WO2023214820A1 - 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2023214820A1
WO2023214820A1 PCT/KR2023/006112 KR2023006112W WO2023214820A1 WO 2023214820 A1 WO2023214820 A1 WO 2023214820A1 KR 2023006112 W KR2023006112 W KR 2023006112W WO 2023214820 A1 WO2023214820 A1 WO 2023214820A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
organic electroluminescent
compound
electroluminescent device
Prior art date
Application number
PCT/KR2023/006112
Other languages
English (en)
French (fr)
Inventor
정화순
박호철
김영배
조현종
송효범
김근형
Original Assignee
솔루스첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔루스첨단소재 주식회사 filed Critical 솔루스첨단소재 주식회사
Publication of WO2023214820A1 publication Critical patent/WO2023214820A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a composition for an organic electroluminescent device and an organic electroluminescent device containing the same.
  • 'organic EL device When a voltage is applied between two electrodes in an organic electroluminescent device (hereinafter referred to as 'organic EL device'), holes are injected from the anode and electrons are injected from the cathode into the organic material layer. When the injected hole and electron meet, an exciton is formed, and when this exciton falls to the ground state, light is emitted. At this time, the material used as the organic material layer can be classified into light-emitting material, hole injection material, hole transport material, electron transport material, electron injection material, etc., depending on its function.
  • Materials for forming the light-emitting layer of an organic EL device can be classified into blue, green, and red light-emitting materials depending on the color of the light.
  • yellow and orange luminescent materials are also used as luminescent materials to realize better natural colors.
  • a host/dopant system can be used as a luminescent material.
  • Dopant materials can be divided into fluorescent dopants using organic materials and phosphorescent dopants using metal complex compounds containing heavy atoms such as Ir and Pt. The development of these phosphorescent materials can theoretically improve luminous efficiency by up to 4 times compared to fluorescence, so interest is focused on not only phosphorescent dopants but also phosphorescent host materials.
  • NPB, BCP, Alq 3 , etc. are widely known as hole blocking layers and electron transport layers, and anthracene derivatives are reported as fluorescent dopant/host materials for light emitting materials.
  • phosphorescent materials that have great advantages in terms of improving efficiency include metal complex compounds containing Ir such as Firpic, Ir(ppy) 3 , (acac)Ir(btp) 2 , etc., which are used as blue, green, and red dopant materials. It is being used as.
  • CBP has shown excellent properties as a phosphorescent host material.
  • the purpose of the present invention is to provide a composition that can implement a high-efficiency and long-life organic electroluminescent device.
  • Another object of the present invention is to provide an organic electroluminescent device with low driving voltage, high luminous efficiency, and improved lifespan by including the above-described composition as an organic layer material (eg, light-emitting layer material).
  • an organic layer material eg, light-emitting layer material
  • the present invention provides a composition for an organic electroluminescent device comprising a first host represented by the following formula (1) and a second host represented by the following formula (2):
  • a, d, f and h are integers from 0 to 3
  • b, c, e, g, i and j are each integers from 0 to 4,
  • k, l, and m are each integers from 0 to 5
  • n1 is an integer from 0 to 4,
  • n2 and n3 are 0 or 1 respectively,
  • X 1 is selected from the group consisting of O, S, Se, N(Ar 3 ), C(Ar 4 )(Ar 5 ), and Si(Ar 6 )(Ar 7 );
  • Y 1 and Y 2 are the same or different from each other and are each independently N or C(Ar 8 ), where at least one of Y 1 and Y 2 is N,
  • Ar 1 to Ar 8 and R 1 to R 7 are the same or different from each other, and are each independently hydrogen, deuterium (D), halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, 5 to 60 nuclear atoms heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6
  • alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group, and arylsilyl group of Ar 1 to Ar 8 and R 1 to R 7 , alkyl boron group, aryl boron group, alkyl phosphine oxide group, aryl phosphine group, aryl phosphine oxide group, aryl amine group, and condensed ring are each independently deuterium, halogen, cyano group, nitro group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, Heteroaryl group with 5 to 60
  • the present invention is an anode; cathode; and one or more organic material layers interposed between the anode and the cathode, wherein the one or more organic material layers include the above-described composition.
  • an organic electric field that not only has low driving voltage, high efficiency, and long life characteristics, but also can exhibit excellent phosphorescence emission characteristics.
  • a light emitting device can be implemented.
  • FIG. 1 is a cross-sectional view showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
  • 300 organic material layer
  • 310 hole transport area
  • 311 hole injection layer
  • 312 hole transport layer
  • 331 electron transport layer
  • 332 electron injection layer
  • the composition for an organic electroluminescent device is a composition that forms an organic material layer (e.g., a light-emitting layer) of an organic electroluminescent device, and includes a first host represented by Formula 1, and a second host represented by Formula 2. do.
  • the first host is a compound having a structure in which three carbazoles are directly connected without a linker, and is a P-type host with relatively strong hole characteristics.
  • the second host is a compound having a structure in which a dibenzo moiety and a benzene moiety are each bonded directly or through a linker group to the phenyl portion of the 2,4,6-triphenyl-N-containing heterocyclic moiety.
  • a, d, and f are each integers from 0 to 3
  • b, c, and e are each integers from 0 to 4.
  • D deuterium
  • a, d, and f are each integers of 1 to 3
  • b, c, and e are each integers of 1 to 4
  • the number of deuterium (D) included in the first host may be at least 13, specifically at least 21.
  • This first host can simultaneously implement the characteristics of an organic electroluminescent device, such as low voltage, high efficiency, and long lifespan, by increasing the stability of the chemical structure through deuterium (D) substitution.
  • Such deuterium may be substituted with another substituent (R).
  • R substituents
  • the other substituent (R) is a halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 Cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, aryl group with C 6 to C 60 , heteroaryl group with 5 to 60 nuclear atoms, alkyloxy group with C 1 to C 40 , C 6 to C 60 Aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C It may be selected from
  • Ar 1 and Ar 2 are the same as or different from each other, and are each independently selected from hydrogen, deuterium (D), halogen group, cyano group, nitro group, amino group, C 1 to C 40 Alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, nucleus Heteroaryl group having 5 to 60 atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphin
  • Ar 1 and Ar 2 may be the same or different from each other, and may each independently be a substituent selected from the group consisting of the following substituents S1 to S4.
  • the first host represented by Formula 1 may be a compound represented by Formula 3 below, but is not limited thereto.
  • a, b, c, d, e, and f are each as defined in Formula 1 above,
  • n1 and m2 are 0 or 1, respectively.
  • the first host represented by Formula 1 may have various structures depending on the connection position between each carbazole moiety. According to one example, the first host represented by Formula 1 may be a compound represented by Formula 4 below.
  • a, b, c, d, e, and f are each as defined in Formula 1 above,
  • n1 and m2 are 0 or 1, respectively.
  • the first host represented by Formula 1 according to the present invention described above may be further specified by the following exemplary compounds, such as compounds A-1 to D-4, but is not limited thereto.
  • Y 1 and Y 2 are the same or different from each other and are each independently N or C(Ar 8 ), provided that at least one of Y 1 and Y 2 is N. At this time, when C(Ar 8 ) is plural, they may be the same or different from each other.
  • the second host represented by Formula 2 may be a compound represented by any one of Formulas 5 to 7 below.
  • R 1 to R 7 , n1 to n3 are each as defined in Formula 1 above,
  • Y 1 and Y 2 are each independently C(Ar 8 ),
  • Ar 8 is as defined in Formula 1 above.
  • n1 is an integer from 0 to 4, and n2 and n3 are each 0 or 1. According to one example, n1 may be 0 or 1, n2 may be 0, and n3 may be 0 or 1.
  • Ar 3 to Ar 8 are the same or different from each other, and are each independently hydrogen, deuterium (D), halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 ⁇ C 40 alkylphosphine oxide group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C
  • Ar 3 -R 1 , Ar 3 -R 2 , Ar 4 -Ar 5 , Ar 6 -Ar 7 , Ar 4 -R 1 , Ar 4 -R 2 , Ar 6 -R 1 , Ar 6 -R 2 , etc.) can form a condensed ring.
  • Ar 3 to Ar 8 are the same or different from each other, and are each independently selected from the group consisting of an alkyl group of C 1 ⁇ C 40 , an aryl group of C 6 ⁇ C 60 , and a heteroaryl group of 5 to 60 nuclear atoms. , or they may be added to adjacent groups (e.g.
  • Ar 3 -R 1 , Ar 3 -R 2 , Ar 4 -Ar 5 , Ar 6 -Ar 7 , Ar 4 -R 1 , Ar 4 -R 2 , Ar 6 -R 1 , Ar 6 -R 2 , etc.) can form a condensed ring.
  • the condensed ring is a C 3 ⁇ C 60 condensed aliphatic ring (specifically, a C 3 ⁇ C 30 condensed aliphatic ring), a C 6 ⁇ C 60 condensed aromatic ring (specifically, a C 6 ⁇ C 30 condensed ring) aromatic ring), a 5- to 60-membered fused heteroaromatic ring (specifically, a 5- to 30-membered fused heteroaromatic ring), a C 3 to C 60 spiro ring, and combinations thereof. There may be one or more selected types.
  • the moiety may be a moiety selected from the group consisting of the following moieties Dz-1 to Dz-7, but is not limited thereto.
  • h is an integer from 0 to 3
  • g, i and j are each an integer from 0 to 4
  • k, l and m are each an integer from 0 to 5.
  • g, h, i, k, k, l and m are each 0, it means that hydrogen is non-substituted with substituents R 1 to R 7 .
  • R 1 to R 7 are the same or different from each other, and are each independently deuterium (D), halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkyl group Nyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group with 5 to 60 nuclear atoms, C 1 to C 40 alkyl group.
  • D deuterium
  • Period C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, phosphine oxide group, C 1 to C 40 alkylphosphine oxide group, C 6 to C 60 arylphosphine group, C 6 to C 60 arylphosphine oxide group and C 6 to C 60 arylamine group. or they may form a condensed ring with adjacent groups.
  • R 1 to R 7 are the same or different from each other, and are each independently hydrogen, a halogen group, a cyano group, a nitro group, an amino group, a C 1 to C 40 alkyl group, or a C 6 to C 60 group. It may be selected from the group consisting of an aryl group and a heteroaryl group having 5 to 60 nuclear atoms.
  • Ar 3 to Ar 8 and R 1 to R 7 alkyl group, alkenyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group, arylsilyl group, alkyl boron group, aryl boron group, alkyl phosphine oxide group, aryl phosphine group, aryl phosphine oxide group, aryl amine group and condensed ring are each independently selected from deuterium, halogen, cyano group, nitro group, C 2 to C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group with 3 to 40 nuclear atoms, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group , heteroaryl group with 5
  • the second host represented by Formula 2 may be a compound represented by Formula 8 or 9 below, but is not limited thereto.
  • g, h, I, j, k, m, R 1 to R 5 , R 7 , n1 to n3 are each as defined in Formula 1 above,
  • X 2 is O or S.
  • the second host represented by Formula 2 according to the present invention described above may be further specified by the following exemplary compounds, such as compounds E-1 to E-10, but is not limited thereto.
  • alkyl refers to a monovalent substituent derived from a straight-chain or branched-chain saturated hydrocarbon having 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, and hexyl.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having one or more carbon-carbon double bonds. Examples thereof include vinyl, allyl, isopropenyl, 2-butenyl, etc., but are not limited thereto.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having one or more carbon-carbon triple bonds. Examples thereof include ethynyl, 2-propynyl, etc., but are not limited thereto.
  • cycloalkyl refers to a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, and adamantine.
  • heterocycloalkyl refers to a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, and at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or it is substituted with a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine and piperazine.
  • aryl refers to a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms, either a single ring or a combination of two or more rings.
  • a form in which two or more rings are simply attached to each other (pendant) or condensed may also be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, and anthryl.
  • heteroaryl refers to a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At this time, at least one carbon, preferably 1 to 3 carbons, of the ring is replaced with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are simply pendant or condensed with each other may be included, and a condensed form with an aryl group may also be included.
  • heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl, phenoxathienyl, indolizinyl, and indolyl ( Polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, etc., but are not limited thereto.
  • alkyloxy is a monovalent substituent represented by R'O-, where R' refers to alkyl having 1 to 40 carbon atoms and has a linear, branched, or cyclic structure. may include. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, and pentoxy.
  • aryloxy is a monovalent substituent represented by RO-, where R refers to aryl having 5 to 40 carbon atoms.
  • R refers to aryl having 5 to 40 carbon atoms.
  • Examples of such aryloxy include phenyloxy, naphthyloxy, diphenyloxy, etc., but are not limited thereto.
  • alkylsilyl refers to silyl substituted with alkyl having 1 to 40 carbon atoms, and includes not only mono-, but also di- and tri-alkylsilyl.
  • arylsilyl refers to silyl substituted with aryl having 5 to 60 carbon atoms, and includes polyarylsilyl such as mono-, di-, and tri-arylsilyl.
  • alkyl boron group refers to a boron group substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron group refers to a boron group substituted with aryl having 6 to 60 carbon atoms.
  • alkylphosphinyl group refers to a phosphine group substituted with alkyl having 1 to 40 carbon atoms, and includes mono- as well as di-alkylphosphinyl groups.
  • arylphosphinyl group refers to a phosphine group substituted with monoaryl or diaryl having 6 to 60 carbon atoms, and includes not only mono- but also di-arylphosphinyl groups.
  • arylamine refers to an amine substituted with aryl having 6 to 60 carbon atoms, and includes mono- as well as di-arylamine.
  • heteroarylamine refers to an amine substituted with heteroaryl having 5 to 60 nuclear atoms, and includes mono- as well as di-heteroarylamine.
  • (aryl)(heteroaryl)amine refers to an amine substituted with aryl having 6 to 60 carbon atoms and heteroaryl having 5 to 60 nuclear atoms.
  • condensed ring refers to a condensed aliphatic ring having 3 to 40 carbon atoms, a fused aromatic ring having 6 to 60 carbon atoms, a fused heteroaliphatic ring having 3 to 60 nuclear atoms, a fused heteroaromatic ring having 5 to 60 nuclear atoms, It refers to a spiro ring having 3 to 60 carbon atoms or a combination thereof.
  • the above-described first host and second host may be included in a weight ratio of 99:1 to 1:99.
  • bipolar characteristics can be implemented more effectively, improving efficiency and lifespan at the same time.
  • the composition of the present invention may additionally include a phosphorescent dopant.
  • the phosphorescent dopant is a material that emits light when mixed in a small amount with the first and second hosts, and is not particularly limited as long as it is known in the art. Non-limiting examples include iridium (Ir) or platinum (Pt). There are metal complex compounds, etc. These dopants can cause light emission by multiple excitation, which excites the dopant to a triplet state or higher.
  • the dopant can be classified into red dopant, green dopant, and blue dopant. Red dopant, green dopant, and blue dopant commonly known in the art can be used without particular limitation.
  • red dopants include PtOEP (Pt(II) octaethylporphine), Ir(piq)3 (tris(2-phenylisoquinoline)iridium: tris(2-phenylisoquinoline) )iridium), Btp2Ir(acac) (bis(2-(2'-benzothienyl)-pyridinato-N,C3')iridium(acetylacetonate): bis(2-(2'-benzothienyl)-pyridinato-N ,C3')iridium (acetylacetonate)), or mixtures of two or more thereof.
  • PtOEP Pt(II) octaethylporphine
  • Ir(piq)3 tris(2-phenylisoquinoline)iridium: tris(2-phenylisoquinoline) )iridium
  • green dopants include Ir(ppy) 3 (tris(2-phenylpyridine) iridium: tris(2-phenylpyridine) iridium), Ir(ppy) 2 (acac) (Bis(2-phenylpyridine)( Acetylacetonato)iridium(III): Bis(2-phenylpyridine)(acetylaceto)iridium(III)), Ir(mppy) 3 (tris(2-(4-tolyl)phenylpiridine)iridium: Tris(2-(4-) tolyl) phenylpyridine) iridium), or mixtures of two or more thereof.
  • blue dopants include F2Irpic (Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): bis[3,5-difluoro-2-( 2-pyridyl) phenyl (picolinato) iridium (III)), (F 2 ppy) 2 Ir (tmd), Ir (dfppz) 3 , or mixtures of two or more thereof.
  • F2Irpic Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): bis[3,5-difluoro-2-( 2-pyridyl) phenyl (picolinato) iridium (III)), (F 2 ppy) 2 Ir (tmd), Ir (dfppz) 3 , or mixtures of two or more thereof.
  • the content of the above-described dopant is not particularly limited, and may be, for example, about 0 to 10% by weight, specifically about 0.1 to 10% by weight, and more specifically about 1 to 30% by weight, based on the total amount of the above-described composition.
  • the organic electroluminescent device of one embodiment according to the present invention includes an anode; cathode; and one or more organic material layers interposed between the anode and the cathode, wherein the one or more organic material layers include the composition described above.
