” is the critical temperature at which the reflective layer 20 changes from a high elastic state to a glassy state, or from a glassy state to a high elastic state.
  • the reflective layer 20 is made of glass and has a certain degree of brittleness.
  • the reflective layer 20 is made of flexible material and has high elasticity.
  • the molecular chains of the reflective layer 20 increase in activity at high temperatures, and the internal stress of the reflective layer 20 causes the reflective layer 20 to shrink from the periphery toward the center. .
  • the curing temperature of the protective glue 30 By setting the curing temperature of the protective glue 30 to be lower than the glass transition temperature of the reflective layer 20 , the transformation of the reflective layer 20 from a glassy state to a highly elastic state can be avoided to a certain extent, and the degree of shrinkage of the reflective layer 20 can be reduced, thereby reducing the protective glue 30
  • the displacement situation prevents the protective glue 30 from causing the light-emitting device M to be displaced and then fall off, thereby improving the yield rate of the light-emitting substrate 100 .
  • the material of the reflective layer 20 may include polyethylene terephthalate, the glass transition temperature of which is approximately 100°C to 120°C.
  • the curing temperature of the protective glue 30 is set to be approximately 80°C to 100°C. Therefore, the ambient temperature of the reflective sheet 20 can be controlled to be lower than the glass transition temperature of the reflective layer 20 , thereby reducing the degree of shrinkage of the reflective layer 20 .
  • the material of the protective glue 30 includes a platinum complex catalyst, for example, a methylvinylsiloxane coordination platinum catalyst, and/or a platinum-divinyltetramethyldisiloxane catalyst.
  • a platinum complex catalyst for example, a methylvinylsiloxane coordination platinum catalyst, and/or a platinum-divinyltetramethyldisiloxane catalyst.
  • the material of the protective glue 30 may include silicone resin.
  • Silicone resin is a polysiloxane polymer with a highly cross-linked structure. Its curing mechanism is that under heating conditions, the silicon in the silicone resin material and the hydrogen in the cross-linking agent undergo an addition reaction, and the cross-linking forms a three-dimensional Network structure, complete curing.
  • the reflective layer 20 When the curing condition of the protective glue 30 is 150°C/1h, the reflective layer 20 will shrink to a large extent, which may easily cause the light-emitting device M to fall off. However, when the curing temperature of the protective glue 30 is lowered to the glass transition of the reflective layer 20 When the temperature is below 100°C, the curing time will be longer. For example, it needs to be cured for 6 hours at a temperature of 100°C, which seriously affects product production efficiency.
  • Hydrosilation can be accelerated by adding a platinum complex catalyst to the protective gel 30 , for example, including a methylvinylsiloxane coordination platinum catalyst, and/or a platinum-divinyltetramethyldisiloxane catalyst. reaction, thereby reducing the curing time of the protective glue 30 and ensuring production efficiency.
  • the curing temperature of the protective glue 30 can be kept below the glass transition temperature of the reflective layer 20 to avoid the problem of the reflective layer 20 shrinking and causing the light-emitting device M to fall off. The yield rate of the light-emitting substrate 100 is improved.
  • the light emitting substrate 100 further includes an adhesive layer 40 .
  • the adhesive layer 40 is disposed on the side of the reflective layer 20 close to the light-emitting component 10 , and the adhesive layer 40 is disposed away from the opening K.
  • the side boundary 40 a of the adhesive layer 40 exceeds the side boundary 20 a of the reflective layer 20 .
  • the adhesive layer 40 is configured to adhere the reflective layer 20 to the light-emitting component 10 , for example, to the substrate 1 of the light-emitting component 10 .
  • the extended portion of the adhesive layer 40 includes a first sub-region 41 and a second sub-region 42 that are sequentially away from the center 40b of the adhesive layer.
  • the second sub-region 42 surrounds the first sub-region. 41 settings.
  • the width d3 of the first sub-region 41 is 0.002mm ⁇ 0.005mm.
  • the width d3 of the first sub-region 41 can be 0.002mm, 0.0025mm, 0.00348mm, or 0.004mm. Or 0.005mm.
  • the width d 4 of the second sub-region 42 0.5 ⁇ A ⁇ L 3 , where A is the shrinkage rate of the reflective layer 20 and L 3 is the length of the reflective layer 20 along the preset direction X.
  • the shrinkage rate A of the reflective layer 20 is the shrinkage rate of the reflective layer 20 in a high-temperature environment (for example, at the glass transition temperature of the reflective layer 20 ).
  • the shrinkage rate of the reflective layer 20 under baking conditions of 150° C./1 hour is approximately 0.07% to 0.08%.
  • the light-emitting substrate 100 further includes a white oil layer 50 .
  • the white oil layer 50 is provided between the substrate 1 and the reflective layer 20.
  • the white oil layer 50 is provided with a plurality of openings N.
  • the light-emitting device M is exposed through the openings N to prevent the white oil layer 50 from blocking the light emitted by the light-emitting device M. light.
  • the white oil layer 50 is provided between the light-emitting component 10 and the reflective layer 20 , and the white oil layer 50 is placed away from the light-emitting device M.
  • the white oil layer 50 is provided between the substrate 1 of the light-emitting component 10 and the adhesive layer 40 .
  • the white oil layer 50 may include resin (eg, epoxy resin, polytetrafluoroethylene resin), titanium dioxide (chemical formula TiO 2 ), and organic solvent (eg, dipropylene glycol methyl ether).
  • resin eg, epoxy resin, polytetrafluoroethylene resin
  • titanium dioxide chemical formula TiO 2
  • organic solvent eg, dipropylene glycol methyl ether
  • An embodiment of the present disclosure also provides a method for preparing the light-emitting substrate 100. As shown in Figure 11, the preparation method includes:
  • S1 Provide lighting components.
  • the light-emitting component 10 includes a substrate 1 and a plurality of light-emitting devices M arranged on the substrate 1 and distributed in an array.
  • the light-emitting component 10 further includes a substrate 1 on which the light-emitting device M is welded.
  • step S1 along the preset direction X, the distance between the centers of the two farthest light-emitting devices M on the light-emitting assembly 10 is the first dimension d1 .
  • S2 Provide reflective layer.
  • the reflective layer 20 is provided with a plurality of openings K distributed in an array, and the number of the plurality of openings K is equal to the number of the plurality of light-emitting devices M.
  • step S2 along the preset direction X, the distance between the centers of the two furthest openings K on the reflective layer 20 is the second dimension d2 .
  • the second dimension d2 is smaller than the first dimension d1.
  • an adhesive layer 40 is provided on one side of the reflective sheet 20 , and the adhesive layer 40 is configured to fix the reflective sheet 20 on the light-emitting component 10 .
  • multiple light-emitting devices M are located in multiple openings K respectively.
  • the preset direction X is the attachment direction of the reflective layer 20 , and the preset direction X may be parallel to one side of the light emitting component 10 .
  • step S3 along the preset direction
  • the distance between the centers of the two openings K is approximately equal.
  • the size of the reflective layer 20 along the preset direction X is reduced in advance, so that the pre-reduced amount can offset the reflective layer.
  • the amount of expansion that occurs during the attachment process of 20 to the light-emitting component 10 can avoid the problem that the reflective layer 20 covers the light-emitting device M after expanding during the attachment process and blocks the transmission path of the light emitted by the light-emitting device M, thus The light extraction efficiency of the light-emitting device M is improved, and the light-emitting effect of the light-emitting substrate 100 is optimized.
  • the light-emitting substrate 100 prepared by the preparation method provided by the embodiment of the present disclosure can control the distance d between the center M1 of the light-emitting device M and the center K1 of the opening K where the light-emitting device M is located in the preset direction X.