  • the one or more organic layers include a light-emitting layer, and the composition may be included as a host for the light-emitting layer.
  • the organic electroluminescent device of the present invention not only has low driving voltage, high efficiency, and long lifespan characteristics, but can also exhibit excellent phosphorescence emission characteristics.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device When described with reference to FIG. 1, an organic electroluminescent device according to an embodiment of the present invention includes an anode 100 disposed on a substrate (not shown); A cathode 200 disposed opposite to the anode; It includes one or more organic material layers 300 between the anode 100 and the cathode 200, and the one or more organic material layers 300 include a hole transport region 310, a light emitting layer 320, and an electron transport region 330. may include. At this time, the light emitting layer 320 may include the above-described composition as a host.
  • the organic electroluminescent device of the present invention may further include a capping layer (not shown) disposed on the cathode 200.
  • the anode 100 is mainly disposed on the substrate and is electrically connected to the driving thin film transistor to receive driving current from the driving thin film transistor. Since the anode 100 is made of a material with a relatively high work function, holes are injected into the organic material layer 300, that is, the hole transport region 310 (eg, hole injection layer 311).
  • the material forming this anode is not particularly limited, and common materials known in the art can be used.
  • metals such as vanadium, chromium, copper, zinc, gold, etc.; alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al, SnO 2 :Sb; Conductive polymers such as polythiophene, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole, and polyaniline; and carbon black, but are not limited thereto.
  • the method of manufacturing the anode is not particularly limited, and can be manufactured through conventional methods known in the art.
  • the anode material can be formed by coating the anode material on a substrate through known thin film formation methods such as sputtering, ion plating, vacuum deposition, and spin coating.
  • the substrate is a plate-shaped member that supports the organic electroluminescent device, and includes, for example, a silicon wafer, quartz, glass plate, metal plate, plastic film, and sheet, but is not limited thereto.
  • the cathode 200 is an electrode disposed opposite to the anode, and is specifically disposed on the electron transport region 330. Since the cathode 200 is made of a material with a relatively low work function, electrons are injected into the adjacent organic material layer, that is, the electron transport region 330 (eg, electron injection layer 332).
  • the material forming this cathode is not particularly limited, and common materials known in the art can be used.
  • metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver (Ag), tin, and lead; alloys thereof; and multilayer structure materials such as LiF/Al and LiO 2 /Al, but are not limited thereto.
  • the method of manufacturing the cathode is not particularly limited, and like the anode, it can be manufactured through conventional methods known in the art.
  • the cathode material can be formed by coating one or more organic material layers 300 below, specifically the electron transport region, such as the electron injection layer 332, through the thin film formation method described above.
  • one or more organic material layers 300 are disposed between the anode 100 and the cathode 200 and include a hole transport region 310, a light emitting layer 320, and an electron transport region 330. ) includes.
  • one or more organic layers 300 include a hole injection layer 311, a hole transport layer 312, a light emitting layer 320, and an electron transport layer sequentially arranged on the anode 100. (331) and may include an electron injection layer (332).
  • the hole transport region 310 is a part of the organic material layer 300 disposed on the anode 100, and connects holes injected from the anode 100 to the adjacent light emitting layer. It plays a role in moving to (320).
  • This hole transport region 310 may include one or more types selected from the group consisting of a hole injection layer 311 and a hole transport layer 312. At this time, considering the characteristics of the organic electroluminescent device, it is preferable to include both the hole injection layer 311 and the hole transport layer 312 described above.
  • the hole transport region 310 may include a hole injection layer 311 and a hole transport layer 312 sequentially stacked on the anode 100, as shown in FIG. 1 .
  • the material forming the hole injection layer 311 and the hole transport layer 312 of the present invention is not particularly limited as long as it is a material with a low hole injection barrier and high hole mobility, and includes hole injection layer/transport layer materials used in the industry. It can be used without restrictions. At this time, the materials forming the hole injection layer 311 and the hole transport layer 312 may be the same or different.
  • the hole injection layer 311 includes a hole injection material known in the art.
  • the hole injection material include phthalocyanine compounds such as copper phthalocyanine; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4' ,4"-tris(3-methylphenylphenylamino)triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris ⁇ N,-(2 -naphthyl)-N-phenylamino ⁇ -triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), PANI/DBSA(Pol
  • the hole transport layer 312 includes a hole transport material known in the art.
  • the hole transport material include carbazole-based derivatives such as N-phenylcarbazole and polyvinylcarbazole; Fluorene-based derivatives; Amine-based derivatives; TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N Triphenylamine derivatives such as -carbazolyl)triphenylamine), NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis) (4-methylphenyl)benzenamine]), etc., and these may be used alone or in combination of two or more types.
  • the hole transport region 310 can be manufactured through a common method known in the art. For example, there are vacuum deposition methods, spin coating methods, casting methods, LB methods (Langmuir-Blodgett), inkjet printing methods, laser printing methods, and laser induced thermal imaging (LITI) methods, but are not limited thereto.
  • vacuum deposition methods spin coating methods, casting methods, LB methods (Langmuir-Blodgett), inkjet printing methods, laser printing methods, and laser induced thermal imaging (LITI) methods, but are not limited thereto.
  • the light-emitting layer 320 is a part of the organic material layer 300 interposed between the anode 100 and the cathode 200, and is specifically disposed on the hole transport region 320. As shown in FIG. 1, the light emitting layer 320 may be disposed on the hole transport layer 312.
  • This light-emitting layer 320 is a layer in which excitons are formed by combining holes and electrons injected from the anode and cathode, respectively.
  • the color of light emitted by the organic electroluminescent device can vary depending on the material that makes up the light-emitting layer 320. there is.
  • the light emitting layer 320 includes a composition containing the first host represented by the above-described formula (1) and the second host represented by the formula (2).
  • the composition may optionally further contain a phosphorescent dopant.
  • the organic electroluminescent device of the present invention not only has low driving voltage, high efficiency, and long lifespan characteristics, but can also exhibit excellent phosphorescence emission characteristics.
  • the light-emitting layer 320 includes a red light-emitting layer containing a red phosphorescent material; A green light-emitting layer comprising a green phosphorescent material; Alternatively, it may be a blue light-emitting layer containing a blue phosphorescent material. According to one example, it may be a light-emitting layer containing a green phosphorescent material.
  • the above-mentioned light emitting layer 320 may be made of a single layer made of one type of material, a single layer made of a plurality of different materials, or a plurality of two or more layers, with each layer made of a different material.
  • the organic electroluminescent device can emit light of various colors.
  • the present invention can provide an organic electroluminescent device that has a plurality of light-emitting layers made of different materials in series and has mixed colors.
  • the driving voltage of the device increases, while the current value within the organic electroluminescent device remains constant, making it possible to provide an organic electroluminescent device with improved luminous efficiency corresponding to the number of light-emitting layers.
  • the organic electroluminescent device of the present invention may include a plurality of light emitting stacks (not shown) including at least one light emitting layer.
  • the plurality of light-emitting layers included in this light-emitting stack may each emit light of different colors or may be light-emitting layers that emit light of the same color.
  • the color of light emission may vary depending on the material constituting the light emitting layer.
  • the plurality of light-emitting stacks may include materials that emit blue, green, red, yellow, or white light, and may be formed using phosphorescent or fluorescent materials.
  • the colors displayed by each light-emitting layer may be complementary to each other.
  • the color may be selected as a combination of colors that can emit white light.
  • Each of these light-emitting layers may include phosphorescent dopants or fluorescent dopants corresponding to the selected color, respectively.
  • the organic electroluminescent device of the present invention may further include a charge generation layer (CGL) (not shown) disposed between adjacent stacks among a plurality of light emitting stacks and connecting them. there is.
  • CGL charge generation layer
  • the charge generation layer refers to a layer that separates adjacent light-emitting stacks without directly contacting both electrodes (e.g., anode, cathode) in an organic electroluminescent device having a plurality of light-emitting stacks. .
  • This charge generation layer is placed between two adjacent light-emitting stacks and serves as a cathode to supply electrons by generating electrons for one light-emitting stack, and to generate holes for the other light-emitting stack. It acts as an anode that supplies .
  • This charge generation layer can be used without limitation as long as it is a material known in the art as a charge generation layer material.
  • the charge generation layer may be formed by doping the material for use with a typical n-type material and/or a p-type material known in the art.
  • the above-mentioned light emitting layer 320 can be manufactured through a common method known in the art. For example, there are vacuum deposition methods, spin coating methods, casting methods, Langmuir-Blodgett (LB) methods, inkjet printing methods, laser printing methods, and laser induced thermal imaging (LITI) methods, but are not limited thereto.
  • the light-emitting layer may be formed by co-depositing the first host represented by Formula 1 and the second host represented by Formula 2. At this time, dopants can also be co-deposited.
  • the electron transport region 330 is an organic material layer disposed on the light-emitting layer 320 and moves electrons injected from the cathode 200 to the light-emitting layer 320.
  • This electron transport region 330 may include one or more types selected from the group consisting of an electron transport layer 331 and an electron injection layer 332.
  • the electron transport region 330 may include an electron transport layer 331 and an electron injection layer 332 sequentially stacked on the light emitting layer 320, as shown in FIG. 1.
  • the electron transport layer 331 can be used without limitation as long as it is an electron transport material that facilitates electron injection and has high electron mobility.
  • electron transport materials include oxazole-based compounds, isoxazole-based compounds, triazole-based compounds, isothiazole-based compounds, oxadiazole-based compounds, thiadiazole-based compounds, and perylene.
  • oxazole-based compounds include oxazole-based compounds, isoxazole-based compounds, triazole-based compounds, isothiazole-based compounds, oxadiazole-based compounds, thiadiazole-based compounds, and perylene.
  • aluminum complexes e.g. Alq 3 (tris(8-quinolinolato)-aluminium)) BAlq, SAlq, Alph 3 , Almq 3
  • gallium complexes e.g. There are Gaq'2OPiv, Gaq'2OAc, 2(Gaq'2)), etc
  • the electron injection layer 332 can be made of an electron injection material that is easy to inject electrons and has high electron mobility without limitation.
  • the electron injection material include LiF, Li 2 O, BaO, NaCl, CsF; lanthanide metals such as Yb and the like; Alternatively, there are halogenated metals such as RbCl, RbI, etc., which may be used individually or in combination of two or more types.
  • the electron transport region 330 according to the present invention may be co-deposited with an n-type dopant to facilitate injection of electrons from the cathode 200.
  • the n-type dopant can be any alkali metal complex known in the art without limitation, and examples include alkali metal, alkaline earth metal, or rare earth metal.
  • the electron transport region 330 can be manufactured through a common method known in the art. For example, there are vacuum deposition methods, spin coating methods, casting methods, LB methods (Langmuir-Blodgett), inkjet printing methods, laser printing methods, and laser induced thermal imaging (LITI) methods, but are not limited thereto.
  • vacuum deposition methods spin coating methods, casting methods, LB methods (Langmuir-Blodgett), inkjet printing methods, laser printing methods, and laser induced thermal imaging (LITI) methods, but are not limited thereto.
  • the organic electroluminescent device of the present invention may further include an auxiliary light emitting layer disposed between the hole transport region 310 and the light emitting layer 320.
  • the light emitting auxiliary layer serves to control the thickness of the organic material layer 300 while transporting holes from the hole transport region 310 to the light emitting layer 320 or blocking the movement of electrons and/or excitons.
  • the light emitting auxiliary layer has a high LUMO value to prevent electrons from moving to the hole transport layer 312, and has a high triplet energy to prevent excitons from the light emitting layer 320 from diffusing into the hole transport layer 312. .
  • This light-emitting auxiliary layer may include a hole transport material and may be made of the same material as the hole transport region. Additionally, the light-emitting auxiliary layers of the red, green, and blue organic electroluminescent devices may be made of the same materials.
  • the material for the luminescent auxiliary layer is not particularly limited and includes, for example, carbazole derivatives and arylamine derivatives.
  • the light-emitting auxiliary layer include NPD (N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD (N, N'-bis-(3-methylphenyl)-N, N'-bis(phenyl) - benzidine), s-TAD, MTDATA (4, 4', 4′′-Tris(N-3-methylphenyl-Nphenyl-amino)- triphenylamine), etc., but are not limited to these. These may be used individually or in combination of two or more types.
  • the light emitting auxiliary layer may further include a p-type dopant in addition to the above-described materials.
  • a p-type dopant that can be used in the present invention, any known p-type dopant commonly used in the relevant technical field can be used without particular limitation.
  • the content of the P-type dopant can be appropriately adjusted within a range known in the art, and may be, for example, about 0.5 to 50 parts by weight based on 100 parts by weight of the hole transport material.
  • the light emitting auxiliary layer is formed using vacuum deposition, spin coating, casting, LB (Langmuir-Blodgett), inkjet printing, laser printing, and laser induced thermal imaging (LITI) methods. It may be formed by, but is not limited to this.
  • the organic electroluminescent device 100 of the present invention may additionally include a hole blocking layer disposed between the light emitting layer 320 and the electron transport region 330.
  • the hole blocking layer 333 can improve the lifespan of the organic electroluminescent device by preventing excitons or holes generated in the light emitting layer 320 from diffusing (moving) to the electron transport layer 331.
  • This hole blocking layer can be used without limitation as long as it has typical electron transport properties known in the art, for example, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ), bis(2-methyl-8-quinolinoleto)(4-phenyl-phenolate)aluminum(III)(BAlq), etc.
  • the hole blocking layer is formed by vacuum deposition, spin coating, casting, LB (Langmuir-Blodgett), inkjet printing, laser printing, and laser induced thermal imaging (LITI) methods. It may be formed by, but is not limited to this.
  • the organic electroluminescent device 100 of the present invention may further include a capping layer (not shown) disposed on the cathode 200 described above.
  • the capping layer protects the organic electroluminescent device and helps the light generated in the organic material layer to be efficiently emitted to the outside.
  • the capping layer is tris-8-hydroxyquinoline aluminum (Alq 3 ), ZnSe, 2,5-bis(6′-(2′,2′′-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole , 4′-bis[N-(1-napthyl)-N-phenyl-amion] biphenyl ( ⁇ -NPD), N,N′-diphenyl-N,N′-bis(3-methylphenyl) -1,1′ It may include one or more selected from the group consisting of -biphenyl-4,4′-diamine (TPD) and 1,1′-bis(di-4-tolylaminophenyl) cyclohexane (TAPC).
  • TPD -biphenyl-4,4′-diamine
  • TAPC 1,1′-bis(di-4-tolylaminophenyl) cyclohexane
  • This capping layer may be a single layer, but may include two or more layers with different refractive indices, so that the refractive index gradually changes as it passes through the two or more layers.
  • the capping layer can be manufactured through common methods known in the art, and for example, various methods such as vacuum deposition, spin coating, casting, or LB (Langmuir-Blodgett) method can be used.
  • various methods such as vacuum deposition, spin coating, casting, or LB (Langmuir-Blodgett) method can be used.
  • the organic electroluminescent device according to the present invention has a structure in which an anode 100, an organic material layer 300, and a cathode 200 are sequentially stacked.
  • an insulating layer (not shown) or an adhesive layer (not shown) disposed between the anode 100 and the organic material layer 300 or between the cathode 200 and the organic material layer 300 may be further included.
  • the organic electroluminescent device of the present invention can have excellent lifespan characteristics because the half-life time of the initial brightness is increased while maintaining maximum luminous efficiency when voltage and current are applied.
  • organic electroluminescent device of the present invention can be manufactured according to conventional methods known in the art.
  • an organic electroluminescent device can be manufactured by vacuum depositing an anode material on a substrate, and then sequentially vacuum depositing a hole transport region material, a light emitting layer material, an electron transport region material, and a cathode material on the anode. there is.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 1-1, except that 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 1-1. -D2 (135.5 g, yield 63%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 1-1, except that 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 1-1. -D3 (148.4 g, yield 69%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 1-1, except that 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 1-1. -D4 (96.8 g, yield 45%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 2-1, except that 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 2-1.
  • -D6 139.8 g, yield 65% was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 2-1, except that 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 2-1. -D7 (152.7 g, yield 71%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 2-1, except that 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 2-1. -D8 (75.2 g, yield 35%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 3-1, except that 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 3-1. -D10 (159.1 g, yield 74%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 3-1, except that 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 3-1. -D11 (163.4 g, yield 76%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 3-1, except that 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 3-1. -D12 (92.4 g, yield 43%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 4-1, except that 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 4-1. -D14 (122.6 g, yield 57%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 4-1, except that 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 4-1. -D15 (111.8 g, yield 52%) was obtained.
  • the target compound, Cz was prepared in the same manner as in Preparation Example 4-1, except that 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol) was used instead of Iodobenzene used in Preparation Example 4-1. -D16 (68.8 g, yield 32%) was obtained.