  • the alignment accuracy of the opening K of the reflective layer 20 and the light-emitting device M is greatly improved.
  • the light-emitting substrate 100 further includes a release film 60 and a protective film 70 .
  • the release film 60 and the protective film 70 are respectively arranged on both sides of the reflective layer 20 before being attached.
  • the release film 60 and the protective film 70 are configured to protect the reflective layer 20 from external damage during the transfer process. During the attachment process of the reflective layer 20, the release film 60 and the protective film 70 will be removed.
  • step S2 a release film 60 and a protective film 70 are respectively provided on both sides of the reflective layer 20 .
  • the release film 60 is removed to expose the adhesive layer 40 coated on one side of the reflective layer 20 to facilitate the attachment of the reflective layer 20 and the light-emitting component 10 .
  • the protective film 70 is removed and the opening K is leaked to facilitate the dispensing of the protective glue 30 .
  • S is the extension coefficient of the reflective layer 20
  • L is the value of the second dimension d2.
  • the aforementioned “extension coefficient” is the amount of expansion that occurs within the unit length of the reflective layer 20 along the attachment direction (such as the preset direction The length is 802.2mm. After the reflective layer 20 is attached, the length of the reflective layer 20 along the attachment direction is 802.5mm.
  • the extension coefficient S of the reflective layer 20 is related to the material of the reflective layer 20 and the preparation conditions of the reflective layer 20 such as temperature, time, and the like.
  • the reflective layers 20 of different materials have different extension coefficients S.
  • the foregoing preparation method can be applied to any light-emitting substrate 100 with different sizes and different numbers of light-emitting devices M.
  • the opening K and the light-emitting device M can be aligned with high precision, thereby improving the light extraction efficiency of the light-emitting device M and optimizing the light-emitting effect of the light-emitting substrate 100.
  • the light-emitting component 10 includes multiple rows of light-emitting devices M, and each row of light-emitting devices M includes multiple light-emitting devices M sequentially arranged along the preset direction X.
  • L 2 is the distance between the centers of two adjacent light-emitting devices M in a row of light-emitting devices M
  • n is the number of light-emitting devices M included in a row of light-emitting devices M.
  • the distance between the centers of two adjacent openings K in the reflective layer 20 is The preparation method provided by the foregoing embodiments can be applied to the light-emitting substrate 100 using different types of reflective layers 20 to improve the alignment accuracy of the opening K and the light-emitting device M and optimize the light-emitting effect of the light-emitting substrate 100.
  • the aforementioned preparation method further includes:
  • the reflective layer 20 shrinks before the protective glue 30 is filled in the opening K, which can avoid the problem that the shrinkage of the reflective layer 20 drives the protective glue 30 to displace and eventually cause the light-emitting device M to fall off.
  • the prebaking temperature is greater than the glass transition temperature of the reflective layer 20 . That is, the reflective layer 20 can be transformed from a glassy state to a highly elastic state before filling the protective glue 30 in the opening K, so that the reflective layer 20 can fully shrink and reduce the degree of shrinkage after subsequent filling of the protective glue 30 .
  • the pre-baking temperature is approximately 140°C to 160°C.
  • the temperature may be 140°C, 143°C, 145.5°C, 150°C, 157.9°C or 160°C.
  • the pre-baking time is roughly 10min ⁇ 30min.
  • the pre-baking time can be 10min, 11min, 15.6min, 20min, 28.75min or 30min.
  • the protective glue 30 may be made of silicone resin.
  • high-temperature baking is used to cure the protective glue.
  • the curing temperature is approximately 140°C to 160°C.
  • the curing temperature may be 140°C, 143°C, 145.5°C, 150°C, 157.95°C or 160°C.
  • the curing time is approximately 50min ⁇ 70min.
  • the curing time can be 50min, 51min, 55.6min, 60min, 68.75min or 70min.
  • step S6 the shrinkage amount of the reflective layer 20 can be controlled within 0.005 mm.
  • the reflective layer 20 shrinks before the opening K is filled with the protective glue 30, thereby achieving a full transformation of the reflective layer 20 from a glass state to a highly elastic state, so that the reflective layer 20 can be filled in the opening K.
  • the shrinkage of the reflective layer 20 is small, thereby avoiding a large degree of displacement of the protective glue 30, thereby avoiding the problem of the light-emitting device M falling off due to the displacement of the protective glue 30, and improving the Yield of the light emitting substrate 100 .
  • step S3 is removed and steps S5 and S6 are performed directly. That is, after step S3, the aforementioned preparation method further includes:
  • the material of the protective glue 30 may include silicone resin and platinum-based complex catalyst.
  • the materials of the protective glue 30 include silicone resin and methyl vinyl silicon oxygen coordination platinum catalyst.
  • the material of the protective glue 30 includes silicone resin and platinum-divinyltetramethyldisiloxane catalyst.
  • high-temperature baking is used to cure the protective glue.
  • the curing temperature of the protective glue 30 is lower than the glass transition temperature of the reflective layer 20 .
  • the curing temperature is approximately 80°C to 100°C.
  • the curing temperature may be 80°C, 83.358°C, 85.5°C, 90°C, 97.95°C or 100°C.
  • the curing time is approximately 50min ⁇ 70min.
  • the curing time can be 50min, 51min, 55.6min, 60min, 68.75min or 70min.
  • the material of the protective glue 30 By configuring the material of the protective glue 30 to include a platinum complex catalyst, it is possible to control the curing temperature of the protective glue 30 at the glass transition temperature of the reflective layer 20 without extending the curing time of the protective glue 30 and avoiding reducing production efficiency. In this way, the shrinkage of the reflective layer 20 can be avoided, the problem of the light-emitting device M falling off due to the displacement of the protective glue 30 caused by the shrinkage of the reflective layer 20 can be avoided, and the yield of the light-emitting substrate 100 can be improved.
  • step S3 is removed and steps S5 and S6 are performed directly. That is, after step S3, the aforementioned preparation method further includes:
  • the material of the protective glue 30 may include ultraviolet curable glue.
  • step S6 includes: using ultraviolet light irradiation method to cure the protective glue 30 .
  • the curing process of the protective glue 30 does not require high-temperature baking, and the reflective layer 20 is prevented from being in a high-temperature environment, thereby avoiding the shrinkage of the reflective layer 20 and solving the problem of shrinkage of the reflective layer 20
  • the problem of the light-emitting device M falling off due to the displacement of the protective glue 30 is eliminated, and the yield of the light-emitting substrate 100 is improved.
  • embodiments of the present disclosure also provide a backlight module 300, including an optical film 200 and the light-emitting substrate 100 of any of the foregoing embodiments.
  • the light-emitting substrate 100 has a display side and a non-display side.
  • the display side is the side from which the light emitting substrate 100 emits light
  • the non-display side is the side opposite to the display side.
  • the optical film 200 is disposed on the light emitting side of the light emitting substrate 100 .
  • the optical film 200 may be multi-layered.
  • the optical film 200 includes a light-diffusing film, a light-enhancing film, etc., which can adjust the intensity and uniformity of light emitted by the light-emitting device M, thereby improving the display effect of the display device 1000 .
  • embodiments of the present disclosure also provide a display device 1000.
  • the display device 1000 includes a display panel 400 and the backlight module 300 described in any of the previous embodiments.
  • the display panel 400 may be a liquid crystal display panel.
  • the display panel 400 has a display side and a non-display side.
  • the display side is the side from which light is emitted from the display panel 400 to achieve image display
  • the non-display side is the side opposite to the display side.
  • the backlight module 300 is disposed on the non-display side of the display panel 400 .
  • the backlight module 300 is disposed on the non-display side of the display panel 400 and can provide a backlight source for the display panel 400 to achieve luminous display of the display panel 400 .