  • the target compound, A was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D2 (10.0 g, 23.6 mmol) obtained in Preparation Example 1-2 was used instead of Compound Cz-D1 used in Synthesis Example 1. -2 (13.8 g, yield 78%) was obtained.
  • the target compound A- was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D3 (10.0 g, 23.6 mmol) obtained in Preparation Example 1-3 was used instead of compound Cz-D1 used in Synthesis Example 1. 3 (13.2 g, yield 75%) was obtained.
  • the target compound, A was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D4 (10.0 g, 23.6 mmol) obtained in Preparation Example 1-4 was used instead of Compound Cz-D1 used in Synthesis Example 1. -4 (12.2 g, yield 69%) was obtained.
  • the target compound A- was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D5 (9.3 g, 23.6 mmol) obtained in Preparation Example 2-1 was used instead of Compound Cz-D1 used in Synthesis Example 1. 5 (8.73 g, yield 55%) was obtained.
  • the target compound A- was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D7 (10.0 g, 23.6 mmol) obtained in Preparation Example 2-3 was used instead of Compound Cz-D1 used in Synthesis Example 1. 7 (8.83 g, yield 50%) was obtained.
  • the target compound, A was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D8 (10.0 g, 23.6 mmol) obtained in Preparation Example 2-4 was used instead of Compound Cz-D1 used in Synthesis Example 1. -8 (9.89 g, yield 56%) was obtained.
  • the target compound, A was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D9 (9.3 g, 23.6 mmol) obtained in Preparation Example 3-1 was used instead of Compound Cz-D1 used in Synthesis Example 1. -9 (8.41 g, yield 53%) was obtained.
  • the target compound, A was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D10 (10.0 g, 23.6 mmol) obtained in Preparation Example 3-2 was used instead of Compound Cz-D1 used in Synthesis Example 1. -10 (8.66 g, yield 49%) was obtained.
  • the target compound A was prepared in the same manner as in Synthesis Example 1, except that the compound Cz-D13 (9.3 g, 23.6 mmol) obtained in Preparation Example 4-1 was used instead of the compound Cz-D1 used in Synthesis Example 1. -13 (9.52 g, yield 60%) was obtained.
  • the target compound, A was prepared in the same manner as in Synthesis Example 1, except that compound Cz-D14 (10.0 g, 23.6 mmol) obtained in Preparation Example 4-2 was used instead of Compound Cz-D1 used in Synthesis Example 1. -14 (10.78 g, yield 61%) was obtained.
  • the target compound A- was prepared in the same manner as in Synthesis Example 1, except that Cz-D16 (10.0 g, 23.6 mmol) obtained in Preparation Example 4-4 was used instead of the compound Cz-D1 used in Synthesis Example 1. 16 (9.02 g, yield 51%) was obtained.
  • the target compound, B was prepared in the same manner as in Synthesis Example 17, except that Compound Cz-D5 (7.9 g, 24.1 mmol) obtained in Preparation Example 2-1 was used instead of Compound Cz-D1 used in Synthesis Example 17. -2 (8.5 g, yield 48%) was obtained.
  • the target compound, B was prepared in the same manner as in Synthesis Example 17, except that compound Cz-D9 (7.9 g, 24.1 mmol) obtained in Preparation Example 3-1 was used instead of compound Cz-D1 used in Synthesis Example 17. -3 (11.1 g, yield 63%) was obtained.
  • the target compound, C was prepared in the same manner as in Synthesis Example 21, except that compound Cz-D5 (7.9 g, 24.1 mmol) obtained in Preparation Example 2-1 was used instead of Compound Cz-D1 used in Synthesis Example 21. -2 (7.78 g, yield 44%) was obtained.
  • the target compound C was prepared in the same manner as in Synthesis Example 21, except that the compound Cz-D9 (7.9 g, 24.1 mmol) obtained in Preparation Example 3-1 was used instead of the compound Cz-D1 used in Synthesis Example 21. -3 (11.67 g, yield 66%) was obtained.
  • the target compound E-2 was prepared in the same manner as in Synthesis Example 29, except that the compound YTP-2 (10 g, 18.2 mmol) obtained in Preparation Example 7 was used instead of the compound YTP-1 used in Synthesis Example 29. (7.3 g, yield 54%) was obtained.
  • the target compound E-2 was prepared in the same manner as in Synthesis Example 29, except that the compound YTP-3 (10 g, 18.2 mmol) obtained in Preparation Example 8 was used instead of the compound YTP-1 used in Synthesis Example 29. (8.3 g, yield 61%) was obtained.
  • the target compound E-4 was prepared in the same manner as in Synthesis Example 29, except that the compound YTP-4 (10 g, 18.2 mmol) obtained in Preparation Example 9 was used instead of the compound YTP-1 used in Synthesis Example 29. (8.7 g, yield 64%) was obtained.
  • the target compound E-5 was prepared in the same manner as in Synthesis Example 29, except that the compound YTP-5 (10 g, 18.2 mmol) obtained in Preparation Example 10 was used instead of the compound YTP-1 used in Synthesis Example 29. (9.6 g, yield 71%) was obtained.
  • the target compound, E-6 ( 10.0 g, yield 74%) was obtained.
  • the target compound, E-7 ( 9.0 g, yield 66%) was obtained.
  • the target compound E-8 was prepared in the same manner as in Synthesis Example 29, except that the compound YTP-8 (10 g, 18.2 mmol) obtained in Preparation Example 13 was used instead of the compound YTP-1 used in Synthesis Example 29. (9.5 g, yield 70%) was obtained.
  • the target compound E-9 was prepared in the same manner as in Synthesis Example 29, except that the compound YTP-9 (10 g, 17.0 mmol) obtained in Preparation Example 14 was used instead of the compound YTP-1 used in Synthesis Example 29. (6.9 g, yield 52%) was obtained.
  • a glass substrate coated with a 1500 ⁇ thin film of ITO indium tin oxide
  • ITO indium tin oxide
  • ultrasonic cleaning with solvents such as isopropyl alcohol, acetone, and methanol
  • drying transferring to a UV OZONE cleaner (Power sonic 405, Hwashin Tech), and then cleaning the substrate for 5 minutes using UV. and transferred the substrate to a vacuum evaporator.
  • solvents such as isopropyl alcohol, acetone, and methanol
  • Example 1 When forming the light-emitting layer in Example 1, among the light-emitting host materials, Compounds A-2 to D-4 listed in Table 1 were used instead of Compound A-1 used as Host 1, and Compound E-1 used as Host 2 was used instead of Compound E-1 in Table 1.
  • a green organic EL device was manufactured in the same manner as in Example 1, except that each of the compounds E-2 to E-10 described in was used.
  • Example 1 when forming the light-emitting layer, compounds HT-1 to HT-4 were used instead of Compound A-1 used as Host 1 among the light-emitting host materials, respectively, and Compounds ET-1 to ET were used instead of Compound E-1 used as Host 2.
  • a green organic EL device was manufactured in the same process as Example 1, except that -5 was used.
  • the structures of the compounds HT-1 to HT-4 and ET-1 to ET-5 used at this time are as follows.
  • Example 1 A-1 E-1 4.56 518 62.4 341
  • Example 2 A-1 E-2 4.58 518 66.2 332
  • Example 3 A-1 E-3 4.89 517 63.1 322
  • Example 4 A-1 E-4 4.56 515 66.5 329
  • Example 5 A-1 E-5 4.52 516 61.8
  • Example 6 A-1 E-6 4.74 515 60.7 310
  • Example 7 A-1 E-7 4.48 516 64.3
  • Example 8 A-1 E-8 4.56 516 62.3 324
  • Example 9 A-1 E-9 4.84 518 64.1 315
  • Example 10 A-1 E-10 4.45 518 64.3 342
  • Example 11 A-2 E-1 4.56 515 66.5 329
  • Example 12 A-2 E-2 4.52 516 61.8 300
  • Example 13 A-2 E-3 4.74 515 60.7 310
  • Example 14 A-2 E-4 4.48 516 64.3 304
  • Example 15 A-2 E-5 4.56 516 62.3 324
  • Example 16 A-2 E-6 4.84 518 6
  • Example 1 in which compounds of Formula 1 (A-1 to D-4) and compounds of Formula 2 (E-1 to E-10) according to the present invention were used together as host materials for the emitting layer. It was confirmed that the green organic EL device of -280 showed better performance in terms of current efficiency, driving voltage, and lifespan characteristics compared to the green organic EL devices of Comparative Examples 1 to 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자엑에 대한 것이고, 상기 유기 전계 발광 소자용 조성물은 화학식 1로 표시되는 제1 호스트 및 화학식 2로 표시되는 제2 호스트를 포함하고, 상기 화학식 1 및 2에 대한 상세한 내용은 명세서에서 정의한 바와 같다.

Description

유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자엑에 관한 것이다.
유기 전계 발광 소자(이하, '유기 EL 소자')는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
유기 EL 소자의 발광층 형성재료는 발광색에 따라 청색, 녹색, 적색 발광 재료로 구분될 수 있다. 그 밖에, 보다 나은 천연색을 구현하기 위한 발광재료로 노란색 및 주황색 발광재료도 사용된다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 이러한 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있어 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대해 관심이 집중되고 있다.
현재까지 정공 주입층, 정공 수송층. 정공 차단층, 전자 수송층으로는 NPB, BCP, Alq3 등이 널리 알려져 있고, 발광 재료는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히 발광재료 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료로서는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색, 녹색, 적색 도판트 재료로 사용되고 있다. 현재까지는 CBP가 인광 호스트 재료로 우수한 특성을 나타내고 있다.
그러나 종래의 유기물층 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮고 열적 안정성이 매우 좋지 않아 유기 EL 소자에서의 수명 측면에서 만족할 만한 수준이 되지 못하고 있다. 따라서, 성능이 뛰어난 유기물층 재료의 개발이 요구되고 있다.
본 발명의 목적은 고효율 및 장수명 유기 전계 발광 소자를 구현할 수 있는 조성물을 제공하고자 한다.
본 발명의 다른 목적은 전술한 조성물을 유기물층 재료(예: 발광층 재료)로 포함하여 구동전압이 낮고, 발광 효율이 높으며, 수명이 향상된 유기 전계 발광 소자를 제공하는 것이다.
상기한 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 제1 호스트, 및 하기 화학식 2로 표시되는 제2 호스트를 포함하는, 유기 전계 발광 소자용 조성물:
Figure PCTKR2023006112-appb-img-000001
Figure PCTKR2023006112-appb-img-000002
(상기 화학식 1 및 2에서,
D는 중수소이고,
a, d, f 및 h는 0 내지 3의 정수이고,
b, c, e, g, i 및 j는 각각 0 내지 4의 정수이며,
k, l, m은 각각 0 내지 5의 정수이고,
n1은 0 내지 4의 정수이고,
n2 및 n3는 각각 0 또는 1이고,
X1은 O, S, Se, N(Ar3), C(Ar4)(Ar5), 및 Si(Ar6)(Ar7)로 이루어진 군에서 선택되고,
Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 C(Ar8)이고, 이때 Y1 및 Y2 중 적어도 어느 하나는 N이며,
Ar1 내지 Ar8 및 R1 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
상기 Ar1 내지 Ar8 및 R1 내지 R7의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이함).
또한, 본 발명은 애노드; 캐소드; 및 상기 애노드 및 캐소드 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층은 전술한 조성물을 포함하는 유기 전계 발광 소자를 제공한다.
본 발명의 일 실시예에 따르면, 정공 특성이 강한 화합물 및 전자 특성이 강한 화합물을 호스트로 병용함으로써, 낮은 구동 전압, 높은 효율 및 장수명 특성을 가질 뿐만 아니라, 우수한 인광 발광 특성을 발휘할 수 있는 유기 전계 발광 소자를 구현할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타낸 단면도이다.
<부호의 설명>
100: 양극, 200: 음극,
300: 유기물층, 310: 정공 수송 영역,
311: 정공주입층, 312: 정공수송층,
320: 발광층, 330: 전자 수송 영역,
331: 전자수송층, 332: 전자주입층
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 따라서, 몇몇 실시예에서, 잘 알려진 공정 단계들, 잘 알려진 소자 구조 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다.
그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다.
<유기 전계 발광 소자용 조성물>
본 발명에 따른 유기 전계 발광 소자용 조성물은 유기 전계 발광 소자의 유기물층(예: 발광층)을 형성하는 조성물로, 상기 화학식 1로 표시되는 제1 호스트, 및 상기 화학식 2로 표시되는 제2 호스트를 포함한다. 이때, 상기 제1 호스트는 3개의 카바졸이 링커 없이 직접 연결되어 이루어진 구조를 갖는 화합물로, 정공 특성이 상대적으로 강한 P형 호스트이다. 한편, 상기 제2 호스트는 2,4,6-트리페닐-N 함유 헤테로환 모이어티의 일 페닐 부분에 디벤조 모이어티 및 벤젠 모이어티가 각각 직접 또는 링커기를 통해 결합되어 이루어진 구조를 갖는 화합물로, 전자 특성이 상대적으로 강한 N형 호스트이다. 이러한 제1 호스트 및 제2 호스트를 병용함으로써, 본 발명의 조성물은 고효율 및 장수명 유기 전계 발광 소자를 구현할 수 있다.
상기 화학식 1로 표시되는 제1 호스트에서, a, d, 및 f는 각각 0 내지 3의 정수이고, b, c, 및 e는 각각 0 내지 4의 정수이다. 여기서, a, b, c, d, e, f 및 e가 각각 0인 경우, 수소가 중수소인 D로 비(非)-치환되는 것을 의미한다. 한편, a, d 및 f가 각각 1 내지 3의 정수인 경우, 및 b, c, 및 e가 각각 1 내지 4의 정수인 경우, 1개 또는 복수의 수소가 중수소(D)로 치환되는 것을 의미한다. 이때, 13≤a+b+c+d+e+f≤21일 수 있다. 일례에 따르면, 상기 제1 호스트에 포함되는 중수소(D)의 개수는 최소 13개, 구체적으로 최소 21개일 수 있다. 이러한 제1 호스트는 중수소(D) 치환을 통해 화학 구조의 안정성을 높여 유기 전계 발광 소자의 특성, 예컨대 소자의 저전압, 고효율 및 장수명 특성을 동시에 구현할 수 있다.
이러한 중수소는 다른 치환기(R)로 치환될 수도 있다. 이때, 다른 치환기(R)가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다. 상기 다른 치환기(R)는 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택될 수 있다.
상기 화학식 1로 표시되는 제1 호스트에서, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있다. 구체적으로, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택될 수 있다.
일례에 따르면, 상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 치환기 S1 내지 S4로 이루어진 군에서 선택된 치환기일 수 있다.
Figure PCTKR2023006112-appb-img-000003
상기 치환기 S1 내지 S4에서,
*은 상기 화학식 1에 연결되는 부위이다.
이러한 Ar1 및 Ar2에 따라, 상기 화학식 1로 표시되는 제1 호스트는 하기 화학식 3으로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2023006112-appb-img-000004
상기 화학식 3에서,
a, b, c, d, e, 및 f는 각각 상기 화학식 1에 정의된 바와 같고,
m1 및 m2는 각각 0 또는 1이다.
또, 상기 화학식 1로 표시되는 제1 호스트는 각 카바졸 모이어티 간의 연결 위치에 따라 다양한 구조를 가질 수 있다. 일례에 따르면, 상기 화학식 1로 표시되는 제1 호스트는 하기 화학식 4로 표시되는 화합물일 수 있다.
Figure PCTKR2023006112-appb-img-000005
상기 화학식 4에서,
a, b, c, d, e, 및 f는 각각 상기 화학식 1에 정의된 바와 같고,
m1 및 m2는 각각 0 또는 1이다.
이상에서 설명한 본 발명에 따른 화학식 1로 표시되는 제1 호스트는 하기 예시 화합물, 예컨대 화합물 화합물 A-1 내지 D-4로 보다 더 구체화될 수 있는데, 이에 의해 한정되는 것은 아니다.
Figure PCTKR2023006112-appb-img-000006
Figure PCTKR2023006112-appb-img-000007
상기 화학식 2로 표시되는 제2 호스트에서, Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 C(Ar8)이고, 다만 Y1 및 Y2 중 적어도 어느 하나는 N이다. 이때, C(Ar8)이 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
이러한 Y1 및 Y2에 따라, 상기 화학식 2로 표시되는 제2 호스트는 하기 화학식 5 내지 7 중 어느 하나로 표시되는 화합물일 수 있다.
Figure PCTKR2023006112-appb-img-000008
Figure PCTKR2023006112-appb-img-000009
Figure PCTKR2023006112-appb-img-000010
상기 화학식 5 내지 7에서,
g, h, i, j, k, l, m, R1 내지 R7, n1 내지 n3는 각각 상기 화학식 1에 정의된 바와 같고,
Y1 및 Y2는 각각 독립적으로 C(Ar8)이고,
Ar8은 상기 화학식 1에 정의된 바와 같다.