  • the beneficial effects that can be achieved by the display device 1000 in the embodiment of the present disclosure are the same as the beneficial effects that can be achieved by the above-mentioned backlight module 100 and will not be described again here.
  • the display device 1000 may be any device that displays images, whether moving (eg, video) or stationary (eg, still images), and whether text or text. More specifically, it is contemplated that embodiments may be implemented in or associated with a variety of electronic devices, such as (but not limited to) mobile phones, wireless devices, personal digital assistants (Personal Digital Assistants, for short).
  • electronic devices such as (but not limited to) mobile phones, wireless devices, personal digital assistants (Personal Digital Assistants, for short).
  • PDA Virtual Reality
  • VR Virtual Reality
  • GPS Global Positioning System
  • camera MP4 video player
  • video camera game console
  • Watches clocks
  • calculators television monitors
  • flat panel displays computer monitors
  • automotive displays e.g., odometer displays, etc.
  • navigators cockpit controls and/or displays
  • displays for camera views e.g., in the rear of the vehicle monitors for video cameras
  • electronic photographs e.g., in the rear of the vehicle monitors for video cameras
  • electronic photographs e.g., in the rear of the vehicle monitors for video cameras
  • electronic photographs electronic billboards or signs
  • projectors architectural structures, packaging and aesthetic structures (for example, displays for images of a piece of jewelry), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光基板(100)及其制备方法、背光模组(300)和显示装置(1000)。其中,发光基板(100)包括发光组件(10)和反射层(20)。发光组件(10)包括衬底(1)以及设置在衬底(1)上呈阵列分布的多个发光器件(M)。反射层(20)位于发光组件(10)的出光侧,反射层(20)设有呈阵列分布的多个开孔(K),多个发光器件(M)位于多个开孔(K)内。其中,发光器件(M)的中心(M1),与发光器件(M)所在开孔(K)的中心(K1),在预设方向(X)上的间距(d)为0mm~0.1mm,预设方向(X)平行于衬底(1)的一条侧边,从而提高了反射层(20)的开孔(K)与发光器件(M)的对准精度。

Description

发光基板及其制备方法、背光模组和显示装置 技术领域
本公开涉及显示技术领域,尤其是涉及一种发光基板及其制备方法、背光模组和显示装置。
背景技术
随着有机发光二极管(Organic Light-Emitting Diode,简称OLED)技术的兴起及日渐成熟,OLED产品逐渐成为市场新宠,然而,OLED产品造价高昂,可靠性较差。为了达到可以媲美OLED产品的高对比度、轻薄化等特点,同时又保留液晶显示(Liquid Crystal Display,简称LCD)产品的价格及可靠性优势,微LED作为背光源的产品应运而生。
微LED包括微型发光二极管(Micro Light Emitting Diode,简称:Micro LED)和次毫米发光二极管(Mini Light Emitting Diode,简称:Mini LED)。其中,Micro LED的尺寸(例如长度)小于100微米,例如为10微米~50微米;Mini LED的尺寸(例如长度)为100微米~500微米,例如为100微米~120微米。
搭配有微LED背光的LCD面板,同时拥有高峰值亮度、高对比度、低功耗、高可靠性等优势,发展前景广阔。
发明内容
一方面,提供一种发光基板,包括发光组件和反射层。
所述发光组件包括衬底,以及设置在所述衬底上呈阵列分布的多个发光器件。所述反射层位于所述发光组件的出光侧,所述反射层设有呈阵列分布的多个开孔,所述多个发光器件位于所述多个开孔内。其中,所述发光器件的中心,与所述发光器件所在开孔的中心,在预设方向上的间距为0mm~0.1mm;所述预设方向平行于所述衬底的一条侧边。
在一些实施例中,所述反射层具有相对的第一边和第二边,所述第一边和所述第二边均垂直于所述预设方向。在所述第一边与所述反射层的平行于所述第一边的中心线之间的区域内,所述发光器件的中心,与所述发光器件所在开孔的中心,在预设方向上的间距为0mm~0.05mm。
在一些实施例中,沿所述衬底的厚度方向,且由所述开孔远离所述衬底的一端指向所述开孔靠近所述衬底的一端,所述开孔的孔径逐渐减小。
在一些实施例中,所述开孔的侧壁与所述衬底之间的夹角呈钝角。
在一些实施例中,所述发光基板还包括多个保护胶。所述保护胶的至少 部分设于所述开孔内,且所述保护胶包裹位于所述开孔内的所述发光器件。
在一些实施例中,所述保护胶填充并覆盖所述开孔;所述多个保护胶中,相邻的两个保护胶之间间隔设置。
在一些实施例中,所述保护胶的材料包括紫外光固化胶。
在一些实施例中,所述保护胶的固化温度小于所述反射层的玻璃化转变温度。
在一些实施例中,所述保护胶的材料包括甲基乙烯基硅氧配位铂催化剂,和/或,铂-二乙烯基四甲基二硅氧烷催化剂。
在一些实施例中,所述保护胶的触变指数为4.9~5.9。
在一些实施例中,所述发光基板还包括粘接层。所述粘接层设于所述反射层靠近所述发光组件的一侧,所述粘接层避开所述开孔设置;所述粘接层的侧边边界,超出所述反射层的侧边边界。
在一些实施例中,所述粘接层的超出部分包括依次远离所述粘接层中心的第一子区域和第二子区域,所述第二子区域围绕所述第一子区域设置。
在一些实施例中,所述第一子区域的宽度为0.002mm~0.005mm,所述第二子区域的宽度d 4=0.5×A×L 3,其中,A为所述反射层的收缩率,L 3为所述反射层沿所述预设方向上的长度。
在一些实施例中,所述发光基板还包括白油层。所述白油层设于所述衬底和所述反射层之间,所述白油层上设有多个开口,通过所述开口露出所述发光器件。
另一方面,提供一种发光基板的制备方法,该制备方法包括:提供发光组件,所述发光组件包括衬底和设置在所述衬底上呈阵列分布的多个发光器件;沿预设方向,所述发光组件上距离最远的两个发光器件的中心之间的距离为第一尺寸。提供反射层,所述反射层设有呈阵列分布的多个开孔,所述多个开孔的数量与所述多个发光器件的数量相等;沿所述预设方向,所述反射层上距离最远的两个开孔的中心之间的距离为第二尺寸;所述第二尺寸小于所述第一尺寸。沿所述预设方向将所述反射层贴附至所述发光组件,使所述多个发光器件分别位于所述多个开孔内。
在一些实施例中,所述第一尺寸与所述第二尺寸之间的差值ΔL=S×L;其中,S为所述反射层的延展系数,L为所述第二尺寸的数值。
在一些实施例中,所述发光组件包括多行发光器件,每行发光器件包括沿所述预设方向依次排列的多个发光器件。在所述反射层被贴附之前,沿所述预设方向,所述反射层中相邻的两个开孔的中心之间的距离
Figure PCTCN2022092195-appb-000001
其 中,L 2为一行发光器件中相邻的两个发光器件的中心之间的距离,n为一行发光器件所包括的发光器件的数量。
在一些实施例中,所述沿所述预设方向将所述反射层贴附至所述发光组件之后,还包括:对贴附有所述反射层的发光组件进行预烘烤。在所述开孔内及所述开孔上方设置保护胶。对所述保护胶进行固化。
在一些实施例中,所述预烘烤的温度大致为140℃~160℃,烘烤时长大致为10min~30min。所述固化温度大致为140℃~160℃,固化时长大致为50min~70min。
在一些实施例中,所述沿所述预设方向将所述反射层贴附至所述发光组件之后,还包括:在所述开孔内及所述开孔上方设置保护胶;所述保护胶的固化温度小于所述反射层的玻璃化转变温度。对所述保护胶进行固化;所述固化温度大致为80℃~100℃,固化时长大致为50min~70min。
另一方面,提供一种背光模组,包括光学膜片和前述任一项实施例所述的发光基板。所述光学膜片设于所述发光基板的出光侧。
另一方面,提供一种显示装置,包括显示面板和前述任一项实施例所述的背光模组。所述背光模组设置于所述显示面板的非出光侧。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例提供的发光基板的一种俯视图;
图2为根据一些实施例提供的发光组件的俯视图;
图3为根据一些实施例提供的反射层的俯视图;
图4为图1中虚线框B对应的区域的放大图;
图5为沿图1中剖面线A-A’的一种截面图;
图6为沿图1中剖面线A-A’的另一种截面图;
图7为沿图1中剖面线A-A’的另一种截面图;
图8为沿图1中剖面线A-A’的另一种截面图;
图9为根据一些实施例提供的发光基板的另一种俯视图;
图10为沿图1中剖面线A-A’的另一种截面图;
图11为根据一些实施例提供的发光基板的制备方法的一种流程图;
图12为根据一些实施例提供的发光基板的制备方法的制备过程图;
图13为根据一些实施例提供的发光基板的制备方法的另一种流程图;
图14为根据一些实施例提供的背光模组的截面图;
图15为根据一些实施例提供的显示装置的截面图;
图16为根据一些实施例提供的显示装置的俯视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着显示技术的发展,微LED作为背光源的产品逐渐受到青睐。在微LED作为背光源的产品中,会在完成固晶工艺后,例如在将发光器件焊接在衬底上,得到发光组件后,将反射层贴附在发光组件上,并使反射层上开设的开孔与发光器件对准,使得发光器件发出的光线可以从开孔中有效射出。
在相关技术中,将反射层贴附至发光组件后,发光组件上至少部分发光器件的出光效果出现较大程度的下降,例如部分发光器件发出的光线强度和亮度均有所降低。
经本公开发明人发现,在反射层贴附至发光组件后,反射层上的开孔无法与发光器件对准,反射层会盖住部分发光器件,导致发光器件发出的光线受到反射层的遮挡,从而使得发光组件上至少部分发光器件的出光效果急速下降,影响了微LED作为背光源的产品的显示效果,降低了产品的成品率。
为解决上述技术问题,本公开实施例提供一种发光基板100。
如图1所示,该发光基板100包括发光组件10和反射层20。反射层20设于发光组件10的出光侧(光线射出的一侧)。
如图2所示,发光组件10包括衬底1和设置在衬底1上的多个发光器件M。多个发光器件M呈阵列分布。
其中,发光器件M可以为微LED,例如为Mini LED,或者为Micro LED。
示例性地,如图2所示,发光组件10还包括衬底1,多个发光器件M设置在衬底1上,例如,发光器件M焊接在衬底1上。
示例性地,多个发光器件M与衬底1电连接,例如,多个发光器件M与衬底1上的信号线电连接。
示例性地,衬底1可以包括诸如玻璃衬底、石英衬底、蓝宝石衬底、陶瓷衬底等中的任一种。
示例性地,衬底1可以为半导体衬底。半导体衬底为诸如以硅或碳化硅等为材料的单晶半导体衬底或多晶半导体衬底、硅锗等的化合物半导体衬底、SOI(Silicon On Insulator;绝缘体上硅)衬底等中的任一种。
示例性地,衬底1还可以包括诸如环氧树脂、三嗪、硅树脂或聚酰亚胺的有机树脂材料。
示例性地,衬底1还可以是FR4类型印刷电路板(PCB),或者可以是易于变形的柔性PCB。
示例性地,衬底1还可以包括诸如氮化硅、AlN或Al 2O 3的陶瓷材料,或者金属或金属化合物,或者金属芯印刷电路板(MCPCB)或金属覆铜层压板(MCCL)中的任一种。
示例性地,如图2所示,衬底1上设有焊盘P,焊盘P为裸露的导电材料。发光器件M通过焊盘P固定在衬底1上,并通过焊盘P与衬底1上的信号线电连接。
示例性地,衬底1可以布置有多个器件安装区,发光器件M对应设置在器件安装区。每个器件安装区内可以包括至少一个第一连接垫和至少一个第二连接垫。在同一个器件安装区内的第一连接垫和第二连接垫可以与同一个发光器件M的电极引脚电连接,例如,第一连接垫与发光器件M的N极引 脚对应电连接,第二连接垫与发光器件M的P极引脚对应电连接。
衬底1还可以包括与至少一个第一连接垫和至少一个第二连接垫电连接的电路图案,以便使多个发光器件M彼此串联和/或并联连接。
示例性地,衬底1可以被配置为遮挡可见光(对可见光具有非透过性)。当衬底1遮挡可见光时,可以抑制环境光从外部进入到形成在衬底1上的发光器件M,从而可以避免环境光干扰发光器件M的正常发光。需要说明的是,本公开实施例并不局限于此,衬底1也可以对可见光具有透过性。
如图3所示,反射层20设有呈阵列分布的多个开孔K。
如图1所示,多个发光器件M与多个开孔K一一对应,多个发光器件M位于多个开孔K内。通过使发光器件M设于开孔K内,可以避免反射层20遮挡发光器件M射出的光线,保证发光基板100的出光效果。
如图4所示,发光器件M的中心M1,与发光器件M所在开孔K的中心K1,在预设方向X上的间距d为0mm~0.1mm。例如,间距d可以为0mm、0.001mm、0.008mm、0.01mm、0.035mm、0.0785mm或0.1mm。
需要说明的是,前述“发光器件M的中心M1”可以为发光器件M的平行于衬底1的截面的几何中心,前述“开孔K的中心K1”可以为开孔K的平行于衬底1的截面的几何中心。
示例性地,在将前述反射层20贴附至发光组件10之前,沿预设方向X,设置反射层20上距离最远的两个开孔K的中心之间的距离,小于沿预设方向X,发光组件10上距离最远的两个发光器件M的中心之间的距离。也即,在将前述反射层20贴附至发光组件10之前,预先缩小反射层20的尺寸,从而使得反射层20预先缩小的量可以抵消反射层20在贴附于发光组件10的过程中发生的延展量,从而使得反射层20贴附至发光组件10后,发光器件M的中心M1,与发光器件M所在开孔K的中心K1,在预设方向X上的间距d可以控制在0mm~0.1mm,极大地提高了开孔K和发光器件M的对准精度。
需要说明的是,发光器件M的中心M1,与发光器件M所在开孔K的中心K1,在预设方向X上的间距d为忽略工艺误差,例如忽略温度、器械精度等干扰因素后的理想数值,在实际产品制备过程中,可能会存在略微的工艺偏差,本公开实施例对此并不进行限制。
预设方向X平行于发光组件10的一条侧边。例如,预设方向X平行于发光组件10的衬底1的一条侧边。
示例性地,预设方向X为发光基板100的制备过程中,反射层20贴附在发光组件10上时的贴附方向。
通过将发光器件M的中心M1与发光器件M所在开孔K的中心K1,在预设方向X上的间距d控制在0mm~0.1mm,提高反射层20的开孔K与发光器件M的对准精度,从而有效避免反射层20盖住发光器件M,避免反射层20遮挡发光器件M发出的光线的传输路径,从而提高发光器件M的出光效率,优化发光基板100的发光效果。
在一些实施例中,如图1和图3所示,反射层20具有相对的第一边20a和第二边20b,第一边20a和第二边20b均垂直于预设方向X。