상기 화학식 2로 표시되는 제2 호스트에서, n1은 0 내지 4의 정수이고, n2 및 n3는 각각 0 또는 1이다. 일례에 따르면, n1은 0 또는 1이고, n2는 0이며, n3는 0 또는 1일 수 있다.
상기 화학식 2로 표시되는 제2 호스트에서, X1은 O, S, Se, N(Ar3), C(Ar4)(Ar5), 및 Si(Ar6)(Ar7)로 이루어진 군에서 선택된다. 이러한 X1에 따라 디벤조 모이어티는 1가의 디벤조퓨란기, 1가의 디벤조티오펜기, 1가의 플루오렌기, 1가의 디벤조셀레노펜기 (benzoselenophene) 등일 수 있다.
Ar3 내지 Ar8은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기(예: Ar3-R1, Ar3-R2, Ar4-Ar5, Ar6-Ar7, Ar4-R1, Ar4-R2, Ar6-R1, Ar6-R2 등)와 축합 고리를 형성할 수 있다. 구체적으로, Ar3 내지 Ar8은 서로 동일하거나 상이하고, 각각 독립적으로 C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기(예: Ar3-R1, Ar3-R2, Ar4-Ar5, Ar6-Ar7, Ar4-R1, Ar4-R2, Ar6-R1, Ar6-R2 등)와 축합 고리를 형성할 수 있다. 여기서, 상기 축합 고리는 C3~C60의 축합 지방족 고리(구체적으로, C3~C30의 축합 지방족 고리), C6~C60의 축합 방향족 고리(구체적으로, C6~C30의 축합 방향족 고리), 5원~60원의 축합 헤테로방향족고리(구체적으로, 5원~30원의 축합 헤테로방향족고리), C3~C60의 스파이로(spiro) 고리 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상일 수 있다.
일례에 따르면, 상기 화학식 2에서,
Figure PCTKR2023006112-appb-img-000011
모이어티는 하기 모이어티 Dz-1 내지 Dz-7로 이루어진 군에서 선택된 모이어티일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2023006112-appb-img-000012
상기 모이어티 Dz-1 내지 Dz-7에서,
*은 상기 화학식 2에 연결되는 부위이다.
상기 화학식 2로 표시되는 제2 호스트에서, h는 0 내지 3의 정수이고, g, i 및 j는 각각 0 내지 4의 정수이며, k, l 및 m은 각각 0 내지 5의 정수이다. 여기서, g, h, i, k, k, l 및 m이 각각 0인 경우, 수소가 치환기인 R1 내지 R7로 비(非)-치환되는 것을 의미한다. 한편, h가 1 내지 3의 정수인 경우, g, i 및 j가 각각 1 내지 4의 정수인 경우와, k, l 및 m가 각각 1 내지 5의 정수인 경우, 1개 또는 복수의 R1 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 중수소(D), 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있다. 구체적으로, 1개 또는 복수의 R1 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택될 수 있다.
전술한 Ar3 내지 Ar8 및 R1 내지 R7의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환될 수 있다. 이때, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하다.
상기 화학식 2로 표시되는 제2 호스트는 하기 화학식 8 또는 9로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2023006112-appb-img-000013
Figure PCTKR2023006112-appb-img-000014
상기 화학식 8 및 9에서,
g, h, I, j, k, m, R1 내지 R5, R7, n1 내지 n3는 각각 상기 화학식 1에 정의된 바와 같고,
X2는 O 또는 S이다.
이상에서 설명한 본 발명에 따른 화학식 2로 표시되는 제2 호스트는 하기 예시 화합물, 예컨대 화합물 E-1 내지 E-10로 보다 더 구체화될 수 있는데, 이에 의해 한정되는 것은 아니다.
Figure PCTKR2023006112-appb-img-000015
본 발명에서 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 40의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴을 의미하며, 모노-뿐만 아니라 디-, 트리-알킬실릴을 포함한다. 또, "아릴실릴"은 탄소수 5 내지 60의 아릴로 치환된 실릴을 의미하고, 모노-뿐만 아니라 디-, 트리-아릴실릴 등의 폴리아릴실릴을 포함한다.
본 발명에서 "알킬보론기"는 탄소수 1 내지 40의 알킬로 치환된 보론기를 의미하며, "아릴보론기"는 탄소수 6 내지 60의 아릴로 치환된 보론기를 의미한다.
본 발명에서 "알킬포스피닐기"는 탄소수 1 내지 40의 알킬로 치환된 포스핀기를 의미하고, 모노- 뿐만 아니라 디-알킬포스피닐기를 포함한다. 또, 본 발명에서 "아릴포스피닐기"는 탄소수 6 내지 60의 모노아릴 또는 디아릴로 치환된 포스핀기를 의미하고, 모노- 뿐만 아니라 디-아릴포스피닐기를 포함한다.
본 발명에서 "아릴아민"은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미하며, 모노-뿐만 아니라 디-아릴아민를 포함한다.
본 발명에서 "헤테로아릴아민"은 핵원자수 5 내지 60의헤테로아릴로 치환된 아민을 의미하며, 모노-뿐만 아니라 디-헤테로아릴아민를 포함한다.
본발명에서 (아릴)(헤테로아릴)아민은 탄소수 6 내지 60의 아릴 및 핵원자수 5 내지 60의헤테로아릴로 치환된 아민을 의미한다.
본 발명에서 "축합고리"는 탄소수 3 내지 40의 축합지방족 고리, 탄소수 6 내지 60의 축합 방향족 고리, 핵원자수 3 내지 60의 축합 헤테로지방족 고리, 핵원자수 5 내지 60의 축합 헤테로방향족 고리, 탄소수 3 내지 60의 스파이로 고리 또는 이들의 조합된 형태를 의미한다.
전술한 제1 호스트 및 제2 호스트는 99:1 내지 1:99 중량비로 포함될 수 있다. 이 경우, 바이폴라 특성이 더 효과적으로 구현되어 효율 및 수명을 동시에 개선할 수 있다.
본 발명의 조성물은 인광 발광성 도펀트를 추가적으로 더 포함할 수 있다. 상기 인광 발광성 도펀트는 제1 및 제2 호스트에 미량 혼합되어 발광을 일으키는 물질로, 당 업계에 공지된 것이라면 특별히 한정되지 않으며, 이의 비제한적인 예로는 이리듐(Ir) 또는 백금(Pt)을 포함하는 금속 착체 화합물 등이 있다. 이러한 도펀트는 삼중항 상태 이상으로 여기시키는 다중항 여기(multiple excitation)에 의해 발광을 일으킬 수 있다.
상기 도펀트는 적색 도펀트, 녹색 도펀트 및 청색 도펀트로 분류될 수 있는데, 당해 기술 분야에 통상적으로 공지된 적색 도펀트, 녹색 도펀트 및 청색 도펀트는 특별히 제한 없이 사용될 수 있다.
구체적으로, 적색 도펀트의 비제한적인 예로는 PtOEP(Pt(II) octaethylporphine: Pt(II) 옥타에틸포르핀), Ir(piq)3 (tris(2-phenylisoquinoline)iridium: 트리스(2-페닐이소퀴놀린)이리듐), Btp2Ir(acac) (bis(2-(2'-benzothienyl)-pyridinato-N,C3')iridium(acetylacetonate): 비스(2-(2'-벤조티에닐)-피리디나토-N,C3')이리듐(아세틸아세토네이트)), 또는 이들의 2종 이상 혼합물 등이 있다.
또한, 녹색 도펀트의 비제한적인 예로는 Ir(ppy)3 (tris(2-phenylpyridine) iridium: 트리스(2-페닐피리딘) 이리듐), Ir(ppy)2(acac) (Bis(2-phenylpyridine)(Acetylacetonato)iridium(III): 비스(2-페닐피리딘)(아세틸아세토) 이리듐(III)), Ir(mppy)3 (tris(2-(4-tolyl)phenylpiridine)iridium: 트리스(2-(4-톨일)페닐피리딘) 이리듐), 또는 이들의 2종 이상 혼합물 등이 있다.
또한, 청색 도펀트의 비제한적인 예로는 F2Irpic (Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): 비스[3,5-디플루오로-2-(2-피리딜)페닐(피콜리나토) 이리듐(III)), (F2ppy)2Ir(tmd), Ir(dfppz)3, 또는 이들의 2종 이상 혼합물 등이 있다.
전술한 도펀트의 함량은 특별히 한정되지 않으며, 예컨데 전술한 조성물의 총량을 기준으로 약 0 내지 10 중량%, 구체적으로 약 0.1 내지 10 중량%, 더 구체적으로 약 1 내지 30 중량%일 수 있다.
<유기 전계 발광 소자>
본 발명에 따른 일 실시 형태의 유기 전계 발광 소자는, 애노드(anode); 캐소드(cathode); 및 상기 애노드와 캐소드 사이에 개재된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층은 전술한 조성물을 포함한다. 일례에 따르면, 상기 1층 이상의 유기물층은 발광층을 포함하고, 상기 조성물은 상기 발광층의 호스트로 포함될 수 있다. 이로써, 본 발명의 유기 전계 발광 소자는 낮은 구동 전압, 높은 효율 및 장수명 특성을 가질 뿐만 아니라, 우수한 인광 발광 특성을 발휘할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 유기 전계 발광 소자의 바람직한 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다. 중복을 피하기 위해서, 전술한 유기 전계 발광 소자용 조성물에서 설명된 구성 요소에 대한 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 개략적으로 나타내는 단면도이다.
도 1을 참조하여 설명하면, 본 발명에 일 실시예에 따른 유기 전계 발광 소자는, 기판(미도시됨) 상에 배치된 애노드(100); 상기 애노드에 대향 배치된 캐소드(200); 상기 애노드(100)와 캐소드(200) 사이에 1층 이상의 유기물층(300)을 포함하고, 상기 1층 이상의 유기물층(300)은 정공 수송 영역(310), 발광층(320) 및 전자 수송 영역(330)을 포함할 수 있다. 이때, 상기 발광층(320)은 전술한 조성물을 호스트로 포함할 수 있다. 선택적으로, 본 발명의 유기 전계 발광 소자는 캐소드(200) 상에 배치된 캡핑층(도시되지 않음)을 더 포함할 수 있다.
이하, 본 발명에 따른 유기 전계 발광 소자의 각 구성에 대하여 구체적으로 살펴보도록 하겠다.
(1) 애노드
본 발명의 유기 전계 발광 소자에서, 애노드(100)는 주로 기판 상에 배치되는 것으로, 구동 박막 트랜지스터와 전기적으로 연결되어 구동 박막 트랜지스터로부터 구동 전류를 공급받을 수 있다. 이러한 애노드(100)는 상대적으로 일함수가 높은 물질로 형성되기 때문에, 정공(hole)을 유기물층(300), 즉 정공 수송 영역(310)[예: 정공주입층(311)]으로 주입한다.
이러한 애노드를 형성하는 물질은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 것을 사용할 수 있다. 예를 들어, 바나듐, 크롬, 구리, 아연, 금 등의 금속; 이들의 합금; 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO) 등의 금속 산화물; ZnO:Al, SnO2:Sb 등의 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤, 폴리아닐린 등의 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지 않는다.
상기 애노드를 제조하는 방법은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 방법을 통해 제조될 수 있다. 예를 들어, 스퍼터링법, 이온 플레이팅법, 진공 증착법, 스핀 코트법 등의 공지된 박막 형성방법을 통해 기판 위에 상기 애노드 물질을 코팅하여 형성할 수 있다.
상기 기판은 유기 전계 발광 소자를 지지하는 판 형상의 부재로서, 예를 들어 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 있는데, 이에 한정되지 않는다.
(2) 캐소드
본 발명의 유기 전계 발광 소자에서, 캐소드(cathode)(200)는 애노드에 대향 배치되어 있는 전극으로, 구체적으로 전자 수송 영역(330) 상에 배치된다. 이러한 캐소드(200)은 상대적으로 일함수가 낮은 물질로 이루어지기 때문에, 전자(electron)를 인접한 유기물층, 즉 전자 수송 영역(330)[예, 전자주입층(332)] 내로 주입한다.
이러한 캐소드를 형성하는 물질은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 것을 사용할 수 있다. 예컨대, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은(Ag), 주석, 납 등의 금속; 이들의 합금; 및 LiF/Al, LiO2/Al 등의 다층 구조 물질 등이 있는데, 이에 한정되지 않는다.
상기 캐소드를 제조하는 방법은 특별히 한정되지 않으며, 애노드와 마찬가지로, 당 업계에 알려진 통상적인 방법을 통해 제조될 수 있다. 예를 들어, 전술한 박막 형성 방법을 통해 상기 캐소드 물질을 하기 1층 이상의 유기물층(300), 구체적으로 전자 수송 영역, 예컨대 전자주입층(332) 상에 코팅하여 형성할 수 있다.
(3) 유기물층
본 발명의 유기 전계 발광 소자에서, 1층 이상의 유기물층(300)은 애노드(100)와 캐소드(200) 사이에 배치되는 부분으로, 정공 수송 영역(310), 발광층(320) 및 전자 수송 영역(330)을 포함한다.
일례에 따르면, 도 1에 도시된 바와 같이, 1층 이상의 유기물층(300)은 애노드(100) 상에 순차적으로 배치된 정공주입층(311), 정공수송층(312), 발광층(320), 전자수송층(331) 및 전자주입층(332)을 포함할 수 있다.
이하, 각 유기물층에 대하여 설명한다.
1) 정공 수송 영역
본 발명의 유기 전계 발광 소자(100)에서, 정공 수송 영역(310)은 애노드(100) 상에 배치된 유기물층(300)의 일 부분으로, 애노드(100)로부터 주입되는 정공(hole)을 인접한 발광층(320)으로 이동시키는 역할을 한다.
이러한 정공 수송 영역(310)은 정공주입층(311), 및 정공수송층(312)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이때, 유기 전계 발광 소자의 특성을 고려할 때, 전술한 정공주입층(311)과 정공수송층(312)을 모두 포함하는 것이 바람직하다. 일례로, 정공 수송 영역(310)은 도 1에 도시된 바와 같이, 애노드(100) 상에 순차적으로 적층된 정공주입층(311) 및 정공수송층(312)을 포함할 수 있다.
본 발명의 정공주입층(311) 및 정공수송층(312)을 이루는 물질은, 정공 주입 장벽이 낮고, 정공 이동도가 큰 물질이라면 특별히 한정하지 않으며, 당 업계에서 사용되는 정공주입층/수송층 물질을 제한없이 사용할 수 있다. 이때, 정공주입층(311)과 정공수송층(312)을 이루는 물질은 서로 동일하거나 또는 상이할 수 있다.
구체적으로, 상기 정공주입층(311)은 당해 기술분야에서 공지된 정공 주입 물질을 포함한다. 상기 정공 주입 물질의 비제한적인 예로는 구리프탈로시아닌(copper phthalocyanine) 등의 프탈로시아닌(phthalocyanine) 화합물; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4',4"-tris(3-methylphenylphenylamino) triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris{N,-(2-naphthyl)-N-phenylamino}-triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), PANI/DBSA(Polyaniline/Dodecylbenzenesulfonic acid), PANI/CSA(Polyaniline/Camphor sulfonicacid), PANI/PSS((Polyaniline)/Poly(4-styrenesulfonate)) 등이 있고, 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.
상기 정공수송층(312)은 당해 기술분야에서 공지된 정공 수송 물질을 포함한다. 상기 정공 수송 물질의 비제한적인 예로는 N-페닐카바졸, 폴리비닐카바졸 등의 카바졸계 유도체; 플루오렌(fluorene)계 유도체; 아민계 유도체; TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine) 등과 같은 트리페닐아민계 유도체; NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]) 등이 있고, 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.
상기 정공 수송 영역(310)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.
2) 발광층
본 발명의 유기 전계 발광 소자에서, 발광층(320)은 애노드(100)와 캐소드(200) 사이에 개재되는 유기물층(300)의 일 부분으로, 구체적으로 상기 정공 수송 영역(320) 상에 배치된다. 도 1에 도시된 바와 같이, 발광층(320)은 정공수송층(312) 상에 배치될 수 있다.
이러한 발광층(320)은 애노드와 캐소드로부터 각각 주입된 정공과 전자가 결합하여 엑시톤(exciton)이 형성되는 층으로, 발광층(320)을 이루는 물질에 따라 유기 전계 발광 소자가 내는 빛의 색이 달라질 수 있다.
본 발명에 따른 발광층(320)은 전술한 상기 화학식 1로 표시되는 제1 호스트 및 상기 화학식 2로 표시되는 제2 호스트를 함유하는 조성물을 포함한다. 상기 조성물은 선택적으로 인광 발광성 도펀트를 더 함유할 수 있다. 전술한 조성물을 발광층(320) 재료로 포함함으로써, 본 발명의 유기 전계 발광 소자는 낮은 구동 전압, 높은 효율 및 장수명 특성을 가질 뿐만 아닐, 우수한 인광 발광 특성을 발휘할 수 있다.