在第一边20a与反射层20的平行于第一边20a的中心线La之间的区域内,发光器件M的中心M1(参阅图4),与发光器件M所在开孔K的中心K1(参阅图4),在预设方向X上的间距d(参阅图4)为0mm~0.05mm。例如,间距d可以为0mm、0.001mm、0.008mm、0.01mm、0.035mm、0.0475mm或0.05mm。
通过将在第一边20a与反射层20的平行于第一边20a的中心线La之间的区域内的,发光器件M的中心M1与发光器件M所在开孔K的中心K1,在预设方向X上的间距d控制在0mm~0.05mm,进一步提高反射层20的开孔K与发光器件M的对准精度,提高在第一边20a与反射层20的平行于第一边20a的中心线La之间的区域内的发光器件M的出光效率,优化发光基板100的发光效果。
在一些实施例中,如图5所示,发光基板100还包括多个保护胶30。保护胶30的至少部分设于开孔K内,且保护胶30包裹位于开孔K内的发光器件M。
示例性地,保护胶30可以为胶水形态,采用点胶机将胶水形态的保护胶30喷涂至发光器件M上(即点胶),并对保护胶30进行固化,使其形成如图5所示的半球形透镜。
保护胶30被配置为,对发光器件M进行封装,以便保护发光器件M免受外界环境中水汽或者外力的损害,同时,保护胶30作为半球形透镜覆盖在发光器件M上,可以提升发光器件M的发光效果。
在示例性实施例中,保护胶30填充并覆盖开孔K。可以对反射片20的开孔K形成一定的保护作用,避免开孔K在后续的装配过程中受到损伤。
多个保护胶30中,相邻的两个保护胶30之间间隔设置。
示例性地,相邻保护胶30之间具有间距,便于保护胶30形成半球形,从而提高发光基板100的发光效果。
经本公开发明人研究发现,在相关技术中,保护胶覆盖发光器件并固化 完成后,保护胶内部封存了大量的气泡,尤其在开孔的侧壁与发光组件接触的位置存在较大的气泡,对发光器件的发光造成严重的干扰,降低了发光基板的发光效果。
为解决上述技术问题,在一些实施例中,本公开实施例提供的发光基板100中的开孔K呈敞口状。例如,参阅图6,沿衬底1的厚度方向方向,且由开孔K远离衬底1的一端指向开孔K靠近衬底1的一端,开孔K的孔径逐渐减小。
通过将开孔K设置为敞口状,可以增大空气的逸散空间,使得保护胶30在点胶过程中可以与开孔K的侧壁K3以及发光组件10充分地接触,避免由于保护胶30与开孔K的侧壁K3接触不充分,或者与发光组件10接触不充分,导致未接触位置存在空气残留,从而导致保护胶30固化后将残留的空气封存形成气泡的问题,从而可以避免气泡干扰发光器件M的出光路径,有效提高发光基板100的发光效果。
在示例性实施例中,如图6所示,开孔K的侧壁K3与衬底1之间的夹角θ呈钝角。
示例性地,开孔K的侧壁K3与衬底1之间的夹角θ可以为120°~150°。例如,开孔K的侧壁K3与发光组件10中的衬底1之间的夹角θ为130°~140°。例如,夹角θ可以为120°、125°、137°、142.5°或150°。
在示例性实施例中,开孔K的侧壁K3可以呈弧形,该弧形朝向开孔K的方向弯曲,弧形侧壁K3与衬底1相切,且该弧形对应的圆心角为锐角。弧形的侧壁K3使得开孔K的侧壁K3与发光组件10的接触位置更加圆滑,有利于保护胶30填充在开孔K内,避免保护胶30与开孔K的侧壁K3以及与发光组件10接触不充分导致气泡残留的问题,进一步提高发光基板100的发光效果。
在一些实施例中,保护胶30的触变指数为4.9~5.9。通过降低保护胶30的触变指数,使得保护胶30的点胶后的固化速度减缓,从而可以保证胶水形态的保护胶30可以充分地填充在开孔K的各个位置,使得开孔K内的空气得到及时的逸散,有效地解决保护胶30固化后封存气泡的问题,从而可以避免气泡干扰发光器件M的出光路径,有效提高发光基板100的发光效果。
在相关技术中,如图7所示,在对保护胶30’固化完成后,存在反射片20’收缩,发光器件M’脱落的问题,即发光器件M’相对于焊盘P’发生位移,导致发光器件M’从衬底1’上脱落。
为解决上述技术问题,在一些实施例中,本公开实施例提供的发光基板 100中的保护胶30的材料包括紫外光固化胶。该保护胶30在点胶完成后,可以通过紫外线照射实现固化。
通过设置保护胶30的材料为紫外光固化胶,避免对保护胶30进行固化的过程中采用高温烘烤方式,从而可以避免发光基板100处于高温环境,避免反射片20在高温环境中发生较大程度的由反射片20的四周朝向反射片20的中心的内缩情况,从而避免内缩的反射片20带动设置在反射片20上的保护胶30发生位移,导致被保护胶30覆盖着的发光器件M发生位移后脱落的问题,提高发光基板100的良品率。
在一些实施例中,保护胶30的固化温度小于反射层20的玻璃化转变温度。
需要说明的是,前述“玻璃化转变温度”为,反射层20由高弹态转变为玻璃态的临界温度,或者由玻璃态转变为高弹态的临界温度。在玻璃化转变温度以下,反射层20为玻璃材质,具有一定的脆性,在玻璃化转变温度以上,反射层20为柔性材质,具有较高的弹性。
随着温度的提高,在反射层20由玻璃态转变为高弹态的过程中,反射层20的分子链在高温下活动能力增加,反射层20的内应力使得反射层20由四周朝向中心收缩。
通过设置保护胶30的固化温度小于反射层20的玻璃化转变温度,可以一定程度上避免反射层20发生玻璃态至高弹态的转变,减少反射层20的内缩的程度,从而减少保护胶30的位移情况,避免保护胶30带动发光器件M发生位移后脱落,提高发光基板100的良品率。
示例性地,反射层20的材料可以包括聚对苯二甲酸乙二醇酯,其玻璃化转变温度大致为100℃~120℃。
示例性地,设置保护胶30的固化温度大致为80℃~100℃。从而可以控制反射片20所处的环境温度小于反射层20的玻璃化转变温度,减少反射层20的内缩的程度。
在示例性实施例中,保护胶30的材料包括铂类络合催化剂,例如包括甲基乙烯基硅氧配位铂催化剂,和/或,铂-二乙烯基四甲基二硅氧烷催化剂。
示例性地,保护胶30的材料可以包括有机硅树脂。有机硅树脂是一种具有高度交联结构的聚硅氧烷聚合物,其固化机理是在加热条件下,硅树脂材料中的硅与交联剂中的氢发生加成反应,交联形成三维网状结构,完成固化。
当保护胶30的固化条件为150℃/1h时,反射层20会发生较大程度的内缩,容易导致发光器件M脱落,然而当降低保护胶30的固化温度至反射层 20的玻璃化转变温度以下时,固化时间较长,例如在100℃的温度下需要固化6h,严重影响产品生产效率。
通过在保护胶30中添加铂类络合催化剂,例如包括甲基乙烯基硅氧配位铂催化剂,和/或,铂-二乙烯基四甲基二硅氧烷催化剂,可以加快硅氢加成反应,从而减少保护胶30的固化时间,保证生产效率,同时还能保持保护胶30的固化温度处于反射层20的玻璃化转变温度以下,避免反射层20内缩导致发光器件M脱落的问题,提高发光基板100的良品率。
在一些实施例中,如图8所示,发光基板100还包括粘接层40。
如图8所示,粘接层40设于反射层20靠近发光组件10的一侧,粘接层40避开开孔K设置。
如图9所示,粘接层40的侧边边界40a,超出反射层20的侧边边界20a。
粘接层40被配置为,将反射层20粘接至发光组件10,例如粘接至发光组件10的衬底1上。
在一些实施例中,如图9所示,粘接层40的超出部分包括依次远离粘接层中心40b的第一子区域41和第二子区域42,第二子区域42围绕第一子区域41设置。
在一些实施例中,如图9所示,第一子区域41的宽度d3为0.002mm~0.005mm,例如,第一子区域41的宽度d3可以为0.002mm、0.0025mm、0.00348mm、0.004mm或0.005mm。
第二子区域42的宽度d 4=0.5×A×L 3,其中,A为反射层20的收缩率,L 3为反射层20沿预设方向X上的长度。
需要说明的是,反射层20的收缩率A为反射层20在高温环境下(例如在反射层20的玻璃化转变温度下)的收缩率。例如,反射层20在150℃/1h的烘烤条件下的收缩率大约为0.07%~0.08%。
在一些实施例中,如图10所示,发光基板100还包括白油层50。
如图10所示,白油层50设于衬底1和反射层20之间,白油层50上设有多个开口N,通过开口N露出发光器件M,避免白油层50遮挡发光器件M发出的光线。
即,白油层50设于发光组件10和反射层20之间,白油层50避开发光器件M设置。
示例性地,如图10所示,白油层50设于发光组件10的衬底1和粘接层40之间。
示例性地,白油层50可以包括树脂(例如,环氧树脂、聚四氟乙烯树脂)、 二氧化钛(化学式TiO 2)以及有机溶剂(例如,二丙二醇甲醚)等。
本公开实施例还提供一种发光基板100的制备方法。如图11所示,该制备方法包括:
S1:提供发光组件。
如图12所示,发光组件10包括衬底1和设置在衬底1上呈阵列分布的多个发光器件M。
示例性地,如图12所示,发光组件10还包括衬底1,发光器件M焊接在衬底1上。
如图12所示,在步骤S1中,沿预设方向X,发光组件10上距离最远的两个发光器件M的中心之间的距离为第一尺寸d1。
S2:提供反射层。
如图12所示,反射层20设有呈阵列分布的多个开孔K,多个开孔K的数量与多个发光器件M的数量相等。
如图12所示,在步骤S2中,沿预设方向X,反射层20上距离最远的两个开孔K的中心之间的距离为第二尺寸d2。
如图12所示,第二尺寸d2小于第一尺寸d1。
示例性地,如图12所示,反射片20的一侧设有粘接层40,粘接层40被配置为将反射片20固定在发光组件10上。
S3:沿预设方向将反射层贴附至发光组件。
如图12所示,使多个发光器件M分别位于多个开孔K内。
示例性地,预设方向X为反射层20的贴附方向,该预设方向X可以平行于发光组件10的一条侧边。
示例性地,如图12所示,在步骤S3之后,沿预设方向X,发光组件10上距离最远的两个发光器件M的中心之间的距离,与反射层20上距离最远的两个开孔K的中心之间的距离大致相等。
通过设置第二尺寸d2小于第一尺寸d1,即在反射层20贴附于发光组件10之前,预先缩小反射层20的沿预设方向X上的尺寸,从而使得预先缩小的量可以抵消反射层20在贴附于发光组件10的过程中发生的延展量,从而可以避免反射层20在贴附过程中发生延展后盖住发光器件M,遮挡发光器件M发出的光线的传输路径的问题,从而提高发光器件M的出光效率,优化发光基板100的发光效果。
示例性地,通过本公开实施例提供的制备方法制备得到的发光基板100,可以使得发光器件M的中心M1与发光器件M所在开孔K的中心K1,在预 设方向X上的间距d控制在0mm~0.1mm以内,极大地提高了反射层20的开孔K与发光器件M的对准精度。
示例性地,如图12所示,发光基板100还包括离型膜60和保护膜70。离型膜60和保护膜70分设于未进行贴附之前的反射层20的两侧,离型膜60层20和保护膜70被配置为保护反射层20在转移过程中不受外界损伤,在进行反射层20的贴附过程中,离型膜60和保护膜70会被去除。
例如,如图12所示,在步骤S2中,反射层20的两侧分别设置离型膜60和保护膜70。在进行步骤S3之前,去除离型膜60,以便漏出涂覆于反射层20一侧的粘接层40,便于反射层20与发光组件10进行贴附。在进行步骤S3之后,去除保护膜70,漏出开孔K,便于进行保护胶30的点胶。
在一些实施例中,第一尺寸d1与第二尺寸d2之间的差值ΔL=S×L。其中,S为反射层20的延展系数,L为第二尺寸d2的数值。
需要说明的是,反射层20在贴附过程中会发生延展。前述“延展系数”为,沿贴附方向(例如预设方向X),反射层20的单位长度内发生的延展量,例如,在反射层20贴附之前,反射层20沿贴附方向上的长度为802.2mm,在反射层20贴附之后,反射层20沿贴附方向上的长度为802.5mm的情况下,反射层20的延展系数
Figure PCTCN2022092195-appb-000002
示例性地,反射层20的延展系数S与反射层20的材料、反射层20的制备条件例如温度、时长等相关。例如不同材料的反射层20的延展系数S不同。
通过设置第一尺寸d1与第二尺寸d2之间的差值ΔL的计算方法,使得前述制备方法可以应用于尺寸不同,发光器件M数量不同的任何发光基板100中。使得任何发光基板100中的反射层20贴附于发光组件10后,开孔K与发光器件M实现高精度对准,从而提高发光器件M的出光效率,优化发光基板100的发光效果。
在一些实施例中,参阅图1,发光组件10包括多行发光器件M,每行发光器件M包括沿预设方向X依次排列的多个发光器件M。
在反射层20被贴附之前,沿预设方向X,反射层20中相邻的两个开孔K的中心之间的距离
Figure PCTCN2022092195-appb-000003
其中,L 2为一行发光器件M中相邻的两个发光器件M的中心之间的距离,n为一行发光器件M所包括的发光器件M的数量。
通过设置在反射层20被贴附之前,沿预设方向X,反射层20中相邻的两个开孔K的中心之间的距离为
Figure PCTCN2022092195-appb-000004
使得前述实施例提供的制备方法可以应用于使用不同类型反射层20得发光基板100中,提高开孔K与发光器件M的对准精度,优化发光基板100的发光效果。
在一些实施例中,如图13所示,在步骤S3之后,前述制备方法还包括:
S4:对贴附有反射层的发光组件进行预烘烤。
通过预烘烤,使得反射层20在开孔K内填充保护胶30之前就发生收缩,可以避免反射层20的收缩带动保护胶30发生位移最终导致发光器件M脱落的问题。
示例性地,预烘烤的温度大于反射层20的玻璃化转变温度。即,可以是反射层20在开孔K内填充保护胶30之前进行玻璃态至高弹态的转变,从而使反射层20充分收缩,减少后续填充保护胶30后发生收缩的程度。
示例性地,预烘烤的温度大致为140℃~160℃。例如温度可以为140℃、143℃、145.5℃、150℃、157.9℃或160℃。预烘烤时长大致为10min~30min。例如预烘烤时长可以为10min、11min、15.6min、20min、28.75min或30min。
S5:在反射层的开孔内以及开孔上方设置保护胶。
示例性地,该实施例中,保护胶30的材料可以为有机硅树脂。
S6:对保护胶进行固化。
示例性地,该实施例中,采用高温烘烤对保护胶进行固化。
示例性地,固化温度大致为140℃~160℃。例如固化温度可以为140℃、143℃、145.5℃、150℃、157.95℃或160℃。固化时长大致为50min~70min。例如固化时长可以为50min、51min、55.6min、60min、68.75min或70min。
示例性地,经过预烘烤后,在步骤S6中,反射层20的收缩量可以控制在0.005mm以内。
通过对反射片20进行预烘烤,使得反射层20在开孔K内填充保护胶30之前就发生收缩,实现反射层20由玻璃态至高弹态的充分转变,从而可以使在开孔K内填充保护胶30之后进行保护胶30的固化过程中,反射层20的收缩量较小,从而避免保护胶30的较大程度的位移,从而避免保护胶30位移导致发光器件M脱落的问题,提高发光基板100的成品率。
在一些实施例中,在步骤S3之后,去除步骤S4,直接进行步骤S5和步骤S6,即,在步骤S3之后,前述制备方法还包括:
S5:在反射层的开孔内以及开孔上方设置保护胶。
示例性地,在该实施例中,保护胶30的材料可以包括有机硅树脂和铂类络合催化剂。例如,保护胶30的材料包括有机硅树脂和甲基乙烯基硅氧配位铂催化剂。和/或,保护胶30的材料包括有机硅树脂和铂-二乙烯基四甲基二硅氧烷催化剂。
S6:对保护胶进行固化。
示例性地,该实施例中,采用高温烘烤对保护胶进行固化。
示例性地,保护胶30的固化温度小于反射层20的玻璃化转变温度。
示例性地,固化温度大致为80℃~100℃,例如固化温度可以为80℃、83.358℃、85.5℃、90℃、97.95℃或100℃。固化时长大致为50min~70min。例如固化时长可以为50min、51min、55.6min、60min、68.75min或70min。
通过设置保护胶30的材料包括铂类络合催化剂,可以在不需要延长保护胶30的固化时间,避免降低生产效率的同时,将保护胶30的固化温度控制在反射层20的玻璃化转变温度以下,从而可以避免反射层20发生收缩,解决由于反射层20发生收缩带动保护胶30位移而导致发光器件M脱落的问题,提高发光基板100的成品率。
在一些实施例中,在步骤S3之后,去除步骤S4,直接进行步骤S5和步骤S6,即,在步骤S3之后,前述制备方法还包括:
S5:在反射层的开孔内以及开孔上方设置保护胶。
示例性地,在该实施例中,保护胶30的材料可以包括紫外光固化胶。
S6:对保护胶进行固化。
示例性地,在该实施例中,步骤S6包括:采用紫外光照射方法对保护胶30进行固化。
通过设置保护胶30的材料为紫外光固化胶,使得保护胶30的固化过程不需要采用高温烘烤,避免反射层20处于高温环境,从而避免反射层20发生收缩,解决由于反射层20发生收缩带动保护胶30位移而导致发光器件M脱落的问题,提高发光基板100的成品率。