본 발명에 따른 발광층(320)은 적색 인광 재료를 포함하는 적색 발광층; 녹색 인광 재료를 포함하는 녹색 발광층; 또는 청색 인광 재료를 포함하는 청색 발광층일 수 있다. 일례에 따르면, 녹색 인광 재료를 포함하는 발광층일 수 있다.
전술한 발광층(320)은 1종의 물질로 이루어진 단일층, 서로 다른 복수의 물질로 이루어진 단일층, 또는 각 층이 서로 다른 물질로 이루어진 2층 이상의 복수층으로 이루어질 수 있다. 여기서, 발광층(320)이 복수 개의 층일 경우, 유기 전계 발광 소자는 다양한 색의 빛을 낼 수 있다. 구체적으로, 본 발명은 이종(異種) 재료로 이루어진 발광층을 직렬로 복수 개 구비하여 혼합색을 띠는 유기 전계 발광 소자를 제공할 수 있다. 또한, 복수 개의 발광층을 포함할 경우, 소자의 구동전압은 커지는 반면, 유기 전계 발광 소자 내의 전류값은 일정하게 되어 발광층의 수만큼 발광 효율이 향상된 유기 전계 발광 소자를 제공할 수 있다.
도면 상에 도시되지 않았으나, 본 발명의 유기 전계 발광 소자는 적어도 하나의 발광층을 포함하는 복수의 발광 스택(미도시)을 구비할 수 있다.
이러한 발광 스택에 포함된 복수의 발광층은 각각 서로 다른 색상의 광을 발광하는 발광층이거나 또는 동일한 색상의 광을 발광하는 발광층일 수 있다. 즉, 발광층을 구성하는 물질에 따라 발광 색이 달라질 수 있다. 일례로, 복수의 발광 스택은 청색, 녹색, 적색, 황색, 백색 등을 발광하는 물질을 포함할 수 있으며, 인광 또는 형광물질을 이용하여 형성될 수 있다. 이때, 각 발광층이 나타내는 색상은 서로 보색 관계에 있을 수 있다. 이외에도, 백색을 발광할 수 있는 색의 조합으로서 색상이 선택될 수 있다. 이러한 각 발광층은 선택된 색상에 대응하는 인광 도펀트들 또는 형광 도펀트들을 각각 포함할 수 있다.
도면 상에 도시되지 않았으나, 본 발명의 유기 전계 발광 소자는 복수의 발광 스택 중 인접하는 스택들 사이에 배치되어 이들을 연결하는 전하생성층(charge generation layer, CGL)(미도시)을 더 포함할 수 있다.
전하생성층(CGL)은 복수 개의 발광 스택을 구비하는 유기 전계 발광 소자에서, 양 전극(예: 애노드, 캐소드)과 직접적으로 접촉하지 않으면서, 인접하게 배치된 발광 스택들을 분리하는 층을 의미한다. 이러한 전하생성층은 서로 인접한 2개의 발광 스택들 사이에 배치되어 하나의 발광 스택에 대해서는 전자를 생성하여 전자를 공급하는 캐소드(cathode) 역할을 하고, 다른 하나의 발광 스택에 대해서는 정공을 생성하여 정공을 공급하는 애노드(anode) 역할을 한다. 이러한 전하생성층은 당 분야에 전하생성층 재료로 공지된 물질이라면 제한 없이 사용할 수 있다. 또한, 상기 전하생성층 용도의 물질에 당 분야에 공지된 통상의 n형 물질 및/또는 p형 물질이 도핑되어 형성될 수 있다.
전술한 발광층(320)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다. 일례로, 발광층은 상기 화학식 1로 표시되는 제1 호스트 및 상기 화학식 2로 표시되는 제2 호스트를 공증착(co-deposition)하여 형성될 수 있다. 이때, 도펀트도 함께 공증착할 수 있다.
3) 전자 수송 영역
본 발명에 따른 유기 전계 발광 소자에서, 전자 수송 영역(330)은 발광층(320) 상에 배치되는 유기물층으로, 캐소드(200)에서 주입된 전자를 발광층(320)으로 이동시킨다.
이러한 전자 수송 영역(330)은 전자수송층(331) 및 전자주입층(332)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
일례로, 전자 수송 영역(330)은 도 1에 도시된 바와 같이, 발광층(320) 상에 순차적으로 적층된 전자수송층(331) 및 전자주입층(332)을 포함할 수 있다.
본 발명에 따른 전자 수송 영역(330)에서, 전자수송층(331)은 전자 주입이 용이하고 전자 이동도가 큰 전자 수송 물질이라면 제한 없이 사용할 수 있다. 이러한 전자 수송 물질의 비제한적인 예로는 옥사졸계 화합물, 이소옥사졸계 화합물, 트리아졸계 화합물, 이소티아졸(isothiazole)계 화합물, 옥사디아졸계 화합물, 티아다아졸(thiadiazole)계 화합물, 페릴렌(perylene)계 화합물, 알루미늄 착체[예: Alq3(트리스(8-퀴놀리놀라토)-알루미늄(tris(8-quinolinolato)-aluminium)) BAlq, SAlq, Alph3, Almq3], 갈륨 착체(예: Gaq'2OPiv, Gaq'2OAc, 2(Gaq'2)) 등이 있는데, 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.
또, 전자주입층(332)은 전자 주입이 용이하고 전자 이동도가 큰 전자 주입 물질을 제한 없이 사용할 수 있다. 상기 전자 주입 물질의 비제한적인 예로, LiF, Li2O, BaO, NaCl, CsF; Yb 등과 같은 란타넘족 금속; 또는 RbCl, RbI 등과 같은 할로겐화 금속 등이 있는데, 이들은 단독으로 사용되거나 2종 이상이 혼합되어 사용될 수 있다.
본 발명에 따른 전자 수송 영역(330), 구체적으로 전자수송층(331) 및/또는 전자주입층(332)은 캐소드(200)로부터 전자의 주입이 용이하도록 n형 도펀트와 공증착된 것을 사용할 수도 있다. 이때, n형 도펀트는 당 분야에 공지된 알칼리 금속 착화합물을 제한없이 사용할 수 있으며, 일례로 알칼리 금속, 알칼리 토금속 또는 희토류 금속 등을 들 수 있다.
상기 전자 수송 영역(330)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.
4) 발광 보조층
도시되지 않았지만, 본 발명의 유기 전계 발광 소자는 상기 정공 수송 영역(310)과 발광층(320) 사이에 배치된 발광 보조층을 추가적으로 더 포함할 수 있다.
발광 보조층은 정공 수송 영역(310)으로부터 이동되는 정공을 발광층(320)으로 수송하거나, 또는 전자 및/또는 엑시톤의 이동을 블로킹하면서, 유기물층(300)의 두께를 조절하는 역할을 한다. 특히, 발광 보조층은 높은 LUMO 값을 가져 전자가 정공수송층(312)으로 이동하는 것을 막고, 높은 삼중항 에너지를 가져 발광층(320)의 엑시톤이 정공수송층(312)으로 확산되는 것을 방지할 수 있다.
이러한 발광 보조층은 정공 수송 물질을 포함할 수 있고, 정공 수송 영역과 동일한 물질로 만들어질 수 있다. 또한 적색, 녹색 및 청색 유기 전계 발광 소자의 발광 보조층은 서로 동일한 재료로 만들어질 수 있다.
발광보조층 재료로는 특별히 제한되지 않으며, 예컨대 카바졸 유도체, 아릴아민 유도체 등이 있다. 구체적으로, 발광 보조층의 예로는 NPD(N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD(N, N'-bis-(3-methylphenyl)-N, N'-bis(phenyl)- benzidine), s-TAD, MTDATA(4, 4', 4″-Tris(N-3-methylphenyl-Nphenyl-amino)- triphenylamine) 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 사용되거나 또는 2종 이상이 혼합되어 사용될 수 있다.
또한, 상기 발광 보조층은 전술한 물질 이외에, p형 도펀트를 더 포함할 수 있다. 본 발명에서 사용 가능한 p형 도펀트로는 당해 기술분야에서 일반적으로 사용되는 공지의 p형 도펀트라면 특별한 제한 없이 사용될 수 있다. 이때, P형 도펀트의 함량은 당해 기술분야에 공지된 범위 내에서 적절히 조절할 수 있으며, 예컨대 정공 수송 물질 100 중량부를 기준으로 약 0.5 내지 50 중량부일 수 있다.
상기 발광 보조층은 당해 기술분야에서 알려진 바와 같이, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등에 의해 형성될 수 있는데, 이에 한정되지 않는다.
5) 정공저지층
도시되지 않았지만, 본 발명의 유기 전계 발광 소자(100)는 발광층(320)과 전자 수송 영역(330) 사이에 배치된 정공저지층을 추가적으로 더 포함할 수 있다.
상기 정공저지층(333)은 발광층(320)에서 생성된 엑시톤 또는 정공이 전자 수송층(331)으로 확산(이동)되는 것을 방지하여 유기 전계 발광 소자의 수명을 개선할 수 있다.
이러한 정공저지층의 재료는 당 분야에 공지된 통상의 전자 수송 특성을 가진 물질이라면 제한 없이 사용할 수 있으며, 예컨대 BCP (2,9-디메틸-4,7-디페닐-1,10-페난트롤린), 비스(2-메틸-8-퀴놀리놀레이토)(4-페닐-페놀레이토)알루미늄(Ⅲ)(BAlq) 등일 수 있다.
상기 정공저지층은 당해 기술분야에서 알려진 바와 같이, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등에 의해 형성될 수 있는데, 이에 한정되지 않는다.
(4) 캡핑층
선택적으로, 본 발명의 유기 전계 발광 소자(100)는 전술한 캐소드(200) 상에 배치된 캡핑층(미도시)을 더 포함할 수 있다.
상기 캡핑층은 유기 전계 발광 소자를 보호하면서, 유기물층에서 발생된 빛이 효율적으로 외부로 방출될 수 있도록 돕는 역할을 한다.
상기 캡핑층은 트리스-8-하이드록시퀴놀린알루미늄(Alq3), ZnSe, 2,5-bis(6′-(2′,2″-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole, 4′-bis[N-(1-napthyl)-N- phenyl-amion] biphenyl (α-NPD), N,N′-diphenyl-N,N′-bis(3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD), 1,1′-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) 로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이러한 캡핑층을 형성하는 물질은 유기 전계 발광 소자의 다른 층의 재료들에 비하여 저렴하다.
이러한 캡핑층은 단일층일 수도 있으나, 서로 다른 굴절률을 갖는 2 이상의 층을 포함하여, 상기 2 이상의 층을 통과하면서 점점 굴절률이 변화하도록 할 수 있다.
상기 캡핑층은 당 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있으며, 일례로 진공증착법, 스핀코팅법, 캐스트법 또는 LB(Langmuir-Blodgett)법 등과 같은 다양한 방법을 이용할 수 있다.
이상의 본 발명에 따른 유기 전계 발광 소자는 애노드(100), 유기물층(300) 및 캐소드(200)이 순차적으로 적층된 구조를 갖는다. 경우에 따라, 상기 애노드(100)와 유기물층(300) 사이, 또는 캐소드(200)와 유기물층(300) 사이에 배치된 절연층(미도시됨) 또는 접착층(미도시됨)을 더 포함할 수 있다. 이러한 본 발명의 유기 전계 발광 소자는 전압 및 전류 인가시 최대 발광효율을 유지하면서 초기 밝기의 반감 시간(Life time)이 증가되기 때문에 수명 특성이 우수할 수 있다.
전술한 본 발명의 유기 전계 발광 소자는 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 기판 상에 애노드 물질을 진공 증착한 다음, 상기 애노드 상에 정공 수송 영역 물질, 발광층 물질, 전자 수송 영역 물질, 및 캐소드 물질의 재료를 순서로 진공 증착하여 유기 전계 발광 소자를 제조할 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
<준비예 1-1> Cz-D1의 합성
Figure PCTKR2023006112-appb-img-000016
질소 기류 하에서 3-bromo-9H-carbazole-1,2,4,5,6,7,8-d7 (134.3 g, 530.6 mmol), Iodobenzene (130.0 g, 636.7 mmol), Cu (16.8 g, 265.3 mmol), K2CO3 (146.7 g, 1,061.3 mmol) 및 toluene (1000 ml)를 혼합하고 110℃에서 12시간 동안 교반하였다.
반응이 종결된 후 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 5:1 (v/v))로 정제하여 목적 화합물인 Cz-D1 (125.7 g, 수율 72%)을 얻었다.
Mass (이론치: 329.25, 측정치: 329 g/mol)
<준비예 1-2> Cz-D2의 합성
Figure PCTKR2023006112-appb-img-000017
준비예 1-1에서 사용된 Iodobenzene 대신 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 1-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D2 (135.5 g, 수율 63%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 1-3> Cz-D3의 합성
Figure PCTKR2023006112-appb-img-000018
준비예 1-1에서 사용된 Iodobenzene 대신 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 1-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D3 (148.4 g, 수율 69%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 1-4> Cz-D4의 합성
Figure PCTKR2023006112-appb-img-000019
준비예 1-1에서 사용된 Iodobenzene 대신 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 1-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D4 (96.8 g, 수율 45%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 2-1> Cz-D5 의 합성
Figure PCTKR2023006112-appb-img-000020
준비예 1-1에서 사용된 3-bromo-9H-carbazole-1,2,4,5,6,7,8-d7 대신 4-bromo-9H-carbazole-1,2,3,5,6,7,8-d7 (134.3 g, 530.6 mmol)을 사용하는 것을 제외하고는, 준비예 1-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D5 (117.1 g, 수율 67%)를 얻었다.
Mass (이론치: 329.25, 측정치: 329 g/mol)
<준비예 2-2> Cz-D6 의 합성
Figure PCTKR2023006112-appb-img-000021
준비예 2-1에서 사용된 Iodobenzene 대신 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 2-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D6 (139.8 g, 수율 65%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 2-3> Cz-D7 의 합성
Figure PCTKR2023006112-appb-img-000022
준비예 2-1에서 사용된 Iodobenzene 대신 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 2-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D7 (152.7 g, 수율 71%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 2-4> Cz-D8 의 합성
Figure PCTKR2023006112-appb-img-000023
준비예 2-1에서 사용된 Iodobenzene 대신 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 2-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D8 (75.2 g, 수율 35%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 3-1> Cz-D9 의 합성
Figure PCTKR2023006112-appb-img-000024
준비예 1-1에서 사용된 3-bromo-9H-carbazole-1,2,4,5,6,7,8-d7 대신 2-bromo-9H-carbazole-1,3,4,5,6,7,8-d7 (134.3 g, 530.6 mmol)을 사용하는 것을 제외하고는, 준비예 1-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D9 (134.5 g, 수율 77%)를 얻었다.
Mass (이론치: 329.25, 측정치: 329 g/mol)
<준비예 3-2> Cz-D10 의 합성
Figure PCTKR2023006112-appb-img-000025
준비예 3-1에서 사용된 Iodobenzene 대신 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 3-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D10 (159.1 g, 수율 74%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 3-3> Cz-D11 의 합성
Figure PCTKR2023006112-appb-img-000026
준비예 3-1에서 사용된 Iodobenzene 대신 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 3-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D11 (163.4 g, 수율 76%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 3-4> Cz-D12 의 합성
Figure PCTKR2023006112-appb-img-000027
준비예 3-1에서 사용된 Iodobenzene 대신 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 3-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D12 (92.4 g, 수율 43%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 4-1> Cz-D13 의 합성
Figure PCTKR2023006112-appb-img-000028
준비예 1-1에서 사용된 3-bromo-9H-carbazole-1,2,4,5,6,7,8-d7 대신 1-bromo-9H-carbazole-2,3,4,5,6,7,8-d7 (134.3 g, 530.6 mmol)을 사용하는 것을 제외하고는, 준비예 1-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D13 (94.3 g, 수율 54%)을 얻었다.
Mass (이론치: 329.25, 측정치: 329 g/mol)
<준비예 4-2> Cz-D14 의 합성
Figure PCTKR2023006112-appb-img-000029
준비예 4-1에서 사용된 Iodobenzene 대신 4-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 4-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D14 (122.6 g, 수율 57%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 4-3> Cz-D15 의 합성
Figure PCTKR2023006112-appb-img-000030
준비예 4-1에서 사용된 Iodobenzene 대신 3-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 4-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D15 (111.8 g, 수율 52%)를 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 4-4> Cz-D16 의 합성
Figure PCTKR2023006112-appb-img-000031
준비예 4-1에서 사용된 Iodobenzene 대신 2-iodo-1,1'-biphenyl (178.3 g, 636.7 mmol)을 사용하는 것을 제외하고는, 준비예 4-1과 동일한 과정을 수행하여 목적 화합물인 Cz-D16 (68.8 g, 수율 32%)을 얻었다.