在一些实施例中,如图14所示,本公开实施例还提供一种背光模组300,包括光学膜片200和前述任一项实施例的发光基板100。
示例性地,该发光基板100具有显示侧和非显示侧。显示侧即为发光基板100的光线射出的一侧,该非显示侧为与显示侧相对的一侧。
光学膜片200设于发光基板100的出光侧。
示例性地,光学膜片200可以为多层。光学膜片200包括匀光片和增光片等,可以调节发光器件M发光的光线的强度、均匀度等,从而可以提高显示装置1000的显示效果。
在一些实施例中,如图15和图16所示,本公开实施例还提供一种显示装置1000。
该显示装置1000包括显示面板400和前述任一项实施例所述的背光模组300。
该显示面板400可以为液晶显示面板。
示例性地,该显示面板400具有显示侧和非显示侧。显示侧即为显示面板400的光线射出从而实现画面显示的一侧,该非显示侧为与显示侧相对的一侧。
其中,背光模组300设于显示面板400的非显示侧。
该背光模组300设于显示面板400的非显示侧,可以为显示面板400提供背光源,实现显示面板400的发光显示。
本公开实施例中的显示装置1000所能实现的有益效果,与上述背光模组100所能达到的有益效果相同,此处不再赘述。
该显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期实施例可实施在多种电子装置中,或与多种电子装置关联,多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(Personal Digital Assistant,简称PDA)、虚拟现实(Virtual Reality,简称VR)显示器、手持式或便携式计算机、全球定位系统(Global Positioning System,简称GPS)接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种发光基板,包括:
    发光组件,包括衬底,以及设置在所述衬底上呈阵列分布的多个发光器件;
    反射层,位于所述发光组件的出光侧,所述反射层设有呈阵列分布的多个开孔,所述多个发光器件位于所述多个开孔内;
    其中,所述发光器件的中心,与所述发光器件所在开孔的中心,在预设方向上的间距为0mm~0.1mm;所述预设方向平行于所述衬底的一条侧边。
  2. 根据权利要求1所述的发光基板,其中,所述反射层具有相对的第一边和第二边,所述第一边和所述第二边均垂直于所述预设方向;
    在所述第一边与所述反射层的平行于所述第一边的中心线之间的区域内,所述发光器件的中心,与所述发光器件所在开孔的中心,在预设方向上的间距为0mm~0.05mm。
  3. 根据权利要求1或2所述的发光基板,其中,沿所述衬底的厚度方向,且由所述开孔远离所述衬底的一端指向所述开孔靠近所述衬底的一端,所述开孔的孔径逐渐减小。
  4. 根据权利要求3所述的发光基板,其中,所述开孔的侧壁与所述衬底之间的夹角呈钝角。
  5. 根据权利要求1~4中任一项所述的发光基板,还包括:
    多个保护胶,所述保护胶的至少部分设于所述开孔内,且所述保护胶包裹位于所述开孔内的所述发光器件。
  6. 根据权利要求5所述的发光基板,其中,所述保护胶填充并覆盖所述开孔;所述多个保护胶中,相邻的两个保护胶之间间隔设置。
  7. 根据权利要求5或6所述的发光基板,其中,所述保护胶的材料包括紫外光固化胶。
  8. 根据权利要求5或6所述的发光基板,其中,所述保护胶的固化温度小于所述反射层的玻璃化转变温度。
  9. 根据权利要求8所述的发光基板,其中,所述保护胶的材料包括甲基乙烯基硅氧配位铂催化剂,和/或,铂-二乙烯基四甲基二硅氧烷催化剂。
  10. 根据权利要求5或6所述的发光基板,其中,所述保护胶的触变指数为4.9~5.9。
  11. 根据权利要求1~10中任一项所述的发光基板,还包括:
    粘接层,设于所述反射层靠近所述发光组件的一侧,所述粘接层避开所述开孔设置;所述粘接层的侧边边界,超出所述反射层的侧边边界。
  12. 根据权利要求11所述的发光基板,其中,所述粘接层的超出部分包括依次远离所述粘接层中心的第一子区域和第二子区域,所述第二子区域围绕所述第一子区域设置。
  13. 根据权利要求12所述的发光基板,其中,所述第一子区域的宽度为0.002mm~0.005mm,所述第二子区域的宽度d 4=0.5×A×L 3,其中,A为所述反射层的收缩率,L 3为所述反射层沿所述预设方向上的长度。
  14. 根据权利要求1~13中任一项所述的发光基板,还包括:
    白油层,设于所述衬底和所述反射层之间,所述白油层上设有多个开口,通过所述开口露出所述发光器件。
  15. 一种发光基板的制备方法,包括:
    提供发光组件,所述发光组件包括衬底和设置在所述衬底上呈阵列分布的多个发光器件;沿预设方向,所述发光组件上距离最远的两个发光器件的中心之间的距离为第一尺寸;
    提供反射层,所述反射层设有呈阵列分布的多个开孔,所述多个开孔的数量与所述多个发光器件的数量相等;沿所述预设方向,所述反射层上距离最远的两个开孔的中心之间的距离为第二尺寸;所述第二尺寸小于所述第一尺寸;
    沿所述预设方向将所述反射层贴附至所述发光组件,使所述多个发光器件分别位于所述多个开孔内。
  16. 根据权利要求15所述的制备方法,其中,所述第一尺寸与所述第二尺寸之间的差值ΔL=S×L;其中,S为所述反射层的延展系数,L为所述第二尺寸。
  17. 根据权利要求16所述的制备方法,其中,所述发光组件包括多行发光器件,每行发光器件包括沿所述预设方向依次排列的多个发光器件;
    在所述反射层被贴附之前,沿所述预设方向,所述反射层中相邻的两个开孔的中心之间的距离
    Figure PCTCN2022092195-appb-100001
    其中,L 2为一行发光器件中相邻的两个发光器件的中心之间的距离,n为一行发光器件所包括的发光器件的数量。
  18. 根据权利要求15~17中任一项所述的制备方法,其中,所述沿所述预设方向将所述反射层贴附至所述发光组件之后,还包括:
    对贴附有所述反射层的发光组件进行预烘烤;
    在所述开孔内及所述开孔上方设置保护胶;
    对所述保护胶进行固化。
  19. 根据权利要求18所述的制备方法,其中,所述预烘烤的温度大致为140℃~160℃,烘烤时长大致为10min~30min;
    所述固化温度大致为140℃~160℃,固化时长大致为50min~70min。
  20. 根据权利要求15~17中任一项所述的制备方法,其中,所述沿所述预设方向将所述反射层贴附至所述发光组件之后,还包括:
    在所述开孔内及所述开孔上方设置保护胶;所述保护胶的固化温度小于所述反射层的玻璃化转变温度;
    对所述保护胶进行固化;所述固化温度大致为80℃~100℃,固化时长大致为50min~70min。
  21. 一种背光模组,包括:
    如权利要求1~14中任一项所述的发光基板;
    光学膜片,设于所述发光基板的出光侧。
  22. 一种显示装置,包括:
    显示面板;
    如权利要求21所述的背光模组,所述背光模组设置于所述显示面板的非出光侧。
PCT/CN2022/092195 2022-05-11 2022-05-11 发光基板及其制备方法、背光模组和显示装置 WO2023216133A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/246,404 US20240332469A1 (en) 2022-05-11 2022-05-11 Light-Emitting Substrate and Manufacturing Method Therefor, Backlight Module and Display Apparatus
PCT/CN2022/092195 WO2023216133A1 (zh) 2022-05-11 2022-05-11 发光基板及其制备方法、背光模组和显示装置
CN202280001181.2A CN117396801A (zh) 2022-05-11 2022-05-11 发光基板及其制备方法、背光模组和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092195 WO2023216133A1 (zh) 2022-05-11 2022-05-11 发光基板及其制备方法、背光模组和显示装置