Mass (이론치: 405.35, 측정치: 405 g/mol)
<준비예 5-1> BCz-D1 의 합성
<단계 1> 9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole-1,2,4,5,6,7,8-d7 의 합성
Figure PCTKR2023006112-appb-img-000032
질소 기류 하에서 준비예 1-1에서 얻은 화합물 Cz-D1 (100.0 g, 303.7 mmol), 4,4,4',4',5,5, 5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (84.8 g, 334.1 mmol), Pd(dppf)Cl2 (26.6 g, 30.3 mmol), KOAc (85.8 g, 911.1 mmol) 및 1,4-Dioxane (1000 ml)를 혼합하고 130 ℃에서 12시간 동안 교반하였다.
반응이 종결된 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 8:1 (v/v))로 정제하여 9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole-1,2,4,5,6,7,8-d7 (96.0 g, 수율 84%)을 얻었다.
Mass (이론치: 376.3, 측정치: 376 g/mol)
<단계 2> BCz-D1의 합성
Figure PCTKR2023006112-appb-img-000033
질소 기류 하에서 9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole-1,2,4,5,6,7,8-d7 (96.0 g, 255.1 mmol), 3-bromo-9H-carbazole-1,2,4,5,6,7,8-d7 (77.5 g, 306.1 mmol), Pd(PPh3)4 (14.7 g, 12.7 mmol), K2CO3 (88.1 g, 637.8 mmol), 1,4-dioxane/H2O (1000 ml/250 ml)를 혼합하고 120 ℃에서 4시간 동안 교반하였다.
반응이 종결된 후, 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:EA = 7:1 (v/v))로 정제하여 BCz-D1 (71.1 g, 수율 66%)을 얻었다.
Mass (이론치: 422.59, 측정치: 422 g/mol)
<준비예 5-2> BCz-D2 의 합성
Figure PCTKR2023006112-appb-img-000034
준비예 5-1에서 사용된 화합물 Cz-D1 대신 준비예 1-2에서 얻은 화합물 Cz-D2(100g, 246.7 mmol)를 사용하는 것을 제외하고는, 준비예 5-1과 동일한 과정을 수행하여 목적 화합물인 BCz-D2 (66.4 g, 최종 수율 54.0%) 를 얻었다.
Mass (이론치: 498.69, 측정치: 498 g/mol)
<준비예 5-3> BCz-D3 의 합성
Figure PCTKR2023006112-appb-img-000035
준비예 5-1에서 사용된 화합물 Cz-D1 대신 준비예 1-3에서 얻은 화합물 Cz-D3(100g, 246.7 mmol)을 사용하는 것을 제외하고는, 준비예 5-1과 동일한 과정을 수행하여 목적 화합물인 BCz-D3 (59.7 g, 최종 수율 48.5%) 를 얻었다.
Mass (이론치: 498.69, 측정치: 498 g/mol)
<준비예 5-4> BCz-D4 의 합성
Figure PCTKR2023006112-appb-img-000036
준비예 5-1에서 사용된 화합물 Cz-D1 대신 준비예 1-4에서 얻은 화합물 Cz-D4(100g, 246.7 mmol)를 사용하는 것을 제외하고는, 준비예 5-1과 동일한 과정을 수행하여 목적 화합물인 BCz-D4 (59.4 g, 최종 수율 48.3%) 를 얻었다.
Mass (이론치: 498.69, 측정치: 498 g/mol)
[합성예 1] 화합물 A-1의 합성
Figure PCTKR2023006112-appb-img-000037
질소 기류 하에서 준바예 5-1에서 얻은 화합물 BCz-D1 (10.0 g, 23.6 mmol), 준비예 1-1에서 얻은 화합물 Cz-D1 (9.3 g, 28.3 mmol), Pd(OAc)2 (1.36 g, 1.18 mmol), P(t-Bu)3 (0.57 ml, 2.36 mmol), NaO(t-Bu) (4.55 g, 47.3 mmol) 및 toluene (100 ml)를 혼합하고, 110 ℃에서 5 시간 동안 교반하였다. 반응이 종결된 후, toluene을 농축하고, 고체염을 filter한 뒤, 재결정으로 정제하여 목적 화합물인 A-1 (13.0 g, 수율 82%)을 얻었다.
Mass (이론치: 670.93, 측정치: 670 g/mol)
[합성예 2] 화합물 A-2의 합성
Figure PCTKR2023006112-appb-img-000038
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 1-2에서 얻은 화합물 Cz-D2 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-2 (13.8 g, 수율 78%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 3] 화합물 A-3의 합성
Figure PCTKR2023006112-appb-img-000039
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 1-3에서 얻은 화합물 Cz-D3 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-3 (13.2 g, 수율 75%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 4] 화합물 A-4의 합성
Figure PCTKR2023006112-appb-img-000040
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 1-4에서 얻은 화합물 Cz-D4 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-4 (12.2 g, 수율 69%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 5] 화합물 A-5의 합성
Figure PCTKR2023006112-appb-img-000041
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 2-1에서 얻은 화합물 Cz-D5 (9.3 g, 23.6 mmol)를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-5 (8.73 g, 수율 55%)를 얻었다.
Mass (이론치: 670.93, 측정치: 670 g/mol)
[합성예 6] 화합물 A-6의 합성
Figure PCTKR2023006112-appb-img-000042
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 2-2에서 얻은 화합물 Cz-D6 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-6 (7.42 g, 수율 42%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 7] 화합물 A-7의 합성
Figure PCTKR2023006112-appb-img-000043
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 2-3에서 얻은 화합물 Cz-D7 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-7 (8.83 g, 수율 50%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 8] 화합물 A-8의 합성
Figure PCTKR2023006112-appb-img-000044
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 2-4에서 얻은 화합물 Cz-D8 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-8 (9.89 g, 수율 56%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 9] 화합물 A-9의 합성
Figure PCTKR2023006112-appb-img-000045
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 3-1에서 얻은 화합물 Cz-D9 (9.3 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-9 (8.41 g, 수율 53%)를 얻었다.
Mass (이론치: 670.93, 측정치: 670 g/mol)
[합성예 10] 화합물 A-10의 합성
Figure PCTKR2023006112-appb-img-000046
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 3-2에서 얻은 화합물 Cz-D10 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-10 (8.66 g, 수율 49%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 11] 화합물 A-11의 합성
Figure PCTKR2023006112-appb-img-000047
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 3-3에서 얻은 화합물 Cz-D11 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-11 (9.01 g, 수율 51%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 12] 화합물 A-12의 합성
Figure PCTKR2023006112-appb-img-000048
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 3-4에서 얻은 화합물 Cz-D12 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-12 (9.19 g, 수율 52%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 13] 화합물 A-13의 합성
Figure PCTKR2023006112-appb-img-000049
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 4-1에서 얻은 화합물 Cz-D13 (9.3 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-13 (9.52 g, 수율 60%)을 얻었다.
Mass (이론치: 670.93, 측정치: 670 g/mol)
[합성예 14] 화합물 A-14의 합성
Figure PCTKR2023006112-appb-img-000050
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 4-2에서 얻은 화합물 Cz-D14 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-14 (10.78 g, 수율 61%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 15] 화합물 A-15의 합성
Figure PCTKR2023006112-appb-img-000051
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 4-3에서 얻은 화합물 Cz-D15 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-15 (11.13 g, 수율 63%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 16] 화합물 A-16의 합성
Figure PCTKR2023006112-appb-img-000052
합성예 1에서 사용된 화합물 Cz-D1 대신 준비예 4-4에서 얻은 Cz-D16 (10.0 g, 23.6 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물인 A-16 (9.02 g, 수율 51%)을 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 17] 화합물 B-1의 합성
Figure PCTKR2023006112-appb-img-000053
질소 기류 하에서 준비예 5-2에서 얻은 화합물 BCz-D2 (10.0 g, 20.1 mmol), 준비예 1-1에서 얻은 화합물 Cz-D1 (7.9 g, 24.1 mmol), Pd(OAc)2 (1.15 g, 1.0 mmol), P(t-Bu)3 (0.49 ml, 2.0 mmol), NaO(t-Bu) (3.85 g, 40.1 mmol) 및 toluene (100 ml)를 혼합하고, 110 ℃에서 5 시간 동안 교반하였다. 반응이 종결된 후, toluene을 농축하고, 고체염을 filter한 뒤, 재결정으로 정제하여 목적 화합물인 B-1 (10.2 g, 수율 62%)을 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 18] 화합물 B-2의 합성
Figure PCTKR2023006112-appb-img-000054
합성예 17에서 사용된 화합물 Cz-D1 대신 준비예 2-1에서 얻은 화합물 Cz-D5 (7.9 g, 24.1 mmol)를 사용하는 것을 제외하고는, 합성예 17과 동일한 과정을 수행하여 목적 화합물인 B-2 (8.5 g, 수율 48%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 19] 화합물 B-3의 합성
Figure PCTKR2023006112-appb-img-000055
합성예 17에서 사용된 화합물 Cz-D1 대신 준비예 3-1에서 얻은 화합물 Cz-D9 (7.9 g, 24.1 mmol)를 사용하는 것을 제외하고는, 합성예 17과 동일한 과정을 수행하여 목적 화합물인 B-3 (11.1 g, 수율 63%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 20] 화합물 B-4의 합성
Figure PCTKR2023006112-appb-img-000056
합성예 17에서 사용된 화합물 Cz-D1 대신 준비예 4-1에서 얻은 화합물 Cz-D13 (7.9 g, 24.1 mmol)을 사용하는 것을 제외하고는, 합성예 17과 동일한 과정을 수행하여 목적 화합물인 B-4 (7.42 g, 수율 42%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 21] 화합물 C-1의 합성
Figure PCTKR2023006112-appb-img-000057
질소 기류 하에서 준비예 5-3에서 얻은 화합물 BCz-D3 (10.0 g, 20.1 mmol), 준비예 1-1에서 얻은 화합물 Cz-D1 (7.9 g, 24.1 mmol), Pd(OAc)2 (1.15 g, 1.0 mmol), P(t-Bu)3 (0.49 ml, 2.0 mmol), NaO(t-Bu) (3.85 g, 40.1 mmol) 및 toluene (100 ml)를 혼합하고, 110 ℃에서 5시간 동안 교반하였다. 반응이 종결된 후, toluene을 농축하고, 고체염을 filter한 뒤, 재결정으로 정제하여 목적 화합물인 C-1 (9.4 g, 수율 63%)을 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 22] 화합물 C-2의 합성
Figure PCTKR2023006112-appb-img-000058
합성예 21에서 사용된 화합물 Cz-D1 대신 준비예 2-1에서 얻은 화합물 Cz-D5 (7.9 g, 24.1 mmol)를 사용하는 것을 제외하고는, 합성예 21과 동일한 과정을 수행하여 목적 화합물인 C-2 (7.78 g, 수율 44%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 23] 화합물 C-3의 합성
Figure PCTKR2023006112-appb-img-000059
합성예 21에서 사용된 화합물 Cz-D1 대신 준비예 3-1에서 얻은 화합물 Cz-D9 (7.9 g, 24.1 mmol)를 사용하는 것을 제외하고는, 합성예 21과 동일한 과정을 수행하여 목적 화합물인 C-3 (11.67 g, 수율 66%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 24] 화합물 C-4의 합성
Figure PCTKR2023006112-appb-img-000060
합성예 21에서 사용된 화합물 Cz-D1 대신 준비예 4-1에서 얻은 화합물 Cz-D13 (7.9 g, 24.1 mmol)을 사용하는 것을 제외하고는, 합성예 21과 동일한 과정을 수행하여 목적 화합물인 C-4 (6.89 g, 수율 39%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 25] 화합물 D-1의 합성
Figure PCTKR2023006112-appb-img-000061
질소 기류 하에서 준비예 5-4에서 얻은 화합물 BCz-D4 (10.0 g, 20.1 mmol), 준비예 1-1에서 얻은 화합물 Cz-D1 (7.9 g, 24.1 mmol), Pd(OAc)2 (1.15 g, 1.0 mmol), P(t-Bu)3 (0.49 ml, 2.0 mmol), NaO(t-Bu) (3.85 g, 40.1 mmol) 및 toluene (100 ml)를 혼합하고, 110 ℃에서 5시간 동안 교반하였다. 반응이 종결된 후, toluene을 농축하고, 고체염을 filter한 뒤, 재결정으로 정제하여 목적 화합물인 D-1 (8.1 g, 수율 54%)을 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 26] 화합물 D-2의 합성
Figure PCTKR2023006112-appb-img-000062
합성예 25에서 사용된 화합물 Cz-D1 대신 준비예 2-1에서 얻은 화합물 Cz-D5 (7.9 g, 24.1 mmol)를 사용하는 것을 제외하고는, 합성에 25와 동일한 과정을 수행하여 목적 화합물인 D-2 (7.24 g, 수율 41%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 27] 화합물 D-3의 합성
Figure PCTKR2023006112-appb-img-000063
합성예 25에서 사용된 화합물 Cz-D1 대신 준비예 3-1에서 얻은 화합물 Cz-D9 (7.9 g, 24.1 mmol)를 사용하는 것을 제외하고는, 합성예 25와 동일한 과정을 수행하여 목적 화합물인 D-3 (8.41 g, 수율 51%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[합성예 28] 화합물 D-4의 합성
Figure PCTKR2023006112-appb-img-000064
합성예 25에서 사용된 화합물 Cz-D1 대신 준비예 4-1에서 얻은 화합물 Cz-D13 (7.9 g, 24.1 mmol)을 사용하는 것을 제외하고는, 합성예 25와 동일한 과정을 수행하여 목적 화합물인 D-4 (5.47 g, 수율 31%)를 얻었다.
Mass (이론치: 747.02, 측정치: 747 g/mol)
[준비예 6] YTP-1의 합성
<단계 1> 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 의 합성
Figure PCTKR2023006112-appb-img-000065
질소 기류 하에서 3-bromo-5-chloro-1,1'-biphenyl (100.0 g, 373.8 mmol), 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol), Pd(PPh3)4 (21.6 g, 18.7 mmol), K2CO3 (129.1 g, 934.4 mmol), 1,4-dioxane/H2O (1000 ml/250 ml)를 혼합하고 120℃에서 4시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:DCM = 9:1 (v/v))로 정제하여 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan (87.0 g, 수율 54%)을 얻었다.
Mass (이론치: 430.93, 측정치: 430 g/mol)
<단계 2> YTP-1 의 합성
Figure PCTKR2023006112-appb-img-000066
질소 기류 하에서 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan (87.0 g, 201.8 mmol), 4,4,4',4',5,5, 5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (56.4 g, 222.0 mmol), Pd2 (dba)3 (5.5 g, 6.1 mmol), X-Phos (13.5 g, 28.3 mmol), KOAc (38.0 g, 403.6 mmol) 및 1,4-Dioxane (1000 ml)를 혼합하고 130℃에서 12시간 동안 교반하였다.
반응이 종결된 후 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 8:1 (v/v))로 정제하여 YTP-1 (74.7 g, 수율 71%)을 얻었다.
Mass (이론치: 522.45, 측정치: 522 g/mol)
[준비예 7] YTP-2의 합성
Figure PCTKR2023006112-appb-img-000067
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(9,9-dimethyl-8-phenyl-9H-fluoren-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-2 (95.8 g, 최종 수율 46.7%) 를 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 8] YTP-3의 합성
Figure PCTKR2023006112-appb-img-000068
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(9,9-dimethyl-7-phenyl-9H-fluoren-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-3 (86.3 g, 최종 수율 42.1%) 을 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 9] YTP-4의 합성
Figure PCTKR2023006112-appb-img-000069
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(9,9-dimethyl-7-phenyl-9H-fluoren-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-4 (101.9 g, 최종 수율 49.7%) 를 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 10] YTP-5의 합성
Figure PCTKR2023006112-appb-img-000070
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(3-(9,9-dimethyl-9H-fluoren-1-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-5 (85.3 g, 최종 수율 41.6%) 를 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 11] YTP-6의 합성
Figure PCTKR2023006112-appb-img-000071
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(3-(9,9-dimethyl-9H-fluoren-2-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-6 (77.5 g, 최종 수율 37.8%) 을 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 12] YTP-7의 합성
Figure PCTKR2023006112-appb-img-000072
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(3-(9,9-dimethyl-9H-fluoren-3-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-7 (84.1 g, 최종 수율 41.0%) 을 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 13] YTP-8의 합성
Figure PCTKR2023006112-appb-img-000073
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 2-(3-(9,9-dimethyl-9H-fluoren-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (177.8 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-8 (46.0 g, 최종 수율 22.4%) 을 얻었다.
Mass (이론치: 548.53, 측정치: 548 g/mol)
[준비예 14] YTP-9의 합성
Figure PCTKR2023006112-appb-img-000074
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 4,4,5,5-tetramethyl-2-(3-(spiro[cyclohexane-1,9'-fluoren]-3'-yl)phenyl)-1,3,2-dioxaborolane (195.7 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-9 (56.1 g, 최종 수율 25.5%) 을 얻었다.
Mass (이론치: 588.60, 측정치: 588 g/mol)
[준비예 15] YTP-10 의 합성
Figure PCTKR2023006112-appb-img-000075
<단계 1>
준비예 6의 <단계 1>에서 사용된 4,4,5,5-tetramethyl-2-(6-phenyldibenzo[b,d]furan-4-yl)-1,3,2-dioxaborolane (166.1 g, 448.5 mmol) 대신 4,4,5,5-tetramethyl-2-(3-(spiro[cyclopentane-1,9'-fluoren]-3'-yl)phenyl)-1,3,2-dioxaborolane (195.7 g, 448.5 mmol)을 사용하는 것을 제외하고는, 준비예 6의 <단계 1>과 동일한 과정을 수행하여 중간체를 얻었다.
<단계 2>
준비예 6의 <단계 2>에서 사용된 4-(5-chloro-[1,1'-biphenyl]-3-yl)-6-phenyldibenzo[b,d]furan 대신 상기 <단계 1>에서 얻은 중간체를 사용하는 것을 제외하고는, 준비예 6의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 YTP-10 (69.6 g, 최종 수율 32.4%) 을 얻었다.
Mass (이론치: 574.57, 측정치: 574 g/mol)
[합성예 29] 화합물 E-1의 합성
Figure PCTKR2023006112-appb-img-000076
질소 기류 하에서 준비예 6에서 얻은 화합물 YTP-1 (10.0 g, 19.1 mmol), 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine (8.2 g, 23.0 mmol), Pd(PPh3)4 (1.1 g, 1.0 mmol), K2CO3 (6.6 g, 47.9 mmol), 1,4-dioxane/H2O (1000 ml/250 ml)를 혼합하고 120 ℃에서 4시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:DCM = 3:1 (v/v))로 정제하여 목적 화합물인 E-1 (8.9 g, 수율 65%)을 얻었다.
Mass (이론치: 717.83, 측정치: 717 g/mol)
[합성예 30] 화합물 E-2의 합성
Figure PCTKR2023006112-appb-img-000077
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 7에서 얻은 화합물 YTP-2 (10 g, 18.2 mmol)를 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-2 (7.3 g, 수율 54%)를 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 31] 화합물 E-3의 합성
Figure PCTKR2023006112-appb-img-000078
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 8에서 얻은 화합물 YTP-3 (10 g, 18.2 mmol)을 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-2 (8.3 g, 수율 61%)를 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 32] 화합물 E-4의 합성
Figure PCTKR2023006112-appb-img-000079
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 9에서 얻은 화합물 YTP-4 (10 g, 18.2 mmol)를 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-4 (8.7 g, 수율 64%)를 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 33] 화합물 E-5의 합성
Figure PCTKR2023006112-appb-img-000080
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 10에서 얻은 화합물 YTP-5 (10 g, 18.2 mmol)를 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-5 (9.6 g, 수율 71%)를 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 34] 화합물 E-6의 합성
Figure PCTKR2023006112-appb-img-000081
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 11에서 얻은 화합물 YTP-6 (10 g, 18.2 mmol)를 사용하는 것을 제외하고는 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-6 (10.0 g, 수율 74%)를 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 35] 화합물 E-7의 합성
Figure PCTKR2023006112-appb-img-000082
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 12에서 얻은 화합물 YTP-7 (10 g, 18.2 mmol)를 사용하는 것을 제외하고는 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-7 (9.0 g, 수율 66%)를 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 36] 화합물 E-8의 합성
Figure PCTKR2023006112-appb-img-000083
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 13에서 얻은 화합물 YTP-8 (10 g, 18.2 mmol)를 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-8 (9.5 g, 수율 70%)을 얻었다.
Mass (이론치: 743.91, 측정치: 743 g/mol)
[합성예 37] 화합물 E-9의 합성
Figure PCTKR2023006112-appb-img-000084
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 14에서 얻은 화합물 YTP-9 (10 g, 17.0 mmol)를 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-9 (6.9 g, 수율 52%)을 얻었다.
Mass (이론치: 783.98, 측정치: 783 g/mol)
[합성예 38] 화합물 E-10의 합성
Figure PCTKR2023006112-appb-img-000085
합성예 29에서 사용된 화합물 YTP-1 대신 준비예 15에서 얻은 화합물 YTP-10 (10 g, 17.4 mmol)을 사용하고, 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine 대신 2-([1,1'-biphenyl]-3-yl)-4-([1,1'-biphenyl]-4-yl)-6-chloro-1,3,5-triazine (8.8 g, 20.9 mmol)를 사용하는 것을 제외하고는, 합성예 29와 동일한 과정을 수행하여 목적 화합물인 E-10 (7.0 g, 수율 48%)을 얻었다.
Mass (이론치: 832.06, 측정치: 832 g/mol)
[실시예 1] 녹색 유기 EL 소자의 제작
합성예 1에서 합성된 화합물 A-1 및 합성예 29에서 합성된 화합물 E-1을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 아래의 과정에 따라 녹색 유기 EL 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 98wt%의 HT + 2wt%의 PA (100 Å) / HT (1200 Å) / HA (300 Å) / 60wt%의 화합물 A-1 + 30wt%의 화합물 E-1 + 10wt%의 Ir(ppy)3 (400 Å) / EA (50 Å) / ET + LiQ (300 Å; 1:1) / LiF (10 Å) / Al (1000 Å) 순으로 적층하여 유기 EL 소자를 제작하였다. 이때, 사용된 HT, HA, PA, Ir(ppy)3, EA 및 ET의 구조는 하기와 같다.
Figure PCTKR2023006112-appb-img-000086
[실시예 2] ~ [실시예 280] - 녹색 유기 EL 소자의 제조
실시예 1에서 발광층 형성시 발광 호스트 물질 중 호스트 1로 사용된 화합물 A-1 대신 표 1에 기재된 화합물 A-2~D-4을 각각 사용하고, 호스트 2로 사용된 화합물 E-1 대신 표 1에 기재된 화합물 E-2~E-10을 각각 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 녹색 유기 EL 소자를 제조하였다.
[비교예 1] ~ [비교예 10] 녹색 유기 EL 소자의 제작
실시예 1에서 발광층 형성시 발광 호스트 물질 중 호스트 1로 사용된 화합물 A-1 대신 화합물 HT-1 내지 HT-4를 각각 사용하고, 호스트 2로 사용된 화합물 E-1 대신 화합물 ET-1 내지 ET-5를 각각 사용하는 것을 제외하고는, 실시예 1과 동일한 과정으로 녹색 유기 EL 소자를 제작하였다. 이때 사용된 화합물 HT-1 내지 HT-4, ET-1 내지 ET-5 의 구조는 다음과 같다.
Figure PCTKR2023006112-appb-img-000087
[평가예 1]
실시예 1 내지 280 및 비교예 1 내지 10에서 각각 제조된 녹색 유기 EL 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율, 발광 피크 및 수명을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
샘플 호스트 1 호스트 2 구동 전압
(V)
EL 피크
(nm)
전류효율
(cd/A)
수명
(hr, T97)
실시예 1 A-1 E-1 4.56 518 62.4 341
실시예 2 A-1 E-2 4.58 518 66.2 332
실시예 3 A-1 E-3 4.89 517 63.1 322
실시예 4 A-1 E-4 4.56 515 66.5 329
실시예 5 A-1 E-5 4.52 516 61.8 300
실시예 6 A-1 E-6 4.74 515 60.7 310
실시예 7 A-1 E-7 4.48 516 64.3 304
실시예 8 A-1 E-8 4.56 516 62.3 324
실시예 9 A-1 E-9 4.84 518 64.1 315
실시예 10 A-1 E-10 4.45 518 64.3 342
실시예 11 A-2 E-1 4.56 515 66.5 329
실시예 12 A-2 E-2 4.52 516 61.8 300
실시예 13 A-2 E-3 4.74 515 60.7 310
실시예 14 A-2 E-4 4.48 516 64.3 304
실시예 15 A-2 E-5 4.56 516 62.3 324
실시예 16 A-2 E-6 4.84 518 64.1 315
실시예 17 A-2 E-7 4.45 518 64.3 342
실시예 18 A-2 E-8 4.54 518 62.3 321
실시예 19 A-2 E-9 4.65 517 65.4 333
실시예 20 A-2 E-10 4.55 515 64.2 342
실시예 21 A-3 E-1 4.67 518 66.1 351
실시예 22 A-3 E-2 4.54 518 64.3 321
실시예 23 A-3 E-3 4.56 517 65.1 334
실시예 24 A-3 E-4 4.45 515 61.4 331
실시예 25 A-3 E-5 4.52 516 64.3 300
실시예 26 A-3 E-6 4.74 516 62.3 310
실시예 27 A-3 E-7 4.48 518 64.1 304
실시예 28 A-3 E-8 4.56 518 64.3 324
실시예 29 A-3 E-9 4.84 518 62.3 315
실시예 30 A-3 E-10 4.45 517 65.4 342
실시예 31 A-4 E-1 4.54 515 64.2 321
실시예 32 A-4 E-2 4.65 518 66.1 333
실시예 33 A-4 E-3 4.55 518 64.3 342
실시예 34 A-4 E-4 4.67 517 65.1 351
실시예 35 A-4 E-5 4.54 515 61.4 321
실시예 36 A-4 E-6 4.56 518 62.4 334
실시예 37 A-4 E-7 4.45 515 61.4 331
실시예 38 A-4 E-8 4.56 518 62.4 341
실시예 39 A-4 E-9 4.48 516 64.3 304
실시예 40 A-4 E-10 4.81 516 61.2 320
실시예 41 A-5 E-1 4.54 515 64.2 321
실시예 42 A-5 E-2 4.65 518 66.1 333
실시예 43 A-5 E-3 4.55 518 64.3 342
실시예 44 A-5 E-4 4.67 517 65.1 351
실시예 45 A-5 E-5 4.54 515 61.4 321
실시예 46 A-5 E-6 4.56 518 62.4 334
실시예 47 A-5 E-7 4.45 515 61.4 331
실시예 48 A-5 E-8 4.54 515 61.4 321
실시예 49 A-5 E-9 4.56 518 62.4 334
실시예 50 A-5 E-10 4.45 515 61.4 331
실시예 51 A-6 E-1 4.56 518 62.4 341
실시예 52 A-6 E-2 4.48 516 64.3 304
실시예 53 A-6 E-3 4.48 516 65.1 334
실시예 54 A-6 E-4 4.81 516 61.4 331
실시예 55 A-6 E-5 4.54 515 64.3 300
실시예 56 A-6 E-6 4.65 518 62.3 310
실시예 57 A-6 E-7 4.55 518 64.1 304
실시예 58 A-6 E-8 4.67 517 64.3 324
실시예 59 A-6 E-9 4.54 515 62.3 315
실시예 60 A-6 E-10 4.45 517 65.4 342
실시예 61 A-7 E-1 4.54 518 62.4 341
실시예 62 A-7 E-2 4.65 516 64.3 304
실시예 63 A-7 E-3 4.55 516 61.2 320
실시예 64 A-7 E-4 4.67 515 64.2 321
실시예 65 A-7 E-5 4.54 518 66.1 333
실시예 66 A-7 E-6 4.56 518 64.3 342
실시예 67 A-7 E-7 4.54 515 64.2 321
실시예 68 A-7 E-8 4.65 518 66.1 333
실시예 69 A-7 E-9 4.55 518 64.3 342
실시예 70 A-7 E-10 4.67 517 65.1 351
실시예 71 A-8 E-1 4.54 515 61.4 321
실시예 72 A-8 E-2 4.56 518 62.4 334
실시예 73 A-8 E-3 4.45 515 61.4 331
실시예 74 A-8 E-4 4.56 518 62.4 341
실시예 75 A-8 E-5 4.48 516 64.3 304
실시예 76 A-8 E-6 4.81 516 61.2 320
실시예 77 A-8 E-7 4.54 515 64.2 321
실시예 78 A-8 E-8 4.65 518 66.1 333
실시예 79 A-8 E-9 4.55 518 64.3 342
실시예 80 A-8 E-10 4.81 516 61.2 320
실시예 81 A-9 E-1 4.56 518 62.4 341
실시예 82 A-9 E-2 4.58 518 66.2 332
실시예 83 A-9 E-3 4.89 517 63.1 322
실시예 84 A-9 E-4 4.56 515 66.5 329
실시예 85 A-9 E-5 4.52 516 61.8 300
실시예 86 A-9 E-6 4.74 515 60.7 310
실시예 87 A-9 E-7 4.48 516 64.3 304
실시예 88 A-9 E-8 4.56 516 62.3 324
실시예 89 A-9 E-9 4.84 518 64.1 315
실시예 90 A-9 E-10 4.45 518 64.3 342
실시예 91 A-10 E-1 4.56 515 66.5 329
실시예 92 A-10 E-2 4.52 516 61.8 300
실시예 93 A-10 E-3 4.74 515 60.7 310
실시예 94 A-10 E-4 4.48 516 64.3 304
실시예 95 A-10 E-5 4.56 516 62.3 324
실시예 96 A-10 E-6 4.84 518 64.1 315
실시예 97 A-10 E-7 4.45 518 64.3 342
실시예 98 A-10 E-8 4.54 518 62.3 321
실시예 99 A-10 E-9 4.65 517 65.4 333
실시예 100 A-10 E-10 4.55 515 64.2 342
실시예 101 A-11 E-1 4.67 518 66.1 351
실시예 102 A-11 E-2 4.54 518 64.3 321
실시예 103 A-11 E-3 4.56 517 65.1 334
실시예 104 A-11 E-4 4.45 515 61.4 331
실시예 105 A-11 E-5 4.52 516 64.3 300
실시예 106 A-11 E-6 4.74 516 62.3 310
실시예 107 A-11 E-7 4.48 518 64.1 304
실시예 108 A-11 E-8 4.56 518 64.3 324
실시예 109 A-11 E-9 4.84 518 62.3 315
실시예 110 A-11 E-10 4.45 517 65.4 342
실시예 111 A-12 E-1 4.54 515 64.2 321
실시예 112 A-12 E-2 4.65 518 66.1 333
실시예 113 A-12 E-3 4.55 518 64.3 342
실시예 114 A-12 E-4 4.67 517 65.1 351
실시예 115 A-12 E-5 4.54 515 61.4 321
실시예 116 A-12 E-6 4.56 518 62.4 334
실시예 117 A-12 E-7 4.45 515 61.4 331
실시예 118 A-12 E-8 4.56 518 62.4 341
실시예 119 A-12 E-9 4.48 516 64.3 304
실시예 120 A-12 E-10 4.81 516 61.2 320
실시예 121 A-13 E-1 4.54 515 64.2 321
실시예 122 A-13 E-2 4.65 518 66.1 333
실시예 123 A-13 E-3 4.55 518 64.3 342
실시예 124 A-13 E-4 4.67 517 65.1 351
실시예 125 A-13 E-5 4.54 515 61.4 321
실시예 126 A-13 E-6 4.56 518 62.4 334
실시예 127 A-13 E-7 4.45 516 64.3 304
실시예 128 A-13 E-8 4.54 516 61.2 320
실시예 129 A-13 E-9 4.56 515 64.2 321
실시예 130 A-13 E-10 4.45 518 66.1 333
실시예 131 A-14 E-1 4.56 518 64.3 342
실시예 132 A-14 E-2 4.48 515 64.2 321
실시예 133 A-14 E-3 4.48 518 66.1 333
실시예 134 A-14 E-4 4.81 518 64.3 342
실시예 135 A-14 E-5 4.54 517 65.1 351
실시예 136 A-14 E-6 4.65 515 61.4 321
실시예 137 A-14 E-7 4.55 518 62.4 334
실시예 138 A-14 E-8 4.67 515 61.4 331
실시예 139 A-14 E-9 4.54 518 62.4 341
실시예 140 A-14 E-10 4.45 516 64.3 304
실시예 141 A-15 E-1 4.54 516 61.2 320
실시예 142 A-15 E-2 4.65 515 64.2 321
실시예 143 A-15 E-3 4.55 518 66.1 333
실시예 144 A-15 E-4 4.67 518 64.3 342
실시예 145 A-15 E-5 4.54 516 61.2 320
실시예 146 A-15 E-6 4.56 518 62.4 341
실시예 147 A-15 E-7 4.54 518 66.2 332
실시예 148 A-15 E-8 4.65 517 63.1 322
실시예 149 A-15 E-9 4.55 515 66.5 329
실시예 150 A-15 E-10 4.67 516 61.8 300
실시예 151 A-16 E-1 4.54 515 60.7 310
실시예 152 A-16 E-2 4.56 516 64.3 304
실시예 153 A-16 E-3 4.45 516 62.3 324
실시예 154 A-16 E-4 4.56 518 62.4 341
실시예 155 A-16 E-5 4.48 516 64.3 304
실시예 156 A-16 E-6 4.81 516 61.2 320
실시예 157 A-16 E-7 4.54 515 64.2 321
실시예 158 A-16 E-8 4.65 518 66.1 333
실시예 159 A-16 E-9 4.55 518 64.3 342
실시예 160 A-16 E-10 4.67 517 65.1 351
실시예 161 B-1 E-1 4.54 515 64.2 321
실시예 162 B-1 E-2 4.65 518 66.1 333
실시예 163 B-1 E-3 4.55 518 64.3 342
실시예 164 B-1 E-4 4.67 517 65.1 351
실시예 165 B-1 E-5 4.54 515 61.4 321
실시예 166 B-1 E-6 4.56 518 62.4 334
실시예 167 B-1 E-7 4.45 516 64.3 304
실시예 168 B-1 E-8 4.54 516 61.2 320
실시예 169 B-1 E-9 4.56 515 64.2 321
실시예 170 B-1 E-10 4.45 518 66.1 333