Publications (1)

Publication Number Publication Date
WO2023216133A1 true WO2023216133A1 (zh) 2023-11-16

Family

ID=88729272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092195 WO2023216133A1 (zh) 2022-05-11 2022-05-11 发光基板及其制备方法、背光模组和显示装置

Country Status (3)

Country Link
US (1) US20240332469A1 (zh)
CN (1) CN117396801A (zh)
WO (1) WO2023216133A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292316A1 (en) * 2010-05-27 2011-12-01 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display apparatus
JP2012146426A (ja) * 2011-01-11 2012-08-02 Sharp Corp 照明装置及びこれを備える液晶表示装置
US20160252218A1 (en) * 2015-02-27 2016-09-01 Nichia Corporation Light emitting device
CN109581735A (zh) * 2017-09-28 2019-04-05 夏普株式会社 照明装置及具备其的显示装置
US20200159073A1 (en) * 2018-11-19 2020-05-21 Sharp Kabushiki Kaisha Lighting device and display device
CN111562701A (zh) * 2020-05-27 2020-08-21 深圳创维-Rgb电子有限公司 一种反射片、背光模组及显示装置
CN111752041A (zh) * 2020-07-08 2020-10-09 京东方科技集团股份有限公司 mini-LED灯板制备方法及反射结构
CN113296309A (zh) * 2020-02-24 2021-08-24 海信视像科技股份有限公司 一种显示装置
CN113721384A (zh) * 2020-05-25 2021-11-30 船井电机株式会社 面光源装置和显示装置
CN113777826A (zh) * 2020-06-10 2021-12-10 海信视像科技股份有限公司 一种显示装置
CN113833997A (zh) * 2020-06-05 2021-12-24 船井电机株式会社 发光装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292316A1 (en) * 2010-05-27 2011-12-01 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display apparatus
JP2012146426A (ja) * 2011-01-11 2012-08-02 Sharp Corp 照明装置及びこれを備える液晶表示装置
US20160252218A1 (en) * 2015-02-27 2016-09-01 Nichia Corporation Light emitting device
CN109581735A (zh) * 2017-09-28 2019-04-05 夏普株式会社 照明装置及具备其的显示装置
US20200159073A1 (en) * 2018-11-19 2020-05-21 Sharp Kabushiki Kaisha Lighting device and display device
CN113296309A (zh) * 2020-02-24 2021-08-24 海信视像科技股份有限公司 一种显示装置
CN113721384A (zh) * 2020-05-25 2021-11-30 船井电机株式会社 面光源装置和显示装置
CN111562701A (zh) * 2020-05-27 2020-08-21 深圳创维-Rgb电子有限公司 一种反射片、背光模组及显示装置
CN113833997A (zh) * 2020-06-05 2021-12-24 船井电机株式会社 发光装置
CN113777826A (zh) * 2020-06-10 2021-12-10 海信视像科技股份有限公司 一种显示装置
CN111752041A (zh) * 2020-07-08 2020-10-09 京东方科技集团股份有限公司 mini-LED灯板制备方法及反射结构

Also Published As

Publication number Publication date
CN117396801A (zh) 2024-01-12
US20240332469A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
US20220375911A1 (en) Backplane and method for manufacturing the same, and display device
US7969741B2 (en) Substrate structure
TWI765491B (zh) 顯示基板及其製備方法、顯示裝置
CN103258948A (zh) 发光器件
CN105632339A (zh) 显示设备
CN113570966A (zh) 一种显示装置及拼接屏
CN103474582B (zh) 电致发光装置及其制备方法
EP1732132B1 (en) Method for packaging an array-type modularized light-emitting diode structure
CN113920895B (zh) 显示基板及其制备方法、显示装置
WO2022151780A1 (zh) 一种led显示模组及其制作方法
WO2023216133A1 (zh) 发光基板及其制备方法、背光模组和显示装置
US20210158767A1 (en) Display device and assembling method thereof
CN111384080B (zh) 一种微型显示面板、制程方法及拼接显示面板
WO2023185312A1 (zh) 背光模组、显示模组和显示装置
WO2022227469A1 (zh) 发光基板及显示装置
CN112736178B (zh) mini-LED装置及制作方法
TW202129949A (zh) 顯示基板及其製備方法、顯示裝置
WO2024103933A1 (zh) 发光基板、背光模组、显示模组及显示装置
WO2024031563A1 (zh) 显示面板、显示装置及拼接显示装置
US20240274763A1 (en) Backlight module and manufacturing method therefor, and display apparatus
CN113921509B (zh) 显示面板、显示装置及显示面板的制备方法
WO2023221815A9 (zh) 发光基板、背光模组及显示装置
WO2024197749A1 (zh) 发光基板及其制备方法、背光模组、显示装置
KR102718824B1 (ko) 디스플레이 기판 및 그 제조 방법 및 디스플레이 디바이스
WO2024000411A1 (zh) 发光基板及其制备方法、背光模组及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001181.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18246404

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941093

Country of ref document: EP

Kind code of ref document: A1