실시예 171 B-2 E-1 4.55 518 64.3 342
실시예 172 B-2 E-2 4.67 517 65.1 351
실시예 173 B-2 E-3 4.54 515 61.4 321
실시예 174 B-2 E-4 4.56 518 62.4 334
실시예 175 B-2 E-5 4.45 516 64.3 304
실시예 176 B-2 E-6 4.54 516 61.2 320
실시예 177 B-2 E-7 4.56 515 64.2 321
실시예 178 B-2 E-8 4.45 518 66.1 333
실시예 179 B-2 E-9 4.56 518 64.3 342
실시예 180 B-2 E-10 4.48 515 64.2 321
실시예 181 B-3 E-1 4.48 518 66.1 333
실시예 182 B-3 E-2 4.81 518 64.3 342
실시예 183 B-3 E-3 4.54 517 65.1 351
실시예 184 B-3 E-4 4.65 515 61.4 321
실시예 185 B-3 E-5 4.55 518 62.4 334
실시예 186 B-3 E-6 4.67 515 61.4 331
실시예 187 B-3 E-7 4.54 518 62.4 341
실시예 188 B-3 E-8 4.45 516 64.3 304
실시예 189 B-3 E-9 4.54 516 61.2 320
실시예 190 B-3 E-10 4.65 515 64.2 321
실시예 191 B-4 E-1 4.55 518 66.1 333
실시예 192 B-4 E-2 4.67 518 64.3 342
실시예 193 B-4 E-3 4.54 516 61.2 320
실시예 194 B-4 E-4 4.56 518 62.4 341
실시예 195 B-4 E-5 4.54 518 66.2 332
실시예 196 B-4 E-6 4.65 517 63.1 322
실시예 197 B-4 E-7 4.55 515 66.5 329
실시예 198 B-4 E-8 4.67 516 61.8 300
실시예 199 B-4 E-9 4.54 515 60.7 310
실시예 200 B-4 E-10 4.67 517 65.1 351
실시예 201 C-1 E-1 4.54 515 64.2 321
실시예 202 C-1 E-2 4.65 518 66.1 333
실시예 203 C-1 E-3 4.55 518 64.3 342
실시예 204 C-1 E-4 4.67 517 65.1 351
실시예 205 C-1 E-5 4.54 515 61.4 321
실시예 206 C-1 E-6 4.56 518 62.4 334
실시예 207 C-1 E-7 4.45 516 64.3 304
실시예 208 C-1 E-8 4.54 516 61.2 320
실시예 209 C-1 E-9 4.56 515 64.2 321
실시예 210 C-1 E-10 4.45 518 66.1 333
실시예 211 C-2 E-1 4.55 518 64.3 342
실시예 212 C-2 E-2 4.67 517 65.1 351
실시예 213 C-2 E-3 4.54 515 61.4 321
실시예 214 C-2 E-4 4.56 518 62.4 334
실시예 215 C-2 E-5 4.45 516 64.3 304
실시예 216 C-2 E-6 4.54 516 61.2 320
실시예 217 C-2 E-7 4.56 515 64.2 321
실시예 218 C-2 E-8 4.45 518 66.1 333
실시예 219 C-2 E-9 4.56 518 64.3 342
실시예 220 C-2 E-10 4.48 515 64.2 321
실시예 221 C-3 E-1 4.48 518 66.1 333
실시예 222 C-3 E-2 4.81 518 64.3 342
실시예 223 C-3 E-3 4.54 517 65.1 351
실시예 224 C-3 E-4 4.65 515 61.4 321
실시예 225 C-3 E-5 4.55 518 62.4 334
실시예 226 C-3 E-6 4.67 515 61.4 331
실시예 227 C-3 E-7 4.54 518 62.4 341
실시예 228 C-3 E-8 4.45 516 64.3 304
실시예 229 C-3 E-9 4.54 516 61.2 320
실시예 230 C-3 E-10 4.65 515 64.2 321
실시예 231 C-4 E-1 4.55 518 66.1 333
실시예 232 C-4 E-2 4.67 518 64.3 342
실시예 233 C-4 E-3 4.54 516 61.2 320
실시예 234 C-4 E-4 4.56 518 62.4 341
실시예 235 C-4 E-5 4.54 518 66.2 332
실시예 236 C-4 E-6 4.65 517 63.1 322
실시예 237 C-4 E-7 4.55 515 66.5 329
실시예 238 C-4 E-8 4.67 516 61.8 300
실시예 239 C-4 E-9 4.54 515 60.7 310
실시예 240 C-4 E-10 4.67 517 65.1 351
실시예 241 D-1 E-1 4.54 515 64.2 321
실시예 242 D-1 E-2 4.65 518 66.1 333
실시예 243 D-1 E-3 4.55 518 64.3 342
실시예 244 D-1 E-4 4.67 517 65.1 351
실시예 245 D-1 E-5 4.54 515 61.4 321
실시예 246 D-1 E-6 4.56 518 62.4 334
실시예 247 D-1 E-7 4.45 516 64.3 304
실시예 248 D-1 E-8 4.54 516 61.2 320
실시예 249 D-1 E-9 4.56 515 61.4 321
실시예 250 D-1 E-10 4.45 518 62.4 334
실시예 251 D-2 E-1 4.55 516 64.3 304
실시예 252 D-2 E-2 4.67 516 61.2 320
실시예 253 D-2 E-3 4.54 515 64.2 321
실시예 254 D-2 E-4 4.56 518 66.1 333
실시예 255 D-2 E-5 4.45 518 64.3 342
실시예 256 D-2 E-6 4.54 517 65.1 351
실시예 257 D-2 E-7 4.56 515 61.4 321
실시예 258 D-2 E-8 4.45 518 62.4 334
실시예 259 D-2 E-9 4.54 515 64.3 304
실시예 260 D-2 E-10 4.65 518 61.2 320
실시예 261 D-3 E-1 4.55 518 64.2 321
실시예 262 D-3 E-2 4.67 517 66.1 333
실시예 263 D-3 E-3 4.54 515 64.3 342
실시예 264 D-3 E-4 4.56 518 64.2 321
실시예 265 D-3 E-5 4.45 516 66.1 333
실시예 266 D-3 E-6 4.54 516 64.3 342
실시예 267 D-3 E-7 4.56 515 65.1 351
실시예 268 D-3 E-8 4.45 518 61.4 321
실시예 269 D-3 E-9 4.55 518 62.4 334
실시예 270 D-3 E-10 4.67 517 61.4 331
실시예 271 D-4 E-1 4.54 515 62.4 341
실시예 272 D-4 E-2 4.56 518 64.3 304
실시예 273 D-4 E-3 4.45 516 61.2 320
실시예 274 D-4 E-4 4.54 516 64.2 321
실시예 275 D-4 E-5 4.56 515 66.1 333
실시예 276 D-4 E-6 4.45 518 64.3 342
실시예 277 D-4 E-7 4.56 518 61.2 320
실시예 278 D-4 E-8 4.48 515 62.4 341
실시예 279 D-4 E-9 4.54 518 66.2 332
실시예 280 D-4 E-10 4.67 517 63.1 322
비교예 1 HT-1 ET-1 6.01 517 45.3 250
비교예 2 A-1 ET-1 5.45 520 51.1 220
비교예 3 B-2 ET-2 5.67 517 53.4 230
비교예 4 C-3 ET-3 5.43 514 50.3 240
비교예 5 D-4 ET-4 5.54 516 48.2 210
비교예 6 D-4 ET-5 5.51 515 50.2 220
비교예 7 HT-1 E-1 5.89 521 48.2 150
비교예 8 HT-2 E-3 6.00 512 43.3 180
비교예 9 HT-3 E-8 6.11 514 42.1 192
비교예 10 HT-4 E-10 6.03 516 44.5 294
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 화학식 1의 화합물(A-1~D-4) 및 화학식 2의 화합물(E-1~E-10)을 발광층의 호스트 물질로 함께 사용한 실시예 1-280의 녹색 유기 EL 소자는 비교예 1~10의 녹색 유기 EL 소자에 비해 전류 효율, 구동전압 및 수명 특성에서 보다 우수한 성능을 나타냈다는 것을 확인할 수 있었다.

Claims (15)

  1. 하기 화학식 1로 표시되는 제1 호스트, 및 하기 화학식 2로 표시되는 제2 호스트를 포함하는, 유기 전계 발광 소자용 조성물:
    [화학식 1]
    Figure PCTKR2023006112-appb-img-000088
    [화학식 2]
    Figure PCTKR2023006112-appb-img-000089
    (상기 화학식 1 및 2에서,
    D는 중수소이고,
    a, d, f 및 h는 0 내지 3의 정수이고,
    b, c, e, g, i 및 j는 각각 0 내지 4의 정수이며,
    k, l, m은 각각 0 내지 5의 정수이고,
    n1은 0 내지 4의 정수이고,
    n2 및 n3는 각각 0 또는 1이고,
    X1은 O, S, Se, N(Ar3), C(Ar4)(Ar5), 및 Si(Ar6)(Ar7)로 이루어진 군에서 선택되고,
    Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 C(Ar8)이고, 이때 Y1 및 Y2 중 적어도 어느 하나는 N이며,
    Ar1 내지 Ar8 및 R1 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, 포스핀옥사이드기, C1~C40의 알킬포스핀옥사이드기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60 의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    상기 Ar1 내지 Ar8 및 R1 내지 R7의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 알킬포스핀옥사이드기, 아릴포스핀기, 아릴포스핀옥사이드기, 아릴아민기 및 축합 고리는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이함).
  2. 제1항에 있어서,
    상기 제1 호스트에 포함되는 중수소(D)의 개수가 최소 13개인, 유기 전계 발광 소자용 조성물.
  3. 제1항에 있어서,
    상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 치환기 S1 내지 S4로 이루어진 군에서 선택된 치환기인, 유기 전계 발광 소자용 조성물:
    Figure PCTKR2023006112-appb-img-000090
    .
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 제1 호스트는 하기 화학식 3으로 표시되는 화합물인, 유기 전계 발광 소자용 조성물:
    [화학식 3]
    Figure PCTKR2023006112-appb-img-000091
    (상기 화학식 3에서,
    a, b, c, d, e, 및 f는 각각 제1항에 정의된 바와 같고,
    m1 및 m2는 각각 0 또는 1임).
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 제1 호스트는 하기 화학식 4로 표시되는 화합물인, 유기 전계 발광 소자용 조성물:
    [화학식 4]
    Figure PCTKR2023006112-appb-img-000092
    (상기 화학식 4에서,
    a, b, c, d, e, 및 f는 각각 제1항에 정의된 바와 같고,
    m1 및 m2는 각각 0 또는 1임).
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 제1 호스트는 하기 화합물 A-1 내지 D-4로 이루어진 군에서 선택된 화합물인, 유기 전계 발광 소자용 조성물:
    Figure PCTKR2023006112-appb-img-000093
    Figure PCTKR2023006112-appb-img-000094
    .
  7. 제1항에 있어서,
    상기 화학식 2로 표시되는 제2 호스트는 하기 화학식 5 내지 7 중 어느 하나로 표시되는 화합물인, 유기 전계 발광 소자용 조성물:
    [화학식 5]
    Figure PCTKR2023006112-appb-img-000095
    [화학식 6]
    Figure PCTKR2023006112-appb-img-000096
    [화학식 7]
    Figure PCTKR2023006112-appb-img-000097
    (상기 화학식 5 내지 7에서,
    g, h, I, j, k, l, m, R1 내지 R7, n1 내지 n3는 각각 제1항에 정의된 바와 같고,
    Y1 및 Y2는 각각 독립적으로 C(Ar8)이고,
    Ar8은 제1항에 정의된 바와 같음).
  8. 제1항에 있어서,
    상기 화학식 2에서,
    Figure PCTKR2023006112-appb-img-000098
    모이어티는 하기 모이어티 Dz-1 내지 Dz-7로 이루어진 군에서 선택된 모이어티인, 유기 전계 발광 소자용 조성물:
    Figure PCTKR2023006112-appb-img-000099
    .
  9. 제1항에 있어서,
    상기 화학식 2로 표시되는 제2 호스트는 하기 화학식 8 또는 9로 표시되는 화합물인, 유기 전계 발광 소자용 조성물:
    [화학식 8]
    Figure PCTKR2023006112-appb-img-000100
    [화학식 9]
    Figure PCTKR2023006112-appb-img-000101
    (상기 화학식 8 및 9에서,
    g, h, I, j, k, m, R1 내지 R5, R7, n1 내지 n3는 각각 제1항에 정의된 바와 같고,
    X2는 O 또는 S임).
  10. 제1항에 있어서,
    상기 화학식 2로 표시되는 제2 호스트는 하기 화합물 E-1 내지 E-10으로 이루어진 군에서 선택된 것인, 유기 전계 발광 소자용 조성물:
    Figure PCTKR2023006112-appb-img-000102
    .
  11. 제1항에 있어서,
    상기 제1 호스트와 제2 호스트는 99:1 내지 1:99 중량비로 포함되는 것인, 유기 전계 발광 소자용 조성물.
  12. 제1항에 있어서,
    상기 조성물은 인광 발광성 도펀트를 추가적으로 더 포함하는 것인, 유기 전계 발광 소자용 조성물.
  13. 제12항에 있어서,
    상기 인광 발광성 도펀트는 이리듐(Ir) 또는 백금(Pt)를 포함하는 금속 착체화합물인, 유기 전계 발광 소자용 조성물.
  14. 애노드; 캐소드; 및 상기 애노드 및 캐소드 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며,
    상기 1층 이상의 유기물층은 제1항 내지 제13항 중 어느 한 항에 기재된 조성물을 포함하는 유기 전계 발광 소자.
  15. 제14항에 있어서,
    상기 1층 이상의 유기물층은 발광층을 포함하고,
    상기 조성물은 상기 발광층에 포함되는 것인, 유기 전계 발광 소자.
PCT/KR2023/006112 2022-05-06 2023-05-04 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자 WO2023214820A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0056093 2022-05-06
KR1020220056093A KR102643044B1 (ko) 2022-05-06 2022-05-06 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자

Publications (1)

Publication Number Publication Date
WO2023214820A1 true WO2023214820A1 (ko) 2023-11-09

Family

ID=88646712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006112 WO2023214820A1 (ko) 2022-05-06 2023-05-04 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR102643044B1 (ko)
WO (1) WO2023214820A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170111387A (ko) * 2016-03-28 2017-10-12 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20190142068A (ko) * 2018-06-15 2019-12-26 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20200025382A (ko) * 2018-08-30 2020-03-10 두산솔루스 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20200067612A (ko) * 2018-12-04 2020-06-12 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR20220023700A (ko) * 2020-08-21 2022-03-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물, 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170111387A (ko) * 2016-03-28 2017-10-12 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20190142068A (ko) * 2018-06-15 2019-12-26 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20200025382A (ko) * 2018-08-30 2020-03-10 두산솔루스 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20200067612A (ko) * 2018-12-04 2020-06-12 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR20220023700A (ko) * 2020-08-21 2022-03-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물, 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자

Also Published As

Publication number Publication date
KR20230156552A (ko) 2023-11-14
KR102643044B1 (ko) 2024-03-04

Similar Documents

Publication Publication Date Title
WO2016089080A1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015156580A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020159019A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020209679A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020050619A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2017111544A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111543A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019004584A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020116881A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017146483A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019103397A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021132956A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019013503A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018186551A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133808A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020130660A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2022005249A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2022005251A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018012762A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020209602A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2023214820A1 (ko) 유기 전계 발광 소자용 조성물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799701

Country of ref document: EP

Kind code of ref document: A1